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Abstract—The Multiple Pheromone Ant Clustering Algorithm
(MPACA) models the collective behaviour of ants to find clusters
in data and to assign objects to the most appropriate class. It
is an ant colony optimisation approach that uses pheromones
to mark paths linking objects that are similar and potentially
members of the same cluster or class. Its novelty is in the way
it uses separate pheromones for each descriptive attribute of the
object rather than a single pheromone representing the whole
object. Ants that encounter other ants frequently enough can
combine the attribute values they are detecting, which enables
the MPACA to learn influential variable interactions. This paper
applies the model to real-world data from two domains. One is
logistics, focusing on resource allocation rather than the more
traditional vehicle-routing problem. The other is mental-health
risk assessment. The task for the MPACA in each domain was
to predict class membership where the classes for the logistics
domain were the levels of demand on haulage company resources
and the mental-health classes were levels of suicide risk. Results
on these noisy real-world data were promising, demonstrating the
ability of the MPACA to find patterns in the data with accuracy
comparable to more traditional linear regression models.

I. INTRODUCTION

Clustering is the task of partitioning data sets into categories

of common likeness. It can be a complex problem to unravel

because the boundaries between classes are often ambiguous

and non-linear. If the data set has high dimensionality, it can

be extremely difficult to understand the inherent structure and

exploit it with an appropriate clustering algorithm. This has

led to a large variety of approaches seeking to optimise cluster

analysis, including ones modelled on insect behaviour.

This paper investigates how computer models of ants can

help humans sort data into meaningful classes using cluster

analysis. A brief review of relevant ant models is provided

before explaining how the MPACA works. The main aim of the

paper is to show how it can provide meaningful results from

real-world data and an example from the logistics industry is

used. The paper concludes with a discussion of the model, its

effectiveness, and how it can be applied to additional data sets.

II. BACKGROUND

Swarm intelligence (SI) is the phenomenon whereby intel-

ligent behaviour emerges from the interactions of numerous

separate entities with low-level cognitive capacities [1], [4],

[5], [6]. There are many examples in the insect world but

the focus of this paper is on ants and specifically ant colony

optimisation (ACO). Two ant behaviours have fuelled many of

the computer models, one for sorting larvae or corposes and

the other foraging for food. The so-called Basic Model (BM)

[8] comes from the sorting of ant bodies into piles and is often

referenced as the Standard Ant Clustering Algorithm (SACA).

It works by assessing the similarity of bodies with others in

the same location. In contrast, ant foraging depends on laying

down pheromone trails that guide other ants towards objects in

which they are interested. It is used to optimise paths between

objects, either to link similar ones or to find the shortest paths.

The MPACA is based on this type of ACO algorithm.

Using scents or pheromone to form paths is a form of

stigmergy, where information is placed in the environment

for communication purposes [7], [24]. Shorter paths have ants

returning to them more quickly and the pheromone is less

affected by evaporation. Together, these phenomena attract

ants to locations containing objects with similar attributes

and are the driving forces for cluster formation. For the

MPACA model applied to real-world domains in this paper,

objects are placed within a multidimensional graph space, as

others have done [20], [26]. Its main innovation is by having

multiple pheromones that distinguish ants within colonies

rather than more normally between them [10]. The next section

summarises the latest version of the MPACA, which was in-

troduced as a clustering algorithm in [41] and applied to some

standard data sets. The goal of this paper is to show how the

MPACA can be used to learn class assignations and be applied

to noisy, diverse real-world data in the domains of mental-

health risk assessment and predicting resource requirements

for logistics companies.

III. OVERVIEW OF THE MPACA

The Multiple Pheromone Ant Clustering Algorithm,

MPACA, is not unique by having many different pheromones

laid down on trails for objects. However, no previous models

attach a specific pheromone to each particular value of every

descriptive attribute of an object. Pheromones encourage other

ants to follow them via a scent. In the MPACA model, each

pheromone type indicates paths towards a specific feature

value in the given search space. It is applicable to multiple

dimensions and can accommodate both discrete and continu-

ous data of any type. Ordinal dimensions are used to set up

the hyperdimensional problem space but are first normalised
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to help prevent bias due to types of distributions. The values

are measured in the number of standard deviations (SD) from

the mean, z, where

z =
(x− µ)

SD
, (1)

x, is the original value and µ, is the mean.

The values of each object along the dimensions of the

hyperdimensional space determine its location in the graph

and objects are linked by edges to all other objects if the

Euclidean distance is within a parameterised maximum. Non-

ordinal features are not part of the hyperdimensional space but

still participate in learning by having ants leave pheromone

traces along the edges corresponding to these features and

their particular values. Ants are then placed on every object,

with each ant assigned to one attribute and responding to the

particular value the object has for that attribute. The ant’s own

attribute value becomes the distinctive pheromone it deposits,

which it lays whenever leaving an object with a matching

value and which it follows if laid by another ant. The upshot

is that there will be as many pheromones in the domain as

there are distinct attribute values, including nominal features

and ordinal dimensions.

Learning takes place by ants following trails matching their

own feature value and depositing pheromone from objects if

they also have that value. Paths from an object are chosen

stochastically based on the amount of matching pheromone

compared to the alternatives. The resulting stigmergy means

objects with similar feature values will have higher levels of

pheromone connecting them because ants will be depositing in

both directions along the path compare to ants travelling along

edges with different values at each end. Also, the evaporation

of pheromone means longer paths tend to have lower levels

of pheromone.

The MPACA has a mechanism for ants to learn feature

combinations or interactions that might be important for clus-

ter analysis and classification. Pheromone trails for different

feature values can draw ants into the same locations if they

regularly co-occur with the same objects. If the encounters

between the ants exceed a parameterised threshold, the ants

will combine each other’s features which means they will now

only respond to objects having both features. It enables ants

to detect feature combinations and thus to pick up non-linear

interactions.

Merging colonies is similarly driven by the frequency of

ant encounters. Both feature and colony merges are opera-

tionalised by recording ant meetings. These take place when

an ant, which we will call the “focus” ant for referential clarity,

has reached an object and only if its feature set matches that of

the object because this means it is in an area of interest to it.

The “encounters” data structure of the focus ant is updated at

this point by finding all other ants within the vicinity that are

also in an area of interest to them, which is the case if they are

in deposit mode on a path away from the object that has the

focus ant on it or are coming towards the object. If the number

of encounters for the focus ant go above a threshold for colony

or feature merging (they have different thresholds), then the

focus ant updates its feature and colony properties accordingly.

The thresholds have to be exceeded within a certain time span.

The time span is measured in the number of steps, where each

cycle of the system moves an ant one step along an edge

and encounters recorded on a step that goes outside the time

window are removed.

A. MPACA parameters

Although the general idea and philosophy of the MPACA

has been described, much of the detail resides with how it

is parameterised. This will be summarised here so that the

actual values used when applying the model to the data can

be understood.

• Edges joining objects Only ordinal dimensions are used

to set up the hyperdimensional problem space. They are

normalised as already explained by Equation 1. This gives

the same units to all dimensions in the hyperdimensional

space and object values are likewise normalised so that

they can be placed in their appropriate location in the

space. The resulting graph, G, has a vertex, v, for every

object and all objects are connected to other objects by

an edge, e, but only if is is within a distance parameter, d:

relationships between objects further apart are therefore

ignored.

• Step size The granularity for measuring differences be-

tween objects depends on how small the steps are along

the edges. The assumption was made that plus or minus

2 SDs from the mean covers most population values on

that dimension except the outliers. A step size of 0.1 SDs

gives 40 steps along each dimension, which is enough for

meaningful distinctions between objects.

• Pheromone deposition, evaporation, and path choice

Pheromone is laid by ants when they leave an object with

matching values and the same parameterised amount,

ph, is laid for all ants and all features. A percentage

is removed from paths by evaporation on each step and

a maximum amount, ph.max, prevents paths increasing

levels of pheromone indefinitely, which would overwhelm

the influence of other paths.

A residual parameter r, determines the percentage of total

matching pheromone on all edges that is placed on each

of them by default. It adds uncertainty by allowing ants

to go down paths with little or no scent and explore

new areas. Given N potential paths from a vertex with

pheromone scent s on the first step of each path, where

s is the pheromone matching the features of the ant, the

probability of selecting a particular path, p, is given by

P (p) = (s+r)
N∑

i=1

si+(r×N)

.

• Detection range for continuous dimensions

Ants responding to a dimension of an object (e.g. length)

are given a range around the exact value of their “home”

object (the one they are placed on at the start and that

defines their feature value). They respond to any value



within this range, which is based on the step size for the

dimension.

• Ant complement

The ant complement, ac, determines how many ats are

placed on each feature of an object at the start. It defines

the population size and influences sensitivity of cluster

analysis by increasing encounters between ants. Greater

computational load is an inevitable consequence and

the balance will depend on the density of objects and

dimensionality of space.

• Merging thresholds

The colony threshold, ct, determines when the population

density of ants is high enough to trigger the ant joining a

colony. The feature threshold, ft, is linked to the number

of times a particular feature has been seen in other ants.

Both are driven by ant encounters. On each encounter, the

ant records the following information of the other ant: the

ant identifier (id), the colony id, the carried feature id, the

timestep, and a boolean flag holding the deposit mode of

the encountered ant at that time stamp. This is put into

theAntSeenRecord, within the AntSeenList. The size of the

list structure is kept in check by the time stamp which is

placed on it. On exceeding the time-window parameter,

this encounter is removed.

• Time-window

The time window, tw, defines the maximum number of

steps that can be remembered for ant encounters. It helps

prevent over-fitting and enables the ACO model to learn

new patterns over time if the domain structure changes.

• Visibility The number of steps within which an ant

encounter is counted. Any ant within this distance of

the ant whose encounters are being calculated (the focus

ant in the earlier description) becomes eligible for being

recorded as an encounter.

B. Ant movement

Ants move one step at a time and each movement is

recorded as one timestep for the whole system. The path or

edge to follow is chosen as a probabilistic function of the

strength of matching pheromone on the first step of each edge

leading from the vertex: the higher the strength, the more likely

the path will be chosen, which distinguishes it from [7]. This

mechanism does not require any foresight about the potential

vertices that can be visited, and has the single restriction that

ants cannot go back along an edge they have just traversed.

C. The MPACA Algorithm

Require: Graph space with connecting edges and ants as-

signed to each feature.

while (Termination not met) do

for (Each ant in antlist) do

Increment StepNumber against all encounters in

AntSeenList by one

if (StepNumber > threshold) then

Remove encounter from AntSeenList

end if

if (Ant at vertex) then

Update AntSeenList counts;

if (Ant features match object) then

Activate pheromone deposition mode;

Process AntSeenList for colony and feature

merging

else

Deactivate pheromone deposition mode;

end if

Choose next edge stochastically taking pheromone

values into account;

end if

EdgeTraversal ← EdgeTraversal − 1;

if (Ant in deposition mode) then

deposit pheromone for each feature;

end if

end for

if (Stopping criterion reached) then

Output cluster definitions;

else

Perform system wide evaporation;

end if

end while

In the MPACA, each step of the ants is a single time interval

so edges which are n steps long will take n timesteps to

traverse. The MPACA terminates when ants reach a stable dy-

namic equilibrium in the colonies they form. This is indicated

by a consistent number of colonies and a stable population

number in each one.

IV. EVALUATION AND RESULTS

The main aim of this paper is to determine the potential

of the MPACA for analysing diverse real-world data sets.

Two example domains have been chosen, mental-health risk

assessment and hub-and-spoke logistics. The domains have

extremely high dimensions (over 200 for the mental-health

one) and extremely high numbers of cases (many millions

for the logistics domain). These present serious challenges for

the tractability of the MPACA but the rewards are high. If

the MPACA can form accurate clusters, these will have ant

populations that represent a detailed analysis of the relative

importance of features and feature combinations required for

cluster membership.

In each domain, one of the authors is creating a cognitive

model of decision making based on human expertise [42], [43]

[44]. The aim is to use it within an Intelligent Knowledge-

Based System that helps end users optimise their decisions

based on the input information and by exploiting mathematical

analysis of the underlying database. The MPACA can provide

a useful alternative method that analyses the ant population

demographics in each colony to form rules about class mem-

bership that can complement the cognitive model. The Ant-

Miner algorithm [27] and its derivatives have shown how this

approach can work and provide data representations that are

more comprehensible to users. The main loop of the Ant-

Miner algorithm consists of three key steps: rule construction,



rule pruning, and pheromone updating. Results show that Ant-

Miner has good classification performance on test data sets

and the ability to constrain the number of rules required [27],

[28]. The MPACA rules would be constructed from a detailed

understanding of how ant features and their combinations

differ within the learned classes.

A. Application of the MPACA to hub-and-spoke logistics net-

works

Fig. 1. Transportation in a multiple hub-and-spoke logistics system.

Hub-and-spoke logistics networks have a standard modus

operandus [45]. They consist of a number of haulage depots

which collect and deliver shipments to and from one or more

central hubs. Figure 1 shows a simplified diagram of these

activities for a network with 3 hubs and 8 depots. In reality,

the networks are much larger than this, with over 100 depots

feeding the main hub for the one used to evaluate the MPACA

in this paper. The idea is that a depot takes its own customers’

shipments to the hub and brings back shipments from any of

the other depots that require delivery to the depot’s assigned

delivery area.

The problem depots have is predicting how many shipments

will be at the hub by the end of the day that they are required

to deliver. If they take too many lorries to the hub, they will

have wasted space on the return trip; if they take too few, they

will have to leave shipments behind with costly penalties if the

network has to deploy alternative resources to deliver them. In

short, if depots could be informed early in the day about the

total demand (number of shipments) they will have in the day,

this will help decision making to optimise their resources.

Clearly some form of automated analysis is required to

enable decision makers in a hub-and-spoke model make sense

of the available information [46] and companies have been

investing in information technology to this effect [47]. It is a

key subject of the EU FP7 co-funded project ADVANCE [48],

where various machine learning approaches are being studied

with regard to their appropriateness for providing reliable

predictions. The MPACA will be applied to the same data

to compare the performance of ACO with more traditional

machine learning.

Field work conducted for ADVANCE shows that fluctua-

tions in the numbers of shipments (pallets, in this domain) have

a deleterious impact on operational performance (Figure 2).

Fig. 2. Fluctuations in the number of pallets each day for a specific depot in
the ADVANCE project (the regular very low troughs represent the weekends).

Such peaks and troughs may appear over the whole network,

where the total number of shipments passing through a hub

varies widely, as well as on a local level where individual

depots experience large changes in numbers from day to day

even though the overall network numbers may remain stable.

Interviews with depot managers revealed a desire for knowing

whether they would have more than or less than the expected

number of shipments on a particular day. They could then gear

up for additional resources or offer to take on other depots’

shipments if spare capacity was likely. To explore the potential

of the MPACA in supporting hug-and-spoke decision making,

the first step was to find out how well it could predict whether

the demand was above or below the mean and compare this

with the machine learning program chosen for ADVANCE

[40].

1) Predicting shipments: The machine learning program

used to compare with the MPACA consists of two main

processes: select the most appropriate attributes for a depot

and then learn the accompanying linear regression model for

predicting the number of shipments or total demand at the

end of the day [40]. The attributes used to predict demand

include the known current demand (what has already been

committed to the hub) and a number of other variables to do

with stages of shipment orders, when they were made, and so

on. These numbers obviously change as the day progresses

so models were learned for separate time points. In fact,

a separate regression model was learned for each depot at

selected times of each day for each day of the week.

The attribute-selection process picked out 15 of the most

influential variables from sixty potential ones and these were

used to learn the regression model. The same ones, including

the known end-of-day demand, were used by the MPACA to

set up the hyperdimensional graph space. Each object (or day

in this domain) was assigned to one of two classes: “above”

if the known demand was above the mean and “below”

otherwise. At the start of learning, the ants were assigned to



Parameter start mean SD

Max Edge Length 7 8.4 1.6
Step size 0.1 0.1 0
Phereomone evaporation 0.01 0.05 0
Pheromone deposition 100 100 0
Detection range 2 2 0
Ant complement 1 1.3 0.5
Feature merging threshold 5 5 0
Time window 55 63 8
Visibility 4 4 0

TABLE I
PARAMETER SETTINGS FOR THE MPACA. THE START VALUE IS THE ONE

SET AT THE BEGINNING OF LEARNING AND THE MEAN AND STANDARD

DEVIATION (SD) ARE THE AVERAGE VALUES AS THESE PARAMETERS

WERE MANUALLY VARIED OVER THE 13 TRAINING CYCLES

the colony matching the class of their starting object. The

ants then moved around the graph according to the algorithm

described earlier until they had formed population clusters,

Testing was conducted by putting the unknown objects

into the hypergraph but with the known-demand dimension

removed. In other words, the outcome information about

these unknown objects was not included in the domain. They

were assigned to the colony that had the nearest centroid

(multidimensional mean), measured as the Euclidean distance

from the object to that point. This provided the MPACA

with the ability to predict whether the demand was going to

be greater than or less than normal for the day depending

on whether it was in the colony for total known demand

above the mean or below the mean. The method differs from

the MPACA’s origins in cluster analysis [41] by exploiting

known outcomes through supervised learning: the the actual

number of shipments required for delivery is made part of the

hyperdimensional space for learning and then removed when

classifying unknown cases.

2) Results: Four depots were tested at two different times of

the day, 12.00 and 15.00, on a Wednesday. The mean number

of shipments for the depots was around 100 (which equates to

between two and three lorry loads). Thirteen separate training

and testing cycles were conducted for the MPACA and the

results were compared with the machine-learning regression

model using precision, which is the percentage of outcomes

and predictions agreeing with each other with respect to the

total sample size of predictions. The sample for each depot

consisted of 206 days and these were randomly divided into

two equal sets for training and testing.

Table I shows the parameter settings at the beginning and

end of learning, where the parameters are in the same order

as described in Section III-A. Automated search was not

conducted over the parameter space so these are manual

settings based on estimates of the optimal initial settings. The

mean and SD show that little variation was used to improve

the results but this is mainly due to each cycle being set man-

ually. It is likely that a hill-climbing parameter search would

produce better results but it is computationally extremely time-

consuming and requires optimising the MPACA experimental

code.

Precision
Depot Time ML MPACA SD

2 12:00 79 68 0.01
3 12:00 83 68 0.01
5 12:00 60 72 0.01
7 12:00 77 74 0.01
2 15:00 74 74 0.02
3 15:00 75 79 0.01
5 15:00 52 80 0.02
7 15:00 65 78 0.00
MPACA mean 71 74 0.01

TABLE II
RESULTS FOR PREDICTING WHETHER DEMAND WILL BE ABOVE OR

BELOW THE AVERAGE FOR THAT DAY FOR FOUR DEPOTS AT TWO TIMES.
ML GIVES THE MACHINE-LEARNING REGRESSION MODEL PREDICTION

AND THE MPACA PRECISION IS ITS MEAN FOR 13 LEARNING AND

TESTING CYCLES. THE FINAL STANDARD DEVIATION (SD) COLUMN

GIVES THE SD OF THE MEAN ACROSS THE CYCLES.

Table II compares the prediction precision of the MPACA

with the machine-learning regresson program produced by

ADVANCE [40]. These are preliminary results that are de-

signed to provide an indication of the MPACA’s potential for

application to real-world data and clearly there are many more

sophisticated ways of testing it. Nevertheless, the outcome is

promising, with the MPACA having a mean precision equal

to the standard regression method. The variation for which

of the two models is better for a particular depot and time

is probably due to using categorical outcomes where outcome

demands only marginally above or below the mean are equally

weighted with those having much larger deviations.

B. Mental health risk assessment

The mental-health risk-assessment data relates to the de-

velopment of the Galatean Risk and Safety Tool, GRiST

[49]. GRiST helps mental-health practitioners assess patients’

risks of suicide, self-harm, harm to others, self-neglect, and

vulnerability. It is based on the assessment knowledge of

multidisciplinary practitioners working in all areas of mental

health and was designed to disseminate their expertise to

services where people did not have a specialist mental-health

training.

The MPACA will be tested on the suicide risk data collected

by GRiST. The input patient information consists of 138

individual items of information or patient cues. Each of these

patient vectors has a clinical risk evaluation given to it by

the assessor and the database contains more than 50,000

patient records. However, the data varies in its completeness

because the circumstances of assessment often mean only

some areas are of interest at any particular time. Therefore,

clinical judgements are not based on full vectors, and may

have less than 50 per cent of the values present. The output risk

judgements are along a sliding scale from 0 (minimum risk) to

10 (maximum risk), which means there are no output classes

for categorical assignment. Instead, the judgements map to

fuzzy risk labels such as minimum, low, medium, high, and

maximum.

The aim of analysing the GRiST suicide data is to determine

whether input data can predict clinical judgements accurately.



Parameter start mean SD

Max Edge Length 9 9.77 0.79
Step size 0.1 0.1 0
Phereomone evaporation 0.005 0.018 0.014
Pheromone deposition 100 148.9 50.51
Detection range 1 1.39 0.49
Ant complement 1 1.45 0.51
Feature merging threshold 5 5 0
Time window 50 53 5.18
Visibility 4 4 0

TABLE III
PARAMETER SETTINGS FOR THE MPACA AS APPLIED TO THE GRIST
DATASET. THE START VALUE IS THE ONE SET AT THE BEGINNING OF

LEARNING AND THE MEAN AND STANDARD DEVIATION (SD) ARE THE

AVERAGE VALUES OVER THE 49 TRAINING CYCLES

If so, then the decision support system can provide advice

to assessors based on the clinical consensus of the several

thousand expert mental-health practitioners who provided the

judgements in its database.

The most important pragmatic objective for GRiST predic-

tions is to minimise the numbers of patients who are placed in

either the high-risk category when they are low risk or placed

in the low-risk category when they are high risk. To test the

ability of the MPACA for doing this, two classes of patients

were extracted: those with clinical judgements below 4 and

those with judgements above 6 on an integer scale from 0 to

10.

Random-forest classification [50] was one of the most

successful methods applied to the GRiST data. Its precision

for predicting a judgement within plus or minus one of the

clinician’s judgement was 87%. This was based on 25 of

the most important variables and where missing variables had

imputed values. For testing the potential of the MPACA, the

task was made considerably easier by predicting the most

important errors: patients stated to be high risk when they

were low or vice versa. However, it was based on a smaller

sample using only 13 independent variables and there was no

necessity to handle missing data.

The same learning and testing approach was used for the

MPACA on the risk data as for the logistics data. A sample of

232 cases were used that were randomly split into 50% training

and 50% test cases. The training objects were placed in the

hyperdimensional space of 13 variables where the training

cases also had the known clinical judgement given as an

extra dimension. Ants were placed on each object and if the

object was in one of the categories to learn, because the

clinical-judgement value was below 4 or above 6, then the

ants were assigned to the colony associated with that object.

After completion of learning, the test cases were added to

the hyperdimensional graph but with the clinical judgement

dimension removed. Objects were assigned to the class that

had the nearest centroid, as for the logistics domain.

Table III displays the initial parameter values for the 49

cycles of training and testing. Once again, the manual manip-

ulation of parameters from the start value to improve classifica-

tion did not alter them very much, demonstrated by the very

low standard deviation across the 49 cycles. Improvements

are obviously possible if automated optimisation was used but

these preliminary results show the potential for the MPACA to

learn risk judgements. The mean precision, where the MPACA

predictions correctly placed test objects into the low clinical

risk or high clinical risk categories, was 91.2% with a standard

deviation of 0.01. Although this looks like a very good result,

it was made easier by only trying to detect gross errors where

high and low risks are confused. Attempting to predict the

exact judgement between 0 and 10 would obviously be harder

but enough encouragement has been given with these initial

results to make it worth pursuing.

V. CONCLUSION

This paper has described a new Ant Colony Clustering

model called the Multi-Pheromone Ant Clustering Algorithm,

MPACA. It was introduced in [41] as a clustering method

and was tested on three data sets from the Machine Learning

Repository [3]: the Iris, Wine, and Wisconsin Breast Cancer

data. This paper gave an overview of the latest incarnation of

the MPACA including a detailed description of the algorithm

and its parameters. It is unique by having a pheromone for

every attribute value of the objects in the domain space. The

ants are able to link similar features of objects, to combine

the features they detect depending on the frequency with

which they meet other ants with the same features, and

to form colonies based on local ant population densities.

Together, these enable ants to learn the feature profile for

different clusters and for mapping colony membership onto

those clusters. Where this paper differs from the earlier one

is by extending the model to classification learning as well as

cluster analysis. In other words, it shows how the MPACA can

be adapted for supervised learning and that it should perhaps

be renamed a classification/clustering algorithm. Secondly,

the paper explored how useful and effective the approach

might be when applied to noisy and heterogeneous real-world

data sets. These create interesting problems and this paper

conducts experiments that determine whether innovations of

the MPACA translate into useful outcomes.

Two data sets were used, one for logistics and one for

mental health. The structure, dimensionality, and classification

objectives differed widely between the two sets but the results

show that the MPACA can induce and utilise patterns to

produce helpful classification advice. A more stringent test

was given to the algorithm for the logistics domain than

the mental-health one and the application to both domains

could be improved. For the logistics data, having classification

decisions based on such broad categories as either above or

below the mean does not provide the most interesting output to

end users. They need to know how large is the deviation from

the mean. In fact, the most important information is whether

there will be a peak or trough in demand and the MPACA

could easily be adapted to test for these by redefining classes

into those where the demand exceeds a given threshold value

above or below the mean. This is rather like its application to

the mental-health risk data where high and low risk patients



were being discriminated. Of course, this leaves patients with

judgements in between these classes without a colony and it

would be useful to predict their category as well.

The machine learning regression approach in each domain

predicts the actual values of outputs, not just class member-

ship, which makes it more informative. Further work on the

MPACA will be on how to translate the colony memberships

into a similar prediction. Even with the crude assignment

mechanism used in this paper, where unknown objects were

classified in the class associated with the colony having the

nearest multidimensional mean (centroid), it is possible to

translate the relative distances from colonies into the degree

of membership in the colony. The more membership in a class

above or below the mean, the higher the difference between

the predicted demand and the mean.

The most productive way of immediately improving the

classification output of the MPACA is by using more sophisti-

cated assignments of unknown objects to classes after learning.

Methods currently under investigation include variants of

nearest-neighbour analysis where the number of ants from

different colonies is calculated for all nodes within a given

radius of the object to be classified. The relative proportions of

colony populations can be translated into a probability of class

membership using a simple Bayes equation. Alternatively,

sophisticated probability density functions could be used as

input to the Bayesian probability calculations.

There are many avenues requiring exploration for the

MPACA model itself, both with the general mechanism and

its parameterisation. At the time of writing, there are problems

with merging colonies because domains with multiple clusters

eventually merge into just two. Somewhere in the learning

and merging process, an optimal configuration will have been

achieved but it is not easy to know when; some form of

dynamic equilibrium should happen and it should also be

detectable so that it is clear when learning has reached an

optimum end point.

Parameters are an important influence on the model’s oper-

ation and more needs to be discovered about how they exert

their influence so that performance can be improved. The cur-

rent method is slow and cumbersome, requiring manual setting

of parameters, observation of performance, and a new run

with adjusted parameters in accordance with conclusions from

the observations. A hill-climbing approach where paramters

are systematically adjusted to reduce classification errors after

learning is the obvious next step. The problem is that ACO

methods are computationally expensive and time consuming,

requiring careful optimisation of the MPACA code to generate

the necessary execution speed.

An important guideline to remember for future research

on the MPACA is to avoid chasing performance optimisation

without understanding how it is being achieved. Otherwise the

particular qualities of the MPACA could be lost or diluted,

with improvements failing to come from the metaphor that

has motivated the research in the first place.
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