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Productivity at the macro level is a complex concept but also arguably the most
appropriate measure of economic welfare. Currently, there is limited research available
on the various approaches that can be used to measure it and especially on the relative
accuracy of said approaches.

This thesis has two main objectives: firstly, to detail some of the most common
productivity measurement approaches and assess their accuracy under a number of
conditions and secondly, to present an up-to-date application of productivity
measurement and provide some guidance on selecting between sometimes conflicting
productivity estimates.

With regards to the first objective, the thesis provides a discussion on the issues specific
to macro-level productivity measurement and on the strengths and weaknesses of the
three main types of approaches available, namely index-number approaches
(represented by Growth Accounting), non-parametric distance functions (DEA-based
Malmquist indices) and parametric production functions (COLS- and SFA-based
Malmquist indices). The accuracy of these approaches is assessed through simulation
analysis, which provided some interesting findings. Probably the most important were
that deterministic approaches are quite accurate even when the data is moderately
noisy, that no approaches were accurate when noise was more extensive, that functional
form misspecification has a severe negative effect in the accuracy of the parametric
approaches and finally that increased volatility in inputs and prices from one period to
the next adversely affects all approaches examined.

The application was based on the EU KLEMS (2008) dataset and revealed that the
different approaches do in fact result in different productivity change estimates, at least
for some of the countries assessed. To assist researchers in selecting between
conflicting estimates, a new, three step selection framework is proposed, based on
findings of simulation analyses and established diagnostics/indicators. An application of
this framework is also provided, based on the EU KLEMS dataset.

Keywords: Data Envelopment Analysis, Stochastic Frontier Analysis, Growth
Accounting, Monte Carlo simulations
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Chapter 1. Introduction and aims of the
research

1.1. Productivity growth: a short introduction

Productivity  isn’t  everything,  but  in  the  long  run  it  is  almost everything. A
country’s ability  to  improve  its standard of  living over time  depends  almost

entirely  on  its  ability  to  raise  its  output  per worker.

Paul Krugman, The Age of Diminishing Expectations (1994)

Over long periods of time, small differences in rates of productivity growth
compound, like interest in a bank account, and can make an enormous difference

to a society's prosperity. Nothing contributes more to reduction of poverty, to
increases in leisure, and to the country's ability to finance education, public health,

environment and the arts.

Alan Blinder and William Baumol (1993), Economics: Principles and Policy,
Harcourt Brace Jovanovich, San Diego

Arguably, the main objective of all economic activity is to increase the economic welfare

of the participating actors. In the broad production framework, welfare is closely related

to the output of the production process. This is true both in the micro setting, ie when

studying individual firms, as well as the macro setting, ie when studying whole sectors of

the economy or the economy of an individual country. At the micro setting, output

strongly influences both costs and revenues, and by extension profits, which is what for-

profit firms seek to maximise. In the macro setting, output plays an even more important

role; Gross Domestic Product (GDP), a measure of aggregate output, is by far the most

commonly used indicator of economic welfare at the national level.

In addition to output produced, there is a further, equally important dimension when

considering the notion of economic welfare. This relates to the amount of effort needed

to produce said output. ‘Effort’, as used here, is a broad concept and includes all factors

that allow the production of output. These factors are all inputs to the production process
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and in broad terms include the necessary labour, plant and equipment (capital), raw

materials or unfinished goods, externally procured services and energy resources

required to produce said output.

By accounting for this additional dimension, a more complete measure of economic

welfare can be devised, one that includes in its definition both the outputs and the inputs

of the production process. The notion of Productivity, which is defined as the ratio of

outputs resulting from a production process to the inputs used to generate such outputs,

provides a very good fit to this ideal measure. In this context, both productivity and

economic welfare are maximised by maximising outputs while at the same time

minimising inputs.

Advances in productivity are important because they are the only true source of growth

in an economy without the need of input expansion. Indeed, the simple neoclassical

growth models (see Solow (1957)) argue that economic growth is only sustainable

through productivity expansion, since economic expansion through continuous

accumulation of inputs would soon exhibit diminishing returns. As such, the notion of

productivity is important because productivity growth represents improvements in the

production process, which directly translate to increases in welfare and subsequently

living standards.

1.2. Aims of the research

Measuring productivity is not a straightforward process. As a first prerequisite for the

creation of a relevant productivity measure, all economic inputs and outputs of the

production process need to be accounted for and accurately measured. After collating

this data, a method needs to be devised to allow the aggregation of different types of

output and different kinds of input into two single, aggregate quantity measures, namely

aggregate output and aggregate input.

There are a number of such measurement methods one could employ; in the micro

setting, probably the most commonly used are the so-called frontier-based approaches.

There are a number of different frontier-based approaches, but the common

characteristic amongst them is that they rely on multiple observations of similar units (eg

firms) to derive a common frontier that describes the relationship between outputs and



15

inputs; this relationship forms the basis for estimating productivity growth. The most

commonly used index for measuring productivity through frontier-based approaches is

the Malmquist index (Caves, Chirstensen and Diewert (1982)). The most common

frontier-based approaches for constructing this index are Data Envelopment Analysis

(DEA), Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis

(SFA). These approaches are discussed in more detail in chapter 3.

In the macro setting, the predominant method of measuring productivity growth is

through Growth Accounting (GA), an approach that relies on index number theory. GA

has its roots to the work of Jan Tinbergen (1942) and independently, to Robert Solow

(1957). Both Solow and Tinbergen attempted to explain the total growth in production

using data on labour and capital growth and found that input growth could explain only a

portion of the observed output growth. They reasoned that for the identity of the

production function to hold, an element of technological progress should be explicitly

included in the production function. By rearranging the production function, this element

is defined as the ratio of outputs to inputs, and, as such, explicitly measures the rate of

productivity growth (GA is discussed in more detail in chapter 3).

In order to parameterise the GA production function, two general conditions need to be

met:

– the researcher has access to both quantity and price data for all the relevant inputs

and outputs; and, more importantly,

– the researcher needs to adopt a number of strict assumptions with regards both to

the nature of the production function (constant returns to scale Cobb-Douglas

production function) and the market structure in which the production takes place

(perfectly competitive markets).

Frontier-based methods offer an attractive alternative for the measurement of

productivity change at the macro setting, since their use can provide a number of

advantages in the analysis of aggregate productivity. Firstly, frontier-based approaches

do not require information on prices to generate estimates of productivity growth

(although it should be mentioned that prices of lower-level aggregates for outputs and

some of the inputs maybe required to calculate the higher-level aggregates used in the

analysis). Secondly, unlike the more traditional GA methods, they allow for the
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production to occur inside the frontier, thereby relaxing the stringent assumptions of

perfect competition, necessary for GA. Lastly, frontier-based methods also allow for the

decomposition of productivity growth, which could be of great interest to the users of

productivity change estimates (these issues are discussed in more detail in chapter 3).

The main disadvantage of the frontier-based approaches is that all of them require

information on a suitable set of comparators (eg the economies of a number of

countries) in order to generate the production frontier. In addition, the analysis needs to

ensure that the inputs and outputs of each individual unit of assessment (eg the

economy of a country) are collated and expressed in a manner that ensures the

comparability between the various assessed units. On the other hand, GA estimates can

be produced using country- or sector-specific National Accounts data (input and output

quantities and prices), without recourse to information from outside the country or the

sector examined; this is probably the largest contributor to the wide adoption of GA

amongst policy makers.

The information and comparability requirements of the frontier-based approaches can

sometimes complicate the analysis, but they are both issues that can be dealt with. On

the issue of the availability of information, there have been a number of initiatives,

sponsored by global or multinational organisations, to collate and provide National

Accounts data from a number of countries at a centralised location (see for example the

EU KLEMS1 database). On the issue of comparability, the vast majority of the developed

countries have adopted accounting standards, designed to ensure that National

Accounts across countries are, or at least can be made, comparable (see for example

the United Nations System of Accounts-SNA2). As such, frontier-based approaches can

also be used in the macro setting.

In fact, there are a number of applications of frontier-based methods for the

measurement of aggregate productivity growth in the academic literature. Färe et al.

(1994) was one of the first studies that utilised Data Envelopment Analysis (DEA), the

more widely-used non-parametric frontier based approach, to construct Malmquist

indices of productivity growth; the approach has since been adopted in numerous other

studies (for a comprehensive list of applications of DEA-based Malmquist indices see

1 See http://www.euklems.net/ (accessed 17 May 2013).
2 See http://unstats.un.org/unsd/nationalaccount/ (accessed 17 May 2013).
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Fried et al. (2008)). Kumbhakar and Lovell (2000) introduced another way to construct a

Malmquist index of productivity growth that relies on parametric frontier models, such as

Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis (SFA); such

models have also been widely used in the literature (see Sharma et al. (2007) for a list of

sample studies).

However, despite the adoption of frontier-based methods in the academic literature and

the theoretical advantages offered by frontier-based methods compared to the more

traditional GA approach, there has been limited research on quantifying how these

advantages translate into improved accuracy of the resulting productivity change

estimates. In addition, there has also been limited research on the relative accuracy of

the productivity estimates derived from frontier-based approaches, under different

conditions.

The main contribution of this thesis is to provide quantitative evidence of the relative

accuracy of different productivity measurement approaches under different conditions

and to propose a framework that could be used to select the most appropriate approach

for the application at hand. In more detail, the main aims of this thesis are:

– to provide an overview of the information required to assess aggregate productivity,

with a discussion on the issues and the difficulties arising when collating such

information;

– to introduce the three main approaches that can be used to measure productivity

change at the aggregate level (ie at the economy and industry level), namely index-

number approaches and frontier-based non-parametric distance functions and

parametric production functions, and discuss their relative strengths and

weaknesses;

– to assess the relative accuracy of the most common productivity measurement

approaches, namely GA, DEA, COLS and SFA, under different conditions (different

shapes of the production possibility set, different input volatility, technical efficiency

and noise levels) using Monte Carlo simulations;

– to measure, compare and decompose (if possible) aggregate productivity change

using both index-number and frontier-based approaches for a number of countries
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using a modern dataset created with the main purpose of productivity measurement

(EU KLEMS dataset); and

– to suggest a framework that can be used to select the approach that is likely to be

most accurate, in terms of estimating productivity growth, for a specific application

and to demonstrate how it can be implemented in practice.

The findings of this thesis would be of great interest to both researchers in the field of

productivity measurement and users of productivity estimates. For example:

– Policy makers at a national level: The thesis provides a detailed discussion on the

merits of adopting frontier-based approaches for the measurement of aggregate

productivity and on how these approaches can be implemented in practice, utilising

data that are readily available through the system of National Accounts and

international databases. As mentioned above, frontier-based approaches have the

potential to provide more accurate estimates of productivity change, but also allow

for the decomposition of productivity change; both of these ‘features’ would be very

relevant to such users, as they can be of great value to analyses that aims on

identifying and assessing possible productivity enhancement initiatives.

– Policy makers at the transnational level: More accurate productivity estimates and

the ability to decompose them would also be of great interest to policy makers at the

transnational level, ie policy makers at organisations such as the European

Commission and the OECD. The more accurate estimates can in turn have

significant policy implications; for example the disbursement of EU or national funds

for development is informed by measures of productivity of regions and countries.

Additionally, the thesis provides productivity estimates from a number of

approaches utilising one of the most complete and up-to-date international datasets;

these can provide an alternative view of the established global productivity

performance picture, which so far has mostly been informed through GA-based

estimates.

– Researchers: The results of the simulation analysis and the proposed selection

framework (which heavily relies on these results) are likely to be of great interest to

researchers (academics and practitioners) in the field of Productivity and Efficiency

Analysis. The simulation analysis helps identify a number of characteristics inherent
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in the dataset that can have a significant impact on the accuracy of the resulting

estimates, while the selection framework provides tools that can be used to assess

and quantify these characteristics in practical applications. The findings of this

thesis could help researchers make better informed choices when selecting

between productivity measurement approaches that rely both on robust theoretical

arguments and quantitative evidence. Additionally, the framework of the simulation

analysis itself could be a useful guide to researchers that want to undertake similar

analysis in the field of Production Theory.

Lastly, the findings of the analysis undertaken for this thesis are not necessarily

restricted to the macro setting. In fact, the findings of the simulation analysis that

assesses the relative accuracy of the different productivity measurement approaches are

applicable in studies both on the macro but also in the micro setting, assuming of course

that the conditions of said studies are similar to those assessed in the simulations. The

same also applies to the proposed selection framework; despite the fact that the practice

case revolves around assessing aggregate productivity growth, the selection framework

can be just as easily applied in a productivity growth assessment from the micro setting.

1.3. Structure of the thesis

The thesis is structured as follows:

Chapter 2 introduces some key concepts when examining the issue of aggregate

productivity growth and discusses the issues peripheral to the analysis. In more detail,

chapter 2:

– introduces the neoclassical model of growth;

– discusses the system of National Accounts, which provides the necessary data to

estimate productivity growth;

– provides a more detailed discussion on the aggregate outputs (and in particular the

notions of Gross Output and Value-Added), aggregate inputs and their prices, as

well as how they are constructed from the National Accounts; and lastly;
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– discusses the issue of comparability of National Account information between

different countries (in particular the most common Accounting Standards and

Purchasing Power Parities).

Chapter 3 introduces the most common approaches that can be used to measure

productivity growth and, for each approach, provides their theoretical background,

discusses their strengths and weaknesses and provides some examples of how these

approaches have been applied, drawn from the academic literature. The approaches

covered in chapter 3 include: Growth Accounting, DEA-based Malmquist indices, COLS-

and SFA-based Malmquist indices.

Chapter 4 presents and discusses the results from the Monte Carlo simulations on the

accuracy of the productivity growth estimates derived from Growth Accounting and the

assessed frontier-based methods (detailed in chapter 3) under various conditions. These

conditions include the presence of technical inefficiency, measurement error,

misspecification of the production function (for the GA and parametric approaches) and

increased input and price volatility from one period to the next. The results of this

analysis have been peer-reviewed and published in the European Journal of Operational

Research3.

Chapter 5 provides an up-to-date productivity assessment and decomposition for a

number of mostly EU countries utilising a number of approaches and information

sourced from the EU KLEMS dataset. Additionally, it introduces a framework that can be

used to identify the approach that is likely to provide the most accurate estimates for the

current application. The selection framework is based on assessing and quantifying a

number of characteristics specific to the application/dataset at hand, selected based on

the results of the Monte Carlo analysis undertaken in chapter 4. The characteristics in

question include input volatility through time, the extent of technical inefficiency and

noise present in the dataset and whether the parametric approaches are likely to suffer

from functional form misspecification and are examined using a number of well-

established diagnostics and indicators. The use of the proposed selection framework is

demonstrated using the analysis of the EU KLEMS data as a case study.

3 Giraleas, D., Emrouznejad, A., & Thanassoulis, E. (2012). Productivity change using growth accounting and frontier-
based approaches–Evidence from a Monte Carlo analysis. European Journal of Operational Research 222(3), 673-683.
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Lastly chapter 6 summarises the main contributions of the thesis, discusses possible

topics for future research and concludes.
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Chapter 2. An introduction to aggregate
productivity growth: Concepts and measures

2.1. Introduction

The aim of this chapter is to provide a short introduction on the issues surrounding the

measurement of aggregate productivity growth. The concepts and issues discussed in

this chapter are universal to all measurement approaches, ie they are pertinent

regardless of the measurement approach (or approaches) selected for the analysis. In

more detail, the chapter is structured as follows:

– Section 2.2 provides a short discussion on the importance of productivity growth to

an economy, both from a theoretical perspective but also with regards to how official

bodies, such as the European Commission, Eurostat and the OECD perceive the

issue.

– Section 2.3 provides a short introduction to the standard economic model of

production, which was first developed for the micro setting and has long since been

adopted in the macro setting for the purposes of clearly defining and measuring

productivity change. The discussion provided in this section is important because all

productivity measurement approaches rely on the same theoretical underpinnings.

This section also briefly discusses the differences and similarities of the notions of

productivity and efficiency.

– Section 2.4 provides an extensive discussion on the various factors of production

that are used in the macro setting, otherwise known as the inputs and outputs of the

aggregate production process. The focus of this section is on the definition and the

discussion on issues that affect measurement of the output and the primary inputs

(namely labour and capital stock or capital services). This section also briefly

discusses the process of aggregating similar units of production to higher economic

aggregates.
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– Section 2.5 discusses issues of comparability of aggregate data, both across time

but mainly between different countries. In more detail, this section presents a brief

overview on the various international standards for the creation of National

Accounts data, which are central to the measurement of aggregate productivity

change and briefly discusses the concept of Purchasing Power Parities (PPPs),

which are used to ensure that price- and value-based data from different countries

are comparable.

– Section 2.6 summarises and concludes.

2.2. The importance of productivity growth in the macro
setting

Productivity is commonly defined as the ratio of a volume measure of outputs, be it

goods or services, to a volume measure of the inputs used in their production. Measures

of productivity form a key part of many international comparisons of economic

performance. OECD4 lists a number of cases where the use of productivity growth

measures is essential:

‘…productivity  data  are  used  to  investigate  the  impact  of  product  and  labour
market regulations on economic performance. Productivity growth constitutes an
important element for modelling the productive capacity of economies.  It also
allows analysts  to determine  capacity utilisation, which  in  turn allows one  to
gauge  the  position  of  economies  in  the  business  cycle  and  to  forecast
economic  growth.  In addition, production capacity is used to assess demand and
inflationary pressures.’

Furthermore, the overall productivity improvement of the whole economy is a central

measure of economic performance, as it is an essential factor for determining the growth

potential of the economy. According to Eurostat5,

‘…productivity indicators make it possible to draw conclusions about the growth
potential, the associated inflationary risks and the resulting implications for national
revenue. In other words, productivity sets decisive markers for economic and
monetary policy.’

4 See Schreyer (2001).
5 The European Advisory Committee on Statistical Information In the Economic and Social Spheres, “Are we measuring
productivity correctly?”, Background paper for the 31st CEIES SEMINAR Rome, Italy 12 – 13 October 2006
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More importantly, productivity growth is on the forefront of European Union (EU) policy

making. The European Council meeting in Lisbon (March 2000) launched the "Lisbon

Strategy" aimed at making the European Union (EU) the most competitive economy in

the world and achieving full employment by 2010. According to the European

Commission6:

‘Raising the long–term economic growth potential by increasing productivity growth
is one of the fundamental objectives of the renewed Lisbon strategy and an
important response to the challenges of globalisation, ageing, the rapid pace of
technological progress and the need to combat climate change.’

The continuation of the 2010 "Lisbon Strategy" is “Europe 2020”, 10-year strategic plan

set out by the European Commission (March 2010)7. The Europe 2020 strategy's

primary goal is to support employment, productivity and social cohesion in Europe. To

achieve that, the Commission has proposed seven ‘Flagship Initiatives’, which aim to

assist the member states in achieving their productivity potential. Most of the initiatives

proposed by the broad strategy are linked to improving productivity, especially those

relating to investing in innovation8 and competitiveness9.

With heavy emphasis being placed on achieving productivity growth, it is of utmost

importance for governments and international development organisations to understand

the drivers of productivity growth and their likely interactions, so that policies that foster

the development of such drivers in the economy can be developed. Before attempting to

identify such drivers however, the first necessary step in this process is to create

accurate measures of productivity growth.

6 Commission Of The European Communities (2007), ‘Communication from the Commission, Raising productivity growth:
key messages from the European Competitiveness Report’, Brussels, 31.10.2007, p. 4
7 Communication from the Commission (2010), “Europe 2020: A strategy for smart, sustainable and inclusive growth’,
Brussels, 3.3.2010
8 In “Innovation Union”, one of the main issues examined is whether Europe is improving its productivity and
competitiveness and what are the links between total factor productivity growth and R&D intensity. See
http://ec.europa.eu/research/innovation-union/pdf/competitiveness-report/2011/ (Accessed 10 May 2013)
9 ‘Ultimately, competitiveness is about stepping up productivity, as this is the only way to achieve sustained growth in per
capita income — which, in turn, raises living standards.’ Sourced from http://ec.europa.eu/enterprise/policies/industrial-
competitiveness/competitiveness-analysis/european-competitiveness-report/files/ecr2011_full_en.pdf (Accessed 10 May
2013)
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2.3. An introduction to productivity

2.3.1. The standard model of production

The starting point of the discussion on the issue of productivity has to be the definition

and description of the production process. The production process is simply the

transformation of the various factors of production (usually referred to as inputs) to a set

of economic commodities (usually referred to as outputs). The entity (or entities) that

facilitates this transformation process is called a production unit (sometimes also

referred to as a decision making unit (DMU)), and can take the form of a single plant, a

firm, a sector of the economy (all firms that produce similar outputs), or even a whole

economy. The logical construct that describes the production process is the production

function:

)( ,, titi XfY  Eq 2.3.1

, where tiY , is a vector of outputs Y of a production unit i in time period t which is

produced using a vector of inputs tiX , within the confines of the production technology

described by )(f .

In the macro setting, tiY , is converted to a single measure of total output (Yt), also

referred to simply as output, which is defined as the sum of the value of the goods or

services that are produced in order to be made available for use in the wider market.

This is a gross measure in the sense that it represents the value of sales, net of

additions to inventories. Aggregate output is discussed in more detail in section 2.4.1.

The various inputs used in the production process are usually grouped into aggregate

categories when economy- and industry-wide levels of aggregation are examined. The

basic classification is comprised of capital (Kt), labour (Lt) and raw material inputs (Mt). In

some cases, additional aggregate input categories are considered, such as expenditure

on services (St) and energy consumption (Et,); when all the five input categories (capital,

labour, energy, materials and services) are considered, the resulting analysis is said to

have adopted the KLEMS framework. In all cases though, an important distinction

between input types is made; labour and capital inputs are classed as primary inputs,
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while materials, services and energy are classed as intermediate inputs. Intermediate

inputs are defined by the OECD as goods and services, other than fixed assets, used as

inputs into the production process of an establishment that are produced elsewhere in

the economy or are imported. They are either transformed or used up by the production

process. Aggregate inputs are discussed in more detail in section 2.4.2.

When purchases of intermediate inputs are deducted from gross output, the output

measure becomes a measure of ‘Value Added’. So, in the aggregate setting, the

production function is given by:

),,,,( itititititit SMELKhY  Eq 2.3.2

or

),( ititit LKfVA  Eq 2.3.3

An important issue to address is how the production function changes over time. Solow

(1957) proposed that the technological changes that happen over time can be

incorporated into the production function by the inclusion of a simple scaling factor

tiA , that affects the production function multiplicatively. In that case, equations 2.3.2 and

2.3.3 become:

),,,,( ititititit
Y
itit SMELKhAY  Eq 2.3.4

),( itit
VA
itit LKfAVA  Eq 2.3.5

By rearranging the above equations, one can derive the formal definition of productivity

according to the neoclassical theory of growth:

Productivity (Gross Output) =
),,,,( ititititit

itY
it SMELKh

Y
A  Eq 2.3.6

Productivity (Value Added) =
),( itit

itVA
it LKf

VA
A  Eq 2.3.7

The productivity measures above are commonly referred to as multifactor or total factor

productivity (TFP) measures, due to the fact that they take into account a number of
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different inputs used in production. The measures are also referred to as ‘disembodied’

or ‘Hicks-neutral’ productivity because they are not specifically related to any one

individual factor of production. In other words, changes in the productivity measure result

in increasing levels of output or decreasing levels of inputs, without affecting the

parameters of the production function (ie, without changing the relationships between

inputs and output). Note however that at least some of the frontier-based approaches

examined in this thesis can relax this assumption (details on how this is achieved can be

found in chapter 3).

Some of the most widely quoted measures of aggregate productivity are partial

productivity indicators. Partial productivity measures are very similar to the productivity

measures of equations 2.3.6-7, except the denominator is just a single input (usually

labour), rather than the aggregate of all inputs used in the production possess. In fact,

one of the most widely used partial productivity measures is output per employee, or

labour productivity (LPt).

it

it
it L

Y
LP  Eq 2.3.9

This measure is relatively straight-forward to calculate and offers the advantage of

readability but, as all partial productivity measures, it does not reflects the joint influence

of a number of factors used in the production process and thus does not provide a

comprehensive estimate of productivity change. For a more detailed discussion on the

problem arising from the use of partial productivity measures, see Thanassoulis et al.

(1996).

2.3.2. Productivity and efficiency

There are two main dimensions in which productivity performance can be measured.

The first is the measurement of productivity across time which answers the question of

how is a particular economy performing year after year. The second dimension

measures performance across a peer set, which is usually referred to as efficiency

benchmarking. This attempts to answer the question of how is a particular economy

performing in a single instance in time relative to other economies?
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The measurement of productivity across time is usually achieved by the construction of a

productivity index; changes in the index between time periods provide an estimate of

productivity change, which usually the aim of the analysis. How the index is constructed

depends on the productivity measurement approach adopted by the analysis. The most

common approaches are discussed in detail in chapter 3 of this thesis.

The measurement and comparison of performance across a peer set is the goal of

efficiency analysis. The notions of productivity and efficiency are related but also

separate. Productivity is the ratio of outputs to inputs, while efficiency is the ratio of

actual outputs to ‘optimal’ outputs, for set input levels, or the ratio of ‘optimal’ inputs to

actual inputs, for set output levels. Both notions are measured residually, but in order to

assess efficiency, one must first construct a benchmark that would reveal the ‘optimal’

outputs for given inputs or vice versa.

A combination of both approaches is also possible and in fact allows for a number of

refinements to the estimation procedure and increased granulation of the measure

produced, but with the cost of additional complexity. In fact, this is one of the main

advantages afforded by the use of frontier-based approaches, as discussed in chapter 3

of this thesis. Productivity measurement in aggregate levels over time is usually

examined by national statistical agencies and international organisations such as the

OECD, using data from the National Accounts and Growth Accounting theory.

International benchmarking of sectors and economies is not as common and usually

undertaken by academics and more rarely by international organisations.

2.4. Inputs and outputs of production

This section discusses in more detail the various factors of production (ie the inputs) and

the aggregate outputs that are commonly used in the assessment of aggregate

productivity growth. The main sources of information for such analysis are the National

Accounts of the countries (or sectors) that take part in the assessment. The UK Office of

National Statistics10 (ONS (2007)) provides the following definition of the National

Accounts.

10 Office for National statistics (2007), ‘The ONS productivity handbook – A statistical overview and guide’, edited by
Dawn Camus, p.2
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‘The National Accounts are a set of current values, volume measures and volume
indices which, together, summarise all the economic activity of a nation. This can
be defined as a central framework for the presentation and measurement of the
stocks and flows within the economy. In the UK this framework provides many key
economic statistics including gross domestic product (GDP) and gross national
income (GNI) as well as information on, for example, saving, disposable income
and investment. (p. 3)’

In addition, this section also examines some of the more important issues with regards

to the definition and measurement of aggregate inputs and outputs, drawing heavily from

the OECD productivity manual (Schreyer (2001)), referred to from now on as the OECD

manual.

2.4.1. Output

The notion of the aggregate output is central in the measurement of productivity in the

macro setting. This section provides the definition of three common measures of

aggregate output, discusses their application in productivity analysis, lists some of the

issues faced when measuring the output of non-market services and briefly discusses

how to deal with changes in the quality of the goods and services that comprise

aggregate output.

Gross Output and Value Added: Definitions

As mentioned in section 2.2.1, there are two major types of output measures traditionally

used in aggregate productivity measurement, gross output and value added. GDP per

capita is also used sometimes as a simple productivity indicator, where GDP is simply

defined as Gross Value Added plus taxes minus subsidies. The definitions of the three

major output measures are given below:

 WIPandsInventorieinIncreaseSalesTotaloutput totalGross  Eq 2.4.1

nconsumptioteIntermediaoutput totalGrossAddedValueGross  Eq 2.4.2

Intermediate consumption includes all non-primary factors of production (such as

materials, services, energy, etc) that are either consumed or transformed by the

production process.

Subsidies-TaxesAddedValueGrossProductDomesticGross  Eq 2.4.3
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GDP is not the preferred output measure when measuring aggregate, multi-factor

productivity growth due to the distortionary effects the inclusion of taxes and subsidies

would have on productivity estimates, both across time and across countries. Instead,

the majority of productivity assessments rely either on gross Value Added (VA) or gross

total Output (GO).

VA and GO are ‘gross’ measures because they are calculated before the depreciation of

capital assets is accounted for. While it may be the case that, when comparing such

measures directly, the concept of output net of economic depreciation should provide a

better representation of the overall changes in welfare, production theory demands that

output measures used in the production function are gross of any measure of

depreciation. The logic behind this strong statement is related to the measurement of

capital services in the macroeconomic setting. As will be discussed in more detail in

section 2.4.3, capital inputs are measured either directly as the stock of capital assets or

as flows of services that stem from such assets and depreciation is a major component

in the calculation of both measures. In simple terms, the effect of depreciation is already

accounted for in the measure of capital inputs; to also include it in the output measure

would constitute a double-counting.

One important issue to note with regards to output is how to properly measure it when

assessing aggregate units of production (sectors or whole economies). When the notion

of output moves from the firm level to higher aggregates (eg sectors), it should be

adjusted in such a way as to net-off flows of products and services within the aggregate

in question. This is especially important in sectors that include relatively long supply

chains.

For example, suppose that we want to examine a hypothetical wood products

manufacturing industry, which includes two companies (for the sake of this example), a

lumber mill and a furniture manufacturer. The lumber mill buys felled trees (intermediate

input) and converts them into processed lumber (output), while the furniture

manufactured buys the processed lumber from the sawmill (intermediate input) and uses

it to produce furniture (final output). When examining the wood products manufacturing

industry as a whole, there is only one intermediate input, ie the felled trees, and only one

final output, ie the furniture produced. Since we moved up a level in aggregation, the

wood products manufacturing industry is treated as a single, integrated entity and as
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such all transactions that happen within that entity (providing the output of the lumber

mill as an intermediate input for the furniture manufacturer) are netted off.

This process of netting-off all intra-industry transactions is critical; otherwise both output

and intermediate inputs would be double-counted and the importance of intermediate

inputs would be disproportionate to their actual value. In addition, the consistency of

both measures would suffer, since it would be possible to artificially inflate both

measures if one would base the aggregation on increasingly smaller units of production

(eg plant or even division level versus firm or group level).

An industry’s gross output net of all intra-industry transactions is defined as sectoral

output. Similarly, sectoral intermediate input is defined as the industry’s intermediate

inputs minus all purchases that took place within the boundaries of the industry. The

issue of aggregation is discussed in more detail in section 2.4.3.

What is the most appropriate output when measuring productivity?

Productivity measurement can be based on either of the two output measures (VA and

GO); the issue is that the resulting productivity change estimates will not be necessarily

equal. The VA and GO productivity estimates are however related. As first demonstrated

by Bruno (1978) and later by Balk (2009), under the so-called neoclassical assumptions,

the rate of change of value-added based productivity growth equals the rate of change of

gross-output based productivity growth, multiplied by the inverse of the share of value

added in gross output:

t
i

t
it

i
t
i VA

Y
YTFPVATFP  )()( Eq 2.4.4

where TFP(VA) is total factor productivity growth based on value added, TFP(Y) is  total

factor productivity growth based on gross output, Y is nominal gross output  and VA is

nominal gross value added. Since normally the share of gross value added to gross

output is smaller than unity, estimates of value added productivity growth in a specific

industry or country will normally be larger than their gross output based counterparts.

The aforementioned neoclassical assumptions are:

– all production is efficient (no technical inefficiency);
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– all producers always choose the optimal mix of inputs to produce said output (no

allocative inefficiency);

– all assessed units operate in a perfectly competitive environment (all prices are

exogenous);

– the technology exhibits globally constant returns to scale.

The neoclassical assumptions are central to the measurement of productivity under

Growth Accounting, an index number-based approach that is most commonly used for

the measurement of aggregate productivity change. Growth Accounting and the

neoclassical assumptions are discussed in more detail in chapter 3.

Given that the two output measures result in different productivity estimates, there is the

issue of which output measure should be adopted by the analysis. As noted by Balk

(2009), productivity assessments that utilise micro- or meso-data, in other words where

the unit of assessment is either a firm or a larger sectoral aggregate, tend to use GO-

based TFP measures, while productivity assessments that focus of more high level

aggregates (groups of sectors or whole economies), tend to use VA-based measures.

In general, the use of VA-based productivity measures has a theoretical drawback in

lower-level aggregates; they are derived from a restricted form of the production function

which does not include intermediate inputs. Previous researchers assumed that

productivity assessments that utilise VA output implicitly require that the underlying

production function is separable with respect to intermediate inputs, but Diewert and

Lawrence (2006) demonstrated that neither GO- nor VA-based productivity measures

actually require this somewhat restrictive assumption.

Regardless, the condition of separability is not necessary for the VA-based measures to

accurately represent productivity change, as shown by Balk (2009). And although gross

output is the natural output concept, VA-based productivity measures are important

when examining higher-level aggregates for a number of reasons. Balk (2008) states:

‘Gross output consists of deliveries to final demand and intermediate destinations.
The split between these two output categories depends very much on the level of
aggregation. Value added is immune to this problem. It enables one to compare
(units belonging to) different industries.
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From a welfare-theoretic point of view the value-added concept is important
because value added can be conceived as the income (from production) that flows
into society.’

VA-based productivity measures are the most appropriate indicators of an industry’s or

economy’s capacity to translate technical change into income and contribution to final

demand, since intermediate consumption is not, by itself, wealth-creating. In effect,

value-added productivity measures provide an indication on the additional output over

and above the expected level of output a unit of primary inputs can generate for the

economy. This, it could be argued, is a more appropriate indicator to base economic

policy on, especially when considering economy-wide aggregates, since it translates

directly to additional income generated for the economy.

Diewert (2008) is of the view that the final selection of mostly depends on ease-of-use of

the resulting productivity estimate; he states:

‘If we are studying the productivity performance of a particular firm or industry, then
perhaps the gross output formulation is most suitable since it will be easier to
explain to users. If we are attempting to analyze the productivity performance of an
entire economy or an aggregate of industries, then the gross or net value added
approaches seem preferable since economy wide growth in TFP will be
approximately equal to a share weighted average of the industry growth rates in
value added TFP. Thus the contribution of each industry’s TFP growth to over all
TFP growth is a bit easier to explain to users if we use the gross or net value
added approaches.’

In conclusion, the use of both GO and VA can result in two dual, but numerically different

productivity measures. GO-based measures are more appropriate for sectoral analysis,

while VA-based measures are preferred when examining higher-level aggregates or

whole economies. Measuring productivity is a difficult process that requires the mapping

of a multidimensional process into one-dimensional space, and as such, there are a

number of ways that this can be accomplished. As Balk (2008) concludes:

‘This does not imply a break-down of measurement, but reflects a structural state
of affairs.’

Measuring non-market services

The measures of output defined so far are all based on measures of sales. However, at

least part of the economy produces goods or services that are either free at the point or

delivery or supplied at prices that are not economically significant. The obvious example
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of such non-market output is the majority of the goods and services produced by the

public sector. In the absence of any sort of meaningful market transactions, the

traditional output measurement methods cannot be applied.

In general, in National Accounts the total value of output of a non-market producer is

defined by convention as the total costs of production (i.e. the operating surplus is

assumed to be zero). However, using this approach, often referred to as the

(input=output) approach, makes the measurement of productivity growth impossible

through traditional index number approaches (such as Growth Accounting), since it

explicitly assumes that any and all change in output volumes is the result of changes in

input volumes. For this reason, Eurostat has been advising all member states to develop

processes for the direct measurement of non-market outputs based on outcomes, rather

than on inputs. Although some progress has been made toward developing a system of

accounts for non-market activities that could allow for the measurement of productivity

(see Afonso et al. (2005) for an application and Diewert (2011) for a methodological

discussion), most global agencies, including Eurostat, still employ the (input=output)

approach (see for example the methodological paper on Health Accounting, OECD et al.

(2011)). Even if a consistent accounting system based on outcomes can be

implemented, the use of index number approaches for measuring aggregate productivity

of non-market goods would still be problematic, due to the aggregation issues related to

directly measured, non-value based output measures (Diewert (2011)). It should be

mentioned here that frontier-based approaches can be readily used to measure non-

market activities, even if the available data are based on the (input=output) approach;

the only change from the methods that measure productivity for market activities is that

the analysis moves from the production framework (ie estimating production functions) to

the cost framework (ie estimating cost functions). Note though that in this setting, data

on outcomes would also be required even by frontier-based approaches.

How to account for changes in quality?

Changes in the quality or the introduction of new products or services (collectively

referred to as goods) can have significant effects on the measures of all factors of

production and aggregate output and are especially pertinent when considering the

issue of productivity change measurement.
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The introduction of new goods or a change in quality of existing goods affects both the

‘productive capacity’ of the factor of production in question and also its price. If the

changes in productive capacity were to be immediately and correctly reflected to the

price of the factor in question, then changes in quality would not be a major concern for

the analysis, at least for the factors of production whose volumes are constructed using

price information (such as aggregate output, capital stock and intermediate inputs)11.

There are a number of goods however where changes in quality are not immediately

reflected in changes in prices; a good example of this is Information and Communication

Technology (ICT) goods, where in the recent past quality is improving at an exponential

rate while prices remain relatively stable.

The most common method of valuating new goods or quality change in the National

Accounts is hedonic pricing. Hedonic pricing seeks to place a value on a particular good

based solely on its characteristics. It usually involves utilising some form of regression

analysis to explain the observed prices of a good or service based on its characteristics.

For example, suppose that the price of a property depends on the characteristics of that

property, ie type of property, number of bedrooms and bathrooms, location, garden size,

neighbourhood, etc. By observing a number of property interactions in an area, one

could construct an econometric model that links property prices to those characteristics.

So when a new house becomes available, one could produce an estimated price for that

house by measuring its characteristics and applying the estimated parameters of the

econometric model. The resulting estimated price is referred to as the hedonic price of

the property. For a more extensive discussion on the issue of hedonic pricing in the

measurement of aggregate economic activity, see Triplett (2004).

2.4.2. Inputs

Aggregate inputs are divided into two major categories; primary inputs, namely labour

and capital, and intermediate inputs, which can include materials, energy and services

solicited outside of the production unit. This section provides the common definition of

the different input categories and discusses some of the issues with regards to their

measurement, focusing in particular to the primary inputs of production.

11 For labour inputs, the issue of quality change is more nuanced and is discussed in more detail in section 2.4.2.1.



36

2.4.2.1 Labour inputs
For the majority of economic sectors, labour is the single most important input to the

production processes. The most commonly used measure of labour input is ‘total hours

worked’; it is also arguably the most appropriate measure, since it provides a clear

correspondence to the output produced. However, data requirements to construct ‘total

hours worked’ are quite significant and as such in some cases labour input is calculated

based on the number of employed persons and an estimate of average hours worked.

Additional issues arise when considering the labour input from self-employed persons

and part-time employees. The labour input of the latter is sometimes calculated as being

half of the average input of a similar full-time position, due to lack of more detailed data.

Notwithstanding some of the measurement issues, the OECD manual recommends that

‘hours worked’ should be the measure of choice for labour inputs, as opposed to simply

using numbers of employed persons. If a measure of ‘hours worked’ is not directly

available, the OECD manual states that ‘hours paid and full-time equivalent persons can

provide reasonable alternatives’.

Aggregate labour input can be calculated by simply adding the ‘total hours worked’ for

the assessed aggregate (sector or economy). This practice has the advantage of

simplicity, but also implicitly assumes that labour is homogeneous. This is an

oversimplification, since a number of factors can have a significant impact on the

efficacy of labour, such as effort and the skills of the workforce. In effect, labour has both

a time and a quality dimension; using ‘total hours worked’ captures the time dimension,

but ignores any changes in quality. If this quality dimension is not captured in the input

factor, its effects would be included in the productivity estimate. So, all improvements in

labour quality that lead to increasing output would be interpreted as increases in

productivity, if a simple ‘total hours worked’ labour input was used in the analysis.

Whether this is desirable or not, would depend on the use of the final productivity

measure. However, most practical applications try to incorporate this quality dimension

to the labour input.

The way the quality dimension is incorporated into the labour measure usually depends

on how ‘skills’ are measured. Some studies assume a direct relationship between ‘skill’

and occupation, while others try to include a number of additional differentiating

characteristics. The OECD manual reports that factors that the relevant research has
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found to be important in labour differentiation are skill levels, usually expressed as a

function of education attainment and relevant work experience, and other characteristics

such as age, sex and health status. Therefore, to arrive at a consistent and accurate

measure of labour input, all of the relevant factors that affect the contribution of labour to

output need to be accounted for, in order to derive relative weights that could then be

used to construct an aggregate measure.

The aforementioned quality adjustment can be implemented using hedonic pricing as

mentioned above. However, since the data considerations for such an exercise are

significant, aggregate labour input is commonly calculated based on some simplifying

assumptions. Notably, if the analysis adopts the standard neoclassical assumptions, ie it

assumes that the production unit is a price-taker, cost-minimiser and both input and

output markets are perfectly competitive, then each production unit would employ

additional labour input up to the point where the cost of an additional hour worked would

be equal to the additional revenue that this input generates (for a brief overview of these

assumptions, see section 2.4.1; these are discussed in greater detail in chapter 3). This

implies that the price of labour, ie the wage rate, equals the marginal revenue of the

production unit and as such is a good indicator for its relative importance in the

production process. An aggregate measure of labour input can then be constructed by

calculating the weighted average of ‘hours worked’ (L) using the share (w) of each type

of labour (l) to total labour compensation (W) as the weights.
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Eq 2.4.5

Note that even when such simplifying assumptions are used, the information

requirements for the calculation of the labour input measure are quite significant. Data is

needed for the number of ‘hours worked’ by wage rate, by industry and by year. In

addition, labour price indices are also required in order to control for annual changes in

the general price levels and to reflect the labour market supply. As stated in the OECD

manual, such rich data sets are usually both difficult and costly to collect and may

therefore not be readily available in practice. In this situation, the use of GA methods

when measuring economy-wide productivity may offer a usable alternative through the

process of implicit labour differentiation.
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Implicit labour differentiation is simply an artefact of the way the weights of each of the

inputs is calculated under Growth Accounting, when data is available on ‘hours worked’

by industry without any distinction between different types of labour within each industry.

When ‘hours worked’ measures are aggregated to the economy-wide level, the

aggregation weight is based on each industry’s share in total labour compensation.

These weights will be comparatively large for industries that pay above-average wages

and relatively small for industries with below-average wages. If one assumes that higher

skill levels demand higher wages, then the aggregation process implicitly takes into

account the quality of the labour input.

Implicit differentiation is not available if the focus of the research is on industry-level

productivity growth. However, this is less of a problem, if one assumes that productivity

growth is output augmenting and as such has no impact on the output elasticities of the

production factors. When taken together with the necessary assumption of the stability of

the production function, the use of ‘hours worked’ measures unadjusted for differences

in wage levels, but adjusted for changes in relative price levels would lead to a

consistent productivity growth measure that would incorporate any unobserved changes

in the quality of the workforce. In other words, any and all improvements in labour quality

would be captured by the productivity measure, as mentioned above. This can be an

advantage, since the resulting productivity measure could be used as the dependent

variables in a second-stage regression analysis that examines likely determinants of

productivity growth, with levels of education and/or skill/experience entering the analysis

as independent variables.

2.4.2.2 Capital inputs
The measurement of capital inputs is one of the most difficult issues in the National

Accounts and in productivity measurement in general. The problem stems from the fact

that the capital services that flow from an asset are unobserved, both in terms of their

‘quantity’ but also in terms of their value, since when an asset delivers its services, no

market transaction is recorded. In fact, the only market transaction related to capital

assets that is readily available to researchers is the actual purchase of the asset and,

possibly, expenditure undertaken to enhance the services of the given asset that take

place at irregular intervals.
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Defining capital services – the productive capital stock measure

Commonly in productivity measurement, capital inputs are defined as the flow of

services that become available from the capital stock that a producer has accumulated

via past investments. Since these services are not directly observable (eg the services

provided by an office building or a computer network), both their quantity and their value

need to be explicitly estimated. The basis of such estimation is what the OECD manual

refers to as the ‘productive stock’ of each asset type (K), which is a function of

cumulative past investment (IN), a price index of investment (q), a retirement function (F)

and the age-efficiency profile of the asset (h):


 

















0 0,,

,
,,,

t Tti

Tti
tititi q

IN
FhK Eq 2.4.6

Past investment is discounted based on the asset-specific producer price index in order

to derive real investment. Since even in a narrow definition of an asset type,

technological progress may increase the quality of that particular asset at a later period,

the relevant price index should ideally capture any impact of quality change. This can be

achieved utilising hedonic pricing.

Real investment is then adjusted for assets that have run past their useful lives and have

been retired (scrapped). The asset-specific retirement function is used to determine the

share of cumulative assets that are still in service in a particular period, and can vary

greatly by asset type, depending on the longevity of the asset in question (eg structures

and buildings versus IT equipment).

The age-efficiency profile of the asset type represents the (possible) loss in the flow of

capital services a typical asset experiences as it ages. Therefore, for new assets the

age-efficiency profile takes the value of unity. It is possible that an asset is retired before

its age-efficiency profile reaches zero, due to the effects of obsolescence. There are

numerous ways to profile the productive efficiency loss of an asset and all of them

require a degree of judgement. The most common methods include the use of a linear

declining balance, a hyperbolic profile or a geometric one, where the productive

efficiency of an asset declines at an ever increasing rate.
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An assets’ productive stock offers a workable representation of the capital services

provided by said asset, since it accounts for retirements, the decline of productive

capability due to age (wear and tear) and quality changes. Note that this value is not

necessarily comparable with the notion of accounting depreciation, which represents the

amount by which the value of the net (or ‘wealth’) capital stock, ie the current market

valuation of all capital assets, of a country or an industry is decreased.

An asset’s productive stock corresponds by definition to a specific asset type and for the

production of any given type of output, numerous different assets are typically utilised.

Therefore, a method to aggregate the capital stocks of different types of assets is

required. Aggregation can be achieved by simple addition and the resulting measure can

be used directly by frontier-based approaches for the purpose of productivity

measurement. However, if the productivity analysis utilises index-number approaches,

such as Growth Accounting, the aggregation process also needs to incorporate the

relative value of the capital stock to production, to ensure the consistency of the resulting

index. This aggregation process in effect converts the measure of capital stock into a

measure of capital services that flow from each particular stock.

The relative value of the capital stock is most accurately represented by the notion of the

user cost of capital, or the imputed rental price of capital, or its marginal cost. In simple

terms, the user cost of capital represents the amount of rent that would have been

required in order to secure the productive services of an asset for a single period.

Calculating the user cost of capital

User cost of capital is not directly observable and is thus usually calculated based on the

market price of an asset over its useful life. The calculation requires the adoption of the

standard neoclassical assumptions, similar to those required for the creation of a labour

input index (production unit is a price-taker, cost-minimiser and operates in perfectly

competitive markets). Under these conditions, the marginal cost of an asset (μ), ie the

user cost of capital, equals its marginal revenue. Additionally, the price of an asset (q) at

any point of time should be equal to the discounted sum of future revenues generated by

said asset. These two relationships allow us to link the notion of a user cost of capital of

an asset to the market price of the asset:
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,where q is the market value of the asset i at age s, μ is the user cost of capital (or the

marginal revenue) of asset i which is summed and discounted by an r rate of discount

over the current period until the end of its useful life.

Equation 2.4.7 can be refined by the inclusion of the age-efficiency profiles and the

retirement function. The underlying assumption one needs to make is that the

differences in user cost of capital between two assets of the same type but of different

age is solely due to the relative productive efficiency decline, weighted by the probability

that they are still functional. This is equivalent to accepting that two of the same type

assets of different ages are perfectly substitutable, or, as the OECD puts it, ‘different

vintages of the same asset type are perfect substitutes for each other’:

sisitisti Fh ,,0,,,,   Eq 2.4.8

Note that this assumption ignores the potential quality change that could take place

within the specific asset type. However, if the market price of the asset type is reflective

of such quality changes (or is adjusted to take them into account), the final imputed user

cost of capital measure will also incorporate them.

Applying equation 2.4.7 to 2.4.8, one can derive:
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Eq 2.4.9

which can be solved for the user cost of capital as12:

)()( 1,,1,1,1,,,,,,,,   stistististististi qqqqrq Eq 2.4.10

According to equation Eq 2.4.10, the user cost of capital is determined by:

– the financing cost of capital rq sti ,,

12 See Jorgenson (1963)
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– the loss of value of an asset due to ageing and possible replacement, ie the rate of
economic depreciation, )( 1,,,,  stisti qq and,

– the difference in the general movement of asset prices, which also incorporates
quality change if asset prices are quality adjusted )( 1,,1,1,   stisti qq

Despite the apparent simplicity of Eq 2.4.10, calculating the user cost of capital is very

difficult to do in practice due to both the extensive information requirements (data for

calculating both economic depreciation and the general movement in asset prices) but

mainly due to difficulties finding an appropriate discount rate (or expected rate of return

for the owner of the asset) to calculate the financing cost of capital.

Due to these difficulties, the majority of GA applications (which require that prices of all

factors of production are available), use an endogenous, sometimes also called

balancing, rate of return. The endogenous rate of return is set in such a way so that the

total cost of capital plus the total cost of all other inputs equals exactly the final revenue

(ie the product of output times its price). As such, the endogenous rate of return is an ex-

post measure; its use also explicitly assumes that profit is always equal to zero13.

The use of an endogenous rate of return is consistent with the neoclassical theory that

views the user cost of capital as the marginal revenue for the owner of the capital.

However, this relationship only applies if it is assumed that the neoclassical assumptions

of perfect competition hold. Since these assumptions are quite restrictive, the use of an

endogenous rate of return is theoretically unsatisfying. This issue is discussed in more

detail in chapter 3.

Aggregation across different types of capital goods

Having defined and measured the productive capital stock and the user cost of capital,

the process of aggregating several discrete asset types into a collective measure for

capital services is relatively straightforward. The aggregation is achieved by using the

relative user cost of capital as weight of an individual asset to create an aggregate

measure. By weighting the index by the user cost of capital, more weight is placed on

rapidly depreciating asset types, which reflects the reality of investors demanding

13 It also requires the adoption of the standard neoclassical assumptions, such as the existence of perfect competition
and a technology that displays constant returns to scale.
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relatively higher rents for short-lived investments, to compensate for relatively higher

depreciation costs.

Utilisation rate

One final important issue in the measurement of capital services relates to capital

utilisation. The methodology described so far implicitly assumes that the rates of the

utilisation of all primary production factors are constant throughout the timeframe of the

analysis. This is unrealistic, given the numerous external factors that come into play in

the demand for output or the supply of input in a production process. Unexpected

machinery failure, interruptions in the supply of intermediate inputs, a general slowdown

in demand due to an economic downturn could all lead to interruptions in the production

process and capital-and possibly labour-under-utilisation. For countries that have more

flexible labour markets, the impact of either output demand or input supply shocks will be

less pronounced, since companies could, in theory, respond quickly to reduced demand

by shedding excess labour. In the case of assets however, reducing capacity is a much

slower process, if it is at all possible.

Most of production interruptions are random, and so it is expected that their effects

would be normally distributed over the timeframe of the analysis and over the industries

or countries considered. In that case, they would not introduce any bias in the estimated

productivity growth, provided that the analysis adopts a medium to long-term view.

Economic downturns however are an exception; the cyclical nature of overall demand is

thoroughly documented and economic downturns are considered an integral part of

modern economies.

If the effects of a downturn are not directly accounted for in the productivity growth

measure, the measure will be biased, since productivity growth could likely be higher in

years of increasing demand, as primary input utilisation increases, and lower in the

years of the downturn. A simple way to correct for this possible bias is to examine

productivity growth over a complete business cycle, or at least in similar points of the

cycle. However, since not all business cycles are alike, the selection of an appropriate

period requires a degree of judgement. In addition, business cycles do not always

coincide when different countries are considered, which could cause additional issues in

cross-country comparisons.
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Given the above, adjusting for general capacity utilisation appears to be desirable if one

seeks to measure productivity in the sense of technical change or outward shifts of a

production function. However, an alternative viewpoint is that capacity utilisation should

not be adjusted for if the aim of the productivity measure is to inform on real cost

changes in the production process. The argument goes that, the full user cost of capital

needs to be born by the producer irrespective of whether it is fully utilised or not; as the

OECD manual states:

‘in times of recession, user costs of capital are spread over a smaller number of
actual machine hours and consequently, real cost savings are limited. In times of
cyclical upswings, the same user costs are spread over a larger number of
machine hours and lead to more rapid real cost savings.‘14

If an adjustment for capital or general capacity utilisation is desirable, there are a

number of approaches available which aim to develop an external measure of utilisation.

Most of them rely on econometric models using an instrumental variable approach, with

possible instruments ranging from business confidence surveys to intermediate input

consumption. However, as the OECD manual states:

‘There have been several attempts to deal with this issue, but a generally accepted
solution – if desirable – has yet to crystallise. In practice, statistical offices make no
attempt to adjust their standard productivity measures for changes in the rate of
capital and capacity utilisation.’

2.4.2.3 Intermediate inputs
The final component required for a productivity measurement analysis is information on

intermediate input consumption. This information is used either directly in the analysis of

Gross Output, or indirectly in the creation of a Value-Added measure of output.

Intermediate inputs are either aggregated in a single input measure (often referred to as

‘materials’) or, in KLEMS analysis, are available in the more discrete measures of

energy, materials and services. Aggregation is achieved using the relative value of each

intermediate input to total intermediate input expenditure, similar to the aggregation

methodology used for the primary inputs.

14 The difference between the income generated by the asset in question and its opportunity cost is formally known as a
‘quasi-rent’. Quasi-rents are variable throughout the life of the asset and are affected by overall demand and rates of
obsolescence. Quasi rents were first observed by Alfred Marshal (1842-1924).
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2.4.3. Aggregating the units of production

The process of aggregating units of production (referred to here as simply aggregation)

consists of grouping parts of similar economic activity to increasingly larger constituents,

such as from department-level to firm-level to industry level and finally to economy-wide

level. Aggregation is also accompanied by a process of integration, meaning that all

intra-industry flows are netted out and the new aggregate is treated as a single,

autonomous unit.

The core principles of productivity measurement hold for every level of aggregation, from

individual firms to whole economies. The only requirement for the use of such an

aggregation process is the assumption that each level of aggregation can be

represented by a discrete production function. The process of aggregation itself requires

the adoption of a system that can classify companies and other production units by the

type of economic activity in which they are engaged; this provides a stable and uniform

framework for the collection, categorisation and ultimately analysis and presentation of

aggregate economic data. The industry classification standard adopted by the European

Union is formally known as NACE15.

In general, input and output data, both in terms of values and prices, are considered to

be more accurate at more disaggregate levels, due to the greater granularity of the

individual products and services and their prices. (see Eurostat (2001)). However, as

disaggregation passes a certain point, reliability of data starts to deteriorate. There are a

number of reasons why this is the case; firstly, at the very disaggregate levels, the

available population of homogeneous units becomes ever smaller, which adversely

affects the accurate construction of the price indices. In addition, data collation and

aggregation in ever more detailed levels is expensive and gives the opportunity for more

errors to creep in the measurement process. Comparability across time and units of

assessment also becomes an issue, as at lower levels of aggregation the scope for

product differentiation and development is significantly increased. As such, the

relationship between data reliability and level of disaggregation is not straightforward.

15 Nomenclature generale des Activites economiques dans les Communautes Europeennes.
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2.5. On ensuring data comparability

As mentioned in section 2.3.2, there are two main dimensions over which performance

could be measured, namely across time and/or across a peer set, ie a sample of units

that undertake similar activities. If the goal is to measure the productivity of a single unit

over a period, the minimum requirement would be that the data necessary for the

analysis is consistent over time. If the goal is to measure efficiency (ie performance

across a peer set), the minimum requirement would be that the data necessary for the

analysis is comparable across the peer set. Lastly when performance is measured both

across time and with a reference to a peer set, as is the case with the frontier-based

approaches that will be detailed in chapter 3, the analysis needs to ensure that the

available data is consistent and comparable in both dimensions, across time and peer

set.

In the macro setting, comparability across time can be achieved through the use of the

appropriate price indices, adjustments to capital stock values to account for different

capital vintages and adjustments to both inputs and outputs to account for quality

changes; these have all been already addressed in the sections above. However, the

first requirement is to have in place a set of rules that define the various inputs and

outputs, how they are measured and how firm-level data are aggregated to higher sector

and industry classifications. Drawing up this set of rules, also referred to as standards for

National Accounts, is usually the responsibility of the individual national statistics

agencies; however, as economic activity became ever more globalised, there has been

an increasing need for a common set of National Accounting guidelines at the

international level, which would facilitate international comparisons amongst different

economies. The result was the creation a unified, international Standard of National

Accounts (SNA) that was developed under the aegis of the United Nations, which is

currently enjoying widespread acceptance.

The adoption of international standards for National Accounts is one of the two main

prerequisites of measuring productivity both across time and across different countries.

The second prerequisite relates to the fact that different countries display different price

levels; since prices are critical in the aggregation of outputs and inputs, the analysis also

needs to ensure that such differences in price levels across countries are accounted for.
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The most common methodology used for that purpose is the adoption of Purchasing

Power Parities (PPPs). The remaining of this section will briefly discuss these two topics.

2.5.1. International standards for National Accounts

For productivity statistics to show dependable trends over time, they need to be

produced from consistent measures of outputs and inputs. When comparisons across

countries are required, care must be taken so that data consistency transcends national

borders. Obtaining such consistent measures of output and input is one of the main

challenges in estimating productivity. As mentioned above, this process is greatly

facilitated by the adoption of international standards for National Accounts.

The main sources of guidance on international standards are listed below:

– United Nations System of National Accounts (SNA): This is the most widely adopted

international standard and focuses more on providing high level guidance.

– European System of Accounts (ESA): Fully compliant with SNA 1993, provides the

legal basis for harmonised accounts within the EU and is more prescriptive than

SNA. The current implementation of ESA is ESA95.

– Eurostat Handbook on Price and Volume Measures in National Accounts: Expands

on ESA 1995

– OECD Productivity manual: offers a comprehensive guide to aggregate productivity

measurement based on Growth Accounting. Although it is not compulsory for the

OECD member states to adopt its suggestions, it is currently considered as ‘the

authoritative international source on methodology for productivity analysis’ (ONS

(2007)).

2.5.2. Purchasing Power Parities

Productivity measurement in the macro setting relies on information on aggregate

outputs and inputs. As mentioned in section 2.4, aggregate output is normally expressed

in terms of value; the same holds for capital services, one of the primary inputs of the

aggregate production process, as well as the various intermediate inputs used by the

analysis. When the productivity analysis focuses only on the time dimension, the

analysis only needs to apply a set of price deflators to these value-based indicators to

achieve their conversion into the appropriate quantity measures. However, if the analysis
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is interested in measuring productivity across time and also relative to a peer set,

additional adjustments are required to achieve like-for-like comparisons.

There are two main issues when it comes to comparing value-based indicators from two

different economies. The first relates to the issue of the adopted currency; different

countries usually have different currencies whose relative value may demonstrate large

variation (for example, the exchange rate of 1 British pound was 124 Japanese Yen at

the time of writing). The second issue relates to the fact that different outputs and inputs

may well display different price levels in different economies; for example, a hamburger

may be more expensive in the USA than it is in China, simply because the purchasing

power of the average USA citizen is higher (additionally, the costs to produce one,

especially the labour costs, are higher in the USA, but this fact is also closely linked to

purchasing power).

One way to overcome the first issue is to use exchange rates to convert all value

indicators to a common, base currency (this is usually the US dollar, but the choice of

the base currency is not important). However, the issue with using exchange rates is that

the adjusted indicators are still valued at the prevailing national price levels and do not

accurately reflect the purchasing power of the currencies in their national markets. There

are two main reasons for this:

– Exchange rates are greatly influenced by the supply and demand of the currencies

in question, which is in turn influenced by factors such as capital flows, adopted

monetary policy and currency speculation.

– More importantly, each economy produces a number of goods (products and

services) solely for internal consumption; these goods are produced, traded and

consumed domestically. Some examples of such goods include public services and

residential housing. Since these goods are not traded in international markets, their

impact in the setting of exchange rates is very difficult to estimate.

Given that exchange rates are not ideally suited to international comparisons of

aggregates, another measure that can both convert values to a single currency unit and

also accurately reflect the purchasing power of a currency in its native market is

required. This can be achieved through the use of Purchasing Power Parities (PPPs).
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Definition and estimation

Purchasing Power Parities are the rates of currency conversion that equalize the

purchasing power of different currencies by eliminating the differences in price levels

between countries16. Their goal is to reveal the relative purchasing power differential

between two economies, or in simpler terms the difference in monetary terms of buying

the same good (or basket of goods) in two different countries. The notion can be easier

demonstrated using an example.

Assume that we want to examine the price relative, ie the ratio of observed prices, of an

identical hamburger sold by an international fast food chain in the USA and China. The

first step would be to use the exchange rate to convert the price of the hamburger in

China in US dollars. For simplicity, let’s assume that we find that the same hamburger

costs 2 dollars in the USA but only 1 dollar in China; this means that for every one dollar

spend in hamburgers in China, two dollars would have to be spend in the USA. As such,

the price relative between the USA and China is 2, when using the USA as the base (or

0.5 when using China as the base), after controlling for differences in exchange rate.

This prices relative reveals the difference in purchasing power and is the PPPs for

hamburgers between the USA and China.

The estimation of PPPs usually involves three stages. The goal is to estimate price

relatives similar to the example provided above. However, the calculation of price

relatives for each individual product and service produced in an economy is not feasible.

Therefore, price relatives are normally calculated for ‘basic headings’, ie baskets of

similar goods for which information on final expenditure is available so that explicit

expenditure weights can be estimated. As such, the first stage of the analysis involves

the definition of these ‘basic headings’, a process that depends on the granularity of

available data. At the second stage, price relatives are calculated for each individual

‘basic heading’. The third and final stage involves the aggregation of these ‘basic

headings’ into economic aggregates comparable with those included in the National

Accounts. The PPPs for these economic aggregates are the weighted average of the

‘basic heading’ price relatives; the weights used in this process are the shares of each

‘basic headings’ on total expenditure (ie the total value of gross output).

16 http://www.oecd.org/std/prices-ppp/ (accessed 13/07/2013)
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To facilitate international comparisons, the basic heading’ groupings used in the

calculation of PPPs are individual to each country, so that they can better reflect the

differences in spending patterns that result from economic, social and cultural

differences.

The whole process of PPP estimation heavily relies on index number theory. There are a

number of methods developed for this purpose over the years; for a more

comprehensive review, see Hill (1997). For a more thorough discussion on PPPs, see

the Eurostat-OECD manual on PPPs.

2.6. Summary and Conclusions

Productivity improvements are very important in the macro setting, since they represent

the only way to increase economic prosperity without additional input accumulation. This

is a view shared by the European Commission, which has put productivity growth in the

forefront of EU policy making, as stated in the ‘Lisbon Strategy’ – EU’s previous long-

term strategic goals -  and in ‘Europe 2020’, EU’s current 10-year strategic plan. Other

economic organisations, such as the OECD and Eurostat, are also contingent on the

importance of productivity, not only for its end results, but also as a tool for measuring

economic performance.

Given the importance of productivity, this chapter was devoted to discussing some of the

more universal issues around the concept of productivity, how it can be measured and

some of the issues that need to be addressed with regards to the data required for its

estimation. In summary, productivity is defined as the ratio of a volume measure of

outputs, goods and services, to a volume measure of the inputs used in their production.

The central concept here is the production process and the logical construct used to

describe it, namely the production function17. The production function links aggregate

outputs to aggregate inputs; in the macro setting, inputs are grouped into the major

categories of Capital, Labour and Material and services, with Capital and Labour classed

as primary inputs and Materials and services as intermediate inputs, because these are

consumed in the production process. Aggregate output is represented either as Gross

17 Duality theory has shown that productivity measures can also be derived from the duals of the production function,
namely the cost or revenue functions. These will be briefly discussed in chapter 3.
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Output (GO), which is the sum of the value of the goods or services produced, or Value-

Added (VA), which is simply Gross Output minus intermediate inputs.

Over time, the relationship between inputs and outputs changes; this can happen for a

variety of reasons, the most important of which is technological change. Technological

change can be incorporated into the production function as scalar that affects the

production function multiplicatively; this scalar then becomes the formal definition of

productivity since it directly represents the ratio of aggregate outputs to aggregate inputs

(see equations 2.3.6 and 2.3.7 in the main text of this chapter).

So, in order to measure productivity, one has to have access to measures for the factors

of production, namely inputs and outputs. Outputs are normally aggregated into a single

measure, based on the value of each individual output produced (essentially, output is

represented by sales). When aggregating output measures from different units of

production to higher economic aggregates (eg from companies to sectors), care must be

taken to net-off all intra-industry transactions, so that the resulting aggregate output does

not double-count the contribution of intermediate inputs (this is discussed in detail in

section 2.4.1). For the purposes of productivity measurement, both definitions of output

(ie GO and VA) are valid for the analysis; it should be noted however that the resulting

productivity measures will not be equal. In general, the consensus is that GO-based

productivity measures are more appropriate for sectoral analysis, while VA-based

measures are preferred when examining higher-level aggregates or whole economies.

Additionally, care must be taken when measuring the output of non-market activities,

since prices for those activities are either not available or they do not reflect their costs.

In general National Accounts report the total costs of production of a non-market

producer as the total value of its output. This treatment is unsatisfactory however for the

purposes of productivity measurement, since it explicitly assumes that any changes in

output are the result of changes in inputs. Due to this, Eurostat and OECD have advised

its members to report outcomes for non-market activities, rather than outputs; progress

however in this area is slow. Another issue with the measurement of output, and indeed

all factors of production, is how to incorporate quality change in the resulting measure.

The most common method of valuating quality change is through hedonic pricing, a

technique that employs regression analysis to determine the price of a good based on its

characteristics. The disadvantage of adopting this technique is that it greatly increases
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the data requirements and the analytical burden for the creation of National Account

data. A more extensive discussion on the above issues is provided in section 2.4.1.

Labour is arguably the most important input of production and the most appropriate

measure of labour input is ‘total hours worked’. However, direct data for this measure is

sometimes difficult to obtain, especially for the self-employed and part-time workers. As

such, the measure is sometimes imputed, based on information on the number of

employed persons and an estimate of average hours worked. Measurement becomes

more complicated when the quality dimension needs to be incorporated in the

estimation; in this instance, quality represents the overall skill level and experience of the

workforce. If this is required, quality can be incorporated using hedonic pricing, which

further increases the data requirements of the analysis. An alternative to hedonic pricing

is to aggregate labour inputs using the price of labour, ie wages, as weights; if the

standard neoclassical assumptions hold, the production unit is a price-taker, cost-

minimiser and both input and output markets are perfectly competitive, then the wage

rate equals the marginal revenue of the labour resource and as such is a good indicator

for its relative importance in the production process. It should be noted here however

that incorporating quality into the labour measure is not necessary for the purposes of

productivity measurement. If the quality dimension is ignored, then all changes in output

that result from labour quality change will be captured by the productivity measure. If the

issue of quality needs to be further examined, a second stage analysis (such as second

stage regressions) can be attempted, which examines how the rate of productivity

change is influenced by changes in the factors that are deemed to be appropriate

indicators of labour quality. Labour inputs are discussed in more detail in section 2.4.2.

Capital is the second primary input and arguably the most difficult to measure. The

difficulty stems from the fact that a production unit will acquire a capital asset in a certain

point of time and use its services over a long time period; the problem is that the

analysis can observe only the actual purchase of the asset and not its flow of services.

The actual input to the production process however is the flow of capital services; as

such they need to be estimated. This is usually done by building up a measure of capital

stock that ideally takes into account the cumulative past investment in the general asset

category in question, the price movements of the asset over time, the possibilities for

asset retirement and the age-efficiency profile of the asset. Although this is a data

intensive and quite complicated process, the resulting measure of capital stock provides
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a good representation of the value of services it delivers. However, index-based

productivity measurement approaches also require data on the price of the estimated

capital stock; such prices are also unobserved and need to be estimated using

information on the rates of economic depreciation, asset price differentials between

different groups of assets and the expected rate of return of the asset in question. This

last element, the rate of return, is also observable and to this date there is no sufficiently

robust method to estimate it. To circumvent this issue, the majority of index-based

applications use an endogenous rate of return, set in such a way so that the total cost of

capital plus the total cost of all other inputs equals exactly the final revenue. This is in

essence an ex-post measure and its use explicitly assumes that profit is always equal to

zero. This is theoretically unsatisfying and one of the most significant weaknesses of the

index-based approaches, as will be further discussed in chapter 3.  The above and other

issues relating to the definition and measurement of capital inputs are discussed in more

detail in section 2.4.3.

This chapter also briefly discussed the mechanisms and standards used to ensure that

the data for the analysis are comparable, both across time but also across different

economies (countries). Data comparability across time is achieved partly though the

adjustments already discussed (for example, incorporating quality change and

accounting for differences in relative prices) but also through the adoption of

International standards of National Accounts. Arguably the most important and widely

adopted standard is SNA, which is overseen by the United Nations. SNA forms the basis

of the European System of Accounts (ESA), which is more prescriptive and is adopted

by all EU member states.

The adoption of International standards of National Accounts Data also facilitates

comparability across different countries. However, full comparability also requires a

mechanism to convert the different inputs and outputs that are expressed in monetary

terms to a single, common currency. This could be achieved using standard exchange

rates; doing so however would fail to fully capture the differences in the purchasing

power of the currency in question. In essence, using the traditional exchange rates to

convert a value-based economic aggregate to a base/common currency still values said

aggregate at national price levels; therefore such aggregates reflect both differences in

the volumes produced in the countries and differences in their price levels, and as such

they are measures of both value and quantity. So instead of relying on exchange rates,
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productivity analyses that rely on international comparisons commonly utilise indices of

Purchasing Power Parities (PPPs), which are designed in such a way that they only

reflect the differences in the volumes of the outputs and inputs in question. PPPs and

the International standards of National Accounts Data are discussed in more detail in

section 2.5.

From the above, it should be obvious that the process of collating the information

necessary for productivity measurement is both data intensive and laborious.

Furthermore, there are a lot of instances where a number of imputations or simplifying

adjustment is required. Therefore, it is important that the approaches used to measure

productivity should be flexible enough to still provide accurate estimates even if some of

the assumptions required in constructing the data are violated.
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Chapter 3. Common approaches for the
measurement of multi-factor productivity

3.1. Introduction

The aim of the chapter is to provide a brief introduction to the most common approaches

that can be used to measure productivity. The discussion in this chapter will focus on

how these approaches can be used in the macro setting (ie when measuring productivity

change in economic aggregates, such as aggregate industries or whole economies), but

all of the approaches covered here can also be applied in the micro setting (ie when

measuring the productivity performance of a single or a group of comparable units that

engage in similar activities).

As a reminder, productivity is defined as the ratio of outputs produced by the assessed

transformation process relative to the inputs used in said transformation process. When

the transformation process produces just a single output and utilises just a single input,

measuring productivity is a very simple process. However, the majority of transformation

processes utilise a number of discrete input types and sometimes result in the

production of multiple types of output. In these situations, the measurement of

productivity becomes more complicated, since in order to calculate the outputs-to-inputs

ratio, the analysis needs to create a single aggregate measure of output and a single

aggregate measure of input.

Over time, a number of different methods have been proposed that attempt to deal

directly or indirectly with this issue. The most commonly used productivity measurement

methods can be divided into three main categories:

– Index-number approaches and Growth Accounting: These approaches adopt a

number of assumptions that allow the analysis to directly aggregate inputs and

outputs into single measures (indices) based on their relative prices, using a variety

of index number formulae. As noted by Diewert (1992), the most commonly used

indices are the Laspeyres, Paasche, Fisher and Törnqvist quantity indices. Each of

those indices uses a different functional form to aggregate the various inputs and
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outputs of the transformation process. The most common index number approach

for measuring aggregate productivity growth, according to the OECD Productivity

manual (2001), is Growth Accounting (GA). Index number approaches and GA in

particular are discussed in more detail in section 3.2.

– Non-parametric distance functions: These approaches manage the aggregation

process based directly on quantity information on inputs and outputs and some

minimal assumptions about the general shape of the technology (ie the

transformation process). They require no information on prices and allow for the

decomposition of the productivity measure into discrete components attributable to

inefficiency, changes in scale, technological change and other effects that contain

valuable information on how productivity changes over time. The most common

distance functions for measuring productivity growth are based on the notion of the

Malmquist productivity index, which was introduced as a theoretical concept in this

setting by Caves, Chirstensen and Diewert (1982). Later Färe et al. (1992)

demonstrated how the Malmquist productivity index can be estimated by Data

Envelopment Analysis (DEA). Malmquist productivity indices and their estimation

using DEA are discussed in more detail in section 3.4.

– Econometric approaches: Similar to the non-parametric distance functions,

econometric approaches can also estimate a Malmquist productivity index, using

only information on input and output quantities and a limited set of assumptions,

mainly about the general shape of the technology and the distribution of the noise

and inefficiency  terms. Since they adopt the same productivity index as the non-

parametric distance functions, econometric approaches can also decompose

productivity into similar discrete components. The most common econometric

approaches for estimating productivity change use either Corrected Ordinary Least

Squares (COLS) or, more commonly, Stochastic Frontier Analysis (SFA) models.

The estimation of Malmquist productivity indices under these approaches is

discussed in more detail in section 3.5.
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3.2. Index-number approaches and Growth Accounting

The previous chapter discussed in general terms how value (cost and revenue)

information from National Accounts can be converted into quantity indices that can

facilitate the measurement of productivity. In summary, there are two main issues that

need to be addressed. Firstly, the various production units utilise a large number of

diverse inputs and usually also produce a large number of different outputs. Secondly,

the main aim of the analysis is to examine productivity performance over time; this raises

issues with regards to the selection of the period which should be adopted as the basis

for the calculation of the quantity indices. The need for inter-temporal comparisons

together with the fact that both outputs produced by an assessed unit and the inputs

used in the production process can hardly be considered homogeneous, especially at

higher levels of aggregation, raises some important issues in the measurement of the

factors of production.

Index number theory, combined with economic theory, provides the tools to collate the

various discrete outputs (inputs) into a single, consistent-over-time, aggregate output

(input) measure. Therefore, index number theory addresses two main issues:

– how to aggregate the discrete outputs (inputs) into a single measure

– how to consistently measure changes over time for these aggregates

The discussion in this section will focus on output aggregation; input aggregation will be

discussed in detail in the following section that describes the Growth Accounting

approach.

With regards to the first issue, since the various economic outputs are heterogeneous,

one cannot simply add them together. So, to facilitate the aggregation process, the

analysis would first need to ‘express’ the various outputs in comparable units of

measurement and secondly find a way to combine them in such a way as to account for

the temporal dimension of the measures. These two issues are interrelated, due to the

fact that the aggregation formula selected will affect the process of converting to a single

(or comparable) unit of measurement and vice versa. In other words, the analysis needs

to first select a function for the aggregation and then create weights that correspond to

the theoretical properties of the selected function so that they accurately reflect the
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relative importance of each output. The selection of the aggregation function is very

important for making inter-temporal comparisons, since it will also have implications on

how changes over time in the final aggregate measure are interpreted.

With regards to the measuring changes over time, the main question is whether to

compare two non-consecutive periods directly (eg between period 0 and period 2) or

indirectly (in which case the change between period 0 and 2 is derived from the change

between period 0 and 1 and the change from period 1 to 2). As the OECD manual states

(p. 83):

‘The economics literature as well as the SNA 93 are quite unanimous in this
respect: for inter-temporal comparisons, changes over longer periods should be
obtained by chaining: i.e. by linking the year-to-year movements.’

The use of a chaining approach also simplifies the choice with regards to the price

indices used. The question one needs to answer here is, which prices should the

analysis adopt when examining inter-temporal changes, bearing in mind that the

resulting quantity indices need to be consistent and comparable and that both prices and

quantities are observable only at discrete intervals. There is no straightforward answer to

this question, because consistency could either be achieved by keeping prices constant

or by keeping quantities constant; the choice depends on the index number formulae

adopted for the creation of the index. The issue is that by adopting either approach,

accuracy is lost due to the simple fact that both prices and quantities are likely to change

simultaneously over the year as a result of the substitution effect (as the price of an input

increases, demand for that input decreases as the producer seeks to substitute the more

expensive input with less expensive options). The main advantage of using chained

indices is that they minimize the substitution bias that is potentially present in direct

comparisons, since they utilize the highest frequency data available (ie the data at the

highest level of granularity); so for example, if monthly data are available, an index of

yearly change should ideally be created by chaining the monthly changes, rather than

using just the information on the first and last month of the series.

Traditionally, there have been two main approaches on selecting between index number

formulae, the axiomatic and the economic approaches (Diewert (1992))18. The axiomatic

approach, which dates back to Walsh (1901) and Fisher and Brown (1911), identifies a

number of desirable properties that the final index numbers should exhibit and

18 Note that the two approaches are not mutually exclusive, as is discussed later.
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mathematically tests whether the various index number formulae can lead to the creation

of index numbers that display said properties. The economic approach examines

economic theory and/or empirical evidence regarding producer behaviour and attempts

to select an index number formula that satisfies the theory and/or the empirical evidence.

In more detail, the economic approach starts by postulating that the transformation

process can be represented by a function that characterises the transformation

technology (ie by a production, cost, revenue or profit function) and the producers are

exhibiting competitive optimising behaviour. In other words, the producers seek to

maximise their profits or minimise their costs according to the available technology

(transformation function), while operating in markets that display the characteristics of

perfect competition. These two conditions are commonly referred to as the standard or

neoclassical assumptions. These neoclassical assumptions were briefly described in

chapter 2 and will be discussed in more detail in section 3.2.1, since they provide the

theoretical foundations of GA and are indeed one of the main motivating factors of this

thesis.

It should be mentioned here that the two general approaches, axiomatic and economic,

are not clearly distinct from one another. The axiomatic approach requires some

assumptions based on economic theory in order to achieve output aggregation (these

relate to the calculation of output shares); for input aggregation, the full set of

neoclassical assumptions is required. The economic approach also relies on some of the

tests developed over the years from the axiomatic methodology in order to determine the

exact properties of the resulting productivity index. As such, modern applications of

index number theory for the measurement of productivity growth rely on a combination of

the axiomatic and economic approaches when selecting the most appropriate index

number formulation for the application at hand.

The more common index number formulae are presented below. To assist in this

discussion, a brief description of the notation: suppose that the number of discrete

outputs is N in periods t, where t=0,…,T, and that there information available both for the

price of each output n
tp  and its quantity n

tq for all the periods that are relevant to the

analysis.

The Laspeyres output index is given by:
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In other words, the Laspeyres output index is the total value of output produced in time t

as measured by the prices in period 0 divided by the total value of output produced in

time 0 as measured by the prices in period 0. So, the Laspeyres index captures the

changes in the quantity of output, based on base (starting) period prices.

The above formula can be rewritten as:

n

n
t

N

n

noutput
t q

q
sL

01
0



 Eq. 3.2.2

,where

n
t

N

n

n
t

n
t

n
tn

t

qp

qp
s






1

Eq. 3.2.3

In other words, n
ts  is the share of the value of each particular output to the total value of

all outputs and is the weighting mechanism that determines the relative contribution of

each output to the final index. All of the index number formulae described in this section

use n
ts  as the main weighting mechanism for aggregating output. In the Laspeyres

index, the output shares used are the base (starting) period shares.

The Paasche output index is similar to the Laspeyres, except that it relies in end period

prices, rather than start period prices for its calculations. In more detail:
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The above formula can be rewritten as:
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Note that the Paasche is calculated based on the share of each output to total output

based on end period prices; as such, the Paasche index captures the changes in the

quantity of output, based on end period prices.

Both the Laspeyres or Paasche indices have been widely used in both output and input

aggregation when drafting National Accounts data, since they are both quite easy to

calculate and have limited data requirements. They both however suffer from a serious

limitation in that they rely on the share calculated for just a single period to carry out the

aggregation. As the OECD manual states (para 157, p.89), this

‘…implies an underlying fixed-coefficient technology for the production structure –
clearly a strongly simplifying assumption because it excludes the possibility of
substitution between inputs or outputs, and implies constant marginal products
throughout.’

Due to this limitation, Diewert (1976) argues for the adoption of more flexible index

numbers, such as the Fisher and Törnqvist indices. He defines these indices as

‘superlative’, because they can be directly derived from flexible functional forms, such as

the translog or the quadratic functional forms. These functional forms are deemed to be

flexible because they can provide a ‘second-order approximation to an arbitrary, twice

differentiable linear homogeneous function’ (Diewert (1976)). The use of such indices

can greatly increase the accuracy of the analysis, if the underlying production function is

displaying the characteristics of a flexible functional form. For example, if one believes

that the production technology, or in other words the production function, can be

described by the quadratic functional form, then the Fisher output index provides an

‘exact’ representation for the aggregate output for this particular production function,

under standard (neoclassical) assumptions (Balk (1998)).

The Fisher quantity index can be directly derived from a quadratic functional form and is

simply the geometric average of the Laspeyres and Paasche indices, ie:
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Lastly, the Törnqvist index, which is the exact approximation of the translog functional

form, is given by:

)(
2

1

1 0

0
n
t

n ss
N

n
n

n
toutput

t q

q
T




 








 Eq. 3.2.7

The Törnqvist index plays a major role in the GA framework; in fact the GA formulation

for aggregating inputs, as adopted by EU KLEMS can also be seen as a Törnqvist input

index, which is used as an approximation of the Divisia index; section 3.2.1 provides

additional discussion on this topic.

Another way to measure change in TFP is through the use of Divisia index numbers,

which treat both inputs and outputs as continuous time variables.

A Divisia index is a theoretical construct that can be used to generate indices from

continuous time variables (components). It is defined as the weighted sum of the growth

rates of the various components, where the weights are the components’ shares in total

value. Since it assumes continuous time, each component’s share in total value will

always be a function of time and therefore there is no need to choose whether they

should be measured relative to base or to current value. As Balk (2005) notes:

The novelty of Divisia’s indices was that, as functions of continuous time, they take
into account the prices and quantities of all, infinitely many, intermediate periods.
Thus a Divisia index number is not only dependent on the initial and final points of
the time interval considered, but will as a rule depend on the entire path that the
prices and quantities belonging to an economic aggregate under consideration
have taken.

This property is very helpful in theory, but the fact remains that we can only observe

input and output price and quantities in discrete intervals. Therefore, in order to use a

Divisia index, we need to find an index number approach that can provide a discrete

approximation to a continuous Divisia index.

Balk (2005) has demonstrated that under certain conditions, virtually all chained indices

can be conceived as a particular approximation to a Divisia index. The OECD

Productivity manual (2001) recommends the use of the Törnqvist index, mainly due to

the fact that it provides an exact approximation of a flexible functional form (in this case,

translog). In practice, the OECD Productivity manual (2001) observes that the

differences in the resulting Divisia TFP growth estimate under different index
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approaches are marginal at best, so long as chained indices are used and the

intervening periods between observations are reasonable (ie annual). Nevertheless, the

use of a superlative index number approach is recommended.

As mentioned above, the Fisher and Törnqvist index formulations are generally preferred

when aggregating outputs, since they are the exact representations of ‘flexible’

transformation functions. According to Diewert (1992), the choice between the two is

largely down to preference. The relative strengths of the Fisher index are that it has a

larger number of desirable properties, according to the axiomatic approach, relative to

the Törnqvist index; it also has potentially greater intuitive appeal, since it is a

combination of the two most common index formulae, namely the Laspeyres and

Paasche indices. On the other hand, the Törnqvist index offers an exact representation

of the translog production function (assuming that the neoclassical assumptions hold),

which is arguably the most commonly adopted functional form used in econometric

analysis of transformation functions19. It should be noted however that in most empirical

applications, the choice between the two indices is unlikely to cause issues, since the

differences in the resulting aggregates are minor (see OECD Productivity manual (2001)

for more discussion).

3.2.1. Growth Accounting and total factor productivity

The section above briefly demonstrated how index number theory can be used to

combine in a consistent manner discrete outputs into a single, aggregate measure of

output. It also mentioned that a similar procedure can be adopted so that discrete inputs

can be aggregated into a single measure, which would allow for the calculation of the

productivity ratio. According to Diewert and Nakamura (2009), input aggregation can be

facilitated by incorporating information about the price of inputs into the analysis. This is

done in a similar manner to the output indices, where price information is used to

construct the share of the value of each particular output to the total value of all outputs.

When aggregating inputs, input prices can be used to construct the share of the value of

each particular input to the total cost of all inputs used in the production function; the

share of each input to the total costs of production would then constitute the weighting

mechanism that determines the relative ‘value’ of each individual input to total input.

19 The translog is discussed in more detail in section 3.5.1.
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The use of cost shares for input aggregation is appealing since it is internally consistent

with the methodology used for output aggregation, but also creates a lot of theoretical

ambiguities, such as:

– What are the implications of using costs as the basis for creating the input shares in

terms of economic theory?

– How should the various price-weighted inputs be aggregated? Can the analysis just

add them together?

The seminal work of Tinbergen (1942) and Solow (1957) provided the needed structural

framework that is firmly based on economic theory to explain and justify this type of input

aggregation. Their work formed the basis of what is now commonly known as the

Growth Accounting approach for productivity measurement.

Both Solow’s and Tinbergen’s work builds upon the economic theory of production,

where output is expressed as a function of all the inputs used in the production process.

As a reminder, a general production function is given by:

)( ,tit XfY  Eq. 3.2.8

, where tY is (aggregate) output of a production unit i in time period t which is produced

using a vector of inputs tiX , within the confines of the production technology described

by )(f . When early researchers attempted to explain the total growth in aggregate

production using data on input growth (namely labour and capital growth), they found

that input growth could explain only a relatively small portion of the observed output

growth (see Abramovitz (1956)). This prompted the inclusion of an additional element

into the production function, whose sole purpose was to account for differences in

performance across time, what Abramovitz (1956) called ‘a measure of our ignorance’.

The inclusion of this element changes Eq. 3.2.8 to

)( ,, titit XfAY  Eq. 3.2.9

In economic terms tiA , captures the impact of changes in the technology that are not

accounted for by changes in the volumes of inputs used in the production. As it will be
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discussed later in this chapter, these changes can be due to a number of factors;

however, early researchers attributed these changes to technological progress and thus

called tiA ,  an estimate of technological (technical) change. Rearranging the equation

3.2.9 yields:

)( ,
,

ti

t
ti Xf

Y
A  Eq. 3.2.10

Equation 3.2.10 demonstrates that tiA ,  is the ratio of aggregate output to a function of

inputs used in the production of said output.

As mentioned above, Solow’s seminal contribution was to provide the link between the

previously developed index number approaches and economic theory to successfully

describe and parameterise equation 3.2.9. Solow found that if certain assumptions hold,

the index number approach for input aggregation (ie based on the share of the costs of

each input to total costs) can be supported by economic theory. Even more so, index

number theory provides an analytical framework that requires no estimation and as such

produces a completely accurate measure of productivity, assuming that none of the

initial assumptions are violated. These assumptions, often called ‘standard’ or

neoclassical assumptions are (OECD (2001)):

– There exists a production technology that can be represented by a production

function, relating gross output (Y), to primary inputs labour (L) and capital services

(K) as well as intermediate inputs such as material, services or energy (M).

),,( ,,, tititit MLKFY  Eq. 3.2.11

– The production function exhibits constant returns to scale.

– The production function is stable over time, in the sense that no additional

categories of input are used in output generation and the functional form used to

characterise the production function remains the same over the period of the

analysis.

– Productivity changes are Hicks-neutral type, i.e. they correspond to an outward shift

of the production function, captured by a parameter A:
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titititit AMLKFY ,,,, ),,( Eq. 3.2.12

– For any desired level of output, the firm minimises costs of inputs, subject to the

production technology shown above. Factor input markets are competitive, so that

the firm takes factor prices as given and adjusts quantities of factor inputs to

minimise costs.

– The firm and all relevant actors have complete information regarding input prices.

– Labour and intermediate inputs can be hired at any moment at the market rates.

– There are no adjustment costs associated with investment. Alternatively, all

adjustment costs are strictly proportional to the volume of investment.

If the above assumptions hold, then according to economic theory, the marginal revenue

generated by each input factor is equal to its price.20 So, for the production function in Eq

3.2.12:

– the marginal revenue of each unit of labour is equal to the wage rate;

– additional capital investment is only undertaken up to the point where its marginal

revenue is equal to the (user) cost of capital, and

– intermediate input consumption only takes place up to the point where the marginal

revenue it generates is equal to its purchasing cost.

Under such conditions, the output elasticity of each factor has to be equal to its share in

the total value of production; if not, then the firm is not optimising outcomes, ie

minimising costs or maximising output. This last finding forms the basis for all the

calculations required to develop Growth Accounting productivity measures, since it

provides the economic justification to use index number aggregation approaches for

inputs.

The second and final step in developing the Growth Accounting approach is selecting

the most appropriate index number formulae for the production function. As mentioned in

20 This is because if the firm is a price taker and there is perfect information, each factor of production will demand full
remuneration to take part in the production process. So the input factor market will reach equilibrium only when the price
of each input is an accurate reflection of its contribution to the production process; ie its price is equal to its marginal
revenue
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the previous section, Diewert (1976) proved that each index number formulae can be

seen as an approximation of a number of different production functions. As such, the

choice of an index number formula is ultimately equivalent to an ex-ante assumption

about the underlying shape of the production function; in other words, the analysis needs

to adopt a functional form for the production function and then utilise the index number

formula that provides the best approximation to that functional form.

As of yet, there is no concrete method to analytically determine the underlying form of

the production function, at least without implementing some form of econometric

analysis that utilises information from a large number of different production units. As

such, the choice of functional form is by necessity part of the list of assumptions

necessary for the implementation of Growth Accounting. That is not to say that all

possible index number formulae are equally valid. Diewert (1976) demonstrated that

there is a family of functional forms that he called ‘flexible aggregators’. These functional

forms are flexible in a sense that they can provide a second order approximation to a

twice differentiable linear homogeneous function21. In other words, these ‘flexible

aggregators’ can be made to fit a wide variety of possible production functions22. For this

reason, flexible functional forms such as the quadratic functional form and especially the

translog23 are some of the most common functional forms adopted for a wide range of

econometric analyses, including analysis of production functions. Due to these reasons,

Growth Accounting has widely adopted the use of the Törnqvist index for both output

and input aggregation, since the Törnqvist index provides an ‘exact’ representation of

the translog, assuming that the neoclassical assumptions hold.

To summarise, the adoption of neoclassical assumptions provides the needed economic

justification for the use of index number formulae in both input and output aggregation.

Given that, when the production function in Eq 3.2.12 is differentiated with respect to

time, the rate of growth in output is equal to the weighted average of the growth in inputs

and the growth in productivity. The input weights are the output elasticities of each factor

of production and although these elasticities cannot be directly observed, it can be

proven that, under neoclassical assumptions, the output elasticity of each factor is equal

21 If a function f is (positively) linear homogeneous, then f(λx)= λf(x) for all x>>0 and λ>0.
22 ‘Flexible aggregators’ or more commonly, flexible functional forms are widely utilised in the study of not only production
functions, but also utility, cost, revenue, profit and more generally, distance functions.
23 The translog functional form is discussed in more detail in section 6 of this chapter.
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to its share in the total value of production. As such, the change in productivity tiA , can

be analytically derived by:

dt

Md
S

dt

Kd
S

dt

Ld
S

dt

Yd

dt

Ad tiMtiKtiLtti
iii

,,,, lnlnlnlnln
 Eq 3.2.13

, L
iS is the average over t and t-1 share of labour iL , K

iS is the average share of capital

services iK  and M
iS is the average share of materials iM . The average shares of the

various inputs are given by:
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, where X
itc is the price of input X utilised by unit i at period t and itp  is the price of

output Y  produced by unit i at period t. The use of inter-period averages conforms to the

Törnqvist index number formula, as per equation 3.2.7.

In the KLEMS productivity setting, materials are separated into three components,

namely energy (E), services (S) and other materials (M), which are included as separate

factors in the production function. This can provide more depth in the analysis, assuming

that data are of sufficient quality to accurately undertake this disaggregation.

3.3. Frontier-based approaches for the measurement of
productivity

The rest of this chapter focuses on the use of frontier-based approaches for measuring

productivity. Frontier-based approaches have been used extensively in the

measurement of efficiency and productivity in the micro setting; for a list of applications,

see Fried et al. (2008). The same approaches can also measure aggregate productivity

growth, and their use can in fact provide a number of advantages to the analysis, which

will be discussed in the relevant sections. The discussion provided here will focus on the

two most common frontier-based approaches, namely non-parametric DEA-based

productivity measurement and parametric, COLS- and SFA-based, productivity

measurement.
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Similar to Growth Accounting, productivity is also defined here as the ratio of outputs to

inputs. As, such the central issue with the frontier-based measures of productivity

change is the same as with GA and index number approaches; namely, how to derive a

meaningful, accurate and consistent measure of aggregate input and output. GA

accomplishes that by postulating a production function and assuming that certain

conditions (the so-called neoclassical assumptions) hold; in this case, the production

function can be parameterised solely on the basis of economic theory and information on

input and output prices. Frontier approaches also postulate a link between inputs and

outputs, which is commonly referred to as the production technology (often referred to

simply as technology). The notion of technology is similar to the production function, but

more general; its formal definition is the set of feasible outputs that can be produced by

a combination of inputs. Note that when the transformation process results in just a

single output24, the realisation of technology can be represented as a production

function.

The curve (or hull) that envelopes the production technology is referred to as the frontier

of the technology, or simply the frontier, and is central to measurement of both efficiency

and productivity under all frontier-based approaches. The notion of the frontier is

important, because it reveals the maximum amount of output that can be produced by a

set of inputs, or the minimum amount of inputs needed to produce a set of outputs. As

will be discussed later, the frontier also provides reference points that can be used to

measure productivity change over time.

Frontier-based approaches can utilise a number of methods to measure the distance of

any observed input/output combination to the frontier. This distance provides an

estimate of productive (or technical) efficiency (for a discussion on the notion of

efficiency, see section 2.3.2). Most commonly, this distance is measured through the use

of distance functions, for non-parametric approaches, or estimated production frontiers,

for parametric approaches25.

The use of distance functions or estimated production frontiers offers a number of

advantages for the measurement of productivity. Firstly, they provide a natural

24 Or there is a simple and effective method for aggregating multiple outputs into a single output measure.
25 Parametric approaches can also utilise cost, revenue or, more rarely profit functions to derive the characteristics of the
technology and thus estimate the technology frontier. This can be achieved through the application of duality theory
(Shephard (1953)).
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aggregation method for both inputs and outputs without the need for information on

prices. Secondly, they do not assume that all producers are perfect optimisers, in the

sense that all producers produce the maximum amount of output given set inputs. In

other words, these approaches allow for production that is inefficient; this flexibility

allows the relaxation of the majority of the neoclassical assumptions that are required for

the use of GA.

To summarise, the notion of the frontier is central for the measurement of productivity

under these approaches and as such, the critical issue is how each approach derives

the frontier. This will be explored further in the following sections.

3.4. Non-parametric measures of productivity change

This section provides a brief discussion on some of the concepts and methods that can

be applied to measure productivity in the non-parametric setting. Specifically, the focus

is on the use of economic aggregators derived directly through the use of non-

parametric techniques. These aggregators are firmly based on economic theory and

provide a solid theoretical relationship between inputs and outputs which is based on the

concept of the production technology, without the need to rely on information about input

and output prices. For a more detailed discussion on the measurement of productivity by

non-parametric approaches, please refer to Färe et al. (2008).

Non-parametric approaches define the frontier as the outer boundary of the technology;

before discussing the notion of the frontier in more detail, it would be useful define the

notion of technology. Technology, or the production possibility set RT  26is

mathematically described as the set that contains all possible production possibilities, ie

  0Xbyproducedbecan0,  YYXT

Additionally, technology is assumed to display some specific properties27:

– Production is possible and currently happening (the technology set is non-empty) -

T

26 R here denotes a Euclidian vector space with dimensions equal to the sum of inputs and outputs used in the
characterisation of the technology.
27 Also, see Kuosmanen (2003).
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– Inactivity of a single producer is possible -  0 RT

– No output can be produced if no inputs are utilised (no free lunch)

– Technology can be represented as a closed set (ie the technology can characterise

all points that belong to its boundary)

– Inputs are scarce and costly to acquire -

  Ty'everyforsetboundedais'  yyTy

Its very common to adopt the assumptions above when describing the concept of

technology, since they conform to the vast majority of production processes; as such

they are sometimes referred to as the ‘maintained axioms’ of production technology

(Färe and Primont (1995)).

The frontier is most commonly defined as the convex (or conical), monotonic hull that

envelops the technology. Monotonicity (non-decreasing in inputs) means that when

inputs are increased, outputs are also increased or stay constant; it is mainly applied so

that the frontier is drawn in such a way that an increase in inputs cannot result in a

decrease in outputs. As with the ‘maintained axioms’ above, the monotonicity

assumption is very common in economic theory and fairly benign28. Convexity (or

concavity, when the analysis considers input/output correspondences) in inputs implies

that the rate of change of output relative to inputs (ie the marginal product) should be

non-increasing. Convexity is needed to enforce the law of diminishing returns and to

simulate ‘rational’ (in economic theory terms) producer behaviour. The convexity

assumption, although common in economic theory, can be relatively controversial.

According to Kuosmanen (2003), convexity is sometimes justified by practitioners since

it can be derived from a set of elementary and intuitive axioms, like additivity and

divisibility of inputs and outputs. However, there are some industries where divisibility

might not be possible; there are groups of companies, such as regulated utility

companies (eg water companies), that cannot scale back or intensify their operations

due to legal and/or natural constraints. There are other industries where economies of

28 There are situations when the assumption of monotonicity is not appropriate, such as when input congestion is a
possibility or the production process generates undesirable outputs; however, these situations are the exception rather
than the rule in the realm of economic activities.
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scope (or economies of specialisation) can have a significant impact in the production

process. In both instances, the assumption of convexity could be violated. Due to this, a

number of approaches that do not require the convexity assumption have been

proposed (such as Free Disposal Hull)29. Even so, the convexity assumption currently

remains central to the most common and most easily applied non-parametric

approaches for measuring efficiency and productivity; as such, the approaches

discussed on this chapter and employed throughout this thesis will assume that the

technology is convex.

3.4.1. Data Envelopment Analysis

Given the above, the frontier can be derived from the observed technology by drawing a

monotonic, convex hull over the available observations. This can be achieved using

Data Envelopment Analysis (DEA), a non-parametric linear programming technique.

Figure 3.1 provides a graphical illustration of the DEA frontier for a convex technology

utilising a single input to produce a single output.

29 For a current review on the possible approaches available that do not rely on the assumption of strict convexity, see
Emrouznejad and Amin (2009).
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Figure 3.1: Example of a DEA frontier with convex technology
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The full lines in the figure above represent the DEA frontier, ie the maximum amount of

output that can be achieved at different input levels. AB and AC measure the distance of

unit A from the frontier and are both measures of units’ A efficiency. More specifically,

AB represents units’ A output-orientated efficiency, as it measures the additional output

that would be required for A to reach the frontier, while keeping its input constant.

Similarly, AC represents units’ A input-orientated efficiency as it measures the reduction

in input that would be required for A to reach the frontier, while keeping its output

constant. The distance functions are normally represented in ratio form, using distances

from the axis relative to the observed input/output correspondences and to the

projected-to the frontier, efficient input/output correspondences. So in the above

example, the distance function that measures efficiency is:

DB

DA
yxDo ),( Eq 3.4.1

for the output-oriented measure, and

EA

EC
yxDi ),( Eq 3.4.2
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for the input-oriented measure.

For multiple output- multiple input technologies, the input and output distance functions

can be measured by solving their respective DEA models, ie either the input- or output-

oriented DEA model. The general form of the DEA input oriented model that can

accommodate multiple inputs and multiple outputs is given below:

0
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Model 3.1

, where
0j

  is the input efficiency of unit j0 that utilises m inputs to produce s outputs,

ijx is the observed level of input i of unit j, rjy  is the observed level of output r of unit j

and  j  is the interpolation multiplier applied to unit j. Similarly, the general form of the

DEA output-oriented model is:
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Model 3.2

, where
0j

  is the output inefficiency of unit j0.30 The two models presented above were

first developed by Banker, Charnes, and Cooper (1984) and provide the representation of

30 By construction, 1
0
j . A measure of output efficiency is the inverse of

0j
 .
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a convex technology; in other words, they assume variable returns to scale (VRS) for the

production technology. These VRS DEA models provide a closer envelopment of the

data than the original DEA models developed by Charnes, Cooper and Rhodes (1978),

which provide the representation of a conical technology, ie a technology that assumes

constant returns to scale. The CRS models are exactly the same as the VRS models,

except they omit the convexity constraint, ie 1=j
=1j


N

.

The notion of the frontier provides a natural mechanism for aggregating both inputs and

outputs. This can be easily demonstrated by the dual of the DEA envelopment (primal)

model, which is usually referred to as the value-based, or shadow-price DEA model. The

general form of the CRS value-based DEA model is given below:
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 Model 3.3

The objective function in the value-based DEA model is a natural measure of

productivity, since it maximises the ratio of aggregate outputs to aggregate inputs.

Aggregation is achieved by allowing the assessed unit to select weights for its inputs and

outputs in such a way as to maximise the ratio of aggregate outputs to aggregate inputs,

with the restriction that when the selected weights are used by another unit, its output-to-

input ratio cannot exceed a predetermined upper bound (this is normally set to 1, as per

model 3.3). In other words, aggregation is done with reference to the technology frontier;

the assessed unit will adopt the weights that apply to the section of the frontier is

projected to (either point C or point B in the example presented in figure 3.1).
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3.4.2. Malmquist indices

A simple one input/one output example of how productivity change can be measured

using DEA is given in the figure below.

Figure 3.2: Productivity measurement using a static conical (CRS) frontier
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In the example above, OC is the static CRS DEA frontier and A is the input/output

correspondence of the assessed unit in time 0, while A’ is the input/output

correspondence of the assessed unit in time 1. The output distances AB and A’B’ can be

used as a natural way to measure productivity change31; in time 1, the assessed unit

produces more output but also utilises more input. However, since it is closer to the

frontier in time 1, its productivity has improved.

In their seminal work, Caves, Christensen and Diewert (1982) used this concept of the

output distance function to define the Malmquist productivity index (MI) as:

),(

),(
000

110
0

yxD

yxD
M

o

o
o  Eq 3.4.3

31 This example utilises the output distance function to measure efficiency. However, the same concepts fold for the input
distance function. This is especially true in this example, since the example assumes constant returns to scale. Under
CRS, the output distance function will be equal to the input distance function for all assessed units.
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, where ),( 110 yxDo is the output distance function of the ),( 11 yx input/output

correspondence relative to the frontier in time 0 and ),( 000 yxDo  is the output distance

function of the ),( 00 yx input/output correspondence, also relative to the frontier in time 0,

since this example assumes that the frontier is static. The more formal definition of the

output distance function as used in the context of the Malmquist index is that it is the

reciprocal of the maximum proportional expansion of output given inputs. As such, it

always holds that 1),( ttt
o yxD  and 1),( ttt

o yxD  only if ),( tt yx is on the technology

frontier.

The above formulation for the Malmquist productivity index is also valid for input distance

functions; in fact, if the technology displays constant returns to scale, the output-oriented

MI will be equal to the input oriented MI, since when the frontier is a conical hull (CRS

technology), the input-oriented and output-oriented distances to the frontier are the

same.

If the frontier is allowed to move, a similar Malmquist index can be defined relative to

period 1 technology:

),(

),(
001

111
1

yxD

yxD
M

o

o
o  Eq 3.4.4

, where the output distance functions ),( 111 yxDo  and ),( 001 yxDo are relative to the

frontier in time 1.

Färe et al. (2008) have shown that generally, 1
oM  and 0

oM will result in different

productivity change estimates since the technologies that define the frontier in the two

periods differ. The only time when 1
oM  and 0

oM will result in the same productivity

change estimates is when the overall technology is Hicks-output neutral, or in other

words, the technology in all periods is the outward shift of the technology of the base

period (period 0) by a function A(t), where t denotes time.

These likely differences between 1
oM  and 0

oM create a complication for the analysis;

either the analysis assumes that the technology is Hicks-output neutral, or it has to make



78

an a-priori choice between using period 0 or period 1 technology as the reference

frontier.

In their seminal paper, Färe et al. (1992), proposed a different formulation of the

Malmquist index that could remove this complication. Instead of choosing blindly

between 1
oM  and 0

oM , they reformulated the Malmquist productivity index to be the

geometric average of 1
oM  and 0

oM , similar to the way the Fisher index (see equation

3.2.6) is defined as the geometric average of the Paasche and Laspeyres indices:
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This formulation of the Malmquist productivity index has been widely adopted in the

academic literature and has become the standard index of productivity change, both in

the non-parametric but also in the parametric setting, as will be discussed in the

following section. One of the major strengths of this formulation is that it can be used to

identify the various ‘sources’ of productivity change, in terms of the movement of the

assessed unit within the production possibility space defined by the frontier and the

movement of the frontier itself.

Färe, Grosskopf, Norris and Zhang (1994) – referred as FGNZ from now on – provide

one of the most well known decompositions of the MI:
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, where efficiency change (also referred to as catch-up),
),(

),(
000

111

yxD

yxD
EC

o

o , captures the

changes in the efficiency of the assessed unit from period 0 to period 1 and
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technological change (also referred to as frontier shift)
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captures the movement of the frontier itself, from period 0 to period 1.

As with all index numbers, a MI greater than 1 indicates that productivity has improved

between periods 0 and 1, and this could be due to the assessed unit becoming more

efficient (ie moving closer to the frontier) and/or the frontier moving outward, which

would signify that the technology has improved, in a sense that the most efficient units

can produce higher aggregate output in period 1 relative to period 0, using the same

aggregate inputs in both periods32.

Another interesting feature of the Malmquist productivity index is that it is consistent with

the neoclassical measure of productivity tiA ,  as described by Abramovitz (1956) and

Solow (1957) (see equation 3.2.9, section 3.2.1). Färe et al. (2008) demonstrates that

for production functions with one output, constant returns to scale, and Hicks-neutral

productivity33, the MI will result in the same productivity estimate as tiA , , assuming that

the efficiency of the assessed unit remains exactly the same between the periods of the

assessment (ie EC=1).

The discussion so far utilises the conical, monotonic frontier usually associated with a

technology that displays constant returns to scale. FGNZ (1994) refer to distance

functions estimated relative to the conical frontier as ‘benchmark’ distances, presumably

since they represent what is economically optimal. However, technologies that display

variable returns to scale are not uncommon, especially in situations where the scale of

the production is not under the direct control of the assessed unit. In situations such as

these, the use of ‘best practise’ distances, ie distances estimated relative to the convex

frontier, are preferable when measuring efficiency. Productivity however can still be

measured relative to the ‘benchmark’ (conical) frontier, even when the actual technology

is VRS. Based on this property, FGNZ (1994) proposed an alternative decomposition of

the Malmquist index that also identifies the changes in productivity resulting from the

32 This holds for the output-oriented MI; for the input oriented case, the most efficient units can produce the same
aggregate output in period 1, while utilising lower volumes of aggregate input in period 1 relative to period 0.
33 As a reminder, a production function with one output, constant returns to scale, and Hicks-neutral productivity is a
subset of the so-called neoclassical assumptions required for the measurement of productivity under Growth Accounting.
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assessed unit moving towards a more productive scale size, ie closer to the conical part

of the frontier. This decomposition is given by:
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 ,where ),( ttt
V yxD  denotes distance relative to the VRS frontier and ),( ttt

C yxD  denotes

distance relative to the CRS frontier. SC denotes scale efficiency change and is the ratio

of scale efficiency in period 1 relative to period 2:
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Although this decomposition is both theoretically and analytically correct, Ray and Desli

(1997) noted that it is inconsistent in that the efficiency change component is measured

relative to the VRS frontier while the technological change component measures the

movement of the CRS frontier. To amend that, they proposed an alternative

decomposition of the MI:
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, where both the efficiency change and technological change components are measured

relative to the VRS frontier and the scale efficiency change component is the geometric

mean of the scale efficiency ratio measured relative to period 0 and the scale efficiency

ratio measured relative to period 1.

The Ray and Desli (1997) decomposition is theoretically correct and internally

consistent, but may not always be feasible in practice. The issue rests with the

calculation of the cross-period distance functions required for both the technological

change and scale efficiency change components; sometimes, the observed input/output

correspondences in one period may not be fully enveloped by the frontier in another

period. If this is the case, the DEA models used to measure these distances have no
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solutions and as such, the decomposition of productivity change for some units may not

be possible.

An issue that often arises in practical applications of the Malmquist index is how to deal

with unbalanced panel data, ie when the analysis is missing observations for some of

the assessed units for some time periods. Some authors state that the calculation of MI

requires the availability of a balanced panel and apply a number of adjustments to

convert the available unbalanced panel to a balanced one34. However, the availability of

a balanced panel is not strictly a prerequisite of the MI; unbalanced panel datasets will

not lead to infeasibilities similar to those found in the Ray and Desli (1997)

decomposition35. This does not mean that unbalanced panels are not problematic in this

setting, since in order to calculate the MI one requires information for both the base and

the subsequent period (ie input/output correspondences are required both for period 0

and 1); if information on one of those periods is missing, then the MI for this period

cannot be calculated. More important however are the possible effects of an entry or exit

of a unit to the MI estimates of all the other assessed units for that period. For example,

if the unit that exits was used to define the frontier in period 0 and there are no other

units with similar input/output mix close to the frontier at the moment of exit, the resulting

frontier in the next period can be very different to what was previously. This in turn can

cause significant volatility in the MI estimates of all other units that were projected to this

particular segment of the frontier.

Another potential shortcoming of the ‘traditional’ Malmquist index formulation is that the

index is non-circular. In general, circularity is a desirable property of index numbers; a

circular index I measured over three consecutive periods (t1, t3, t3) is one that satisfies

the following:

),(),(),( 322131 ttIttIttI  Eq 3.4.10

For the ‘traditional’ Malmquist index formulations, this implies that the analysis may not

derive the change in productivity between periods 1 and 3 even when the change in

productivity between years 1 and 2 and between years 2 and 3 is known. Färe and

Grosskopf (1996) demonstrated that the only time the Malmquist index will be circular is

34 See for example Hollingsworth and Wildman (2003).
35 FGNZ (1994) also state that explicitly in footnote 14 of their paper.
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when the overall technology is Hicks-output neutral. They also argued that circularity is

not necessarily an important property of productivity indices; they site Fisher, whose

productivity index is also not circular, who argues that ‘there is a natural order of time

that makes productivity change inherently path-dependant’36, and thus non-circular.

3.4.3. A circular Malmquist index

As mentioned above, there are two main issues with the ‘traditional’ Malmquist index:

– The first is the ambiguous treatment with regards to the definition, measurement

and decomposition of the scale efficiency component. If the Ray and Desli (1997)

decomposition is adopted, then there is the danger that, at least for some of the

assessed units, the DEA models used to estimate productivity change can be

unsolvable.

– Secondly, ‘traditional’ Malmquist indices might result in significant volatility of the

resulting productivity estimates when using unbalanced panel data. This has

serious implications in studies that utilise unbalanced panel datasets, such as the

EU KLEMS dataset, since it necessitates the exclusion of some of the available

information in order to balance the dataset.

These issues can be resolved by adopting a circular Malmquist index formulation, similar

to the formulation proposed by Pastor and Lovell (2005) and refined by Portela and

Thanassoulis (2010).

The circular Malmquist index described here is based on the observation that, a distance

function can be measured indirectly, by comparing the multidimensional points of the two

periods relative to a common reference point, or in this case, to a common frontier. This

is a departure from the ‘traditional’ Malmquist index, which defines the distance functions

with reference to two frontiers, each based on the start and end periods of the analysis.

This common frontier can be defined as the ‘meta-frontier’, which envelopes all data

points from all periods; this also allows for the formulation of a Malmquist-type index that

is circular. To draw this ‘meta-frontier’, one must assume that convexity holds for all data

points across different time-periods. This actually translates to the assumption that what

36 See Färe et al. (2008) op cit., p.551
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was technologically feasible in a given time period will always be feasible in any future

time period. This assumption can be somewhat restrictive, especially in cases where

changes in the legal or regulatory environment make restrict the adoption of production

plans that were available in the past (for example emission restrictions in the automotive

industry). However, the severity of this restriction is debatable, since it is not necessary

for the meta-frontier to include of all current (at the time of the analysis) production

possibility sets. In fact, the ‘traditional’ Malmquist index is also based on two different

frontiers and one of them may include ‘non-feasible’ production possibility sets.

Using the notion of the meta-frontier, a unit’s efficiency in time t relative to the meta-

frontier (referred to as the meta-efficiency) can be written as:

it
T
it

m
it TG  Eq 3.4.11

Where, m
it is unit’s i meta-efficiency in time t=T, T

it  is unit’s i cross-sectional efficiency in

time t=T (ie relative to the frontier in time T) and itTG is the technological gap between

the frontier in time t=T and the meta-frontier. m
it is straightforward to estimate by solving

a DEA model that includes all observations from all the assessed units in all available

periods. itTG is residually estimated as:

T
it

m
it

itTG


 Eq 3.4.12

Since the meta-frontier is fixed in the timeframe selected for the analysis, the productivity

change of a unit between any two time periods can be measured using the ratio of the

meta-efficiencies of these two periods:

m
it

m
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ttCM

 1

1,


  Eq 3.4.13

Using equation 3.4.13, the circular Malmquist index can be decomposed such that:
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T
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T
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

  


Eq 3.4.14
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The first term in the right hand side of equation 3.4.14 captures the efficiency change of

unit i from period t to period t+1, similar to the ‘traditional’ Malmquist index. The second

term captures the movement of the frontier where unit i is projected to, between period t

and period t+1; in other words, the second term represents an estimate of frontier shift or

technological change between periods t and t+1.

The way frontier shift is estimated is the main point of departure between the ‘traditional’

Malmquist index and the circular Malmquist index. In the ‘traditional’ Malmquist index,

frontier shift is defined as the geometric mean of the distance of the frontiers in periods t

and t+1, measured at the point where the unit with a particular input-output mix is

projected to in periods t and t+1. The circular Malmquist index is defined as the ratio of

the distance of the frontier in t+1 from the meta-frontier to the distance of the period t

frontier from that same meta-frontier; although the assessed unit has the same input-

output mix as in the ‘traditional’ Malmquist setting, since it projects itself to the meta-

frontier, rather than the period t or t+1 frontiers, the underlying distance functions of the

‘traditional’ Malmquist index and the circular Malmquist index may well differ. In fact, the

only instance where the frontier shift estimates from ‘traditional’ and circular Malmquist

indices are the same is when the input-output mix of the assessed unit stays constant in

the two periods of assessment. This usually has a marginal impact on assessments

involving the measurement of aggregate productivity growth, especially when the

assessment is done in annual intervals; this is because whole industries or economies

generally display relative stable input-output mixes in the short-term.

The circular Malmquist index in equation 3.4.14 can be further decomposed if the

assumption of constant returns to scale is relaxed. As was mentioned before, there are

various decompositions of the ‘traditional’ Malmquist index with respect to the scale

component proposed in the literature. Each of those offers a different treatment and

definition of the scale component and all could be considered complimentary. When

examining aggregate productivity change, the most common objective is to derive an

estimate of efficiency and technological change, free of bias from the effects of scale

size, since the overall scale of the economy is depended on a number of factors outside

of the control of any policy maker. If this is indeed the underlying objective, the

decomposition of the Malmquist index should probably be attempted using a VRS

frontier as the base, similar to the approach suggested by Ray and Desli (1997), but

adapted for the circular Malmquist index.
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Portela and Thanassoulis (2010) suggest the following decomposition of the circular

Malmquist index:

it

it

it

it
VRST

it

VRST
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tt MSE
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CM 11
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Eq 3.4.15

, where )(VRST
it  is unit’s i cross-sectional VRS efficiency in time t (ie relative to the frontier

in time t), itTGV is the technological gap between the VRS frontier in time t and the VRS

meta-frontier and itMSE  is unit’s i meta-scale efficiency in time t.

The first component of equation 3.4.15 represents the VRS efficiency change of unit i

from period t to period t+1, the second component is the frontier shift of unit i from period

t to period t+1 and the last component is the change in scale efficiency of unit i from

period t to period t+1. The VRS technological gap and meta-scale efficiency scores are

easy to calculate, since:
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
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 Eq 3.4.16

, and
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it

CRSm
it

itMSE


 Eq 3.4.17

As is apparent from equations 3.4.15 and 3.4.16, the decomposition of the circular

Malmquist index is internally consistent in the manner of the Ray and Desli (1997)

decomposition, since both the efficiency and technological change components use the

VRS frontier as reference. This is due to the fact that the circular Malmquist index does

not require the calculation of cross-period efficiencies, which are the source of the

potential DEA infeasibilities in the ‘traditional’ Malmquist index formulations. The

utilisation of the meta-frontier as the frontier of reference also allows the analysis of

unbalanced panels, without the fear of possible volatility in the resulting productivity

change estimates, since the meta-frontier is fixed. The use of the meta-frontier also

results in an index that satisfies the circularity property, as expressed in equation 3.4.10.
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3.5. Econometric approaches to productivity
measurement

This section provides a brief discussion on two of the most common

econometric/parametric approaches used for the measurement of productivity change,

namely Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis

(SFA). These approaches are firmly rooted in economic theory and, as is the case with

the non-parametric distance functions discussed in the previous section, can produce

productivity change estimates without requiring information on input and output prices.

For a more detailed discussion on the measurement of productivity utilising econometric

approaches, see Kumbhakar and Lovell (2000).

The econometric approaches discussed in this section belong in the more general family

of frontier-based approaches. Similar to the non-parametric distance functions, they

measure productivity change with a reference to the frontier, ie the outer boundary of the

technology. Also similar to the non-parametric distance functions, they also assume that

production is possible inside the frontier, ie not all of the assessed units need to be

technically efficient. In addition, the frontier can display a wide range of return to scale

properties and as such, the analysis is not restricted by assuming that the production

process displays solely constant returns to scale. However, probably the most important

feature of some of these approaches, namely SFA, is that they can take into account the

stochastic nature of the production process.

The utilisation of the notion of the frontier, which can display the whole range of returns

to scale properties, allows for the estimation of a productivity change measure that can

be decomposed into different elements similar to those examined when discussing the

non-parametric Malmquist index. As such, the econometric approaches described in this

section can measure productivity change and also decompose it into efficiency change,

technological change and scale efficiency change. In essence, the econometric

approaches produce a Malmquist-type productivity index, although the methodology

used to derive this index is quite different to the non-parametric distance functions

discussed in the previous section.
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3.5.1. General theory and decomposition

At the heart of the econometric approaches for measuring efficiency and productivity lies

the notion of production technology and its frontier. The main difference with the non-

parametric distance functions is that the production technology is usually represented by

a production function, or, as is the case in the approaches examined here, by a

production frontier. The reason for this restriction is that the econometric approaches

rely on some form of regression analysis for the estimation of the characteristics of the

transformation function. This limits the analysis in the sense that only one factor can be

considered in the left-hand side of the regression equation. As such, in order to

parameterise the production function or production frontier, output must be expressed by

a single measure37.

Although this might seem to be a significant shortcoming, this is not necessarily the

case. For many studies in the micro setting, information on costs and quantity of outputs

is easier to secure than information on input and output quantities; in such cases,

econometric approaches can take advantage of the duality theory (Samuelson (1947);

Shephard (1953)) and estimate the cost frontier, rather than a production frontier.

Sometimes, sufficient information is even available for the estimation of the profit

frontier. As noted by Kumbhakar and Lovell (2000), the estimation and decomposition of

productivity change is well developed within the cost function framework; more recently,

Kumbhakar (2002) also provided the analytical framework for measuring and

decomposing productivity change within the profit function setting.

In this section, the focus will remain in the primal approaches, ie those that utilise the

notion of the production frontier, since all of the approaches reviewed so far for the

measurement of aggregate productivity growth were based on the production process.

The requirement of a single output measure is not limiting in this setting, given that the

National Accounts framework already represents aggregate output as a single measure.

As a reminder, output aggregation is achieved through the use of index number

approaches and is relatively relaxed in terms of required assumptions (see section 3.2.1

for more details).

37 This limitation can be alleviated by adopting parametric input- or output-distance functions rather than production
functions; however, parametric distance functions face a number of theoretical and estimation issues when used to
measure efficiency and productivity. For additional discussion see Kumbhakar and Lovell (2000), op cit.



88

The starting point of the discussion is the specification of the deterministic production

frontier:

it
j

it TEtxfy
it

);( Eq 3.5.1

,where ity  is the output of unit i in time t, j

it
x  is the vector of j inputs of unit i in time t, t is

a time trend and itTE  is the measure of technical efficiency of unit i in time t . Equation

3.5.1 characterises the deterministic production frontier because all of the elements that

influence output are deterministic in nature. To specify the stochastic production frontier,

a stochastic element needs to be included in equation 3.5.1:

it

it

v
it

j
it eTEtxfy );( Eq 3.5.2

, where v represents a two-sided error term that captures statistical noise and as such is

identically and symmetrically distributed. Stochastic production frontiers will be

discussed in more detail in section 3.5.2 below. Overall, the general methodology with

regards to the estimation of productivity change is the same, regardless of whether the

production frontier is deterministic or not; of course, that is not to say that the productivity

change estimates will be the same under both approaches.

Note that the stochastic component, ie the two-sided error term v, was included in

equation 3.5.2 multiplicatively and as an exponent. The reason for that is that the most

common functional forms adopted for the production frontier are linearised by logarithmic

transformations of the underlying data. Including the stochastic component as an

exponent will also ensure that it will be in linear form after the logarithmic transformation

of the production frontier.

The above is also the reason why most econometric approaches also include the

technical efficiency element as an exponent:

itit

it

vuj
it eetxfy  );( Eq 3.5.3

 , where

itu
it eTE  Eq 3.5.4
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and 0itu  represents the output-oriented inefficiency of unit i in time t.

Using equation 3.5.3, Kumbhakar and Lovell (2000) construct the productivity change of

a unit by identifying and adding together its three main components, namely efficiency

change, technological change and scale efficiency change.

The element of technological change, or frontier shift, is captured in the time trend t.

Technological change, itTC  itself can be expressed as the partial derivative of equation

3.5.3 with respect to the time t.

t

txf
TC

j

it
it



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);(ln
Eq 3.5.5

Technological change, itTC , can be positive or negative, reflecting upwards or

downwards shifts in the production frontier. It can also be zero, when the frontier

remains constant over the periods examined. Note that the above formulation does not

restrict the technological change component to be output Hicks-neutral.

Similarly, the efficiency change component can also be expressed as the partial

derivative of technical inefficiency with respect to the time t.

t

u
TE it

it 

 Eq. 3.5.6

The interpretation of the efficiency change component is exactly the same as that in the

non-parametric Malmquist index; it captures the movement of the unit i either towards

the frontier, when 0 itTE , or away from the frontier, when 0 itTE . If 0 itTE ,

then the units’ efficiency is unchanged between the periods of the analysis.

The scale efficiency change component can be derived from totally differentiating

equation 3.5.3, after accounting for the general structure of the production frontier:

j
j

j
it xSE   


 )1( Eq. 3.5.7
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,where j  are the elasticities of output with respect to each of the j inputs,  j and

jx is the rate of change of input j between the periods of the analysis for the assessed

unit.

Kumbhakar and Lovell (2000) also include a fourth component of productivity change

that is meant to capture the effects of allocative efficiency change. Allocative efficiency is

a measure of a unit’s ability to select its input mix in such a way as to minimise costs.

This component is given by:

j
j

j
j

it xSAE 
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
Eq. 3.5.8

, where



jj

jj
j xw

xw
S  is the share of observed expenditure of input jx  with price jw to

total expenditure. To assess changes in allocative efficiency in this setting, the analysis

needs to have access to input prices. If input price information is unavailable, this

component cannot be estimated. In such instances, Kumbhakar and Lovell (2000)

suggest that the expenditure shares should be implicitly assumed to be equal to the

elasticities of output, namely

 j

jS  , which results in 0 itAE .

If it is assumed that information on input prices is not available, productivity change,

itTFP , is defined as the sum of the three aforementioned components:

itititit SETCTETFP  Eq. 3.5.9

It should be mentioned here that according to the framework put forward by Kumbhakar

and Lovell (2000), an estimate of productivity change can be produced through either a

production function or a production frontier. The difference between the two is that by

employing the production function, the analysis assumes that all production takes place

within the confines set out by the production function itself and that all observed

deviations are due to stochastic variation (ie statistical noise). In other words, the

analysis explicitly assumes that all assessed units are fully efficient. In this case, the

efficiency change component drops out of the equation 3.5.8 and productivity change is

defined as:
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itit
onprodfuncti

it SETCTFP  Eq. 3.5.10

, ie productivity change is defined as the sum of technological change and scale

efficiency change.

Note that the estimates of technological change and scale efficiency change are the

same, regardless on whether the analysis utilises a production function or a production

frontier. The reason for that is twofold: firstly, as is apparent from equations 3.5.4 and

3.5.6, the estimation of both technological change and scale efficiency change is

independent from the estimate of (in)efficiency. Secondly, as will become apparent in the

following sections, the production frontier is simply an upwards parallel shift of the

production function. As such, all coefficients of the production function are the same to

those of the production frontier, with the coefficient of the constant being the sole

exception38. Therefore, the only difference between a productivity change estimate from

a production function and a production frontier is the effect of efficiency change,

assuming of course that they adopt the same functional form and include the same

inputs in the assessment.

Selection of the functional form

As mentioned above, in order to parameterise the production frontier, the analysis needs

to select the functional form that will link the output to the inputs, ie )(f  in equation

3.5.3. This selection takes place prior to the start of the analysis and as such reflects the

assumptions of the analysis with regards to the underlying functional form of the true

production frontier. However, that does not mean that all possible functional forms that

are used in econometric analyses are appropriate for the formulation of a production

frontier. Instead, this selection process can, and should, be informed by the general

theoretical properties of production frontiers.

These properties have already been discussed in section 3.4, when talking about the

notion of production technology; the most pertinent of them are also summarised here:

Production frontier – Standard assumptions

38 In practice, there might be some minor differences in the coefficients produced by COLS (and all other approaches that
utilise OLS) and SFA (and all other approaches that utilise an estimation method other than OLS). In the case of SFA,
which is estimated through maximum likelihood (MLE), the estimated coefficients have been proven to be identical to the
OLS coefficients asymptotically (ie in large samples).
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– Non-negativity: Output should always be positive or zero

– Weak Essentiality: To produce any amount of output, at least some amount of input

should be used

– Monotonicity (non-decreasing on inputs): when inputs are increased, output should

either increase or stay constant.

– Concavity in inputs (technology is a convex set): the rate of change of output

relative to inputs (ie the marginal product) should be non-increasing.

Concavity is usually assumed because it is required to enforce the law of diminishing

returns and allow the production frontier to simulate ‘rational’ producer behaviour under

competitive markets39. As mentioned before, the assumption of concavity is not always

desirable, especially when assessing units that operate in markets where competition is

restricted. For the purposes of this discussion however, it is assumed that concavity is a

desirable property.

Given the above, any analysis that utilises production frontiers needs to adopt a

functional forms that:

– conforms to law of diminishing returns (assuming that some inputs are difficult to

vary in the short-run);

– is monotonic in its continuity, ie when inputs are increased, output either increases

or stays constant;

– adheres to concavity constraints globally, and

– can be empirically estimated (ie applied in practical settings)

Additionally, the functional form would ideally be flexible enough to allow for a production

frontier that displays different returns to scale at different input/outputs correspondences,

similar to the production frontier estimated by DEA. Another desirable property is that the

selected functional would allow for variation in the rates of substitution between inputs

39 ‘Rational’ producer behaviour in this instance is used to describe the situation where no production will take place in
the area of the production function that is non-concave, ie the area that displays increasing marginal products of the
inputs.
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(ie variable marginal rates of technical substitution for inputs and variable output

elasticities).

Probably the most common functional form applied in econometric analysis is the Cobb-

Douglas, named after Charles Cobb and Paul Douglas who presented it in their seminal

study in 1928. This functional form is especially relevant in this case, since it was the

functional form used in the study that modelled an aggregate, economy-wide production

function. Since then, it has become the staple functional form to represent both

production, but also cost functions. A Cobb-Douglas production function with two inputs,

labour L and capital K is given below:

21 
iii LAKY  Eq. 3.5.11

, where A  is a constant and 1  and 2  are the elasticities of capital and labour

respectively. The Cobb-Douglas is not linear, but can be easily transformed into a linear

function by logarithmic transformation:

iii LKAY lnlnlnln 21   Eq. 3.5.12

The advantages of adopting a Cobb-Douglas production frontier are:

– very easy to estimate by simply logarithmically transforming the data and applying

Ordinary Least Squares;

– exhibits decreasing marginal productivity and so can model diminishing returns, and

– allows for either increasing, decreasing or constant returns to scale.

The disadvantages of the Cobb-Douglas production frontier are:

– It results in returns to scale estimates that are global (ie not allowed to vary from

unit to unit).

– The elasticity of substitution for inputs is always equal to unity40.

40 The elasticity of substitution measures the possibility of substitution between inputs within the confines of the
production technology. It can take only non-negative values. An elasticity of substitution of zero indicates that no
substitution is possible between the chosen inputs, while an elasticity of substitution of infinity indicates that the inputs are
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– Does not incorporate second-order effects, in the form of interaction terms and

quadratic transformations of the inputs.

– It can only produce a technological change component that is Hicks-neutral.

These issues can be resolved by adopting a so-called ‘flexible’ functional form, such as

the translog. The translog functional form was developed by Christensen, Jorgenson,

and Lau (1973), with the explicit purpose of overcoming some of the shortcoming of the

Cobb-Douglas functional form. A translog production function with two inputs, labour L

and capital K is given below:

    ititKLitKKitLLitKitLiit LKKLKLaY lnlnln
2
1

ln
2
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22

 

Eq. 3.5.13

The adoption of a translog functional form offers a number of theoretical and practical

advantages in this setting:

– The translog is considered a ‘flexible’ functional form since it can provide a local

second order approximation to any arbitrary functional form – other common

functional forms used in productivity and efficiency analysis such as the Cobb-

Douglas and CES can be considered as a special case of the translog.

– It can exhibit decreasing marginal productivity and is as such is consistent with the

diminishing returns assumption.

– The elasticity of substitution for inputs is fully flexible.

– The flexibility of the translog allows the model to display non-constant returns to

scale, both in the sense that the sum of output elasticities can be different than unity

and also that each assessed unit can display unique elasticity estimates depending

on its mix of inputs.

– The translog allows for both time- and unit-variant technical change, which is not

restricted to be Hicks-neutral.

perfect substitutes. An elasticity of substitution of one implies that the use of one input is independent of the use of the
other input.
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These advantages however come at a cost:

– The translog is in general more difficult to parameterize in practice, relative to the

Cobb-Douglas. The estimation process takes up more degrees of freedom and as

such requires relatively large samples. Additionally, the inclusion of interaction

terms and second-order effects makes it difficult to evaluate marginal effects, mainly

due to the fact that they introduce multi-collinearity in the estimation process, which

can also affect the stability of the coefficients of the translog model41.

– More importantly however, a translog production function is not guaranteed by

construction to be globally monotonic or concave. If this is the case, the standard

assumptions on the technology would be violated, which would have adverse

effects on the estimation of productivity change.

There are a host of other possible functional forms that can be used to estimate a

production frontier, but are not as common in the literature. Two of them are briefly

summarised below:

Constant elasticity of substitution (CES)

An early alternative to the Cobb-Douglas production function, designed to display

elasticities of substitution for inputs other than unity.

  
1

21 LKAY  Eq. 3.5.14

– more flexible than Cobb-Douglas (Cobb-Douglas is nested in CES when ρ

approaches 0);

– more tractable than the translog, in the sense that it includes fewer parameters to

estimate; but,

– difficult to estimate in practice since it requires statistical approximation methods or

non-linear least squares, rather than standard OLS or MLE; and

– not common in performance measurement.

41 Note that multicollinearity by itself will not lead to biased coefficients, since it only affects their standard errors.
However, if the model is somehow misspecified (for example due to omitted variables), the presence of collinear variables
can compound the bias introduced by the misspecification.
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Quadratic functional form

2
2212

2
1121 LKLKLKAY   Eq. 3.5.15

– very similar to translog, both in terms of its theoretical properties and also with

regards to estimation;

– is usually adopted when some inputs are equal to zero, since the log of 0 is

undefined;

– similar issues with the translog, with regards to ease of use, interpretation of

marginal effects and violation of monotonicity and concavity.

3.5.2. Corrected OLS (COLS)

Corrected OLS is a deterministic, econometric approach developed for the measurement

of efficiency. It is probably one of the first approaches that have been created to ‘correct’

the inconsistency of the OLS-derived constant term of the regression, when technical

inefficiency is present in the production process.

COLS explicitly assumes that the production function estimated through standard OLS

provides a good representation of the technology, especially with regards to the output

elasticities of the inputs utilised in production. Where the production function falters is in

that it does not provide a full envelopment of the data and as such, cannot be

considered as an appropriate representation of the technology frontier. To correct for this

deficiency, COLS shifts the production function upward so that it envelopes all observed

input/output correspondences. In other words, the production function is shifted in such a

manner that all observed units lie either on the shifted function or below it. Since the

parameters of the production function are deemed to be a good representation of the

technology, this shift is parallel, so that the output elasticities of the inputs remain

unchanged. The parameters that are changed are the constant and the error terms of

the original production function.

In essence, the model is asked to estimate42:

i
k
i

k
i uxy  ln Eq. 3.5.16

42 The examples here assume Cobb-Douglas production technology.
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, where iyln  is the log of output, k
ix  is a vector of k inputs (also in logarithms) and iu  is

technical inefficiency. OLS can be used to estimate:

i
k
i

k
i xy  ln Eq. 3.5.17

, where i  is the residual. So, equation 3.5.16 can be converted to equation 3.5.17 just

by setting ii u . The problem however is that i  has the properties of the classical

residual, namely it is normally distributed with a zero mean; iu on the other hand is

always non-negative parameter, with an unknown distribution. This can be corrected by

standardising the estimate of technical inefficiency:

 iii uEu *  Eq. 3.5.18

*
i is a parameter that has zero mean and an unknown distribution. COLS uses equation

3.5.16 as a starting point and converts it to:
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, which can be estimated through OLS.

COLS sets the expected value of technical inefficiency to be equal to the maximum

residual of the OLS-estimated production function, since this would result in a production

frontier that envelops all observations. In short:
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As is apparent from the above, COLS models are quite easy to specify and since the

estimation is based on a simple OLS regression, estimates of efficiency and productivity

change can be easily derived, even by non-specialists using basic software43. The

drawback of COLS however is that it is does not account for the stochastic nature of the

43 A basic version of Microsoft Excel with no add-ins is sufficient for the application of COLS.
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production process; the next approach examined here attempts to address this specific

oversight.

3.5.3. Stochastic Frontier Analysis

Stochastic Frontier Analysis is the pre-eminent parametric frontier-based approach,

developed independently by Aigner, Lovell, and Schmidt (1977) and by Meeusen and

van Den Broeck (1977). The approach relies on the notion that not all deviations from

the frontier are the result of the decisions made by the assessed unit. Under a

deterministic approach, such as DEA, GA and COLS, any external event that has an

impact on the production process, such as bad weather, but also any non-systematic

error in the measurement of the relevant components of the approach (be it inputs,

outputs, prices or other contextual variables) would have a direct impact on the

estimated efficiency or productivity measure. SFA attempts to disentangle those random

effects by decomposing the residual of the parametric formulation of the production

function into noise (random error) and inefficiency.

In more detail, SFA attempts to estimate44:

ii
k
i

k
i uvxy  ln Eq. 3.5.21

, where iv  is the standard two-sided, normally distributed error term, which is also

assumed to be independently distributed of technical inefficiency, iu .

Equation 3.5.21 cannot be estimated through OLS; however, if technical inefficiency is

independently distributed relative to the inputs, the OLS coefficients are statistically

consistent, except for the constant and the estimates of technical inefficiency. Therefore,

OLS can be used as a first step to estimate the slope parameters (coefficients of all the

inputs) and then a second method can be used to estimate the constant and the two

residual components, namely the stochastic element and technical inefficiency.

In essence, what is required here is an approach that allows for the decomposition of the

classical regression residual into an inefficiency term and a stochastic (noise) element:

iii uv  Eq. 3.5.22

44 The examples here assume Cobb-Douglas production technology.
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This decomposition is informed by the general properties of these two elements:

– iv  is a standard, two-sided, normally distributed error term with zero mean;

– iu is strictly positive and has an unknown distribution.

The above does not provide sufficient information to attempt the decomposition; to do

so, the analysis requires more detailed information on the distribution of the technical

inefficiency component in the form of its general shape and its first, second and third

central moments. Therefore, in order to proceed with the decomposition, the analysis

needs to assume a-priori the distribution of iu . The potential distributions should have

the following characteristics:

– They must be one-sided, since technical inefficiency takes only non-negative

values, ie 0iu .

– They should conform to the assumption that higher inefficiency is less likely to be

observed, ie, the chosen distribution should be decreasing at higher values.

Based on the above, a number of distributional assumptions are possible for the

decomposition. However, the most common distributions for the technical inefficiency

component used in SFA are the half-normal and the exponential. The main reason for

the prevalence of these distributions is that they are both one-parameter distributions; in

other words, if one moment of the distribution is known, the analysis can use this

information to derive all the other moments of interest45. Other, two-parameter

distributions can also be employed, such as the truncated normal or the gamma; their

use can provide additional flexibility but at the cost of increased difficulty of estimation.

For a comprehensive discussion on the possible distributions that can be used for the

decomposition, see Greene (2007).

After selecting the distribution of the inefficiency term, SFA estimates and decomposes

the composed error term in a single step using Maximum Likelihood Estimation (MLE).

MLE estimates the parameters of the production function in such a way so they provide

45 In other words, if the analysis can provide an estimate of the variance, this can be used to calculate the mean and the
skewness statistics of the one-parameter distributions.
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the highest joint probability of observing the current sample. There are three main steps

in the estimation procedure:

– First, the analysis needs to construct a joint probability distribution for the composed

error term; this will be based on the normal distribution (for the stochastic element)

and the selected distribution of the technical inefficiency term.

– The second step is to use this information to construct the log likelihood function

that corresponds to the sample under analysis, or in this case, to the input/output

correspondences of the assessed units.

– The third and final step is to iterate through different values for the estimated

parameters in order to find the set that maximizes the log likelihood.

The MLE process itself does not provide a direct estimate of technical inefficiency, since

the inefficiency parameter is unobservable. However, it provides sufficient information to

generate an estimate of the conditional mean of inefficiency E(u|ε) which can be used to

generate estimates of technical inefficiency for all assessed units based on the

distributional assumption for the term. The issue here is that there is no single way to

generate this conditional mean. In the SFA literature, the two most common estimators

used to generate the conditional mean of technical inefficiency are the JMLS (Jondrow,

Lovell, Materov and Schmidt (1982)) and the BC (Battese and Coelli (1988)) estimators.

Both have their strengths and weakness and both estimator usually produce efficiency

estimates that are very similar, in terms of absolute values, and highly correlated. As

such, the decision to select one estimator over the other has, in the majority of cases, a

negligible impact to the final productivity change estimates.

What is probably more concerning is that, regardless of the estimator chosen, the nature

of the SFA approach is such that the final estimates of efficiency are statistically

inconsistent, when the analysis utilises cross-sectional data or pooled data. In other

words, the estimate of iu does not necessarily converge to the true value of iu .

Statistically consistent estimates of technical efficiency are possible in the panel setting,

but only under the assumption that technical efficiency remains unchanged for the

duration of the analysis. Arguably, this is a very restrictive assumption when the aim is to

measure aggregate productivity growth, especially when the available data span multiple

decades.
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For a more detailed discussion on those topics, see Kumbhakar and Lovell (2000).

3.6. Discussion and conclusions

This chapter provided an introduction to some of the most widely adopted approaches

for measuring productivity change. The approaches discussed were classified in three

distinct groups: index number approaches (detailed in section 3.2), non-parametric

distance functions (detailed in section 3.4) and econometric approaches (detailed in

section 3.5). The discussion focused on:

– Growth Accounting, as the most common representative of the index number

approaches;

– DEA-based Malmquist indices, as the most common representative of the non-

parametric distance functions; and

– COLS- and SFA-based Malmquist-type indices, as the most common representative

of the econometric/parametric approaches.

DEA-based Malmquist indices and COLS- and SFA-based Malmquist-type indices also

belong to the wider family of frontier-based approaches, since they measure productivity

change relative to the production frontier.

The discussion provided details on the reasoning behind each particular group and

approach and discussed how each approach derives the final productivity estimate and

what this estimate contains. This concluding section summarises some of the more

pertinent points and discusses the relative strengths and weaknesses of each approach,

starting with Growth Accounting.

3.6.1. Growth Accounting

Growth Accounting is currently the most common method for measuring productivity. It is

adopted by most national statistical agencies, such as the US Bureau of Labor Statistics,

Eurostat (which sets policy for all national statistical agencies in the European Union)

and the UK Office of National Statistics, as well as a number of global organisations,

such as the OECD.
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Probably the most important reason for the widespread adoption of GA is its ease of use

and its close correspondence to the National Accounting framework adopted by all

developed and most developing countries world-wide. GA has relatively modest data

requirements; when measuring VA-based productivity growth, the required data include:

– the overall value of the output used in the analysis (economy- or industry-level) and

its aggregate price level,

– the overall cost of intermediate inputs, so that VA-based output can be calculated,

– the overall cost of labour employed, together with its aggregate price level; and

lastly,

– data of sufficient quality to calculate a quantity index of capital services employed

(admittedly, collating the necessary information to generate a relevant and accurate

capitals services measure is quite challenging, as discussed in chapter 2).

Information on the price of capital services is usually not required, as GA normally

relies on the neoclassical assumptions that allow for the residual calculation of the

share of capital services.

When the analysis requires a measure of GO-based productivity growth, the required

data include the above, plus information on the aggregate price level of the intermediate

inputs employed in the production process.

It should be mentioned that collating the above information in not an easy task in itself.

However, the various National Statistical Agencies already gather and aggregate the

majority of the data needed for the generation of the required input and output price and

quantity measures for the purposes of generating National Accounts. As such, one of the

most significant hurdles when undertaking any quantitative analysis, namely data

availability, is not a major issue when measuring productivity growth using Growth

Accounting. Note though that this same information can also be utilised by the frontier-

based approaches for the purposes of measuring productivity change; in fact, they have

lower data requirements relative to GA, since they do not require information on prices.

Probably the major advantage of GA, and its main strength relative to the

aforementioned frontier-based approaches is that GA does not require information on a

comparator set in order to assess the productivity change of the assessed unit. As
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discussed in the previous sections, the frontier-based approaches discussed here all

require information on a number of comparable units to derive a representation of the

technology that would inform the estimation of the production frontier. Comparable units

is defined here as production units that utilise similar inputs to produce similar outputs. In

the context of aggregate productivity growth, GA would require data on inputs, outputs

and their respective price for just a single economy, while the frontier-based approaches

would require data for a number of economies, in order to estimate economy-wide

productivity growth. So, although GA does require information on prices, while frontier-

based approaches do not, GA can still be considered as having lower data requirements

relative to these approaches, since it can be used to measure aggregate productivity

change without requiring information on other economies.

The main issue with GA however is with how aggregate productivity change is

measured. As discussed in section 3.2.1, in order to parameterise the aggregate

production function, the analysis needs to adopt the so-called neoclassical assumptions,

which dictate some important characteristics of the production process and the input

markets. Some of these assumptions are by their very nature quite restrictive; especially

those that state that the production function can only display constant returns to scale,

that there is perfect information both on the side of the producers and on the side of the

input markets and that producers and input markets have perfect foresight. Taken

together, the neoclassical assumptions limit GA to modelling production processes that:

– are fully deterministic,

– can only exhibit constant returns to scale,

– assume that all information is measured with perfect accuracy, and

– assume that all production is efficient.

Given the above, one could argue that the neoclassical assumptions do not necessarily

provide a fair representation of most production processes. Numerous studies in the

micro setting have demonstrated that there are production processes that display

variable returns to scale and that production is not always efficient. Intuition suggests

that production is also not necessarily deterministic, due to the existence of unforeseen

factors that lie outside of the strict input-output production framework and that can affect

the results of the production process.
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Even more to the point, the data provided by the National Accounts cannot be

considered as perfect representations of reality. There are numerous categories of data

that require a number of estimations or imputations from the national statistical agencies,

simply because there are not sufficient primary data or collating primary data is

impossible (Balk (2008) provides as an example the labour input that is due to self-

employed workers).

In addition to the difficulties surrounding the creation of National Accounts, which can

lead to imperfect measures of quantities and prices in general, there is also the well-

documented issue of measuring the price of capital services, which was discussed in

some detail in section 2.2.2. In summary, one of the defining factors used in the

calculation of the price of capital services, namely the user cost of capital, is

unobservable. GA sets the overall price of capital in such a way so that the total cost of

capital plus the total cost of all other inputs equals exactly the final revenue (ie the

product of output times its price). In other words, GA implicitly assumes that the profit of

all productive activities is, on aggregate level, equal to zero. Balk (2008) states that:

‘This procedure is usually rationalized by the assumption of perfect foresight, which
in this case means that the ex-post calculated capital input prices can be assumed
as ex-ante given to the production unit, so that they can be considered as
exogenous data for the unit’s profit maximization problem.’

In other words, the price of capital services, ie capital input, which is required in order to

calculate a robust measure of the elasticity of output with respect to capital services, is

not directly available to the analysis.

Due to the above limitations, GA does not necessarily produce a measure that provides

a clear representation of changes in productive capability. This is something that

practitioners of GA are well aware of; Timmer et al. (2007), when describing the

methodology adopted for the estimation of productivity change in the KLEMS Growth

and Productivity Accounts project, state in a footnote:

‘Under strict neo-classical assumptions, MFP [multifactor productivity] growth
measures disembodied technological change. In practice, MFP is derived as a
residual and includes a host of effects such as improvements in allocative and
technical efficiency, changes in returns to scale and mark-ups as well as
technological change proper. All these effects can be broadly summarized as
“improvements in efficiency”, as they improve the productivity with which inputs are
being used in the production process. In addition, being a residual measure MFP
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growth also includes measurement errors and the effects from unmeasured output
and inputs.’

A further disadvantage of GA is that the estimated productivity change cannot be

decomposed. Since the approach assumes that there is no inefficiency and that

production displays only constant returns to scale, all productivity change is assumed to

be due to technological change.

There are possible modifications that can be made to GA to remove the need for the

adoption of the so-called neoclassical assumptions. Balk (2008), suggests the use of an

exogenous user cost of capital, set based on a benchmark value such as the official

Central Bank interest rate. Under this treatment, profits are not set to zero by the

measurement approach and as such changes in profitability can be treated as the

natural measure of productivity change. While such modifications are promising, they

have not been, as of yet, widely adopted in practice and are not further considered here.

3.6.2. DEA-based Malmquist indices

This is a frontier-based approach that measures productivity change through the use of

distance functions. The distance functions are estimated through the use of standard,

non-parametric DEA models. DEA itself is one of the most common approaches in the

measurement of efficiency and productivity change; Emrouznejad, Parker and Tavares

(2008) list more than 4,000 published examples of DEA appearing in the academic

literature. DEA-based Malmquist indices have also been used in the past for the

measurement of aggregate productivity growth; in fact, one of the earliest applications of

the approach has been on the measurement and decomposition of aggregate

productivity change for 17 OECD countries over the period of 1979 to 1988, using data

from the Penn World Tables (one of the largest databases on National Accounts

information sourced from a large number of counties worldwide).

The use of DEA-based Malmquist indices offers a number of advantages to the analysis

of productivity change:

– Minimal assumptions: In order to specify the frontier, the analysis needs to impose

minimal regularity conditions on the description of technology. Probably the most

restrictive assumption is the requirement that the underlying technology is convex.

Normally, this used to ensure that the technology conforms to the law of diminishing
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returns and to simulate ‘rational’ producer behaviour. It can be violated when

producers cannot freely choose their scale of production and when there are

significant economies of scope. However, for most productive activities that take

place in competitive or semi-competitive markets, the convexity assumption is

justified.

– Frontier-based: The approach allows for production to take place below the frontier

and as such does not automatically assume that all producers are efficient. This

allows for the simulation of diverse behaviour and is one of the main advantages of

all frontier-based approaches relative to GA.

– Can easily accommodate variable returns to scale: The frontier can be

constructed in such a manner that it displays the full range of returns to scale (ie

constant, increasing and decreasing). Furthermore, each unit will display its own,

individual, returns to scale characteristics, depending on where it is projected on the

frontier.

– Decomposition of productivity change: Since the approach allows for inefficient

behaviour and for unit-specific and time-variable returns to scale, productivity

change can be decomposed to (at least) three main elements. Efficiency change,

which measures whether the assessed unit became more or less efficient between

the periods of the assessment, technological change, which measures the

movement of the frontier and scale efficiency change, which measures whether the

assessed unit moved towards or away from its most productive scale size.

– Information on prices is not required: The construction of the frontier requires

only information on input and output quantities. As such, there are no issues with

the measurement of the price of capital (especially the estimation of the user cost of

capital), as is the case with GA.

– No requirement for the a-priori specification of the functional form of the
production function: The frontier is constructed as a convex (concave) or conical

hull that envelops all data points. As such, the approach does not need to select a

functional form that determines the general shape of the production function or

production frontier prior to estimation. As a reminder, both GA and the econometric

approaches discussed here require this assumption.
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– Technological change is not restricted to be Hicks-neutral: Due to the flexibility

of the non-parametric frontier, the resulting estimate of technological change is not

restricted to be Hicks-neutral, ie a parallel shift of the frontier, and common to all

assessed units. In other words, as is the case with the returns to scale properties,

the technological change component is both unit- and time-variant. This is not the

case with GA and with the econometric approaches that assume a Cobb-Douglas

functional form for the production frontier.

In summary, the adoption of DEA-based Malmquist indices requires minimal

assumptions with regards to the underlying technology and producer behaviour, while at

the same times provides a rich decomposition of the resulting productivity change

estimate. Nevertheless, the approach also has some weaknesses, namely:

– Requires information on comparators: In order to construct the frontier, all of the

relevant approaches discussed in this chapter require data on comparable units.

For aggregate productivity change measurement, comparable units would be either

other economies or industries with the same classification operating on other

economies, depending on the level of aggregation adopted by the analysis. This

can be a significant limitation, since if this data is not available, frontier-based

approaches simply cannot be applied. Fortunately, there are a number of databases

that collate National Accounts information from a large number of

economies/countries, with the main purpose of facilitating international

comparisons46. The wider adoption of global National Accounts Standards

(discussed in chapter 2) also helps ensure that the available data are largely

consistent, both across time and across different economies. Nevertheless,

absolute consistency may not always be entirely possible. In addition, the

requirement of international comparators necessities the use of deflators that can

convert value-based indices denominated into national currencies into indices

expressed at a common currency. As mentioned in chapter 2, this is achieved by

the use of PPP-adjusted exchange rates; however, as is the case with the

underlying National Accounts data, these adjustments cannot be considered

faultless. Any errors in imputation or omissions in the calculation of the PPPs, which

46 See for example the World Penn Tables, the OECD Productivity database and the EU KLEMS project.
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are themselves based on information sourced from the National Accounts, can have

detrimental effects on the accuracy of the final productivity change estimates.

– Deterministic in nature: The formulation of the technology frontier and the

measurement of the distance functions necessary for the calculation on the

Malmquist index are all deterministic in nature. In other words, the approach

implicitly assumes that there are no factors external to the adopted specification of

the technology frontier that influence the performance of the assessed units.

Additionally, the approach implicitly assumes that the data used to construct the

frontier and produce estimates of performance (efficiency and productivity change)

are measured without error. Both of these assumptions are unlikely to hold in

practice; the issue here is whether the violation of these assumptions is likely to

have a significant detrimental effect in the accuracy of the final productivity change

estimates. This will be examined in the next chapter. More recently, there have

been a number of approaches appearing in the literature that attempt to take into

account the stochastic nature of the production function within the non-parametric or

semi-parametric framework.47 These approaches appear promising but have not as

yet gained sufficient traction in the academic community in order to be widely

adopted in practical settings.

– Decomposition issues: As mentioned in section 3.4, there are a number of

possible decompositions of the DEA-based Malmquist index when the analysis

wants to also assess the impact of scale efficiency change. The ‘traditional’

Malmquist index (the formulation suggested by Färe et al. (1994), presented in

equation 3.4.7) was criticised as inconsistent because it measured efficiency

change relative to the VRS frontier but technological change relative to the CRS

frontier. The alternative formulation presented by Ray and Desli (1997) (presented

in equation 3.4.9), provides a more consistent treatment but may result in cases

where productivity change measurement may not be possible for some units, due to

issues having to do with the calculation of the required cross-efficiencies.

– ‘Traditional’ Malmquist indices are likely to be more volatile in unbalanced
panels: The exit of a unit that was defining the frontier prior to the exit can cause

47 Some examples: Stochastic DEA as a chance constrained DEA model (Olesen and Petersen (1995), MLE-based
stochastic DEA (Kumbhakar, et al. (2007)), and StoNED (Kuosmanen and Kortelainen (2012)).



109

significant volatility in the productivity changes estimates of all other units at the

time of exit. Similarly, the entry of a unit that is more efficient than any other thus far

can result in a similar effect.

– ‘Traditional’ Malmquist indices are not circular: In general, circularity is a

desirable property of index numbers; however, Färe et al. (2008) suggested that it is

not necessarily an important property of productivity indices, due to the fact that

productivity change can be perceived as inherently path-dependant.

Some of the weakness of the ‘traditional’ Malmquist index detailed above can be

remedied if the analysis adopts an alternative formulation, such as the ‘circular’

Malmquist index (Portela and Thanassoulis (2010)), which measures productivity

change with reference to the meta-frontier. In more detail:

– The circular Malmquist index provides an easy and practical way of measuring

scale efficiency change, with no possibility of undefined efficiency scores. Since the

circular Malmquist index assesses productivity relative to the meta-frontier, which by

definition offers full envelopment of all available data points, there is no possibility

for infeasible solutions.

– The circular Malmquist index is immune to sudden changes in the shape of the

frontier that can be caused by a unit entering or exiting the dataset. As such, it

allows the use of unbalanced panel datasets, without the need to discard any

observations.

– Lastly, the circular Malmquist index satisfies the circularity condition for both the

headline index and its decompositions.

Nevertheless, the main weaknesses of the approach, namely that the technology is

assumed to be deterministic in nature and that the approach relies on the availability of

data on comparable units, remain, regardless of the index formulation adopted for the

analysis.

3.6.3. COLS- and SFA-based Malmquist-type indices

These approaches belong to the more general family of econometric (or parametric)

approaches for performance measurement, be it either efficiency or productivity change.
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They are both frontier-based approaches and as such have a lot of similarities with the

DEA-based Malmquist indices discussed above. In summary, both approaches have the

following strengths, irrespective of their actual specification:

– They are frontier-based and as such do not require the assumption that all

production is efficient.

– They can decompose productivity change; the actual decomposition will depend on

the adopted functional form of the production frontier. If a Cobb-Douglas functional

form is adopted, productivity change can be decomposed into efficiency and

technological change. If a flexible functional form, such as the translog, is used then

scale efficiency change can also be assessed.

– They do not require information on prices. As is the case with DEA-based

Malmquist indices, the frontier can be derived using solely information on input and

output quantities.

When a flexible functional form is adopted for the estimation of the production frontier,

the analysis also shares the following strengths with DEA-based Malmquist indices:

– The production frontier can display the full range of returns to scale; the analysis will

result in returns to scale estimates that can be both unit- and time-variable.

– The estimate of technological change is not restricted to be Hicks-neutral. As

above, the analysis will result in technological change estimates that can be both

unit- and time-variable.

Overall, econometric approaches are seen as having two main advantages over the

non-parametric distance functions:

– firstly, they can utilise a barrage of easy-to-implement statistical tests for inference,

drawn from the long and varied history of econometric analysis; and,

– secondly and more importantly, they can model a production process that is

stochastic in nature.

With regards to the first issue, relatively recent advances in the area of DEA and non-

parametric distance functions have revealed that statistical inference in these models is
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justified based on the statistical properties of the non-parametric distance functions..

This area of research started with the work of Banker (1993) and has been build on and

expanded by a number of academics since then; for a more comprehensive review, see

Simar and Wilson (2008). Note however that there is, as of yet, no broad agreement on

how to assess these properties and what type of statistical tests would be appropriate.

As such, the advantage that the econometric approaches have with regards to statistical

inference is still relevant.

The second advantage, that econometric approaches can treat production as a

stochastic process, applies to only the second of the approaches discussed in this

chapter, namely SFA, but is arguably much more important. GA and DEA-based

Malmquist indices, but also COLS – a parametric approach – assume that all deviations

from the frontier are the result of the decisions made by the assessment unit. As

mentioned in the section above, this could be a quite restrictive assumption, especially in

the macro setting. SFA is the only approach examined in this thesis that explicitly takes

into account the stochastic nature of the production process, by attempting the

decomposition of the residual of the parametric formulation of the production process

into noise (the stochastic element) and inefficiency.

However, the ability to disentangle noise from inefficiency and the ease-of-use when it

comes to statistical inference comes at a cost.

– Non-parametric distance functions and DEA in particular construct the frontier using

a minimal set of assumptions and the observed input/output correspondences of the

units under assessment. Econometric approaches require the same assumptions as

DEA, but in addition to those, also require the specification of the functional form of

the frontier. In this, econometric approaches are similar to the index number

approaches; in order to derive a productivity change estimate, the analysis must

pre-specify the general form of the transformation function.

– In addition to the above, SFA requires some additional assumptions regarding the

distribution of the inefficiency component in order to attempt the decomposition of

the classical error term into noise and inefficiency. Fortunately, the ultimate choice

of a distribution does not appear to be overly significant; a number of studies

demonstrate that the choice of a specific distribution over another has very little
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impact on the rank correlations of the different efficiency measures (see for example

Kumbhakar and Lovell (2000) and Greene (2008)).

– The decomposition of the parametric residual into noise and inefficiency even with

these assumptions is not an easy task for the estimation approach. Various

simulation studies48 have demonstrated that the accuracy of the SFA estimates,

particularly that of technical efficiency, suffers when the sample available for

analysis is small (ie n<100). In such cases, the determinist approaches outperform

SFA in terms of the accuracy of the resulting efficiency estimates, even when the

production process is assumed to be stochastic.

– Lastly, even with the imposition of these additional assumptions, the estimates of

technical inefficiency and, by extension, the estimates of efficiency change are

statistically inconsistent when the analysis is based on a pooled dataset. This issue

can be corrected if the analysis utilised the panel structure of the dataset and

assumes that efficiency is constant over the period of the assessment. This last

assumption is problematic, since most studies of aggregate productivity growth

utilise fairly long panels, often spanning more than a couple of decades. The

assumption that technical efficiency stays constant over long periods of time is fairly

unrealistic.

3.6.4. Concluding remarks

The above discussion reveals that each approach has its relative strengths and

weaknesses. GA has been traditionally the preferred approach mainly due to its ease-of-

use, since the necessary data are readily available through the system of National

Accounts and there is no requirement for information on comparable units, ie from other

economies. However, the assumptions needed for its implementation are quite

restrictive, one could argue to the point of being unrealistic.

Due to the wider adoption of global National Accounts Standards but also due to

increasing interest in international comparisons of macroeconomic indicators, there are

currently at least three high quality databases that aggregate and also standardise

National Accounts information from a large number of economies worldwide. The pan-

48 See for example Ruggiero (1999); for a more thorough review, see chapter 4 and appendix 1.
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European database, EU KLEMS, is of particular relevance, given that it was designed

with the explicit aim of measuring and comparing aggregate productivity growth. The

availability of data on international scale means that other approaches that require

comparable data sourced from more than a single economy can now also be more

widely employed. Frontier-based approaches have been widely utilised in past, but

mainly in the micro setting and in applications where data on comparable units are

available. Since data availability in no longer a major issue, there is no reason why they

cannot also be employed for the measurement of aggregate productivity change.

In fact, the adoption of such approaches can offer significant advantages to the analysis,

given that frontier-based approaches uniformly require fewer, and arguably less

restrictive, assumptions.

In particular, DEA-based Malmquist indices can both estimate and decompose

aggregate productivity growth using minimal regulatory assumption for the nature of the

technology and its frontier. They can accommodate production processes that display

variable returns to scale, non Hicks-neutral technological change and require no

information on input prices, which can be a significant advantage given the difficulties in

the construction of a price index for capital inputs. Even more crucially, they do not

automatically assume that all producers are efficient and can therefore model a wider

range of productive activities.

The major drawback of DEA-based Malmquist indices is that they are deterministic in

nature. There is however another common frontier-based approach, namely SFA, that

can model aggregate production as a stochastic process. SFA-based Malmquist-type

indices share many of the strengths of the DEA-based Malmquist indices; variable

returns to scale, non Hicks-neutral technological change and inefficient production can

all be modelled, without the need for information on input prices. However, they are also

more restrictive, since they need to pre-specify a functional form of the production

frontier and the distribution function for the inefficiency component. Furthermore, they

require large sample sizes and also suffer from the fact that the final estimates of

efficiency are statistically inconsistent.

According to the above, it appears that frontier-based approaches are likely to produce

richer, more accurate estimates of productivity than GA, mainly due to the fact that they

rely on fewer assumptions and can thus model a wider range of production processes.
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However, it is impossible to actually assess or quantify these differences without

undertaking some form of controlled experiment. The process of constructing and

undertaking such an experiment is the subject of the next chapter of this thesis.
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Chapter 4. Measuring productivity change
using GA and frontier-based approaches –
Evidence from a Monte Carlo analysis

4.1. Introduction

The previous chapter detailed a number of approaches that can be used in the

measurement of productivity change; each has its strengths and weaknesses and it is

sometimes difficult for the analyst to choose between them, based solely on their

theoretical properties. Despite the availability of numerous alternatives, Growth

Accounting (GA) has been, and still remains, the method of choice when measuring

aggregate (ie country- or sector-wide) productivity growth for most interested agents,

namely statistical agencies (national and international), central banks and government

bodies (see for example the US Bureau of Labor Statistics technical note on multifactor

productivity49, the UK Office for National Statistics Productivity handbook (2007), and the

EC-sponsored EU KLEMS project50). A major factor in the widespread adoption of GA is

the fact that estimates can be (relatively) easily produced using country- or sector-

specific National Accounts data, without recourse to information from outside the country

or the sector examined; on the other hand, GA requires the adoption of a number of

simplistic (potentially unrealistic) assumptions, most notably those relying on the

existence of perfect competition, which could lead to unreliable estimates.

The aim of this chapter is to provide quantitative evidence through the use of Monte

Carlo simulation experiments on the performance of both GA and the various frontier-

based approaches under a number of conditions for the estimation of productivity

change. The first goal is to assess the relative accuracy of the GA produced estimates

when some of the standard neoclassical assumptions are violated. The second goal is to

49 http://www.bls.gov/mfp/mprtech.pdf, accessed 14 January 2011
50 See O'Mahony and Timmer (2009).
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compare the performance of the different frontier-based approaches discussed in the

previous chapter under a number of conditions51.

Simulation studies, also called Monte Carlo experiments have been used many times in

the past in the Efficiency and Productivity literature, although the main focus of such

experiments has been on examining the accuracy of the efficiency estimates. One of the

main reasons such simulation analyses have been so prominent in the field is that both

efficiency and productivity are not quantities that can be directly observed in real world

applications and as such, they can never be directly measured. This is a significant issue

in a field where there are a number of competing approaches for measuring these

residual values, each with its own theoretical strengths and weaknesses. This is further

compounded by the fact that both efficiency and productivity change estimates produced

by these approaches can sometimes be quite dissimilar. If this is the case, the applied

researcher is faced with the difficult choice of selecting which set of estimates to

recommend as more accurate. This selection process could be informed by the

theoretical properties of the estimation techniques, and sometimes, in situations where

the assumptions made by a single estimation technique clearly match the real-world

data, this is sufficient. However, the situations where the applied researcher does not

have a clear picture of the characteristics of the industry under examination or the

sample of units under assessment are probably more common in practice52. Also, while

theory might suggest that some approaches would be more appropriate under some

conditions, it may well be the case that adopting these approaches might introduce

additional complexity in the analysis, which in turn could introduce bias, without

officering any significant advantages in accuracy.

Due to these considerations, simulation experiments that test the robustness of various

approaches under different conditions can provide valuable quantitative evidence that

can be used to facilitate the selection process. The goal of such experiments is to

provide a tool that helps the researcher study and understand a system better.

At the centre of all such experiments lies the data generating process (DGP), ie the

methodology for generating the parameters of interest. Since these parameters are

generated from a known process, their values are known (or can be calculated) a priori.

51 As mentioned in the introduction, an extract of this chapter has been published in the European Journal of Operational
Research (see Giraleas et al. (2012))
52 This is in most cases due to lack of data or issues regarding the accuracy of the data available.
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This is what makes simulation experiments so attractive in the Efficiency and

Productivity field; they allow for the measurement of the overall accuracy of the

estimates produced by each approach in an objective, quantifiable way, under a wide

range of conditions.

This chapter is devoted to carrying out a number of simulation experiments to assess the

accuracy of a number of approaches for measuring productivity change. The chapter is

structured as follows:

– Section 4.2 is an overview of similar simulation studies that have been undertaken

in the filed.

– Section 4.3 presents the methodology for the simulation experiments undertaken for

this research, including the data generation processes used and the productivity

change measurement approaches considered.

– Section 4.4 presents and discusses the results of the simulation experiments

– Section 4.5 summarises the analysis undertaken for this chapter and its findings of

this research, compares them with the findings of the studies examined in the

literature review and concludes.

4.2. A brief overview of simulation studies in efficiency
and productivity analysis

There have been a number of studies that employ simulations to test the accuracy and

robustness of various performance measurement approaches. The majority focus on the

accuracy of the estimated efficiency measures and take place in the cross-sectional

setting. Only a few studies utilise panel data and from those only one focuses on the

accuracy of productivity growth estimates (Van Biesebroeck 2007)53. Nevertheless, even

though the aim of this chapter is to assess the accuracy of productivity change

estimates, it is useful to examine the findings of the studies that focus on efficiency

estimates in more detail, since changes in efficiency can have a significant effect in

53 However, this study adopts non-standard definitions of productivity change and makes some strong assumptions about
the nature of the technology that ultimately makes its findings of little use for the current research. This is further
elaborated on in the relevant subsection of this chapter.
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productivity change54. This section presents only a brief overview of their findings; for a

more detailed literature review, refer to appendix 1.

The literature review revealed a number of interesting points:

– DEA on the whole produces more accurate estimates of efficiency relative to COLS

when the sample size is small, but COLS accuracy improves in larger samples.

Additionally, when a significant element of noise is included in the data generating

process (similar to that used in the analysis undertaken in this chapter), neither

approach produces accurate efficiency estimates. See Banker et al. (1987), Banker

et al. (1993) and Thanassoulis (1993).

– DEA and COLS efficiency estimates are more highly correlated with true efficiency

values (based on rank correlations) than SFA when sample size is limited, even

when noise is present in the dataset. SFA approaches and eventually surpasses the

correlation scores of the deterministic approaches at larger sample sizes (greater

than 100 observations), although this finding appears to depend on the levels of

noise included in the DGP55. SFA performance also improves when the data display

larger ratios of overall inefficiency (technical and allocative) to noise. See Ruggiero

(1999), Resti (2000) and Banker et al. (2004).

– Misspecification of SFA in the form of making a wrong assumption on the

distribution of the inefficiency component has only a marginal impact on the rank

correlations of the efficiency estimates with their true values. See Ruggiero (1999)

and Ruggiero (2007).

The only study that specifically stated that its goal was to examine the robustness of

‘productivity’ estimates derived from a number of techniques, namely the Van

Biesebroeck (2007) study, is, unfortunately of limited usefulness, due to a number of

incompatibilities in definitions and experiment design. In more detail:

54 This the case for all frontier-based approaches, since efficiency change is a major component of productivity change,
but also for GA and other index number approaches, since the resulting productivity change estimate will incorporate any
effects that are due to changes in efficiency. See chapter 3 for more details.
55 Banker et al. (2004) concluded that DEA is the most accurate approach regardless of sample size, but the DGP
included only modest levels of noise (standard deviation of 0.05) and the highest sample size examined included just 100
observations.
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– The study assumes that all firms are technically efficient; in fact, the concept of

inefficiency, which is central in the present research, plays only a very small part in

this study. An element of firm heterogeneity that could be attributed to allocative

inefficiency is introduced in some experiments, but due to way this enters the DGP,

its effects are unclear.

– The study utilises what could be considered as non-standard and incomplete

definitions of productivity change, at least when it comes to frontier approaches. For

DEA, what the study labels as productivity change is actually only one component

of the Malmquist index of productivity, namely efficiency change. For the parametric

approaches, the ‘productivity’ term includes both the effects of the estimated

heterogeneity component (which can be viewed as allocative inefficiency) and the

error term; also, the estimated production function does not include a time trend and

thus the rate of technological change is not measured.

– The ‘productivity’ term included in the data generation process is either fixed or

follows an autoregressive (AR(1)) process. Furthermore, since the study assumes

that all firms are technically efficient, this productivity term represents an inherent

characteristic of each individual firm that is known by that firm before production

begins in each time period (but is not observable by the researcher) and as such is

accounted for in the optimisation decision at the start of each production period (this

is significant, since this feature gives an advantage to the index numbers

approaches considered in this study). As such, this productivity term could also be

interpreted as a firm-specific effect that changes over time, but is always known to

the firm in question before production takes place in each time period.

Due to the above, the findings of the Van Biesebroeck (2007) study are of limited

usefulness as a cross-check to the analysis undertaken in this chapter and as such, they

are not reported here.

Summing up, none of these articles demonstrates that any one efficiency measurement

approach has an absolute advantage over another. Nevertheless, the findings of such

simulation studies can prove very useful to the applied researcher, in that they can

identify a range of specific situations where some estimation technique proves superior

(for example when measurement error is expected to be low or high, or depending on

the number of units in the sample).
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4.3. Methodology of the current research

This section presents the methodology adopted for generating the data for the

simulations, the assumptions about the scale of the parameters of interest and the

models used for the estimation of productivity change.

4.3.1. Data generating process

There are a number of elements pertaining to the construction of the data generating

process (DGP). These include issues such as:

– How should inputs be generated?

– How to link inputs to outputs, ie what form should the production function adopt?

– Should the analysis take into account prices (both input and output) and how does

this affect the assessment framework?

– How to generate efficiency values and in what manner should efficiency impact the

DGP?

– How to generate a noise parameter to capture the stochastic element of production

and how should this element enter the DGP?

– How to generate values that represent technological change and how should this

element impact the DGP?

– How many repetitions of the simulations would be required to derive robust results?

– How large should the sample size drawn for this DGP be?

Given that the aim of this research is to compare the various productivity measurement

approaches when technical inefficiency is present in the sample, the simulation study

focuses on the production side of the economic process, ie the transformation of

physical inputs into physical outputs. As such, information on inputs and output(s) is

sufficient for the estimation of productivity change under the frontier-based approaches.

However, GA requires information on prices for both inputs and output(s) in order to

parameterise the production function56 (see chapter 3), so price information that is

consistent with the quantities of inputs used and outputs produced by each assessed

unit would also need to be generated.

56 The input factor elasticities under GA are calculated as the share of each input to total costs; to calculate this share, it
is necessary to be able to calculate the cost of each input, which is equal to its price times quantity.
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Since the simulations will focus on the measurement of productivity change in the

production setting, one of the first and most important decisions that needs to be made

is how should this production process be represented mathematically, ie what functional

form to adopt. The measurement approaches that will be examined are both parametric

and non-parametric, and as such the choice of the functional form can have a significant

impact on the accuracy of the results, as is apparent from the literature review. In order

to provide a level playing field for the comparisons, the analysis will examine the

accuracy of each approach under two functional forms: a Cobb-Douglas production

function and a piecewise-linear production function. In addition, since DEA is the only

approach that can easily accommodate multiple inputs and multiple outputs57, the

production framework will focus on the case of a single output produced using two

inputs. This case is also the norm when measuring aggregate productivity change, as

chapter 2 demonstrated, with value added as the output and labour and capital as the

inputs.

The Cobb-Douglas production function employed here is:

)exp( ititititit utKLY   Eq 4.3.1

,where itY is the output of unit i in time t, itL is the labour input of unit i in time t, itK is the

capital input of unit i in time t, it is the noise component and itu is the technical

efficiency of unit i in time t. An element of technological change is also included in the

form of the time trend t. Output elasticities are given by the parameters α and β for

labour and capital, while γ reflects technological change. The values for the elasticity

parameters are α=β=0.5 and γ=0.0198 (which, as noted below, corresponds to 2% p.a.

increase in output due to technological change). The noise component (also referred to

as measurement error) is normally distributed with zero mean and variance that changes

according to aims of each simulation experiment (some simulation experiments assume

no noise, while other assume varying degrees of noise, to better assess the impact of

this parameter in the accuracy of the productivity estimates.)

57 The parametric frontier approaches can also in theory accommodate multiple outputs, but this requires the estimation
of a distance function with a composite error term, which presents a whole new set of complications, both computational
(since a system of equations is usually required) and theoretical (how to deal with endogeneity concerns and how to
select whether to use an input distance or an output distance function). For a brief review, see (Greene 2008)
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The second set of experiments are based on a DGP that adopts a piecewise linear

production function. Generating a piecewise linear production function is not as easy as

generating a Cobb-Douglas production function. In the latter case, the functional form

itself ensures that the resulting production function has the desirable properties set out

by the production theory, namely convexity (as in all input/output correspondences

belong to a convex set) and monotonicity (these properties are discussed in more detail

in chapter 3). In a piecewise linear function, these properties are not guaranteed;

therefore, when designing a piecewise linear production function, the research needs to

work within certain confines that would result in a monotonic, convex technology. To do

so, one needs to ensure that the marginal product - given by the ‘slope’ of each facet (or

‘piece’) - is non-increasing and that output is non-decreasing on inputs. This is trivial to

do in a single-output/single-input case, but it becomes more complicated when additional

inputs are introduced since there is no easily identified ‘slope’ for each facet. Adding

more inputs also increases the complexity in that the breakpoints in the function that

separate the facets need to be selected in such a manner as to ensure that the function

is monotonic in its entirety.

For this research, an original process was developed that allows the generation of semi-

random piecewise linear production functions (single-output/two-inputs) that display CRS

and the desirable properties of monotonicity and convexity. The approach relies on the

use of input ratios to determine the breakpoints and provides a methodology to

consistently generate the parameters of the each facet in such a manner that each facet

displays a progressively decreasing marginal product. The process used is described in

brief in Appendix 2.

The piecewise-linear function used for the simulation experiments is given below:

y*
i = Eq 4.3.2

1.53Li+0.22Ki for Li/Ki>0.3 and Li/Ki<=0.73

1.84Li+0.13Ki for Li/Ki<=0.3

1.04Li+0.59Ki for Li/Ki>0.73 and Li/Ki<=1.03

0.46Li+1.18Ki for Li/Ki>1.03 and Li/Ki<=1.14

0.40Li+1.25Ki for Li/Ki>1.14 and Li/Ki<=2.01

0.19Li+1.67Ki for Li/Ki>2.01 and Li/Ki<=3.22

0.06Li+2.09Ki for Li/Ki>3.22
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It should be noted that equation 4.3.2 represents a production function under constant

returns to scale (this is easy to check, since all linear functions of eq. 4.3.2 pass through

the origin).

The y*
i parameter represents ‘clean’ output, ie before the effects of inefficiency, technical

change and possible measurement error are included. The output value used in the

simulation experiments includes all those elements and is given by:

)exp(*
ittititit vTCTEyy  Eq 4.3.3

,where itTE  represents technical efficiency and is given by

)exp( itit uTE  Eq 4.3.4

, tTC represents technological change and is a function of time (t) and a constant γ and

is given by:

tTCt  Eq 4.3.5

and itv  represents measurement error, which is normally distributed with zero mean and

variance that changes according to aims of each simulation experiment. As with the

Cobb-Douglas specification, γ=0.0198, which corresponds to 2% p.a. increase in output

due to technological change.

Note that the observed output of the piecewise linear function is consistent with the

observed output of the Cobb-Douglas function, in that it includes both elements of

technical inefficiency and technical change and in that these elements affect the ‘clean’

output parameter in exactly the same way.

Since the main focus of this analysis is assessing the accuracy of productivity change

estimates, the generated data forms a panel dataset. More specifically, all simulation

experiments assess the productivity performance of 20 units, observed over a period of

five years (ie the total number of observations is 100).
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Inputs in the first period are randomly generated following U[0,1]; in subsequent periods,

they are scaled by a random, normally-distributed number (the default assumption is that

this scaling factor follows N(0,0.10), but some experiments also examine cases where

the standard deviation is set to 0.25). The reason for the use of the scaling factor in

generating later period data is that one of the goals of the analysis is to assess the

impact of input volatility to the productivity change estimates. This is discussed in more

detail in later sections.

Efficiency is also randomly generated and follows the exponential distribution; the

variance of the efficiency component differs for some experiments, to assess how

different levels of prevailing inefficiency affect the productivity change estimates, but

generally efficiency follows Exp(1/7), which results in an average inefficiency of

approximately 12%. Some simulation experiments also assume that a proportion of the

assessed units are fully efficient. This is achieved by generating a set of random

numbers following U[0,1], one for each observation in the dataset; if the value of the

random number is higher than 0.9, then the efficiency score for that observation is set to

100%. So, for the simulation experiments with fully efficient units, approximately 10% of

the observations are fully efficient and the average inefficiency in the sample is

approximately 10.8%.

The definition of productivity change used for this analysis relies on the notion of what

has come to be known as the Malmquist productivity index. As mentioned in chapter 3,

this is probably the most widespread definition of productivity change in the literature

and has been used extensively in both the parametric and the non-parametric setting.

Furthermore, as discussed in chapter 3, the productivity index produced by GA can be

considered as a special case of the Malmquist productivity index.

Under this definition, productivity change is the sum of efficiency change itEC , scale

efficiency change itSE  and technological change itTC :

dtTCddtSEddtECddtTFPd ititit
true

it /ln/ln/ln/ln  Eq 4.3.6

All of the simulation experiments undertaken for this chapter are based on production

function that display constant returns to scale; as such scale efficiency change always
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takes zero values and can thus be ignored. Therefore, productivity change in the DGP is

calculated by58:




 )(

/ln/ln/ln

1 itit

itit
true

it

uu

dtTCddtECddtTFPd
Eq

4.3.7

So, given that the efficiency scores in two consecutive periods and the parameter of

technical change are known in the generated dataset, the calculation of true productivity

change (in the context of the generated dataset) is trivial using equation 4.3.7.

Price data

As was mentioned above, the simulated quantities of inputs and the derived output are

sufficient to estimate production-based productivity change under both parametric and

non-parametric frontier approaches. However, GA requires information on both input and

output prices, in order to create the input shares that serve as the output elasticity

parameters of the GA production function. So, in order to include GA in the set of

approaches under assessment, price data would need to be generated.

Such price information cannot be just generated at random, since prices play an

important role in the optimisation process undertaken by producers. In the basic

microeconomic model describing the production process, both output and factor input

prices are set exogenously and the producer, based on this information, must decide

how much output to produce and what mix of inputs should be employed, given the

available production technology.

In the current analysis, the production technology is represented by the production

function and since the input quantities that are utilised have already been generated, the

related input prices need to be generated in such a way as to correspond to input

demand characteristics compatible with the parameters of the production function.

Therefore, a structural relationship is needed that links the production function and its

parameters to the input demand functions.

58 Note that itu represents technical inefficiency and that
iti TEtu ln , where

itTE represents technical efficiency.  As

such )/ln(/ln 1 ititit TETEdtECd , so technical efficiency change is measured as the ratio of technical efficiency in
period t to technical efficiency in period t-1.
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Fortunately, such structural relationships are readily available in the theory of the

producer’s optimisation problem. First however, some behavioural assumptions are

required in order to make the whole issue tractable. The earliest behavioural assumption

put forward by economic theory was that the goal of each producer was to maximise

profits (profit maximisation). However, the profit maximisation problem requires a wealth

of information, both in terms of price data but also in terms of specifying the demand for

output, in order to be solvable; in addition, the analysis carried out in this chapter mainly

deals with notions of production, and as such profit maximisation is unnecessarily

complex for the purposes of this research. A less demanding assumption with regard to

producer behaviour is the assumption of cost minimisation, which was developed by

Shephard (1953).

The cost minimisation assumption links the production function to the costs of the

production. Under the assumption of constant returns to scale, the production function

allows for various capital-labour combinations all of which lie in the same isoquant (ie

result in the same amount of output being produced). Thus, the producer could, by

simply changing the proportions of input factors, decrease total costs without affecting

total revenue - and thus increase profits. This cost minimisation assumption is crucial, in

that it identifies the aforementioned structural relationships that link input prices to input

quantities.

In more detail, according to the cost minimisation assumption, the goal of each producer

is to minimise costs, subject to a given production function, ie:

),(

..
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



Eq 4.3.8

, assuming that producers utilise two inputs, capital and labour, with prices K
iw  and L

iw

respectively to produce a given level of a single output. To explore the optimal solution

for equation 4.3.9, the Lagrangian form is required, ie:
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, where λ is the Lagrangian multiplier. The first order conditions for a maximum (or

minimum) are given by the partial derivatives of the Lagrangian form, ie:

0
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Combining the first two equations yields:
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Eq 4.3.11

, which provides the sought-after structural relationship that links input prices to

production characteristics. Note that due to the duality theory, the same relationship

applies even if the producer is assumed to be output maximising, ie producing the

maximum amount of output for a given cost level. Also of note is that the above

relationship does not require any assumptions about returns to scale characteristics;

additionally, it is easy to demonstrate that this relationship can accommodate inefficient

production, in the form of technical inefficiency, regardless of whether the inefficiency

term enters the production function in an additive of multiplicative manner. In fact, the

only assumptions required for duality theory to hold is that producers are minimising

costs based on exogenously-determined input prices (ie producers are assumed to be

price takers).

For the simulation experiments that assume a Cobb-Douglas function, equation 4.3.11

becomes:
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where α is the output elasticity of labour, β is the output elasticity of capital, K
itw  and L

itw

are the prices of capital and labour respectively for unit i in time t.

For the simulation experiments that assume a piecewise-linear function, equation 4.3.11

becomes:

j

j

K
i

L
i

a

w

w


 Eq 4.3.13

where αj is the output elasticity of labour for the jth ‘piece’ of the piecewise linear function,

βj is the output elasticity of capital for the jth ‘piece’ of the piecewise linear function

and K
itw  and L

itw  are the prices of capital and labour respectively for unit i in time t.

Note that equation 4.3.11 does not consider the effects of allocative efficiency. Although

it is possible to account for allocative inefficiency within this setting, the simulation

experiments undertaken in this chapter assume that the units are always allocatively

efficient, and as such, technical efficiency is equal to overall efficiency. This is mainly

done to ensure comparability between the GA and frontier-based estimates, since if

allocative inefficiency is present, the GA-based productivity estimates will also include its

effects, while the frontier-based estimates will ignore them. This could make the

interpretation of the productivity measure even more complicated than it already is, given

that, as was mentioned in chapter 3, the GA productivity measure also includes the

effects of technical change, efficiency change and scale efficiency change.

Given the above, input prices are generated using the following approach:

– First, unique prices for labour are generated for each individual unit for the first

period of the analysis as random draws from a uniform distribution (U(0,0.1]).

– These values are then scaled by a random, normally-distributed number to generate

values for the subsequent periods, similar to approach used for the generation of

the input quantities. The default setting is that the scaling factor follows N(0,0.10),

but a second set of experiments also examine the case where the standard

deviation is set to 0.25.
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– Equations 4.3.12 or 4.3.14 are then used to calculate the true price of capital input,

depending on whether the simulation experiments assume a Cobb-Douglas or a

piecewise linear production function. Note that the true price of capital is not

observable by the researcher (as discussed in chapter 2 and 3) and as such, it is

not used directly in the simulation experiments (more detail on this is provided

below).

Output prices also need to be generated in a manner that makes them consistent to the

already generated input prices. To achieve this, a further assumption is required about

the level of profits achievable by the assessed units. Throughout this analysis the

assumption is that ‘excess’ profits are zero for an efficient company, which implies that

‘excess’ profits are negative for inefficient companies. In general, the zero profit

assumption is implicit (and necessary) in the GA setting. Since one of the goals of this

analysis is to examine the accuracy of GA estimates, a zero profit assumption for the

efficient units is necessary in order to ensure that no additional sources of potential bias

are introduced in the GA estimates (other than the ones we introduce in each simulation

runs by relaxing the perfect competition assumptions). In addition, the zero profit

assumption is not unrealistic, considering that ‘normal’ profits can be assumed to be

achieved through an appropriate rate of return on capital, which is assumed to be

already included in the price of capital (see OECD Manual (2001)).

The zero profit assumption allows the analysis to derive a consistent price of output,

since costs are equal to efficient revenue for all units:

it
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ititit LwKwYp * Eq 4.3.14
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
 Eq 4.3.15

Where itp  is the price of output of unit i in period t and *
itY is the efficient level of output

of unit i in period t.

Information on inputs, output and their respective prices is sufficient to produce

productivity change estimates under GA. However, the methodology so far has relied on

the standard neoclassical assumptions (detailed in chapter 3), which do not allow for

production to display any type of inefficiency (be it technical or allocative). If technical



130

inefficiency were to be introduced, a unit that is technically inefficient would fail to

produce the maximum possible amount of output and as such its revenues will not be

able to cover all its costs. These units represent a challenge to the GA framework, since

the input shares for those units will not add up to one. A possible way to get around this

issue is to adapt the methodology proposed by Hall (1991) to control for the effects of

increasing returns to scale and market power to the Solow residual, so that it can apply

to inefficient production. However, this would require additional assumptions about input

price mark-ups and the allocation of profits (or losses) amongst the factors of production.

Such additional information is not present in the national accounts and it is unclear

whether reliable sources which could be used to estimate such parameters of interest

exist, at least in the economy- or industry-wide setting.

It could be argued that, since the data generation process provides the true prices for

labour and capital, the GA weights for the inputs could be calculated based on total

costs rather than total revenue. In fact, this seems to be the default option adopted by

the Van Biesebroeck (2007) study. However, this treatment would be highly unrealistic,

since, as was mentioned in chapter 2, the true price of capital is not observable. Given

these difficulties, the usual practice within the GA framework is to derive the price of

capital residually. This is achieved by setting capital compensation (ie the cost of capital)

to be equal to Value Added (which is equivalent to revenue in the setting of these

simulations) minus the labour compensation (ie the cost of labour). Since the quantity of

capital can be estimated using national account data, the price of capital can be derived

by:

it

it
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itititGAK

it K

LwYp
w


, Eq 4.3.16

It should also be mentioned that if the true price of capital was available, GA could easily

assess the performance of units that were technically inefficient; since total costs are

equal to revenues only for the efficient units, technical efficiency equals the ratio of

revenues to total costs. Note that this is not an estimate, but rather an accounting

identity; as such, if no other factors that could confound the relationship between costs

and revenues are present (such as variable returns to scale and measurement error),

GA could be used to measure productivity change with total accuracy in this setting.
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However, since the true price of capital is unobservable, the above discussion has little

value in the current setting.

Given the above discussion, the analysis undertaken here adopts the more common

treatment of calculating the price of capital endogenously, ie as per equation 4.3.16. It

should be noted that this approach was also adopted by EU KLEMS (2008) in order to

derive their productivity change estimates. The use of this GA-adjusted price of capital

( GAK
itw , ) ensures that input shares add up to one and thus allows the use of GA in such a

way that is consistent with EU KLEMS and the methodology proposed by the OECD.

A final issue that needs to be addressed is that, in a very few cases, the cost of labour

could exceed total revenue, and as such the GA-adjusted price of capital is negative.

Although negative capital prices are not inconsistent with theory (see for example Berndt

and Fuss (1986)), they are incompatible with the standard GA framework, since they

result in negative input shares. To avoid this, the analysis follows the EU KLEMS

practice of setting all instances of negative prices to zero.

4.3.2. Productivity measurement approaches considered

Each simulation experiment examines the performance of the following approaches:

– GA,

– DEA,

– Corrected OLS (COLS) and

– SFA (only when measurement noise is included in the experiment).

All of the above approaches are discussed in some detail in chapter 3. In this section, a

brief description of each approach is provided together with specification of the various

models used in the experiments.

Growth Accounting

Growth Accounting (GA) is the most common index number-based approach for

measuring aggregate productivity change. The simulations in this chapter (and indeed

throughout the thesis) use the following formulae to estimate the GA-based productivity

change measure:
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,where L
iS is the average share of labour in t and t-1, k

iS is the average share of capital

in t and t-1 given by:
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Data Envelopment Analysis and the circular Malmquist index

The approach adopted for this chapter utilises the notion of a circular Malmquist-type

index (thereafter referred to as circular Malmquist), which relies on the notion of the

‘meta-frontier’. The use of the circular Malmquist makes the estimation of DEA-based

productivity change relatively straightforward. Since the meta-frontier is fixed in the

timeframe selected for the analysis, the productivity change of a unit between any two

time periods can be measured using the ratio of the meta-efficiencies of these two

periods:

m
it
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itDEA

ititTFP

 1

1,


  Eq 4.3.20

, where DEA
ititTFP 1,   is the DEA-based productivity change index and m

it is unit’s i meta-

efficiency in time t. As a reminder, m
it is estimated by solving a DEA model that includes

all observations from all the assessed units in all available periods. The index is

converted to estimates of annual change by a simple logarithmic transformation:

)ln( 1,1,
DEA

itit
DEA

itit TFPTFP   Eq 4.3.21

It should be noted that one of the main advantages of estimating a Malmquist (or

Malmquist-type index) using DEA is the ease of decomposition of the index into its
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components. However, since such decomposition is not available by the standard GA

approaches, it is not examined in this chapter.

Corrected OLS

Corrected OLS is a deterministic, parametric approach and one of the numerous ways

that have been suggested to ‘correct’ the inconsistency of the OLS-derived constant

term of the regression, when technical inefficiency is present in the production process.

COLS was selected for these simulations for a number of reasons:

– The model is very easy to specify and, since it is based on a simple OLS

regression, COLS-based estimates can be easily derived, even by non-specialists

using basic software (eg. a basic version of Microsoft Excel with no add-ins is

enough).

– The approach is deterministic, ie does not take into account measurement error.

This is also the case with the DEA-based Malmquist indices and GA and as such,

comparisons of accuracy between these approaches would be interesting,

especially since COLS is a parametric technique.

– Despite its simplicity, the approach provides surprisingly accurate estimates of

efficiency as the literature review revealed, especially when sample sizes are low. It

would be interesting to examine whether this good performance persists when

measuring productivity change.

Two different COLS model specifications are tested in this chapter. Both are based on a

pooled regression model (ie all observations are included in the same model with no

unit-specific effect), which is consistent with the adopted data generating process. The

first model assumes a Cobb-Douglas functional form and is used for those experiments

where the data is generated using the Cobb-Douglas production function. In more detail,

the functional form used is:

)*exp(***
itit

a
itit tKLY  Eq 4.3.22



134

, where it*  are the estimated OLS residuals. The standard logarithmic transformation

converts equation 4.3.22 into59:

itititit tLY *lnlnln ***   Eq 4.3.23

It should be noted that the above specification matches perfectly the data generating

process, when measurement error is not included in the experiments. As such, it is

expected that the COLS-derived estimates will be very accurate at least for those

experiments.

The second COLS model specification assumes a translog functional form and is used,

alongside the Cobb-Douglas models, for those simulation experiments where the data is

generated using the piecewise-linear production function. Under the piecewise-linear

generated datasets, the Cobb-Douglas COLS model will be misspecified, but it would

still be interesting to examine how damaging to the overall accuracy of the estimates this

functional form misspecification proves to be. In addition, adopting a more flexible

functional form, such as the translog functional form, will reveal whether, and/or by how

much, the biases resulting from functional form misspecification can be mitigated.

The translog COLS model is given by:
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Eq 4.3.24

In all cases, inefficiency estimates are derived by:

)max( ***
itititu   Eq 4.3.25

Productivity change is calculated based on the same formula as used for the calculation

of true productivity change, substituting the true parameters with the various parametric

estimates. So, productivity change is given by:

dtTCddtSEddtECddtTFPd COLS
it

COLS
it

COLS
it

COLS
it /ln/ln/ln/ln  Eq 4.3.26

59 It should be noted that Equation 4.3.23 uses the standard practice of not logarithmically transforming the time variable
(see Kumbhakar and Lovell (2000)).
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, where COLS
itEC  is the COLS-estimated efficiency change, COLS

itSE  is the COLS-

estimated scale efficiency change and COLS
itTC  is the COLS-estimated technological

change. Efficiency change and technological change are given by:

)(/ln **
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*/ln dtTCd COLS
it Eq 4.3.28

,for the Cobb-Douglas function and
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, for the translog function.

Scale efficiency change is given by:
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, and since the data generation process utilise only two inputs, for the Cobb-Doulgas

functional form:

*
,

*
,










COLS

it

COLS
itL Eq 4.3.31

, while for the translog function:
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Stochastic frontier analysis

Stochastic frontier analysis similar to COLS, in that both approaches are parametric, but

SFA is stochastic rather than deterministic, in that it attempts to decompose the

regression residual into an estimate of noise and inefficiency. It is the only stochastic

approach examined in this chapter, and as such is expected to provide the most

accurate estimates in the simulation experiments that include measurement error.
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As is the case with the COLS approach, two separate SFA model specifications are

used: a Cobb-Douglas functional form is employed for those experiments where the data

are generated through a Cobb-Douglas production function, and both a Cobb-Douglas

and translog functional form for those experiments where the data are generated

through a piecewise linear production function. The models are very similar to those

used under COLS; in fact, the only difference lies in the specification of the residual.

In more detail, the Cobb-Douglas model is given by:

ititititit uvtLY  *** lnlnln  Eq 4.3.33

, whereas the translog model is given by:
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where itu represents the inefficiency component (and as such 0itu ) and itv  represents

measurement error ( ),0(~ 2
vit Nv  ). The inefficiency component is estimated based on

the JMLS estimator.

Two different distributions for the inefficiency component are tested:

– the exponential distribution, )(~ uit Expu 

– the half-normal distribution, ),0(~ 2
uit Nu 

When the data is generated using the Cobb-Douglas production function, the

exponential Cobb-Douglas SFA model is perfectly specified, since the data generation

process also generates the inefficiency values from an exponential distribution. The

estimates from the half-normal distribution are included in the experiments to examine

the impact of misspecification in the inefficiency distribution to the SFA productivity

change estimates. Productivity change is measured in exactly the same way as with

COLS, ie using equations 4.3.26 to 4.3.32.
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4.3.3. How to measure the accuracy of each estimate

The productivity estimates produced by each approach are compared to the true rate of

productivity change, which is derived by equation 4.3.6. Three different measures are

employed to judge the accuracy of the estimates under each approach:

The mean absolute deviation (MAD) of productivity change, given by:
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, where TRUE
itTFP  is true productivity change and EST

itTFP  is the estimated productivity

change derived from the approach under examination. The MAD measure provides a

robust central estimate of the overall accuracy of each approach, regardless of the sign

of the deviation between the true and the estimated value.

The mean square error (MSE) of productivity change, given by:
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The MSE measure plays a complimentary role to the MAD measure and provides an

estimate of the dispersion of the estimates relative to the true values. Due to its nature,

the MSE measure is quite sensitive to estimates that deviate significantly from the true

value; as such, larger MSE values are suggestive of more extreme deviations from the

true values, other things being equal.

The mean absolute deviation of the 25th percentile (‘top’ MAD or TMAD) of

productivity change, which is the MAD of the top 25% of observations when sorted in

descending order according to the absolute deviation from the true value. In other words,

the analysis calculates the absolute deviation of all observations and then takes into

account only the top 25% of those, in order to calculate the TMAD measure. This results

in a measure that is quite similar to the MSE measure, with the notable exception that it

uses the same units as the MAD measure (absolute deviations rather than squared

deviations), and is thus easier to interpret.
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Lastly, the analysis also calculated the Pearson correlation between the estimated and

true values of productivity change together with the Spearman (rank) correlation statistic,

as an additional measure of the overall similarities between the estimated and true

values.

In addition to calculating the above measures, the analysis also undertakes statistical

testing to determine whether the pairwise differences in those measures between

approaches are statistically significant, for all combinations. For example, the average

MAD score of the DEA estimates over all simulation runs in a single experiment is tested

against the average MAD score of the GA, COLS and SFA (where applicable) estimates.

The analysis adopts both a standard pair-wise Student’s t-test (assuming unequal

variance) for testing the difference in means and the signed-rank test (otherwise known

as the Wilcoxon Signed-Rank test), which is usually employed as an alternative to the

pairwise t-test when the underlying population cannot be assumed to be normally

distributed.

Of the three main accuracy measures, the most important is MAD, which reveals the

average absolute deviation from the true estimates. MSE places greater emphasis on

instances where the difference between the estimated and the true productivity change

is large, and as such is a compliment to the MAD measure, especially if it is felt that

larger deviations between the estimate and the true measure in a few units are less

desirable than smaller deviations in a greater number of units. The TMAD measure is

complimentary to the MSE measure, and has the advantage that it is presented in the

same units as the MAD measure, which makes for easier interpretation.

4.3.4. The simulation experiments

As was previously mentioned, the main goal of the simulation analysis is to compare the

relative accuracy of the GA and frontier-based estimates under various assumptions that

diverge from the long-run, perfect competition optimum. In more detail, this research

aims to examine the accuracy of the estimates:

– when technical inefficiency, in various degrees of severity, is present;
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– when the production function includes a stochastic element (noise), that could result

from measurement error in the factors of production; again this element enters the

analysis at various degrees of severity;

– when inputs and prices are volatile from one period to the next, and finally

– when the production function is misspecified.

To that effect, a number of simulation experiments are undertaken, based on the same

underlying data generation methodology, while varying the parameters of interest

relevant to each experiment. The simulation experiments are subdivided into two major

categories. Those in the first category (denoted as S1) use the data generating process

that assumes a Cobb-Douglas production function, while those in the second category

(denoted as S2) use the data generating process that assumes a piecewise linear

production function. As mentioned above, the adoption of two different functional forms

is done so that the analysis can test the impact of functional form misspecification for the

parametric approaches; it also allows the analysis to assess the accuracy of the DEA-

and GA-based estimates when production is represented by a classically smooth

function and also when the technology is represented by a more general (less restrictive)

convex and monotonic hull.

In both sets of experiments, elements of technical inefficiency and noise (measurement

error) are gradually introduced to the production function used to generate the simulated

output. More specifically, the experiments undertaken here assume two different levels

of technical inefficiency: ‘average’ levels ( )7/1(~ Expuit ) and ‘higher’ levels

( )2/1(~ Expuit ) and three different levels of noise: zero noise ( 0it for all i and t),

‘extensive’ noise relative to inefficiency ( )2.0,0(~ Nit ) and ‘modest’ noise relative to

inefficiency ( )05.0,0(~ Nit ). As a reminder, both of these elements enter the DGP

individually and both affect output in a multiplicative manner (the inefficiency element

enters the DGP as )exp( itu and the noise element as )exp( it ). For more detail, see

equations 4.3.1 and 4.3.3 and the accompanying discussion in section 4.3.1.

The simulations also examine the effects of input and price volatility from one period to

the next; this is achieved by generating a new set of data for each simulation experiment

which is based on the more volatile scaling factor (‘default’ scaling factor is randomly
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generated and follows N(0,0.10), while the more ‘volatile’ scaling factor follows

N(0,0.25)).

The way all of the above parameters enter into the production function is described in

detail in section 4.3. As a reminder, all data generated come from production functions

that display constant returns to scale and also include and element of time-invariant

technical change (which corresponds to a 2% p.a. increase in output).

All the simulations undertaken in this study are presented in table 4.1:

Table 4.1: Simulation experiments

Production
function

Technical
inefficiency Noise

Input and price Volatility
assumptions

S1.1 Cobb-Douglas ‘average’ levels zero both ‘default’ and ‘higher’ volatility

S1.2 Cobb-Douglas ‘higher’ levels zero both ‘default’ and ‘higher’ volatility

S1.3 Cobb-Douglas ‘average’ levels ‘extensive’ both ‘default’ and ‘higher’ volatility

S1.4 Cobb-Douglas ‘average’ levels ‘modest’ both ‘default’ and ‘higher’ volatility

S2.1 Piece-wise linear ‘average’ levels zero both ‘default’ and ‘higher’ volatility

S2.2 Piece-wise linear ‘higher’ levels zero both ‘default’ and ‘higher’ volatility

S2.3 Piece-wise linear ‘average’ levels ‘extensive’ both ‘default’ and ‘higher’ volatility

S2.4 Piece-wise linear ‘average’ levels ‘modest’ both ‘default’ and ‘higher’ volatility

S2.5 Piece-wise linear ‘higher’ levels ‘extensive’ both ‘default’ and ‘higher’ volatility

S2.6 Piece-wise linear ‘higher’ levels ‘modest’ both ‘default’ and ‘higher’ volatility

The analysis also tested whether the inclusion of fully efficient units would have any

impact on the summary accuracy measures60. Overall, the analysis found that the

accuracy measures from the simulations which included fully efficient units are almost

indistinguishable from the base case; nevertheless, the results from this analysis are

also reported in the following sections for completeness.

All results are based on simulation experiments that were repeated 100 times. The

decision to use 100 repetitions came through sensitivity analysis; for all the experiments,

60 The data generation methodology implemented for these simulations ensures that no unit is fully, ie 100% technically
efficient.
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it was found that after a maximum of 50 to 60 repetitions, the various accuracy

measures showed very little variation. Based on this, using 100 repetitions would ensure

that the final accuracy estimates provide robust estimates of central tendencies.

It should be mentioned here that the results from the simulation analysis that adopts a

piecewise linear production function appear to be robust to different specifications for the

production function. This was tested by generating a new piecewise linear function

(based on the methodology detailed in appendix 2) and replicating some of the

simulation experiments; the differences in the MAD scores from the two different

specifications were minor and there were no cases were the relative accuracy rankings

differed and as such, the results are not reported in the following sections.

4.4. Results

This section is separated in two main parts:

– the first part provides a summary and a brief discussion of the results for each

individual experiment

– the second part examines the results as a whole and provides some discussion on

the relative strengths and weaknesses of each assessed approach under the

various scenarios examined. This section concludes by providing recommendations

on which approach is more appropriate under certain conditions.

Note that the analysis undertaken for these simulations has been quite extensive and as

such, only summary results are provided in this section.

As was previously mentioned, the main accuracy indicators are the MAD, MSE and

TMAD scores relating to each approach. The MSE measure is difficult to interpret, since

it is not expressed in the same units used to measure productivity change61.

Nevertheless, lower values are desirable. In order to put the various MAD and TMAD

measures into context, note that the data generation process adopted, both for the

61 It is the same issue when trying to interpret different values of variance. Since variation is also not expressed in the
same units as the variable it describes.
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Cobb-Douglas and the piecewise-linear function, results in an average true productivity

change of 2% p.a. but with a standard deviation of approximately 20%62.

4.4.1. S1 simulation experiments

These experiments adopt a Cobb-Douglas production function for the data generating

process. The MAD and TMAD scores are in the same unit of measurement as

productivity change, ie percentage change relative to the previous value of the

productivity index.

S1.1: 12% average inefficiency, no noise

The most accurate approach for these experiments is clearly COLS, i.e. the parametric,

deterministic approach. This comes as no surprise, given that the COLS specification is

an exact match to the data generation process adopted for this experiment. The second

most accurate approach is DEA, while GA comes third, although even this approach

demonstrates only a modest deviation from the true productivity change estimates, as

the average MAD value of 0.9% reveals. The tests for the statistical significance of the

difference in the accuracy estimates between the approaches reveal that the MAD

scores for each approach are statistically different from each other, while the differences

in MSE and TMAD scores between the DEA and GA approaches are statistically

insignificant as shown in Table 4.2.

Table 4.2: S1.1 summary accuracy scores for the default volatility assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 0.9% 0.21 4.1% 99.7% 99.6%

COLS 0.4% 0.04 1.3% 99.9% 99.8%

DEA 0.7% 0.20 4.1% 99.7% 99.4%

These results serve to confirm the dominance of COLS in this experiment and the fact

that when one of the standard neoclassical assumptions is violated, in the form of

introducing the possibility of technical inefficiency in the production process, the frontier-

62 Both the mean and standard deviation of the true productivity change measure will vary slightly in each simulation run,
due to the random nature of the data generating process.
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based approaches outperform, on the whole, the more traditional GA63. It should be

noted however, that GA still provides what could be considered as a quite accurate

estimates of true productivity change, although this is not very surprising, given that only

the assumption of no technical inefficiency was violated and that the actual level of

technical inefficiency in these experiments is relatively low.

When both inputs and input prices are assumed to be more volatile from one period to

the next, the relative accuracy rankings between approaches remains the same, but the

overall accuracy of all approaches decreases. As a reminder, the analysis randomly

generates inputs and price values for the first period while for the subsequent periods

input and price values are generated by multiplying the input values of the previous

period by a randomly generated scaling factor. The default assumption is that this

scaling factor follows N~(0,0.1); to increase volatility, the standard deviation of the

normal distribution is increased from 0.1 to 0.25.

Table 4.3 summarises the results of the experiment that assumes increased input and

price volatility:

Table 4.3: S1.1 summary accuracy scores for the increased volatility assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 2.5% 1.70 11.8% 97.9% 97.9%

COLS 0.8% 0.16 2.7% 99.8% 99.5%

DEA 1.2% 0.50 6.1% 99.3% 98.7%

The differences in overall accuracy between approaches become more apparent under

conditions of increased volatility in inputs and input prices. As mentioned above, the

relative accuracy rankings remain unchanged; COLS still provides the most accurate

estimates under the S1.1 conditions, followed by DEA and then GA. It should be noted

that the differences in the all three main accuracy scores between all approaches are

statistically significant.

63 It should be noted that SFA was also tested under these conditions, but in the vast majority of cases the approach
(correctly) failed to identify any significant amount of noise in the data and reverted to using the OLS estimates.
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Including fully efficient units in the analysis, also did not affect the overall rankings.

COLS still outperformed both DEA and GA, while DEA outperformed GA in all

measures.

Table 4.4: S1.1 summary accuracy scores with fully efficient DMUs included

MAD MSE TMAD Correlation Rank
correlation

GA 0.8% 0.20 4.1% 99.7% 99.7%

COLS 0.5% 0.05 1.3% 99.9% 99.8%

DEA 0.7% 0.20 4.0% 99.7% 99.4%

S1.2: 32% average inefficiency, no noise

The second experiment increases the amount of technical inefficiency in the data, to

examine how this would impact the estimation of productivity change. The summary

accuracy scores are given below:

Table 4.5: S1.2 summary accuracy scores for the default volatility assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 2.8% 1.57 10.1% 99.8% 99.6%

COLS 1.7% 0.62 4.8% 99.9% 99.8%

DEA 1.2% 0.46 5.9% 100.0% 99.8%

The findings are quite surprising; despite the fact the COLS model used for this

experiment is perfectly specified, the DEA MAD and MSE scores are smaller and the

difference is statistically significant. The COLS TMAD score is lower though, relative to

the DEA TMAD score, which suggests that although DEA performs better on average,

the COLS productivity change estimates are more accurate at the extremes. The

difference in these scores is actually quite small, but still statistically significant. The GA

scores are the least accurate of the three, by a (relatively) wide margin.

When the analysis is replicated using more volatile input and price values, the overall

ranking of the approaches remains the same. Table 4.6 demonstrates:
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Table 4.6: S1.2 summary accuracy scores for the increased volatility assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 7.6% 12.92 30.6% 98.8% 97.9%

COLS 3.0%   1.92 9.3% 99.8% 99.5%

DEA 2.2% 1.99 12.7% 99.8% 99.5%

As with the previous experiment (S1.1), while the relative accuracy rankings between

approaches do not change, the increased volatility also results in reduced overall

accuracy for all the estimates. All of the assessed approaches are affected, but it

appears that the most negatively affected approach is GA, which displays MAD scores

that are almost three times higher relative to the default volatility conditions, while both

the DEA and COLS MAD scores are less than twice as high.

The relative rankings amongst the three approaches also remain the same when fully

efficient units are included in the analysis. In fact, both the DEA and GA accuracy scores

improve, which is somewhat expected given that the inclusion of the fully efficient units

raises the average efficiency in the sample. However, the accuracy scores of the COLS

estimates do not show any improvement, relative to the results of the experiment

summarised in Table 4.5; this is probably due to the fact that units that are fully efficient

in these experiments have a limited influence on the construction of the COLS frontier.

Lastly, the DEA accuracy scores appear to have improved by a larger margin than the

GA scores, but on the whole, the difference is minor.

Table 4.7: S1.2 summary scores with fully efficient DMUs

MAD MSE TMAD

GA 2.5% 1.34 9.6%

COLS 1.7% 0.60 4.7%

DEA 0.9% 0.34 5.5%

S1.3: 12% average inefficiency, noise~N(0,0.2)

The purpose of this experiment is to determine the relative accuracy of each approach

when a substantial amount of noise is present in the data. Since a stochastic element is

now part of the data generating process, the analysis also assesses the performance of
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the SFA-derived productivity estimates. As the table below illustrates, the findings of this

analysis are not very encouraging for any of the approaches considered.

Table 4.8: S1.3 summary accuracy scores for the default volatility assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 22.5% 79.52 62.0% 57.1% 51.9%

COLS 22.4% 78.87 61.7% 57.2% 51.9%

DEA 22.5% 79.08 61.4% 57.1% 51.7%

SFA
(exponential) 12.5% 27.80 40.0% 50.2% 43.9%

SFA (half-
normal) 13.7% 32.13 41.3% 52.9% 44.8%

All of the deterministic approaches are revealed to be quite inaccurate under conditions

of severe noise. COLS appears to be the most accurate of all the deterministic

approaches, but the difference in the three main accuracy scores between both GA and

DEA is marginal and assessed as statistically insignificant. In any case, all deterministic

approaches display an average MAD score of approximately 22.5%, which could be

considered unacceptably high for policy purposes.

The stochastic approaches perform significantly better than their deterministic

counterparts, which was not unexpected. Even so, the perfectly specified SFA-

exponential model (which correctly assumes that technical inefficiency is exponentially

distributed) displays a MAD score of 12.5%, which could also be considered too high for

the purposes of productivity change measurement. It is interesting to note that the

incorrectly specified SFA-half-normal model comes second in overall accuracy. While

the difference in the MAD scores between the SFA exponential and half-normal models

is statistically significant, it is quite small, which suggests that the impact of

misspecification in the inefficiency distribution could be relatively mild.

Another interesting point arising from these experiments is that the correlations between

the estimates of productivity change and their true values are quite low, compared to

those observed in the S1 experiments. This is true for all approaches examined,

including the better performing SFA models; in fact, the correlation coefficients for the

SFA models are actually smaller than those derived from the deterministic approaches,

although by only a relatively small margin.
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An almost identical picture emerges when fully efficient units are included in the

analysis, with no statistical significance in the accuracy scores of the GA, DEA and

COLS approaches.

Table 4.9: S1.3 model summary scores with fully efficient DMUs

MAD MSE TMAD Correlation Rank
correlation

GA 22.4% 79.00 61.7% 58.5% 53.2%

COLS 22.4% 78.75 61.7% 58.6% 53.4%

DEA 22.5% 79.09 61.5% 58.6% 53.1%

SFA
(exponential) 12.5% 28.37 41.0% 54.9% 47.7%

SFA (half-
normal) 14.3% 35.47 43.2% 55.9% 47.1%

And the results remain stable even when the volatility in inputs and prices is increased.

Table 4.10: S1.3 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 22.9% 82.76 63.9% 55.4% 49.2%

COLS 22.5% 79.75 62.5% 56.3% 49.8%

DEA 23.1% 83.16 63.2% 55.2% 48.7%

SFA
(exponential) 12.5% 28.11 40.0% 59.9% 50.8%

SFA (half-
normal) 13.9% 33.43 42.0% 61.9% 50.9%

Once again, the scores of GA, DEA and COLS in the three main accuracy measures are

statistically indistinguishable.

S1.4: 12% average inefficiency, noise~N(0,0.05)

The previous experiment introduced a substantial amount of noise in the data. For this

experiment, the overall accuracy of the approaches is examined when noise is less

severe.
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Table 4.11: S1.4 summary accuracy scores for the default volatility assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 5.8% 5.30 16.3% 93.8% 89.9%

COLS 5.7% 5.06 15.9% 94.0% 90.1%

DEA 5.8% 5.34 16.2% 93.7% 89.5%

SFA
(exponential) 5.0% 4.04 14.2% 94.3% 90.3%

SFA (half-
normal) 5.4% 4.64 15.1% 94.8% 90.6%

As with the previous experiment, both SFA models are assessed as the most accurate

when a stochastic element is present in the data generating process. It is interesting to

note however that the performance of the deterministic approaches is not lagging far

behind relatively to the stochastic approaches, although the differences in all three main

accuracy measures considered are statistically significant. COLS estimates are still the

more accurate from the three determinist approaches, although the differences in scores

between COLS and the DEA and GA approaches are only statistically significant under

the non-parametric statistical tests. The DEA and GA scores are very similar in all

measures and are in fact statistically indistinguishable under both parametric and non-

parametric tests.

The effect of misspecification in the efficiency distribution for the SFA models is still

present (similar to the previous experiment), and although the difference in the accuracy

scores between the SFA exponential and half-normal models is statistically significant, it

could still be considered relatively small.

Once more, there is no change in the overall findings when fully efficient units are

included in the dataset.
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Table 4.12: S1.4 summary accuracy scores with fully efficient DMUs

MAD MSE TMAD Correlation Rank
correlation

GA 5.8% 5.24 15.9% 93.8% 89.9%

COLS 5.6% 4.99 15.5% 94.1% 90.1%

DEA 5.8% 5.27 16.0% 93.8% 89.5%

SFA
(exponential) 4.9% 3.81 13.8% 94.4% 90.4%

SFA (half-
normal) 5.4% 4.54 14.9% 95.0% 90.8%

When the volatility in inputs and prices is increased for one period to the next, the overall

findings change slightly.

Table 4.13: S1.4 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation Rank
correlation

GA 6.3% 6.53 18.5% 92.2% 88.5%

COLS 5.8% 5.17 15.9% 93.7% 89.7%

DEA 6.0% 5.66 16.7% 93.0% 88.8%

SFA
(exponential) 5.0% 3.96 14.1% 94.1% 90.1%

SFA (half-
normal) 5.4% 4.67 15.2% 94.7% 90.6%

Both stochastic models are again assessed as being the most accurate under all

measures, with the correctly specified SFA exponential model being ranked as the most

accurate. However, there is a somewhat clearer differentiation between the deterministic

approaches; COLS is found to be the most accurate of the deterministic approaches in

all measures and the statistical tests show that the difference in accuracy scores is

statistically significant. DEA is the second most accurate of the deterministic approaches

and again, the statistical tests confirm that the difference between DEA and GA scores is

statistically significant. In summary, although the overall rankings have not changed

substantially, there is a clearer hierarchy amongst the approaches considered.
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Summary results for the S1 simulation experiments

In general, the analysis found that the most accurate approaches in the simulation

experiments that adopted a Cobb-Douglas production to generate output values are the

parametric approaches, namely COLS when a stochastic element was not included in

the analysis and SFA otherwise. This is not an unexpected result, since the parametric

models that are ranked highest in each experiment are perfectly specified, in that they

utilise the same functional form as the adopted production function of the DGP and, in

the case of the best-performing SFA models, assume the correct distribution for the

inefficiency term.

What is likely of more interest is how the two non-parametric, determinist approaches

have fared over this set of experiment. Firstly, the overall performance of GA was

surprisingly robust, even if the approach displayed the worst (or joint worst accuracy) in

the majority of the experiments. In most cases, the difference in accuracy scores

between GA and DEA was quite small and for the experiments that included

measurement error, the differences were statistically insignificant. The analysis however

identified some conditions where the accuracy of the GA quickly deteriorates:

– It appears that as technical inefficiency becomes more prevalent in the data that

include no noise, the accuracy of the GA estimates rapidly deteriorates. In the S1.2

experiment, GA ranked last, with inaccuracy scores that were substantially higher

than both COLS and DEA.

– When volatility in inputs and input prices increases from one period to the next, it

appears that the accuracy of the GA deteriorates at a faster rate than the other

approaches. This features in almost all the experiments that utilise a Cobb-Douglas

production function (the exception is experiment S1.3, which includes both relatively

high technical inefficiency and measurement error levels, where the overall

accuracy of all approaches considered does not change when volatility is

increased).

As for the performance of DEA, the analysis raises two major points:

– DEA is the most accurate approach based on the MAD measure when technical

inefficiency is found at relatively high levels in the data that also do not include any

noise. This is a rather surprising result, since as was mentioned above, the COLS
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model that is also assessed in the relevant experiment (S1.2) is perfectly specified,

given that the S1.2 data are constructed using a Cobb-Douglas functional form and

contain no noise. And indeed, the COLS approach is more accurate than DEA in

this experiment based on the TMAD measure and equally accurate based on the

MSE measure, which suggests that the performance of COLS is better for the units

that occupy outlying positions in the dataset.

– The accuracy of the DEA-based estimates decreases at a lower pace relatively to

the accuracy of the other deterministic approaches when inputs and input prices

become more volatile from one period to the next, in the experiments that do not

include any measurement error (ie S1.1 and S1.2).

In addition to the points made above, some more general comments can be made when

considering the analysis as a whole:

– When technical inefficiency is modest, there is no stochastic element in the DGP

and the input levels and prices between subsequent periods are relatively stable, all

approaches provide quite accurate estimates of productivity change.

– Increased volatility in inputs and prices in subsequent periods adversely affects the

accuracy of all approaches, when no stochastic element is included in the DGP.

The DEA estimates are the least affected, while the GA estimates are the most

affected. Interestingly, when measurement error is introduced in the analysis, the

increased volatility appears to have very little impact on the accuracy of the

deterministic approaches and almost no impact at all on the accuracy of the

stochastic approaches.

– When noise is present in the dataset, the SFA approaches provide the most

accurate estimates. However, when measurement error is more severe, even the

best performing SFA model demonstrates quite large deviations from the true

productivity change values (MAD scores of approximately 12.5%). In addition, when

measurement error is moderate, the gains in accuracy achieved by the SFA models

are quite modest compared to the deterministic approaches (eg GA and DEA MAD

scores are 5.8%, while the best performing SFA model has a MAD score of 5% in

S1.4).



152

The tables below provide a summary of the three main accuracy measures from the S1

experiments for all the assessed approaches, as well as the relative accuracy rankings

of each approach, taking into account the results of the statistical tests for the difference

in mean accuracy estimates.
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Table 4.14: Summary results for the first category of experiments (S1), default volatility assumptions

Table 4.15: Relative accuracy rankings for the first category of experiments (S1), default volatility assumptions

 Note: The above rankings take into consideration the results of the statistical tests for the difference in mean accuracy scores

Mean absolute deviation (in %) Mean square error ‘Top’ Mean absolute deviation (in %)

GA COLS DEA
SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal)

S1.1: 12% average
inefficiency, no noise 0.9% 0.4% 0.7% 0.21 0.04 0.20 4.1% 1.3% 4.1%

S1.2: 32% average
inefficiency, no noise 2.8% 1.7% 1.2% 1.57 0.62 0.46 10.1% 4.8% 5.9%

S1.3: 12% average
inefficiency,
noise~N(0,0.2) 22.5% 22.4% 22.5% 12.5% 13.7% 79.52 78.87 79.08         27.80 32.13 62.0% 61.7% 61.4% 40.0% 41.3%

S1.4: 12% average
inefficiency,
noise~N(0,0.05) 5.8% 5.7% 5.8% 5.0% 5.4% 5.30 5.06 5.34           4.04 4.64 16.3% 15.9% 16.2% 14.2% 15.1%

Mean absolute deviation (in %) Mean square error ‘Top’ Mean absolute deviation (in %)

GA COLS DEA
SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal)

S1.1: 12% average
inefficiency, no noise 3 1 2 3 1 2 2 1 2

S1.2: 32% average
inefficiency ,no noise 3 2 1 3 1 1 3 1 2

S1.3: 12% average
inefficiency,
noise~N(0,0.2) 4 4 4 1 2 4 4 4                 1 2 4 4 4 1 2

S1.4: 12% average
inefficiency,
noise~N(0,0.05) 4 3 4 1 2 4 3 4                 1 2 4 3 4 1 2
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Table 4.16: Simulation summary results for the first category of experiments (S1), increased volatility assumptions

Table 4.17: Relative accuracy rankings for the first category of experiments (S1), increased volatility assumptions

 Note: The above rankings take into consideration the results of the statistical tests for the difference in mean accuracy scores

Mean absolute deviation (in %) Mean square error ‘Top’ Mean absolute deviation (in %)

GA COLS DEA
SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal)

S1.1: 12% average
inefficiency, no noise 2.5% 0.8% 1.2% 1.70 0.16 0.50 11.8% 2.7% 6.1%

S1.2: 32% average
inefficiency ,no noise 7.6% 3.0% 2.2% 12.92 1.92 1.99 30.6% 9.3% 12.7%

S1.3: 12% average
inefficiency,
noise~N(0,0.2) 22.9% 22.5% 23.1% 12.5% 13.9% 82.76 79.75 83.16 28.11 33.43 63.9% 62.5% 63.2% 40.0% 42.0%

S1.4: 12% average
inefficiency,
noise~N(0,0.05) 6.3% 5.8% 6.0% 5.0% 5.4% 6.53 5.17 5.66            3.96 4.67 18.5% 15.9% 16.7% 14.1% 15.2%

Mean absolute deviation (in %) Mean square error ‘Top’ Mean absolute deviation (in %)

GA COLS DEA
SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal) GA COLS DEA

SFA
(exponential)

SFA
(half-
normal)

S1.1: 12% average
inefficiency, no noise 3 1 2 3 1 2 3 1 2

S1.2: 32% average
inefficiency ,no noise 3 2 1 3 1 2 3 1 2

S1.3: 12% average
inefficiency,
noise~N(0,0.2) 4 4 4 1 2 4 4 4                 1 2 4 4 4 1 2

S1.4: 12% average
inefficiency,
noise~N(0,0.05) 5 3 4 1 2 5 3 4                 1 2 5 3 4 1 2
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4.4.2. S2 simulation experiments

As was previously mentioned, these experiments adopt a piecewise-linear production

function for the data generating process.

S2.1: 12% average inefficiency, no noise

This experiment is identical in its parameters to S1.1, except that now a piecewise-

linear function is used to generate output values. The summary findings from this

experiment are presented in the table below:

 Table 4.18: S2.1 summary accuracy scores for the default volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 0.9%   0.20 4.1%      99.7%      99.5%

COLS 2.4%   1.08 8.2% 98.6%      97.2%

COLS
(translog) 2.9% 70.31 21.6%      95.4%      96.8%

DEA 0.8%   0.22 4.1%      99.7%      99.4%

The analysis reveals that the DEA and GA estimates are the most accurate,

according to the three main measures, from all the approaches examined by a

comfortable margin (that is also statistically significant). The DEA and GA MAD and

TMAD scores are almost identical and the slightly better performance of GA in the

MSE measure is too small to be statistically significant.

Probably the most interesting finding of the analysis however is that functional form

misspecification can have a very significant impact on the accuracy of the parametric

approaches. The COLS estimates, which were the most accurate in the S1.1

experiment are now revealed to be the least accurate; since the only thing that is

different from the S1.1 experiment is the functional form used to generate output

values, this appears to be the most likely source of the deterioration of the COLS

overall accuracy. The accuracy scores for S1.1 are shown in the following table, to

facilitate the comparisons.
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Table 4.18b: Combined S1.1 and S2.1 summary accuracy scores for the default
volatility assumptions

MAD MSE TMAD

S2.1 0.9% 0.20 4.1%

GA S1.1 0.9% 0.21 4.1%

S2.1 2.4% 1.08 8.2%

COLS S1.1 0.4% 0.04 1.3%

S2.1 0.8% 0.22 4.1%

DEA S1.1 0.7% 0.20 4.1%

So, while the accuracy of the DEA and GA estimates has remained relatively

constant, the MAD scores for the COLS estimates have increased from 0.4% to

2.4%, while TMAD scores have increased from 1.3% to 8.5%.

Another interesting finding from this analysis is that the COLS translog model overall

accuracy scores are worse than those from the COLS Cobb-Douglas model. This is

more apparent when examining the MSE and TMAD scores which measure the

accuracy of the approach at the ‘edges’ of the sample. Based on these scores, it can

be stated that the translog model has difficulties in correctly measuring productivity

growth for at least a subset of the assessed units. It should be repeated here that the

analysis examined the performance of the translog model on the hypothesis that the

translog is a flexible functional form and could, in theory, provide a better fit to the

underlying piecewise-linear function that was used to generate the output. As will be

demonstrated in the following sections, the relative inaccuracy of the translog

specification persists in most of the S2 simulations. Since this is a significant finding

(given that the translog specification is one of the most widely adopted functional

forms in the econometric analysis of efficiency and productivity), a more thorough

discussion on this issue is be provided at the end of this section.

Including fully efficient units in the dataset has no material impact on the results, as

the following table demonstrates.
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Table 4.19: S2.1 summary accuracy scores with fully efficient DMUs

MAD MSE TMAD Correlation
Rank
correlation

GA 0.8% 0.21 4.1% 99.7% 99.5%

COLS 2.5% 1.19 8.9% 98.1% 97.1%

COLS
(translog) 3.1% 90.89 29.7% 93.1% 94.4%

DEA 0.7%   0.22 4.0% 99.6% 99.4%

In general, the inclusion of fully efficient units has very little impact on the results of

all of the S2 simulation experiments; as such, the results from this permutation will

not be reported from now on.

When volatility in input and price levels is increased, all accuracy measures are

inflated (signifying an overall decrease in accuracy) by a significant margin, as the

table below demonstrates.

Table 4.20: S2.1 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 2.5%    1.79 12.2% 97.8% 97.0%

COLS 6.4%    8.31 23.2% 90.9% 87.2%

COLS
(translog) 7.0% 145.60 38.9% 88.2% 90.2%

DEA 1.5%     0.68  6.8% 99.1% 98.3%

The results show that the DEA-based estimates are the most accurate in all three

main measures from all the approaches examined by a comfortable margin (that is

also statistically significant). The GA estimates are ranked second in overall

accuracy, trailing the DEA estimates in all accuracy measures considered. The

COLS translog model still produces relatively inaccurate estimates.

S2.2: 32% average inefficiency, no noise

This experiment is identical in its parameters to a previous experiment, S1.2, except

that a piecewise-linear function is used for the DGP rather than a Cobb-Douglas

function. The summary findings from this experiment with the default input volatility

assumptions are presented in the table below:
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Table 4.21: S2.2 summary accuracy scores for the default volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 2.2% 1.09  8.8% 99.9% 99.7%

COLS 2.4%    1.20  8.8% 99.9% 99.6%

COLS
(translog) 4.9% 132.12 32.1% 97.2% 98.8%

DEA 1.1%     0.39  5.4% 100.0% 99.8%

The table shows that the DEA-based estimates are the most accurate according to

all the measures, followed by the GA estimates. The performance of the Cobb-

Douglas COLS model is quite close to GA, although the small differences are in fact

found to be statistically significant. It is also interesting to note that the accuracy

scores of this model are very similar to those from the previous simulation

experiment, despite the larger amount of inefficiency in the DGP included in the

current experiment. The DEA-based productivity estimates also seem to be only

marginally affected by the larger inefficiency in the dataset; on the other hand, the

GA estimates are quite heavily affected, which is expected given that GA assumes

no inefficiency in the production process.

Similar to the previous experiment, the COLS translog model is clearly the worst

performer, with MAD scores almost twice as high as those from the COLS Cobb-

Douglas model and TMAD scores that are almost three times as high.

The overall accuracy rankings of each approach do not change, when the increased

volatility assumptions are introduced to the data generation process, as the table

below demonstrates:
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Table 4.22: S2.2 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 5.7% 8.04 24.7% 99.2% 98.7%

COLS 6.3%   8.14 23.4% 99.1% 98.2%

COLS
(translog) 8.3% 98.90 49.1% 96.1% 97.2%

DEA 2.2%   1.45 10.2% 99.8% 99.6%

As with almost all previous experiments, increased volatility reduces the accuracy of

all estimates, but to a different degree for each approach, with DEA appearing to

produce the more robust estimates. DEA is ranked first in terms of overall accuracy

in this experiment, followed by GA. Relative to the S2.1 experiment, the difference in

accuracy is even more pronounced between DEA and GA. As with the default

assumptions, the accuracy scores for COLS are relatively stable, in comparison with

the S2.1 experiment (with increased volatility assumptions).

S2.3: 12% average inefficiency, noise~N(0,0.05)

This and the following experiments introduce a stochastic element in the data

generating process that can represent the effects of luck or measurement error in the

available data. Since a stochastic element is present in the data, these experiments

also assess the accuracy of the SFA-based productivity change estimates.

For this experiment, both the noise element and technical inefficiency are at

moderate levels; later experiments increase either or both to higher levels. The table

below presents the summary accuracy measures for the approaches considered.
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Table 4.23: S2.3 summary accuracy scores for the default volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 5.8% 5.33 16.2% 94.0% 89.9%

COLS 6.3% 6.24 17.6% 93.0% 88.5%

COLS
(translog) 6.5% 7.81 20.6% 91.8% 88.1%

DEA 5.8% 5.23 16.0% 94.0% 89.8%

SFA 7.1% 9.11 21.6% 88.2% 84.1%

SFA (translog) 6.1% 6.12 17.7% 92.2% 87.3%

SFA (half-
normal) 6.4% 6.96 18.5% 90.3% 85.6%

The most striking finding from this experiment is that the stochastic models assessed

are not the most accurate ones. Instead, the most accurate approaches appear to be

DEA and GA, with DEA doing marginally better, although the difference in accuracy

scores is not statistically significant.  Even the deterministic COLS Cobb-Douglas

model is assessed as being more accurate than the SFA Cobb-Douglas model,

which indicates that functional form misspecification has a more severe impact on the

accuracy of the stochastic parametric approaches relative to their deterministic

counterpart.

Interestingly, the translog SFA (exponential) model appears to be the most accurate

of all the parametric models; this is a departure from the previous results, which

found that the translog specification can sometimes cause the model to produce

widely inaccurate productivity change estimates. The statistical tests find that this

model’s accuracy scores are indeed statistically significantly smaller than those from

the Cobb-Douglas SFA (exponential) model, but not from the Cobb-Douglas COLS

model or from the wrongly specified Cobb-Douglas SFA model that assumes a half-

normal distribution for the inefficiency component.

In fact this last point is another interesting finding that comes from this set of

experiments; the miss-specified, in terms of inefficiency distribution assumptions,

half-normal SFA model outperforms the correctly specified exponential SFA model,

by a wide margin that is statistically significant for the three main accuracy measures.

Again, this can be taken as additional evidence of how important is the functional

form assumption to the overall accuracy of the SFA models.
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A very similar picture emerges when the volatility in inputs and prices is increased in

consequent periods.

Table 4.24: S2.3 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 6.3% 6.79 18.9% 92.4% 89.2%

COLS 8.5% 12.36 26.6% 87.2% 82.5%

COLS
(translog) 8.9% 292.19 46.0% 85.6% 84.8%

DEA 5.8%     5.45 16.6% 93.5% 89.8%

SFA 9.1%   14.91 29.0% 79.0% 74.2%

SFA (translog) 7.4%   10.09 23.6% 86.9% 81.9%

SFA (half-
normal) 8.4%   12.42 26.4% 82.9% 78.0%

Once again, the SFA models display lower overall accuracy relative to the non-

parametric deterministic approaches. In this setting, the most accurate approach

appears to be DEA, followed by GA, and in this case, the difference in the all of the

three main accuracy criteria is statistically significant between these two approaches.

It is interesting to note the resilience of the DEA accuracy scores under conditions of

greater input volatility in this setting; while all other approaches see increased MAD

scores by approximately two percentage points, the DEA score remains practically

unchanged between the two experiments.

For the parametric approaches, the translog SFA (exponential) model provides the

most accurate estimates. As with the experiment with default input volatility, the

Cobb-Douglas half-normal SFA model performs better than the Cobb-Douglas

exponential SFA, despite the fact that the latter model assumes the correct

inefficiency distribution.

S2.4: 12% average inefficiency, noise~N(0,0.2)

For this experiment the stochastic element is more prominent, representing severe

measurement error, while technical inefficiency is kept at moderate levels.
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Table 4.25: S2.4 summary accuracy scores for the default volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 22.9% 86.21 67.7% 56.6% 50.8%

COLS 23.0% 86.93 67.8% 56.6% 50.6%

COLS
(translog) 23.4% 95.96 71.3% 55.4% 50.2%

DEA 22.8% 85.38 67.4% 56.6% 50.8%

SFA 14.3% 38.41 48.8% 50.4% 43.6%

SFA (translog) 15.4% 43.70 51.4% 53.6% 46.1%

SFA (half-
normal) 16.6% 49.76 52.2% 52.0% 45.4%

The findings of this analysis show that under severe measurement error conditions,

the SFA models produce the more accurate productivity change estimates. All three

SFA models are found in the top three places in the accuracy rankings, which

suggests that severe measurement error is a stronger source of bias than any form

of misspecification. DEA, GA and the Cobb-Douglas COLS specification display

similar scores in all accuracy measures and the statistical tests reveal that the

marginal differences between them are too small to be considered significant. Similar

to the other S2 experiments, the COLS translog estimates are ranked last in terms of

overall accuracy.

With regards to the three SFA models, the correctly specified (in terms of the

inefficiency distribution assumption) Cobb-Douglas exponential SFA model is the

most accurate, followed by the also correctly specified translog SFA model. The

differences in the accuracy scores between these approaches suggests that under

conditions of severe measurement error, the misspecification of the inefficiency

distribution in the SFA models can have a significant impact to the overall accuracy

of the resulting estimates. Also of note here are the relatively low correlations

between the estimates of productivity change from all approaches and true

productivity change; this was also the case for the S1.3 experiment, which suggests

that the ratio of noise to inefficiency also significantly affects the relative accuracy of

the approaches examined.

The relative accuracy of the examined approaches remains unchanged when the

volatility in inputs and prices is increased, as the following table demonstrates:
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Table 4.26: S2.4 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 23.2% 89.70 69.8% 54.3% 50.0%

COLS 24.0% 95.39 71.9% 53.7% 49.8%

COLS
(translog) 24.6% 137.09 80.6% 51.8% 49.7%

DEA 23.0% 87.73 68.8% 54.7% 50.4%

SFA 14.6% 40.00 50.2% 48.1% 44.5%

SFA (translog) 15.5%   44.74 52.2% 50.0% 45.4%

SFA (half-
normal) 17.0%   52.04 54.3% 51.3% 47.0%

As with the default conditions, the SFA models dominate in this setting, followed by

DEA and GA (which are statistically indistinguishable), while both COLS

specifications occupy the last places in the rankings.

It is interesting to note that the increased volatility in this experiment does not have

the usual negative effect on the overall accuracy of the approaches, as evident in the

experiments described so far. This is probably due to the fact that the variance

introduced in the analysis from the presence of substantial levels of noise greatly

overshadows the effect of the increased input volatility. This is another indication of

how significant the presence of noise is to the accuracy of all the approaches

examined.

Overall, when the stochastic element dominates, all approaches produce productivity

change estimates that could be considered unacceptably inaccurate, as evidenced

by the high scores in all three main accuracy measures and the low correlations with

the true values of productivity change.

S2.5: 32% average inefficiency, noise~N(0,0.2)

In this experiment, the data include substantial levels of both the stochastic element

and technical inefficiency.

It should be mentioned here that the analysis encountered some difficulties with the

SFA estimation. In a number of cases the initial exploratory analysis before the

estimation of the SFA model revealed that the residuals had the wrong skew, which

SFA interprets as strong evidence that there is no technical inefficiency in the assess
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units. In these instances, the software used to run the analysis abandons the SFA

estimation and reverts to using a simple OLS regression. This error was relatively

frequent, as it was encountered in approximately 1 in 20 simulation runs. Since this

analysis is more interested in the accuracy of the SFA estimates, these results were

discarded and the experiment was modified so that enough simulation runs were

undertaken in order to have a full set of 100 runs in which an SFA model was able to

be estimated.

Table 4.27: S2.5 summary accuracy scores for the default volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 23.6%   91.33 69.1% 91.5% 87.0%

COLS 23.6%   91.50 69.5% 91.5% 87.0%

COLS
(translog) 24.8% 148.54 82.0% 89.4% 86.4%

DEA 23.4%   89.94 68.7% 91.5% 87.1%

SFA 21.5%   76.76 63.6% 91.9% 87.1%

SFA (translog) 22.2%   82.49 66.4% 91.8% 87.1%

SFA (half-
normal) 22.9%   86.35 67.4% 91.7% 87.1%

The table above demonstrates that the Cobb-Douglas exponential SFA model is

assessed as the most accurate approach in this experiment, followed by the other

SFA models. The statistical tests however reveal that the accuracy scores of all three

SFA models are not statistically significantly different. The same applies for the

accuracy scores for the deterministic GA, DEA and Cobb-Douglas COLS models;

their differences are too small to be assessed as statistically significant. And although

the difference between the best performing SFA model and the best performing

deterministic model (which is DEA in this case) is statistically significant, it is also

quite small (just 2 percentage points) given the overall inaccuracy of the produced

estimates.

Overall, the performance of the deterministic approaches is very similar to the

performance observed in the previous experiment (S2.4), which suggests that

increased levels of technical inefficiency do not introduce additional bias in the

estimates under conditions of severe noise. This is not the case or the SFA

specifications, as there is a marked decrease in overall accuracy relative to the

previous experiment.
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Another interesting point is that while the deviations between the estimates and the

true values of productivity change are quite substantial, the correlations between the

estimates and the true values are relatively high, for all approaches. Similarly high

deviations from the true values were observed in the previous experiment (S2.4), but

both mean correlations measures were also relatively low.

The reason these differences between the deviation and correlation measures in this

experiment is unclear at this stage; given that the findings of the previous

experiments suggests that increasing levels of technical inefficiency negatively

impact the overall accuracy of the measurement approaches, it would be reasonable

to expect a deterioration of performance in this experiment relative to the previous

one, which included lower levels of technical inefficiency on average.

The overall findings are very similar when the volatility in inputs and prices is

increased:

Table 4.28: S2.5 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 24.5% 100.24 73.2% 90.7% 86.3%

COLS 24.8% 101.41 72.9% 90.5% 86.0%

COLS
(translog) 26.2% 157.38 89.5% 88.0% 85.1%

DEA 23.8% 93.87 70.3% 91.1% 86.6%

SFA 22.7% 85.44 67.3% 90.9% 85.9%

SFA (translog) 23.4%   92.37 70.2% 90.7% 85.7%

SFA (half-
normal) 23.8%   94.64 70.7% 90.7% 86.1%

The estimates from the SFA exponential specification remain the most accurate, with

the rest of the SFA specifications and the DEA model following. In fact, the DEA-

based estimates are statistically indistinguishable from the translog SFA and half-

normal SFA; this once again demonstrates the resilience of the DEA estimates in

high input volatility conditions. Overall, the accuracy scores of all approaches under

increased volatility assumptions are not very different in absolute values to those

from the experiments with default volatility assumptions. This is similar to the

behaviour observed in the S2.4 experiment and suggests that in dataset with high

noise levels, the negative effect of input volatility is greatly diminished.
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Probably the most important finding of this round of simulations is that no approach is

able to produce reliable estimates when both noise and technical inefficiency are

prominent in the data.

S2.6: 32% average inefficiency, noise~N(0,0.05)

For this last experiment, the levels of technical inefficiency are kept at relatively high

levels, while the impact of the stochastic element is reduced to more moderate

levels. As with the previous experiment, similar issues arose with the SFA estimation;

as before, the problematic datasets where discarded and the analysis redrew

additional datasets so that the experiment included SFA results from 100 successful

simulation runs.

Table 4.29: S2.6 summary accuracy scores for the default volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 6.2% 6.09 17.5% 99.3% 98.6%

COLS 6.2% 6.12 17.4% 99.3% 98.6%

COLS
(translog) 8.7% 287.07 47.2% 95.9% 97.8%

DEA 5.8%     5.33 16.3% 99.4% 98.7%

SFA 7.1%     8.56 20.4% 99.1% 98.4%

SFA (translog) 6.5%     6.77 18.6% 99.3% 98.5%

SFA (half-
normal) 6.2%     6.16 17.4% 99.3% 98.5%

Despite the fact that the DGP contains a stochastic element, it is the deterministic

approaches that are assessed as being more accurate in this experiment. More

specifically, DEA is revealed to be the most accurate approach under these

conditions, followed by GA, the COLS Cobb-Douglas model and the SFA half-normal

model. The statistical tests carried out reveal that the very small differences in

accuracy scores between GA, COLS and SFA (half-normal) specifications are not

statistically significant. These results are consistent with the findings from the S2.3

experiment, which assumed the same level of noise but lower levels of technical

inefficiency. It is interesting to note that the miss-specified (in terms of the inefficiency

distribution assumption) half-normal SFA model is deemed to be more accurate than

the correctly specified SFA exponential model; this was also the case in the S2.3

experiment.
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The overall accuracy rankings remain relatively stable when volatility in inputs and

prices is increased.

Table 4.30: S2.6 summary accuracy scores for the increased volatility
assumptions

MAD MSE TMAD Correlation
Rank
correlation

GA 8.4% 12.93 28.2% 98.7% 97.8%

COLS 8.7%   13.04 27.2% 98.7% 97.3%

COLS
(translog) 10.6% 202.80 55.4% 95.5% 96.8%

DEA 6.2% 6.36 18.5% 99.3% 98.5%

SFA 10.0% 17.27 30.3% 98.3% 97.0%

SFA (translog) 8.4% 13.28 28.6% 98.7% 97.3%

SFA (half-
normal) 8.8% 13.34 27.8% 98.6% 97.3%

DEA still remains the most accurate approach overall. GA is the second most

accurate approach based on the MAD measure, but its MSE and TMAD scores are

statistically indistinguishable from the COLS and SFA (half-normal) specifications.

The COLS Cobb-Douglas specification together with the SFA half-normal

specification are ranked jointly third, followed by the translog SFA exponential model.

As with almost all previous experiments, increased volatility leads to an overall

deterioration of accuracy for all the examined approaches, but to a different degree;

DEA remains the most robust approach under conditions of increased volatility.

Perhaps the most important finding from this experiment is that when the stochastic

element is relatively modest, the deterministic approaches provide more (or at least

as) accurate estimates of productivity change relative to the various SFA

specifications examined for this experiment.

Summary results for the S2 simulation experiments

While the parametric approaches dominated in terms of accuracy in the first set of

experiments, where the datasets were generated based on a Cobb-Douglas

production function, it is the non-parametric approaches that appear as more

accurate on the whole when the dataset is generated using a piecewise-linear

function. This was not unexpected, given that the underlying production function in

the second set of experiments is not a perfect match with the functional form adopted

by the parametric approaches examined; this functional form misspecification was



168

bound to have a negative effect on the overall accuracy of the parametrically-derived

estimates.

What was probably unexpected was the magnitude of this negative effect. When no

measurement error is present, the COLS Cobb-Douglas specification displays MAD

scores that are at least twice as large as those displayed by the DEA estimates and

the discrepancy in MSE scores is significantly bigger (at least three times higher).

Furthermore, the overall accuracy of the COLS specification that adopts a translog

functional form is even worse; in fact, in all experiments, the COLS translog

specification was ranked last in terms of overall accuracy. On the other hand, the

translog specification yields more accurate results when paired with SFA, but only for

the experiments that included a ‘moderate’ noise component. When noise levels

were elevated, the Cobb-Douglas SFA models were more accurate across all

measures.

The overall performance of the translog specification is a somewhat puzzling result,

since it was expected that the additional flexibility it afforded to the parametric models

would allow for a better fit to the underlying piecewise-linear function. There are a

number of possible reasons for the underperformance of the translog specifications:

– The sample size was too small; the translog specification takes up an additional

6 degrees of freedom relative to the Cobb-Douglas specification, which reduces

the accuracy of the estimated coefficients.

– The translog might be too flexible; the underlying piecewise-linear production

function is convex (in the sense that all input-output combinations belong to a

convex set) and monotonic; the translog on the other hand is flexible in a sense

that parts of the production function can be non-convex and non-monotonic. It is

possible that the combined effects of inefficiency and noise in the data lead the

estimation to wrongfully conclude that there are indeed parts of the production

function that are either non-monotonic or non-convex, simply because they

would provide a better fit to the data.

– The way the experiments applied the translog functional form was rather basic;

the analysis did not apply any variable selection techniques, such as general-to-

specific, so that variable that were deemed to be statistically insignificant

remained in the model. Although econometric theory suggests that the presence
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of insignificant variables should not result in any form of bias64, issues might

arise due to the multi-collinearity that is frequently displayed between the

translog variables.

Further research would be required to test whether any of the above factors is the

actual reason for the relatively bad accuracy performance of the translog

specifications. It is important to note however that the adoption of a flexible functional

form does not always improve the fit of the parametric models. It is important to note

however that the SFA models were found to be more accommodating to the translog

specification, relative to the COLS models. This is probably due to the fact that the

SFA models can ‘assign’ part of the distance of each unit to the apparent frontier to

noise, thus reducing the probability of observing very large variations in the

productivity estimates and/or lessening the impact of such variations if they happen

to exist in a particular simulation run.

Another important issue revealed by the S2 simulations is the relative

underperformance of the SFA models under conditions of moderate noise. As the

S2.3 and S2.6 experiments revealed, when the standard deviation of the normally

distributed stochastic element is 0.05, the non-parametric deterministic approaches

(ie DEA and GA) perform better that the stochastic models, while COLS is almost as

accurate as the most accurate of the SFA specifications. In addition, the SFA

specification that (incorrectly) assumes that the inefficiency is half-normally

distributed is more accurate than the correctly specified SFA exponential model, at

least when the models adopted a Cobb-Douglas functional form. Only when

measurement error is more severe (is the standard deviation is increased from 0.05

to 0.20), is the correctly specified SFA exponential model deemed to be most

accurate. Even in these cases, the performance of said specification is significantly

better than the next best deterministic approach only when the levels of technical

inefficiency are relatively modest (see S2.4). And even so, with a MAD score of

14.7%, it would be difficult for any outside observer to label the performance of the

SFA model as ‘accurate’.

Another point that should be repeated here is the difficulties faced by the analysis

when estimating the SFA models under conditions of relatively large technical

inefficiency levels. The problem was that the skew of the residual of the affected

models was wrong, which meant that the SFA estimation could not proceed.

64 The estimated parameters would simply display larger confidence intervals, since the insignificant variables
reduce the degrees-of-freedom available to the estimation.
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Although the analysis circumvented this issue by discarding the problematic

datasets, this would not be possible in real-world applications. As such, it should be

noted as a possible weakness of the SFA approach in general that is not reflected in

the quantitative results of this analysis.

In general, when measurement error becomes more prevalent in the data, no

approach can produce accurate productivity estimates. This was also the case for the

S1 experiments and suggests that additional research would be required to identify

approaches that can produce robust estimates under these seemingly adverse

conditions.

Overall, the S2 experiments revealed that the non-parametric, deterministic

approaches provide reasonably accurate estimates under various conditions. In the

case of GA, this is a somewhat surprising result, given that the approach does not

acknowledge the presence of technical inefficiency, which is a not inconsiderable

component of productivity change in these experiments. However, DEA is revealed

to be the more accurate approach of the two, and, one could argue, the more

accurate approach on the whole, in the S2 experiments.

Another advantage of the DEA-derived estimates is their apparent robustness under

conditions of increased volatility in inputs and prices. The S2 simulations showed that

increased volatility reduces the accuracy of all estimates, but to a different degree for

each approach; the same experiments also showed that the DEA-based estimates

are in the majority of cases the ones that are least affected.

A summary of the results from all S2 experiments under the default assumptions and

their relative accuracy rankings are presented in the tables below:
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Table 4.31: Simulation summary results for the second category of
experiments (S2), default volatility assumptions

Measure GA COLS
COLS

(translog) DEA SFA
SFA

(translog)
SFA (half-
normal)

MAD 0.90% 2.40% 2.90% 0.80%

MSE 0.2 1.08 70.31 0.22S2.1: 12% average
inefficiency, no
noise TMAD 4.10% 8.20% 21.60% 4.10%

MAD 2.20% 2.40% 4.90% 1.10%

MSE 1.09 1.2 132.12 0.39S2.2: 32% average
inefficiency, no
noise TMAD 8.80% 8.80% 32.10% 5.40%

MAD 5.80% 6.30% 6.50% 5.80% 7.10% 6.10% 6.40%

MSE 5.33 6.24 7.81 5.23 9.11 6.12 6.96S2.3: 12% average
inefficiency,
noise~N(0,0.05) TMAD 16.20% 17.60% 20.60% 16.00% 21.60% 17.70% 18.50%

MAD 22.90% 23.00% 23.40% 22.80% 14.30% 15.40% 16.60%

MSE 86.21 86.93 95.96 85.38 38.41 43.7 49.76S2.4:,12% average
inefficiency,
noise~N(0,0.2) TMAD 67.70% 67.80% 71.30% 67.40% 48.80% 51.40% 52.20%

MAD 23.60% 23.60% 24.80% 23.40% 21.50% 22.20% 22.90%

MSE 91.33 91.5 148.54 89.94 76.76 82.49 86.35S2.5:, 32% average
inefficiency,
noise~N(0,0.2) TMAD 69.10% 69.50% 82.00% 68.70% 63.60% 66.40% 67.40%

MAD 6.20% 6.20% 8.70% 5.80% 7.10% 6.50% 6.20%

MSE 6.09 6.12 287.07 5.33 8.56 6.77 6.16S2.6:, 32% average
inefficiency,
noise~N(0,0.05) TMAD 17.50% 17.40% 47.20% 16.30% 20.40% 18.60% 17.40%
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Table 4.32: Relative accuracy rankings for the second category of experiments
(S2), default volatility assumptions

Measure GA COLS
COLS

(translog) DEA SFA
SFA

(translog)
SFA (half-
normal)

MAD 1 3 4 1

MSE 1 3 4 1S2.1: 12% average
inefficiency, no
noise TMAD 1 3 4 1

MAD 2 3 4 1

MSE 2 3 4 1S2.2: 32% average
inefficiency, no
noise TMAD 2 2 4 1

MAD 1 5 5 1 7 3 5

MSE 2 4 6 1 7 3 4S2.3: 12% average
inefficiency,
noise~N(0,0.05) TMAD 1 4 6 1 7 4 4

MAD 5 5 7 4 1 2 3

MSE 5 5 7 4 1 2 2S2.4:,12% average
inefficiency,
noise~N(0,0.2) TMAD 5 5 7 5 1 2 2

MAD 5 5 7 3 1 2 3

MSE 5 5 7 3 1 2 3S2.5:, 32% average
inefficiency,
noise~N(0,0.2) TMAD 5 5 7 3 1 2 3

MAD 3 3 7 1 6 5 3

MSE 3 3 7 1 6 5 3S2.6:, 32% average
inefficiency,
noise~N(0,0.05) TMAD 3 3 7 1 6 5 3
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Table 4.33: Simulation summary results for the second category of
experiments (S2), increased volatility assumptions

Measure GA COLS
COLS

(translog) DEA SFA
SFA

(translog)
SFA (half-
normal)

MAD 2.5% 6.4% 6.0% 1.5%

MSE 1.79 8.31 145.60 0.68S2.1: 12% average
inefficiency, no
noise TMAD 12.2% 23.2% 38.9% 6.8%

MAD 5.7% 6.3% 8.3% 2.2%

MSE 8.04 8.14 98.90 1.45S2.2: 32% average
inefficiency, no
noise TMAD 24.7% 23.4% 49.1% 10.2%

MAD 6.3% 8.5% 8.9% 5.8% 9.1% 7.4% 8.4%

MSE 6.79 12.36 92.19 5.45 14.91 10.09 12.42S2.3: 12% average
inefficiency,
noise~N(0,0.05) TMAD 18.9% 26.6% 46.0% 16.6% 29.0% 23.6% 26.4%

MAD 23.2% 24.0% 24.6% 23.0% 14.6% 15.5% 17.0%

MSE 89.70 95.39 137.09 87.73 40.00 44.74 52.04S2.4:,12% average
inefficiency,
noise~N(0,0.2) TMAD 69.8% 71.9% 80.6% 68.8% 50.2% 52.2% 54.3%

MAD 24.5% 24.8% 26.2% 23.8% 22.7% 23.4% 23.8%

MSE 100.24 101.41 157.38 93.87 85.44 92.37 94.64S2.5:, 32% average
inefficiency,
noise~N(0,0.2) TMAD 73.2% 72.9% 89.5% 70.3% 67.3% 70.2% 70.7%

MAD 8.4% 8.7% 10.6% 6.2% 10.0% 8.4% 8.8%

MSE 12.93 13.04 202.80 6.36 17.27 13.28 13.34S2.6:, 32% average
inefficiency,
noise~N(0,0.05) TMAD 28.2% 27.2% 55.4% 18.5% 30.3% 28.6% 27.8%
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Table 4.34: Relative accuracy rankings for the second category of experiments
(S2), increased volatility assumptions

Measure GA COLS
COLS

(translog) DEA SFA
SFA

(translog)
SFA (half-
normal)

MAD 2 4 3 1

MSE 2 3 4 1S2.1: 12% average
inefficiency, no
noise TMAD 2 3 4 1

MAD 2 3 4 1

MSE 2 2 4 1S2.2: 32% average
inefficiency, no
noise TMAD 3 2 4 1

MAD 2 5 6 1 7 3 4

MSE 2 4 7 1 6 3 5S2.3: 12% average
inefficiency,
noise~N(0,0.05) TMAD 2 5 7 1 6 3 4

MAD 5 6 6 4 1 2 3

MSE 5 6 6 4 1 2 3S2.4:,12% average
inefficiency,
noise~N(0,0.2) TMAD 4 6 7 4 1 2 2

MAD 5 5 7 3 1 3 3

MSE 5 5 7 3 1 3 3S2.5:, 32% average
inefficiency,
noise~N(0,0.2) TMAD 5 5 7 3 1 3 3

MAD 2 4 7 1 6 2 4

MSE 4 4 7 1 6 4 4S2.6:, 32% average
inefficiency,
noise~N(0,0.05) TMAD 4 4 7 1 6 4 4
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4.5. Summary and conclusions

As was stated in the introduction of this chapter, the aim of this analysis is to provide

quantitative evidence on the performance of GA and various frontier-based

approaches under a number of conditions, the most important being the presence of

inefficiency and noise (or measurement error), for the purposes of productivity growth

measurement. To achieve this, the analysis undertook a number of Monte Carlo

simulation experiments that were based on different conditions with regards to the

distribution and severity of technical inefficiency in the assessed units and the

presence and severity of noise in the data.

The starting point of the analysis was to formulate the production function(s) that

form the backbone of data generation process (DGP). Two production functions were

employed for this research, a two-input, one-output Cobb-Douglas function and a

two-input, one-output piecewise-linear function (the two inputs are referred to as

labour and capital, to ensure consistency with the GA framework65). The analysis

used two production functions firstly to assess the effects that functional form

misspecification in the parametric approaches and secondly to determine whether

the departure from a more ‘standard’, smooth production function to a piecewise

technology would affect the GA estimates.

For the various frontier-based approaches, information on inputs and output(s) is

sufficient for the estimation of productivity change; however, GA requires information

on prices for both inputs and output(s) in order to parameterise the production

function, so price information consistent with the quantities of inputs used and

outputs produced by each assessed unit was also generated.

One of the contributions of this research was to identify the exact structural

relationship that provides this consistent link between the production function and its

parameters to the input demand functions. This was done by relying on the findings

of the duality theory of production, specifically the duality between the production

function and the cost function If the analysis assumes that the assessed units are

either pursuing cost minimisation or output maximisation (input minimisation), the

duality theory provides the framework that links the production function and the cost

65 The results of the analysis apply for any general two-input, one output production process with the same
characteristics as those employed in each individual experiment, when considering the various frontier-based
approaches. However, GA requires that the inputs of the analysis include at least the two primary factors of
production, namely labour and capital.
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function; further manipulating this relationship, the analysis was able to derive

consistent formulas that link the parameters of the production function with the prices

of the different inputs. This derivation is described in more detail in section 4.3.1.

Each simulation experiment examined the performance of the following approaches:

– GA,

– DEA-based circular Malmquist indices,

– pooled Corrected OLS (COLS) and

– pooled SFA (only when measurement noise is included in the experiment).

Productivity change for the frontier-based approaches is estimated on the basis of

the Malmquist productivity index. The models used and the method of estimation are

discussed in more detail in section 4.3.2.

For the S1 category of experiments (ie those that adopt a Cobb-Douglas production

function in the DGP), the analysis found that the parametric approaches are in

general more accurate than GA and DEA. This is not an unexpected result, since the

parametric models that are ranked highest in each experiment are perfectly specified,

in that they utilise the same functional form as the adopted production function and,

in the case of the best-performing SFA models, assume the correct distribution for

the inefficiency term. In the S2 category of experiments (ie those that adopt a

piecewise-linear production function) however, it is the non-parametric approaches

(GA and DEA) that appear as more accurate on the whole, sometimes by a large

margin.

On the whole, some general statements can be made examining the results of the

simulation analysis:

– All approaches could be considered relatively accurate when there is no noise in

the data and average technical inefficiency is modest. In these cases, COLS is

the better performing approach when there is no functional form

misspecification, while DEA and GA are equally valid choices when the COLS

model is misspecified.

– When the technical inefficiency is more prominent and the data are not

measured with any error (no noise component in the DGP), DEA provides the

most accurate estimates overall, even when the COLS model is perfectly

specified.
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– All approaches could also be considered relatively accurate when a modest

amount of noise is introduced in the dataset. Under such conditions, the most

accurate approach is SFA when the DGP utilises a Cobb-Douglas production

function, while DEA is deemed the most accurate approach when adopting a

piecewise-linear production function. Probably the most interesting finding here

is that the deterministic approaches perform only slightly worse than the

stochastic models in the S1 experiments and slightly better in the S2

experiments. This suggests that the use of deterministic approaches should not

be dismissed in applications, just because some (modest) amount of

measurement error is very likely to be present in the data.

– When measurement error becomes larger, the accuracy of all approaches

deteriorates rapidly, to the point that their estimates could be considered

unreliable for policy purposes. This is observed in both S1 and S2 sets of

experiments, and although the estimates of the SFA models are significantly

more accurate when technical inefficiency is modest, they are still quite

dissimilar from the true productivity change values (average MAD scores of

12.5% in the best of cases).

– A surprising result is the relatively bad performance of the COLS models that

adopted the translog specification. In al experiments, the Cobb-Douglas COLS

models perform significantly better than their translog counterparts, despite the

fact that, according to theory, the more flexible nature of the translog would

result in a better overall fit to the data. This is partly reversed for the translog

SFA models, which are assessed as being more accurate than their Cobb-

Douglas counterparts when noise is modest. However, when noise becomes

more prominent, the Cobb-Douglas SFA models outperform the translog SFA

specifications. Possible reasons for this behaviour could be the relatively small

sample size adopted for this analysis (100 obs), the fact that the translog models

may have included statistically insignificant variables or the fact that the adopting

a translog specification might lead to the violation of the monotonicity and

convexity conditions that are inherent in the adopted piecewise-linear production

function. The above are just untested hypotheses at this stage and additional

research would be required to examine this issue in more detail.

– Increased volatility in inputs from one period to the next adversely affects the

accuracy of all approaches, in almost all experiments. The DEA estimates are

the least affected, while the GA estimates are the most affected. Interestingly,
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when noise is introduced in the analysis, the increased volatility appears to have

very little impact on the accuracy of the deterministic approaches and almost no

impact at all on the accuracy of the stochastic approaches in the S1

experiments, while in the S2 experiments, all approaches are affected except

when a more extended noise component is introduced in the data.

– The inclusion of fully efficient units has no perceptible impact on the accuracy of

the results, other than a slight improvement in some accuracy indicators. This

slight improvement is most likely due to the fact that the inclusion of fully efficient

units decreases the average technical inefficiency in the data, which is as was

previously noted, has a beneficial effect on the overall accuracy of all

approaches.

– While it was expected that functional form misspecification would adversely

affect the accuracy of the parametric models, the simulation experiments

revealed that the magnitude of this negative effect can be quite significant. In the

S2 experiments, even when no noise is present, the COLS Cobb-Douglas

specification displays MAD scores that are at least twice as large as those

displayed by the DEA estimates and the discrepancy in MSE scores is

significantly bigger (at least three times higher). When modest noise was

included in the data generation process, the non-parametric deterministic

approaches perform better that the stochastic models. In addition, the SFA

specification that (incorrectly) assumes that the inefficiency is half-normally

distributed is more accurate than the correctly specified SFA exponential model.

Only when the noise component becomes more prominent is the correctly

specified SFA exponential model deemed to be most accurate. Even in these

cases, the performance of said specification is significantly better than the next

best deterministic approach only when the levels of technical inefficiency are

relatively modest (see S2.4). And even so, with a MAD score of 14.7%, it would

be difficult for any outside observer to label the performance of the SFA model

as ‘accurate’.

– In addition, the analysis faced difficulties when estimating the SFA models under

conditions of relatively large technical inefficiency levels, because the MLE

procedure could not converge to a solution. Although the analysis circumvented

this issue by discarding the problematic datasets, this does not mean that the

problem is not there and cannot arise in real-world applications. As such, it

should be noted as a possible weakness of the SFA approach in similar
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situations (functional form misspecification with relatively large inefficiency

levels) that is not reflected in the quantitative results of this analysis.

– The impact of misspecification in the inefficiency distribution for the SFA models

to the accuracy of the productivity change estimates is quite small. Although in

the majority of the experiments, the correctly specified SFA exponential model

performed better than the SFA half-normal model, the differences in all accuracy

measures were quite small. In fact, in the S2 experiments with modest noise (ie

S2.3 and S2.6), the SFA half-normal model was assessed as more accurate

than the correctly specified SFA exponential model. The fact that the adoption of

the wrong inefficiency distribution has only a small impact in the overall accuracy

of the results strengthens the case for the use of SFA in the context of

productivity change measurement, since one of the main theoretical

disadvantages of the approach (ie the fact that a distribution for the inefficiency

term had to be specified a priori, with no way of testing whether the choice was

the right one) does not seem able to introduce significant bias to the results.

To summarise, this analysis demonstrates that no productivity change measurement

approach has an absolute advantage over another, but rather under some specific

circumstances, a specific approach is likely to be more accurate than its

counterparts. Probably the most significant findings are that the non-parametric

deterministic approaches offer very robust estimates even when noise is present in

the data in moderate levels and that functional form misspecification has a large

negative effect in the accuracy of the parametric approaches even when a flexible

functional form is adopted.

The analysis also clearly demonstrates that frontier-based approaches can usually

produce at least as accurate, and in the majority of cases more accurate, productivity

change estimates than the more traditional GA approach. And given that high quality

databases on measures of economic growth, employment creation and capital

formation are becoming increasingly available, the adoption of frontier-based

approaches when measuring aggregate productivity growth can only help improve

our understanding of this elusive and complex topic.
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Chapter 5. Selecting between different
productivity measurement approaches: An
application using EU KLEMS data

5.1. Introduction

This chapter has two main aims: first, to provide up-to-date application of aggregate

productivity measurement using both GA and frontier-based approaches and

secondly to discuss how the findings of the simulation analysis undertaken in the

previous chapter can be applied in practice, with reference to this application.

There are a number of approaches that could be used to measure productivity

change, both in the macro (ie economy- or industry-wide) and micro (eg company or

department) level, and each has its own strengths and weaknesses. Some of the

most common approaches were discussed in chapter 3 and their relative accuracy

was assessed through simulation analysis in chapter 4. This chapter provides a

practical application of these approaches using the EU KLEMS dataset. The EU

KLEMS dataset was originally designed so it can provide estimates of productivity

change using Growth Accounting (GA); in fact, the main goal of the EU KLEMS

project is to measure productivity change in the EU countries. However, the available

data can also be readily used to measure productivity change through frontier-based

approaches. This can be very valuable to the users of this analysis, since frontier

based approaches can provide a number of advantages over GA, such as the ability

to decompose productivity change and the incorporation of variable returns to scale

in the analysis. More importantly however, frontier-based approaches can potentially

provide more accurate estimates of productivity change itself, as the simulation

analysis in chapter 4 revealed. The productivity analysis is detailed in section 5.2.

The issue of the accuracy and the overall reliability of the productivity estimates can

be quite complex. It is not uncommon for productivity analyses that adopt a number

of different approaches to derive productivity estimates that are quite different from

each other; in some cases, these differences can be quite substantial66. In those

instances, the analysis would need to be able to put forward an informed view on

66 See for example Coelli (2002).
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why the various approaches come up with such divergent views and, more

importantly, which estimates are likely to be more accurate. To that end, this chapter

proposes the use of a simple framework which could be used to select between the

competing estimates, based on the likely accuracy of the adopted approaches when

taking into account the characteristics/conditions specific to the application at hand.

Although such a framework is also applicable in the micro setting and when the

analysis is interested in measuring efficiency, the focus here is on assessing the

relative accuracy of the different productivity estimates in the aggregate, economy-

wide setting. The selection framework is detailed in section 5.3.

5.2. Productivity change in the EU KLEMS dataset

Throughout this chapter, productivity change is measured through the use of the

classic model of aggregate production, detailed in chapter 2. In its simplest form, the

aggregate production model stipulates that aggregate output is a function of

aggregate inputs. As demonstrated in chapter 3, this model forms the basis of all

major productivity measurement approaches (namely index-number approaches,

parametric frontiers and non-parametric distance functions).

Section 5.2 is structured as follows:

– Section 5.2.1 provides an overview of the data (sourced from EU KLEMS) used

in the analysis, specifically focusing on how they can be utilised to measure

aggregate productivity change by both index-based (GA) and frontier-based

approaches.

– Section 5.2.2 provides a brief discussion of the approaches used to measure

aggregate productivity growth in this application. Additional details on the theory

behind these approaches and their relative strengths and weaknesses can be

found in chapter 3, while the technical details on the formulation of the models

can be found in section 4.3.2.

– Section 5.2.3 presents and compares the estimates of productivity change from

all adopted approaches.

– Section 5.2.4 provides a more in depth view of the estimated productivity

performance in a sub-sample of the assessed countries, focusing on a selected

number of key approaches, with the aim of highlighting the differences and

similarities of the produced estimates.
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– Section 5.2.5 presents and discusses the decomposition of productivity change

into efficiency change, technological change and scale efficiency change,

derived from the key approaches identified in section 5.2.4.

5.2.1. Data

The analysis carried out in this chapter uses the dataset constructed by the EU

KLEMS (2008) project. The EU KLEMS project aims to provide a harmonised set of

indicators for the measurement and comparison of productivity performance for a

large number of, mostly, EU countries. The dataset provides information, among

others, on economy-wide level aggregates from 1970 to 200767, based on

information from each country’s national accounts but adjusted for comparability

across time and countries. The dataset also includes GA-based total factor

productivity growth estimates derived from the primary data, which are used in this

chapter as is, together with the originally-derived frontier-based estimates.

Probably the most important feature of the EU KLEMS dataset is the work done to

ensure the comparability of the National Accounts data drawn from a large number of

countries. As mentioned in chapter 2, the adoption of international Standards of

National Accounts greatly enhances data comparability, but the adoption of these

standards is a relatively recent development; for earlier periods (years prior to 1985,

when NACE68 was adopted by the majority of EU countries), EU KLEMS utilised

additional data to ensure that industrial classifications, aggregation levels and price

concepts are consistent across all surveyed countries. Additional details for this

process can be found in the EU KLEMS Methodology paper (O’Mahony and Timmer

(2009)).  As mentioned in the introduction, the existence of a dataset of harmonised

National Accounts allows the utilisation of frontier-based approaches for the

measurement of aggregate productivity change.

This application focuses on assessing productivity at the economy-wide level. The

main reason for this choice of aggregation is that economy-level data are likely to be

more robust, due to the fact that any errors when estimating inter-industry

transactions, necessary for the creation of industry-level data, have no impact at the

economy-wide level of aggregation.

67 For some countries the start and end data of the period for which data is available differs, resulting in a
unbalanced panel.
68 As a reminder, Nomenclature generale des Activites economiques dans les Communautes Europeennes (NACE)
is the industry classification standard adopted by the European Union.
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5.2.1.1 Output
The output measure of choice at this level of aggregation is Gross Value Added (VA),

as discussed in some detail in chapter 2. EU KLEMS provides both economy-wide

nominal VA as well as its price index, which can be used to calculate real VA, ie a

volume measure of output.

This information is sufficient to estimate productivity change through GA, but frontier-

based approaches also require that output volumes are expressed in the same unit

of measurement for all units included in the analysis. This is achieved by further

adjusting VA to account for differences in Purchasing Power Parities (PPPs). As a

reminder, PPP adjustment ensures that the volume in question is converted to a

common, base currency that also reflects the purchasing power of each individual

currency in its perspective national market (more information on PPPs is provided in

chapter 2). The PPPs used for this particular conversion are output-specific (in this

case, calculated on the basis of VA) and are also sourced from the EU KLEMS

dataset.

5.2.1.2 Inputs
Since the analysis utilises VA as the output of choice, the inputs required are

measures of labour and capital services used.

In terms of the labour input, the analysis utilises aggregate ‘hours worked’, adjusted

by a number of factors to take into account the differences in the composition of

labour input. Also of note here is that EU KLEMS have made a number of

adjustments to primary (National Accounts) data to ensure comparability between the

different countries; these adjustments mainly concern the broad categories of ‘full-

time equivalency’ (FTE) definitions, using actual rather than paid hours worked and

collating additional data to estimate self-employed hours worked. A more detailed

discussion on these issues is provided in the EU KLEMS Methodology paper (op

cit.). What should be noted here is that these adjustments were individual to each

country examined, in order to take into consideration the unique characteristics of

each assessed economy.

The resulting data on hours worked were further adjusted to take into account the

differences in labour composition (low, medium and high skill labour). This

adjustment was in turn based on data on the overall educational attainment of the

labour force. Since this data is not available in the National Accounts, EU KLEMS
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employed additional data sources (mainly Labour Force Surveys) for this adjustment;

more details can be found in the EU KLEMS Methodology paper.

This final adjustment is not strictly necessary for the measurement of productivity

change; its main purpose is to allow the creation of a productivity change measure

that is net of the effects of changes in the labour force composition. Nevertheless, the

adjusted-working hours measure was also adopted for this analysis, mainly to ensure

comparability between the GA estimates sourced from EU KLEMS and the frontier-

based estimates calculated in this chapter.

The second input of the analysis is a measure of capital. As discussed in some detail

in chapter 2 of this thesis, this is a very difficult measure to construct and requires a

number of assumptions, both in the construction of the capital stock (ie the ‘pool’ of

capital assets available to an economy) and in the construction of the flow of services

derived from this stock. The first measure, capital stock, was constructed by EU

KLEMS using the Perpetual Inventory Method (PIM); an overview of this method can

be found in chapter 2 and additional discussion is provided in the EU KLEMS

methodology paper and the OECD manual (OECD (2001)).

The creation of the capital stock measure is a laborious process that requires data

from National Accounts and capital formation matrices for long timeframes; EU

KLEMS had to deal with a large number of implementation issues, details of which

can be found in their methodology paper. Furthermore, to ensure comparability

between the countries in the sample, EU KLEMS used harmonised depreciation

rates and applied consistent capital accounting procedures to deal with issues such

as weighting between various asset categories and rental rates. According to EU

KLEMS, ‘this treatment results in a data series that is both consistent across time

and across countries and at the same time includes substantially more information

than those utilised in previous studies’ (see Inklaar and Timmer (2009)). The use of

harmonised depreciation rates however may not reflect economic reality. There can

be a variety of reasons why the depreciation rates between countries can be

different, especially in the time period covered by this dataset; countries that undergo

rapid structural changes69 may well display higher rates of depreciation relative to

more stable economies as older, less productive capital assets are rapidly replaced.

This is also mentioned in the EU KLEMS methodology paper, but not discussed

further. Despite all the implementation difficulties, EU KLEMS was able to construct

69 For example, Eastern European countries after the collapse of the Eastern block, but also European
Mediterranean countries after joining the European Union and/or the Euro and Germany after the unification of East
and West Germany.



185

consistent time series of capital stock at both industry- and economy-wide levels, by

allocating capital investment into seven main asset categories (3 ICT and 4 non-ICT

assets)70.

EU KLEMS does not use the capital stock measure for those assets directly; rather,

capital stock is used as the basis of constructing a measure of the flow of capital

services arising from this stock. The capital services measure used by EU KLEMS is

simply a weighted sum of the different assets that comprise the capital stock. The

weights used for this aggregation are based on the average shares of each asset in

the value of total capital compensation, which is calculated in this instance as VA

minus labour compensation71. In order to calculate average shares for each asset,

the analysis also requires the estimation of the price of capital stock, which in turn

means that an estimate of the user cost of capital is also required. As was discussed

in previous chapters, the user cost of capital is not directly observable, but if the

neoclassical assumptions hold, it can be estimated residually (see sections 3.6.1 and

4.3.1 for additional discussion on this issue). It should be noted here that the most

common applications of GA require this type of aggregation of capital stock;

otherwise, the final weights for the aggregate capital measure in the GA formula (see

equations 5.2.1 to 5.2.3 below) will be inconsistent.

One of the main strengths of the frontier-based approaches is that they do not rely on

the neoclassical assumptions and they can estimate productivity change without

requiring information on input prices. In other words, there is no need to convert

capital stock into a measure of capital services when using frontier-based

approaches. Furthermore, since capital stock for all assets is expressed in the

monetary currency of each individual economy, it can be easily aggregated to a

single measure by a simple addition. Note that this does not reduce the information

context of the measure relative to capital services. In fact, capital stock offers a

complete representation of the capital services provided by said asset, since it

accounts for retirements, the decline of productive capability due to age (wear and

tear) and quality changes. In addition, since it is based on investment expenditure, it

also reflects the relative importance of each asset, assuming that the price of each

asset is a good indicator of its importance to production.

70 The ICT (Information and Communication Technology) assets are office and computing equipment,
communication equipment and software while the non-ICT assets are transport equipment, other machinery and
equipment, residential buildings and non-residential structures.
71 This definition of capital compensation implicitly assumes that only ‘normal’ profits are possible, ie profits that
correspond directly to the user cost of capital. This was briefly discussed in chapter 4 (section 3.1).
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One possible complication of using capital stock directly in the analysis is that, the

measure expressed in the currency of each individual country; the problem arises

from the fact that the frontier-based approaches require all inputs to be expressed in

the same units of measurement. This issue can be resolved by adjusting the

available capital stock information based on PPP indices, similar to the treatment of

aggregate output (VA in this application). For this analysis, capital stock-specific

PPPs are used, sourced from the GGDC database72. It should be noted that previous

studies of aggregate productivity change have sometimes used output-based PPPs

in order to convert inputs expressed in national momentary terms to a single

currency73; this could potentially introduce bias to the results, since PPPs are based

on ‘baskets’ of goods and services and it is quite likely that the group of goods and

services that comprise aggregate output will be different to those that comprise

aggregate capital stock.

The countries that are included in the analysis together with the time periods for

which data is available and the average values of the inputs and output are given in

table 5.1 below. Overall, the productivity growth estimates are produced for 14

different countries, over a number of years starting from 1970 and ending in 2007; on

the whole the analysis includes 375 observations (each country in each time period

as a different observation).

72 Groningen Growth and Development Centre (GGDC) Productivity level database: Inklaar and Timmer (2008).
73 For a discussion, see Inklaar and Timmer (2009), op cit.
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Table 5.1: Descriptive statistics of the dataset

Country
Short
code Observations

Start
date

End
date

PPP-
adjusted
Value
added
(average)

Adjusted
Hours
worked
(average)

PPP-
adjusted
Capital
stock
(average)

Australia AUS 26 1982 2007 334,732 14,996 1,012,975

Austria AUT 28 1980 2007 135,593 6,411 600,872

Czech
Republic CZE 13 1995 2007 115,130 10,278 215,538

Denmark DNK 28 1980 2007 98,943 4,052 401,680

Spain ESP 28 1980 2007 533,431 24,859 2,046,906

Finland FIN 38 1970 2007 79,438 3,754 258,258

Germany GER 17 1991 2007 1,660,380 57,623 5,705,057

Italy ITA 38 1970 2007 836,748 39,704 3,221,461

Japan JPN 34 1973 2006 1,831,401 119,325 9,767,948

Netherlands NLD 29 1979 2007 282,496 10,205 987,615

Slovenia SVN 12 1995 2006 20,850 1,712 29,957

Sweden SWE 15 1993 2007 180,068 6,996 355,325

United
Kingdom UK 38 1970 2007 827,492 45,309 1,890,611

United States
of America USA 31 1977 2007 6,867,596 233,426 18,108,226

Note: PPP-adjusted Value added and capital stock is in millions of PPP-adjusted Euros (German Euros
as base), adjusted Hours worked is also in millions.

5.2.2. Methods

Productivity change in this application is assessed using the same approaches

adopted for the simulation analysis undertaken in the previous chapter, namely:

– GA (productivity change estimates are sourced directly from the EU KLEMS

database),

– DEA-based circular Malmquist indices,

– COLS-based Malmquist indices, and

– SFA-based Malmquist indices.

The approaches are discussed in detail in chapter 3; what follows is a brief overview

of the formulations adopted for each approach.



188

Growth Accounting
EU KLEMS adopts the ‘standard’ GA framework74 for its productivity analysis. In

brief, GA postulates the existence of an aggregate production function that can be

parameterised if the ‘neoclassical’ assumptions hold. These assumptions include

assertions such as production is always at constant returns to scale, markets in

general are perfectly competitive and all actors have perfect information on prices

and marginal products, there are not delay costs and that productivity is Hicks-

neutral.

If these, admittedly restrictive, assumptions hold, once the production function is

differentiated with respect to time, the rate of change in output is equal to the sum of

the weighted average of the change in inputs and the change in productivity. The

input weights are the output elasticities of each factor of production, which are

derived as the share of each input to the total value of production. Therefore,

productivity change is estimated by:
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As previously noted, the price of capital is not observable; as such, EU KLEMS, like

the majority of GA applications (see for example OECD (OECD, 2001)), uses an

endogenous ‘user cost of capital’ to estimate the final price of capital.

DEA-based circular Malmquist index
The DEA-based circular Malmquist-type index (thereafter referred to as circular MI),

is based on the notion of the ‘meta-frontier’, a single frontier that envelops all data

points from all periods.

74 Detailed in chapter 3 of this thesis.
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For this application, the meta-frontier was constructed based on a technology that

utilised two inputs (skill-adjusted Labour hours and PPP-adjusted Capital stock) to

produce a single output (PPP-adjusted real VA). As with the standard MI, productivity

change was measured with a reference to technology at constant returns to scale.

For the decomposition of the circular MI, the scale efficiency change calculations

were based on the output oriented VRS efficiency scores.

Corrected OLS
Corrected OLS (COLS) is a deterministic, parametric approach and one of the

numerous ways that have been suggested to ‘correct’ the inconsistency of the OLS-

derived constant term of the regression when technical inefficiency is present in the

production process.

Two different COLS model specifications are used for this application. Both are

based on a pooled regression model (ie all observations are included in the same

model with no unit-specific effect). The first model assumes a Cobb-Douglas

functional form and is given by:

itititit tLY *lnlnln ***   Eq. 5.2.4

Where itY  is PPP-adjusted real VA, itL  is skill-adjusted Labour hours, itK  is PPP-

adjusted Capital Stock, t  is the time variable and it*  are the estimated OLS

residuals.

The second COLS model specification assumes a translog functional form and is

given by:
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Eq. 5.2.5

Inefficiency estimates are derived by:

)max( ***
itititu   Eq. 5.2.6

Productivity change is calculated by adding the different components of the

Malmquist productivity index:

dtSECddtTCddtECddtTFPd COLS
it

COLS
it

COLS
it

COLS
it /ln/ln/ln/ln  Eq. 5.2.7
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where COLS
itEC  is the COLS-estimated efficiency change, COLS

itTC  is the COLS-

estimated technical change and COLS
itSEC is the COLS-estimated scale efficiency

change. The formulae for calculating the three components of the productivity index

are given in detail in section 4.3.2 (Equations 4.3.27 to 4.3.32).

Stochastic Frontier Analysis
Stochastic Frontier Analysis (SFA) is a stochastic parametric approach that relies on

the notion that the observed deviation from the frontier could be due to both genuine

inefficiency but also random effects, including measurement error. SFA attempts to

disentangle those random effects by decomposing the residual of the parametric

formulation of the production process into noise (random error) and inefficiency.

As is the case with the COLS approach, two separate SFA model specifications are

used in this application: one that adopts a Cobb-Douglas functional form and a

second that adopts the translog. The models are very similar to those used under

COLS; the only difference lies in the specification of the error term.

In more detail, the Cobb-Douglas model is given by:

ititititit uvtLY  *** lnlnln  Eq. 5.2.8

whereas the translog model is given by:
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Eq. 5.2.9

where itu represents the inefficiency component (and as such 0itu ) and itv

represents measurement error ( ),0(~ 2
vit Nv  ). The inefficiency component is

estimated based on the JMLS75 estimator.

Two different distributions for the inefficiency component are tested:

– the exponential distribution, )(~ uit Expu 

– the half-normal distribution, ),0(~ 2
uit Nu 

Productivity change is measured in exactly the same way as with COLS.

75 See Jondrow, Knox Lovell, Materov, & Schmidt (1982), op cit.
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5.2.3. Overview of the results on productivity change

Due to the relatively long timeframe of this analysis, the various estimates of

productivity change are summarised on the basis of a number of distinct periods. In

more detail, summary results aggregated across all countries are presented for the

full period, ie 1970-2007, for the period when all countries included in the analysis

provide useable data, ie 1995-2007 and finally for smaller timeframes that attempt to

simulate ‘business cycles’. ‘Business cycles’ are defined in this analysis as periods

that begin with years of increased rate of average VA growth76 and end with years

where the average VA rate of growth is declining.  The reason why the analysis

utilises these ‘business cycles’ (as defined above) is that they provide a view of

productivity growth that is less contaminated by the cyclical movement of output.

These cyclical movements are demonstrated in Figure 5.2.

Figure 5.1: Annual change in VA (PPP-adjusted, real), averaged across all
countries
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The ‘business cycle’ periods selected for this analysis are:

– from 1970 to 1982 (12 years in total);

– from 1983 to 1993 (10 years in total);

– from 1994 to 2002 (8 years in total) and

– from 2003 to 2007 (4 years in total).

76 Average VA growth rates were calculated by averaging VA across all observations by period and then calculating
the relative change of this indicator on an annual basis.
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Figure 5.1 shows that the first period (1970-1982) might actually contain two

‘business cycles’, but due to the small number of economies for which data was

available in the 1970-1980 period and the relative short timeframe between the

economic downturns, this analysis chose to present its results based on this longer

timeframe.

Before presenting the results, it should be noted that the analysis also run a number

of diagnostic tests for the parametric models (the COLS and SFA models). The

results of these tests and how they can be used to establish a selection framework

for productivity measurement will be discussed in the next section of this chapter.

Table 5.3 presents a summary of the annual productivity change estimates by

approach for the full period and the 1995-2007 period, ie the period in which all

countries included in the analysis provide useable data.



193

Table 5.2: Annual productivity change estimates for the full period

Productivity
measure DEA COLS

COLS
translog

SFA
(half-
normal)

SFA
(exponential)

SFA
translog
(half-
normal)

SFA translog
(exponential) GA

Full period (361 obs)

Mean 0.52% 0.67% 0.86% 0.82% 0.82% 0.77% 0.88% 0.54%

Std. Dev. 1.66% 1.44% 1.70% 1.14% 0.99% 1.69% 1.15% 1.44%

1995-2007 (178 obs)

Mean 0.65% 0.65% 0.75% 0.75% 0.75% 0.57% 0.68% 0.45%

Std. Dev. 1.24% 1.21% 1.57% 0.99% 0.92% 1.60% 1.08% 1.26%
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COLS translog
SFA (half-normal)
SFA (exponential)
SFA translog (half-normal)
SFA translog (exponential)
GA

Table 5.2 shows that for the full period, productivity has been growing at an average

rate of between 0.52% and 0.88%. The lowest average growth comes from the DEA-

based circular Malmquist index, while the highest estimate comes from the translog

SFA model that assumes an exponential distribution of inefficiency. Overall, the

deterministic approaches, with the exception of the translog COLS, provide lower

productivity change estimates relative to the stochastic models.

Average productivity growth during the more recent 1995-2007 period is quite similar

with the average growth displayed in the full sample period, with only some small

variations by approach. In general, the SFA- and GA-based estimates of average

growth are slightly lower, while the DEA-based estimates are slightly higher. The

translog SFA-based estimates display the largest change, with average TFP growth

being approximately 0.2 percentage points smaller in the 1995-2007 period relatively

to the full sample period. The estimates from the deterministic approaches are still
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lower relative to those derived from the SFA models, but the differences are less

pronounced relative to the full period results.

Table 5.3: Average annual productivity change estimates for the different
‘business’ cycles

Productivity
measure 1970-1982 1983-1993 1994-2002 2003-2007

DEA -0.88% 0.95% 0.68% 0.74%

COLS 0.00% 0.95% 0.75% 0.63%

COLS translog -0.02% 1.38% 0.75% 0.97%

SFA (half-normal) 0.49% 1.02% 0.83% 0.73%

SFA (exponential) 0.60% 1.01% 0.79% 0.77%

SFA translog (half-
normal) 0.11% 1.32% 0.59% 0.78%

SFA translog
(exponential) 0.59% 1.28% 0.71% 0.77%

GA 0.24% 0.75% 0.40% 0.72%

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

1970-1982 1983-1993 1994-2002 2003-2007

DEA COLS COLS translog SFA (half-normal) SFA (exponential) SFA translog (half-normal) SFA translog (exponential) GA

Overall, the variation in average productivity growth between the various estimates is

relatively small, when examining performance over the various ‘business cycles’.

Only in the 1970-1982 period do the estimates of some approaches (namely DEA

and both COLS specifications) diverge in a more pronounced fashion; this may be

due to the fact that although this period covers almost 12 years – more than any

other ‘business cycle’ in this analysis – it only includes 59 observations, which are

less than in any other ‘business cycle’ (the 2003-2007 period is only four year long

but still contains 68 observations). Another reason of the variability of the productivity

growth estimates of this first period is the apparent volatility in the output observed

during this time. This is expected given that during that time the global economy
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experienced the so-called ‘oil crises’ of the 1970’s (the first crisis in 1973 and the

second crisis in 1979).

In terms of the trend in average productivity growth, it appears that the countries in

the sample experienced the fastest productivity improvements during the second

business cycle. The rate of productivity growth receded during the 1994-2002 period

according to all approaches and then slightly accelerated again during the 2003-2007

period, according to the majority of the estimates (with the exception of the Cobb-

Douglass parametric models).

The overall similarity of the average productivity growth estimates between the

examined approaches is also apparent in the correlations between the estimates.

The following table presents both Pearson’s and Spearman’s (rank) correlation

coefficients for the full period.

Table 5.4: Correlation coefficients for annual productivity growth

Approach
Correlation
measure DEA COLS

COLS
translog

SFA
(half-
normal)

SFA
(exponential)

SFA
translog
(half-
normal)

SFA translog
(exponential)

Pearson's 89%

COLS Spearman's 88%

Pearson's 88% 81%COLS
translog Spearman's 90% 84%

Pearson's 84% 96% 77%SFA (half-
normal) Spearman's 85% 98% 81%

Pearson's 80% 91% 72% 98%SFA
(exponential) Spearman's 83% 96% 78% 99%

Pearson's 86% 80% 99% 76% 72%SFA translog
(half-normal) Spearman's 90% 85% 99% 82% 80%

Pearson's 82% 76% 92% 78% 79% 94%SFA translog
(exponential) Spearman's 86% 79% 93% 81% 80% 95%

Pearson's 80% 95% 79% 92% 88% 79% 75%

GA Spearman's 80% 94% 83% 93% 91% 84% 78%

According the table above, GA estimates are more highly correlated with the Cobb-

Douglass COLS and SFA (half-normal) estimates and less highly correlated with the

DEA and translog-specified parametric approaches. DEA estimates are more highly

correlated with the COLS estimates, a finding which is expected due to the
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deterministic nature of both approaches. It is interesting to note that the translog SFA

estimates are more highly correlated with each other and their translog COLS

counterparts, while they display the smallest correlation coefficients with the

estimates from the Cobb-Douglas parametric models (COLS and SFA). This

demonstrates that the selection of the functional form to parameterise the models

can have a large effect on the TFP growth estimates, which is consistent with the

findings of the simulation analysis undertaken in the previous chapter. It is also an

indicator that in this particular application, the selection of the functional form for the

parametric approaches has a discernible impact to the resulting estimates.

The results so far suggest that there appears to be a broad consensus between the

various approaches. However average TFP change estimates across all countries

masks the underlying variation observed at the (individual) country level.

Table 5.5: Average annual productivity estimates by country, full period

Country DEA COLS
COLS
translog

SFA
(half-
normal)

SFA
(expone
ntial)

SFA
translog
(half-
normal)

SFA
translog
(expone
ntial) GA

AUS 0.8% 0.7% 1.0% 0.8% 0.8% 0.9% 0.9% 0.5%

AUT 1.2% 0.9% 1.5% 1.0% 1.0% 1.4% 1.4% 1.0%

CZE 0.9% 1.4% 0.3% 1.5% 1.5% 0.0% 0.1% 0.6%

DNK 1.0% 0.8% 1.1% 0.9% 0.9% 1.1% 1.2% 0.3%

ESP 0.3% 0.3% 0.6% 0.4% 0.4% 0.6% 0.6% 0.0%

FIN 0.1% 0.7% 0.8% 0.9% 0.9% 0.9% 1.1% 1.0%

GER 1.3% 0.7% 1.8% 0.9% 0.9% 1.6% 1.2% 0.7%

ITA 0.6% 0.6% 1.0% 0.7% 0.6% 1.0% 0.9% 0.4%

JPN 0.5% 0.6% 1.5% 0.8% 0.8% 1.3% 1.2% 0.8%

NLD 0.8% 0.6% 1.0% 0.8% 0.9% 0.9% 1.3% 0.4%

SVN -0.1% 1.0% -2.6% 1.2% 1.1% -3.0% -1.6% 0.9%

SWE 0.3% 1.1% 1.2% 1.0% 1.0% 1.0% 0.9% 0.8%

UK -0.4% 0.4% 0.2% 0.6% 0.7% 0.1% 0.5% 0.4%

USA 0.6% 0.5% 1.0% 0.9% 0.9% 0.8% 0.9% 0.2%
Note: A key of the short codes used by EU KLEMS and adopted in this analysis is provided in Table 5.1.
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Table 5.5 reveals that the various productivity change estimates at country level

appear to be quite different, for some countries at least. This is despite the fact that

correlations of the different estimates are still relatively high when comparing

productivity growth estimates within an individual country77. On average, the

difference between the smallest and the largest estimate in levels is approximately

1.1 percentage points and for some countries the difference can be much larger (eg

the spread is 4.2 and 1.5 percentage points for SVN and CZE respectively).

77 The tables of within-country correlations of the different productivity growth estimates can be found in appendix 3,
for a sub-set of the approaches.
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Table 5.6: Average annual productivity change estimates by country, 1995-2007

Country DEA COLS
COLS
translog

SFA
(half-
normal)

SFA
(expone
ntial)

SFA
translog
(half-
normal)

SFA
translog
(expone
ntial) GA

AUS 0.5% 0.3% 0.9% 0.5% 0.6% 0.7% 0.7% 0.2%

AUT 1.3% 0.9% 1.4% 0.9% 0.9% 1.3% 1.3% 1.0%

CZE 0.9% 1.4% 0.3% 1.5% 1.5% 0.1% 0.0% 0.6%

DNK 0.5% 0.2% 0.5% 0.4% 0.5% 0.8% 0.5% -0.2%

ESP -0.2% -0.2% -0.1% -0.1% -0.2% -0.1% -0.1% -0.6%

FIN 1.6% 1.5% 1.7% 1.4% 1.2% 1.6% 1.7% 1.5%

GER 1.4% 0.8% 1.8% 0.9% 0.9% 1.2% 1.6% 0.7%

ITA 0.1% 0.0% 0.4% 0.1% 0.1% 0.4% 0.3% -0.1%

JPN 1.2% 0.3% 1.5% 0.5% 0.4% 1.0% 1.2% 0.2%

NLD 1.0% 0.7% 1.0% 0.8% 0.9% 1.2% 0.9% 0.6%

SVN -0.1% 1.0% -2.6% 1.2% 1.1% -1.6% -3.0% 0.9%

SWE 0.3% 1.1% 1.1% 1.0% 1.0% 0.9% 1.0% 0.8%

UK -0.1% 0.5% 0.6% 0.6% 0.7% 0.6% 0.4% 0.4%

USA 0.7% 0.6% 1.4% 0.9% 0.9% 1.0% 1.1% 0.5%
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DEA COLS COLS translog SFA (half-normal) SFA (exponential) SFA translog (half-normal) SFA translog (exponential) GA

The variation between the different estimates at the country level is also present

when the focus is only in the 1995-2007 period, as the table above demonstrates. As

with the full sample, the average difference between the largest and the smallest

average productivity change estimate at the country level is approximately 1.1

percentage points and once more, SVN and CZE display even larger variations.
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5.2.4. Productivity change in selected economies

Given these wide variations in average productivity change estimates, it is useful to

examine in more detail the productivity performance of a sub-sample of the assessed

economies. This sub-sample includes economies that display interesting variations in

estimates, namely UK, SVN, GER and NLD, and will also present the case of an

economy (ITA) where the different approaches provide an almost identical view of

productivity change. Note that detailed figures and tables for the productivity

performance of all assessed countries can be found in appendix 3.

To improve readability, the following analysis examines the estimates of four models

(out of the eight utilised in this section), namely DEA-based MI, GA, translog SFA

(exponential) and Cobb-Douglas COLS. For COLS, the Cobb-Douglas specification

was selected due to its overall better accuracy performance in the simulations

undertaken in the pervious chapter, relative to the translog COLS models. The same

reasoning applies for the selection of the SFA functional form specification; the

exponential model was selected based on the results of the diagnostic analysis,

which will be discussed in detail in the next section of this chapter.

5.2.4.1 United Kingdom (UK)
The first economy assessed is the United Kingdom and is selected for closer

examination mainly due to the relatively large differences in average productivity

change estimates between DEA and the other three selected approaches.
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Figure 5.2: UK productivity change (%), by selected approaches
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Note: dTFP_sfa_e_translog = translog SFA (exponential) MI, dTFP_cols = Cobb-Douglas COLS MI,

dTFP_dea = DEA MI and dTFP_va = GA-based productivity change (VA as output).

The first thing to notice from the above figure is that the estimates of productivity

change from all four approaches are quite highly correlated. This is in fact true for the

majority of the assessed counties and it was also observed in the simulation analysis

undertaken in the previous chapter. Another feature that remains constant throughout

all the countries assessed is that the SFA78 estimates consistently display lower

variability relative to those derived from the other three assessed approaches. This is

predominantly due to the efficiency change component of the Malmquist index; as

will be discussed later on this chapter, SFA produces less variable efficiency

estimates from one period to the next and this in turn results in lower variability in the

efficiency change component of the SFA-based MI; this is in turn most likely due to

the fact that SFA classifies part of variation of the residual as noise, thus resulting in

less volatile estimates of efficiency change.

With regards to the levels of the estimates, GA and COLS produce the highest

productivity change estimates until 1993; from that year onwards the highest

estimates are provided by COLS and SFA, with the exception of the final 4 years of

78 The SFA estimates discussed in these sections refer specifically to the estimates derived from the translog SFA
(exponential) model.
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the analysis (2003 onward), when GA once again produces the highest estimates.

On the other hand, DEA produces the lowest productivity estimates of the

approaches considered, for the majority of the period of the analysis. This is also

apparent in the summary statistics, presented in the tables below.

Table 5.7: Summary statistics of TFP estimates for UK, full period

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA -0.4% 1.7% -5.7% 1974 2.1% 1987

COLS 0.4% 1.7% -6.3% 1974 3.0% 1983

SFA translog
(exponential) 0.5% 0.7% -2.0% 1974 1.7% 1983

GA 0.4% 1.8% -6.8% 1974 3.0% 1983

Table 5.8: Correlations of TFP estimates for UK, full period

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 0.92 1

SFA translog (exponential) 0.92 0.92 1

GA 0.83 0.97 0.85 1

All four approaches agree that the largest productivity contraction that happened in

the UK was in the 1973-1974 period, which corresponds to the first Oil Crisis of 1973,

when a number of large oil-producing countries initiated an oil embargo. COLS, SFA

and GA also agree that the period with the largest productivity expansion was 1982-

1983, which follows the recession caused by the global financial crisis of the early

1980’s and the instances of high price inflation and economic and social unrest that

took place in the UK in the late 70’s and early 80’s. DEA finds that the period with the

highest productivity expansion was 1986-1987; this is not in complete disagreement

with the other approaches, since they too display estimates of high productivity

growth for this period. In fact, for COLS and SFA, the productivity change in the

1986-1987 period is the second largest observed and for GA the third largest.

Overall, it is interesting to note that all four approaches demonstrate similar patterns

in the rate of change of productivity, which roughly correspond to periods of

economic cycles; this is true even for DEA, which produces quite lower productivity

change estimates. The main disagreement lies in the level of the actual productivity
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change measure, and again the differences are mainly between DEA and the other

three approaches.

5.2.4.2 Slovenia
Slovenia is an interesting case for a number of reasons; it is the smallest economy

examined in this chapter (approximately 40 times smaller than the UK) and it is also

one of the two ‘transition’ economies (ie countries that moved from centralised to

market economies) that provide sufficient data for the purposes of total factor

productivity measurement.79 It should be noted here that despite SVN’s very small

scale, the econometric outlier diagnostics undertaken for this analysis did not classify

it as a possible outlier and was thus included in the final set of assessed economies.

Data for SVN are available from 1995 to 2006.

Figure 5.3: SVN’s productivity change (%), by selected approaches
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Note: dTFP_sfa_e_translog = translog SFA (exponential) MI, dTFP_cols = Cobb-Douglas COLS MI,
dTFP_dea = DEA MI and dTFP_va = GA-based productivity change (VA as output).

Similar to the UK, SVN’s productivity change estimates from the three deterministic

approaches are quite highly correlated. However, this is not the case for the SFA

estimates, which display relatively low correlations with all three deterministic

79 The other ‘transition’ economy is the Czech Republic and it could also be argued that Germany shares a lot of
common issues, given that the German reunification between the former West and East Germany happened at the
same period and resulted in similar economic circumstances.
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approaches. In fact, SVN is the only country in the sample that displays relative low

correlations between any of the adopted approaches.  In addition to the low

correlations, SFA also consistently produces the lowest productivity estimates of the

four selected approaches, while COLS and GA produce the highest.

Table 5.9: Summary statistics of TFP estimates for SVN, full period

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA -0.1% 0.9% -1.9% 2003 1.1% 2001

COLS 1.0% 1.3% -1.5% 2003 2.7% 1997

SFA translog
(exponential) -1.6% 0.7% -2.2% 2003 0.1% 2006

GA 0.9% 1.4% -1.7% 2003 3.0% 2001

Table 5.10: Correlations of TFP estimates for SVN, full period

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 0.88 1

SFA translog (exponential) 0.59 0.33 1

GA 0.90 0.99 0.32 1

All four approaches however agree that the period of the greatest productivity

contraction was 2002-2003. The productivity contraction of this period was mainly

due to a steep decline in output. This was probably fuelled by the global economic

slowdown in the early part of the 21st century, given that Slovenia is a very small

economy that is dominated by an export-led manufacturing sector. With regards to

the period with the highest productivity expansion, all four approaches provide

different answers. What is more troubling is the extent of disagreement between the

approaches in the level of productivity change; taking 2000-2001 as an example,

COLS and GA estimate that productivity change is between 2.7 and 3%, while under

DEA it is 1.1%, a difference of almost 2 percentage points. The differences are even

more pronounced when comparing the GA and COLS estimates to SFA estimates;

for the 2000-2001, SFA estimates productivity change to be -2.2%, for a total

absolute difference of approximately 5 percentage points. The above example may

be somewhat extreme, in that the absolute differences between COLS/GA estimates

and SFA estimates are largest in this particular period. Nevertheless, it helps

illustrate the fact that different approaches can produce divergent estimates and as
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such, a framework that can be used to select between conflicting estimates can be of

great value to the analysis of productivity change.

5.2.4.3 Germany
The case of Germany is another interesting example, mainly presented here to

demonstrate the low variability of the SFA productivity change estimates.

Figure 5.4: GER’s productivity change (%), by selected approaches
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Note: dTFP_sfa_e_translog = translog SFA (exponential) MI, dTFP_cols = Cobb-Douglas COLS MI,
dTFP_dea = DEA MI and dTFP_va = GA-based productivity change (VA as output).

As the above figure reveals, the description of Germany’s productivity performance

over the assessed period greatly depends on the approach selected to measure

productivity change.

All three deterministic approaches provide a relatively consistent picture. They detect

two instances of productivity contraction in the 90’s, the first of which corresponds to

macroeconomic adjustments prior to the introduction of the Euro and microeconomic

pressures from collectively bargained wage increases, while the second contraction

was probably due to the effects of the Asian financial crisis that happened during the

1997-1999 period. These contractions were followed by a brief period of productivity

expansion, probably driven again by collective bargaining agreements designed to

reduce the rate of wage increases, followed again by a contraction which roughly
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corresponds to the first financial crisis of the 21st century and the spike in oil prices

that was observed in during this period80.

SFA also maps the effects of these events on GER’s productivity performance, but

the magnitude of said effects is substantially muted, compared with the estimates

from the deterministic approaches.

Table 5.11: Summary statistics of TFP estimates for GER, full period

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 1.3% 1.1% -0.7% 1998 3.5% 2000

COLS 0.7% 0.9% -0.8% 1993 2.3% 2000

SFA translog
(exponential) 1.2% 0.3% 0.7% 1993 1.6% 2000

GA 0.7% 0.9% -1.2% 1998 2.1% 2006

Table 5.12: Correlations of TFP estimates for GER, full period

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 0.90 1

SFA translog (exponential) 0.93 0.99 1

GA 0.89 0.97 0.97 1

As can be seen from the table above, the estimates from all four selected

approaches are very highly correlated and all display relatively similar values for

average productivity change over the assessed period; COLS and GA find that

average productivity change was 0.7% p.a. while DEA and SFA find that it was

approximately 1.2%-1.3% p.a. This similarity in the aggregate, together with the high

correlation of the estimates might lead to the conclusion that all four approaches

provide a similar view of productivity performance. However, this is not completely

true in this case; SFA finds that GER’s productivity performance is quite stable, while

the deterministic approaches provide estimates that are much more varying.

If the analysis is only interested in deriving a long-tem estimate of productivity

change, the choice of approach would not have a great impact on the final result,

given that all four approaches provide relatively similar average estimates. However,

80 For an extensive discussion on Germany’s economic performance in this period, see DG-Economic and Finance
(2002), ‘Germany’s growth performance in the 1990’s’,
http://ec.europa.eu/economy_finance/publications/publication1878_en.pdf (accessed 12 April 2013).
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if the analysis is more concerned about shorter timeframes (e.g. when the goal is to

analyse the effects of a certain policy or a change in the economic environment),

then the choice of an approach would in fact be critical to the final outcome.

5.2.4.4 Netherlands
The case of the Netherlands is similar to Germany, in that all three deterministic

approaches produce similar productivity estimates, but the SFA estimates are quite

different. The difference with the case of Germany is that the SFA estimates are not

only less volatile here but are also significantly higher relative to their deterministic

counterparts.

Figure 5.5: NLD’s productivity change (%), by selected approaches
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Note: dTFP_sfa_e_translog = translog SFA (exponential) MI, dTFP_cols = Cobb-Douglas COLS MI,
dTFP_dea = DEA MI and dTFP_va = GA-based productivity change (VA as output).

Overall, the economic performance of the Netherlands in the 80’s is consistent with

global economic developments; the country experienced a spike in productivity

growth after the second Oil Crisis in the late 70’s and had a relative stable period of

productivity growth throughout the decade. There were two major periods of

productivity contraction in the later two decades: The first was in the 1991-1992

period which was probably due to the global economic recession that happened at

this time; the large productivity contraction is not surprising, given that during this

time the economy of the Netherlands was ‘outward-facing’, with significant
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contributions to output coming from international trade (Europe’s largest cargo port is

in Rotterdam and Amsterdam’s airport was at the time the second largest in Europe)

and foreign investment (favourable corporate tax incentives for foreign investments).

The second period of major productivity contraction was in the 2001-2002 period,

which again corresponds to a period of global economic contraction. The productivity

decline in this period lasted longer than the majority of the other assessed countries,

probably due to structural issues that the Dutch economy was experiencing at the

time81.

Table 5.13: Summary statistics of TFP estimates for NLD, full period

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.8% 0.9% -1.3% 1992 2.4% 2004

COLS 0.6% 0.9% -1.3% 1992 2.3% 1983

SFA translog
(exponential) 1.3% 0.2% 0.9% 1992 1.6% 1983

GA 0.4% 0.9% -1.7% 1992 2.4% 1983

Table 5.14: Correlations of TFP estimates for NLD, full period

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 0.96 1

SFA translog (exponential) 0.87 0.87 1

GA 0.96 0.91 0.90 1

5.2.4.5 Italy
The productivity performance of Italy is presented here to provide a counter-point to

the case studies examined thus far.

As was previously mentioned, the countries that were examined in more detail here

were selected in such a way as to demonstrate that the choice of a productivity

measurement approach can have a significant impact in the productivity estimates,

even if this not immediately apparent by looking at summary statistics and correlation

measures for the whole panel. On the other hand, there are also countries, such as

Italy, for which all approaches provide a consistent view of their productivity

performance.

81 For a more detailed look at the recent economic performance of the Netherlands, see Albers, R. and Langedijk, S.
(2004), ‘The Netherlands: from riches to rags?’, ECFIN Country Focus series
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Figure 5.6: ITA’s productivity change (%), by selected approaches
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Note: dTFP_sfa_e_translog = translog SFA (exponential) MI, dTFP_cols = Cobb-Douglas COLS MI,
dTFP_dea = DEA MI and dTFP_va = GA-based productivity change (VA as output).

The similarity in the estimates of all four approaches is evident in the summary

statistics of the estimates and in their detailed annual movements, as demonstrated

by the figure above and is also confirmed by the very high correlations between the

examined approaches. Overall, Italy’s productivity performance in the 70’s and early

80’s is greatly influenced by the two major oil crises that took place in this period; a

similar effect was also observed in the UK’s productivity performance and indeed all

of the developed economies included in this analysis for which data was available for

this period. Productivity recovered in the mid 80’s but suffered a blow in the start of

the 90’s, probably due to Italy’s adoption of the European Exchange Rate

Mechanism and internal fiscal adjustments and structural changes designed to

reduce public deficit82. Productivity briefly recovered during the early 90’s, but from

then on Italy’s productivity performance has been quite volatile (although not at the

scale observed in the 70’s), with average productivity change in the 1995-2007

period between -0.1% (GA) to 0.1% (DEA).

82 For a discussion on Italy’s macroeconomic performance in the 90’s and the early part of the 21st century, see DG-
Economic and Finance (1999), ‘Italy’s slow growth in the 1990s: Facts, explanations and prospects’, available at
http://ec.europa.eu/economy_finance/publications/publication8097_en.pdf (accessed 12 April 2013).
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Table 5.15: Summary statistics of TFP estimates for ITA, full period

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.6% 1.7% -4.3% 1975 4.1% 1976

COLS 0.6% 1.6% -4.6% 1975 3.9% 1976

SFA translog
(exponential) 0.9% 1.3% -3.1% 1975 3.8% 1976

GA 0.4% 1.6% -4.2% 1975 4.0% 1976

Table 5.16: Correlations of TFP estimates for NLD, full period

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 0.97 1

SFA translog (exponential) 0.95 0.99 1

GA 0.96 0.98 0.98 1

5.2.4.6 Summary of country analysis
As demonstrated above, the various measurement approaches can sometimes

produce quite dissimilar productivity change estimates. These, sometimes

pronounced, differences can be problematic, if such analyses were to be used to

inform policy. It is quite likely that a policy maker, upon being presented such results

would enquire as to why do the various estimates differ and, more importantly, which

estimate is likely to be more accurate. The framework described in section 5.3 aims

to facilitate this selection process.

5.2.5. Decomposition of productivity change

This section provides a brief discussion on the results of the analysis with regards to

the individual components of the productivity change estimates derived from the

various approaches. As mentioned in chapter 3, one of the main advantages of the

frontier-based approaches over GA is that they can all provide robust methods that

can be used to identify the ‘sources’, or components, of productivity change. The

analysis undertaken here decomposes the MI productivity index into its three main

components, namely efficiency change (EC), technological change (TC) and scale

efficiency change (SE). For a detailed description of how this decomposition is

achieved for each approach, refer to chapter 3.
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The following table presents the summary statistics of the three productivity change

components for three approaches; the DEA-based circular Malmquist index (DEA),

the Malmquist index derived from the translog, exponential SFA model and the

Malmquist index derived from the Cobb-Douglas COLS model. Similarly to the

individual case studies examined in the pervious section, the decision to limit the

reporting of the results to these particular approaches was based on the diagnostic

analysis for the econometric models.

Table 5.17: Summary statistics of productivity change components

Full sample period (1970-2007) 1995-2007

DEA SFA COLS DEA SFA COLS

Obs 361 361 361 178 178 178

Mean -0.3% -0.1% -0.1% -0.3% -0.3% -0.2%
Standard
Dev 3.7% 1.0% 1.4% 1.2% 0.9% 1.2%

Min -57.8% -4.4% -7.1% -3.6% -3.4% -4.2%
Average
Efficiency
Change Max 4.2% 3.2% 3.5% 3.4% 2.9% 3.5%

Obs 361 361 361 178 178 178

Mean 0.7% 1.0% 0.8% 0.7% 1.1% 0.8%
Standard
Dev 3.8% 0.3% 0.0% 1.3% 0.3% 0.0%

Min -8.1% 0.2% 0.8% -4.6% 0.3% 0.8%
Average
Technological
change Max 56.3% 1.6% 0.8% 4.0% 1.6% 0.8%

Obs 361 361 361 178 178 178

Mean 0.2% 0.0% 0.0% 0.2% -0.1% 0.0%
Standard
Dev 0.8% 0.2% 0.0% 0.5% 0.3% 0.0%

Min -4.6% -1.3% 0.0% -1.0% -1.3% 0.0%

Average
Scale
efficiency
change Max 2.5% 0.7% 0.0% 2.3% 0.5% 0.0%

As was the case with the aggregate productivity index, the three selected

approaches seem to provide a uniform view of productivity performance in the

sample. All find that over both the full period of the analysis and during the shorter

1995-2007 period, there has been a slight decrease in overall efficiency, almost no

variation in scale efficiency and thus the main driver of productivity change has been

technological change.

The fact that efficiency change has been slightly negative or stable suggests that the

performance of the assessed countries on average is sufficient to keep up with the

improvements in technology, but not enough to push inefficient countries closer to

the frontier. In other words, the results suggest that over the assessed period there

has not been any substantial convergence towards the frontier; it should be stressed
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however that additional analysis would be required in order to provide firm evidence

on the issue of convergence.

The most important driver of the productivity growth on aggregate has been

technological change, ie improvement in productivity achieved by countries that were

already assessed as fully efficient or close to that. In more detail, the countries that

are either fully efficient or close to that under both DEA and SFA and also display

significant improvements in technological change are Sweden, the Netherlands and

USA.

Scale efficiency change has little impact on overall productivity change, at least when

considering the sample in aggregate. This is not surprising, given that the units of the

analysis are entire economies; even smaller countries cannot easily, and certainly

not quickly, change their scale. This is in fact supported by the data, which show

quite low variation both in the levels of inputs and the levels of output from one year

to the next for an individual country. This is be demonstrated in more detail in section

3.4.1 of this chapter.

It should be noted that COLS shows no variation in either the technological change

or the scale efficiency change component; this is due to the fact that the COLS model

presented here assumes Cobb-Douglas technology, which by construction exhibits

global returns to scale and unit/time-invariant technological change. On the other

hand, both DEA and SFA utilise frontiers that allow for both unit- and time-variable

scale effects and technological change; DEA does this by construction and SFA

achieves that by assuming that the technology is translog. Due to this limitation of the

selected COLS model, the discussion in this section will focus on the DEA and SFA

results from here on.

The productivity components derived from the SFA model are significantly less

volatile compared to their DEA counterparts, at least when the focus is on the full

period of the analysis; similar behaviour was also observed in the estimates for the

productivity index itself. It is interesting to note that this disparity in the variation of the

estimates lessens quite considerably when considering the 1995-2007 period. This

suggests that a possible reason for the difference in the variability of the components

is the frequent economic shocks that the assessed countries experienced in the

earlier period of the analysis. DEA is a deterministic approach and as such the

effects of these shocks are starkly reflected in the productivity index and its

components; SFA on the other hand moderates the impact of these shocks, by
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assigning some of their effects to the stochastic element. Examining the more recent

1995-2007 period, when economic conditions were more stable, the analysis finds

that the differences in the volatility between the SFA and DEA estimates are less

pronounced.

Another interesting point is the extreme minimum and maximum value of the

efficiency change and technological change component respectively under DEA.

Further examination reveals that these values are both estimates for Japan and that

they both correspond to the 1977-78 period. In general, the DEA efficiency change

and technological change estimates for that particular year are quite inflated for all

assessed countries; the reason for that is that the 1977-78 period was the first period

for which data for USA are available. This is important because the introduction of

USA data cause a considerable upset in output VRS efficiency scores (which inform

the DEA efficiency change estimates); for example, Japan in 1977 was assessed as

100% output VRS efficient but with the introduction of USA data the VRS frontier

shifted outward by such a margin that Japan in 1978 was assessed as only 57%

output VRS efficient. This outward shift of the frontier is also the cause for the

extreme positive technological change estimates observed in this particular period.

Despite the similarity of the estimated components of productivity change from both

approaches in the aggregate, closer examination of the results of the analysis shows

that the patterns of change are significantly different. The table below presents the

correlation coefficients between the DEA- and SFA-based estimates.

Table 5.18: Correlation coefficients between the DEA- and SFA-derived
productivity change components

Full period 0.44

Efficiency Change 1995-2007 0.58

Full period 0.09

Technological change 1995-2007 0.32

Full period 0.00

Scale efficiency change 1995-2007 0.02

Full period 0.39

Efficiency plus Scale efficiency change 1995-2007 0.47

The table above clearly demonstrates that there is relatively low correlation between

the DEA- and SFA-based estimates of the productivity change components. The only

component with a correlation coefficient that approaches 0.5 is efficiency change; for
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technological change and scale efficiency change, there is almost no correlation

between the different approaches, at least when considering the estimates for the full

period. This is a very interesting result, especially when the correlation in the overall

productivity change estimates from the two approaches was quite high; 82% for the

full period and 81% for the 1995-2007 period. The correlation coefficients of the

components are higher for 1995-2007 period (probably due to the lower variation of

the DEA estimates in that period), but are still markedly lower than the correlation

coefficients of the overall productivity change estimates.

One hypothesis for the low correlations between the components is that DEA allows

for a production frontier that is more sensitive to changes in productivity, since it is

informed only by the performance of the assessed units in a single period. Due to this

sensitivity, it could be possible that part of the productivity change that is attributed to

scale efficiency change under DEA might be detected as efficiency change in the

translog SFA models. To assess if this is the case, the analysis also examined the

correlation of an aggregate measure of efficiency and scale efficiency change

(defined as the sum of efficiency and scale efficiency change estimates). The results

of this simple crosscheck do not support the initial hypothesis; the correlation of the

aggregate measure from the DEA and SFA approaches is remains quite low, lower in

fact than the correlation of the efficiency change measure.

The relatively low similarity of the estimates for the productivity components is also

apparent when examining the evolution of these measures over time:

Figure 5.7: DEA- and SFA-based Efficiency change (%), by year
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Figure 5.8: DEA- and SFA-based Technological change (%), by year
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Figure 5.9: DEA- and SFA-based Scale efficiency change (%), by year
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Figure 5.10: DEA- and SFA-based Efficiency and Scale efficiency change (%),
by year
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Note that for the above figures, the DEA-based estimates of efficiency and

technological change for the 1977-78 period are omitted, due to the extreme values

for these estimates in that particular period; this is done here to increase the

readability of the figures.

The differences between to two approaches are even more pronounced when

examining the performance of individual countries.
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Table 5.19: Averages of the components of productivity change, by country

Efficiency Change
Technological
change

Scale efficiency
change

Productivity
change

DEA SFA DEA SFA DEA SFA DEA SFA

AUS -0.5% -0.1% 1.1% 1.1% 0.2% 0.0% 0.8% 0.9%

AUT 0.2% 0.0% 1.1% 1.4% -0.2% 0.0% 1.2% 1.4%

CZE 0.0% -0.1% 0.1% 0.4% 0.7% -0.2% 0.9% 0.1%

DNK -0.3% -0.3% 1.2% 1.5% 0.1% -0.1% 1.0% 1.2%

ESP -0.6% -0.6% 0.6% 1.1% 0.3% 0.1% 0.3% 0.6%

FIN 0.0% -0.1% 0.6% 1.3% -0.4% -0.1% 0.1% 1.1%

GER 0.5% 0.1% 0.4% 1.1% 0.4% 0.0% 1.3% 1.2%

ITA -0.1% -0.2% 0.4% 1.0% 0.4% 0.1% 0.6% 0.9%

JPN 0.1% 0.2% -0.3% 0.8% 0.7% 0.2% 0.5% 1.2%

NLD -0.2% -0.1% 1.0% 1.4% 0.0% 0.0% 0.8% 1.3%

SVN 0.0% -1.1% -0.1% 0.6% 0.0% -1.1% -0.1% -1.6%

SWE 0.0% 0.0% 0.3% 1.0% 0.1% -0.1% 0.3% 0.9%

UK 0.0% -0.2% -0.2% 0.6% -0.2% 0.1% -0.4% 0.5%

USA 0.0% -0.1% 0.0% 0.7% 0.6% 0.3% 0.6% 0.9%

The countries in bold signify situations where the aggregate results (averaged

estimates) from each approach are noticeably different, for at least one of the

components of the productivity index:

– For Austria (AUS), DEA finds that efficiency change had a relatively large

negative effect on productivity growth; SFA also finds a negative effect, but at a

lower magnitude. For DEA, this negative effect of efficiency change is somewhat

lessened by the positive contribution of the scale efficiency component. The net

result is that both approaches result in a very similar estimate for overall

productivity change.

– For the Czech Republic (CZE), the area of major disagreement between the two

approaches is scale efficiency change; the DEA results suggest a large positive

contribution for this component, while SFA finds that scale efficiency change

negatively impacts the overall productivity change estimate. This, together with

the smaller differences in the technological change component result in DEA

concluding that CZE’s productivity growth is above average, while SFA finds that

it is below average (average productivity change under both approaches is

between 0.6% and 0.7%).
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– For Finland (FIN), the two approaches mainly agree on the direction of the effect

for all three components, but there is significant disagreement with regards to

the magnitude of the effects. The end effect is observed in the substantial

differences in the estimates for overall productivity change (0.1% for DEA, 1.1%

for SFA).

– The case for the Germany (GER) is somewhat similar to Austria, in that both

approaches result in productivity growth estimates that are very close in level

terms. However, they are not in agreement on how this productivity growth was

achieved; DEA assigns equal importance on all three components, while SFA

finds that GER’s productivity improvement was almost solely due to

technological change.

– Japan (JPN) is similar to the Czech Republic, in that there is substantial

disagreement in the levels of estimated scale efficiency change; DEA finds a

significant positive contribution, while SFA finds a much smaller positive effect.

Additionally there is also disagreement in the levels and the direction of the

effect of technological change; DEA suggests that the effect is negative while

SFA finds a relatively large positive effect. The end result is a somewhat large

discrepancy in overall productivity change estimates.

– Lastly, the estimates for the United Kingdom show that there is disagreement in

the direction of the effect for all three components, although this is more

pronounced in the estimates for technological change. This results in

productivity change estimates that are very dissimilar (positive for SFA and

negative for DEA).

To conclude, the estimates of the components of the productivity indices derived

from the two selected approaches examined in this section are quite different in the

majority of the countries assessed. This is an interesting finding because the overall

productivity change estimates from these two approaches are quite similar in levels

and are also quite highly correlated. A closer examination of the rates of change of

the components in individual countries revealed that there is no apparent systematic

pattern that could help explain the differences in the findings. As such additional

analysis would be required to examine the likely causes of these differences; this

could be the subject of further research into this area.
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5.3. Selecting between approaches

As the previous section demonstrated, the various productivity measurement

approaches can produce estimates that are quite different form each other,

especially when considering the results at an individual country or economy level.

There are a number of possible explanations as to why the various productivity

change estimates differ; after all, they are produced by different approaches that

adopt different perspectives and sets of assumptions to measure productivity change

(see chapter 3 for discussion). Therefore, small, and in some cases not-so-small,

differences in the various estimates can be quite common in real-life productivity

measurement studies83. In other words, although it would be ideal if the analysis

revealed that there is a strong consensus between the different estimates, at least

some degree of disagreement is to be expected. If the level of disagreement is large,

as is the case for some of the countries assessed in the previous section of this

chapter, the key question is which estimates are likely to be more accurate.

The issue of selecting a set of estimates that are likely to be more accurate is quite

complex. One could select a set of estimates based on arguments grounded on the

theory behind the adopted approaches; for example, one could discount the use of

GA because it adopts a set of assumptions that are, at first glance, significantly more

restrictive than the frontier-based approaches. The problem with this type of

argumentation is that all measurement approaches rely on assumptions and that it is

not known beforehand what would be the impact to the accuracy of the estimates

when one or more of those assumptions are violated. To assess that impact, one

would need additional evidence, such as those provided by simulations. Even that

avenue of research however might not be able to provide clear-cut answers; the

simulation analysis in the previous chapter revealed that the accuracy of the

assessed approaches heavily depends on a number of characteristics inherent in the

data generation process that manifest directly in the dataset.

Therefore, the key issue here is how to identify and assess the relevant

conditions/characteristics prevalent in the dataset at hand. If this can be done with

some degree of certainty, the findings of the simulation analysis can be more readily

applied in a practical setting, so that the analysis can make an informed decision on

83 See for example Coelli et al. (2005).
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the approach, or a subset of approaches, that are likely to provide the most accurate

TFP change estimates for the current analysis.

This reasoning can provide a blueprint of a methodological framework for selecting

between competing estimates. Such a framework would require three main steps:

– First, identify the characteristics, features and/or conditions (from here on

referred to as simply the characteristics of the dataset) pertinent to the analysis

that can have a significant impact on the relative accuracy of the various

productivity measurement approaches. As mentioned above, this can be based

on theory, but would ideally also utilise additional evidence from controlled

experiments (ie simulations), as these provide a more complete, quantified view

of the issue.

– Second, identify methods and techniques that can be used to detect the

presence of such characteristics in the application at hand and quantify them if

possible.

– Lastly, combine the results of the second step with prior knowledge on the

performance of the various approaches under said characteristics, in order to

select the productivity estimates that are likely to be more accurate in the current

application.

This selection framework relies heavily on findings of simulation experiments, both

for the first step (identifying the pertinent characteristics) and for the third step

(selecting the most likely accurate approach). Note that this general blueprint of a

selection framework is not necessarily confined in applications of productivity

measurement; indeed, it can be easily modified to assist in the selection of efficiency

measurement approaches. In such cases, the analysis needs to choose

characteristics that affect the estimates of efficiency (rather than productivity) and

rely on simulation findings that focus on this aspect of performance measurement

(efficiency measurement rather than productivity measurement). However, since the

focus of this thesis is productivity measurement, the discussion here will be limited to

this particular area. Further more, since simulation analyses focusing on productivity

measures are sparse in the academic literature, the practical application of the first

and third step of the proposed framework will be based on the findings of the

simulation analysis undertaken in chapter 4. For the second step (identification and

quantification of characteristics in the dataset), this section proposes the use of a set
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of readily available diagnostic tests and/or indicators. These are discussed in more

detail below.

The rest of this section is structured as follows:

– Section 5.3.1 provides a brief discussion on identifying the characteristics of

interest.

– Section 5.3.2 suggests the use of a number of diagnostic tests and indicators

sourced from the productivity performance analysis to detect and quantify said

characteristics.

– Section 5.3.3 discusses how the findings of the first two steps and can be used

to select between competing estimates.

– Section 5.3.4 demonstrates the use of this framework on the estimates from the

EU KLEMS dataset, from section 5.2 of this chapter.

5.3.1. First step: Identifying the characteristics of interest

The simulation analysis undertaken in the previous chapter revealed that the most

influential characteristics of the data generating process (DGP) to the accuracy of the

examined approaches are:

– the extent of volatility in inputs from one year to the next. Increased volatility

adversely affects the accuracy of all approaches, but DEA-based estimates are

the least affected, while the GA estimates are the most affected;

– the extent of inefficiency  present in the sample. Increased levels of technical

inefficiency have only a small negative effect on the accuracy of COLS- and

DEA-derived productivity estimates, but a larger impact on GA and SFA-based

estimates (for the SFA estimates the change in accuracy is co-dependent on the

extent of measurement error-noise in the data);

– the extent of measurement error/noise in the data. Increased levels of noise

have detrimental effect on the accuracy of all approaches, but the overall effect

depends on the extent of technical inefficiency also present and on whether the

parametric approaches are likely to suffer from functional form misspecification;

– whether the parametric approaches are likely to suffer from functional form

misspecification; this has a severe negative impact on the accuracy of all

parametric approaches.
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5.3.2. Second step: Assessing the characteristics of interest

The second step of the proposed selection framework is to assess how prevalent the

above characteristics are (if at all) in the application/dataset at hand. This

assessment is not straightforward; in fact, it is impossible to determine with certainty

at least some of the characteristics in question, given that all productivity

measurement approaches examined rely on certain implicit or explicit assumptions,

which are made prior to the actual analysis and directly influence the estimates used

to assess said characteristics. For example, both COLS and DEA are deterministic

approaches, in a sense that they do not include a stochastic element directly in the

estimation process. Another example is that most frontier-based approaches

automatically assume that there is some inefficiency (SFA is the exception, as it can

test for the presence inefficiency), while GA assumes that there is no inefficiency in

the sample data.

Despite the above concerns, there are a number of simple diagnostic tests/indicators

that can provide useful information on the presence or prevalence of the

characteristics in question. These are described below and their efficacy is tested

(through simulation analysis) in section 5.3.4.

5.3.2.1 Input volatility
This is relatively easy to assess by simply examining the summary statistics (namely

average values, standard deviations and coefficients of variation) of the annual

change in inputs of each assessed unit.

5.3.2.2 Technical inefficiency
The various frontier-based approaches can readily provide estimates of technical

inefficiency even when the focus of the analysis is to examine productivity change;

the analysis can make use of these estimates to assess the possible extent of

technical inefficiency in the dataset/application at hand. Since it is not known which

approach is likely to provide the most accurate efficiency estimates, this

characteristic can be quantified by simply averaging the different efficiency estimates

derived from all adopted approaches.

In general, it is difficult to assess the extent of technical inefficiency with a high

degree of accuracy, since the performance measurement approaches examined

measure it residually. As such, the way they construct the efficiency frontier (or the

production possibility set) will always have an impact on the final performance
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measure (efficiency or productivity estimate). Nevertheless, although perfect

accuracy is out of reach, there is a large and growing pool of evidence in the

literature that suggests that technical inefficiency is present in the economy (see for

example, Fried et al.(2008), op cit.) and that frontier-based approaches can, in most

cases, measure such inefficiency with a degree of accuracy sufficient for the

purposes of the selection framework (the literature review on simulation studies for

efficiency estimates in Chapter 4 and in Appendix 1 provides an overview of the

efficacy these approaches).

5.3.2.3 Noise levels
From the approaches examined, only SFA directly incorporates a stochastic element

in the estimation process, intended to capture the impact of measurement

error/statistical noise; as such, overall noise levels in the DGP could be measured by

the estimated standard deviation of the noise component, denoted as σv, which can

easily be extracted from the SFA models84.

The issue with relying on this estimate is that although σv is unbiased, it is also

inconsistent in the pooled setting (because it is independent of i, ie the observation

whose technical efficiency is to be estimated, see Kumbhakar and Lovell (2000), op

cit.). It is not clear whether this issue would materially affect the accuracy of the

estimator, at least for the purposes of this selection framework; to explore this further,

additional simulations are undertaken in this chapter to examine how reliable are the

estimates of σv under certain conditions (see section 3.4.3). The simulation analysis

revealed that the estimated σv is reasonably accurate under conditions similar to

those observed in the EU KLEMS dataset and can thus be used as an indicator of

the overall noise levels in this particular application.

5.3.2.4 Functional form misspecification
This issue relates only to the parametric frontier-based approaches and could be

examined through the use of RESET (Ramsey’s Regression Equation Specification

Error Test) and by investigating the statistical significance of the input coefficients.

RESET is one of the most widely-used tests to detect the presence of functional form

misspecification. The test examines whether the inclusion of non-linear combinations

of either the fitted values of the regression model or the model’s explanatory

variables are statistically significant when included in the original regression model85.

84 The noise component/variable is assumed to be normally distributed with a mean value of zero, by construction.
85 For the EU KLEMS application, the analysis adopted the standard quadratic combinations.
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If they are, then the regression model is likely to suffer from some form of

misspecification. RESET is quite powerful and can offer compelling evidence, but can

only be applied when the regression model is estimated using OLS (ordinary least

squares). However, since the input coefficients from the SFA models are consistent

estimates of the respective OLS input coefficients, the findings of RESET as applied

in the OLS regression model also apply for the SFA model. In fact, it is not

uncommon in SFA studies to first estimate the equivalent OLS models solely for the

purpose of applying RESET to test for misspecification.

Examining the statistical significance of the input coefficients offers a more qualitative

assessment on the possible existence of functional form misspecification; the

intuition behind it is that if some of the input coefficients are found to be statistically

insignificant, the adopted functional form does not match exactly to the underlying

data generation process and as such the parametric model in question could be

misspecified. It should be mentioned that there could be a number of reasons why a

variable could be assessed as being statistically insignificant even though it is in fact

part of the DGP; these include extensive noise in the data or multi-collinearity

amongst the various explanatory variables. Therefore, statistically insignificant

variables in this context do not necessarily imply that the model is misspecified; they

are however an indicator that the current parametric model might suffer from a

number of possible shortcomings that could affect the accuracy of the derived

productivity estimates.

To ensure that the results of RESET and the more qualitative assessment based on

the statistical significance of the model variables are good indicators of functional

form misspecification, a new round of simulations is undertaken for this chapter. The

full results of this analysis can be found in section 3.4.4; in summary, the analysis

found that these simple tests can indeed provide valuable insight regarding this

issue.

5.3.3. Third step: Selecting between approaches

After assessing the prevalence of the above characteristics in the current

dataset/application, the third and final step of the selection framework is to determine

which of the assessed approaches offers the more accurate productivity change

estimates under these specific conditions. This can be achieved in two ways: the

analysis could either rely on the findings of previous simulation studies that

specifically assess the overall accuracy of different approaches under these
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conditions, or an original simulation analysis could be undertaken, which uses a DGP

specifically tailored to the application currently considered. The advantage of relying

on already existing studies is simplicity and ease of implementation; however, this

might come at the cost of accuracy, in the event that the DGPs adopted by the

existing studies do not closely match the characteristics of the current application.

The next section demonstrates how the findings of a simulation analysis with a DGP

constructed to be similar to the observed characteristics of the application in hand (in

other words, the simulation analysis of chapter 4 and the EU KLEMS dataset) can be

used to inform the selection process.

It should be mentioned that even the DGP of an original simulation analysis will not

be able to capture all of the peculiarities of the current application. The aim should of

course be to construct it in such a way as to be as similar as possible with the current

application; so, the simulations’ DGP should include the same number of inputs and

outputs, similar number of available observations (units and time periods) and similar

volatility, noise and inefficiency characteristics as the current dataset. In addition, if

the diagnostics find that the parametric approaches show evidence of functional form

misspecification even when flexible functional forms are adopted, the analysis should

use non-smooth functional forms (such as piecewise-linear functions86) for the

simulation DGP to ensure that the parametric approaches in the simulation analysis

also suffer from functional form misspecification. Nevertheless, there will always be

some degree of uncertainty, since the analysis cannot have full knowledge of the

underlying DGP of the current application (if it did, it wouldn’t need to estimate it). For

example, relatively accurate estimates of the mean and standard deviation of

technical inefficiency of the assessed units might be achievable, but its actual

distribution is unknown and cannot be derived from the available models; similarly, if

there is evidence of misspecification and a non-smooth function is used for the

simulation DGP, the adopted function will not necessarily be representative of the

true underlying DGP of the current application.

It should be stressed however that these gaps in our understanding of the underlying

DGP of our application are only an issue if they negatively affect our ability to draw

useful conclusions from the simulation analysis, be it either original or sourced from

previously published studies. In other words, these characteristics are only important

in so much as they affect the accuracy of the resulting productivity estimates.

According to the findings of chapter 4, neither of the two examples given above were

86 When creating these functions, the analysis also needs to consider whether to impose the various restrictions
suggested by theory, such as monotonicity and concavity.
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found to have a material effect in the relative accuracy of the approaches examined;

the SFA-based estimates were very similar regardless of the distributional

assumptions made by the models, while the parametric models displayed similar loss

in accuracy under a number of different piecewise-linear DGPs.

That is not to say that the four characteristics included in the proposed framework are

the only characteristics that are likely to significantly affect the relative accuracy of

the productivity estimates. In fact, issues such as latent heterogeneity in the

assessed units (which could manifest as heteroskedasticity in the parametric models)

and variable returns to scale could also be significant. However, the simulations

undertaken in chapter 4 did not examine how such factors affect the relative

accuracy of the various approaches; as such, the assessment of those

characteristics is left for future research.

5.3.4. Applying the selection framework to the EU KLEMS dataset

5.3.4.1 Assessing input volatility
Input volatility is the easiest characteristic to assess; this is achieved by simply

examining the annual change in inputs by country. Average input growth and its

standard deviation is summarised in the table below.

Table 5.20: Average annual growth in inputs

Country
Average Growth
in Labour

Standard
deviation of
Labour growth

Average Growth
in Capital

Standard
deviation of
Capital growth

AUS 2.29% 1.75% 3.81% 1.44%

AUT 0.71% 1.24% 2.37% 0.29%

CZE 0.32% 1.73% 2.84% 0.33%

DNK 0.72% 1.57% 1.55% 0.92%

ESP 2.19% 2.59% 3.44% 0.87%

FIN 0.84% 2.17% 3.94% 2.26%

GER -0.35% 1.21% 2.54% 0.64%

ITA 1.04% 1.02% 2.74% 1.13%

JPN 0.64% 1.28% 4.66% 1.93%

NLD 1.42% 1.38% 2.35% 0.43%

SVN 0.89% 2.18% 6.17% 0.76%

SWE 1.15% 1.39% 3.23% 0.49%

UK 0.64% 2.20% 3.14% 0.79%

USA 1.70% 1.61% 3.29% 0.62%
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Table 5.20 demonstrates that almost all countries (GER is the only exception) have

been increasing the quantities of labour inputs used in the production of aggregate

output, although the rate of increase is relatively modest. The relative volatility of

labour input growth, measured as the ratio of standard deviation to average, is

approximately 2.1 on average, while labour growth volatility in absolute terms,

measured only by examining the standard deviation of the growth measure, is

relatively small, averaging in approximately 1.7%.

Most countries have also been increasing their capital stock over the period of the

analysis, with an average growth in capital inputs of 3.3%. Both relative and absolute

volatility in capital input growth is quite low (compared with labour inputs), averaging

at 0.3 and 0.9% respectively.

5.3.4.2 Assessing the extent of technical inefficiency
In order to provide an indication of how widespread technical inefficiency is in the

countries in EU KLEMS dataset, this analysis examines the various estimates for the

different approaches (and models) adopted; these are summarised in the following

table.
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Table 5.21: Average technical efficiency estimates, by approach

Approach
Number of
observations Average

Standard
deviation Minimum Maximum

DEA meta-frontier CRS 1 375 73.1% 13.8% 41.9% 100.0%

DEA meta-frontier VRS
(output oriented) 1 375 79.7% 14.6% 49.5% 100.0%

DEA CRS 375 83.7% 13.2% 52.7% 100.0%

DEA VRS (output
oriented) 375 89.6% 13.6% 52.7% 100.0%

COLS (Cobb-Douglas) 375 72.5% 11.9% 47.3% 100.0%

COLS (translog) 375 72.3% 10.8% 46.5% 100.0%

SFA (Cobb-Douglas, half-
normal) 375 82.9% 10.8% 54.7% 96.8%

SFA (Cobb-Douglas,
exponential) 375 86.6% 10.5% 56.1% 97.3%

SFA (translog, half-
normal) 375 81.9% 12.1% 48.5% 100.0%

SFA (translog,
exponential) 375 88.0% 10.2% 53.5% 97.4%

Note: 1 DEA meta-frontier efficiency estimates do not take into account the time dimension
(technological change and scale efficiency change) and as such are likely to be biased (downward if we
assume positive technological change). They are presented here for completeness.

Direct tests for the existence of technical inefficiency are only possible for the SFA

models; with regards to this application, these tests resulted in the rejection of the

null hypothesis of no technical inefficiency in all four SFA specifications examined.

Table 5.21 reveals a relative small spread of average efficiency in all the approaches

examined. The two COLS specifications display the smallest average efficiency

(approximately 72%), while the DEA output oriented VRS models display the largest

average efficiency scores (approximately 90%). Average efficiency across all models

is estimated at approximately 81% or 82% if the DEA meta-frontier efficiency scores

are excluded (see note to table 5.21).

5.3.4.3 Assessing the extent of noise in the data
The relevant estimates of σv, the standard deviation of the noise component, from all

the SFA models adopted for this application are provided in the table below.
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Table 5.22: Summary statistics of the σv estimate from the SFA models

SFA model Estimate of σν

Standard
deviation of
the σν
estimate Minimum Maximum

Cobb-Douglas, half-
normal 0.075 0.010 0.058 0.098

Cobb-Douglas,
exponential 0.086 0.007 0.073 0.101

Translog, half-normal 0.000 0.000 0.000 0.000

Translog, exponential 0.074 0.006 0.063 0.087

The two Cobb-Douglas models and the translog model that assumes technical

inefficiency is exponentially distributed find that the standard deviation of the

normally-distributed error term is between 0.05 to 0.1. On the other hand, the

translog SFA model that assumes half-normally distributed technical inefficiency finds

that the amount of noise in the current dataset is negligible (σv is approximately equal

to zero). This last finding appears quite improbable; while it is true that EU KLEMS

collated the various country data in such a way as to ensure the greatest possible

compatibility between the different countries, the underlying data are still based on

National Accounts information. Since the process of data collation and aggregation

required to draw-up the National Accounts rests on a number of assumptions and

imputations87, it is expected that the data would almost always incorporate some

degree of inaccuracy88. As such, it is unlikely that the EU KLEMS dataset is

completely free of measurement error and/or statistical noise.

Since the estimate of σv is inconsistent in the pooled setting, in order to provide some

clarity on whether the use of the σv estimate is valid in this instance, it would be

helpful to observe the behaviour of the estimate under controlled conditions. To that

purpose, a new round of simulations is undertaken for this chapter.

This analysis utilises the same simulation framework adopted in chapter 489. To

enhance readability, only a single DGP is considered; however, to ensure the

relevance of the results for this particular application, the DGP is constructed in such

87 See for example the requirement to incorporate imputed rents for owners/occupiers and the methodology used to
estimate VA from privately held corporations and unincorporated enterprises (see Office of National Statistics,
(2008), op cit).
88 This is also evident from the number of times that National Account information is updated, sometimes quite a few
years after the original estimates were first published.
89 As a reminder, the simulation framework in question uses 100 observations (20 DMU observed over a 5 periods)
and summarises the findings of 100 experiments.
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a way that it displays similar characteristics as those observed in the EU KLEMS

dataset. In more detail, the utilised DGP:

– is a piece-wise linear production function, since the analysis in section 3.4.4

below suggests that the underlying production function in the current dataset is

neither Cobb-Douglas nor translog90;

– utilises input and price data that were constructed so that they are consistent

with the level of input volatility observed in the EU KLEMS dataset (section

3.4.1). In summary, input quantities and price are randomly generated for the

first period and then scaled by a random factor that follows N~(0.0.1);

– includes a technical inefficiency component, )5.5/1(~ Expuit
, which results in

average technical efficiency levels in the simulations of appr. 81%. This is

consistent with the estimates of technical inefficiency observed in the EU

KLEMS dataset, as detailed in section 3.4.2 of this chapter;

– and lastly, includes a noise component that is randomly generated following

N~(0, 0.05), consistent with the estimates presented in table 5.22;

The summary findings of the simulation analysis are given below:

Table 5.23: Summary statistics of the σv estimate from the simulation analysis

SFA translog
(exponential)

SFA Cobb-Douglas
(exponential)

Average of σν across all simulations 0.054 0.108

Standard deviation of σν across all simulations 0.040 0.054

Instances of zero σν 21 0

MAD scores (for reference) 0.061 0.073

MSE scores (for reference) 6.49 9.86

The results show that the translog SFA model, which is the most accurate of the SFA

models under these conditions with regards to productivity change estimates,

displays an average estimate of σν that is very close to its true value. However, the

standard deviation of this average measure is quite large; the 95% upper confidence

interval is approximately 0.135, which is more than twice as large as the true value.

The simulation analysis also finds that out of the 100 simulation experiments, in 21 of

90 The piece-wise linear production function employed here is monotonic and concave; it is described fully in chapter
4.
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those the translog SFA models displayed an estimated σν that was approximately

equal to zero. This suggests that sometimes even the more accurate SFA model is

not able to detect the presence of noise, even though modest levels of noise are part

of the DGP. For the Cobb-Douglass SFA model, there were no instances where σν

approached zero, but the σν estimate was also twice as large on average as the true

standard deviation of the noise component.

Overall, the results from the simulations demonstrate that in conditions that

approximate those found in the current analysis, the estimate of σν can provide an

overall indication of the extend of measurement error/noise in the data, with the

caveat that high levels of precision should not be expected.

5.3.4.4 Are the parametric models misspecified?
Table 5.24 below provides the results of the RESET test and the p-values of the

coefficients from the parametric models.

Table 5.24: Statistical significance of the variables in the parametric models
and RESET test results from the application

COLS
(Cobb-
Douglas)

COLS
(translog)

SFA (Cobb-
Douglas,
half-normal)

SFA (Cobb-
Douglas,
exponential)

SFA
(translog,
half-normal)

SFA
(translog,
exponential)

L 0.00 0.00 0.00 0.00 0.00 0.00

K 0.00 0.00 0.00 0.00 0.00 0.00

t 0.00 0.17* 0.00 0.00 0.65* 0.71*

L2 0.00 0.00 0.00

K2 0.00 0.00 0.00

t2 0.30* 0.32* 0.33*

LK 0.00 0.00 0.00

Kt 0.01 0.00 0.00

Lt 0.04 0.00 0.00

Insignificant
variables 0 2 0 0 2 2

RESET 0.00 0.00
Note: The values corresponding to the model variables represent the p-values of the t-tests for statistical
significance. The values corresponding to the row labelled RESET represent the p-values of the F-test
for statistical significance.

The analysis found that both the Cobb-Douglas and the translog models failed the

RESET test; in addition, all translog models found that the time variable and its

square displayed coefficients that were statistically insignificant. Both of these factors

suggest that the parametric models could suffer from some form of misspecification.
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The next step is to test whether parametric models that are known to be misspecified

also display similar symptoms; this is again achieved by a new round of simulation

experiments that use the same assumptions as those in section 3.4.3. The following

table provides a summary of the instances of statistically insignificant variables and

failed RESET tests from the simulations.

Table 5.25: Summary of statistical significance of the variables in the
parametric models of the simulation analysis

COLS (Cobb-
Douglas)

COLS
(translog)

SFA (Cobb-
Douglas,
exponential)

SFA
(translog,
exponential)

L 0 3 0 0

K 0 1 0 1

t 79 96 59 68

L2 40 20

K2 27 12

t2 95 71

LK 17 8

Kt 94 68

Lt 91 65

Average number of
insignificant variables 0.79 4.64 0.59 3.13

Cases where all variables
were significant 21 0 41 22

Cases where RESET failed 40 51 N/A N/A
Note: The values corresponding to the model variables represent the number of instances where the
variable in question was found to be statistically insignificant (note that the simulation were run 100
times).

The simulation analysis shows that the RESET test found evidence of miss-

specification in almost half of the simulation experiments. In addition, there were

instances of insignificant variables in the majority of the experiments undertaken; the

translog COLS specification had no cases where all variables were significant, while

the Cobb-Douglas SFA model that (correctly) assumed exponentially-distributed

inefficiency was the better performing model in this measure, with just 41 cases

where all variables were statistically significant.

Overall, these results suggest that when the parametric models suffer from functional

form misspecification, it is quite common to observe statistical insignificant variables

and failures in the RESET test. Given that similar symptoms were observed in the

current application, one could conclude that the parametric models in this application

are likely to suffer from some form of misspecification, which would negatively impact

the accuracy of their productivity change estimates.
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5.3.4.5 Selecting the most appropriate estimation approach
With regards to the characteristics of the current dataset, this analysis found that:

– input volatility is quite low, averaging just 1.7% p.a. for the labour input and 0.9%

p.a. for the capital input (section 4.3.1);

– average technical inefficiency across all approaches in this application is

approximately 82% (section 4.3.2);

– the SFA models suggest that the standard deviation of the normally-distributed

noise component (σν) probably takes a value between 0.05 and 0.1 (section

4.3.3);

– the parametric models are likely to suffer from some form of misspecification,

which could be due to the adopted functional form not being an appropriate

representation of the underlying DGP section 4.3.4);

According to the above findings, the simulation experiment from chapter 4 that more

closely matches the characteristics of the current dataset is S2.3 with ‘default’ input

volatility. In more detail, for the S2.3 simulation experiment:

– the underlying DGP is piecewise-linear, since the current analysis found that

neither the Cobb-Douglas nor the more flexible translog functional forms provide

a close approximation to the underlying DGP.

– inputs are scaled from one year to the next by a random factors that follows

N~(0,0.1), which results in input volatility similar the EU KLEMS dataset.

– average technical efficiency in the simulations is designed to be approximately

87% on average - the current analysis found that average technical efficiency

across all approaches in the EU KLEMS dataset is 82%.

– includes a noise component in the DGP, which is randomly generated and

follows N~(0,0.05). The decision to adopt this level of noise could be considered

conservative, since the mid-point between the various chosen estimates of σν is

closer to 0.075.

The summary accuracy measures of the above experiment are replicated in the table

below:
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Table 5.26: Summary accuracy results

Measure GA COLS
COLS
(translog) DEA SFA

SFA
(translog)

SFA
(half-
normal)

MAD (%) 5.80 6.30 6.50 5.80 7.10 6.10 6.40Accuracy
scores MSE 5.33 6.24 7.81 5.23 9.11 6.12 6.96

MAD 1 5 5 1 7 3 5Accuracy
rankings MSE 2 4 6 1 7 3 4

Note: MAD = Mean Absolute deviation, MSE = Mean Square Error. Smaller values represent higher
accuracy, both for the scores and the rankings, ie an approach with accuracy ranking 1 is more accurate
than and an approach ranked as 2.

As table 5.26 demonstrates, the two most accurate approaches in this simulation

experiment were DEA and GA, closely followed by the translog SFA model. The DEA

and GA accuracy scores are almost identical; it should be noted however that the

simulation analysis is designed such that the relevant input and output prices indices

required by GA are measured with no error, while also explicitly assuming that there

is no element of allocative inefficiency in the analysis. The reason for designing the

experiment in such a way was that it allowed for a level playing field when comparing

the GA with the frontier-based estimates, which do not rely on price information. In a

real life application such as the current analysis however, some amount of

measurement error is expected to be present in the price data. In addition, the GA

estimates would also be influenced by changes in allocative inefficiency in the

countries examined. Given that the impact of those factors to the relative accuracy of

the GA estimates under the current conditions is unknown, it would be more prudent

to rely mostly on the DEA-based productivity estimates.

5.4. Summary and conclusions

The aim of this chapter was two-fold. First, to provide a comparison of the different

measurement approaches in a real-life aggregate productivity change measurement

application and second, to devise a selection framework to help policy makers

choose the productivity measurement approach that is likely to produce the most

accurate estimates relative to the application in hand.

The real-life application was based on the EU KLEMS dataset, which collated

information on aggregate inputs and outputs for a number of economies over a

relatively long timeframe (1970-2007, although for some countries information is not

available for the full timeframe). The measurement approaches considered were

those detailed in chapter 3, namely Growth Accounting, Circular DEA-based
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Malmquist indices and COLS- and SFA-based Malmquist indices. The analysis found

that although at first glance all assessed approaches produce very similar

productivity change estimates on average, the productivity estimates from the various

approaches can be quite dissimilar at the individual country level.

To examine this issue further, the analysis provided a more in-depth look at the

productivity performance of individual countries. This revealed that for most cases

the productivity estimates from the various approaches are quite highly correlated at

the individual country level; only in few cases the estimates from the SFA models

display relatively lower correlation coefficients to their deterministic counterparts.

Where there is disagreement it is in the levels of the estimates themselves, which

can be quite pronounced in some cases (such as the estimated productivity

performance of the UK and Slovenia). The analysis also revealed that the SFA

estimates are generally much less variable relative to the estimates from the

deterministic approaches. This is probably due to the fact that some of the variability

of the ratio of outputs to inputs that is detected as productivity change by the

deterministic approaches is assigned to the stochastic element under SFA. This

reasoning is supported by the fact that the variability of the productivity estimates

from the deterministic approaches is considerably smaller in the latter period of the

analysis (from 1995 onward), when the economic performance of the assessed

countries was more stable.

Related to the above, the analysis also found that productivity performance appears

to be heavily influenced by economic cycles. In periods of economic recession,

productivity is declining, only to pick up again when the economy starts to grow

again. In other words, the estimates of productivity growth appear to be pro-cyclical,

which is consistent with findings from other studies that examined this issue in more

detail91.

In addition to the above, this chapter also provided a brief discussion on the

decomposition of the estimated productivity change for the various frontier-based

approaches (the GA productivity estimates were not considered here, since they

cannot be decomposed). The productivity components used in this analysis are

efficiency change, technological change and scale efficiency change and the analysis

focused its attention mainly on two approaches, namely DEA and SFA. When looking

at the summary statistics of the component, there appears to be a consensus by the

various approaches; they all find that efficiency change had a small, negative effect

91 See for example Boisso et al. (2000).
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on productivity growth, scale efficiency change had almost no impact while

productivity growth came almost exclusively through technological change. However,

when examining the results at the level of individual countries, it is clear that there

are a lot of differences in the estimates of the components derived from DEA and

SFA models, both in their levels but also in their patterns of change (ie low

correlations between the two approaches). This is a significant finding, since the

overall productivity change estimates from these two approaches are quite similar in

levels and are also quite highly correlated.  A closer examination of the results found

no easily detected patterns that could be helpful in explaining the observed

differences; as such, a more detailed examination of this issue is left for future

research.

Overall, the analysis of the EU KLEMS data found that the different approaches can

often lead to different views on productivity performance. These differences are

problematic from a policy perspective, since policy decisions on the issue of

economic growth rely on having accurate productivity estimates at the national level.

As such, there is a need for a process or a mechanism that can be used to select

between the various approaches, in the event of such disagreements. To that end,

this chapter proposes the use of a selection framework, designed to detect the set of

productivity estimates that are likely to be more accurate for the

conditions/characteristics prevalent in the dataset/application at hand.

This selection framework includes three steps:

– First, determine those conditions/characteristics inherent in the DGP that can

have a significant influence in the relative accuracy of the assessed productivity

measurement approaches.

– Secondly, examine the current dataset and try to quantify said

conditions/characteristics.

– Finally, examine the relative accuracy of the adopted approaches in datasets

specifically designed to display those characteristics/factors found the real-life

data of the current application.

With regards to the fist step, the analysis relied on the findings of the simulation

analysis undertaken in chapter 4, which identified that the characteristics of the DGP

that are most influential the overall accuracy of the most common productivity

measurement approaches include: input volatility, technical inefficiency, noise and
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whether the parametric approaches are likely to suffer from functional form

misspecification. The above list is not necessarily exhaustive and there may well be

additional characteristics that have a significant impact on the overall accuracy of

productivity change estimates, such as latent heterogeneity amongst the assessed

units and variable returns to scale. However, since these are quite complex issues,

the assessment of these and other potentially significant characteristics is left for

future research.

At the second step, the goal is to detect the presence of the characteristics in the

application at hand and to quantify their effects. To do so, the use of a number of

well-established diagnostics and indicators is suggested so that the proposed

selection framework can be easily implementable; these diagnostics included tests

such as RESET for assessing functional form misspecification and the utilisation of

estimates of technical efficiency derived from the assessed approaches. To assess

whether the proposed diagnostics can lead to reliable results, a new round of

simulations was undertaken, based on the characteristics of the EU KLEMS dataset.

The analysis found that the proposed diagnostics and indicators can indeed provide

relatively reliable estimates of the characteristics in question; however, care is

advised in not to take these findings as absolute, since some of the characteristics

are, by their very nature, very difficult to quantify (for example, detecting and

quantifying the extend of noise in the data is particularly difficult). Hopefully, more

focused diagnostics/indicators can be developed and refined in the future.

The third and final step of the selection framework is to determine which of the

adopted approaches is more accurate overall, under the conditions prevalent in the

application in hand. For the application examined here, this was achieved by relying

on the findings of the simulation analysis of chapter 4. However, if the application at

hand is quite dissimilar to the various DGP adopted in past simulation studies, it

would be more appropriate for the analysis to construct a new DGP that more closely

matches with the current conditions and use that as the basis of a new round of

simulations; the results of this analysis would provide a better indicator on the

suitability of the assessed approaches.

Applying the above framework in the EU KLEMS dataset revealed that input volatility

is low, technical efficiency is approximately 82%, noise levels are also relatively low

and the parametric models are likely to suffer from some form of misspecification.

Under such conditions, the approaches that are most accurate, according to the

findings of the simulation analysis of chapter 4, are DEA-based Malmquist indices
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and Growth Accounting, closely followed by the Malmquist indices derived form the

translog, exponential SFA model. If the analysis was asked to recommend one of the

above approaches, it would be DEA-based Malmquist indices based on its

performance in the simulation experiments and also due to the fact that it is not as

sensitive as GA to other potentials issues that were not included in the simulations,

such as measurement error in the price of inputs and the presence of allocative

inefficiency.
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Chapter 6. Summary and conclusions

6.1. Productivity growth in the macro setting: why is it
important and how to measure it

Productivity is a complex concept but also arguably the most appropriate measure of

changes in economic welfare. Despite its importance, changes in productivity are

usually not one of the main topics in macroeconomic debates. Indeed, most

mainstream economic publications on the macro setting focus more on the actual

growth of output (usually expressed as growth in GDP), considering this as the main

indicator of economic welfare. While it is true that output is an important indicator,

this measure on its own cannot provide a detailed description of economic welfare,

since it does not take into consideration the necessary ‘effort’ required to produce

said output. Even when the issue of productivity is directly discussed, oftentimes the

measure of productivity adopted is labour productivity, which is defined as a ratio of

output to labour input. While labour productivity is indeed a valid measure of

economic welfare, since it accounts for both the output and the ‘effort’ of producing

such output, it provides only a partial view of productivity performance because it

only accounts for one input of the production process and ignores everything else; it

is a single factor productivity measure and is therefore limited by construction. In

order to better understand the productivity phenomenon, we require a measure that

takes into account all, or at least the most important of, inputs; these measures are

usually referred to as total-factor or multi-factor measures of productivity (TFP and

MFP respectively). Overreliance on simple output growth rates or partial productivity

measures can lead to a distorted view of productivity and more importantly, this

distorted view can lead to adoption of misguided economic policies as discussed by

Krugman (1994).

So, to discuss a topic as complex as productivity, it is critical to have access to

measures that can capture this complexity; in other words, economists need robust

ways to measure productivity in a multi-input, multi-output setting that reflects

economic reality. Arguably, the most widespread method for measuring productivity

growth in the macro setting, ie when considering the productivity performance of

entire industries or countries, is Growth Accounting (GA). GA is an index number-

based approach that relies on the neo-classical production framework, and seeks to

estimate the rate of productivity change residually, ie by examining how much of an
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observed rate of change of a unit’s output can be explained by the rate of change of

the combined inputs used in the production process. It is the productivity

measurement method of choice for most interested agents, namely statistical

agencies (national and international), central banks and government bodies. The

main strength of the approach comes from its relative accessibility; the required data

can be collated from National Accounts (a framework that measures and presents all

factors of economic activity in the macro level) and productivity estimates can be

easily calculated using simple algebra. This ease of implementation sometimes

masks the complexity and depth of the approach. GA is based on robust (if simplistic)

economic principles and mathematical logic, which provide a strong theoretical

underpinning to justify its use.

Nevertheless, the approach is not without its weaknesses; although the majority of

the required primary data can be sourced from National Accounts, there are a

number of additional adjustments that need to be applied to ensure inter-temporal

comparability and consistency. In short, care must be taken to net-off all intra-

industry transactions, to account for non-market output (the discussion on how to do

so is still in progress) and to account for changes in quality. Creating a measure of

capital services is particularly problematic, since the process is quite laborious and

requires data not available through the National Accounts and a number of additional

imputations (these issues were discussed in more detail in chapter 2). Even so, data

considerations are not an issue necessarily restricted to GA; all other approaches

require similar data for the estimation of productivity, although the data collation

process for some factors of production (for the capital services input in particular) is

less convoluted. Arguably, the biggest drawback of GA is that it requires the adoption

of the so-called standard neo-classical assumptions. These assumptions require that

the production process is fully deterministic, exhibits only constant returns to scale,

all information relating to it is measured with perfect accuracy and that all producers

are fully efficient. The above assumptions are very restrictive and it is not difficult to

argue that they do not provide a fair representation of most production processes

(GA was discussed in some detail in chapter 3).

The issues with the available data and especially the requirement for the adoption of

the neo-classical assumptions can cast doubts on the overall validity of the resulting

productivity estimates. After all, if the approach relies on assumptions that do not

reflect reality, how can one trust the resulting estimates? So the question is, are there
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alternative approaches that are likely to be more accurate than GA, and if so, by how

much? This question was the main motivation of this thesis.

Frontier-based approaches for productivity measurement have been extensively

used in the micro setting and offer an interesting alternative to GA. Although the

parametric and non-parametric frontier-based approaches differ substantially in how

they estimate productivity change, they both rely on the same underlying principles;

that there exists a production technology defined as the set of feasible outputs that

can be produced by a combination of inputs and that all production units operate

within this technology set. The technology frontier is convex (or conical), monotonic

hull that envelops the technology; the assumptions of monotonicity and convexity are

relatively benign and are used to ensure that the production frontier conforms to

common production processes that result in no undesirable goods and obey the law

of diminishing returns. As such, it is not hard to argue that frontier-based approaches

require less restrictive assumptions compared to GA. In addition, frontier-based

approaches do not require any information on input prices, while GA cannot be used

without such information. This is important because, although some price information

is available in the National Accounts, the price of capital services is unobservable

and very difficult to estimate in practice without adopting the neo-classical

assumptions. Another major advantage of the frontier-based approaches is that they

allow the decomposition of the productivity estimates into discreet components, such

as efficiency change, scale efficiency change and technological change; this

additional granularity of the estimates is of great interest to the users of such

analysis, since it can improve the development, targeting and assessment of

productivity improvement policies (frontier-based approaches were discussed in

chapter 3).

The main drawback of the frontier-based approaches is that all of them require

information on a suitable set of comparators (eg the economies of a number of

countries) in order to estimate the production frontier. Furthermore, the analysis

needs to ensure that the inputs and outputs of each individual unit of assessment (eg

the economy of a country) are collated and expressed in a manner that ensures the

comparability between the various assessed units. However, there are currently a

number of databases that collate National Account data from a large group of

countries and they also include the information necessary to make the data

comparable; as such, data limitations are not a significant hurdle for the adoption of

these approaches.
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The above discussion demonstrates that frontier-based approaches are likely to

produce richer, more accurate estimates of productivity than GA, mainly due to the

fact that they rely on fewer assumptions and can thus model a wider range of

production processes, at least according to theory. The question now becomes, do

these theoretical advantages translate to practical improvements in the accuracy of

the productivity estimates and if so, by how much?

6.2. Exploring and quantifying accuracy: Simulation
analysis

To assess or quantify the differences in accuracy between approaches, one needs to

rely on some form of controlled experiment, since productivity is not a quantity that

can be directly observed in real-world applications. This thesis utilised Monte Carlo

simulations to examine the behaviour of GA and some of the most common frontier-

based approaches under a number of conditions that violate the standard

neoclassical assumptions. The simulation analysis and its findings are detailed in

chapter 4 and have also been published in the European Journal of Operational

Research (see Giraleas et al. (2012)).

In more detail, the simulation analysis examined the accuracy of GA and three of the

most common frontier-based approaches for the measurement of productivity change

namely:

– DEA-based circular Malmquist indices: Data Envelopment Analysis (DEA) is the

most common non-parametric approach for efficiency and productivity

measurement. The strengths of the approach are that it requires minimal

assumptions for the estimation of the frontier and no a-priori specification of its

functional form. Its main weakness is that it is deterministic in nature, in that it

does not explicitly take into account the stochastic nature of the production

process. This thesis utilises the circular Malmquist index, as opposed to the

‘traditional’ (Färe et al. (1994)) Malmquist index, mainly for the ease of

computation and the ability to accommodate unbalanced panel data.

– COLS-based Malmquist indices: Corrected OLS is a deterministic, parametric

approach and one of the numerous ways that have been suggested to ‘correct’

the inconsistency of the OLS-derived constant term of the regression when

technical inefficiency is present in the production process. COLS, similar to DEA,
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is deterministic in nature and also requires the prior specification of the

functional form of the estimated frontier; it was examined here since it is the

easiest approach to implement and as such likely to be used by non-specialists.

– SFA-based Malmquist indices: Stochastic Frontier analysis (SFA) is also a

parametric approach similar to COLS, but it is stochastic in nature, in the sense

that it explicitly attempts to account for the stochastic nature of the production

process. This comes at the cost of increased complexity and in the fact that it

requires both the prior specification of the functional form of the estimated

frontier and also the specification of the inefficiency distribution.

The starting point of any simulation analysis is the data generating process (DGP),

which sets out the framework used to generate the parameters of value. Given that

the aim of the simulations was to examine the accuracy of the different approaches

when the various neoclassical assumptions were violated, the DGP was set up in

such a way as to include both elements of technical inefficiency and stochastic noise.

The analysis also examined whether increased volatility in inputs has any effect in

accuracy and also how impactful would be if the a-priori assumptions about the

functional form and the distribution of inefficiency for the parametric approaches were

wrong. The latter was achieved by running two sets of simulations; the first set

adopted a smooth, Cobb-Douglas production function, while the second set utilised a

piecewise-linear production function.

Piecewise-linear production functions have been utilised in previous simulation

studies, but they were usually restricted to modelling a production process with just

single input and a single output. One of the contributions of this thesis was the

creation of a framework that allows the generation of a random, convex and

monotonic piecewise-linear production function with a single output and two inputs,

which is sufficient for the purposes of measuring aggregate productivity change.

The second contribution of this thesis with regards to the DGP was to provide a

methodology that can be used to generate price information consistent with the

characteristics of the production function (the availability of price information is

necessary for GA in order to parameterise the production function). This

methodology is based on the duality between the production function and the cost

function, which links the parameters of the production function to the costs faced by

the producers; by manipulating this relationship, the analysis was able to derive
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consistent formulas that link the parameters of the production function with the prices

of the different inputs. This derivation is described in more detail in section 4.3.1.

The resulting DGP enabled the creation of a number of experiments to test for the

effects of the violation of the neoclassical assumptions. The results of the analysis

were quite interesting and sometimes unexpected. In summary the analysis found

that:

– The deterministic approaches perform adequately even under conditions of

(modest) measurement error. This also includes GA, although the frontier-based

deterministic approaches were more accurate in the majority of the experiments.

– Functional form misspecification has a severe negative impact on the accuracy

of all parametric approaches. It was anticipated prior to the analysis that

functional form misspecification is likely to lead to a general loss of accuracy;

what was unexpected was the magnitude of the effect.

– When measurement error becomes larger, the accuracy of all approaches

(including SFA) deteriorates rapidly, to the point that their estimates could be

considered unreliable for policy purposes. Again, some loss in accuracy was

expected, but probably not to the point observed in the experiments.

– The SFA models that adopt a translog specification appear to be more accurate

in general than the Cobb-Douglas SFA models when the underlying (true)

production function is piecewise linear. On the other hand, it is the Cobb-

Douglas COLS models that are assessed as more accurate relative to their

translog counterparts when the underlying production function is piecewise

linear. Prior to the analysis, the hypothesis was that the adoption of a flexible

functional form would reduce the impact of functional form misspecification for all

parametric approaches; the experiments revealed that this was not the case, at

least for the COLS models.

– Misspecification of the inefficiency distribution in the SFA models does not

appear to have a significant effect on the overall accuracy of said approach. This

confirms previous findings in the literature, when the focus of the analysis was in

assessing the accuracy of efficiency estimates. It should be mentioned however

that the inefficiency distribution adopted by the DGP (exponential distribution) is

similar to the alternative distribution adopted in the simulation analysis (half-

normal distribution).
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– Increased volatility in inputs and prices from one period to the next adversely

affects the accuracy of all approaches, in almost all experiments. The DEA

estimates are the least affected, while the GA estimates are the most affected. It

was interesting to observe how input volatility affects the accuracy of the

estimates, especially when noise was introduced in the DGP.

Overall, the simulation analysis demonstrated that no productivity change

measurement approach has an absolute advantage over another, but rather under

some specific circumstances, a specific approach is likely to be more accurate than

its counterparts. The analysis also demonstrates that frontier-based approaches can

usually produce at least as accurate, and in most cases more accurate, productivity

change estimates than the more traditional GA approach.

It should be noted here that the findings of the simulation analysis of chapter 4 are

also applicable to the micro setting (ie when assessing the productivity performance

of single production units), especially with regards to the accuracy of the frontier-

based approaches, since they do not rely on assumptions and/or conditions that are

restricted to the macro setting.

6.3. Practical application: Frontier-based approaches
using EU KLEMS

The simulation experiments presented compelling evidence on the suitability of

frontier-based approaches for the measurement of productivity change, but also

found that there is no single approach that is likely to be more accurate under a

range of different conditions. Given these findings, it would be interesting to compare

and contrast the productivity estimates from the different approaches in a practical

application. Additionally, the recent EU KLEMS project, which provides access to

harmonised National Accounts information for a large number of, mostly, EU

countries, provides a great opportunity to re-examine this issue using a relatively up-

to-date dataset.

The EU KLEMS project collated information on aggregate inputs and outputs for a

number of economies over a relatively long timeframe (covering the 1970-2007

period), for the express purpose of productivity measurement under GA. The

productivity measurement application presented in chapter 5 utilised the same
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information to also estimate (and decompose) productivity change using a number of

the most common frontier-based approaches.

The results were mixed; although at first glance, all assessed approaches produce

very similar productivity change estimates on average, a more detailed analysis of

the findings revealed that the productivity estimates from the various approaches can

be quite dissimilar at the individual country level. In the majority of the countries

examined, the different productivity estimates were highly (positively) correlated with

each other. However, the levels of the estimates could be significantly different, a fact

that was particular evident for the UK and Slovenia, but present in all assessed

countries; the differences between the maximum and minimum average productivity

change estimate was never less than 0.5 percentage points, which is significant

when the range of estimated average productivity change across all countries from

all approaches was between approximately 0.5% and 0.9%. The results of the

analysis also revealed that:

– The SFA estimates are generally much less variable relative to the estimates

from the deterministic approaches. The most likely reason for this reduced

variability is that that some of the changes in the ratio of outputs to inputs that is

detected as productivity change by the deterministic approaches are interpreted

as noise by SFA.

– Productivity performance appears to be heavily influenced by economic cycles;

in fact, the estimates of productivity growth appear to be pro-cyclical, which is

consistent with findings of other studies.

– When productivity is decomposed, all frontier-based approaches show that the

largest contributor to productivity growth has been technological change.

However, at country level there are significant differences in both the levels of

the estimated components and in their patterns (demonstrated by low correlation

coefficients) between the assessed approaches; this is a significant finding

because the differences in the overall productivity change estimates are much

less pronounced.

6.4. Selecting between conflicting estimates

The observed differences in productivity change estimates from the different

approaches can be problematic from a policy perspective, especially for those
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countries where they provide conflicting views of the aggregate productivity

performance. Disagreements in the results from different approaches are,

unfortunately, not uncommon in the field of efficiency and productivity analysis. When

they arise, the usefulness of the analysis diminishes, since it cannot provide a clear

answer to the main issue; in some cases, conflicting estimates could cause the

validity of the whole analysis to be cast into doubt. As such, it is critical to be able to

explain any such differences and more importantly sort through conflicting estimates

to select those that are likely to be more accurate.

The simulation analysis undertaken in chapter 4 revealed that there is no single

approach that is likely to be accurate under all circumstances; however, when those

circumstances are known, the results of the analysis can be utilised to make an

informed decision with regards to the likely accuracy of the different estimates. This

argument forms the basis of the selection framework proposed in chapter 5 of this

thesis. In short, the selection framework involves three steps:

– The first step is to identify those conditions/characteristics inherent in the DGP

that can have a significant influence in the relative accuracy of the assessed

productivity measurement approaches. This can be achieved by examining the

findings of previous simulations studies; chapter 4 identified four

conditions/characteristics that can have a significant effect, which are input

volatility, technical inefficiency, noise and whether the parametric approaches

are likely to suffer from functional form misspecification.

– The second step is to assess whether these conditions/characteristics are

present in the application at hand and if so, at what levels. The proposed

selection framework suggests the use of well-established diagnostics and

indicators to that purpose, such as RESET for assessing functional form

misspecification and the utilisation of estimates of technical efficiency derived

from the assessed approaches. Since some of the conditions/characteristics are

difficult to measure (or are unobservable), the efficacy of the proposed

diagnostics and indicators was tested using additional simulation analysis, which

confirmed that these can indeed provide relatively reliable estimates.

– The third and final step of the selection framework is to determine which of the

adopted approaches is more accurate overall, under the conditions prevalent in

the application in hand. Since estimates of the conditions/characteristics of the

particular application are now available, the researcher can utilise the findings of
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previous simulation analyses to identify the approaches that are likely to provide

the most accurate estimates. If the simulation analyses in the literature do not

provide a good fit for the application at hand (due to the DGP being significantly

different relative to model used in the current assessment), a new round of

simulations could be undertaken using a DGP specifically designed to emulate

the characteristics of the application.

Applying the above framework in the EU KLEMS dataset revealed that the two

approaches that are likely to be most accurate based on the observed input volatility

and estimated technical inefficiency and noise are the DEA-based circular Malmquist

indices and GA.

6.5. Concluding remarks and further research

The first aim of this thesis was to examine and assess the different approaches that

policy makers have at their disposal for measuring aggregate productivity change.

This was achieved by discussing the strengths and weaknesses of the different

approaches from a theoretical perspective, but more importantly examining the

accuracy of the resulting estimates under different conditions. The simulation

analysis undertaken for this reason was relatively extensive but can be expanded in

many directions. The parameters of the DGP could be extended in such a way as to

offer a greater granularity of results, for example by varying the number of

observations available (both cross-sectional and across time) or adopting a wider

range of average technical efficiency and noise parameters. The DGP could also be

expanded to include additional characteristics that could have a significant impact on

the overall accuracy of productivity change estimates, such as latent heterogeneity

amongst the assessed units, variable returns to scale and allocative inefficiency. The

earlier two characteristics were not assessed here due to time and space limitations,

while allocative inefficiency was purposely excluded to improve the comparability of

the frontier-based estimates relative to GA. Nevertheless, it would be interesting to

examine how this latter factor in particular affects the accuracy of the estimates.

The scope of the analysis could also be broadened by searching for ways to improve

the quality and accuracy of the various frontier-based estimates by incorporating

price information directly into the analysis. Incorporating information on prices is

indeed possible in the framework of frontier-based approaches by utilising duality
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theory, but research relevant to how this would impact the accuracy of the resulting

estimates is limited.

The second main aim of the thesis was to provide an up-to-date application of

aggregate productivity measurement using both GA and frontier-based approaches

and provide some guidance to applied researchers when asked to choose between

sometimes conflicting estimates. One of the findings of the application was that the

different approaches provide significantly different views on the components of

productivity change, even in cases where the primary productivity change estimates

are quite similar. It would be interesting to see if this is an issue in general and if so,

what are the causes of such differences.

With regards to the proposed selection framework, there are a number of potential

enhancements that could be implemented. The framework could examine additional

conditions/characteristics of interest, based on new findings from simulation analysis

and the efficacy of the proposed diagnostics and indicators could be tested over an

expanded range of conditions. More importantly, additional diagnostics and indicators

could be adopted or developed to provide a more comprehensive assessment of the

characteristics of interest.

In conclusion, the issue of productivity measurement is quite complex and despite

the extensive research undertaken so far in the area, there are still gaps in our

knowledge and thus a lot of opportunities for interesting and useful research for the

future.
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A1 Literature review of simulation studies in efficiency
and productivity analysis

There are a number of elements in other simulation studies in the field of efficiency

and productivity analysis that are of particular interest to this research, namely:

– the data generating process for:

– inputs,

– efficiency scores,

– measurement error and

– other factors relevant to the analysis (such as input and output prices and

the degree of multi-collinearity between the various variables),

– the functional form used in the construction of output,

– the sample size used for the simulation,

– the number of simulation runs undertaken,

– the measures utilised to judge the overall accuracy of the estimates,

– the efficiency measurement approaches examined and finally

– the relative accuracy of the approaches.

This literature review section will briefly summarise the methods and results from a

number of similar simulation studies and will examine in more detail three studies

that were identified as being both especially relevant and relatively recently

published. These are:

– the Resti (2000) study

– the Banker et al. (2004) study; and finally

– the Van Biesebroeck (2007) study.

Brief summary of less recent studies

One of the older studies in this literature review is by Banker et al. (1987). The aim of

this study was to compare the accuracy of the efficiency estimates under DEA and

COLS. The study employed a piecewise log-linear production function to generate

values for a single output using two discrete inputs for two sets of 100 and 500

observations. The output was multiplied by an efficiency score; approximately 30% of

the observations had an efficiency score of 1 and the rest displayed efficiency scores
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that followed U~[0.65,1). The study employed a CRS DEA model and a translog

production function for the COLS methodology. The study found that the mean

absolute deviation (MAD) between the ‘true’ efficiency scores and the estimated

efficiency scores was smaller for the DEA-based estimates92 relative to the COLS

estimates. DEA was also able to correctly identify almost all observations that were

truly efficient as DEA efficient (ie having an efficiency score of 1); only ‘corner’

observations (ie that displayed either very large or very small values in either the

inputs or the outputs) were misclassified. The study also considered the effects of

using a translog production function to generate the output; it found that DEA-based

efficiency estimates were more accurate than the COLS-based estimates for both

sample sizes, despite the fact that the parametric approach utilised the same

underlying functional form for the production function. It should be noted that the

findings of this study are based on a single simulation run (ie the experiment was not

repeated) and, as such, it is not clear whether these results are robust to different

starting input data.

A similar study was undertaken at a later date by Banker, Cadh and Gorr (1993)

again comparing DEA and COLS efficiency estimates, but this time also examining

the effects of including an error component in the generation of output. This error

component, u, followed N~(0,σu) and was directly multiplied to the output derived

from the DGP. Two values for σu where adopted, 1.05 and 1.20. The study also

examined the sensitivity of the efficiency estimates under different underlying

efficiency distributions, sample sizes and log-linear production technologies. The

main findings of this study were:

– there can be substantial variation between ‘true’ and estimated efficiency scores;

– COLS performs better than DEA when sample size increases and inefficiency is

exponentially distributed;

– DEA performs better than COLS when inefficiency is distributed according to the

half-normal, truncated-normal and or other two-parameter distributions;

– DEA is also more accurate than COLS when sample size is small (ie 25 obs);

– both methods fail to provide accurate estimates when measurement error is

high.

92 The reported MAD scores for the 500 obs and 100 obs cases, respectively where: 0.003 and 0.010 for the DEA
model and 0.024 and 0.044 for the COLS model.
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A similar study was also undertaken by Thanassoulis (1993), using a linear cost

function (one output and three inputs) to assess the accuracy between DEA and

regression analysis efficiency estimates in a small sample (15 obs). This study also

found that DEA provides more accurate efficiency estimates on average, although for

some DMUs with extreme values (either very large or small inputs or output), the

estimated inefficiency was highly inaccurate. On the other hand, although regression

analysis-derived efficiency estimates were less accurate on the whole, for the

aforementioned ‘corner’ cases the estimated efficiency scores were closer to the true

values.

A more recent study by Ruggiero (1999) focused on the accuracy of the parametric

approaches and more specifically on the ability of the SFA model to correctly

decompose the residual into estimates of inefficiency and noise in the cross-sectional

setting. The data used for the simulations was generated using a simple Cobb-

Douglas functional form with one output and two inputs and constant returns to scale.

Output values were further modified by adding an element of technical inefficiency u

to the model (u~N+(0,0.20 or 0.25), leading to average efficiency scores of  86% to

83%) and an element of measurement error or noise ε (ε~N(0,0.05 or 0.10 or 0.15),

to reflect ‘low’, ‘medium’ and ‘large’ measurement error). The study used five different

sample sizes (of 25, 50, 75, 100 and 200 observations) over 100 simulation runs to

test the accuracy of efficiency estimates for a number of SFA models with different

functional form specifications and assumptions for the distribution of the inefficiency

terms. The study also examined the performance of a simple, Cobb-Douglas

deterministic COLS model, as a contrast to the more complex, stochastic SFA

specifications. The performance criterion was rank correlation statistics.

The results of the Ruggiero (1999) study were unexpected. The correctly specified

SFA model (both in terms of the functional form and the distribution of inefficiency)

performed quite poorly in the majority of the situations and especially in small sample

sizes. The deterministic COLS model performed better than the SFA models in

almost all cases; only when the sample size was large (200 observations), did the

correctly specified SFA model match the performance of the COLS model. In

addition, the standard deviations of the rank correlations for the SFA models are

quite large, which suggests of a general inconsistency on the part of the SFA

estimates. Other interesting findings include:

– When measurement error is large, both approaches perform relatively poorly.

The rank correlation between true and estimated efficiency scores were above
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85% for the best models in ‘low’ measurement error scenarios and

approximately 65% in ‘high’ measurement error scenarios.

– Functional form misspecification can have a significant impact to accuracy when

true inefficiency is expected to be relatively high.

– Omitted variables have a significant negative impact to accuracy under all

conditions and approaches.

– Misspecification of the inefficiency distribution has a relative small negative

impact on the accuracy of the SFA models, especially when sample size

increases.

In another study, Ruggiero (2007) examined the performance of SFA and DEA when

panel data is available. This study was partly motivated by the fact that the cross-

sectional SFA efficiency estimates are statistically inconsistent (see chapter 3 for

discussion on this issue). This shortcoming can be overcome when panel data is

available, since the panel data incorporate additional information from the time-series

nature of the data. The panel data SFA model (with time-invariant inefficiency) was

compared to a COLS model, and two DEA models, the classic CRS model and the

slack-based DEA model that estimates the Russell measure of efficiency93. For all

determinist models, the panel dataset was collapsed to a single cross-section of the

average values of both inputs and output (ie the data was averaged across time).

Data was generated using a simple, two-input, one-output, Cobb-Douglas production

function with constant returns to scale. The inefficiency component u was time-

invariant and was half-normally distributed (u~N+(0,0.20), leading to average

efficiency scores of  86%) and measurement error ε was normally distributed, with

variable variance (ε~N(0,0.05 or 0.10 or 0.15 or 0.20 or 0.30)). The simulations

observe 100 units over a varying amount of time periods, namely 5, 10, 15 and 20

time periods. Each scenario was replicated 100 times and the results were averaged.

The accuracy of the efficiency estimates were judged based on both Pearson’s and

rank correlations with the true values.

The study found that:

– As the number of time periods considered increases, so does the accuracy of

the estimates for all approaches.

93 Defined in Färe, Grosskopf, and Lovell (1985).
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– As the variance of the measurement error decreases, the accuracy of all

approaches improves.

– In almost all cases, the SFA estimates outperform the other measures.

However, the difference in performance is relatively small. The study does point

out that the SFA model is perfectly specified in all respects (functional form,

inefficiency distribution and the fact that inefficiency is time-invariant).

– The Russell measure outperforms the more standard CRS DEA efficiency

measure in the majority of the cases considered.

Resti (2000) study

Resti (2000) examines the performance of DEA, SFA and ‘stochastic’ DEA (as

proposed by Retzlaff-Roberts and Morey (1993)), when data is generated such as

they are more ‘realistic’. In fact, one of the central aims of this study was to devise a

more complex data generating process that produces data that are similar to those

found in real-world applications in the banking sector. To that aim, the study utilises

three inputs and two outputs together with their respective prices, which potentially

allow for the estimation of both technical and allocative efficiency in the cross-

sectional setting. Such efficiencies are estimated using:

– a translog cost function to create a measure of overall efficiency, which is then

decomposed into a measure of technical and allocative efficiency following the

methodology set out by Kopp and Diewert (1982);

– a ‘standard’ DEA model for the estimation of technical efficiency and the

allocative DEA model for the estimation of overall efficiency, which allows for the

calculation of the allocative efficiency component;

– a series of stochastic DEA models to measure overall efficiency (namely an

additive model, a multiplicative model and a model with a heteroskedastic error

component).

Input data were constructed using a multiple log-normal distribution, so that the

values are skewed to the right (indicating the presence of large-scale producers) and

to ensure some degree of correlation between the inputs, given that this is feature

that was deemed to be commonly observed in the banking sector. Price data were

created using a multiple normal distribution and displayed a slight negative
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correlation with each other. The two outputs were generated using two distinct

piecewise log-linear functions94. As for the efficiency score and the noise component:

– technical inefficiency scores were generated using a truncated-normal

distribution with an implied mean of appr. 7% and a standard deviation of appr.

5% and were applied to both outputs,

– allocative inefficiency scores are generated using the normal distribution with a

varying standard deviation (ranging from 0.05 to 0.25) and were applied to all

inputs (the final input is generated in such a way as to ensure that allocative

inefficiency does not have an impact on the unit’s technical efficiency score) and

– the noise component was also generated using the normal distribution with a

standard deviation of 1%.

Using the above data generating process, the study constructed six different

samples, changing the number of observations (50 or 500) and the assumptions

about the degree of allocative inefficiency present in the data. Accuracy was

assessed using MAD scores, correlations between estimates and true values and the

average bias (true values minus estimates). No repeated simulation runs were

undertaken.

The results of this study can be summarised as follows:

– Both SFA and DEA estimates for overall efficiency are quite close to the true

values; SFA narrowly outperforms DEA in the larger sample, while DEA

significantly outperforms SFA in the smaller sample.

– In the large sample, the larger the ratio of overall efficiency to measurement

error, the better the performance of SFA.

– In the smaller sample size, CRS DEA estimates were more accurate than VRS

DEA estimates.

– When decomposing overall efficiency into allocative and technical efficiency, the

DEA estimates are significantly more accurate than the SFA estimates for all

cases.

94 This design does not allow for any interactions in the production of the two outputs-thus the data generation
process assumes that there is complete separability in output production, so no trade-offs between outputs and no
economies of scope are possible.
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– All stochastic DEA models mostly underperformed relative to both SFA and DEA

when sample size was small, with few minor exceptions. The experiment was

not attempted for the larger sample size due to computational concerns.

Banker, Chang, and Cooper (2004) study

The main focus of this study is to examine the effects of the presence of

heteroskedasticity in the inefficiency and/or noise component in the context of the

production function. However, the study also provides accuracy estimates, measured

as mean and median absolute deviations of the estimated efficient output relative to

the true efficient output, for cases with no heteroskedasticity for a wide range of

approaches and thus is relevant for this research. More specifically, the study

examines the accuracy of:

– The standard VRS DEA model and two second-stage DEA-adjusted regression

models (at the first stage efficiency scores are estimated using a VRS DEA

model and the second stage a log-linear and log-quadratic model is fitted using

the efficient output as the dependent variable)

– A COLS model, adopting a log-linear and log-quadratic functional form (two

specifications)

– A MOLS (Modified OLS) model (similar to a COLS model but the ‘correction’ of

the OLS model is based on the model’s mean square error rather than the

maximum residual), adopting a log-linear and log-quadratic functional form (two

specifications).

– An MLE model (equivalent to an SFA model which assumes that the inefficiency

term is exponentially distributed), adopting a log-linear and log-quadratic

functional form (two specifications).

– The Aigner and Chu (A&C) goal programming model (Aigner and Chu (1968)),

adopting a log-linear and log-quadratic functional form (two specifications).

Output data was generated using a log-linear piecewise production function with a

single output. Output values were further modified by adding a noise component,

ε~N(0,0.05) and an inefficiency component u~exp(7), which translates to an average

efficiency of 84%. For some cases, the study also introduced an element of

heteroskedasticity in the measurement error and/or the inefficiency term; however,

since the issue of heteroskedasticity is not examined in the current research, these
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cases are only briefly discussed here. Three different sample sizes were used, of 25,

50 and 100 units and each simulation case was replicated 100 times.

The main results of this study were as follows:

– When no measurement error is present, the standard DEA model provides the

most accurate estimates of efficient output, regardless of the sample size. The

second most accurate approach was COLS using the log-linear specification,

followed by the MLE model; for this model, the log-quadratic specification

appeared to be performing marginally better than the log-linear specification.

Although the differences in MAD scores between the DEA and COLS estimates

were quite small, ranging from 0.06 to 0.4795, the differences between the COLS

and MLE MAD scores were substantially larger, ranging from approximately 7.6

to 8.2. By far the worst performer was the A&C model, with differences in MAD

scores in relation to the DEA model ranging from approximately 35 to 45 units.

– When both measurement error and inefficiency are present, the DEA model still

outperformed every other approach, regardless of the sample size, although

absolute performance was worse than the case with no measurement error. It’s

interesting to note however that the two-stage, log-linear DEA-adjusted model

performed marginally better than the standard DEA model in all sample sizes. It

is not clear why this is the case, but it might be due to the smoothing effect that

the second stage regression can have on the estimated efficient output. The log-

linear COLS model was the second most accurate approach in sample sizes

smaller than 100; for the larger sample sizes, MLE proved to be slightly more

accurate (by about 0.5 units), for both parametric functional form specifications.

In addition, the performance of the MOLS model was quite close to the

performance of the MLE model. The A&C model remained the worst performer

by far.

– When heteroskedasticty was introduced, the relative rankings of the approaches

did not change; the DEA estimators (specifically the second-stage DEA adjusted

regression) were still the more accurate, followed by COLS and MLE

approaches. The results of the study also indicated that the presence of

heteroskedasticty in either the measurement error or the inefficiency term have

no material impact on the performance of the efficiency estimators of all the

approaches examined.

95 It is unclear from the study what the average output is, so these values cannot easily be put into context.
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Van Biesebroeck (2007) study

The study by Van Biesebroeck appears to be of particular relevance to this research,

since its stated aim is to access the robustness of ‘productivity’ estimates derived

from a number of techniques which include index numbers (IN), DEA, OLS, SFA, the

GMM system estimator (Blundell and Bond (2000)) and the semi-parametric

approaches originally proposed by Olley and Pakes (1996). However, as will become

apparent, there are a number of incompatibilities in critical definitions and in general

experiment design that limit the usefulness of this study for this research.

The study examines the accuracy of each estimator, measured by the correlation of

the estimated values to the true values, under these conditions:

– when a noise component is introduced in the price of labour, which this study

refers to as ‘heterogeneity in factor input prices’;

– when measurement error is introduced in the measurement of input and output

quantities; and

– when the production function is firm-specific (ie input elasticities are different for

each firm).

The study assumes that all firms are technically efficient; in fact, the concept of

inefficiency, which is central in the present research, plays only a very small part in

this study. Specifically, any deviation from maximum output is solely the result of the

first condition mentioned above. The introduction of the noise component in the price

of labour can be interpreted as a way to simulate optimisation mistakes on the part of

the producers; an efficient producer will optimise according to the price of labour that

includes the noise component, while ‘true’ productivity change will be determined by

the optimisation process that includes the price of labour without noise. Therefore,

the introduction of the noise component could be interpreted as introducing an

element of allocative inefficiency to the production process.

The study focuses on ‘productivity levels’, productivity growth and bias in the

estimated factor elasticities. A ‘productivity level’ is defined as the natural logarithm of

the productivity of a firm at a point in time relative to the average productivity of the

sample at the same point in time, ie

)ln()ln( tit AA  , Eq A.1.1
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where itA is the unobservable productivity term found in the standard model of

production with two inputs, labour and capital, and one output, namely value added:

),()( ititititit klFAY  Eq A.1.2

In essence, this productivity term appears to be what is more commonly referred to in

the Efficiency and Productivity literature as technical efficiency. However, since this

study assumes that all firms are technically efficient, this productivity term represents

an inherent characteristic of each individual firm. Furthermore, the study assumes

that this characteristic is known to the firm before production begins in each time

period (both in terms that this effect exists and also its exact level and its impact to

production), but is not observable by the researcher. Since this characteristic and

its effects are known to each individual producer before production takes place, each

producer will take it into account when optimising its production process. This is

significant, since this feature gives a significant advantage to the index numbers

approaches considered in this study. As such, this productivity term could also be

interpreted as a firm-specific effect that can change over time, but is always known to

the firm in question before production takes place in each time period.

Productivity growth is defined as the natural logarithm of productivity of a firm at time

t relative to the productivity of the same firm at time t-1, ie

)ln()ln( 1 itit AA Eq A.1.3

For DEA, productivity levels are defined as:

)ln(ln)ln()ln( tit
DEA
t

DEA
it AA   Eq A.1.4

where θ is the DEA efficiency measure and productivity growth is defined as:

11 lnln)ln()ln(   itit
DEA
it

DEA
it AA   Eq A.1.5

,which is more commonly referred by the Efficiency and Productivity literature as

efficiency change (which is in turn only one of the components of the Malmquist

productivity index).

For OLS and SFA (denoted as PAR in the equations below), productivity levels are

defined as:
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)(ˆ)(ˆ)()ln()ln( tit
PAR
ktit

PAR
ltit

PAR
t

PAR
it kkallaqqAA  Eq A.1.6

, where both inputs and the output are in logarithms and PAR
lâ  and PAR

kâ are the

estimated elasticities of labour and capital. Productivity growth is defined as:

)(ˆ)(ˆ)()ln()ln( 1111   tit
PAR
ktit

PAR
ltit

PAR
it

PAR
it kkallaqqAA Eq A.1.7

It is clear from the above definition that the ‘productivity’ term includes both the

effects of the ‘heterogeniety’ in factor inputs and the error term; also, the estimated

production function does not include a time trend and thus the rate of technological

change is not measured. The estimated production function is given by:

itititkitlit kalaaq   0 Eq A.1.8

where all parameters are in logarithms, it represents the productivity term that is

known to the  to the firm but is unobservable to the researcher and it  represents the

measurement error.

The productivity term is modelled according to Battese and Coelli (1992) as:

i
Tt

it e   )(   with ),(~ 2 Ni Eq A.1.9

ie productivity is modelled as a time-invariant draw from a truncated normal

distribution and increases (or decreases) over time if η is positive (or negative) at the

same rate for all firms.

The study generates output using a Cobb-Douglas production function with constant

returns to scale (although this changes in the third set of modelled conditions, as

mentioned above), while inputs are generated as a function of input prices and the

firm-specific productivity effect96. Results are based on 50 simulation runs of 200

firms observed over 10 years.

The use of non-standard definitions of productivity and productivity growth as well as

the assumptions on the absence of technical efficiency, the fact that the productivity

term is fixed (or follows an AR-1 process) and is known to the firm, all serve to make

the findings of this study incompatible with the simulation methodology adopted for

the present research. Therefore, the findings of the Van Biesebroeck study are of

96 To achieve this, the study assumes that all firms are revenue maximising and have perfect information on both
current and future levels of input prices and firm-specific productivity effects.
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limited usefulness as a cross-check and as such, they are not reported here. This is

quite unfortunate, since the Van Biesebroeck study is the only simulation-based

study that specifically examined the robustness of ‘productivity growth’ estimates,

which is the central aim of the current research.
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A2 Generating a piecewise-linear function

There are three main issues that need to be considered when generating a convex,

monotonic, piecewise-linear function (abbreviated here as PLF):

– The number of ‘facets’, or pieces it will contain;

– The breakpoints that will determine the start and end points of each piece; and

lastly,

– The parameters of each piece itself, ie the coefficients of the right-hand side

variables.

The starting point of the generation process is to randomly determine the number of

the efficient facets that describe the frontier. These facets correspond to the number

of ‘pieces’ or linear equations that, when combined, constitute the production

function. In general, but not necessarily always, the higher the number of assessed

units, the higher the number of efficient facets, assuming that the ranges of input and

output values remain relatively constant.

For the PLF detailed in section 4.3.1, the number of facets was randomly generated

from a uniform distribution (U[3,10]).The upper and lower limits of the distribution

were chosen based on a number of simulation experiments designed to provide an

estimate of the number of facets that are likely to be observed in applications with

one output and two inputs in samples of 100 observations (conditions similar to those

used in the simulation analysis of chapter 4). The experiments first utilised a Cobb-

Douglas production function to generate output values for randomly generated

inputs, following the methodology described in chapter 4; an element of moderate

inefficiency was then included in the generated output (average efficiency was

approximately 85%97) and the resulting 100 units were assessed using DEA. DEA

was used in this case, since the approach formulates the frontier as a PLF and it is a

relatively straight-forward process to count the facets of the frontier in such

application.

The next stage of the generation process is to identify the breakpoints of each piece

and parameterise the resulting linear functions. However, this is not a straightforward

task, because the resulting PLF needs to be continuous, convex and monotonic, so

that it conforms to standard production theory. The key characteristic that can be

97 These are the conditions that are prevalent in the simulation experiments that were undertaken in chapter 4.
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used to ensure that the resulting function displays the desirable properties is the

input mix; since the PLF needed here uses just two inputs, this mix is easily

represented as the ratio of the two inputs. This input ratio is critical to both ensuring

monotonicity and as a marker to identify the breakpoints of each ‘piece’-ie the points

in the continuous linear function where the parameters change.

It turns out that monotonicity is relatively straightforward to impose; it only requires

that the breakpoints of each piece are generated such that the input ratio is

increasing in each subsequent piece. So what is needed now is a way to generate

these breakpoints, so that they are consistent with the underlying data generation

process that is used in the simulation analysis undertaken in chapter 4, specifically

so that the breakpoint values are similar to what are likely to be observed in datasets

generated using the same parameters as those used in the chapter 4 simulations.

This was achieved here by randomly generating sets of two inputs using the same

process as the one employed for the simulation exercises (ie 100 observations of two

inputs, each input drawn from a uniform distribution following U[0,1]) and calculating

their input ratios; this provided an indication of the range of input ratios that are likely

to be observed in such conditions. To identify the actual breakpoints, the input ratios

were sorted in ascending order (to ensure monotonicity) and a number of ratios equal

to the number of facets that was determined in the previous step were selected

based on their rank. The actual values of the chosen ranks were randomly

determined, but using a methodology that would ensure that the selected breakpoints

were neither too close together, nor too far apart. However, since the analysis utilises

ratios, it is difficult to define a reasonable measure of distance, ie it is difficult to say

what is too close or too far apart. So instead of finding a way to judge these

distances, the analysis instead adopted the notion that each individual piece should

represent an almost equal number of input ratios, as these were observed in the

generated data. This is akin to the notion of a DEA frontier, where each identified

facet has an almost equal number of DMUs projected to it.

To implement this, the input ratios previously calculated were each ‘assigned’ to an

individual piece. To accomplish this, the analysis randomly determined a frequency

statistic, ie how many observations out of the 100 were to be included in each piece.

The frequency statistic is a random number generated from a normal distribution with

a mean of the expected number of observations by piece (calculated as the ratio of

available observations to the number of desired breakpoints), and a standard

deviation equal to one half of the mean. After the numbers were rounded and
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corrected so that they add up to 100 (ie, the number of observations in the dataset),

each individual observation was assigned to a piece, based on its rank. In other

words, the observations were sorted in an ascending order based on their input ratios

and assigned to each piece based on the previously generated frequency; so,

assuming that the frequency of the first piece was 12, the first 12 observations in the

sorted list were assigned to the first piece, and so on. Then, the midpoint of the input

ratios for the 12th and 13th observations was deemed to be the breakpoint when the

PLF switches to a new linear function.

The above can become clearer when demonstrated in an example:

Assume that the number of observations is set to 30 and they need to be assigned to

two pieces. Also assume that the frequency of the first piece is 12; this means that

the first 12 sorted observations will be assigned to the first piece and the remaining

18 observations will be assigned to the second facet. The sample input data are

given in the table below:
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Table A2.1: Piecewise linear function generation example data

Rank L K L/K Facet Threshold

1 0.004975 0.926145 0.01 1

2 0.014496 0.407422 0.04 1

3 0.037965 0.796258 0.05 1

4 0.042482 0.518143 0.08 1

5 0.095798 0.777642 0.12 1

6 0.082278 0.575915 0.14 1

7 0.040712 0.23072 0.18 1

8 0.064058 0.358348 0.18 1

9 0.03238 0.164129 0.20 1

10 0.177953 0.866756 0.21 1

11 0.21775 0.859035 0.25 1

12 0.211097 0.740471 0.29 1

13 0.255623 0.817896 0.31 2

=(0.29+0.31)/2

=0.30

14 0.291299 0.802149 0.36 2

15 0.300211 0.802179 0.37 2

16 0.074343 0.198431 0.37 2

17 0.373455 0.9859 0.38 2

18 0.270943 0.699698 0.39 2

19 0.100314 0.256691 0.39 2

20 0.280343 0.703299 0.40 2

21 0.300211 0.750206 0.40 2

22 0.17365 0.404798 0.43 2

23 0.351482 0.775658 0.45 2

24 0.496048 0.850642 0.58 2

25 0.523453 0.896786 0.58 2

26 0.085055 0.132267 0.64 2

27 0.601886 0.930052 0.65 2

28 0.596484 0.899106 0.66 2

29 0.528794 0.796686 0.66 2

30 0.668111 0.926939 0.72 2

The value of the breakpoint will be between the input ratio of the 12th and 13th

observation. So, according to the data presented in the table above, the generated

PLF will take the form of:

yi = Eq A2.1

a1+bL1Li+bK1Ki for Li/Ki<=0.3

a2+bL2Li+bK2Ki for Li/Ki>0.3



273

Since chapter 4 did not consider the issue of variable returns to scale the values of

the parameters afacet number were all set to zero. Thus all linear functions pass through

the origin, ensuring that the resulting production function displays constant returns to

scale globally.

As a reminder, the only purpose of this exercise is to derive breakpoints that are

appropriately spaced and that conform to monotonicity constraints. The process

might seem somewhat convoluted, but it does ensure that the generated breakpoints

are appropriately spaced from one another and as such, no single piece of the final

PLF dominates.

The third and final step is to generate the input coefficients for each linear piece. To

accomplish that, first the coefficients for the first input (the one used as the numerator

of the input ratio) were randomly generated for all pieces. For the analysis

undertaken in chapter 4, these coefficients were generated as random draws from a

uniform distribution (U[0,2]). The generated coefficients were then assigned to each

piece, in descending order, ie the largest coefficient was assigned to the first piece

and so on, until the smallest coefficient was assigned to the last piece. This sorting of

the coefficients is critical, since it ensures the convexity of the resulting piecewise-

linear function.

The ‘starting’ coefficient of the second input (ie the coefficient of the second input

corresponding to the first piece) was also randomly generated98; this was achieved

by drawing a sample of random numbers equal to the number of facets using the

same uniform distribution as before and selecting the smallest value. So, the first

facet has the largest coefficient for one input and the smallest coefficient for the

second input; as was previously mentioned, this ensures that the resulting piecewise-

linear function is convex. The rest of the coefficients for the second output are set in

such a manner as to ensure that the piecewise-linear function is continuous.

Continuity is achieved by ensuring that at each breakpoint, the linear functions

corresponding to each consecutive piece result in the same value for y. So,

assuming CRS (ie the values of all a  set to zero), at each threshold to following

should hold:

iKjiLjiKjiLj KbLbKbLb 11   Eq A2.2

98 Or it could be set to be equal to a fraction of the corresponding coefficient for the first input, say 10%.
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Rearranging this equation gives:

11)(   KjKj
i

i
LjLj bb

K

L
bb Eq A2.3

and since the
i

i

K

L
 is known (it is the threshold value), 1Kjb  can be calculated.

Extending the example presented above, assume that:

bL1 = 1.84

bL2 = 1.53

bK1 = 0.13

threshold value = 0.30

a1= a2=0

Then:

bK1= (1.84 - 1.53)*0.3+ 0.13 = 0.22

So the final piecewise-linear production function is:

yi = Eq A2.4
1.53Li+0.22Ki for Li/Ki>0.3

1.84Li+0.13Ki for Li/Ki<=0.3
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A3 Detailed Graphs and tables of productivity
performance by country

Australia
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Standard
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Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.8% 1.6% -1.4% 2007 4.3% 1983

COLS 0.7% 1.6% -1.6% 2007 3.9% 1983

SFA translog
(exponential) 0.9% 0.9% -0.5% 2007 3.0% 1983

GA 0.5% 1.5% -1.4% 2005 4.0% 1983
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Austria
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DEA 1.2% 1.0% -0.9% 1993 2.9% 2000

COLS 0.9% 1.0% -0.9% 1993 2.2% 1990

SFA translog
(exponential) 1.4% 0.9% -0.3% 2001 3.0% 1992

GA 1.0% 1.0% -1.0% 2001 2.5% 2006
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Czech Republic
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(%)
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(%)
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DEA 0.9% 2.3% -3.9% 1997 4.1% 2006

COLS 1.4% 2.2% -3.4% 1997 4.3% 2006

SFA translog
(exponential) 0.1% 2.0% -3.3% 1998 3.2% 2005

GA 0.6% 2.5% -4.6% 1997 4.1% 2006
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Denmark
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TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 1.0% 1.2% -1.3% 1998 4.3% 1994

COLS 0.8% 1.2% -1.3% 2001 4.0% 1994

SFA translog
(exponential) 1.2% 0.8% -0.4% 2007 2.9% 1994

GA 0.3% 1.2% -2.2% 1998 3.3% 1994
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Spain
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TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.3% 1.4% -2.2% 1986 4.3% 1984

COLS 0.3% 1.4% -2.1% 1986 3.8% 1984

SFA translog
(exponential) 0.6% 1.2% -1.0% 1996 3.9% 1984

GA 0.0% 1.4% -2.5% 1986 4.1% 1984
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Finland
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TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.1% 2.4% -5.7% 1975 3.6% 1994

COLS 0.7% 1.8% -4.5% 1975 3.7% 1994

SFA translog
(exponential) 1.1% 1.3% -2.0% 1975 3.5% 1994

GA 1.0% 1.6% -3.1% 1975 3.9% 1994
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Germany

-.0
1

0
.0

1
.0

2
.0

3
.0

4

1990 1995 2000 2005 2010
year

dTFP_sfa_e_trans dTFP_cols
dTFP_dea dTFP_va

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 0.90 1

SFA translog (exponential) 0.93 0.99 1

GA 0.89 0.97 0.97 1
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Standard
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Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 1.3% 1.1% -0.7% 1998 3.5% 2000

COLS 0.7% 0.9% -0.8% 1993 2.3% 2000

SFA translog
(exponential) 1.2% 0.3% 0.7% 1993 1.6% 2000

GA 0.7% 0.9% -1.2% 1998 2.1% 2006
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Italy
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TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.6% 1.7% -4.3% 1975 4.1% 1976

COLS 0.6% 1.6% -4.6% 1975 3.9% 1976

SFA translog
(exponential) 0.9% 1.3% -3.1% 1975 3.8% 1976

GA 0.4% 1.6% -4.2% 1975 4.0% 1976
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Japan
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Standard
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Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.5% 2.3% -6.7% 1974 4.0% 1988

COLS 0.6% 1.6% -3.3% 1974 3.6% 1988

SFA translog
(exponential) 1.2% 1.7% -3.7% 1974 4.3% 1988

GA 0.8% 1.5% -1.9% 1974 3.5% 1988
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Netherlands
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TFP measure Average
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Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.8% 0.9% -1.3% 1992 2.4% 2004

COLS 0.6% 0.9% -1.3% 1992 2.3% 1983

SFA translog
(exponential) 1.3% 0.2% 0.9% 1992 1.6% 1983

GA 0.4% 0.9% -1.7% 1992 2.4% 1983
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Slovenia
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Minimum
(%)

Minimum
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(%)

Maximum
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DEA -0.1% 0.9% -1.9% 2003 1.1% 2001

COLS 1.0% 1.3% -1.5% 2003 2.7% 1997

SFA translog
(exponential) -1.6% 0.7% -2.2% 2003 0.1% 2006

GA 0.9% 1.4% -1.7% 2003 3.0% 2001
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Sweden
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1990 1995 2000 2005 2010
year

dTFP_sfa_e_trans dTFP_cols
dTFP_dea dTFP_va

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 0.90 1

SFA translog (exponential) 0.76 0.94 1

GA 0.78 0.95 0.99 1

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.3% 1.0% -1.7% 2001 1.8% 2004

COLS 1.1% 1.1% -1.0% 2001 2.4% 2004

SFA translog
(exponential) 0.9% 0.2% 0.6% 2001 1.2% 2002

GA 0.8% 1.1% -1.1% 2001 2.5% 2002
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United Kingdom
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year

dTFP_sfa_e_trans dTFP_cols
dTFP_dea dTFP_va

DEA COLS
SFA translog
(exponential) GA

DEA             1

COLS        0.92             1

SFA translog (exponential)        0.92        0.92             1

GA        0.83        0.97        0.85             1

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA -0.4% 1.7% -5.7% 1974 2.1% 1987

COLS 0.4% 1.7% -6.3% 1974 3.0% 1983

SFA translog
(exponential) 0.5% 0.7% -2.0% 1974 1.7% 1983

GA 0.4% 1.8% -5.7% 1980 3.0% 1983
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United States of America
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1970 1980 1990 2000 2010
year

dTFP_sfa_e_trans dTFP_cols
dTFP_dea dTFP_va

DEA COLS
SFA translog
(exponential) GA

DEA 1

COLS 1.00 1

SFA translog (exponential) 0.97 0.98 1

GA 0.95 0.95 0.92 1

TFP measure Average
Standard
Deviation

Minimum
(%)

Minimum
(year)

Maximum
(%)

Maximum
(year)

DEA 0.6% 1.2% -2.1% 1982 3.1% 1983

COLS 0.5% 1.2% -2.5% 1982 3.0% 1983

SFA translog
(exponential) 0.9% 0.4% -0.2% 1982 1.7% 1983

GA 0.2% 1.2% -2.7% 1980 2.6% 1983


