
Enclosing the Behavior of a Hybrid System up to
and Beyond a Zeno Point

Michal Konečný∗, Walid Taha†‡, Jan Duracz†, Adam Duracz† and Aaron Ames§
∗School of Engineering and Applied Science, Aston University, Birmingham, UK, Email: M.Konecny@aston.ac.uk
†Halmstad University, Halmstad, Sweden, Email: Walid.Taha@hh.se, Jan.Duracz@hh.se, Adam.Duracz@hh.se

‡Computer Science Department, Rice University, Texas, USA
§Department of Electrical & Computer Engineering, Texas A&M University, USA, Email: aames@tamu.edu

Abstract—Even simple hybrid systems like the classic bouncing
ball can exhibit Zeno behaviors. The existence of this type of
behavior has so far forced simulators to either ignore some events
or risk looping indefinitely. This in turn forces modelers to either
insert ad hoc restrictions to circumvent Zeno behavior or to
abandon hybrid modeling. To address this problem, we take a
fresh look at event detection and localization. A key insight that
emerges from this investigation is that an enclosure for a given
time interval can be valid independently of the occurrence of a
given event. Such an event can then even occur an unbounded
number of times, thus making it possible to handle certain types
of Zeno behavior.

I. Introduction

Simulation is widely used to model and analyze the design
of complex systems that comprise both physical and digital
components. Such Cyber-Physical Systems include a wide
range of novel products like active prosthetics, active driver as-
sistance systems, and elderly assistance robots. Unfortunately,
simulation tools can exhibit a variety of failure modes that
limit the validity and utility of the results they produce. Four
main sources of such difficulties can be identified:

1) Number representation and implementation of arith-
metic [1]. Real numbers are infinite values, and our
machines can only compute using finite observations
about them. Even when a lazy representation is used [2],
it does not change the fact that equality or comparison
are only semi-decidable.

2) Function representation and construction [3]. A continu-
ous system is often modeled using differential equations,
and simulation means finding a function that solves these
equations. When the differential equations are linear, the
solutions have standard, closed-form representations. This
is not the case, in general, for non-linear differential equa-
tions, which arise naturally in a wide range of domains,
especially in three-dimensional space. It is useful to note
that this difficulty can be seen as a strict generalization
of the first one.

3) Event detection and localization [4]. Event detection is
also only semi-decidable, and localization is, in general,
not computable.

4) Zeno behavior [5], [6], [4], [7]. This difficulty arises as a
result of the interaction between continuous and discrete
components. It is a problem both for formalizing the
semantics of hybrid systems and, as we will review next,
for simulation tools.

Of these four difficulties, Zeno behavior may have received
the least attention. It was first studied in the context of hybrid

systems over a decade ago [6], where it was observed to be an
interesting pathology of hybrid systems. This seemingly singu-
lar behavior turns out to be an essential point of divergence
between traditional dynamical systems and hybrid systems—
its existence can result in simulators producing incorrect solu-
tions and/or entering infinite loops. As such, it is an essential
consideration in determining whether the behavior of a hybrid
systems simulator is acceptable.

This phenomenon arises naturally when modeling physical
systems. It can occur, for example, in rigid body dynamics
with impact constraints (such as those modeling bipedal robots
with mechanical knee stops [8]). This can be illustrated with a
simple bouncing ball modeled as follows: the position, velocity
and acceleration of the ball are denoted as functions of t by x(t)
and x′(t) and x′′(t), respectively. Fix the initial condition to be
x(0) = 10 and x′(0) = 0, and let x′′(t) = −10 as long as x(t) ≥ 0
to model the effect of gravity. If x(t−) = 0 and x′(t−) ≤ 0
then let x′(t+) = −x′(t−)/2, which models an impact with the
ground where half of the speed is lost with every bounce. A
simple calculation shows an interesting characteristic of this
system: the time between each successive impact of the ball
forms a convergent geometric series. The time which this series
converges to is the Zeno time, and the dynamics governing the
system at this time is termed Zeno point [9], [10].

A. Problem

Simulation tools do not fare well when we try to use them
to simulate the bouncing ball model presented above. For
example, we consider Simulink (v7.9) [11], SystemModeler
(v3.0.0) [12], OpenModelica (v1.9.0 beta 4) [13], Charon
(v1.0) [14], and the FRP [15] implementation Yampa (v0.9.3)
[16]. With Simulink, it is not clear how to express the equality
condition directly. For the rest of the tools, none detect the
condition x(t) = 0 that triggers the bounce. For most of the
tools, this means that the ball falls through the floor. In other
words, a behavior that is not admitted by the model is produced
by the simulator. SystemModeler is the only tool that gives
a warning to the user that the model tests equality on real
numbers and reports that it considers this problematic. Running
this example aborts with an error.

The problem can be made a bit easier for most tools by
replacing the x = 0 test by x ≤ 0. This helps the tools hide the
fact that they fail to detect some events. In OpenModelica, the
ball still falls through the floor. Yampa, and Charon produces
results past the Zeno point, because it does not attempt to
detect all event occurrences. SystemModeler (and, on one
formulation, Simulink) become increasingly slower as they

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78890358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


get closer to the Zeno point, which suggests that they are
attempting to correctly handle events when they are expressed
as inequalities. Thus, even though they get stuck indefinitely,
they are arguably better than the other tools because they at
least try to detect all events expressed as inequalities. Simulink
can exhibit another behavior when a slightly different model
is used. It employs some heuristics [4] to try to deal with
Zeno behavior by giving up after a preset number of events
has occurred and if the changes between events are within a
preset threshold. Of course, the use of such heuristics does not
come with any guarantees about resulting behavior.

Can we go past a Zeno point and produce a correct result?

B. Related Work

There has been a concerted effort to detect and handle Zeno
behavior a priori through analytic methods, with the end result
being conditions on the existence of Zeno behavior [17], [9],
[18]. In addition, with the understanding that the solutions
should be extendable beyond the Zeno point to allow for valid
post-Zeno behavior, a method for completing hybrid systems
was purposed in the context of mechanical systems undergoing
impacts [5], [19]. But the correctness of these methods relies
on manual (human) analysis of individual models rather than
a mechanized simulation method.

Most hybrid system verification tools do not handle Zeno
systems. Many tools such as KeYMaera [20], [21] and Hyd-
logic [22], [23] assume that the modeled system is free of
Zeno behavior. Others such as the reachability analysis tool
Flow* [24] require that an explicit upper bound is provided on
the number of transitions taken into account, effectively exclud-
ing Zeno systems. One reachability analysis tool, SpaceEx [25],
computes an enclosure of reachable states using the LeGuernic-
Girard (LGG) algorithm [26]. This computation terminates
on some Zeno systems, but communications with the authors
indicate that it is not clear whether or not these enclosures are
valid past the Zeno point.

Formulations that are closer to traditional programming seman-
tics, and for which software implementations exist, include the
denotational semantics for Functional Reactive Programming
(FRP) [15] and the operational semantics given to HyVisual
[27]. The semantics of FRP takes an approach that is closely
representative of that used in traditional numerical methods,
namely, discretization of time into samples with non-zero time
steps in between. In this approach, the fundamental correctness
property is that the computed solution converges to the ideal
solution when, in essence, the sampling rate goes to infinity.
This means that, by increasing the sampling rate, one can get
arbitrarily close to the idealized answer. However, no bound
on the distance from the idealized answer is provided. As a
result, the user has to reason independently to determine how
close their simulation is to the mathematical solution of the
problem. While the semantics of HyVisual is described in a
more operational manner, it is close in spirit to the semantics
of FRP. In addition, HyVisual is an open framework for
expressing actors and is not intended as a closed core language
for simulating hybrid systems. For example, defining the
processes for event detection and handling is something that
actor definitions are expected to provide. As languages, neither
FRP nor HyVisual provide any special support for handling
Zeno behavior. On basic examples, both produce behavior

t0 t

(a) Enclosing
continuous
behaviors

ti ti+1

(b) Event detection
and handling

t0 t

(c) Enclosing sequences of events

Fig. 1: Basic simulator functions. This paper focuses on (b)
and (c).

similar to what most of the tools described above produce.
Implementations of both systems use standard floating-point
representations for numbers.

Finally, there are methods based on Moreau’s sweeping process
[28] for simulating mechanical systems with impacts, that do
handle some Zeno systems (see for example [29]). However,
we are not aware of methods for computing enclosures in this
domain.

C. Contributions

A simulator that can handle Zeno behaviors can be seen
as consisting of three basic simulator functions: enclosing
continuous behaviors (Figure 1a), event detection and handling
(Figure 1b), and enclosing sequences of events (Figure 1c).
The proposed method is independent of the first part. So, we
assume that an enclosure-based ODE IVP solver (cf. [30],
[31], [32]) is provided to compute continuous parts of system
behavior (Figure 1a).

After introducing a formal notion of hybrid systems and
their evolution (Section II), we present a semantics for event
detection and localization (Section III). This semantics is
algorithmic, and can therefore be used directly for simulation.
Focusing our attention on enclosures suggests an elegant way
for dealing with events (Definition III.8). It also suggests a
natural improvement that allows us to both ensure soundness
and avoid having to detect some inconsequential events. This
enables enclosing Zeno behaviors. We show that this seman-
tics, when defined, produces enclosures that provide upper
and lower bounds on functions that satisfy the model being
simulated (Theorem III.9).

There are two distinct challenges in simulating Zeno systems.
The first challenge is to compute any enclosure past the Zeno
point. This cannot be done (in a finite number of steps) by an
algorithm that attempts to explicitly handle every event. The
second challenge is to compute a tight enclosure. The proposed
algorithm deals with the first challenge; the second challenge
is addressed by refining the hybrid system models to ensure
that they contain enough information to produce a tight enclo-
sure. This is achieved by introducing additional semantically
redundant constraints to the model. Figure 2 illustrates how the
new method overcomes these two challenges on two classic
examples of hybrid systems.

ODE IVP solvers can choose different representations for
enclosures. The event handling algorithm presented in the
paper places a minimal set of requirements on the enclosures
produced by the ODE IVP solver. Similarly, different solver



(a) (b)

(c) (d)

Fig. 2: Enclosures for systems with Zeno behavior. Figures (a)
and (c) show the results for the bouncing ball and water tank
systems of Lygeros [33, Figures 3.1 and 3.7]. However, we
make these models more challenging to simulate by replacing
some inequalities with equalities (such as the bouncing condi-
tions). Figures (b) and (d) show the results for the examples
when additional (redundant) constraints are added to achieve
more precise enclosures.

strategies can be used to compose the basic simulator functions.
The main task of such a strategy is to partition time into steps
and apply the basic simulator functions over the segments.
The strategy used to produce Figure 2 is adaptive, refining the
partition nearer events, leading to an accurate event handling.

II. Hybrid Enclosures

This section defines a class of hybrid systems, their evolutions
and enclosures of all potential evolutions from an interval
initial state. Our hybrid system notation broadly follows [9],
[18]. We first introduce notation related to intervals and interval
functions.

Let I denote the set of closed real intervals. We use the notation
A for the left endpoint and A for the right endpoint of A ∈ I,
and then write A = [A, A]. We use boldface letters to denote
vectors, e.g. A ∈ Ik. We identify such vectors with the Cartesian
product of the component intervals, called boxes. Thus we also
have A ⊆ Rk. Let Hull {Ai}i∈I be the smallest box containing
all Ai.

To represent enclosures of hybrid system trajectories, we will
use interval functions, i. e. functions from time to vectors
of intervals, denoted X,Y: T → Ik. The primary source of
interval functions are the enclosures produced by the ODE
IVP solver that parametrizes our semantics, as described in
Section I-C. These enclosures are sometimes further combined
using Hull {Yi}i∈I — the box hull taken pointwise over the
shared domain of the functions Yi.

Definition II.1. A hybrid system is a tuple

H =
(
Q, E, σ, τ, {Dq}q∈Q , { f q}q∈Q , {Ce}e∈E , {re}e∈E

)
consisting of:

• Q — a finite set of modes q
• E — a finite set of event types e
• σ(e), τ(e) ∈ Q — the source and target of event e,

respectively
• Dq ⊆ R

n — the domain of mode q
• f q: Dq → R

n — the vector field of mode q
• Ce ⊆ R

n — the guard of event e
• re: Rn → Rn — the reset map of event e.

In practice we use encodings of hybrid systems in which the
vector fields f q are given as expressions understood by the
chosen ODE solver and the sets Dq and Ce are given as
supports of predicates in a language that allows us to compute
approximate intersections of interval vectors with these sets.

Definition II.2. Let the hybrid system H be given as in
Definition II.1. An evolution ofH over time T ∈ I is a sequence

ζ = (T1, q1, x1), e1, (T2, q2, x2), e2, . . .

either infinite or ending with (Tk, qk, xk) for some k ∈ N, such
that:

• T =
⋃

i Ti with Ti = Ti+1 for all permissible i. We
denote ti−1 = Ti.

• For each i, xi : Ti → R
n satisfies x′i = f qi

(xi) and
f qi

(xi) ∈ Dqi on the interior of Ti.
• qi = σ(ei), qi+1 = τ(ei) for each event occurrence ei.
• xi(ti) ∈ Cei and xi+1(ti) = rei (xi(ti)).

Definition II.3. A state of hybrid systemH is a pair s ∈ Q×Rn.

Definition II.4 (Evolution trajectory). For an evolution ζ over
T , using notation as in Definition II.2, the trajectory of ζ is
defined as follows:

traj(ζ)(t) =
{
xi(t)

∣∣∣ for all i such that t ∈ Ti
}

Definition II.5. An interval state of H is a pair S ∈ Q × In.

Definition II.6. A hybrid IVP is a tuple (H ,T, S ) comprising
H , a hybrid system, T ∈ I and an interval state S = (qinit, A).

Its solution is an evolution ζs on T with q1 = qinit, x1(T ) ∈ A.

In this paper we are concerned with computing an enclosure
of all solutions of a hybrid IVP in the following sense:

Definition II.7. An enclosure of a solution ζs over T of a
hybrid IVP (H ,T, S ) with S = (qinit, A) is an interval function
X: T → In with traj(ζs)(t) ⊆ X(t) for all t ∈ T.

III. Lazy Event Detection and Handling

In this section we begin by defining a basic operation for the
detection of individual events, an important sub-task of event
processing (Subsection III-A). We then proceed to present the
core of our method, which is an algorithm for enclosing all
possible sequences of events in a fixed time interval T without
further localization (Subsection III-B). The details of the proof
are omitted for space reasons.

A. Detecting the Next Event

We define an algorithm detect-next-event which will provide
the main mechanism to gain information about potential event
sequences that could occur in the given time interval being



considered. It is invoked after having established the potential
occurrence of an event sequence v = e1 . . . e`, and with the
aim of determining what the next event e`+1 within T could
be. Its parameters do not explicitly include the sequence of
previously detected events. Instead, they include an interval
function Y that encloses any continuous evolution that follows
the event sequence v. Thus the enclosure Y is assumed to be
valid on a subset of T that starts some unspecified time t` ∈ T ,
and that ends either at the time of the next event or, if no
further event occurs, at T .

Definition III.1. For any Y: T → In, q ∈ Q, let

detect-next-event(H ,T, q,Y) ={
CertainlyOneOf(E′) if Y(T ) ∩ Dq = ∅

MaybeOneOf(E′) otherwise

where CertainlyOneOf and MaybeOneOf are symbolic con-
stants and E′ =

{
e ∈ E

∣∣∣ σ(e) = q, Range(Y) ∩Ce , ∅
}
.

The result of detect-next-event encodes some information
about the potential event e`+1, including distinguishing between
the three alternatives that are specified in the following propo-
sition.

Proposition III.2. Assume an evolution ζ of H on T with at
least ` events and an enclosure Y on T , with x`+1(t) ⊆ Y(t)
for all t ∈ T`+1, and let R = detect-next-event(H ,T, q`+1,Y).
Then

(a) R = CertainlyOneOf(E′) implies that ζ has at least ` + 1
events and e`+1 ∈ E′.

(b) R = MaybeOneOf(∅) implies that ζ has precisely ` events.

(c) R = MaybeOneOf(E′) implies that if ζ has at least ` + 1
events then e`+1 ∈ E′.

Establishing (a) ensures that the interval Y(T ) is irrelevant
for the solution enclosure at point T . Establishing (b) means
that one does not have to consider any further events. (c) is a
fallback “no information” result, except for restricting the type
of the potential event. These properties establish the safety of
step (2) in Definition III.7.

Since all the checks used to make the decision and compute
E′ are inclusion isotone, detect-next-event is also inclusion
isotone in the following sense:

Proposition III.3 (Inclusion Isotonicity of Event Detection).

(1) detect-next-event(H ,T, q,Y1) = CertainlyOneOf(E′1) and
Y1 ⊇ Y2 implies that detect-next-event(H ,T, q,Y2) =
CertainlyOneOf(E′2) for some E′2 ⊆ E′1.

(2) detect-next-event(H ,T, q,Y1) = MaybeOneOf(E′1) and
Y1 ⊇ Y2 implies that
detect-next-event(H ,T, q,Y2) returns some E′2 ⊆ E′1.

Intuitively, Proposition III.3 states that improving the knowl-
edge of the set of solutions can only preserve or improve
the knowledge of the set of event occurrences extracted by
detect-next-event. This property establishes the safety of step
(1) in Definition III.7.

B. Enclosing Sequences of Events

We define an algorithm enclose-events which, given a hybrid
IVP, identifies a set that includes all possible sequences of
events on T . This is an over-approximation, so it will often
include sequences strictly not possible. Nevertheless, we can
use it to build an algorithm to produce an enclosure of all
solutions of the hybrid IVP over T , as well as at time T
(Definition III.8).

An essential feature of enclose-events is that it does not
determine the timing of the events beyond knowing that they
happen in T . The lack of event localization only leads to a
loss of precision of magnitude comparable to the size of T .
Since we place no requirements on the strategy that determines
the time T , the strategy has the freedom to ensure that T
is systematically reduced until the precision of the outgoing
trajectory is acceptable.

To account for the general case where we cannot determine the
order of different types of events, we consider a set of event
sequences instead of just one sequence. The set of sequences
is prefix-closed. In other words, it is equivalent to a tree whose
branching is determined by possible “next events”. We use the
following notation for sequences:

Notation III.4. Let E∗ denote the set of finite sequences of
elements of E where the empty sequence is denoted ε and vw
denotes the concatenation of sequences v,w ∈ E∗.

Definition III.5 (Event tree). Let B denote the set of Boolean
values. An event tree with initial mode q is a tuple (V, µ) where
V ⊆ E∗ and µ :V → (T → In) × B assigns to each sequence
v ∈ V the following:

Y(v) — “a state enclosure following the events v”

MayBeLast(v) — whether Y(v) could apply up to time T

Let us set the following notation:

σ(ε) = q and σ(ev) = σ(e) for each e ∈ E, v ∈ E∗

τ(ε) = q and τ(ve) = τ(e) for each e ∈ E, v ∈ E∗

An event tree is called valid if for every vw ∈ V:
v ∈ V, i. e. V is prefix-closed

σ(w) = τ(v)

The following interpretation of a tree will be used to determine
a valid enclosure of the state variables at time T :

Definition III.6. The end-time states of an event tree (V, µ) is
the following set of interval states:

(V, µ)(T ) def
= M

{(
τ(v),Y(v)(T )

)
v ∈ V,MayBeLast(v)

}
where

M {(qi, Bi)}i∈I
def
=

{
(q, Bq) q ∈ {qi}i∈I , Bq = Hull {Bi qi = q}

}
In Definition III.8 we also extract an enclosure over the
whole of T . Note that over T we must drop the condition
MayBeLast(v) = true and thus lose even more information.

In what follows we assume that solve-ivp is any given enclo-
sure ODE IVP solver, such as [32]. In our experiments we
used a solver based on the interval Picard operator [34].

The essence of the algorithm that we will present for event
tree construction is in computing an enclosure for all behavior



x1

x2

(a) event detected (b) simplify (c) ∩ w. guards (d) reset (e) ∩ w. invariant (f) after event (g) time blur

t

t

(h) ∩ w. invariant

Fig. 3: An event is irrelevant when (h) is included in (b).

stemming from the occurrence of a particular event, starting
from a given enclosure. To understand how this is done, it is in-
structive to first focus on a case when there is only one type of
event and, therefore, no branching. The extension to the branch-
ing case does not involve any surprises. Figure 3 illustrates the
basic process of determining that an event is irrelevant for an
instance of the bouncing ball system. First, solve-ivp produces
an enclosure (a) that is valid on assumption of no events. Then
detect-next-event returns CertainlyOneOf({bounce}) for this
enclosure. An approximation of the range of the enclosure (b)
is intersected with the guard for the bounce event (c) and the
reset for the bounce event is applied (d). The resulting interval
vector is intersected with the domain invariant for the target
mode of the bounce event (e) yielding an initial condition for
the system’s evolution after the bounce in the target mode (f).
As the event could occur at any point in the time interval,
the range of the obtained enclosure (g) needs to be taken to
obtain a safe approximation for the post-event behavior. This
approximation is intersected with the domain invariant for the
current mode, resulting in a tighter enclosure (h) for V(bounce).
Establishing that one occurrence of an event is irrelevant to the
soundness of the enclosure means that whether an event occurs
zero or more times is also irrelevant to the soundness of the
enclosure. This basic fixed-point property is key to being able
to simulate Zeno behaviors.

Definition III.7 (Event tree construction algorithm).
For an interval initial state S = (q, A) the event tree (VS , µS )
is constructed as the limit of the sequence of trees obtained
by iteratively applying the tree-enlarging operator add-layer
given below, starting with the initial tree (V0, µ0) with initial
mode q defined as follows:

V0 = {ε}

Y(ε) = solve-ivp(Fq,T, A)

MayBeLast(ε) = false (provisionally)

The tree-enlarging operator add-layer takes an event tree
(V, µ) and, for each sequence v ∈ V that is not a prefix of
another sequence in V, does the following, in order to try and
add further sequences to the tree and adjust MayBeLast(v):

(1) Check whether there is a prefix w of v such that τ(v) = τ(w)
and Y(v) ⊆ Y(w). If so, stop processing for this v.

(2) If step (1) failed, apply detect-next-event(H ,T, τ(v),Y(v))
and based on the computed set E′ and the inferred decision
(a)–(c) in the sense of Proposition III.2, then:

(a) For each e ∈ E′ compute (as illustrated in Figure 3

where (a) is Y(v)):
A = Hull

(
Dτ(e) ∩ re

(
Range(Y(v)) ∩ Ce

))
(steps (b)–(e) in Figure 3)

N = Range
(
solve-ivp(Fτ(e),T, A)

)
(steps (f)–(g) in Figure 3)

and if the sets A and N are non-empty, add ve to V
and set:

MayBeLast(ve) = false (provisionally)
Y(ve)(t) = Hull

(
N ∩ Dτ(e)

)
(step (h) in Figure 3)

(b) Set MayBeLast(v) to true.

(c) Do both (a) and (b) above.

Step (1) makes it possible for the algorithm to terminate even
when there may be an infinite number of events occurring
in the given time. Note that, at any point in the algorithm,
whenever we are considering a particular sequence of events,
we have already computed an enclosure for all possible pre-
fixes of that sequence. This step checks whether there is any
prefix of the current event sequence for which a) the next
mode is the same, and b) the enclosure for that prefix includes
the enclosure for the current sequence. Whenever this is the
case it means we have reached a fixed point in the analysis;
the events that extend that prefix to the current sequence can
occur zero or more times and it does not affect the validity of
the enclosure that was computed for the prefix. This insight
is what allows us to compute enclosures over a given interval
without the need to individually handle every event that occurs
in that interval, and is the key to our method for handling some
classes of Zeno systems.

Also note that in (VS , µS ) all enclosures Y(v) are constant
interval functions except the root enclosure Y(ε). Simplifying
(or over-approximating) to a constant enclosure is necessary
at some stage in order to be able to deal with initial time
uncertainty. Our choice of when to perform the simplification
is motivated by the need to be able to easily intersect the
enclosures with the relevant mode domain Dq and with the
guard Ce.

Definition III.8. For any hybrid IVP (H ,T, S ), let

enclose-events(H ,T, S ) def
=

(
(VS , µS )(T ),Y

)
where Y = Hull

{
Y(v)

∣∣∣ v ∈ VS
}
.

When implementing this function, we add another parameter
K and abort the algorithm when an event tree exceeds size K
to prevent non-termination.



Note that B = Hull
{
Bq

}
(where Bq are the boxes calculated

by enclose-events as specified in Definitions III.8 and III.6) is
often a proper sub-interval of Y(T ) because the definition of B
excludes the enclosure of any event sequence for which it was
established that at least one further event must occur before
time T . Getting a better enclosure at time T is significant
because this enclosure serves as the initial value for the
subsequent time interval.

Theorem III.9 (Main theorem). For any hybrid IVP (H ,T, S ),
the enclosure

(
{(q, Bq)},Y

)
computed by enclose-events will

enclose every solution ζs of (H ,T, S ) in the sense that
∀t ∈ T. traj(ζs)(t) ⊆ Y(t) and traj(ζs)(T ) ⊆ Hull{Bq}.

Thus our semantics is sound in the sense that the enclosures
contain trajectories that start in the given initial interval state.

IV. Conclusions

This paper showed how to use enclosures to simulate hybrid
systems in such a way that certain types of Zeno systems can
be accommodated. In contrast to previous proposals for dealing
with Zeno behavior, the new method avoids the need for
extending individual models specifically to enable a transition
to a post-Zeno state. The method does require refining the
model by adding additional constraints, but only to improve
the quality of enclosures.

In future work, we plan a more detailed analysis of the perfor-
mance characteristics of the implementation when simulating
three dimensional rigid-body dynamics problems. We are in-
terested in understanding the design space for solver strategies
and the performance impacts of the various parameters to the
semantics.

Acknowledgements

This work was supported by the US National Science Founda-
tion, awards NSF-CPS-1136099/1136104, the Swedish Knowl-
edge Foundation (KK), The Center for Research on Embedded
Systems (CERES), and EPSRC grant number EP/C01037X/1.

References
[1] E. Darulova and V. Kuncak, “Trustworthy numerical computation in

scala,” in OOPSLA, C. V. Lopes and K. Fisher, Eds. ACM, 2011.
[2] M. H. Escardó, “PCF extended with real numbers,” Theor. Comput. Sci.,

vol. 162, no. 1, pp. 79–115, 1996.
[3] F. E. Cellier and E. Kofman, Continuous system simulation. Springer-

Verlag, 2006.
[4] F. Zhang, M. Yeddanapudi, and P. Mosterman, “Zero-crossing location

and detection algorithms for hybrid system simulation,” IFAC World
Congress, 2008.

[5] A. D. Ames, H. Zheng, R. D. Gregg, and S. Sastry, “Is there life
after Zeno? Taking executions past the breaking (Zeno) point,” in 25th
American Control Conference, Minneapolis, MN, 2006.

[6] K. H. Johansson, J. Lygeros, S. Sastry, and M. Egerstedt, “Simulation
of Zeno hybrid automata,” in Proceedings of the 38th IEEE Conference
on Decision and Control, Phoenix, AZ, 1999.

[7] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry, “Zeno hybrid
systems,” Int. J. Robust and Nonlinear Control, vol. 11, no. 2, 2001.

[8] A. D. Ames, “Characterizing knee-bounce in bipedal robotic walking: A
Zeno behavior approach,” in Hybrid Systems: Computation and Control,
Chicago, IL, 2011.

[9] A. Lamperski and A. D. Ames, “On the existence of Zeno behavior in
hybrid systems with non-isolated Zeno equilibra,” in IEEE Conference
on Decision and Control, 2008.

[10] Y. Or and A. D. Ames, “Stability of Zeno equilibria in Lagrangian
hybrid systems,” in IEEE Conference on Decision and Control, 2008.

[11] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Sangiovanni-Vincentelli,
“Languages and tools for hybrid systems design,” Foundations and
Trends in Design Automation, vol. 1, no. 1/2, 2006.

[12] Wolfram, “SystemModeler,” http://wolfram.com/system-modeler, 2012.
[13] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom, L. Saldamli,

D. Broman, and A. Sandholm, “OpenModelica - a free open-source envi-
ronment for system modeling, simulation, and teaching,” in Proceedings
of the 2006 IEEE International Symposium on Intelligent Control, 2006.

[14] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specification
of hybrid systems in CHARON,” in Hybrid Systems: Computation and
Control, ser. Lecture Notes in Computer Science. 2000, vol. 1790.

[15] Z. Wan and P. Hudak, “Functional reactive programming from first
principles,” in the Symposium on Programming Language Design and
Implementation (PLDI ’00). ACM, 2000.

[16] H. Nilsson, A. Courtney, and J. Peterson, “Functional reactive pro-
gramming, continued,” in Haskell ’02: Proceedings of the 2002 ACM
SIGPLAN workshop on Haskell, 2002.

[17] A. D. Ames, A. Abate, and S. Sastry, “Sufficient conditions for the
existence of Zeno behavior in nonlinear hybrid systems via constant
approximations,” in IEEE Conference on Decision and Control, 2007.

[18] A. Lamperski and A. D. Ames, “Lyapunov theory for Zeno stability,”
IEEE Transactions on Automatic Control (To Appear), 2013. [Online].
Available: http://ames.tamu.edu/Lyapunov_Zeno.pdf

[19] H. Zheng, E. A. Lee, and A. D. Ames, “Beyond Zeno: Get on with it!”
in Hybrid Systems: Compuation and Control, 2006.

[20] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for
hybrid systems.” in IJCAR, ser. LNCS, A. Armando, P. Baumgartner,
and G. Dowek, Eds., vol. 5195. Springer, 2008, pp. 171–178.

[21] A. Platzer, “Differential dynamic logic for hybrid systems,” J. Autom.
Reasoning, vol. 41, no. 2, pp. 143–189, 2008.

[22] D. Ishii, K. Ueda, and H. Hosobe, “An interval-based sat modulo
ode solver for model checking nonlinear hybrid systems,” International
Journal on Software Tools for Technology Transfer, vol. 13, no. 5, 2011.

[23] D. Ishii, “Simulation and verification of hybrid systems based on inter-
val analysis and constraint programming,” Ph.D. dissertation, Waseda
University, 2010.

[24] X. Chen, E. Abrahám, and S. Sankaranarayanan, “Taylor model flow-
pipe construction for non-linear hybrid systems,” in Real-Time Systems
Symposium (RTSS), 2012 IEEE 33rd. IEEE, 2012, pp. 183–192.

[25] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proc. 23rd International Conference
on Computer Aided Verification (CAV). Springer, 2011.

[26] C. L. Guernic and A. Girard, “Reachability analysis of linear systems
using support functions,” Nonlinear Analysis: Hybrid Systems, vol. 4,
no. 2, pp. 250 – 262, 2010.

[27] E. A. Lee and H. Zheng, “Operational semantics of hybrid systems,”
in HSCC, ser. Lecture Notes in Computer Science, M. Morari and
L. Thiele, Eds., vol. 3414. Springer, 2005, pp. 25–53.

[28] J. Moreau, “Numerical aspects of the sweeping process,” Computer
Methods in Applied Mechanics and Engineering, vol. 177, no. 3–4, pp.
329 – 349, 1999.

[29] V. Acary, B. Brogliato, and D. Goeleven, “Higher order Moreau’s
sweeping process: Mathematical formulation and numerical simulation.”
Mathematical Programming, vol. 113, no. 1, pp. 133–217, 2008.

[30] K. Makino and M. Berz, “New applications of Taylor model methods,”
in Automatic Differentiation of Algorithms: From Simulation to Opti-
mization. Springer, 2002, ch. 43, pp. 359–364.

[31] N. Nedialkov and M. von Mohrenschildt, “Rigorous simulation of
hybrid dynamic systems with symbolic and interval methods,” in
American Control Conference 2002, 2002.

[32] A. Rauh, E. P. Hofer, and E. Auer, “ValEncIA-IVP: A comparison with
other initial value problem solvers,” Scientific Computing, Computer
Arithmetic and Validated Numerics, International Symposium on, vol. 0,
p. 36, 2006.

[33] J. Lygeros, “Lecture notes on hybrid systems,” in Notes for an ENSIETA
workshop, 2004.

[34] A. Edalat and D. Pattinson, “A domain-theoretic account of Picard’s
theorem,” LMS Journal of Computation and Mathematics, vol. 10, 2007.


