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Abstract: We develop an analytical theory which allows us to identify the 
information spectral density limits of multimode optical fiber transmission 
systems. Our approach takes into account the Kerr-effect induced 
interactions of the propagating spatial modes and derives closed-form 
expressions for the spectral density of the corresponding nonlinear 
distortion. Experimental characterization results have confirmed the 
accuracy of the proposed models. Application of our theory in different 
FMF transmission scenarios has predicted a ~10% variation in total system 
throughput due to changes associated with inter-mode nonlinear 
interactions, in agreement with an observed 3dB increase in nonlinear noise 
power spectral density for a graded index four LP mode fiber. 
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1. Introduction 

Multi-core and few-mode fiber (FMF) based systems are seen as a promising route to 
postpone the capacity crunch by increasing the number of modes used for communication 
without significantly changing the optical signal to noise ratio within each mode [1–3]. 
Various solutions are under investigation, including hollow core photonic band-gap fibers [4], 
few-mode fibers [5], and fibers supporting orbital angular momentum modes [6]. In order to 
support development of future systems based on these products, it is essential to understand 
both the linear and nonlinear transmission effects. Linear effects which restrict the 
performance of a few-mode fiber system include the orthogonality of mode 
multiplexers/demultiplexers and critically, in line mode dependent loss. A high mode 
dependent loss will result in unacceptably system outage [7], however for sufficiently low 
mode dependent loss, the system becomes unitary and the capacity scales with the number of 
modes. Preliminary measurements of nonlinearity of few-mode fibers have now commenced 
[8–12] and numerical models are now available [13–16] taking into account cross phase 
modulation such as inter mode nonlinear interactions. However, to the best of our knowledge, 
closed form expressions for the nonlinear Shannon limit of a FMF to those available for 
single mode fibers [17–19] are only beginning to emerge [20]. Such expressions are 
invaluable planning tools enabling simple scaling rules to be predicted and with subsequent 
experimental verification will provide important input to network operators and designers. 
Previous work has provided closed form expressions for single mode fiber for inter-channel 
nonlinear effects [19, 21, 22]. Strictly speaking, deterministic intra-channel nonlinearity may 
be compensated [23] leading to enhancements of a few dB. Similarly, for point to point links, 
inter-channel nonlinear effects may be compensated and the system becomes limited by the 
nonlinear interaction between signal and noise [24, 25]. In the context of multi-mode fiber, 
the compensation both inter and intra channel nonlinearity would be event more challenging 
than for single mode fibers, furthermore potential inter mode nonlinear interactions for a few-
mode fiber have been identified [26]. 

In this paper we develop a simple, fully closed form expression for the nonlinear noise 
generated in a FMF by both intra- and inter-mode four wave mixing (FWM), experimentally 
verify the functional form of our closed form expression and use it to directly relate the 
potential throughput of a wavelength division multiplexed few-mode fiber transmission 
system to the physical fiber parameters for a system with negligible mode dependent loss. 
The proposed model combines the analytical integration of four wave mixing processes [19] 
with the velocity matched interaction between different modes [20]. We verify our hypothesis 
by direct measurement of four wave mixing products in a 12 mode (4 LP modes) fiber, 
confirming both the logarithmic dependence of FWM in a FMF and the onset of inter-mode 
FWM for sufficiently high WDM signal bandwidths [27]. In particular we directly observe, 
for the FMF used in this study, a 3 dB increase in nonlinear noise due to the onset inter-mode 
FWM. Finally, we interpret the implications for the design of FMFs, concluding that the 
optimum fiber design is likely to be independent of the majority of system and link design 
parameters other than the fiber itself, with the exception of the WDM signal bandwidth. 

2. Analysis 

Whereas recent demonstrations of FMF transmission have been over modest distances or with 
a low channel count [5, 28–31], for commercial use long haul systems utilizing the entire 
bandwidth in the wavelength domain will be required. This will significantly increase the 
number of velocity-matched interactions between modes [26], especially in low differential 
mode delay fibers [31, 32], which are envisaged to bring reduction in the digital signal 
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processing complexity. Velocity matching by balancing two different dispersive processes is 
common in nonlinear optics to maximize the efficiency of a given nonlinear process, and in 
this case the balance occurs between differential mode delay (DMD) and group velocity 
dispersion (GVD). This velocity matching process is schematically illustrated in Fig. 1 
showing the calculated group delay as a function of wavelength for a four mode fiber. In a 
single mode fiber, it is well known that nonlinear processes such as FWM are strongly 
velocity matched when interacting signals are closely spaced (as will be the case within a 
given mode for a few mode fiber), as highlighted by the brown box in the figure. For a few-
mode fiber velocity matching will also occur when chromatic and modal dispersions 
approximately cancel, see chain of green boxes, indicating the range of wavelengths over 
which a particular FWM interaction would be velocity matched. More specifically the 
efficiency of nonlinear interaction may be calculated for any combination of signals in any 
combination of modes as a function of the spacing between signals [33]. We now extend the 
work of [33] and [19] to derive a closed form expression for the nonlinear noise power 
spectral density which would be generated in a few-mode fiber. 

 

Fig. 1. (a) Calculated group delay versus wavelength for a four mode fiber showing (shaded 
boxes) example regions of velocity matching for intra mode (brown) and inter-mode (green) 
interactions. (b) Black line, a typical optical super channel spectrum; brown line FWM 
efficiency curves for intra-mode FWM; green line typical FWM efficiency curve for inter-
mode FWM Curves are plotted from Eq. (6)for a 4 amplifier system, with an inter-mode 
velocity matching offset of 2.3 GHz and an exaggerated velocity-matching bandwidth of 200 
GHz (for clarity). 

For a periodically amplified single-mode transmission system with Ns identical spans and 
no dispersion compensation, it has been shown that in the limit of weak nonlinearity the 
generated nonlinear signal field En at frequency ω0 in mode n is given by [34, 35]; 

 
( )

( )
*0 2

sin / 21
sin / 2

ijkn

i k

j LL
S ijkn

n j
ijkn ijkn ijkn

N Ln e e
E E E E

cA j L
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− Δ− Δ−=
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where n2 is the nonlinear refractive index, c the speed of light Aijkn the effective area for the 
interaction between fields at frequencies fi,p,fj,q, fk,r, and fn,s where the first subscript denotes 
the mode, and the second the frequency within that mode.,α represents the loss coefficient, L 
the span length and Δβijkn,pqrs the group velocity mismatch appropriate to the interaction. 
Generalizing the nonlinear interaction to a multi-mode fiber is straightforward [33] and 
simply requires identification of the modes and frequencies associated with each of the four 
interacting waves denoted i,j,k and n and noting that the effective area and group velocity 
mismatches are given by; 
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Where r and θ are coordinates specifying the position across the transverse field Ex(r,θ) and 
β’x the group delay of the xth mode (were x is replaced by i,j,k or n) . For the purposes of this 
paper we assume that all modes have identical chromatic dispersion β” and wavelength 
independent propagation constantsβ~

i such that the group velocity mismatch is given by; 

 ( ) ( )~ ~ ~ ~ 2
, , , , ,4 ''

n k i jijkn pqrs i s k r j q k rf f f fβ β β β β π βΔ = + − − − − −  (4) 

where β” is the group velocity dispersion parameter, p, q, r, and s denote the frequency of the 
components in the ith, jth, kth and nth mode respectively. The FWM efficiency over a multi-
span system as a function of the spacing between three channels in the same mode is shown 
by the brown curve in Fig. 1(b). This efficiency curve shows a strongly velocity matched 
peak for low frequency spacing and rapidly decaying weakly velocity matched peaks 
comprising both Maker fringes [36] and quasi velocity matching peaks [35] for wider 
frequency spacing. For inter-mode interactions additional walk-off due to the differential 
mode delay is present, significantly reducing velocity-matching and hence FWM efficiency at 
low frequency spacing. However, by balancing the walk-off from these two effects, efficient 
velocity-matching may be restored. FWM efficiency is maximized at a velocity-matched 
frequency offset (VMO) where the CD and DMD cancel exactly. The frequency offset (see 
Fig. 1) may be readily calculated from Eq. (4) to be [26] 

 
~ ~ ~ ~

2 ''
n k i j

ijknf
β β β β

πβ
+ − −

Δ =  (5) 

For an optical super-channel with a total bandwidth B the total nonlinear noise generated by 
FWM between a given combination of modes may be calculated by integrating the product of 
curves such as those shown in Fig. 1 (Eq. (1)) with the signal power spectral density (PSD) in 
each mode. A closed form solution for this integral was obtained in the case of single mode 
fiber (corresponding to the case here where β~

n + β~
k-β~

i + β~
j = 0) for an OFDM superchannel 

with a rectangular spectrum (shown by the black curve in Fig. 1(a)) [19]. To account for all 
terms the integral was performed from –B/2 to B/2 where B represents the bandwidth of the 
WDM signal. For a few-mode fiber, in order to obtain a closed form expression, the same 
integral must be performed, but taking into account the VMO (Eq. (5)), and implicitly 
adopting the same reasonable assumptions as [19]. Simple arithmetic shows that the impact of 
the VMO corresponds exactly to shifting the bounds of the integral performed in [19] to –B/2-
Δfijknto B/2-Δfijkn. On one side of the velocity matching peak the integral is truncated, whilst on 
the other side it is extended, as is apparent by inspection of Fig. 1(b). 

As the VMO increases from zero (brown curve, Fig. 1(b)), the efficiency curve shifts to 
one side, and as the overlap between regions of highest FWM efficiency on one side of the 
central velocity matching peak and the signal bandwidth decreases, so the total impact of 
FWM is reduced slightly, since new contributions on the opposite side are of reduced 
amplitude. When the frequency shift approaches half of the total occupied spectrum (green 
curve), contributions from the strongly velocity matched central peak are also reduced, 
inducing a rapid decrease in the total FWM. For even larger modal dispersions, only the tail 
of one set of Maker fringes contributes to the impact of the nonlinear interaction giving 
interaction strengths of less than 1% of that for strongly velocity matched channel 
combinations. In addition to the impact of the VMO, the amplitude of the generated FWM 
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products will also be affected by the inter-mode effective area (Eq. (2)). For a signal with a 
rectangular spectrum (OFDM or Nyquist WDM super channel) in each interacting mode the 
integral of Eq. (1) (which may be calculated by following the method of [19]) thus gives an 
overall efficiency parameter ηijkn of: 

 

( )

2 22 2
0 2

2 2 2 2

2
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'' 2. 2.

2 4 ''

ijkn ijkn ijknS
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A c f f

s Sign B f f
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π β
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= − Δ =
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where Δfijkn represents the VMO, Aijkn the effective area of the interaction and ξijkn<1 the 
impact of mode averaging (weakly coupling regime) [14]. For the purposes of this paper, we 
assume that ξijkn = 2/3 for degenerate modes. This closed form analytical expression allows 
the FWM power generated in mode i originating from signals propagating in modes j,k and l 
to be calculated by taking the product of this nonlinear efficiency ηijkn and the signal power 
spectral density, of each mode. Direct comparison of Eq. (6) with [19] will reveal that the 
parameter he from Eq. (6) has been dropped since its value is approximately unity for all 
practical few-mode fibers. To simplify analysis in the following sections, we define a 
summed nonlinear efficiency for the nth mode, an given by: 

 
, ,

n ijkn
i j k

a η=   (7) 

such that the total nonlinear power generated in the nth mode is given by anPiPjPk where Pi,j,k 
is the signal power spectral density in the appropriate mode. 

 

Fig. 2. Relative nonlinear noise power coefficient (in dB relative to SMF) for a step index 12-
mode fiber (four LP modes) with a maximum differential mode delay of 880ps/km, 0.2 dB/km 
loss and assumed chromatic dispersion of 20 ps2/km (left) and with a maximum DMD of 
110ps/km (right). Contours show 10log10(ηijkn)as a function of effective area and VMO for a 
WDM bandwidth of 5THz. Colored dots represent the calculated values of these parameters 
for nonlinear noise generated in the LP01(red), LP02(green), LP11(blue) and LP21 (purple) modes 
for different inter-mode interactions. Fiber parameters calculated using a commercial mode 
solver. 

The implications of Eq. (6) are illustrated in Fig. 2 for two different FMF with high (left) 
and low (right) DMDs. Contours in Fig. 2 represent potential values of ηijkn as a function the 
effective area and VMO. The contour plots show several important features, including (along 
the x-axis) the expected gradual decay in efficiency as the effective area is increased and the 
impact of velocity matching. As the VMO increases gradually from zero the nonlinear 
efficiency decays slightly as Maker fringes fall outside the WDM signal bandwidth. 
Eventually, when the VMO approaches half the WDM signal bandwidth, the main lobe (see 
Fig. 1(b)) falls outside the WDM signal bandwidth, inducing a rapid drop in ηijkn. In the 
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example shown this results in a sharp discontinuity at a VMO of ± 2.5 THz (signified by the 
closely spaced contour lines). The frequency offset at which this rapid decay occurs is 
determined primarily by the signal bandwidth (5 THz in this case), the reminder of the shape 
is determined by the phase matching parameter fw and the signal bandwidth. Scaling 
(normalized in the figure) depends on a number of other fiber parameters, as detailed in Eq. 
(6). Of course, for any given fiber, only certain combinations of VMO and effective area are 
possible. The dots in Fig. 2 represent values of ηijkn for different interactions (combinations of 
modes i,j,k, n) for two specific fibers The dots are color coded according to the mode 
degraded by the interaction in question (n), the size of the dots are varied simply to enhance 
visibility of overlapping, or nearly overlapping, points. For each fiber, there are a number of 
interactions (each with its own effective area and VMO and illustrated by one of the dots) 
which fall within the high efficiency region (between ± 2.5 THz), including intra-modal 
effects and partially degenerate inter-mode effects. A number of other FWM interactions 
clearly exist which are also strongly velocity matched. Comparing the two fibers in Fig. 2, it 
is apparent that reducing the differential mode delay increases the number of these additional 
velocity matched interactions. For the higher DMD fiber there are a number of weakly 
velocity matched interactions (outside the VMO region bounded at ± 2.5 THz), which will be 
of increased importance if the signal bandwidth B is extended allowing strong velocity 
matching at greater VMO (resulting in a movement of the discontinuity in Fig. 2). 

 

Fig. 3. Nonlinear noise power normalized to LP01 mode at 100GHz bandwidth as a function of 
WDM signal bandwidth for the high (left) and low (right) DMD fibers of Fig. 2. LP01 (red), 
LP02 (green), LP11 (blue) and LP21 (purple). 

To calculate the total nonlinear noise influencing a given mode, all of the interactions 
influencing that mode must be summed (Eq. (7)). This corresponds to summing the 
contributions from each of the colored points associated with that mode in Fig. 2 (or the 
equivalent figure for fiber in question). This is illustrated in Fig. 3 which shows the nonlinear 
noise power generated at the center of the WDM versus the WDM bandwidth for these two 
four LP mode fibers. A number of discontinuities are apparent, in addition to the 
logarithmically increasing background expected for a SMF [37], with larger number of 
discontinuities observed for the fiber with the lowest DMD giving a significant increase in the 
overall nonlinear power spectral density. These discontinuities correspond to the signal 
bandwidth becoming sufficiently large to result in an additional strongly velocity matched 
contribution to the total nonlinear noise (see the green curve in Fig. 1(b), showing a WDM 
bandwidth just beyond such a discontinuity). In terms of Fig. 2, as the WDM bandwidth is 
increased, the discontinuity (at ± B/2) moves to higher VMO, allowing strong contributions 
from different points. 

3. Experimental verification 

We confirmed the predictions of Eq. (6) using the following simple measurement (Fig. 4(top) 
with a 30km low DMD FMF similar to the fiber used in [31]. A gain-flattened erbium doped 
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fiber amplifier (GFA) was used as a source of amplified spontaneous emission (ASE), which 
was shaped into a rectangular spectral blocks, representing highly dispersed WDM signals, 
using a wavelength selective switch (WSS). These blocks were amplified by a 38dBm GFA 
and the WSS was re-adjusted to ensure a uniform power spectral density. The central 50GHz 
section of the ASE spectrum was attenuated using the WSS in order to allow monitoring of 
the FWM signal. The FMF launch was adjusted by offsetting the position of the single mode 
fiber to maximize nonlinear mixing between the LP01 and LP11 modes, (giving a total excess 
coupling loss of 1.5dB). The output comprised coupling lenses, collimator and a phase plate, 
had an excess loss of ~5dB. The LP01 and LP11fiber modes were selected using the 
appropriate phase plate (only one orientation used for LP01) and the output spectrum recorded 
using an optical spectrum analyzer connected via a single mode fiber patch cord. The 
spectrum was used to determine the output power spectral density (and by implication the 
relative input power spectral density) and the FWM power generated in the central notch. To 
cover the full measurement the pump power of the second GFA was reduced to achieve a 
constant power spectral density. Three overlapping sets of data were obtained at different 
target power spectral densities. 

 

Fig. 4. (top) Experimental configuration used to measure few mode fibers (lenses and 
positioning stages at the ends of the few mode fiber are omitted for clarity). (bottom) 
Comparison of theoretical (solid lines) and experimental (dots) results for the LP01(red) and 
LP11 (blue) mode showing the normalized nonlinear power spectral density at the center of the 
band as a function of the bandwidth of an amplified spontaneous emission source with a 
50GHz frequency notch at the center. Theoretical predictions are based on typical measured 
DMD from the same fiber draw as the fiber used in this experiment [17], also shows 
theoretical prediction neglecting the inter mode nonlinearity (dotted lines)and typical output 
spectra (inset for signal widths between 1.5 (red) and 3 (dark blue) THz). 
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Figure 4(bottom) shows the measured FWM efficiency, calculated by dividing the output 
PSD measured in the central 50 GHz gap using an optical spectrum analyzer (and induced by 
FWM) by the cube of the input PSD calculated from the output PSD measured in the 200 
GHz regions either side of the central 50 GHz gap and corrected for the fiber loss. The 
measurement was performed for both the LP01 and LP11modes, with the inset to Fig. 
4(bottom) showing typical recorded output spectra (zoomed in around the central notch) for a 
range of ASE widths. The inset shows the FWM signal in the gap around 193.79 THz 
growing as a function of the overall spectral width of the ASE, whilst the input signal 
amplitude remains approximately constant (see spectral regions between 193.7 and 
193.75THz and between 193.83 and 193.9 THz). The resultant data was normalized 
(arbitrarily) to the efficiency obtained for a 1GHz ASE bandwidth. The results show the 
expected logarithmic growth trend, punctuated by discrete steps corresponding to the onset of 
individual inter mode interactions in excellent agreement with theoretical predictions based 
on summing Eq. (6) over all mode combinations. The fit shown was achieved for VMOs of 
0.8, 0.9 and 1.2 ± 0.1 THz (LP01) and 0.85, 1.2 and 1.35 ± 0.1 THz (LP11). The fitting 
parameters suggest inter-mode interaction strengths of around 15% of the intra-mode 
strength, representing effective areas around 2.5 times greater than the LP01 intra-mode 
effective area, which is consistent with the overlap integrals for a typical four mode fiber. Of 
particular significance to the analysis of communication systems, we observe that for signal 
bandwidth beyond 2.5 THz, the total FWM signal more than 3dB greater than expected from 
intra-mode nonlinearity alone (purple dotted line). This would be expected to reduce the total 
information spectral density of a fiber link by approximately 2b/s/Hz in the limit of a high 
signal to noise ratio (SNR) [3]. 

4. Capacity limits of few mode fiber systems 

Having experimentally verified a method to accurately predict the nonlinear noise power 
generation, the capacity limits may be estimated. For SMF, calculation of the equivalent 
nonlinear efficiency parameter ηiiii [19] provides accurate performance estimations [38] of the 
so called “nonlinear Shannon limit”. Channel capacity calculations used to derive the 
conventional “Shannon limit” require rigorous calculations of the mutual information 
between transmitter and receiver. To avoid confusion with such calculations, whilst allowing 
comparison with other works on “nonlinear Shannon limits” based on the calculation of noise 
fields, we introduce the phrase nonlinear information spectral density (ISDNL). In addition to 
the assumptions of [19] we make the following assumptions; (1) that sufficient CD and DMD 
to randomize span-to-span nonlinear interactions, and that random mode coupling equalizes 
launch powers and randomizes contributions from each mode [14], that is, whilst the mode 
coupling is in the weakly-coupled regime, it is sufficiently strong to scramble the modes at 
the output of a fiber span, (2) there is no compensation of nonlinearity (inter or intra channel), 
(3) as a consequence of (2) contributions to the nonlinear noise from interactions between 
signal and noise may be neglected, (4) that mode coupling equalizes the launch power for 
each mode and (5) that mode dependent loss is negligible. Considering these assumptions the 
achievable ISDNL can be recalculated for a FMF by considering the various interactions which 
may be velocity-matched within the signal bandwidth and summing over all modes. However, 
unlike single mode fiber [23], practical nonlinearity compensation has yet to be proposed for 
few mode fibers, and so we calculate ISDNL omitting the correction term which accounts for 
nonlinearity compensation [25]. 
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where Ps and PN are the signal and accumulated noise power spectral densities per mode 
respectively. Equation (6) and Eq. (8) may then be used to calculate the nonlinear information 
spectral density of a given multi-mode fiber, where PN is the amplified spontaneous emission 
power spectral density at the end of the link (including a final amplification stage) and PS the 
signal power spectral density per mode at the output of each amplifier. For large signal to 
noise ratios, algebraic manipulation of Eq. (8), using the simplification of Eq. (7) enables the 
relative ISDNL of MxM MIMO operation of a multimode fiber to be expressed as: 
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where P1 is the optimum power spectral density when the fiber is operated in a single LP 
mode (assuming zero mode coupling), PM the optimum power spectral density when all M 
modes are utilized and a1 and aM the equivalent total nonlinear efficiencies respectively 
(calculated using Eq. (7)) The optimum power spectral density may be calculated from the 
analytical solution to 
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recalling that PN represents the accumulated ASE power spectral density. Equation (9) reveals 
the expected M-fold increase in capacity but with a small reduction from the re-optimization 
of the optimum signal power spectral density, reduced slightly by the additional nonlinear 
terms, readily calculated from Eq. (10), and the relative FWM strength al. The capacity is also 
directly influenced by the effective area of the fundamental mode through the first term in Eq. 
(6). Figure 5(a) shows the familiar non-linear information spectral density curve for different 
four mode fiber designs. For any given fiber, the difference in performance for each mode is 
small. The fibers represent examples of high and low DMD FMFs with modest fundamental 
mode effective areas, and a low DMD fiber with a low fundamental mode effective area. 
Clearly both the overall effective area and the DMD have a direct influence on the maximum 
capacity of the system. Each mode exhibits a slightly different nonlinear threshold (Eq. (10) 
calculates the overall optimum launch condition), suggesting that some advantage may be 
obtained from individually optimizing the relative launch power for each mode [39], either at 
the transmitter for sufficiently weakly coupled fibers or after amplification, provided the 
benefit outweighed the increase in outage probability [7]. Note that the reference of 
fundamental mode propagation used here may be replaced by a conventional single mode 
fiber by replacing P1 and a1 with the appropriate values for the reference fiber, for example 
PSMF and aSMF. 
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Fig. 5. (left) ISD versus signal power spectral density for different four-mode fibers (separate 
line for each mode) calculated according to Eq. (9) and (right) total capacity for the four 
FMF systems obtained by summing the ISDs of all modes at the optimum PSD. Both figures 
show ISD for SMF (black),high effective area step index FMF (green), high effective area 
graded index FMF (red), small effective area graded index FMF) (blue) (DMDs shown in 
Table 1). Left figure shows ISD per mode, right figure shows total ISD (of six fibers for 
SMF). Systems have 80km amplifier spacing (4.8dB noise figure), 100 channels (50GHz 
spacing, assuming OFDM or Nyquist signaling), 0.2dB loss and dispersion (β”) of 20ps2/km. 

Table 1. Effective areas and differential mode delays of fibers used to calculate ISD 
variations of Fig. 5 

Fiber Designation Effective Area 
of LP01 (μm2) 

Index Profile Differential Mode Delay 

DMD LP02-LP01 
(ps/km) 

DMD LP11-LP01 
(ps/km) 

DMD LP21-LP01 
(ps/km) 

Green* 11,000 Step 74 46 89 
Red 2,000 Graded 346 237 444 
Blue 63 Graded −92 37 10 
Black 88 Step N/A N/A N/A 

*Fiber not feasible due to high bending losses. 

Figure 5 (right) illustrates the performance of each fiber type as a function of system 
length, plotting the total capacity instead of the information spectral density per mode using 
Eqs. (6) and (8). Whereas the actual performance is dependent on the optical SNR, the 
difference in ISD between fiber types appears to be largely independent of the system length 
for all practical scenarios, only noticeably varying for transmission distances around 
20,000km in this example. This may be understood by inspecting Eq. (9), where we may 
observe that the penalty arising from inter-mode nonlinear effects contains no length 
dependence (all length dependent terms such as aM appear as ratios). Of course, the high 
signal to noise ratio approximation breaks down for the longest transmission distances, as 
illustrated by the slight convergence of the curves in Fig. 5 (right) beyond 10,000km. We may 
thus conclude that in the limit of a typical optical signal to noise ratio, the relative 
performance of different fiber designs depends only on the fiber design itself and on the 
WDM bandwidth. We may thus optimize a fiber design using the analytical method described 
here considering only a typical transmission system. A typical design choice is considered in 
Fig. 6, where we plot the total ISD, at the optimum power spectral density, for a system using 
a trench assisted graded index FMF of constant core diameter. To obtain the plot, the 
refractive index curvature and magnitude were varied and we plot the results for values which 
realized four mode fibers as a function of their maximum DGD (difference between fastest 
and slowest modes).The capacity clearly reduces monotonically with decreasing DMD 
favoring large DMD values for optimum nonlinear performance. Since small DMDs are 
preferred to minimize digital signal processing overheads, the ability to calculate the capacity 
and optimize the compromise is paramount. 
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Fig. 6. Predicted maximum total information spectral density (right axis) and information 
spectral density per mode (left axis) for trench assisted fiber designs with a core radius of 10.4 
µm as index curvature is varied resulting in differences in DMD, plotted as a function of 
resultant DMD between LP01 and LP21 for positive (red filled circles) and negative values 
(blue open circles). Inset shows a similar fiber with a core radius of 30 µm (filled blue 
circles). Solid red line shows a logarithmic fit over points falling within 0.1 and 8 ns/km DMD 
as a guide to the eye. Both plots are for a 3,200km system with 80km amplifier spacing (4.8dB 
noise figure), 100 channels (50GHz spacing), 0.2dB loss and dispersion (β”) of 20ps2/km. 

The inset to Fig. 6 shows a different fiber design, with an increased core diameter, again 
with the refractive index curvature varied. As expected the overall ISD scales with the 
increased core area. Our results suggest that effective area dominates over the effect of 
reduced differential mode delay, although effects such as bend loss and mode dependent loss 
have been neglected in this preliminary study. This direct dependence of effective area is 
illustrated in Fig. 7, which shows the variation in predicted ISD for various step-index fibers 
as the core radius and refractive index are simultaneously varied such that four LP modes are 
supported for each fiber. 

Combining analytical result of the potential ISD predicted by the approach of this paper 
with calculations of digital signal processing complexity [40] should enable fibers to be 
designed to which optimize the tradeoff between signal processing complexity (proportional 
to DGD) and nonlinearity without the need for extensive numerical simulations. Since our 
preliminary results suggest that the system reach, amplifier noise figure etc. do not influence 
the relative performance of different fiber designs, such an optimization should be possible 
without detailed knowledge of the precise system configuration. 
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Fig. 7. Predicted information spectral density per mode for step index fiber designs supporting 
four LP modes, plotted as a function of resultant LP01 effective area. System parameters 
correspond to a 3,200km system with 80km amplifier spacing (4.8dB noise figure), 100 
channels (50GHz spacing), 0.2dB loss and dispersion (β”) of 20ps2/km. 

5. Conclusions 

In this paper we have proposed closed form expressions to calculate the nonlinear information 
spectral density of a multi-mode fiber system. We have shown that the approach accurately 
predicts experimental measurements. These experimental results suggest that for signal 
bandwidths above 2.5 THz inter-mode FWM is likely to induce an increase in nonlinear noise 
of around 3dB and a corresponding reduction in overall fiber information spectral density of a 
few b/s/Hz (around 10%). We have presented a selection of results which show that the 
maximum potential ISD decreases with decreasing DMD and that for practical cases the 
decrease in ISD does not depend on the system design. 
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