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Abstract: In this letter we present a technique for the implementation of 
Nth-order ultrafast temporal differentiators. This technique is based on two 
oppositely chirped fiber Bragg gratings in which the grating profile maps 
the spectral response of the Nth-order differentiator. Examples of 1st, 2nd, 
and 4th order differentiators are designed and numerically simulated. 
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1. Introduction 

An Nth-order optical temporal differentiator is a device that provides the Nth-time derivative 
of the complex envelope of an arbitrary input optical signal. This operation is performed on 
optical devices at operation speeds several orders of magnitude over electronics. These 
devices may find important applications as basic building blocks in ultrahigh-speed all-optical 
analog–digital signal processing circuits [1]. Moreover, Nth-order differentiators are of 
immediate interest for generation of Nth-order Hermite-Gaussian (HG) temporal waveform 
from an input Gaussian pulse, which can be used to synthesize any temporal shape by 
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superposition [2]. Several schemes have been previously proposed based on integrated-optic 
transversal filter [1], long-period fiber gratings [3], phase-shifted fiber Bragg grating [4], and 
two-arm interferometer [5]. 

In this letter we use a technique for temporal differentiation based on the use of two 
oppositely chirped fiber Bragg gratings (FBG) [6]. As it can be seen in Fig. 1, the system 
includes two linearly chirped FBGs connected by an optical circulator. The first, FBGa, is the 
spectral shaper, and provides the spectral response for pulse shaping. The second, FBGb, 
cancels the dispersion introduced by the first grating. Obviously, the order of the FBGs can be 
arbitrarily selected. 

 

 

Fig. 1. Architecture of the system. Input signal is processed by two oppositely chirped FBGs, 
which are connected by an optical circulator. 

 
This scheme has been previously proposed and experimentally demonstrated in [7] and 

[8]. Specifically, in [7], phase-shifts are introduced in the shaper FBG to generate spectral-
phase-encoded bit. In [8], a bandpass Gaussian FBG optical filter in which the bandwidth can 
be continuously adjusted is presented. Besides the inherent advantages of FBGs (all-fiber 
approach, low insertion loss, and the potential for low cost), this scheme can provide a direct 
implementation of an Nth-order differentiator, avoiding the concatenation of N first order 
differentiators devices. Furthermore, this approach has the possibility of adjusting the 
bandwidth and tuning the central wavelength [8]. 

2. Theory 

The temporal operation of a Nth-order differentiator can be expressed as fout(t)=dNfin(t)/dtN, 
where fin(t) and fout(t) are the complex envelopes of the input and output of the system 
respectively, and t is the time variable. We can also express this in frequency domain as, 
Fin(ω)=(jω)NFout(ω) where Fin(ω) and Fout(ω) are the spectral functions of fin(t) and fout(t), 
respectively (ω is the base-band frequency, i.e., ω=ωopt-ω0, where ωopt is the optical 
frequency, and ω0 is the central optical frequency of the signals). Thus, the spectral response 
of the ideal Nth-order differentiator is: 

 

( )( ) j ( )
N

out inF Fω ω ω=  

( )( ) ( ) ( )   j
N

N out inH F Fω ω ω ω= =  (1) 

 
Moreover, in a real system we have a finite bandwidth, so we have to window the spectral 

response function: 
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where W(ω) is a window function, which must be selected to meet:  
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where the operative band is the region where the differentiator operation works with accuracy, 
and trans(ω) is a transient function which must have low amplitude values at the edges of the 
band of interest in order to avoid an abrupt discontinuity. Notice that not any window function 
verifies this condition on trans(ω), even in the case of a window function presenting low 
values at the edges of the band of interest. 

The objective is to obtain a spectral response of the whole system (composed by the two 
FBGs), Hsyst(ω), proportional to the differentiator spectral response: 
 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )1/ 2

,expsyst a b a b a b N wH H H R R j Hω ω ω ω ω φ φ ω= = + ∝  (4) 

 
where Ha(ω), Hb(ω), Ra(ω), Rb(ω), φa(ω), φb(ω) are the spectral response in reflection, 
reflectivity and phase of the FBGs. In this approach we assume that FBGb is a dispersion 
compensator, so we can consider that Rb(ω) presents an ideal flat-top response in the band of 
interest, so the shape of the reflectivity is influenced by FBGa solely. Thus, we have:  

 
22 2

,( ) ( ) ( ) ( )N
a syst N wR H H Wω ω ω ω ω∝ ∝ =  (5) 

 
Regarding the phase, we have two oppositely linearly chirped FBGs, so 

( ) ( )a b aφ ω φ ω φ= − =�� �� �� , where ( )φ ω��  denotes 2 (φ ω ω2∂ ) ∂ , and aφ��  is a constant value, 

which is obtained from the FBGa design.  
At this point, we present the theory to design the spectral shaper, FBGa. The refractive 

index of FBGa can be written as: 
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,
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( ) ( ) ( ) cos )
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n z n z A z z z

π ϕ
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where nav,a(z) represents the average refractive index of the propagation mode, Δnmax,a 
describes the maximum refractive index modulation, Aa(z) is the normalized apodization 
function, Λ0,a is the fundamental period of the grating, φa(z) describes the additional phase 
variation (chirp), and z ∈  [-La/2 ,La/2] is the spatial coordinate over the grating, with La the 
length of FBGa. In the following we consider a constant average refractive index 
nav,a=neff,a+(Δnmax,a/2), where neff,a is the effective refractive index of the propagation mode. 

Notice that (1) implies that when N is odd, the differentiator spectral response presents a 
π-phase shift at ω=0. In our approach, this condition is attained by introducing a π-phase shift 
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in the grating of FBGa at z=0. The chirp factor of FBGa, which is defined as 
2

, (K a aC z zϕ 2= ∂ ) ∂ , and La can be calculated from [9]: 

 
2 2

, ,4 /( )K a av a aC n c φ= − ��  (7) 

 

( ), ,2a a g a av aL c nφ ω= Δ��  (8) 

 
where c is the light vacuum speed, and Δωg,a is the FBGa bandwidth. It is well known that 
when a chirped FBG introduces an enough high dispersion, the spectral response of the 
grating is a scaled version of its corresponding apodization profile [10]. This high dispersion 
condition can be expressed as: 

 

( )2
/ 8a atφ π>> Δ��  (9) 

 
where Δta is the temporal length of the inverse Fourier transform of the FBGa spectral 
response without the dispersive term, which can be calculated from the temporal length of 

( )1
,N wH ω− ⎡ ⎤ℑ ⎣ ⎦ , where 1−ℑ  denotes inverse Fourier transform. It is worth noting that the 

broader (narrower) bandwidth, the shorter (longer) minimum length of the grating required for 
FBGa to map properly the spatial profile on the spectral response [6].  

If condition (9) is met and Born approximation is applicable, both temporal and spectral 
envelopes reproduce the shape of the apodization profile function, so we can obtain the 
apodization profile which corresponds to Ra(ω) [11]. In the case of high reflectivity an 
approximate function [12] must be applied over Ra(ω). In particular, a logarithmic based 
function is used in our approach, and we obtain an expression which is valid for both weak 
and strong gratings: 
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3. Examples and results 

Here we give three design examples for 1st, 2nd and 4th order differentiators, which are 
numerically simulated. For all the examples we assume a carrier frequency (ω0/2π) of 193 
THz, an effective refractive index neff,a=1.45 for FBGa, a band of interest (Δω/2π) of 5 THz 
centred at ω0 (ω0-Δω/2 ≤ ωopt ≤ ω0+Δω/2), a FBGa bandwidth Δωg,a=Δω, and a maximum 
reflectivity for FBGa of 90 %. 

In the first example we design a system which implements a 1st-order differentiator. The 
corresponding ideal spectral response is H1(ω)=jω, and we choose a function based  on a 
hyperbolic tangent as window, Wth(ω)=(1/2)[1+tanh(4-|16ω /Δω|)]: 

 

1, 1

j
1+tanh 4- 16    

2 2( ) ( ) ( ) ( ) =

0                                         
2

syst w thH H H W

ω ω ωω
ωω ω ω ω

ωω

⎧ ⎡ ⎤⎛ ⎞ Δ≤⎪ ⎢ ⎥⎜ ⎟⎪ Δ⎝ ⎠⎣ ⎦∝ = ⎨
Δ⎪ >⎪⎩

 (11) 
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The spectral shaper (FBGa) must be designed to properly map the desired spectral 

response. From the temporal length of ( )1
1,wH ω− ⎡ ⎤ℑ ⎣ ⎦  we obtain Δta≈2 ps. Using 

expression (9) we have 25 21.5915 10 /a s radφ −>> ×�� , and choose 

23 21.6 10a s radφ −= − ×�� .  Moreover, the odd order of 1st differentiator implies that π-

phase shift must be introduced in FBGa at z=0. The desired reflectivity for FBGa in the band 
of interest is obtained from (5): 

 

( ) ( ){ }2

, ,( ) 1+tanh 4- 16  a R g a g aR Cω ω ω ω ω⎡ ⎤= Δ Δ
⎣ ⎦

 (12) 

 
where CR=2.8494 is a normalization constant selected to get a maximum reflectivity 
max(Ra(ω))=0.9. Using (10) at the maximum reflectivity and apodization, with max(Aa(z))=1, 
we obtain Δnmax,a=1.4484 x 10-3, nav,a=1.45072. 

Additionally, using (7) and (8), we obtain CK,a=5.8543 x 106 rad/m2 and La=5.1936 cm. 
The fundamental period of the grating FBGa can be obtained from Λ0,a=πc/(navω0)=535.36 
nm. The period of FBGa varies from 542.39 nm to 528.51 nm along the length of the grating. 
This supposes a relative period variation of 2.591 %, which is within accuracy of currently 
available fabrication techniques [13]. 

Finally, using (10) we obtain the apodization profile function: 
 

1
222

2( ) ln 1 1+tanh 4- 16
N

A R
a a

z z
A z C C

L L
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 (13) 

 
where CA=0.659 is a normalization constant selected to get a normalized apodization profile 
function 0≤Aa(z)≤1, and N=1. 

Moreover, the dispersion parameter of the dispersion compensator (FBGb) is 

( ) 23 21.6 10b a s radφ ω φ= − = − ×�� �� , which must present a flat top spectral response in the 

band of interest. 
As a second example we design a 2nd order differentiator using the same methodology. We 

obtain again Δtg,a≈2 ps, so we have the same technological parameters as in the first example. 
The apodization profile which is given by (13), where CR= 13.568, and N=2 (same La and CA 

as for first example). 
Finally, in a third example, we design a 4th order differentiator. We have again Δtg,a≈2 ps, 

and the same technological parameters, with an apodization profile described by (13), where 
CR= 243.1, and N=4 (same La and CA as for first example). 

Figure 2 shows the results from our numerical simulations corresponding to these 
examples. Figures 2(a), 2(b), and 2(c) show the phase response of the spectral shaper (FBGa), 
the dispersion compensator (FBGb), and the whole system, for the first, second and third 
example, respectively. Figures 2(d), 2(e), and 2(f) compare the spectral responses of the 
spectral shaper (FBGa) and the ideal differentiator, for the first, second and third example, 
respectively. Figures 2(g), 2(h), and 2(i) show the temporal waveform of the input pulse and 
the output pulses of the designed system, and the ideal differentiator, for the first, second and 
third example, respectively. We have applied an input gaussian envelope pulse, described by 
fin(t) ∝ exp(-t2/(2σ2)), with σ = 500 fs (FWHM= 1.177 ps). 
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It is worth noting that in our simulations we have supposed ideal cancellation of 
dispersions of both FBGs. In practice this requires a careful monitoring of the chirp profile of 
each grating in order to avoid excessive phase ripple. This has been achieved in [7], even with 
tunable chirp in [8]. Considerations about dispersion and phase ripple tolerance can be found 
in [8] and [14]. 

 

Fig. 2. Plots (a), (b), and (c) show the phase response of the spectral shaper (dotted), the 
dispersion compensator (dashed), and the whole system (solid). Plots (d), (e), and (f) show the 
spectral response corresponding to the spectral shaper (solid) for first, second and third 
example, and to ideal 1st, 2nd, and 4th order differentiator (dashed), respectively. Plots (g), (h), 
and (i) show the temporal waveforms of the input pulse (dashed), the output pulse 
corresponding to the system (solid) for first, second and third example, and the output pulse 
corresponding to ideal 1st, 2nd, and 4th order differentiator (dotted),  respectively. 

 

4. Conclusion 

In this paper, we have presented an Nth-order differentiator based on a pair of oppositely 
chirped FBGs, and we have analytically designed and numerically simulated three examples, 
the 1st, 2nd, and 4th order differentiators. 

In addition to the inherent advantages of FBGs, we find two main features that could be of 
practical relevance. Firstly, we can implement a Nth-order differentiator using a single device, 
which is more energetically efficient than the concatenation of N first order differentiators. 
Secondly, the proposed scheme allows tuning the central wavelength and adjusting the 
bandwidth [8] according to the input signal. 
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