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Flow across microvessel walls through the
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A mathematical model is presented for steady fluid flow across microvessel walls
through a serial pathway consisting of the endothelial surface glycocalyx and the
intercellular cleft between adjacent endothelial cells, with junction strands and their
discontinuous gaps. The three-dimensional flow through the pathway from the vessel
lumen to the tissue space has been computed numerically based on a Brinkman
equation with appropriate values of the Darcy permeability. The predicted values of
the hydraulic conductivity Lp , defined as the ratio of the flow rate per unit surface
area of the vessel wall to the pressure drop across it, are close to experimental
measurements for rat mesentery microvessels. If the values of the Darcy permeability
for the surface glycocalyx are determined based on the regular arrangements of fibres
with 6 nm radius and 8 nm spacing proposed recently from the detailed structural
measurements, then the present study suggests that the surface glycocalyx could be
much less resistant to flow compared to previous estimates by the one-dimensional
flow analyses, and the intercellular cleft could be a major determinant of the hydraulic
conductivity of the microvessel wall.

1. Introduction
The luminal surface of vascular endothelial cells is covered by a layer of

macromolecules referred to as the glycocalyx. Its role as a molecular filter and
diffusive barrier has been pointed out to be crucial for microvessel walls to maintain
low permeability to macromolecules. In our previous paper (Sugihara-Seki 2006),
we developed a theoretical model for transport of solutes and fluid across the
endothelial surface glycocalyx, and successfully described the size selective properties
of the glycocalyx for solute transport, such as diffusive permeability and reflection
coefficient. For the fluid transport, on the other hand, it was indicated that the
hydraulic conductivity Lp , which is defined as the ratio of the flow rate per unit surface
area of the vessel wall relative to the pressure drop across it, cannot be accounted
for by the glycocalyx property alone. In this paper, we develop a three-dimensional
model to describe the hydraulic conductivity Lp across the entire endothelial barrier
including the endothelial surface glycocalyx and the interendothelial cleft with its
tight junction strand. This model is based on the latest detailed ultrastructural studies
of venular microvessels in rat mesentery (see figure 1) (Adamson et al. 2004).

In electron micrographs of microvessels in transverse section, the clefts are seen
as narrow spaces, typically 14–21 nm wide, between the outer leaflets of adjoining
endothelial cells. The route from the luminal entrance to the abluminal exit along
the cleft is interrupted by one or more tight junctions. The tight junctions form lines
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Figure 1. Sketch of an interendothelial cleft and surface glycocalyx of a microvessel wall.

of contact between the adjacent cells which can be traced in serial sections to run
approximately parallel to the luminal and abluminal surfaces of the endothelium.
They appear to act as barriers for water and solute to flow within the cleft. Where
the tight junction continuity ends, the distance between cells is observed to open
to equal the width of the wide part of the cleft. Water and solutes are expected to
bypass the tight junction through these discontinuities or gaps. The spacing between
membranes of facing cells is of remarkable uniformity except for tight junctions.
Although there is some experimental evidence of the presence of regularly spaced
cleft-spanning structures in rat myocardial capillaries (Schulze & Firth 1992), little
information is currently available as to whether such structures fill the entire cleft.

Existing models of the filtration flow in the cleft and through the breaks in the tight
junction strand have all been based on the two-dimensional Hele-Shaw flow theory
first proposed in Tsay, Weinbaum & Pfeffer (1989). This approach was suggested
by the nearly uniform gap height of the cleft. At the time, there was conflicting
evidence as to the nature of the pores in the tight junction strand, whether they were
long discontinuities or small slit-like breaks. The latter was suggested by the ultra
thin sections of rat heart capillaries (Bundgaard 1984). The paper by Adamson &
Michel (1993) in which the tight junctions of frog mesentery microvessels were serially
reconstructed provided convincing evidence that the dominant pathway for water
through the cleft was large infrequent, widely spaced breaks (see figure 13a of Tsay
et al. 1989). Since Hele-Shaw flow satisfies a potential flow equation, this observation
allowed Parker et al. in the Appendix to Adamson & Michel (1993) to apply conformal
mapping techniques to develop an analytical solution for a tight junction strand of
zero thickness that was arbitrarily positioned in the depth direction of the cleft. The
convergence and divergence of the flow on each side of the tight junction strand could
be treated by introducing a correction factor C that described the reduction in flow
resistance relative to a one-dimensional flow through the orifice-like break owing to
the spreading of streamlines.

In the one-dimensional flow of the plane Poiseuille flow between two parallel plates
with separation distance 2h, the flow rate per unit length in the span-wise direction
is given by 2h3�p/3µlC , where lC is the distance from the vessel lumen to the
interstitium, �p is a pressure drop across them andµ is the fluid viscosity. Thus, if
we denote the length of intercellular cleft per unit area of vessel wall as A, and the
length of the discontinuities expressed as a fraction of the total length of the cleft
as f , then the hydraulic conductivity for the one-dimensional flow and that for the
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two-dimensional flow can be described as (Adamson & Michel 1993)

L(1)
p = Af

2 h3

3µ lC
, L(2)

p = CL(1)
p , (1)

where superscripts (1) and (2) denote the one-dimensional flow and the two-
dimensional Hele-Shaw flow, respectively. In the Appendix to Adamson & Michel
(1993), the correction factor C was plotted as a function of the junction position
relative to the cleft depth for various lengths of the discontinuities (see figure 10).

This same approach could also be used if there was a fibre matrix in the cleft,
provided the pressure at the entrance and exit was uniform, since Darcy flow also
satisfies a potential flow equation. A more sophisticated analysis of the Stokes flow
around possible cross-bridging fibres in the cleft was developed in Tsay & Weinbaum
(1991) who also showed that the flow through the fibres could be accurately modelled
by a Brinkman equation (see equation (2)). This model was extended to treat the
diffusion of solutes through a cross-bridging fibre array in Weinbaum, Tsay & Curry
(1992).

Although electron-microscopic studies as early as Luft (1966) had indicated that
the surface of vascular endothelium was covered by a glycocalyx, it was not realized
until Adamson & Clough (1992) that this coating was of nearly uniform thickness
and completely covering the cleft entrance. To treat this complication, Fu et al.
(1994) proposed a junction–orifice–fibre entrance layer model to describe both the
hydraulic and diffusive permeabilities of the entire endothelial layer. They converted
the thickness of the surface glycocalyx to an approximate equivalent thickness of
matrix inside the cleft by comparing the Darcy permeability of the unbounded fibre
matrix with the effective values of the bounded fibre array. It was predicted that the
matrix layer of ordered periodic structure of about 100 nm thickness could provide the
hydraulic conductivity Lp compatible with experimental observations, and a thicker
layer would offer too much hydraulic resistance for frog mesentery capillaries.

Subsequent papers by Weinbaum and coworkers were motivated by the recognition
that the classical Starling hypothesis (1896) required a major revision to account for
the measured Starling force balance properly (Michel 1997; Weinbaum 1998). These
investigators proposed that the Starling forces, which had been widely believed to
act globally between plasma and tissue, actually acted just across the endothelial
surface glycocalyx. This being the case, the model in Fu et al. (1994) was modified in
Hu & Weinbaum (1999) to couple the filtration flow to the convective and diffusive
transport of albumin through the glycocalyx layer and the underlying cleft with
its tight junction. The major feature of this new model was the treatment of the
back diffusion of solute from the tissue and the theoretical prediction of the oncotic
forces that were measured in the experiments in frog mesentery (Hu et al. 2000)
and rat mesentery (Adamson et al. 2004). To accommodate the nonlinear coupling
of the water and solute fluxes, these more recent papers attempted to simplify the
junction–orifice–fibre matrix model in Fu et al. (1994) by treating the flow through the
glycocalyx as a slowly varying one-dimensional flow while retaining the Hele-Shaw
description of the flow in the cleft. This model was then further simplified in Zhang
et al. (2006) into an equivalent one-dimensional model for the entire layer including
the back diffusion from the tissue.

The objectives of the present study are to examine critically some of the important
simplifications in the hydrodynamic assumptions used in these previous models. In
particular, (i) we examine the slowly varying one-dimensional approximation for the
flow through the glycocalyx which neglects the convergence of streamlines at the cleft
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entrance, (ii) we examine the use of a Hele-Shaw approximation for the flow in the
cleft which does not satisfy the no-slip boundary conditions on the tight junction
strand and the edges of the orifice breaks, and (iii) we also present the first results for
a glycocalyx with an inner sieving layer and a more diffuse outer layer as proposed
in Pries, Secomb & Gaehtgens (2000). In addition, we calculate the fluid shear stress
acting on the membranes bounding the cleft and forces acting on the tight junction
strands, and present detailed solutions for the velocity field at the entrance of the
cleft and in the vicinity of the orifice breaks.

We shall present our formulation and methods of analyses in § 2, and the numerical
results will be provided in § 3 for the flow structure, the hydraulic conductivity, the
fluid shear stresses on the membrane and the forces exerted on the tight junction
strand. By comparing the present results with previous model studies and experimental
studies, we shall discuss the contribution of the glycocalyx to Lp and the corrections
necessary for the previous estimates in § 4.

2. Formulation and methods
We consider the flow of an incompressible Newtonian fluid across a microvessel

wall from the vessel lumen to the tissue space. The pathway of the fluid consists
of the endothelial surface glycocalyx and clefts between neighbouring endothelial
cells. Figure 1 shows a schematic view of ultrastructures of the interendothelial cleft
and the surface glycocalyx (Squire et al. 2001; Weinbaum et al. 2003; Adamson
et al. 2004). Adamson et al. (2004) showed from their detailed structural morphology
measurements for rat mesentery venules that the clefts between adjacent endothelial
cells have uniform width of 2h = 18 nm on average and there are tight junction strands
with discontinuous leakages, or gaps, of mean width 2d =315 nm and mean spacing
2D = 3590 nm. It was reported that, on average, the total cleft depth is lC = 411 nm,
and the tight junction strand is located at 15 % of the cleft depth or lJ = 67 nm
from the luminal cleft opening (table 1). They made simultaneous measurements of
the hydraulic conductivity for rat mesentery venules that are on average Lp = 1.0 −
1.3 × 10−7 cm (cmH2O)−1 s−1. Note that 1 cm (cmH2O)−1 s−1 ≈ 10−4 m Pa−1 s−1.

Based on figure 1, we have adopted an idealized geometry depicted in figure 2
as a model for the fluid flow pathway across microvessel walls. Endothelial cells
are assumed to be rectangular hexahedrons, and the two sidewalls of neighbouring
cells facing each other compose the cleft with uniform width 2h and depth lC from
the luminal cleft opening to the abluminal cleft exit. The tight junction strand is
represented by an impermeable barrier to flow with thickness δ, that lies parallel
to the luminal front with depth lJ from the luminal cleft entrance, and it has
discontinuous gaps with length 2d , periodically placed at a spacing of 2D along the
tight junction strand. The surface glycocalyx is assumed to cover the entire surface
of the endothelial cells including the entrance region to the cleft, and have a constant
thickness lG. We assume that there is a uniform space of the vessel lumen upstream
of the glycocalyx, with thickness lL, and there is a uniform tissue space downstream
from the cleft exit, with thickness lT .

The Cartesian coordinate system (x, y, z) is introduced such that the (x, y)-plane is
the mid-plane of the cleft, the (y, z)-plane corresponds to the luminal surface of the
endothelial cells, and the x-axis is along the line from the vessel lumen to the tissue
space, passing the centre of the gap of the junction strand. Figure 2 shows a periodic
unit of the model geometry, which repeats in the y- and z-directions. The period
2D in the y-direction represents the separation distance between neighbouring gaps
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Gap length1 2d =315 nm
Gap spacing1 2D =3590 nm
Cleft spacing 2L=10000 nm
Cleft width1 2h = 18 nm
Cleft length per area vessel wall1 A=0.10 µm−1

Glycocalyx thickness2 lG = 150–400 nm
Total cleft depth1 lC = 411 nm
Depth of strand1 lJ = 67 nm
Strand thickness3 δ = 15nm
Vessel lumen thickness lL =150–400 nm
Tissue space thickness lT =1000 nm

Endothelial surface glycocalyx
Fibre radius4 6 nm
Fibre spacing4 8 nm
Darcy permeability for the flow parallel to the core proteins

K
G//
p =6.10 nm2

Darcy permeability for the flow perpendicular to the core proteins

K
G⊥
p = 3.16 nm2

Interendothelial cleft
Fibre radius5 1.25 nm
Fibre spacing6 15 nm
Darcy permeability KC

p = ∞ or 32.84 nm2

Tissue space
Darcy permeability7,8 KT

p =190 nm2

1Adamson et al. (2004), 2Weinbaum et al. (2003), 3Adamson & Michel (1993), 4Squire et al. (2001),
5Shapiro et al. (1995), 6Schulze & Firth (1992), 7Levick (1987), 8Intaglietta & de Plomb (1973).

Table 1. Parameter values.

of the tight junction strand, and 2L represents the distance between neighbouring
clefts. Adamson et al. (2004) measured the perimeters and luminal surface areas of
individual endothelial cells by using confocal microscopy techniques, and calculated
the mean cleft length per unit surface area of the vessel wall A as 0.100 µm−1 for rat
mesentery venules. Applying this value to the present model, we have 2L = 10 µm since
A= 2D/(2D × 2L) = 0.100 µm−1. The parameter values are summarized in table 1.

We analyse the motion of water from the vessel lumen to the tissue space. Because
of comparable sizes of mean distance between adjacent water molecules of about
0.3 nm and cleft width of 18 nm, the best analysis would be performed based on their
molecular nature. One of the most important differences from a continuum approach
would be the possible presence of liquid slippage along the interface of the liquid and
solid phases (Priezjev & Troian 2006). Despite a long history of work on this topic
as well as recent developments of molecular-dynamics simulations and experiments,
there remains a significant debate concerning the validity of slip conditions as well
as the degree of slip possible at liquid/solid interfaces. Little is known about the
motion of water molecules near biological membranes. Thus, the current study is
performed based on continuum mechanics under the conventional no-slip condition
on the membrane surface. Future information about the molecular dynamics will help
us to improve the present analysis.

We consider the flow of a Newtonian fluid with viscosityµ from the vessel lumen
to the tissue space, when a certain pressure drop �p is prescribed between them.
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Figure 2. Model for a serial pathway of water flow from the vessel lumen to the tissue space
through the endothelial surface glycocalyx and the interendothelial cleft. The geometry is
repeated in the y- and z-directions.

The domain of the numerical computation contains four regions. The first region
is the vessel lumen at −(lG + lL) � x � −lG. The pressure at x = −(lG + lL) is given
as p = 0. The second region is the endothelial surface glycocalyx at −lG � x � 0, the
third region is the interendothelial cleft at 0 � x � lC , and the fourth region is the
tissue space at lC � x � lC + lT . The pressure at x = lC + lT is prescribed as p = −�p.
From the flow rate Jv per unit cross-sectional area and the pressure drop �p, we
calculated the hydraulic conductivity Lp = Jv /�p. Some typical in vivo permeability
experiments are performed in the range of �p from about 10 cmH2O to 50 or
60 cmH2O (Adamson et al. 2004; Truskey, Yuan & Katz 2004).

Since the Reynolds number is extremely small, the inertia of the fluid motion
can be neglected. The effect of the presence of the fibre matrices in the endothelial
surface glycocalyx, the interendothelial cleft and the tissue space was considered
approximately by adding a Darcy force term proportional to the fluid velocity to the
Stokes equation, called the Brinkman equation (Brinkman 1947):

−∇p + µ�u − µ

Kp

u = 0, (2)

where u = (u, v, w) is the fluid velocity, p is the pressure and Kp is the Darcy
permeability. This equation has been widely used to represent the viscous flow through
fibrous media, from the similarity to the flow through porous media (Damiano et al.
1996; Feng, Ganatos & Weinbaum 1998; Feng & Weinbaum 2000; Sugihara-Seki
2004, 2006; Han et al. 2006). We assume the viscosity of waterµ = 0.69 × 10−3 Pa s−1

at 37 ◦C.
The value of Kp depends on the fibre geometry. For instance, if we assume the

fibres to be circular cylinders with radius rf , the Darcy permeability Kp for a flow
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perpendicular to a two-dimensional hexagonal array of the circular cylinders can be
expressed by using the solutions in Sangani & Acrivos (1982) as

Kp

r2
f

=
ln

(
c−1/2

)
− 0.745 + c − c2/4 + O(c4)

4c
, (3)

where c is the volume fraction of the cylinders. In terms of spacing � between
neighbouring cylinder surfaces instead of c, Tsay & Weinbaum (1991) obtained a
useful approximate expression for equation (3):

Kp

r2
f

= 0.0572

(
�

rf

)2.377

. (4)

The glycocalyx has a very delicate fragile structure with high water content (Pries
et al. 2000; van den Berg, Vink & Spaan 2003; van den Berg et al. 2006). It is so
tenuous that knowledge of its ultrastructure and constitutive behaviour in vivo are
very limited. As a result, its value of the Darcy permeability is currently unknown.
In the present study, we have estimated the Darcy permeability for the surface
glycocalyx KG

p based on the detailed structural measurements of the glycocalyx
(Squire et al. 2001). From the observation by the autocorrelation imaging techniques,
they proposed a structural model where the surface glycocalyx is composed of bush-
like clusters of core proteins projecting normally to the surface of the luminal wall
(figure 1). Within each cluster, the scattering centres along the core proteins are 10–
12 nm in diameter and their interval is roughly 20 nm in the directions both parallel
and perpendicular to the endothelial surface. If we simplify this model by assuming
core proteins to be circular cylinders with radius rf = 6 nm which align regularly
perpendicular to the endothelial luminal surface in a hexagonal array with spacing �=
8 nm, then (3) gives KG⊥

p = 3.16 nm2 for the volume fraction c = 2π r2
f /

√
3(2 rf +�)2 =

0.326. Here the superscript ⊥ indicates the value for the flow perpendicular to the
cylinder axis.

For the flow parallel to the cylinder axis, Sugihara-Seki (2006) solved the Stokes

equation and estimated the Darcy permeability to be K
G//

p = 6.10 nm2. Corresponding
to (3), an approximate analytical representation of the Darcy permeability for parallel
flow in the case of low volume fraction c can be deduced from equation (18) in
Sparrow & Loeffler (1959) after some manipulation:

Kp

r2
f

=
2c − ln c − c2/2 − 1.5

4c
. (5)

If we put c = 0.326, equation (5) gives K
G//

p = 6.07 nm2. This is close to the above
estimate in spite of a fairly large value of c.

It may be interesting to compare these values of the Darcy permeability with the
value obtained from the well-known Carman–Kozeny equation (Happel & Brenner
1973). In terms of the volume fraction of fibres c, the fibre radius rf and the so-called
Kozeny constant k, this may be written as (Curry & Michel 1980)

Kp

r2
f

=
(1 − c)3

4kc2
. (6)

Substituting c = 0.326, rf = 6 nm and k = 5.6 for flow through random orientation of
cylinders, equation (6) gives Kp = 4.63 nm2, which lies between KG⊥

p = 3.16 nm2 and

K
G//

p =6.10 nm2.



236 M. Sugihara-Seki, T. Akinaga and T. Itano

Squire et al. (2001) pointed out that the thickness of the glycocalyx having the
ultrastructure of core proteins is no more than 200 nm. On the other hand, the work
of Duling and coworkers (Vink & Duling 1996; Henry & Duling 1999, 2000) and
Damiano and coworkers (Smith et al. 2003; Damiano, Long & Smith 2004; Long
et al. 2004) provide evidence for a 400–500 nm thick surface layer in capillaries and
venules in vivo. Thus, it may be plausible to assume the possible presence of another
layer extending further into the vessel lumen than the core proteins. Such a layer,
hereinafter called the apical layer, may have constituents different from those of
the core-protein layer, and may be composed of adsorbed plasma components and
glycosaminoglycans (GAGs) (Pries et al. 2000). Since the permeability property of
the apical layer is unknown, we assume, in the present study, constant values of
the Darcy permeability for the whole endothelial surface layer including the core-
protein layer and the apical layer, for simplicity, and call the whole surface layer the
endothelial surface glycocalyx. We examine the two cases of lG = 150 nm and 400 nm
as representative values of the glycocalyx thickness. The effect of different values of
the Darcy permeability between the two layers on Lp will be discussed in § 4.

If there are no cleft-spanning molecules in the intercellular cleft, the Darcy
permeability for the cleft would be KC

p = ∞. In this case, (2) reduces to the Stokes
equation. If we assume that the cleft-spanning molecules are placed perpendicular to
the cleft surface in a hexagonal array at 15 nm intervals and their diameter is taken
as 2.5 nm (Schulze & Firth 1992; Shapiro et al. 1995; Boggon et al. 2002; Adamson
et al. 2004), then we have KC

p = 32.84 nm2 from (4). It is not certain whether the
cleft-spanning molecules fill the entire cleft or not, but it is more likely that the link
proteins, VE cadherins, may occur only in localized regions (Thi et al. 2004; Zhang
et al. 2006). Thus, in the present study, the case of KC

p = ∞ is mainly treated and
the results of this case are reported in § 3 unless otherwise noted. Some cases of
KC

p = 32.84 nm2 are also examined to compare with previous studies. For the Darcy
permeability in the tissue space, we adopted KT

p = 190 nm2 from measurements on
mesentery (Intaglietta & de Plomb 1973; Levick 1987).

In a brief summary of the present analysis, we have solved the Brinkman equation
(equation (2)) simultaneously in the whole domain, with the Darcy permeability
appropriate to each region such as

Kp =

⎧⎪⎪⎨
⎪⎪⎩

∞ for − (lG + lL) < x < −lG (vessel lumen),

K
G//

p , KG⊥
p for − lG < x < 0 (glycocalyx),

KC
p for 0 < x < lC (cleft),

KT
p for lC < x < lC + lT (tissue space),

(7)

where the values of K
G//

p , KG⊥
p , KC

p and KT
p are given in table 1. Boundary conditions

are no-slip condition on the surfaces of endothelial cells and tight junction strands.
Periodic boundary conditions are adopted in the y- and z-directions, and up- and
down-stream boundary conditions are

∂u/∂x = 0, v = w = 0 at x = −(lG + lL), lC + lT , (8a)

p = 0 at x = −(lG + lL), p = −�p at x = lC + lT . (8b)

Note that, since (2) is linear in u, the flow rate Jv is proportional to �p and the
hydraulic conductivity Lp = Jv /�p is independent of �p in the present model. With
regard to a choice of the vessel lumen length, lL, we found negligible effects on Lp ,
which is due to negligible pressure drop across the vessel lumen (see figures 3 and 4).
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Figure 3. Streamlines (solid curves) and pressure contours (dashed curves) in the (x, z)-plane
(a) and in the (x, y)-plane (b), for lG = 150 nm, lT =150 nm and KC

p = ∞ with the other
parameters in table 1. In (a), the streamlines are drawn in such a way that the flow rates on
the (x, z)-plane across the mid-cross-section of the gap (x = lJ + δ/2) are the same between any
two adjacent streamlines. In (b), the streamlines cross the line at x = lJ + δ/2 with an equal
interval along the gap of the junction strand.

In our numerical analysis, we have adopted a finite-element spectral method applied
to the Brinkman equation and continuity equation. The fluid domain shown in figure 2
was divided into a number of finite elements with hexahedral shapes. Within each
element, the velocity and pressure were interpolated by Chebyshev polynomials of
Nth degree and (N − 1)th degree, respectively. Special attention was paid in making
elements to the corner regions where singular behaviours are expected in the velocity
and the pressure. To overcome this difficulty, we adopted the gradual h-refinement
method, in which sizes of elements were progressively decreased toward the corners
with size ratio = 0.15 (Babuska & Suri 1994; Karniadakis & Sherwin 2005). The
finite-element scheme was formulated in terms of the primitive variables based on
the variational principle δJ = 0 (Sugihara-Seki 1996, 2004). Here, the variational
functional was chosen as

J =

∫
Ω

[
µe2 − p(∇ · u) +

µ

Kp

u2

2

]
dx dy dz −

∫
∂Ω

τ n · u dS, (9)

where e = (∇u + (∇u)t )/2, Ω represents the fluid domain, and δΩ is the boundary
where the fluid stress exerted on it is prescribed as τ n. In the present computation,
the x-components of τ n were given on the up- and down-stream cross-sections at
x = −(lG + lL) and lC + lT , from (8).
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Figure 4. Streamlines (solid curves) and pressure contours (dashed curves) in the (x, z)-plane
(a) and in the (x, y)-plane (b), for lG = 0, lT = 300 nm and KC

p = ∞ with the other parameters
in table 1.

In order to ascertain the validity of the computation, we calculated the flow rate Q

across several cross-sections along the pathway, and estimated its variation relative to
the inlet value, Q(x)/Q0, where Q0 = Q(–(lG + lL)) represents the flow rate across the
most upstream cross-section in the vessel lumen at x = −(lG + lL). For various degrees
N of Chebyshev polynomials, we calculated the relative flow rate Q(x)/Q0, along the
x-axis at x = −lG (glycocalyx surface), x = 0 (luminal cleft entrance), x = lJ (entrance
of the gap of the tight junction), x = lJ + δ (exit of the gap), x = lC (abluminal
cleft exit) and x = lC + lT (tissue space). For the cases of N = 2, deviations from
unity are significant at the luminal cleft entrance and the abluminal exit, but they
are progressively decreased as the polynomial degrees are increased. For the cases
of N =4 and 183 elements, the relative errors are within 0.5 % for all cross-sections,
and we have adopted N = 4 in the present study. In a representative computation,
the CPU time for the computation of one configuration with double precision was
approximately 6 hours on the FACOM HPC.

3. Results
A representative result of our numerical computations is shown in figure 3, where

streamlines and pressure contours are plotted in the (x, z)-plane and (x, y)-plane, for
lG = 150 nm and lT = 150 nm. In figure 3(b) the streamlines in the glycocalyx are
almost parallel to the x-axis, whereas in figure 3(a) a converging flow from the vessel
lumen into the cleft entrance is clearly shown within the glycocalyx. The corresponding
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Figure 5. Oblique view of the pressure distribution in the (x, y)-plane, for lG = 150 nm,
lT = 150 nm and KC

p = ∞ with the other parameters in table 1.

plots in the absence of the glycocalyx are shown in figure 4, for reference. We note
from figures 3 and 4 that the pressure gradients are present within the glycocalyx both
in the y- and z-directions as well as in the x-direction, which is in marked contrast to
the vessel lumen and the tissue space. Figure 4(a) shows that, without the glycocalyx,
the streamlines in the vessel lumen extend almost radially from the luminal cleft
entrance, similar to those in the tissue space. In comparing the outermost streamlines
in figures 3(b) and 4(b), we notice that the flow from the vessel lumen enters the cleft
entrance spreading more widely from the x-axis in the presence of the glycocalyx
than without the glycocalyx, which will be confirmed below from figure 6.

The streamlines in the cleft shown in figures 3(b) and 4(b) demonstrate how the
fluid flow passes through the gap of the junction strand in the mid-plane of the cleft.
They are similar downstream of the junction strand, while they show some difference
upstream of the junction strand, owing to the presence or absence of the glycocalyx.
A close look at the cleft region suggests that a nearly potential-type flow may be
realized, since the streamlines and pressure contours seem almost perpendicular to
each other (see equation (12)).

Figure 5 shows an oblique view of the pressure distribution in the (x, y)-plane,
corresponding to figure 3(b). It is clearly illustrated that the pressure varies mildly
in the endothelial glycocalyx except just near the cleft entrance, and most pressure
drop occurs in the cleft. The pressure decreases monotonically along the x-axis, while,
apart from the gap (y >d), the pressure is almost constant in either region upstream
or downstream of the tight junction strand. Across the junction strand, there is an
abrupt change in pressure, or pressure jump. The considerable pressure jump across
the junction strand was previously reported by Hu & Weinbaum (1999).

Along the cleft entrance at x = 0, the pressure has a minimum at y = 0, and
it gradually increases toward an asymptote as y increases from 0. This behaviour
of the pressure variation along the y-axis is shown in figure 6(b), and the pressure
variation along the z-axis is shown in figure 6(a), for various values of the glycocalyx
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Figure 6. The pressure profiles at the cleft entrance along the z-axis (a) and the y-axis (b),
at KC

p = ∞ for various glycocalyx thicknesses with the other parameters in table 1. The
solid curves represent the case of lG = 0, the dotted curves lG = 50 nm, the dash-dotted curves
lG = 100 nm, the dashed curves lG = 150 nm, and the dash-double dotted curves lG = 400 nm.
The velocity vectors at the cleft entrance along the z-axis (c) and the y-axis (d), at KC

p = ∞
in the absence of the glycocalyx (solid arrows) and in the presence of the glycocalyx with
lG = 150 nm (dashed arrows), with the other parameters in table 1. In (c) and (d), the velocity
is normalized by the mean velocity in the cleft, u0 = JvL/h.

thickness. Our computations showed that the depression of the pressure curve near
the origin (the centre of the cleft entrance) becomes shallower and narrower as the
glycocalyx becomes thinner. Figure 6(b) reveals that, in the limit of lG = 0, i.e. with
no glycocalyx, the deviation of the pressure from the asymptotic value is small and
it is negligible except in a narrow region corresponding to the opening length of the
gap of the junction strand, i.e. y � d . In figure 6(a), a sharp change in pressure is seen
at z = h (= 9 nm), corresponding to the corner of the cleft entrance. In particular, the
abrupt increase in pressure there was previously observed for Stokes flow through a
periodic infinite-slit array in an unbounded plane wall (Hasimoto 1958).

The velocity vectors (u, w) and (u, v) at the cleft entrance normalized by the mean
velocity in the cleft, u0 = Jv L/h, are plotted along the z-axis in figures 6(c) and
along the y-axis in figure 6(d). The solid arrows represent the velocity vectors in the
absence of the glycocalyx, and the dashed arrows in the presence of the glycocalyx
with lG = 150 nm. Owing to the normalization of the velocity, larger velocity near the
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centreline (x-axis) with no glycocalyx than that with the glycocalyx indicates that,
without the glycocalyx, the fluid flow into the cleft entrance is more concentrated near
the x-axis, compared to the case with the glycocalyx, as already noted from figures
3(b) and 4(b). This variation of the velocity profile at the cleft entrance affects the
flow structure in the cleft, which results in variations of the hydraulic conductivity
with the glycocalyx thickness, as shown below.

With the use of the velocity data obtained and the pressure drop prescribed, the
hydraulic conductivity Lp = Jv/�p was calculated, for various parameter values.
As seen in figure 5, variations in pressure are very small within the vessel lumen
(−(lG + lL) � x � −lG) and within the tissue space (lC � x � lC + lT ), so that �p

is nearly equal to the pressure difference across the surface glycocalyx and the
cleft, i.e. �p ≈ p̄(−lG) − p̄(lC). Here, p̄(x0) represents the mean pressure averaged
over the cross-section at x = x0. Figure 7 shows our predicted values of Lp

as a function of the glycocalyx thickness lG, with and without cleft-spanning
molecules. The other parameters are shown in table 1. For KC

p = ∞, the present

computations lead to Lp = 1.75 × 10−7cm (cmH2O)−1 s−1 for lG = 150 nm, and
Lp = 1.69 × 10−7cm(cmH2O)−1 s−1 for lG = 400 nm. In the presence of the cleft-
spanning molecules (KC

p =32.84 nm2), we had Lp = 1.01 × 10−7 cm (cmH2O)−1 s−1 for

lG = 150 nm, and Lp = 0.99 × 10−7cm (cmH2O)−1 s−1 for lG =400 nm. These values
are within the range of the experimental measurements and close to the mean value
1.0 − 1.3 × 10−7 cm (cmH2O)−1 s−1 for rat mesentery venules (Adamson et al. 2004).

The hydraulic conductivity for the glycocalyx alone is calculated by the ratio of the
flow rate and the pressure difference across the glycocalyx, i.e. between its luminal
surface and the entrance to the cleft just behind it, such as LG

p = Jv/(p̄(−lG) − p̄(0)). In
this case, p̄(0) represents the mean pressure averaged over the luminal cleft entrance,
i.e. −D � y � D and −h � z � h at x = 0. Similarly, the hydraulic conductivity for the
cleft is given by LC

p = Jv/(p̄(0) − p̄(lC)). Since we consider a serial pathway of the
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Figure 8. The distributions of shear stresses exerted by the fluid flow on the surface of the
endothelial cell in the cleft at z = ±h, for lG = 150 nm and KC

p = ∞ with the other parameters
in table 1. The magnitudes of the shear stresses τ are normalized by τ0 = 3µu0/h, where u0

represents the mean velocity in the cleft u0 = JvL/h.

glycocalyx and the cleft for the fluid flow, we have the relationship:

1

Lp

=
1

LG
p

+
1

LC
p

, (10)

where (Lp)−1, (LG
p )−1 and (LC

p )−1 represent the resistance to flow in the vessel wall, the

glycocalyx and the cleft, respectively. In figure 7, the variations of LC
p and LG

p with

the glycocalyx thickness lG are also plotted. Since the values of LG
p for the glycocalyx

are two orders of magnitude larger than the corresponding values of LC
p , it is shown

that the values of Lp are mainly determined by LC
p . Our computation predicts that

the contributions of the glycocalyx to the total flow resistance are only 3.4 % and
4.1 % for lG = 150 nm and 400 nm, respectively, if the cleft-spanning molecules are
absent (KC

p = ∞). The corresponding values are even smaller if the cleft-spanning

molecules are present (KC
p = 32.84 nm2). Comparing the values of the Lp curve for

100 nm< lG < 500 nm with its y-intercept suggests that the removal of the glycocalyx
may increase Lpby about 30 % for KC

p = ∞, and about 15 % for KC
p = 32.84 nm2.

This increase in Lpfollowing the removal of the glycocalyx is mostly due to the
variation of the flow structure in the cleft, rather than the loss of the flow resistance
in the glycocalyx. Figure 7 shows that the values of Lp depend only weakly on the
glycocalyx thickness for lG > 100 nm, which results from a minor contribution of the
glycocalyx to the flow resistance.

The fluid stresses exerted on the endothelial surface were calculated by using the
velocity data. Figure 8 shows a representative example of the shear stress distribution
on the surface of the intercellular cleft (at z = ±h) for lG = 150 nm. Here, the mag-

nitudes of the wall shear stress τ = µ
√

(∂u/∂z)2 + (∂v/∂z)2|
z=±h

are normalized by the
wall shear stress exerted by the plane Poiseuille flow between two parallel plates with
separation distance 2h, i.e. τ0 = 3µ u0/h. For a representative flow rate Jv = 10−8 m s−1,
we have u0 = 5.6 × 10−6 m s−1 and τ0 = 1.28 Pa, for h = 9 nm.
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The luminal surface of the endothelial cell is continuously exposed to the shear
stress of blood flow which is of the order of 1–2 Pa for postcapillary venules (Lipowsky
1995), that may be actually transmitted via the glycocalyx to the cytoskeleton of the
endothelial cell (Smith et al. 2003; Long et al. 2004). Comparing with this value,
we see from figure 8 that the wall shear stresses exerted on the cleft surface of
the endothelial cell are extremely high. The shear stresses are concentrated in the
gap region, especially near its ends (lJ � x � lJ + δ and |y| ∼ d). This is caused by
the velocity profile in the gap region, having a minimum at the gap centre, and a
maximum near the gap edge with a sharp decline to 0 at the edge to satisfy the
no-slip condition. This characteristic velocity profile was previously reported by Zeng
& Weinbaum (1994), where they analysed a Stokes flow through a parallel-walled
channel obstructed by a thin planar barrier with a periodically spaced rectangular
orifice. It was reported that for moderate and large ratios of channel height to orifice
width (= h/d in the present study), the velocity profile in the orifice has the maximum
at its centre, just like the Poiseuille flow, whereas a decrease in the ratio shifts the peak
position toward the edge of the orifice. Apparently, the present geometry corresponds
to the latter, since h/d = 0.0571 � 1 (see table 1).

It is increasingly recognized that the endothelial glycocalyx serves a critical role in
the transmission of the fluid shear stress to the actin cytoskeleton and in the initiation
of intracellular signalling (Thi et al. 2004; Weinbaum, Tarbell & Damiano 2007).
Although the role of the fluid shear stresses in the cleft is not clear, the concentrated
shear stresses shown in figure 8 suggest that they may have some effect on the tight
junction itself, such as modulating the opening of the pores for small solutes. With
regard to the shear stress on the other surfaces of the endothelial cell, the present
study shows that the fluid filtration between the vessel lumen and the tissue space may
exert the much smaller shear stresses on the luminal side (x = 0) and the abluminal
side (x = lC) than those on the cleft surface (z = ±h).

It may be interesting to estimate how much of the pressure force applied to the
cleft, �p(2h)(2D), is taken up by shear stresses on the cleft surface. The integrations
of the x-component of the stresses over the cleft surface and the junction strand
surface show that most pressure force (approximately 90 %) acts on the tight
junction strand, and the remainder of the force is taken up by the shear stress
exerted on the cleft surface. This may be anticipated from figure 5, where the
pressure on the upstream-side of the tight junction strand is nearly equal to the most
upstream pressure (= 0) and the pressure on its downstream-side is close to the most
downstream pressure (= −�p), resulting in the force exerted on the tight junction
strand being �p(2h)(2D − 2d). Accordingly, the fraction of the pressure force taken
up by the pressure difference across the tight junction strand is roughly estimated to
be (2D −2d)/2D ∼ 0.9, sinced/D = 0.0877 (see Table 1). If we substitute the pressure
difference �p = 10 cmH2O and the cleft width 2h = 18 nm, then the corresponding
force on the tight junction strand per unit length along the strand is approximately
�p(2h) = 1.8 × 10−5 N m−1.

4. Discussion
4.1. Comparison to previous model studies

As noted in § 1, Fu et al. (1994) combined the endothelial surface glycocalyx and
the cleft-spanning molecules in their model, and treated the entire matrix layer as
if it existed in the entrance region of the wide part of the cleft. In the entrance
matrix layer, they assumed a regular array of fine fibres with radius rf = 0.6 nm
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and spacing �= 7 nm, corresponding to GAG side-chains. The Darcy permeability is
estimated to be Kp = 7.08 nm2 from (4). It was shown that the matrix layer of ordered
periodic structure with about 100 nm thickness could be compatible with experimental
observations for frog mesentery capillaries, Lp = 2.0 × 10−7 cm (cmH2O)−1 s−1. With
the glycocalyx covering the entire endothelial surface, Weinbaum and colleagues
used the quasi-one-dimensional flow approximation within the glycocalyx and
obtained the measured Lp when the glycocalyx thickness is 150 nm and rf = 0.6 nm,
�= 7nm (Hu & Weinbaum 1999; Hu et al. 2000; Weinbaum et al. 2003). Using
rf =6nm, �= 8 nm for core proteins and the same geometry with the current
study for the rat mesentery microvessels, Adamson et al. (2004) predicted that Lp is
equal to 1.24 × 10−7 cm (cmH2O)−1 s−1 for lG = 150 nm in the presence of the cleft-
spanning molecules, and about twice of this value in the absence of the cleft-spanning
molecules. Quite recently, Zhang et al. (2006) have indicated that the quasi-one-
dimensional flow approximation in the glycocalyx with the use of KG

p = 9.24 nm2

provides Lp = 1.3 × 10−7cm (cmH2O)−1 s−1 for lG = 150 nm for the same structural
parameters as the present study, free of any microstructure in the cleft.

The difference of the present study from these previous estimates results mainly from
the three-dimensional flow structures in the glycocalyx (see figure 3), in spite of using
comparable values of the Darcy permeability for the glycocalyx. The one-dimensional
flow approximation is suitable in the y-direction, whereas it is inappropriate in the z-
direction, as shown in figure 3(a). The converging flow into the luminal cleft entrance
in the z-direction may markedly increase the flow rate for a given pressure difference
across the glycocalyx. Under the quasi-one-dimensional flow approximation, Zhang
et al. (2006) showed that along the x-axis, about half of the pressure drop occurs across
the glycocalyx and half occurs in the cleft, for lG =150 nm and KG

p = 9.24 nm2. It was
also shown that the pressure drop across the glycocalyx averaged over the entire cleft
length is 10 % of the total pressure drop across the endothelial cell. In comparison,

the present study predicts for the same parameter values except K
G//

p = 6.10 nm2 and
KG

p ⊥ = 3.16 nm2 that about 30 % of the pressure drop occurs across the glycocalyx
along the x-axis (see dashed curves in figure 6), and the pressure drop across the
glycocalyx averaged over the entire cleft length is only 3% of the total pressure drop.
The present study suggests much smaller contribution of the surface glycocalyx to
the hydraulic conductivity than the previous estimates, primarily owing to substantial
spreading of the flow within the glycocalyx.

4.2. Effects of the Darcy permeability of the glycocalyx on the hydraulic conductivity

If one-dimensional flow is assumed in the glycocalyx flowing directly into the cleft
entrance with no spreading, the Darcy law provides the pressure drop across the
glycocalyx thickness as �pG = µUlG/KG

p , where U is the velocity of the one-
dimensional flow. If we further assume that the flow is uniform, i.e. U is constant
along the length of the cleft entrance, then the velocity U is related to the fluid flux
per unit area of the endothelial luminal surface Jv as U = Jv/(2hA). Thus, LG

p for the

uniform one-dimensional flow is represented by LG
p = Jv/�pG = KG

p 2hA/µlG. Using

this value, we here introduce a correction factor CG, corresponding to (1) for the cleft,
which represents the hydraulic conductivity for the glycocalyx relative to the value
obtained by the one-dimensional flow approximation:

LG(1)
p = AKG

p

2 h

µ lG
, LG(3)

p = CGLG(1)
p . (11)



Flow across microvessel walls 245

10–1 100 101 102
0

5

10

15

20

Kp
G (nm2)

C
or

re
ct

io
n 

fa
ct

or
 C

G

0

1

2

3

L
p 

× 
10

 7
 (c

m
 s

–1
 cm

H
2O

–1
)

10–1 100 101 102

(a) (b)

Kp
G (nm2)

Figure 9. (a) Correction factor CG in (11) as a function of the isotropic Darcy permeability
of the glycocalyx KG

p , at lG = 150 nm (solid curve) and 400 nm (dashed curve) for KC
p = ∞ with

the other parameters in table 1. (b) Hydraulic conductivity Lp as a function of the isotropic
Darcy permeability of the glycocalyx KG

p , at lG = 150 nm (solid curve) and 400 nm (dashed
curve) for KC

p = ∞ with the other parameters in table 1. In (a) and (b), the filled circles and
open circles represent the corresponding values for K

G//

p = 6.10 nm2 and KG⊥
p = 3.16 nm2, when

isotropic KG
p = 4.9 nm2 and 4.8 nm2 are substituted into (11), respectively.

For lG = 150 nm or 400 nm, we have LG(1)
p = 5.5 or 2.1 × 10−7 cm (cmH2O)−1 s−1, res-

pectively, when KG
p = 3.16 nm2 and A= 10−1 µm−1. For KG

p =6.10 nm2, the corres-

ponding values are LG(1)
p = 10.6 or 4.0 × 10−7 cm (cmH2O)−1 s−1. Assuming isotropic

KG
p (= K

G//

p = KG⊥
p ), we have used the present model to compute the hydraulic

conductivity for the glycocalyx LG(3)
p as well as that for the microvessel wall Lp , and the

obtained values of CG and Lp are plotted as functions of KG
p , in figures 9(a) and 9(b),

respectively.
Figure 9(a) shows that CG ≈ 6–7 for lG =150 nm in a rather wide range of KG

p from

0.1 nm2 to almost 10 nm2, and CG ≈ 13–14 in the same range of KG
p for lG = 400 nm.

For an anisotropic case such as K
G//

p = 6.10 nm2 and KG⊥
p =3.16 nm2, the correction

factors CG for lG = 150 nm and 400 nm are found to lie on the corresponding solid and
dashed curves, respectively, if we adopt an isotropic value of KG

p = 4.9 and 4.8 nm2 in

the evaluation of LG(1)
p by (11).

Figure 9(b) shows our predicted values of Lp for the vessel wall with the variation of
isotropic KG

p , at lG = 150 nm and 400 nm. We note that the solid and dashed curves are
comparable, indicating that the values of Lp are almost independent of the glycocalyx
thickness, as already seen in figure 7. When the value of KG

p is increased from 0.1 nm2

to 100 nm2 by three orders of magnitude, figure 9(b) indicates that the subsequent
increase in Lp is relatively small, ranging from almost 0.4 × 10−7 cm (cmH2O)−1 s−1 to
about 2 × 10−7cm (cmH2O)−1 s−1.

No direct measurements have been made of the Darcy permeability for the endo-

thelial surface glycocalyx. The values in table 1, K
G//

p =6.10 nm2 and KG⊥
p = 3.16 nm2,

were determined based on the detailed structural measurements which proposed
regular arrangements of core proteins with rf = 6 nm and �= 8 nm (Squire et al. 2001;
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Weinbaum et al. 2003). For the core protein geometry adopted in the present study,
Sugihara-Seki (2006) made a fluid-mechanical analysis on the motion of a solute
between regularly arranged core proteins and estimated the reflection coefficient.
The predicted values of the reflection coefficient for various sized solutes are close
to experimental measurements, accounting satisfactorily for the observed molecular
filtering. For example, the reflection coefficient to solutes corresponding to serum
albumin with Stokes radius = 3.6 nm is predicted to be as high as 0.8. This estimate
explains the experimental measurements much better than previous analyses. Zhang
et al. (2006) also reached a similar conclusion using the same geometry of the
core proteins. Experimental studies have shown that, despite large variations of
Lp depending on types of microvessels, various microvessels with fenestrated or
continuous endothelium exhibit similar values of the reflection coefficient. This
similarity in size selectivity of different types of microvessel walls can be explained well
by an idea of the fibre matrix theory that the glycocalyx forms the primary molecular
sieve for plasma proteins (Curry & Michel 1980). Thus, the accordance of the reflection
coefficient obtained from the present model with experimental observations may lend
support to the present model structures adopted for the glycocalyx.

There may be several factors affecting the value of KG
p , which was estimated

based on the regular arrangement of core proteins. Although we have assumed a
rigid structure of the core proteins, resulting in constant values of KG

p , the flexible
property of the glycocalyx as well as the adsorption of plasma proteins may induce
a local variation in solid-volume fraction in the glycocalyx, which may alter its
permeability property. In addition, surface charges on the molecular filaments of the
glycocalyx (Vink & Duling 2000; Damiano & Stace 2002) and a possible presence of
interconnecting molecules between core proteins would also affect KG

p .
Among these factors, we here briefly consider the effect of the possible presence

of the apical layer at the luminal surface of the core-protein layer on the hydraulic
conductivity. As a preliminary study to examine this effect, we modify the present
model to include the apical layer, in such a way that the space of the vessel lumen
(–(lG + lL) < x < −lG) is replaced by the apical layer with a Darcy permeability KA

p ,

allowing its variation independent of KG
p . For the apical layer thickness lL = 300 nm

and lG = 150 nm, i.e. total thickness of the endothelial surface layer being 450 nm, our
computation showed that a decrease in KA

p from 10 nm2 to 0.1 nm2 reduces Lp from

1.71 × 10−7 cm (cmH2O)−1 s−1 to 1.28 × 10−7cm (cmH2O)−1 s−1, when K
G//

p = 6.10 nm2

and KG⊥
p =3.16 nm2. These values are not much different from our obtained value

of Lp = 1.75 × 10−7 cm (cmH2O)−1 s−1 in the presence of the core-protein layer alone
without the apical layer. Thus, it is suggested that the effect of the apical layer
on the hydraulic conductivity could be minor when the Darcy permeability of the
apical layer is comparable or larger than that of the core-protein layer. Even when
KA

p = 1 nm2, the contribution of the endothelial surface layer with thickness 450 nm
to the whole resistance is predicted to be about 6 %.

4.3. Effects of the glycocalyx removal on the hydraulic conductivity

Adamson (1990) demonstrated that enzymatic removal of the surface glycocalyx,
using pronase, increased the hydraulic conductivity of frog mesentery capillaries from
2.0 × 10−7 cm (cmH2O)−1 s−1 to 4.9 × 10−7cm (cmH2O)−1 s−1 by 2.5-fold. This is the
only experiment which tried to isolate the contribution of the surface glycocalyx from
the whole vessel wall. It is not clear to what extent pronase perfusion degraded the
glycocalyx, or affected structures of the cleft and the tight junction strand. However,
if we postulate here that the glycocalyx was completely removed with no effect on the
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cleft and tight junction structures, then this in vivo experiment implies that there is a
2.5 times difference between the values of Lp with and without the glycocalyx. In the
present analysis, in contrast, a comparison of the Lp values at lG = 0 and lG >150 nm
in figure 7 suggests that the removal of the glycocalyx would enhance Lpby about
30 % at KC

p = ∞. The reason of this discrepancy is not apparent. One cause may be
the values of the Darcy permeability for the glycocalyx adopted.

Here, we examine the possibility of adopting a value of KG
p which would be

pertinent to the in vivo experiment, focusing on the y-intercept of the Lp curve
in figure 7, i.e. Lp = 2.28 × 10−7 cm (cmH2O)−1 s−1 at lG = 0. To achieve a 2.5 times
smaller value of this, i.e. Lp = 0.9 × 10−7 cm (cmH2O)−1 s−1 in the presence of the
glycocalyx, we know from figure 9(b) that KG

p ≈ 0.6 nm2. In other words, if we

adopted KG
p =0.6 nm2 instead of K

G//

p = 6.10 nm2 and KG⊥
p = 3.16 nm2, our analysis

suggests that the removal of the glycocalyx would increase Lp by 2.5 times. However,
this value of KG

p is far too small to account for experimental measurements of
the reflection coefficient to solutes. Actually, for KG

p = 0.6 nm2, equation (3) provides
the spacing between adjacent fibre surfaces as �= 3.9 nm and 2.7 nm for the fibre
radius rf =6 nm and 0.6 nm, respectively. Similarly, (5) yields �= 3.1 nm and 2.0 nm
for rf = 6 nm and 0.6 nm, respectively. These values are even smaller than a half
of �= 8 nm observed by Squire et al. (2001) and adopted in the present study.
Apparently, they are too small for serum albumin (radius= 3.6 nm) to pass through
the spacing. The resulting values of the reflection coefficient would be close to unity
for the solute with radius larger than at least 2 nm, which seems inconsistent with
measurements of the reflection coefficient (Michel & Curry 1999).

Unpublished studies (J. Tarbell, personal communication), in which heparinase
III instead of pronase has been used to remove the surface glycocalyx in cultured
bovine aortic endothelial cell (BAEC) monolayers show only a 38 % increase in
the hydraulic conductivity and a 260 % increase for pronase digestion similar to
the in vivo study by Adamson (1990). Heparinase is known to degrade selectively
heparin sulfate of the glycocalyx (Pahakis et al. 2007). An application of pronase with
higher concentration (0.125 mg ml−1) greatly enhanced the hydraulic conductivity of
BAEC monolayers. These results suggest some effects of this non-specific enzyme
on the tight junction structure, although there is a possibility that the cell-surface
chemistry in cultured cells in vitro may be different from the glycocalyx in vivo. Future
detailed experimental studies using various enzymes are expected to clarify the contri-
bution of the surface glycocalyx to the hydraulic conductivity of microvessel walls
in vivo.

4.4. The correction factory for the hydraulic conductivity of the clef

For the flow in the cleft, all previous model studies starting with Tsay et al. (1989)
including Adamson et al. (2004) adopted a two-dimensional approximation, where
the flow is equivalent to the classical Hele-Shaw flow of a Newtonian fluid in the
absence of the cleft-spanning molecules. In the two-dimensional flow analyses,
the velocity (u, v) in the cleft is expressed as u(x, y, z) = u∗(x, y)(1 − z2/h2) and
v(x, y, z) = v∗(x, y)(1 − z2/h2), which satisfy the no-slip condition at z = ±h. The
velocity in the cleft mid-plane, (u∗, v∗), is linearly related to the local gradient in the
averaged pressure p∗(x, y) as

(u∗, v∗) = −K(∂/∂x, ∂/∂y)p∗, (12)
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where K is a constant such that

K =

⎧⎪⎨
⎪⎩

h2/3µ no cleft-spanning molecules,

Kp

µ

{
1 −

√
Kp

h
tanh

(
h√
Kp

)}
Brinkman flow,

(13a, b)

(Phillips, Parker & Wang 1994). A combination of (12) with the continuity equation
leads to the two-dimensional Laplace equation for the pressure:

∇2p∗ = 0. (14)

Phillips et al. (1994) solved (14) analytically in the domain of 0 � x � lC subject to
the boundary conditions of the uniform constant pressures at the cleft entrance and
exit, together with the no-penetrating condition on the surface of the tight junction:

p∗ = 1 on x = 0, p∗ = 0 on x = lC, ∂p∗/∂x = 0 on x = (lJ + δ/2)±, |y| � d. (15)

In this analysis, the thickness of the tight junction is neglected and ()± represents the
luminal and abluminal sides of the tight junction strand.

The solutions of this analysis were summarized in terms of the correction factor
C, which represents the flow rate of the two-dimensional flow relative to a one-
dimensional flow through a rectangular cross-section of the gap of the tight junction,
for a given pressure drop (Adamson & Michel 1993). By substituting f = d/D in
(1), we have for the flow of a Newtonian fluid in the absence of the cleft-spanning
molecules,

LC(1)
p =

2Ah3d

3µ lCD
, LC(2)

p = CLC(1)
p . (16)

In the Appendix to Adamson & Michel (1993), Parker et al. plotted C as a function
of the cleft geometry. Correspondingly, we have computed C∗ = LC

p/LC(1)
p , where LC

p

represents the hydraulic conductivity for the three-dimensional Newtonian flow in
the present study, with KC

p = ∞. In figure 10, we plotted C and C∗ as a function
of the junction position from the luminal cleft entrance relative to the cleft depth,
ν =(lJ +δ/2)/lC , for various gap lengths relative to the gap separation, d/D. The cleft
geometry in table 1 corresponds to ν = 0.181 and d/D =0.0877. The C∗ curves in
figure 10 represent the cases of K

G//

p = 6.10 nm2, KG⊥
p =3.16 nm2, and KT

p =190 nm2.
This asymmetry of the up- and down-stream values of the Darcy permeability reflects
in the asymmetry of the C∗ curves with respect to the centreline ν = 0.5, while the
solid curves of C are symmetric owing to the symmetric boundary condition (15).

Similarly, the correction factor, C∗∗ = LC
p/LC(1)

p , can be defined for the Brinkman

flow with the use of the following LC(1)
p :

LC(1)
p =

2AhKp

{
1 −

√
Kp

h
tanh

(
h√
Kp

)}

µ lC

d

D
. (17)

This expression is easily obtained from (13). In figure 10, C∗∗ for the Brinkman

flow with KC
p = 32.84 nm2 is also plotted by dash-dotted curves, for K

G//

p = 6.10 nm2,

KG⊥
p =3.16 nm2 and KT

p = 190 nm2. Figure 10 clearly demonstrates that the LC
p values

for the three-dimensional flow are distinctly different from those for one-dimensional
or two-dimensional flows, especially for small values of d/D, although the flow in
the cleft shown by the streamlines and the pressure contours in figures 3 and 4
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Figure 10. Correction factor C(solid curves), C∗ (dotted curves) and C∗∗ (dash-dotted curves)
vs. relative junction position ν =(lJ + δ/2)/lC , for relative gap length d/D = 0.02, 0.08774 and
0.2, or 2d = 71.8 nm, 315 nm, and 718 nm at 2D = 3590 nm.

ressembles the two-dimensional potential flow. Generally, C∗ and C∗∗ are smaller
than the corresponding values of C, because the three-dimensional flow has a larger
resistance to flow owing to the no-slip condition on the surface of the tight junction
strand. For d/D = 0.2, the values of C∗ and C∗∗ are as low as unity, which may be
attributed to non-uniform pressure distributions at the cleft entrance and exit, whose
mean pressures, not the local pressures in the region |y| � d , are used to evaluate
LC

p in the present analysis (see figures 5 and 6). For the parameter values shown
in table 1, C = 1.74, C∗ =1.21 and C∗∗ = 1.36, which are considerably different from
each other.

The present method of analysis on the three-dimensional flow will be useful in
examining the coupled movement of water and solutes in the cleft, which is closely
related to the revised Starling principle proposed by Michel (1997) and Weinbaum
(1998). The water flow though the gap of the tight junction strand is expected to
affect significantly the back diffusion of solute from the tissue into the luminal side
of the cleft, as noted in § 1. This issue is left for a future study.

5. Concluding remarks
Using a mathematical model for steady fluid flow through a serial pathway

consisting of the endothelial surface glycocalyx and the endothelial intercellular cleft
with junction strands and their discontinuous gaps, we analysed three-dimensional
flow of the fluid across the microvessel wall and estimated the hydraulic conductivity.
If the values of the Darcy permeability for the glycocalyx are determined based on
the regular arrangements of fibres with rf =6nm and �= 8 nm, then the present
study predicts the hydraulic conductivity close to the experimental measurements
for rat mesentery microvessels. A key conclusion may be that the endothelial surface
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glycocalyx could have a much smaller contribution to the flow resistance than does the
intercellular cleft. If further information regarding the ultrastructure and composition
of the fibre matrices in the glycocalyx as well as the cleft structures becomes available,
this idealized model could be improved to provide a more realistic description of the
water flow across the microvessel wall.

The authors thank Drs J. Tarbell and S. Weinbaum for providing unpublished
experimental data (J. T.) and valuable comments (S.W.). This research was supported
in part by Grants-in-Aid for Scientific Research (B) 16360093 and 19360090.
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