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Inference algorithms based on evolving interactions between replicated solutions are introduced and analyzed
on a prototypical NP-hard problem: the capacity of the binary Ising perceptron. The efficiency of the algorithm is
examined numerically against that of the parallel tempering algorithm, showing improved performance in terms
of the results obtained, computing requirements and simplicity of implementation.
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I. INTRODUCTION

One of the main contributions of statistical physics to
application domains such as information theory and theoretical
computer science has been the introduction of established
methods that facilitate the analysis of typical properties of
very large systems in the presence of disorder. For instance,
in information theory applications, these large systems corre-
spond to (mostly binary) transmissions where the disorder is
manifested through transmission noise or the manner by which
the message is generated or encoded. Established approaches
in the statistical physics community such as the replica and
cavity methods [1] have proved to be useful tools in describing
typical properties of error-correcting codes [2–4], the analysis
of optimization problems such as the traveling salesman [5],
K satisfiability [6], and graph coloring [7,8], to name but a
few.

Another important contribution, which complements the
ones mentioned above, was in the development of algorith-
mic tools to find microscopic solutions in specific problem
instances. One of the most celebrated inference methods, the
message-passing (MP) or belief propagation algorithm, had
been developed independently in the information theory [9],
machine learning [10], and statistical physics [5] communities
until the links between them have been identified [11,12]
and established [13]. Subsequently, a number of successful
inference methods have been devised using insights gained
from statistical physics [1,14].

In MP algorithms, the system to be solved is mapped onto a
bipartite factor graph, where on the one hand factor nodes
correspond to observed (given) information or interaction
between variables; while on the other hand are variable
nodes, to be estimated on the basis of approximate marginal
pseudoposteriors. The latter are obtained by a set of consistent
marginal conditional probabilities (messages) passed between
variable and factor nodes [1]. Unfortunately, there are many
caveats to the MP procedure, especially in the presence of
closed loops in the factor graph, which may give rise to
inconsistent messages and nonconvergence. It can be shown
that MP converges to the correct solution when the factor
graph is a tree, but there is no such guarantee for more general
graphs, although MP does result in a good solution in many
other cases too.

There are two main general difficulties in using MP algo-
rithms to problems represented by densely connected graphs.
The first is that the computational cost grows exponentially
with the degree, making the computation impractical, while

the second arises from the existence of many short loops that
result in recurrent messages and lack of convergence. These
problems have been solved in specific cases, especially in
the case of real observations and continuous noise models by
aggregating messages [15]. One of the shortcomings identified
in Ref. [15] was nonconvergence when prior knowledge on the
noise process is inaccurate or unknown, which typically results
in multiple solutions and conflicting messages.

While MP would be successfully applied if a weighted
average over all possible states could be carried out, it is
clear that such an average is infeasible. Inspired by the
state-space representation obtained using the replica method
[1,5,16] whereby state vectors are organized in an ultrametric
structure, two of us suggested an MP algorithm based on
averaging messages over a structured solutions space [17].
The approach is based on using an infinite number of copies
(or real replica, not to be confused with those employed in
the replica method) of the variables exposed to the same
observations (factor nodes). The replicated variable systems
facilitate a broader exploration of solution space as long
as these replica are judiciously distributed according to the
solution-space structure implied by the statistical mechanics
analysis. The variable vectors inferred by these algorithms
are then combined by taking either weighted or white av-
erage to obtain the marginal pseudoposterior of the various
variables.

The approach has been successful in addressing the code
division multiple access (CDMA) problem as well as the
linear Ising perceptron capacity problem [18], even in cases
where prior information is absent. It is worthwhile noting
that a seed of this replication philosophy can be found in
several previous algorithms such as (a) query by committee
[19], where the potential solutions (system replica) are used
for choosing the best most informative next example and
later combines the solutions using a majority voting; (b) an
analytical approach [20] aimed at obtaining solutions for
the Sherrington-Kirkpatrick model via averages over the
Thouless-Anderson-Palmer equations; (c) a study of the p-spin
model metastable states by considering averages over a small
number of real replica [21]; (d) the parallel tempering (PT)
algorithm, also known as replica exchange Markov chain
Monte Carlo (MCMC) sampling, which relies on many replica
searching the space at different temperatures [22,23]; the latter,
due to its good performance and relation to the approach
we advocate, will be explained in more detail later on and
will be used for comparison with the method developed here.
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It is interesting to note that approaches based on averaging
multiple interacting solutions have also been successfully tried
in neighboring disciplines, for example, for decoding in the
context of error-correcting codes [24].

While this approach has been successful in addressing
inference problems in the case of real observations and
continuous noise models, it is less clear as to how it could
be extended to accommodate more general cases. In this
work, we will present an alternative method for carrying
out averages over the replicated solutions, which can be
applied to more general cases. Generally, like most MP-based
algorithms, the approach is based on solutions being calculated
iteratively using a pair of coupled self-consistent equations.
We will study the properties of this alternative algorithm,
its advantages and limitations, on an exemplar problem of
the binary Ising perceptron (BIP) [25,26] that has been used
as a benchmark also in other works on advanced inference
methods [27].

One obvious obstacle in most MP algorithms is that the
iterative dynamics can be trapped in suboptimal minima;
in addition, the algorithm itself can either create spurious
suboptimal minima in the already complex solution space
or change the height of the energy barriers between the
existing ones. We will show that our replica-based MP
algorithm fails under naive averaging of the replica for the
BIP capacity problem, explain analytically why it happens,
and show that in the limit of a large number of replica,
averages flow to the clipped Hebb algorithm [26]. We
will then propose an alternative approach and show how
replication can indeed improve performance if carried out
appropriately.

In Sec. II, we will explain the exemplar problem to be
used in this study; we will then review the nonreplicated MP
solution to the BIP capacity problem under the approximation
for densely connected systems in Sec. III and provide an
analytical solution to the naively replicated MP algorithm,
showing here its equivalence with the clipped Hebb rule. Sec-
tion IV will point to the main reason for the failure of the naive
replica-averaging approach and argue that an online version of
the MP algorithm, which is derived and presented, can solve it.
By replicating the new online MP (OnMP) algorithm and using
the extra degrees of freedom that it provides, we show how it
outperforms the nonreplicated MP algorithm, termed offline
MP (OffMP) algorithm. Section V compares the replicated
OnMP (rOnMP) with a benchmark parallel algorithm, namely,
the PT algorithm. Finally, conclusions and future directions are
discussed in Sec. VI.

II. EXEMPLAR PROBLEM: THE BINARY
ISING PERCEPTRON

To extend the replica-based inference method [18], we
would like to use an exemplar problem that is particularly
difficult, not only in the worst-case scenario but also typically
where both observations and noise model are not real valued.
In addition, we would like to examine a case where exact
results have been obtained by the replica theory; this provides
helpful insight in devising the corresponding algorithm by
suggesting a possible structure for the solution space as well
as an analytical tool to assess the efficacy of the algorithm.

One prototypical NP-complete problem [28] that was
shown to be computationally hard even in the typical case,
which was solved exactly using the replica method, is the
capacity of the binary Ising perceptron [25]. This is due to the
complex structure of its solution space studied in Ref. [29],
showing a nontrivial topology even in the replica symmetric
(RS) phase.

The BIP [26] represents a process whereby K-dimensional
binary input vectors sμ ∈ {±1}K are received, where the input
vector index μ = 1, . . . ,N , represents each of the N example
vectors. The corresponding outputs for each one of them is
determined by the binary classification

yμ = sgn

(
1√
K

K∑
k=1

sμkbk

)
, (1)

where b = (b1, . . . ,bK ) ∈ {±1}K is called the unknown binary
variables (also referred to as the perceptron’s variable vector);
the prefactor

√
K is for scaling purposes, so that the argument

of the sign function remains order O(1) as K → ∞.
The capacity problem for a BIP is a storage problem,

although it can alternatively be seen as a compression task
[30]. In the simplest version of the problem, a data set
D = {(sμ,yμ)}N

μ=1 consisting of N pairs of inputs and outputs
(also called examples) is randomly generated and a perceptron
with an appropriate variable vector b should be found, such
that when presented with an input pattern sμ, it reproduces the
corresponding output yμ. That is the equivalent of compressing
the information contained in the set of classifications {yμ},
comprising N bits, into a vector b with only K bits. One is
usually interested in the typical case, which is calculated by
averaging over all possible data sets D drawn at random from
a certain probability distribution.

Typical performance is algorithm dependent and is mea-
sured by counting the fraction of correctly stored patterns
as a function of the number of examples in the data set.
One convenient measure is the average value of the indicator
function

χ (b̂) = 1 −
N∏

μ=1

�

(
yμ

1√
K

K∑
k=1

sμkb̂k

)
, (2)

with �(· · · ) being the Heaviside step function and b̂ the
inferred variable vector. This measure gives 0 if all examples
are correctly stored and 1 otherwise, i.e., it is indicating that
all patterns were perfectly memorized. The maximum value
of α = N/K for which this cost function is 0 (averaged
over all possible data sets) is the achieved capacity of the
algorithm and a measure of its overall performance. This
indicator function was chosen because the BIP capacity
problem focuses on perfect inference of the perceptron’s
variable vector b, without allowing for any distortion, or
noise, in the patterns classification. Additionally, it is the most
commonly used measure in recent publications in this field
(e.g., in Ref. [27]).

We use the cost function (2) as a measure used for
the performance of the studied algorithms; however, the
algorithms themselves have been derived by statistical physics
methods and rely on minimization of an extensive energy given
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by the number of misclassified patterns

E(b̂) =
N∑

μ=1

�

(
−yμ

1√
K

K∑
k=1

sμkb̂k

)
. (3)

Alternative energy functions were suggested in the liter-
ature, for instance [31], and were used in various contexts,
especially in the machine learning literature. While the
different energy functions tend to share a joint ground state,
they may exhibit different behaviors under noisy conditions
(imperfect learning, at finite temperatures) as they correspond
to different noise models. Although the study of algorithmic
performance at higher temperatures is interesting, it is not
within the scope of this work, which focuses on examining
the performance of the suggested algorithm against results
obtained for the benchmark problem of perfect storage at the
noiseless, zero temperature limit.

It should be noted that the distribution of patterns to be
memorized affects the performance of the algorithm. Within
the class of solvable Ising perceptron capacity problems,
patterns sampled from an unbiased distribution constitute the
most difficult task. Biased patterns are less informative and
are therefore easier to store [32]. We will therefore study only
patterns generated from unbiased distributions, representing
the most difficult problem, but the method could clearly be
extended to accommodate biased patterns.

Although the achieved capacity varies between algorithms,
there is an absolute upper bound, the critical capacity αc, above
which no algorithm can memorize the whole set of examples
in the typical case (although it might be possible for specific
instances); this reflects the information content limit of the
perceptron itself.

The critical capacity was calculated by Krauth and Mézard
using the one-replica symmetry breaking (1RSB) ansatz [25]
with the result of αc ≈ 0.83. Taking into consideration that the
problem is computationally hard, the challenge then becomes
to find an algorithm which infers appropriate b values in typical
specific instances of D as close as possible to αc, where the
corresponding computational complexity scales polynomially
with the system size.

III. NAIVE MESSAGE PASSING

The inference problem we aim to address is finding the
most appropriate value of the variable vector b capable of
reproducing the classifications given the examples data set D.
First, one needs to determine a quality measure that quantifies
the appropriateness of a solution. The most commonly used
error measure in similar estimation problems is the expected
error per variable, or bit-error-rate in the information theory
literature, the minimization of which leads to a solution based
on the marginal posterior maximizer (MPM) estimator given
by

b̂k = argmaxbk∈{±1}
∑
bl �=k

P(b|D) = sgn〈bk〉P(b|D), (4)

which means that one estimates b bitwise, such that each
component b̂k corresponds to the variable value that maximizes
the marginal distribution per variable given the data set D. The

MP equations allow one to carry out an approximate Bayesian
inference procedure to find this estimator.

It is important to remember that there might not exist a
variable vector capable of reproducing the whole data set. In
this case, the data set is unrealizable by the BIP, although
one can still identify the most probable candidate. In the BIP
capacity problem, unrealizable data sets exist since they are
generated randomly, not by a teacher perceptron as is the case
in some generalization problems. Each variable in the set D is
drawn from an independent distribution and therefore one can
write the posterior distribution of the variable vector as

P(b|D) = P(b|{yμ},{sμ}) ∝ P({yμ}|b,{sμ})P(b), (5)

where P({yμ}|b,{sμ}) factorizes as the examples are sampled
identically and independently

P({yμ}|b,{sμ}) =
N∏

μ=1

P(yμ|b,sμ). (6)

From the Bayesian point of view, P(b) is interpreted as the
(factorized) prior distribution of possible variable vectors.
As there is no noise involved in the capacity problem, the
likelihood factor is simply given by

P(yμ|b,sμ) = 1

2
+ yμ

2
sgn ξμ, (7)

defining

ξμ = 1√
K

K∑
k=1

sμkbk. (8)

As for each instance the data set is fixed, we will omit in
the following expressions the explicit reference to the input
vectors sμ in the posterior distribution for brevity.

The resulting MP equations are self-consistent coupled
equations of marginal conditional probabilities which are
iterated until convergence (or up to a cutoff number of
iterations). These equations are obtained by applying Bayes
theorem to each one of the so-called Q messages and R

messages

Qt+1
μk (bk) = P t+1(bk|{yν �=μ})

∝ P(bk)
∏
ν �=μ

P t+1(yν |bk,{yσ �=ν}), (9)

Rt+1
μk (bk) = P t+1(yμ|bk,{yν �=μ})

=
∑
{bl �=k}

P(yμ|b)
∏
l �=k

P t (bl|{yν �=μ}), (10)

where P(bk) is the prior distribution over the kth entry of the
variable vector and t stands for the current iteration step.

As bk ∈ {±1}, one can write

Qt (bk) = 1 + mt
μkbk

2
and Rt (bk) ∝ 1 + m̂t−1

μk bk

2
. (11)

The variables mμk may be interpreted as magnetization related
to the cavity field in analogy to spin lattices in magnetic
fields. The interpretation of the m̂μk variables is less intuitive.
Substituting the R messages into the Q messages and summing
over the two possible values of bk , we finally reproduce the
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MP equations in their well-known form

m̂t
μk =

∑
bk

bkP t+1(yμ|bk,{yν �=μ})∑
bk
P t+1(yμ|bk,{yν �=μ}) , (12)

mt
μk = tanh

⎡
⎣∑

ν �=μ

atanh m̂t
νk

⎤
⎦ ≈ tanh

⎛
⎝∑

ν �=μ

m̂t
νk

⎞
⎠. (13)

The approximation in the last equation is possible since m̂μk ∼
O(1/

√
K) as we will see later.

Once convergence is attained, the value for the variable
vector can be estimated by

b̂k = sgn mk, (14)

mk = tanh

(∑
ν

m̂t
νk

)
, (15)

or

b̂k = sgn

(∑
ν

m̂t
νk

)
. (16)

As mentioned in Sec. II, the factor graph representing
the BIP is densely connected, but an expansion for large K

suggested by Kabashima [15] helps to simplify the equations
away from criticality. However, for the BIP this expansion
requires extra care due to the discontinuity of the sign function.
To address this problem, we developed a different approach to
carry out this expansion which can be generalized to accommo-
date other types of perceptrons with minimal modifications; it
can be applied to either continuous or discontinuous activation
functions, with or without noise. Equation (13) for mμk is not
modified, but m̂μk is expanded in powers of 1/

√
K , giving

rise to a different expression (detailed derivation is provided
in Appendix A):

m̂μk = 2sμkyμ√
K

Nμk

1 + erf
(
yμuμk/

√
2σ 2

μk

) , (17)

where

Nμk = 1√
2πσ 2

μk

exp

(
− u2

μk

2σ 2
μk

)
, (18)

σ 2
μk = 1

K

∑
l �=k

(
1 − m2

μl

)
, (19)

uμk = 1√
K

∑
l �=k

mμlsμl. (20)

However, this version of the algorithm is unable to
memorize large numbers of examples. Simulation results show
that, even for small system sizes (K ∼ 10), it can not memorize
more than a single pattern on average. This is a consequence of
the fact that the dynamical map defined by the MP equations
becomes trapped in the many suboptimal minima of the energy
landscape.

In principle, one should be able to correct this by replicating
the system and distributing the n replica randomly in solution
space, let each one carry out the inference task independently,
and compare their final fixed points. An idea along these lines,
with a small number of real replica searching the space in
parallel, was tested with some success in Ref. [21], where the

replica helped change the landscape to facilitate jumps over
barriers between metastable states. However, the correspond-
ing algorithm was not very efficient computationally. Also,
the replicated version of MP we tested failed and the observed
performance coincided with that of the nonreplicated version.

To understand the reasons for the failure of the naively
replicated algorithm, we solved the replicated version of the
algorithm analytically. We consider the case where a simple
white average of the n replica is used for inferring the variable
vector value

b̂k = sgn

(
1

n

n∑
a=1

ba
k

)
. (21)

We can then evaluate the MP equations using a saddle point
method when n,N,K → ∞. The detailed calculation is given
in Appendix B, giving rise to a surprisingly simple final result

b̂k = sgn

⎛
⎝ N∑

μ=1

yμsμk

⎞
⎠. (22)

Simplicity is not the only surprising aspect of this result. Those
familiar with past research in machine learning will readily
recognize this equation as the clipped version of the Hebb
learning rule [33]. Unfortunately, this is not good news as
the maximum attainable capacity by this algorithm has been
already calculated analytically to be NH

K
≡ αH =≈ 0.11 [34,

35]. Worse yet, the achieved capacity of the clipped-Hebb
rule quickly deteriorates as K increases, converging to zero
asymptotically.

The flow of the replicated algorithm towards the clipped
Hebb rule points out some other weaknesses of the MP
algorithm. It is not difficult to appreciate that MP results in
a clipped rule as the final estimate of the variable vector is
obtained by clipping the fixed point of the magnetization; this
implies that it suffers from all pathologies present in clipped
rules such as suboptimal solutions.

Another characteristic that is highlighted by this result is
the fact that, like the Hebb rule, the MP approach is an offline
(batch) learning algorithm in the sense that it does not depend
on the order of presentation of the examples. This is true both
for the nonreplicated and replicated algorithms. This suggests
that one could introduce an extra source of stochasticity by
devising an online version of the MP, which could allow for the
algorithm to overcome the energy barriers that trap it in local
minima. Different orders of examples correspond to different
paths in solution space which, combined, could potentially
explore it much more efficiently. The examples order is an
extra degree of freedom that can not be exploited in offline
algorithms. In the following section, we show that by pursuing
this idea, we find a replicated version of MP which does not
only perform better than the offline one (OffMP), but also
offers many additional advantages.

IV. ONLINE MESSAGE PASSING

The results of the previous section indicate that replication
of the OffMP algorithm does not offer any significant improve-
ment in performance in the BIP capacity problem. The online
version of the MP algorithm introduced here allows one to
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exploit the order of presentation of examples as a mechanism
to avoid algorithmic trapping in local minima. This algorithm
will then be used in its replicated version with a polynomial
number of replica n with respect to the number of examples
N .

In order to develop an online version of the MP algorithm,
we rely on a large K expansion. When K → ∞, one can
derive the equations for the magnetization (mean values) of
the inferred variable vector [Eq. (15)] as

mk = tanh

(∑
ν

m̂νk

)

= tanh

⎛
⎝∑

ν �=μ

m̂νk + m̂μk

⎞
⎠

≈ tanh

⎛
⎝∑

ν �=μ

m̂νk

⎞
⎠ + m̂μk

⎡
⎣1 − tanh2

⎛
⎝∑

ν �=μ

m̂νk

⎞
⎠

⎤
⎦

= mμk + [1 − (mμk)2]m̂μk. (23)

Equation (23) singles out the μth example similarly to
the OffMP derivation. However, in the online interpretation
it is considered a new example, being presented sequentially
after all previous μ − 1 examples have been learned. Then,
mk can be interpreted as the updated magnetization, while
mμk is the magnetization linked to the cavity field induced
by the previous examples, before example μ is included.
In the bipartite interpretation of the model, this is akin to
the introduction of new a factor node, exploiting conditional
probabilities calculated with respect to the previous μ − 1
examples. To make this interpretation more explicit, we add a
time label to the obtained equation by changing mk to mk(t),
mμk to mk(t − 1), and considering the μth example as the
example being presented at time t . The online MP algorithm
can finally be written as

mk(t) = mk(t − 1) + stkyt√
K

Fk(t), (24)

with the so-called modulation function given by

Fk(t) = 2
[
1 − m2

k(t − 1)
] Ntk

1 + erf
(
ytutk/

√
2σ 2

tk

) , (25)

where

σ 2
tk = 1

K

∑
l �=k

[
1 − m2

l (t − 1)
]
, (26)

utk = 1√
K

∑
l �=k

stlml(t − 1). (27)

The performance of the OnMP algorithm without replica-
tion is shown in Fig. 1 for K = 21 averaged over 200 different
sets of examples. The vertical axis shows ρ = 1 − 〈χ〉, the
average value of the function that indicates perfect learning.
However, because χ ∈ {0,1} we have to estimate the variance
by repeating the average several times and calculating an
average over averages. For the graph of Fig. 1, this was done
200 times for each particular data set and the corresponding

0.0 0.2 0.4 0.6 0.8 1.0
Capacity N/K

0.0

0.2

0.4

0.6

0.8

1.0

ρ

FIG. 1. Nonreplicated online version of the MP algorithm. While
the offline MP can not learn perfectly more than one single example,
we see that the OnMP can, already without replication, memorize
perfectly a larger number of examples. The vertical axis ρ is the
average value of the indicator function that gives 1 if all patterns
are memorized and 0 otherwise. The horizontal axis is the capacity
α = N/K .

error bars are smaller than the size of the symbols. We see
that, contrary to the OffMP, the online version is now able to
memorize perfectly a larger number of examples on average,
with a larger achieved capacity. The slow decay to zero is to
be interpreted as a finite size effect, which is however difficult
to since increasing the system size K leads to a deterioration
of performance instead of a sharper transition.

Let us now replicate this algorithm. For N examples,
there are N ! possible orders of presentation, but we will
choose only a number n of these sequences, with n being
of polynomial order in N . We will see that this is enough to
improve considerably the performance of the algorithm. We
compare two versions of the replicated algorithm with white
and weighted average over replica. Both versions work by
exposing the n replica independently to different orders of
examples. To minimize residual effects, we allow a relearning
procedure with L ∼ 10 relearning cycles while keeping the
same order of presentation. As the MP algorithm relies on
clipping, it shows a poorer performance when the number of
examples is small, especially for the even cases where parity
effects are amplified. This effect, however, disappears as N

grows larger.
The difference between the white and weighted algorithms

lies in how the final estimate for the variable vector is
calculated. Respectively, we have

b̂white
k = sgn

(
1

n

n∑
a=1

ba
k

)
, (28)

b̂
weighted
k = sgn

(
n∑

a=1

waba
k

)
, (29)

where

wa ∝ e−βE(ba ), (30)

and the energy of each replica is calculated as in Eq. (3). The
parameter β works as an inverse temperature and is given a
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high value in order to select lower energy states. Clearly, when
β = 0, the white and weighted averages are the same.

We compared the performance of the two versions of
the rOnMP against the nonreplicated one. Both perform
much better than the nonreplicated algorithm. The difference
between weighted and white averages in related problems had
already been studied in relation to the TAP equations via the
replica approach yielding similar results [20]; this indicates
that similar problems appear in the corresponding dynamical
maps. Contrary to our expectations, though, we have not found
any difference in performance between the weighted and white
averaged algorithms. This seems to indicate that even selection
of the best performers as done by the weighted average is not
enough to prevent the algorithm of being trapped in suboptimal
solutions, which can only be avoided by increasing the number
of replica.

It is interesting to note that a variational approach carried
out by Kinouchi and Caticha [36] was successful in finding the
optimal online learning rule for a perceptron, in the sense that
it will saturate the Bayes’ generalization bound calculated by
Opper and Haussler [37]. Although the perceptron generaliza-
tion problem is different from the capacity problem, as in the
former, the data set is clearly realizable having been generated
by a corresponding perceptron, which might not be the case for
the latter; up to the critical capacity one can assume that the set
of random examples, in the typical case, is indeed realizable.
In fact, this is usually one of the underlying assumptions when
attempting to solve the capacity problem. This means that we
can use the same algorithms to carry out both tasks.

The precise form for the parallel variational optimal (VO)
algorithm for the BIP was derived in Ref. [38] and is given by

b(t + 1) = b(t) + st yt√
N

F (t), (31)

where the modulation function is

F (t) = 2

√
Q(t)

R(t)2
[1 − R(t)2]

× Nt

1 + erf(R(t)φ(t)/
√

2(1 − R(t)2))
, (32)

with

R(t) = b0 · b(t)

|b0||b(t)| , Q(t) = b(t)2

N
,

(33)

φ(t) = h(t)yt , h(t) = b · st

|b| ;

where b0 is a teacher perceptron, which in the capacity case
would correspond to the correct inferred variable vector, the
true value of which we do not know. In employing the VO
algorithm, an assumption that the overlaps are self-averaging
has been used. Therefore, a sensible way to obtain a value that
could be used as a good estimate of b0 is to run the algorithm
many times in parallel and average all values of b(t) at each
iteration. Like in our algorithm, this average can be either
white or weighted.

A notable characteristic of the above set of equations is their
similarity with our equations for the OnMP if one substitutes

mk → bk, m2
k → R2, Rφ → yu, 1 − R2 → σ 2, (34)

respectively. In fact, the asymptotic behavior of the VO
guarantees that even the square-root amplitude appearing in
front of the modulation function tends to the same value as
in the OnMP, making the two sets isomorphic under this
substitution. This striking relation between both algorithms
is a strong indication that our algorithm must also be
capable of achieving the optimal capacity and saturates Bayes’
generalization bound [37].

V. PERFORMANCE

In this section, we compare the performance of the rOnMP
with that of the PT algorithm. The reason for choosing PT
is that it is a well established parallel algorithm with good
performance in searching for solutions in the BIP capacity
problem. Other derivatives of BP-based algorithms have
been used to solve the BIP capacity problem, for instance,
survey propagation [6,27]; the latter also aims to address
the fragmentation of solution space but employs a different
approach. The results reported [6,27] show that solutions can
be found very close to the theoretical limits even for large
systems, but additional practical techniques and considerations
should be used to successfully obtain solutions. As our
aim in this work is to show how replication can improve
significantly the performance of MP algorithms, we use the
PT algorithm as the preferred benchmark method due to its
simpler implementation.

Parallel tempering (PT) or replica exchange Monte Carlo
algorithm [22,23] was introduced as a tool for carrying out
simulations of spin glasses. Like the BIP capacity problem,
spin glasses have a complicated energy landscape with many
peaks and valleys of varying heights and PT has been
successfully applied to that and many other similar problems
where the extremely rugged energy landscape causes other
methods to underperform [39,40].

In many cases, searching for the low energy states is
done by gradient descent methods. In statistical physics,
simulated annealing is a principled and useful alternative to
gradient descent by allowing for a stochastic search while
slowly decreasing the temperature; it is particularly effective
in the cases where the landscape has one or very few
valleys. However, to guarantee convergence to an optimal
state, the temperature should be lowered very slowly and most
applications use a much faster cooling rate. In the case of spin
glasses, this causes the algorithm to be easily trapped in local
minima.

The idea behind the PT algorithm is to introduce a number
of replica of the system that search the solution space in parallel
at different temperatures using a simple Metropolis-Hastings
procedure. The higher the temperature, the easier it is for the
replica to jump over energy barriers, but convergence becomes
increasingly compromised. However, jumping over barriers
allows for the exploration of a large part of solution space, and
the PT algorithm cleverly exploits this by comparing, at chosen
time intervals, the energy of the present random walker at two
different successive temperatures. If the higher-temperature
random walker reaches a state of smaller energy than the one at
a lower temperature, they are exchanged, otherwise there is an
exponentially small probability for this exchange to take place;
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FIG. 2. Results from the parallel tempering algorithm (circles)
versus the replicated online MP (triangles) with 10 000 replica. The
system size is K = 21. The graph, presented with error bars over
10 000 trials, shows the superiority of the MP already for this number
of replica.

this probability is given by the ratio of the Boltzmann weights
as in the usual Metropolis-Hastings algorithm.

As time proceeds, the lowest energy walker corresponds
to the lowest-temperature replica. After convergence or when
a certain number of iterations have been done, results for all
temperatures can be obtained. PT has a very high performance
for the BIP capacity problem and can achieve very high storage
capacities. The disadvantage comes from the fact that PT
uses much more information than is needed to solve the BIP
capacity problem and is therefore computationally expensive.

Figure 2 shows the performance of the rOnMP compared
to PT for a system size K = 21. The graph shows, once again,
the same indicator function used for rOnMP ρ = 1 − 〈χ〉,
where χ is given by Eq. (2). The energy function used in the
actual PT simulation was the energy given by Eq. (3). We
see that already with n = 10 000 replica rOnMP has a better
performance than PT, which was run up to the point when there
was no extra improvement. We observed that by increasing the
number of replica, we can reach better performances although
the improvement in the performance becomes more modest
for higher values; studies with a large number of replica n ∼
105 seem to indicate that the critical capacity can indeed be
achieved for n sufficiently large. However, the computing time
increases as well and more lengthy and detailed analysis is
necessary to get precise results.

It is also important to know how increasing K affects the
performance of the algorithm. Due to the complex energy
landscape of the BIP problem, the larger the system size,
the larger the probability of being trapped in the increasing
number of local minima. This has been observed in various
studies concerning learning via random walks as explained in
Ref. [41]. Further experiments with our method on the BIP
problem seem to indicate that in the many-replica case, the
algorithm’s performance does not deteriorate with increasing
K , the achieved performance showing little sensitivity to the
value of K . The main effect noticed was that finite size effects
decrease with increasing K , making the transition from perfect

to partial learning sharper. The corresponding computing time
increases quadratically with K .

In addition to the better performance, rOnMP has several
other advantages over PT. First, the running time for achieving
a similar performance is lower. Second, and more importantly,
PT depends on a complicated fine tuning of the number of
replica at different temperatures and how these are spaced.
Different ranges of temperatures and spacings between them
give different results and these require optimization trials.
On the other hand, the application of rOnMP is much more
straightforward and depends only on the number of replica.

VI. CONCLUSIONS

The main objective for this work was to show that
parallelizing message passing algorithms, via replication of
the variable system, can lead to a dramatic improvement
of their performance. Replication is based on insights and
concepts from statistical physics, especially in the subfield
of disordered systems. The binary Ising perceptron (BIP)
capacity problem was chosen as a difficult benchmark problem
due to its complex solution space and its discrete output and
noise model; both make the inference problem particularly
difficult.

First, we showed analytically that the offline version of
the MP algorithm for the BIP capacity problem results in the
clipped Hebb rule estimator in the thermodynamic limit and
when the number of replica is large. This shows a fundamental
limitation of the MP procedure and motivated us to search for
an online version of it; after establishing the single system
version, it has been extended to accommodate a replicated
version. Both the nonreplicated and the replicated versions
were shown to have superior performance to that of the
OffMP.

There are two important aspects of replicated algorithms
we would like to point out, namely, the way the search is
carried out in solution space and how to combine the search
results to obtain a unified estimate. We devised a method
to make replicated variable systems follow different paths
in the solution space by using different orders of example
presentations, which is only possible in online algorithms. We
also tried two different ways to combine the results, white and
weighted averaging, the latter using the Boltzmann factors of
each replica. We found no difference between both approaches,
indicating that weighting the averages is not sufficient to avoid
local minima.

Finally, we compared the results of the weighted rOnMP
algorithm with those of the parallel tempering algorithm,
showing that our replicated version of MP performs much
better than PT. Showing that replication in online MP improves
its efficiency paves the way to using similar approaches to
address other hard computational problems. We are currently
exploring the applicability of techniques developed here to
address other problems in physics and in information theory.
There are still many issues that should be studied concerning
these algorithms. One of them, which is currently underway, is
finding an efficient way to choose the order of examples, which
can be seen as a query learning procedure. However, query
learning for the particular problem studied here corresponds
to sampling from a fragmented solution space that corresponds
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to the replica symmetry breaking solution space and demands
the introduction of a carefully constructed interaction between
the replicated solutions, which we currently investigate.
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APPENDIX A: MESSAGE PASSING EXPANSION FOR THE
BINARY ISING PERCEPTRON

Consider the first MP equation (12), repeated as follows for
convenience:

m̂t
μk =

∑
bk

bkP t+1(yμ|bk,{yν �=μ})∑
bk
P t+1(yμ|bk,{yν �=μ}) . (A1)

We denote the numerator of this expression simply by A,
ignoring for brevity the dependence on the indices. By
introducing a variable ξ to represent the field ξμ using a Dirac
delta, we can write

A = yμ

2K

∫
dξ dξ̂

2π
eiξ ξ̂ (sgn ξ )

×
⎡
⎣∏

l �=k

∑
b

(1 + mμlb) exp

(
−iξ̂

sμlb√
K

)⎤
⎦

×
∑

b

b exp

(
−iξ̂

sμkb√
K

)
. (A2)

Summing over b ∈ {±1}, one obtains

∑
b

(1 + mμkb) exp

(
−iξ̂

sμkb√
K

)

= 2

[
cos

(
ξ̂√
K

)
− imμksμk sin

(
ξ̂√
K

)]

≈ 2

[
1 − imμksμk

ξ̂√
K

− ξ̂ 2

2K

]
, (A3)

where, in the last line, we expand the trigonometric functions
to their first nontrivial orders in 1/

√
K , already taking into

consideration the large K scenario. By doing the same
expansion to the second summation, one obtains

∑
b

b exp

(
−iξ̂

sμkbk√
K

)
= −2isμk sin

(
ξ̂√
K

)

≈ −2isμk

ξ̂√
K

. (A4)

These approximations allow one to rewrite the expression
for A as

A = −iyμsμk√
K

∫
dξ dξ̂

2π
eiξ ξ̂ (sgn ξ )ξ̂

× exp

[∑
l

ln

(
1 − ξ̂ 2

2K
− imμlsμl

ξ̂√
K

)]

≈ −iyμsμk√
K

∫
dξ

2π
(sgn ξ )

∫
dξ̂ ξ̂

× exp

[
− ξ̂ 2σ 2

μk

2
+ iξ̂ (ξ − uμk)

]
, (A5)

where

σ 2
μk = 1

K

∑
l �=k

(
1 − m2

μl

)
, uμk = 1√

K

∑
l �=k

mμlsμl. (A6)

The resulting integral is trivial and, by following the analogous
steps for the denominator, we finally reach the result given by
expression (17).

APPENDIX B: ANALYTICAL DERIVATION OF THE
REPLICATED NAIVE MP ALGORITHM

Upon replication of the variable system such that the final
estimate of the variable vector is inferred by a white average
of the n replica

b̂k = sgn

(
1

n

n∑
a=1

ba
k

)
, (B1)

one can take the limit n → ∞ to calculate a closed expression
for it. The MP equations (12) and (13) remain the same, but
the likelihood term has to include the contribution of the
replica as

P(yμ|b) =
∑
{ba}

P(yμ|b,{ba})P({ba}|b), (B2)

P(yμ|b) = 1

2n+1

[
1 + yμ sgn

(
1√
K

K∑
k=1

sμkbk

)] ∏
a

[
1 + yμ sgn

(
1√
K

K∑
k=1

sμkb
a
k

)]
, (B3)

P({ba}|b) ∝
∏
k

1

2

[
1 + bk sgn

(
1

n

n∑
a=1

ba
k

)]
. (B4)

In the last equation, we ignore the normalization. For the calculation to be carried out rigorously, the normalization should be
taken into account in what follows. However, careful calculations show that it does not change the saddle point result. The above
expressions can be substituted in the first of the MP equations (12). Let us concentrate on the numerator of Eq. (12), which can
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be written as

A ∝
∫ [

dξ dξ̂

2π
eiξ ξ̂

][∏
a

dξadξ̂ a

2π
eiξa ξ̂ a

]
(1 + yμ sgn ξ )

∏
a

(1 + yμ sgn ξa)
∑

b

bk

⎡
⎣∏

l �=k

1

2
(1 + blmμl)

⎤
⎦ exp

⎡
⎣− iξ̂√

K

K∑
j=1

sμjbj

⎤
⎦

×
∑
{ba}

∏
j

1

2

[
1 + bj sgn

(
1

n

n∑
a=1

ba
j

)]
exp

⎡
⎣− i√

K

∑
a

ξ̂ a

K∑
j=1

sμjb
a
j

⎤
⎦. (B5)

To decouple the replicated systems, we introduce the K variables

λk = 1

n

∑
a

ba
k , (B6)

via Dirac deltas. By defining the notation

D[ξ,ξ̂ ] ≡
[
dξ dξ̂

2π
eiξ ξ̂

][∏
a

dξadξ̂ a

2π
eiξa ξ̂ a

]
, D[λ,λ̂] ≡

[∏
k

dλkdλ̂k

2π/n
einλkλ̂k

]
, (B7)

and summing over b’s, we obtain

A ∝
∫

D[λ,λ̂]D[ξ,ξ̂ ](1 + yμ sgn ξ )
∏
a

(1 + yμ sgn ξa)

⎡
⎣∏

a,j

cos

(
λ̂j + ξ̂ asμj√

K

)⎤
⎦[

− i sin

(
ξ̂ sμk√

K

)
+ sgn λk cos

(
ξ̂ sμk√

K

)]

×
∏
l �=k

(1 + mμl sgn λl)

[
cos

(
ξ̂ sμl√

K

)
− i sgn λl sin

(
ξ̂ sμl√

K

)]
. (B8)

One can now expand the arguments of the cos and sin functions in powers of 1/
√

K to obtain

A ∝
∫

D[λ,λ̂]D[ξ,ξ̂ ](1 + yμ sgn ξ )
∏
a

(1 + yμ sgn ξa) exp

⎡
⎣∑

a,j

ln

(
cos λ̂j − ξ̂ asμj√

K
sin λ̂j − (ξ̂ a)2

2K
cos λ̂j

)⎤
⎦

×
(

−i
ξ̂ sμk√

K
+ sgn λk

)
exp

⎡
⎣∑

l �=k

ln(1 + mμl sgn λl) +
∑
l �=k

ln

(
1 − ξ̂ 2

2K
− iξ̂√

K
sgn λl

)⎤
⎦. (B9)

The integrals over the ξ variables are easy to calculate, leading
to the following expression at leading order in 1/

√
K:

A ∝
∫ ⎡

⎣∏
j

dλjdλ̂j

2π/n

⎤
⎦sgn λk en, (B10)

where

 = i
∑

j

λj λ̂j + 1

n

∑
l �=k

ln (1 + mμlsgn λl)

+
∑

j

ln cos λ̂j + 1

n

n∑
c=0

ln Ic, (B11)

with

Ia = 1 + yμerf

⎛
⎝ uμ√

2σ 2
μ

⎞
⎠, a = 1, . . . ,n (B12)

uμ = − i√
K

∑
j

sμj tan λ̂j , (B13)

σ 2
μ = 1

K

∑
j

(
1 + tan2 λ̂j

)
, (B14)

I0 = 1 + yμerf

(
u0

μk√
2

)
, (B15)

u0
μk = 1√

K

∑
l �=k

sμl sgn λl. (B16)

Following the same calculations for the denominator, one
can see that for large n the variables m̂μk are given by sgn λ∗

k ,
where λ∗

k is defined by the saddle point of the integral (B10),

which is a solution of the simultaneous equations

∂

∂λj

= ∂

∂λ̂j

= 0. (B17)

Differentiating  we finally find the result

m̂μk = yμsμk, (B18)

resulting in the estimate (22) of the variable vectors that also
corresponds to the clipped Hebb rule.
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[6] A. Braunstein, M. Mézard, and R. Zecchina, Random Struct.

Alg. 27, 201 (2005).
[7] J. van Mourik and D. Saad, Phys. Rev. E 66, 056120 (2002).
[8] R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Phys. Rev.

Lett. 89, 268701 (2002).
[9] R. G. Gallager, Research Monograph Series, 21 (MIT Press,

Cambridge, MA 1963).
[10] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference (Morgan Kaufmann, San Francisco,
1988).

[11] Y. Kabashima and D. Saad, Europhys. Lett. 44, 668 (1998).
[12] M. Opper and D. Saad, Advanced Mean Field Methods-Theory

and Practice (MIT Press, Cambridge, MA, 2001).
[13] J. S. Yedidia, W. T. Freeman, and Y. Weiss, IEEE Trans. Inf.

Theory 51, 2282 (2005).
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