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Studying the transition from a linearly stable coherent laminar state to a highly 

disordered state of turbulence is conceptually and technically challenging and of 

great interest since all pipe and channel flows are of that type1,2. In optics, 

understanding how a system loses coherence, as spatial size or the strength of 

excitation increases, is a fundamental problem of practical importance3-5. Here we 

report our studies of a fibre laser that operates in both laminar and turbulent 

regimes. We show that the laminar phase is analogous to a one-dimensional 

coherent condensate and the onset of turbulence is due to the loss of spatial 

coherence. Our investigations suggest that the laminar-turbulent transition in the 

laser is due to condensate destruction by clustering dark and grey solitons. This 

finding could prove valuable for the design of coherent optical devices as well as 

systems operating far from thermodynamic equilibrium. 
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Nature does not allow us to increase the size of a system without eventually losing 

coherence. For example, even though a coherent laminar flow through a pipe is always 

linearly stable, increasing the pipe diameter or speed eventually makes the flow turbulent, 

which vastly increases drag1,2,6–9. One needs to identify the origins of the onset of 

turbulence to understand and control it. It is a formidable task for a linearly stable system, 

due to the lack of a linear instability analysis, which shows what destroys the laminar 

state and helps identify the patterns that appear instead2,6–9. 

In optical fibres with normal dispersion, a coherent monochromatic wave or 

spectrally narrow packets are linearly stable with respect to modulation instability10. In a 

laser cavity with normal dispersion, it is theoretically possible to overcome wave de-

phasing by nonlinear four-wave-mixing and achieve a classical wave condensation 

forming a coherent state11,12. A kinetic condensation of classical waves was recently 

observed in two-dimensional, optical Hamiltonian systems, making a link with the Bose–

Einstein condensation, including condensation of photons13,14. However, operational 

regimes in many fibre lasers correspond to very irregular light dynamics and a low degree 

of coherence. A quasi-CW fibre laser normally generates so many modes (up to 106), that 

fluctuations in their amplitudes and phases result in a stochastic radiation, which calls for 

description in terms of wave turbulence15–19. To establish conditions for the existence a 

coherent condensate and reveal mechanisms of coherence loss, it is critically important to 

comprehensively study the laminar-turbulent transition in fibre laser radiation, as is done 

in classical hydrodynamics experiments2. 

In our experiments, increasing the cavity length or the power of a fibre laser 

causes the output to pass from a coherent laminar state to a turbulent one. Having a 

laminar-turbulent transition in an optical system makes it possible to investigate 

fundamental questions of non-equilibrium operation in lasers: What are the mechanisms 
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of losing coherence in fibre lasers? Is the transition due to an increase in temporal or 

spatial complexity?  

The Methods section briefly describes the experimental set-up. Here we define 

“space” and “time” in our system to allow for meaningful comparison between fibre 

optics and hydrodynamics. The radiation intensity I is measured in a single point as a 

function of time. As light makes round trips in the resonator, the radiation was measured 

within a series of time windows separated by the round trip time τrt. The result was a 

function of a continuous variable within a window, denoted t, and a discrete variable, 

rtT N τ= × , where N is the number of round trips. The fastest process is the linear 

propagation with the speed of light c, so that t-dependence by the transform t-x/c 

represents the dependence on the spatial coordinate x along the resonator. The spectra of 

the radiation are obtained by performing a Fourier transform over t. Energy pumping, 

dissipation, dispersion and nonlinearity lead to a slow evolution of the spectra over many 

round trips T. In this way, the slow evolution coordinate T has the meaning of time, while 

the fast time t is equivalent to the longitudinal spatial coordinate x.  

To observe the laminar-turbulent transition, the laser power was changed. The 

laminar regime is realized at low power and the turbulent regime at a high pump power. 

There is a sharp transition in the properties of the laser radiation upon the increase of the 

power. The optical spectrum width Γ increases by almost twice after the power increases 

by only 1 percent (Fig. 1a). A sharp transition at the same power happens with the most 

probable intensity (Fig. 1b). Below the transition, the generation is quite stable and 

intensity fluctuations are small. The intensity probability density function (pdf) has a 

sharp narrow peak (Fig. 1b, inset) centred at the mean intensity, as it should for a 

coherent state. Just before the transition, the peak widens slightly, but the mean intensity 

remains most probable. At the transition, the most probable intensity falls by almost 
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twice, while the pdf changes form and develops a wide, approximately exponential tail 

that manifests as a significant probability of high-intensity fluctuations. The transition is 

also detected as a drop in the background level of the intensity autocorrelation function 

from a coherent-state level to a stochastic regime (Fig. 1c). Intensity time traces just 

before and after the transition are shown in Fig. S3.  

The transition corresponds to the loss of coherence in the system. The total 

number of generated modes, ( )2 /M Ln c= Γ× ~105, so the laminar state is fundamentally 

different from a single-frequency (single longitudinal mode) generation20,21. Here, n is the 

refractive index and L is the fibre length. Spectrum is only twice wider after the transition 

and yet  spatio-temporal dynamics of radiation are very different in laminar and turbulent 

regimes. Fig. 2 (a, b) shows rather small fluctuations before the transition, and recurring 

spatio-temporal patterns after the transition. We detected long-living propagating 

intensity minima both on a stable laminar background (Fig. 2a) and on a strongly 

fluctuating turbulent background (Fig. 2b). As the typical nonlinear length LNL = 1/(γI) ~ 

1 km for the transition power (γ is a nonlinear coefficient), these structures live ~100 

nonlinear lengths, so are coherent. The temporal width of the coherent structures is at the 

limit of our experimental resolution. 

To resolve the internal details of the coherent structures observed, we used 

numerical modelling based on the generalized, scalar, Nonlinear Schrödinger Equation 

(NSE). For more details see Supplementary Information10. While the NSE is comparable 

to the Navier-Stokes Equation, describing the fluid flow, in terms of universality, 

deceptive simplicity and sheer beauty, the former is much more amenable to numerical 

treatment. The NSE is commonly used to describe coherent structures, stochastic-driven 

processes in optical fibres and fibre lasers11,22–27. 
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For our fibre laser, modelling demonstrates the same laminar-turbulent transition 

at comparable levels of pump power. Moreover, the numerical simulations demonstrate 

that the laminar state is a coherent condensate, and the transition is condensate 

destruction. Indeed, a coherent condensate must support long acoustic waves satisfying 

the Bogoliubov dispersion relation, kω ∝ , in distinction from usual dispersive waves 

with 2kω ∝  without the condensate28. We found that the spatio-temporal spectrum I(k,ω) 

had maxima along straight lines in a laminar regime and along parabolic lines after the 

transition (Fig. S5). Numerical simulations reveal spatio-temporal coherent structures 

similar to those observed experimentally (Fig. 2c, 2d). Remarkably, their shape and phase 

shifts are well-described by the analytical form of dark and grey solitons (Fig. S6), which 

are analytical solutions of the one-dimensional NSE29.  

Modelling reveals the underlying mechanism of the laminar-turbulent transition in 

great detail and shows that the solitons are the key to the onset of turbulence. With an 

increase in the pump power or the cavity length, more and more solitons are generated, 

which leads to turbulence. Fig. 3 shows how the transition develops over the evolution 

coordinate T at a fixed power. The moment of transition is clearly seen by spectral 

widening in Fig. 3a and the breakdown of spatial coherence in Fig. 3b. Solitons 

proliferate and cluster, creating a deep minimum that breaks the condensate (Fig. 3c-e). 

We concluded that the laminar-turbulent transition, observed experimentally and 

modelled numerically, is via the appearance, proliferation and clustering of solitons. In a 

linearly unstable system, solitons may appear as an outcome of instability as, for instance, 

for capillary-wave turbulence7. 

Condensate destruction leads to creation of an intermittent state with a rather 

narrow spectrum, yet limited spatial coherence (along t). In contrast to the traditional 

(dynamic-system) view that turbulence arises from an increase in the temporal 



 

6 

complexity, the spatial breakdown of coherence is the leading process here, similar to a 

pipe flow2,9. Even when the asymptotic turbulent stage has not yet fully developed, the 

condensate has already broken into pieces. When the soliton density becomes high, and 

the condensate is filled with dips and voids, the state is hardly distinguishable from a 

dense mixture of coherent bright structures (such as bright solitons and breathers). Spatio-

temporal patterns expand and shrink (having a rhombic form in the t-T plane) with 

approximately the same velocity (the slope in x-t space) as propagation of solitons on 

them (Fig. 2, b and d). The patterns recur quasi-periodically and move as a whole against 

the background, which confirms their coherent nature (Fig. S8). The intensity correlation 

function over the evolution coordinate shows the statistical signature of the quasi-

periodical recurrence. 

Repeating simulations with the only difference being a small change in the initial 

noise, we found that the lifetimes of the condensate fluctuate strongly, i.e. laminar-

turbulent transition via soliton clustering is stochastic (compare to Ref. 2). The 

probability to survive falls exponentially as in radioactive decay (Fig. 4). This suggests 

that after some time, the probability of decay is constant in time and is independent of the 

excitation time.  

Flows are controlled by the Reynolds number, the ratio between nonlinear and 

linear terms in the Navier-Stokes equation. A similar ratio between nonlinearity and 

dispersion can be introduced and measured for a fibre laser, further developing the fluid-

laser analogy (see Supplementary Information).  

We observed the laminar-turbulent transition in the fibre laser radiation and 

identified the mechanism of such a transition, opening new possibilities for studying the 

fundamental problem of turbulence onset in optical devices. We discovered the critical 

role of coherent structures, dark and grey solitons, in destroying laser coherence, making 
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a link between solitons and turbulence: localized coherent structures break the long-range 

coherence. A useful analogy is thus found between laser and fluid flows. Both systems 

can lose spatial coherence via a transition that is of a probabilistic nature. We anticipate 

that our results will lead to better understanding of coherence break-up in lasers and 

development of new optical-engineering concepts and novel classes of lasers that operate 

in far-from-equilibrium regimes. 

 

Methods summary 

The fibre laser used in the experiments has a standard, all-fibre design with a cavity made 

specifically from a high normal-dispersion fibre (D=-44ps/nm/km, nonlinear coefficient 

γ=3 km–1 W–1) of 770 meters in length, placed between specially designed, all-fibre laser 

mirrors – fibre Bragg gratings. The mirrors have super-Gaussian spectral profiles of the 

sixth order, around 2 nm bandwidth, with dispersion variation of less than 10 ps per 

bandwidth. This is crucial for experimental realization of the coherent laminar state and 

the transition to the turbulent state (see Supplementary Information for details). Fibre 

mirrors were written directly in a fibre core using an on-site fibre Bragg gratings writing 

facility, following the refractive index longitudinal profile calculated numerically to 

obtain the desired spectral and dispersion response.  

Spatio-temporal properties of the laser radiation were analysed using an oscilloscope of 

36 GHz real-time bandwidth, comparable with optical bandwidth of the radiation. 

Numerical modelling was based on two complementary approaches: Analysis of 

longitudinal, resonator-mode evolution with round trips; and computation of field 

dynamics using generalized NSEs. See the Supplementary Information for details. 
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Figures and captions 

 

 

Figure 1 Laminar-turbulent transition in the fibre-laser experiment. a) The optical 

spectrum width (proportional to the number of excited modes) versus power. b) The most 

probable intensity versus power, and the full-intensity probability density functions 

before and after the transition (inset). The colour code attributes curves at the inset to 

points on the main graph. c) The background level of the intensity autocorrelation 

function (ACF) K(τ) = <I(t,T)×I(t+τ,T)> measured at large τ. Inset shows typical ACF 

before the transition. For a coherent state, K(τ)→1. For a completely stochastic radiation 

having Gaussian statistics, K(τ)→0.5.  
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Figure 2 Coherent structures in spatio-temporal dynamics in experimental and 

numerical simulation in laminar and turbulent regimes. Space-time diagram of the 

intensity I(t,T) for: a) laminar regime in experiment, b) turbulent regime in experiment, c) 

laminar regime in modelling, and d) turbulent regime in modelling. Evolution coordinate 

rtT N τ= ×  is shown in terms of round-trip number N. 
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Figure 3 Soliton clustering at laminar-turbulent transition (numeric modelling) at 

fixed power. a) Radiation spectrum I(λ) in the logarithmic scale versus evolution 

coordinate T. b) Radiation intensity I(t) versus T: A bunch of solitons creates deepening 

minimum moving with a negative speed along t (made into a circle; in other words, the 

points t=0 ns and t=2.5 ns are the same). At approximately T=8,800 round trips, this 

minimum is deep enough to break the condensate into two pieces, after which the total 

breaks down into many pieces. c–f) Radiation intensity I(t) at four different T: c) 

Condensate with rare isolated solitons, d) Beginning of soliton clustering, e) Condensate 

breakdown, f) Turbulence. The movie of the whole spectral and spatial evolution is 

shown in Video S1 in the supplementary information. Evolution coordinate rtT N τ= ×  is 

shown in terms of round-trip number N. 
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Figure 4 Probability density function for the condensate lifetime shows probabilistic 

nature of laminar-turbulent transition via soliton clustering. The straight line is an 

exponential approximation at large lifetimes. 


