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Abstract: The letter presents a technique for Nth-order differentiation of 
periodic pulse train, which can simultaneously multiply the input repetition 
rate. This approach uses a single linearly chirped apodized fiber Bragg 
grating, which grating profile is designed to map the spectral response of the 
Nth-order differentiator, and the chirp introduces a dispersion that, besides 
space-to-frequency mapping, it also causes a temporal Talbot effect. 
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1. Introduction 

The letter presents a technique for Nth-order differentiation of periodic pulse train. In addition 
to the interest in optical computing and information systems, Nth-order differentiators are of 
immediate interest for generation of Nth-order Hermite-Gaussian (HG) temporal waveform 
from an input Gaussian pulse, which can be used to synthesize any temporal shape by 
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superposition [1]. Several all-fiber schemes have been previously proposed based on long-
period fiber gratings [2], phase-shifted fiber Bragg gratings (FBGs) [3,4], two-arm 
interferometer [5], and two oppositely chirped FBGs [6]. 

A schematic of the proposed general architecture is shown in Fig. 1. This approach 
exploits the well-known property of linearly-chirped FBGs, which apodization profile maps 
its spectral response [6-11]. The dispersion introduced by the FBG must meet two conditions: 
first, it must be high enough so the grating profile of the FBG maps the spectral response of 
the differentiator [8,9]. Second, it must meet the temporal Talbot condition [12], so dispersion 
does not affect to the waveform of the output pulses. 

Besides the inherent advantages of FBGs (all-fiber approach, low insertion loss, and the 
potential for low cost), this scheme avoids the concatenation of N first order differentiator 
devices, which reduce energetic efficiency and increase the implementation complexity. Two 
different FBG based approaches have been previously demonstrated for all optical N-order 
time differentiation, namely multiple-phase-shifted FBG [4] and two oppositely chirped FBGs 
[6]. Concerning the first solution [4], it provides optical operation bandwidths in the tens-of-
GHz, while our approach is specially suited for differentiating ultra-broadband optical 
waveforms (e.g. picosecond and sub-picosecond optical pulses). Regarding the second one 
[6], it requires two oppositely chirped FBGs, while this approach only requires one FBG. 
Furthermore, this approach can simultaneously multiply the input repetition rate. As a 
drawback, the system depends on the repetition rate of the input pulse train. 

 

Fig. 1. Architecture of the system. Periodic pulse train is processed by an apodized linearly 
chirped FBG. 

 

2. Theory 

The analytic expression of an Nth-order differentiator in temporal domain is fout(t)=dNfin(t)/dtN, 
where fin(t) and fout(t) are the complex envelopes of the input and output of the system 
respectively, and t is the time variable. In frequency domain, Fout(ω)=(jω)NFin(ω), where 
Fin(ω) and Fout(ω) are the spectral functions of fin(t) and fout(t), respectively (ω is the base-band 
frequency, i.e., ω=ωopt-ω0, where ωopt is the optical frequency, and ω0 is the central optical 
frequency of the signals). Thus, an Nth-order differentiator is essentially a linear filtering 
device providing a spectral transfer function of the form HN(ω)=Fout(ω)/Fin(ω)=(jω)N. We are 
interested in obtaining an analytic expression of a feasible spectral response, so the ideal 
spectral response function must be windowed, HN,w(ω) = HN(ω)W(ω) = (jω)NW(ω), where 
W(ω) is a window function. 

The objective is to obtain a spectral response proportional to the differentiator spectral 
response. The chirped FBG introduces a dispersion term and we have 

( ) ( )( ) ( )( ) ( ) ( )( )1/ 2 2
,exp exp 2r r N w N rH R j H j jω ω φ ω ω φ ω ω φ= ∝ + �� , where 

Hr(ω), R(ω), and φr(ω) are the spectral response in reflection, reflectivity and phase of the 
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FBG, φN(ω)=phase(HN(ω))=phase(HN,w(ω)) and 2 (r rφ φ ω ω2= ∂ ) ∂��  is the first order 

dispersion coefficient of the FBG, which is a constant value for linearly chirped FBGs. 
Regarding the reflectivity, we have: 
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N wR H Wω ω ω ω∝ =

  (1) 
 

 The refractive index of the FBG can be written as: 
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where nav(z) represents the average refractive index of the propagation mode, Δnmax describes 
the maximum refractive index modulation, A(z) is the normalized apodization function, Λ0 is 
the fundamental period of the grating, φ(z) describes the additional phase variation (chirp), 
and z ∈ [-L/2 ,L/2] is the spatial coordinate over the grating, with L the length of FBG. In the 
following we consider a constant average refractive index nav=neff+(Δnmax/2), where neff is the 
effective refractive index of the propagation mode.  

Notice that when N is odd, the differentiator spectral response presents a π-phase shift at 
ω=0. In our approach, this condition is attained by introducing a π-phase shift in the grating at 
z=0.  

The chirp factor of the FBG, which is defined as CK=∂2φ(z)/∂z2, and the length of the 
grating L, can be calculated from [13]: 

 

 2 24 /( )K av rC n c φ= − ��   (3) 

 

( )2r g avL c nφ ω= Δ��  (4) 

 
where c is the light vacuum speed, and Δωg is the grating bandwidth.  

The phase filtering of the FBG must be designed to cause a Talbot effect. In general, the 
pulses waveform of the periodic pulse train is affected by dispersion, but under Talbot 
condition [12] the pulses are reflected without undergoing distortion (self-image effect). This 
condition can be expressed as: 
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where s/m must be an irreducible rational fraction. Repetition rate multiplication can be 
achieved for m>1. As a result the reflected signal has a repetition rate m times that of the input 
signal. 

Regarding the amplitude filtering, we apply an apodization profile to the grating that is 
accurately mapped on the spectral response under high dispersion condition [9], which can be 
expressed as: 

  

 ( )2
/ 8r gtφ π>> Δ��   (6) 
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where Δtg can be calculated from the temporal length of  ( )1
,N wH ω− ⎡ ⎤ℑ ⎣ ⎦ , and 1−ℑ  denotes 

inverse Fourier transform. 
It is worth noting that in most cases T2 >> (Δtg)

2, and it is probable that (5) not only 
satisfies (6), but greatly exceeds it, so from (4) we can deduce that it is necessary to use a 
longer FBG than strictly required for space-to-frequency mapping. 

The apodization profile can be obtained from the expression [8]: 
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3. Examples and results 

In this section, examples of 1st and 4th order differentiators are designed and numerically 
simulated. We assume a carrier frequency (ω0/2π) of 193 THz, an effective refractive index 
neff=1.45, a band of interest (Δω/2π) of 5 THz centred at ω0 (ω0-Δω/2 ≤ ωopt ≤ ω0+Δω/2), a 
grating bandwidth Δωg=Δω, a maximum reflectivity of 50 %, and a pulse train period T=40 
ps. 

For the first example (1st order differentiator) the corresponding ideal spectral response is 
H1(ω)=jω. We choose a function based on a hyperbolic tangent as window, 
W(ω)=Wth(ω)=(1/2)[1+tanh(4-|16ω/Δωg|)], and we have H1,w(ω)=H1(ω)Wth(ω). The desired 
reflectivity is obtained from (1): 

   

 ( ) ( ){ }2

( ) 1+tanh 4- 16  R g gR Cω ω ω ω ω⎡ ⎤= Δ Δ
⎣ ⎦

  (8) 

 
where CR= 2.1238 is a normalization constant to get  a maximum reflectivity of 50 %.  

From the temporal length of ( )1
1,wH ω− ⎡ ⎤ℑ ⎣ ⎦  we obtain Δtg≈2 ps. Using expressions (5) 

and (6) we have -22 22.5464 10  /r

s
s rad

m
φ = ×��  and 25 21.5915 10 /r s radφ −>> ×�� . 

We choose 22 21.2732 10r s radφ −= − ×�� , where s=1 and m=2 have been selected. This 

implies that the input repetition rate is multiplied by two, so we have an output period of 
repetition Tout= Tin/2 =20 ps. The odd order of 1st differentiator implies that π-phase shift must 
be introduced in the grating at z=0.  

Using (7), we obtain Δnmax=2.8160 × 10-4, nav=1.45014. Additionally, using (3) and (4), 
we obtain CK=-7.3508×105 rad/m2 and L=41.346 cm. The fundamental period of the grating 
can be obtained from Λ0=πc/(navω0)=535.574 nm. Finally, using (7) we obtain the apodization 
profile function:  

   

 

1
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  (9) 

 
where CA=1.2011 is a normalization constant selected to get a normalized apodization profile 
function 0 ≤ A(z) ≤ 1, and N=1. 
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As a second example we design a 4th-order differentiator using the same methodology. 
We obtain again Δtg≈2 ps, and we design the same technological parameters as in the first 
example (so repetition rate is also doubled). The apodization profile is given by (9), where 
CR=181.02, and N=4 (same L and CA as for first example). 

Figures 2(a), 2(b), and 2(c) show the results from our numerical simulations corresponding 
to the first example, and Fig. 2(d), 2(e), and 2(f) show the corresponding to second example. 
The spectral responses of the designed FBG and the ideal differentiator are showed in Fig. 
2(a) and 2(d) for first and second example, respectively. The output pulse corresponding to an 
input gaussian pulse described by fin,1(t) ∝ exp(-t2/(2σ2)) with σ= 800 fs, are showed in Fig. 
2(b), and 2(e) for first and second example, respectively. The output pulse corresponding to an 
antisymmetric HG pulse described by fin,2(t) ∝ ∂ fin,1(t)/∂t ∝ t·exp(-t2/(2σ2))  are showed in Fig. 
2(c), and 2(f) for first and second example, respectively.  

 

 
Fig. 2. Plots (a) and (d) show the amplitude of the spectral response corresponding to the FBG 
(solid), and to an ideal differentiator (dashed) for first and second examples, respectively. The 
temporal waveforms are showed in plots (b) and (c) for first example, and in plots (e) and (f) 
for second. Plots (b) and (e) correspond to a Gaussian pulse as input, and plots(c) and (f) 
correspond to an  antisymmetric Hermite-Gaussian pulse as input. In plots (b), (c), (e) and (f) 
we show the input pulse in dashed line, the ouput pulse for the designed system in solid line, 
and the output pulse for the ideal differentiator in dotted line (indistinguishable from solid line 
in (b) and (c), and hardly distinguishable from solid line in (e) and (f)). 
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From (4) and (6) we obtain that the length of the grating requires L >> 0.051 cm for space-
to-frequency, which can be satisfied from L > 5 cm. The length of the grating designed 
(41.346 cm) is much longer, but is within the accuracy of currently available fabrication 
techniques, as it can be seen in [11], where Talbot effect was achieved in a 96 cm linearly 
chirped FBG.  

Considerations about the effect of group delay ripple can be found in [14], where it has 
been associated to the amplitude jitter of the rate-multiplied pulse train. 

4. Conclusion 

In this letter, an apodized linearly chirped FBG is designed and numerically simulated to 
simultaneously perform amplitude filtering to obtain the spectral response of the Nth-order 
differentiator, and phase filtering to cause temporal Talbot effect. The amplitude filtering 
exploits the fact that apodization profile of linearly chirped FBG maps its spectral response. 
This idea was used in a previous article published recently [6]. The main difference is that 
second chirped FBG for compensation of dispersion introducing by first FBG proposed in [6] 
is not required. This method reduces the number of required FBG to one and in addition the 
use of the Talbot effect allows repetition rate multiplication. These advantages must be 
weighed against the disadvantage that the system depends on the input repetition rate, and that 
the FBG length required for temporal Talbot effect can be much longer than the strictly 
required for space-to-frequency mapping.  

It is worth noting that, unlike other pulse shaping techniques based on chirped FBGs [7-
11], where the objective is shaping a specific output pulse from a known input pulse 
waveform, this system performs an operation (Nth-order temporal differentiation) than can be 
applied over different input waveforms to get the respective output waveforms. 
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