
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol.8(2008), No.4, pp.315–335
c© 2008 Institute of Mathematics of the National Academy of Sciences of Belarus

AN ALTERNATING POTENTIAL-BASED APPROACH

TO THE CAUCHY PROBLEM FOR THE LAPLACE

EQUATION IN A PLANAR DOMAIN WITH A CUT

R.CHAPKO1 AND B.T. JOHANSSON2

Abstract — We consider a Cauchy problem for the Laplace equation in a bounded
region containing a cut, where the region is formed by removing a sufficiently smooth
arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct
the solution on the cut from the values of the solution and its normal derivative on the
boundary of the domain D. We propose an alternating iterative method which involves
solving direct mixed problems for the Laplace operator in the same region. These mixed
problems have either a Dirichlet or a Neumann boundary condition imposed on the
cut and are solved by a potential approach. Each of these mixed problems is reduced
to a system of integral equations of the first kind with logarithmic and hypersingular
kernels and at most a square root singularity in the densities at the endpoints of the cut.
The full discretization of the direct problems is realized by a trigonometric quadrature
method which has super-algebraic convergence. The numerical examples presented
illustrate the feasibility of the proposed method.
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1. Introduction

Models leading to elliptic partial differential equations to be solved outside open curves
occur frequently in engineering problems. For example, the elliptic operator can model
stationary heat conduction and the open curves can represent cuts, screens or wings in
physical bodies (see, for example, [10] and [16]). Moreover, part of the boundary of the
body might be inaccessible due to a hostile environment, but on the accessible part of the
boundary measurements of both solution and its normal derivative (the heat flux) can be
obtained leading to a so-called Cauchy problem. In this paper we investigate such a situation
for bounded planar domains containing a cut.

To formulate this Cauchy problem, we assume that D ⊂ R2 is a simply connected
bounded domain with boundary Γ2 ∈ Cp+2, p∈N, and let ν be the outward unit normal
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316 R.Chapko and B. T. Johansson

on Γ2. Furthermore, let Γ1 ∈ Cp+2 be a cut in D (see Fig. 1.1) with endpoints x∗
−1 and x∗

1,
and assume that Γ1 has orientation from x∗

−1 to x∗
1. By Γ−

1 and Γ+
1 we denote the left-hand

and right-hand sides of Γ1, respectively, and by υ the unit normal vector to Γ1 directed
towards Γ+

1 .

x∗
1 x∗

−1
Γ2

D Γ1

�

�

ν

υ

F i g. 1.1. A bounded domain D with a cut Γ1

Given the (bounded) sufficiently smooth continuous functions f1 and f2 on Γ2, we consider
the Cauchy problem of finding a function u ∈ C2(D\Γ1)

⋂

C1(D̄\Γ1) satisfying the Laplace
equation

∆u = 0 in D \ Γ1 (1.1)

and the boundary conditions

u = f1 and
∂u

∂ν
= f2 on Γ2. (1.2)

Uniqueness of a solution to the Cauchy problem (1.1), (1.2) is well established (see, for
example, [2] and [3]). We shall assume that data are chosen such that there exists a solution.
However, the solution does not depend continuously on the data, i.e., the problem is ill-posed
in the sense of Hadamard making it inaccessible by classical methods.

There exist various methods for solving Cauchy problems for elliptic equations and a
common approach is to use a Tikhonov regularization which often leads to a change of the
operator of the problem (see Chapter 4 in Lattès and Lions [18]). Another possibility is to
use iterative methods. Kozlov and Maz’ya [11] proposed an alternating iterative method for
solving Cauchy problems for formally self-adjoint elliptic equations in domains without cuts.
One of the advantages of this method is that it preserves the original equation and that the
regularizing character is achieved by an appropriate change in the boundary conditions. The
alternating method has successfully been applied to several engineering problems (see, for
example, [19]).

The aim of this paper is to extend the alternating method to the Cauchy problem for the
Laplace operator in domains containing cuts. In Section 2, we introduce some further nota-
tion and then formulate the alternating iterative method (see Section 2.1). At each iteration
step, direct mixed problems with either Dirichlet or Neumann condition imposed on the cut
are solved, and a sequence of approximations to the solution of (1.1), (1.2) is obtained. A
proof of convergence in the case of exact data is given in Section 2.2. In the case of noisy data
a discrepancy stopping criterion can be used. In Section 3, we undertake a full theoretical
and numerical investigation of these direct problems. We prove that each problem is well-
posed (see Theorem 3.2 and Theorem 3.8), using a potential approach reducing each direct
problem to a system of integral equations of the first kind. Furthermore, the full numerical
discretisation of the direct problems is realised by a trigonometric quadrature method which
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An alternating potential-based approach for a Cauchy problem 317

has a super-algebraic convergence (see Theorem 3.4 and Theorem 3.8). In Section 4, numer-
ical investigations are presented showing that the proposed numerical discretisation gives
accurate approximations for the mixed problems with few collocation points. Also included
in Section 4 are numerical examples for the proposed alternating method for solving (1.1),
(1.2). Accurate reconstructions are obtained not only for the solution itself but also for the
normal derivative on Γ1.

2. An alternating method for the Cauchy problem (1.1), (1.2)

Throughout this paper we only work with classical solutions to the different boundary value
problems that occur. However, in order to prove convergence of the iterative procedure for
the Cauchy problem (1.1), (1.2), it is more straightforward to work with Sobolev norms.
Locally, we prove that there is convergence to the solution u and all of its derivatives,
hence, using the Sobolev imbedding theorem, convergence in the classical norms can be
obtained. To settle the notation, let Ω be a bounded domain in R2. We denote, as usual,
by Ck(Ω), where k is a nonnegative integer, the space which consists of all functions having
continuous derivatives up to order k on Ω and this is a Banach space under the norm
‖f‖Ck(Ω) = sup

06|ℓ|6k,x∈Ω

|∂ℓf(x)|. Similar spaces can be introduced on the boundary of Ω. The

space L2(Ω) is the standard L2-space, and, as usual, H1(Ω) denotes the Sobolev space of
real-valued functions in Ω with finite norm

‖u‖H1(Ω) =

(
∫

Ω

u2 dx +

∫

Ω

|∇u|2 dx

)1/2

.

2.1. The alternating procedure. To formulate the alternating iterative procedure for
solving (1.1), (1.2), we introduce the following mixed boundary value problem:

∆u = 0 in D \ Γ1, (2.1)

∂u

∂υ

±

= h± on Γ1, u = f1 on Γ2, (2.2)

and also the following one
∆u = 0 in D \ Γ1, (2.3)

u± = g± on Γ1,
∂u

∂ν
= f2 on Γ2. (2.4)

Here, we use the notation

∂u

∂υ

±

(x) = lim
h→+0

υ(x) · grad u(x ± hυ(x))

and similar
u±(x) = lim

h→+0
u(x ± hυ(x))

for x ∈ Γ1. Assume that f1 and f2 are the same as in (1.2). The alternating iterative
procedure for constructing the solution to (1.1), (1.2) runs as follows:

• the first approximation u0 to the solution u of (1.1), (1.2) is obtained by solving (2.1),
(2.2) with h± = h±

0 , where h−
0 and h+

0 are arbitrary initial guesses;
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318 R.Chapko and B. T. Johansson

• having constructed u2k, we find u2k+1 by solving problem (2.3), (2.4) with g± = u±
2k on

Γ1;

• then we find the element u2k+2 by solving problem (2.1), (2.2) with h± = ∂u2k+1

∂υ

±
on

Γ1.

In the next section we prove the following,

Theorem 2.1. Let u be the solution to (1.1), (1.2) and let uk be the k-th approximate

solution in the alternating procedure. Then

lim
k→∞

‖u − uk‖H1(D\Γ1) = 0 (2.5)

for any sufficiently smooth initial data elements h±
0 which start the procedure.

Using local estimates for harmonic functions, we obtain

Corollary 2.1. Let the assumptions of Theorem 2.1 be fulfilled and let D′ be a domain

such that D′ ⊂ (D \ Γ1). Then

lim
k→∞

‖u − uk‖Hl(D′) = 0 (2.6)

for l = 1, 2, . . . , and any sufficiently smooth initial data elements h±
0 .

In the case of noisy data, a discrepancy principle can be applied and such a stopping rule
was introduced in [1, Section 7.5]. To present it assume, for simplicity, that f1 = 0 in (1.2).
Let uf2

be the solution to (2.3), (2.4) with g± = 0, and let ufδ
2

be the solution to (2.3), (2.4)

with f2 = f δ
2 and g± = 0. Let uδ

k be constructed from the alternating method given above,
with f1 = 0 and f2 = f δ

2 . If
‖uf2

− ufδ
2
‖H1(D\Γ1) 6 δ

for some δ > 0, the iterations should be terminated for the first k = k(δ) with

∫

D\Γ1

|∇(uδ
2k+2 − uδ

2k)|2 dx 6 b2δ2,

where b > 1 is a given constant.

2.2. Proof of Theorem 2.1. If we start this alternating procedure with h±
0 = ∂u

∂υ

±
on

Γ1, where u is the (smooth) solution to (1.1), (1.2), one can check that uk = u, thus it is
enough to prove the theorem when f1 and f2 are both zero. Let u0 be the solution to (2.1),
(2.2), with given (smooth) functions h± and f1 = 0. Let then u1 be the solution to (2.3),
(2.4) with f2 = 0 and u±

1 = u±
0 on Γ1. We introduce the operator B by

opd(Bh±)(x) =
∂u±

1

∂υ
(x) for x ∈ Γ1.

In the next section, we shall prove that both the problems (2.1), (2.2) and (2.3), (2.4) are
well-posed. Moreover, the gradient of u is continuous except near the endpoints of the cut Γ1

where we have the estimate An alternating potential based approach to the Cauchy problem
for the Laplace equation in a planar domain with a cut

|∇u(x)| 6 C|x − x∗
j |α (2.7)
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for j = −1, 1, and α > −1/2. Therefore, the operator B is well-defined (in a suitable Sobolev
trace space), and, clearly, B is a linear operator. We introduce the following inner product

(f±, g±) =

∫

D\Γ1

∇u · ∇v dx,

where u solves (2.1), (2.2) with h± = f± and f1 = 0, and similarly v solves (2.1), (2.2) with
h± = g± and f1 = 0; the corresponding norm is denoted by ‖ · ‖.

We note that we have the Green formula
∫

D\Γ1

∇uk · ∇ul dx =

∫

Γ2

uk
∂ul

∂ν
ds +

∫

Γ1

u+
k

∂ul

∂υ

+

ds −
∫

Γ1

u−
k

∂ul

∂υ

−

ds, (2.8)

where k, l = 0, 1, 2. This follows by an approximation argument using the regularity of the
solution and its gradient and by enclosing the cut Γ1 with a closed curve which shrinks to
the cut (see, for example, [6] and [22]).

It is possible to prove that the operator B is injective, self-adjoint, positive, non-expansive
and unity is not an eigenvalue of B. We show that the kernel of B consists of zero only.
Assume that Bh± = 0, i.e., ∂u1/∂υ± are zero on Γ1. The above Green formula implies

∫

D\Γ1

∇u1 · ∇w dx = 0

for every sufficiently smooth w ∈ H1(D \ Γ1), hence u1 is zero in D \ Γ1. In particular,
u±

1 = 0 on Γ1 which implies that also u±
0 = 0 on Γ1. Thus, u0 solves the Laplace equation in

D \ Γ1 with a homogeneous Dirichlet boundary condition. However, the Dirichlet problem
for the Laplace equation in D \ Γ1 has a unique solution, therefore u = 0 in D \ Γ1, i.e.,
h± = 0. Thus, the kernel of B consists of zero only.

Let us show that B is non-expansive, the other properties of B can be deduced in a
similar way using the above Green formula (see [12]). First, since uk|Γ2

= 0 or ∂uk

∂ν
|Γ2

= 0,
for k = 0, 1, 2, we have

∫

D\Γ1

∇uk · ∇uk dx =

∫

Γ1

u+
k

∂uk

∂υ

+

ds −
∫

Γ1

u−
k

∂uk

∂υ

−

ds, k = 0, 1, 2. (2.9)

In the same way, since u2 = 0 on Γ2,
∫

D\Γ1

∇u1 · ∇u2 dx =

∫

Γ1

u+
2

∂u1

∂υ

+

ds −
∫

Γ1

u−
2

∂u1

∂υ

−

ds. (2.10)

Using the fact that ∂u1

∂υ

±
= ∂u2

∂υ

±
on Γ1 in combination with (2.9), we obtain from (2.10)

∫

D\Γ1

∇u1 · ∇u2 dx =

∫

D\Γ1

∇u2 · ∇u2 dx.

This implies
∫

D\Γ1

∇(u2 − u1) · ∇(u2 − u1) dx =

∫

D\Γ1

∇u1 · ∇u1 dx −
∫

D\Γ1

∇u2 · ∇u2 dx. (2.11)
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In a similar way
∫

D\Γ1

∇(u1 − u0) · ∇(u1 − u0) dx =

∫

D\Γ1

∇u0 · ∇u0 dx −
∫

D\Γ1

∇u1 · ∇u1 dx. (2.12)

Combining (2.11) and (2.12) we have

(Bh±, Bh±) 6 ‖h±‖2,

thus B is non-expansive.
We can now complete the proof of Theorem 2.1. One can check that

∫

D\Γ1

∇u2k · ∇u2k dx = (Bkh±
0 , Bkh±

0 ). (2.13)

Moreover, as mentioned above, the operator B is self-adjoint, non-expansive and has no
eigenvalue equal to one. This and equality (2.13) imply that u2k tends to zero when k tends
to infinity. Similar to (2.12) we have
∫

D\Γ1

∇(u2k+1−u2k)·∇(u2k+1−u2k) dx =

∫

D\Γ1

∇u2k ·∇u2k dx−
∫

D\Γ1

∇u2k+1 ·∇u2k+1 dx. (2.14)

It follows that also u2k+1 tends to zero and Theorem 2.1 is proved.

3. Numerical solution of the mixed problems by the layer potential
approach

From the previous section the proposed iterative method for the Cauchy problem (1.1),
(1.2) involves two direct mixed boundary value problems for the Laplace equation. For the
numerical implementation of this procedure it is therefore of importance to have effective
numerical solvers for these mixed problems. Since the problems are considered for smooth
boundaries the most efficient numerical approximation consists in using an integral equation
approach with trigonometrical quadrature for the full discretization. To reduce each of the
mixed problems to a boundary integral equation, we apply the logarithmic potentials, i.e.,
an indirect variant of the integral equation method.

3.1. Boundary value problem with a Dirichlet condition on the cut. We start
with the mixed Dirichlet — Neumann boundary value problem, i.e., the Dirichlet boundary
value condition is given on the cut Γ1 and the Neumann condition on the exterior closed
boundary Γ2. To simplify our presentation, we first consider the case where the boundary
data on the cut satisfy g+ = g− = g. Later on, in Section 3.1.4, the general case is discussed.

3.1.1. The boundary layer potential approach. We seek the solution u ∈ C2(D\Γ1)
⋂

C(D̄\
Γ1) which satisfies the Laplace equation

∆u = 0 in D \ Γ1, (3.1)

the Dirichlet boundary value condition

u± = g on Γ1 (3.2)
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and the Neumann boundary value condition

∂u

∂ν
= f2 on Γ2. (3.3)

The gradient of the solution has to satisfy estimate (2.7). Both the existence and the
uniqueness of this problem have been investigated in [17]. However, in proving the existence
of a solution other types of integral equations were used in [17] that are not suitable for
our numerical implementation. We shall therefore give an alternative proof of the existence
based on the integral equations we use for the numerical investigations. First, the uniqueness
of a solution follows in the standard fashion by applying Green formula (2.8) (with uk and
ul both equal to u), and we obtain:

Theorem 3.1. The direct mixed Dirichlet — Neumann boundary value problem (3.1)–
(3.3) has at most one solution.

To construct a solution to (3.1)–(3.3), we define u as a combination of a single- and a
double-layer potential

u(x) =

∫

Γ1

ϕ1(y)Φ(x, y) ds(y) +

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y), x ∈ D \ Γ1,

where

Φ(x, y) :=
1

2π
ln

1

|x − y|
and ϕℓ, ℓ = 1, 2, are unknown densities. The density ϕ2 belong to the class C1(Γ2) and to
model possible singularities at the endpoints of the cut Γ1 the density ϕ1 is assumed to be
of the form

ϕ1(x) =
ϕ̃1(x)

√

|x − x∗
−1||x − x∗

1|
, x ∈ Γ1 \ {x∗

−1, x
∗
1}, ϕ̃1 ∈ C(Γ1).

From the continuity of the single-layer potential and the normal derivative of the double-
layer potential we obtain for problem (3.1)–(3.3) the following system of integral equations
of the first kind:



































∫

Γ1

ϕ1(y)Φ(x, y) ds(y) +

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y) = g(x), x ∈ Γ1,

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂ν(x)
ds(y) +

∂

∂ν(x)

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y) = f2(x), x ∈ Γ2.

(3.4)

Thus, we obtain a system of integral equations of the first kind involving kernels with a
logarithmic singularity as well as kernels with a hypersingularity, and with at most a square
root singularity in the density ϕ1. From the jump relations for the double-layer potential
and normal derivative of the single-layer potential in combination with the uniqueness in
Theorem 3.1, we deduce that under the above regularity assumptions on ϕ1 and ϕ2 the
integral equation system (3.4) has at most one solution.
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3.1.2. Parametrization and treatment of the singularities. To establish the existence of
a solution and for the future numerical implementation we consider a parametrization of
system (3.4). This will be done by employing the cosine-substitution proposed in [24]. We
assume that the boundaries Γℓ, ℓ = 1, 2 have the parametric representations











Γ1 := {x1(t) = (x11(t), x12(t)) : −1 6 t 6 1},

Γ2 := {x2(t) = (x21(t), x22(t)) : 0 6 t 6 2π}.
(3.5)

Let θ(x) be the unit tangential vector for x ∈ Γ2 corresponding to the given orientation of
the boundary. To handle the hypersingularity, we use a Maue type transformation [13, 15],
i.e.,

∂

∂ν(x)

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y) =

∫

Γ2

∂ϕ2

∂θ
(y)

∂Φ(x, y)

∂θ(x)
ds(y), x ∈ Γ2.

Then the parametrization of (3.4) leads to the system











































1

2π

1
∫

−1

µ1(τ)H11(t, τ) dτ +
1

2π

2π
∫

0

µ̃2(τ)H12(t, τ) dτ = g(t), t ∈ [−1, 1],

1

2π

1
∫

−1

µ1(τ)H21(t, τ) dτ +
1

2π

2π
∫

0

µ̃′
2(τ)H22(t, τ) dτ = f2(t), t ∈ [0, 2π],

(3.6)

where µ1(t) := ϕ1(x1(t))|x′
1(t)|, µ̃2(t) := ϕ2(x2(t)), g(t) := g(x1(t)), f2(t) := f2(x2(t)) and

the kernels have the form

H11(t, τ) := ln
1

|x1(t) − x1(τ)| , t 6= τ,

H12(t, τ) :=
(x1(t) − x2(τ)) · x′

2(τ)⊥

|x1(t) − x2(τ)|2 , H21(t, τ) :=
(x1(τ) − x2(t)) · ν(x2(t))

|x1(t) − x2(τ)|2

and

H22(t, τ) :=
(x2(τ) − x2(t)) · θ(x2(t))

|x2(t) − x2(τ)|2 , t 6= τ.

Here we used the notation a⊥ defined for the vector a = (a1, a2)
⊤ as

a⊥ :=

(

0 1

−1 0

)

a.

To remove the square root singularity in the density µ1, we use the cosine-substitution in
the corresponding integrals and to manage the logarithmic- and hyper-singularities in the
kernels, we use suitable transformations to be able to the apply trigonometrical quadrature
rules. Thus, after substituting t = cos s in the first integral equation and τ = cos σ in the
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An alternating potential-based approach for a Cauchy problem 323

integrals containing the function µ1 and some additional transformations (see, for example,
[4, 13, 14]) we obtain from (3.6) the following equivalent system:



































1

2π

2π
∫

0

µ̃1(σ)

{

ln

(

4

e
sin2 s − σ

2

)

+ H̃11(s, σ)

}

dσ +
1

2π

2π
∫

0

µ̃2(τ)H̃12(s, τ)dτ = g̃(s),

1

2π

2π
∫

0

µ̃1(σ)H̃21(t, σ) dσ +
1

2π

2π
∫

0

{

µ̃′
2(τ) cot

τ − t

2
+ µ̃2(τ)H̃22(t, τ)

}

dτ = f̃2(t).

(3.7)

Here s, t ∈ [0, 2π], µ̃1(s) := ϕ̃1(x̃1(s))|x̃′
1(s)|, x̃ℓ

1(s) := xℓ
1(cos s), ℓ = 0, 1, g̃(s) := −2g(cos s),

f̃2(t) := 2f2(t)|x′
2(t)| and the kernels obtained are given as

H̃12(s, τ) := −2H12(cos s, τ), (s, τ) ∈ [0, 2π] × [0, 2π],

H̃21(t, σ) := H21(t, cos σ)|x′
2(t)|, (t, σ) ∈ [0, 2π] × [0, 2π],

H̃11(s, σ) :=



















ln
|x̃1(s) − x̃1(σ)|

2| cos s − cos σ|/e for s 6= σ,

ln
e|x̃′

1(s)|
2

for s = σ,

and

H̃22(t, τ) :=







































4[x′
2(t)(x2(τ) − x2(t))][x

′
2(τ)(x2(t) − x2(τ))]

|x2(t) − x2(τ)|4 −
2x′

2(t)x
′
2(τ)

|x2(t) − x2(τ)|2 − 1

2 sin2 t−τ
2

, for t 6= τ,

−1

6
+

1

3

x′
2(t)x

′′′
2 (t)

|x′
2(t)|2

+
1

2

x′′2
2 (t)

|x′
2(t)|2

− (x′
2(t)x

′′
2(t))

2

|x′
2(t)|4

for t = τ.

As we can see, the density µ̃1 is even, the kernel H̃11 is even with respect to both variables,
and the kernels H̃12 and H̃12 are even in one of the variables. To rewrite system (3.7) in the
operator form, we define the integral operators

(Sµ)(s) :=
1

2π

2π
∫

0

µ(σ) ln

(

4

e
sin2 s − σ

2

)

dσ, s ∈ [0, 2π],

(Tµ)(s) :=
1

2π

2π
∫

0

µ′(σ) cot
σ − s

2
dσ, s ∈ [0, 2π],

(Bijµ)(s) :=
1

2π

2π
∫

0

µ(σ)H̃ij(s, σ) dσ, s ∈ [0, 2π], i, j = 1, 2.

Thus, we have the operator equation

(U + B)µ̃ = h̃, (3.8)
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324 R.Chapko and B. T. Johansson

where we introduced the vectors µ̃ := (µ̃1, µ̃2)
⊤, h̃ := (g̃, f̃2)

⊤ and the operator matrices

U :=

(

S 0

0 T

)

, B :=

(

B11 B12

B21 B22

)

.

Now we can assure unique solvability of the integral equation system (3.7). For 0 < α < 1
and m ∈ N∪{0}, by Cm,α[0, 2π] we denote the Hölder spaces of 2π-periodical functions and
by Cm,α

e [0, 2π] the subspaces of even functions from Cm,α[0, 2π].

Theorem 3.2. For m ∈ N, m 6 p, where p describes the smoothness of Γ1 and Γ2, g̃ ∈
Cm,α

e [0, 2π], f̃2 ∈ Cm−1,α[0, 2π], the integral equation system (3.7) has exactly one solution

µ̃1 ∈ Cm−1,α
e [0, 2π], µ̃2 ∈ Cm,α[0, 2π].

Proof. Since the operators S : Cm−1,α
e [0, 2π] → Cm,α

e [0, 2π] and T : Cm,α[0, 2π] →
Cm−1,α[0, 2π] are bounded and have bounded inverses [15], we can rewrite system (3.8)
in the following equivalent form:

[(

ICm,α
e

0

0 ICm−1,α

)

+

(

S−1B11 S−1B12

T−1B21 T−1B22

)](

µ̃1

µ̃2

)

=

(

S−1g̃

T−1f̃2

)

, (3.9)

where IX is the identity operator in the space X. From the smooth properties of kernels
H̃ij , i, j = 1, 2, the integral operators B11 : Cm−1,α

e [0, 2π] → Cm,α
e [0, 2π], B12 : Cm,α[0, 2π] →

Cm−1,α
e [0, 2π], B21 : Cm−1,α

e [0, 2π] → Cm,α
e [0, 2π] and B22 : Cm,α[0, 2π] → Cm−1,α[0, 2π] are

compact. Hence, by the Riesz theory applied to the operator equation of the second kind
(3.9) and the uniqueness for the integral equations mentioned above, we can assert the ex-
istence of a unique solution of (3.7). 2

From the equivalence of the integral equation systems (3.4) and (3.7), we deduce the
existence result for the mixed problem (3.1)–(3.3).

Theorem 3.3. For each g ∈ C1,α(Γ1) and f2 ∈ C0,α(Γ2) the Dirichlet-Neumann bound-

ary value problem (3.1)–(3.3) has a unique solution, which depends continuously on the

boundary data.

Remark 3.1. Near the endpoints of the cut Γ1 the gradient of the solution has the
behaviour O(|x− x∗

j |−1/2) + O(ln |x− x∗
j |−1), j = −1, 1, but if the density ϕ1 vanishes in the

neighborhood of these points, then gradu will be bounded and continuous.

3.1.3. Full discretization. Now we apply the quadrature method which was originally
developed in [4] for the case of a closed boundary and successfully used for other cases. This
quadrature method is based on the trigonometric interpolation with equidistant nodal points

si =
iπ

n1

, i = 0, . . . , 2n1 − 1 and ti =
iπ

n2

, i = 0, . . . , 2n2 − 1, n1, n2 ∈ N.

The following interpolation quadrature rules are used:

1

2π

2π
∫

0

f ′(τ) cot
ti − τ

2
dτ ≈

2n2−1
∑

k=0

T|k−i|f(tk),

1

2π

2π
∫

0

f(σ) ln

(

4

e
sin2 σ − si

2

)

dσ ≈
2n1−1
∑

k=0

R|k−i|f(sk),
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1

2π

2π
∫

0

f(σ) dσ ≈ 1

2n1

2n1−1
∑

k=0

f(sk),
1

2π

2π
∫

0

f(τ) dτ ≈ 1

2n2

2n2−1
∑

k=0

f(tk), (3.10)

with known weights Rk and Tk (see [15]). These quadrature formulas are obtained by re-
placing the function f with its trigonometric interpolation polynomial and then integrating
exactly. After using these quadratures for the corresponding integrals in (3.7) together with
collocation, we obtain the (n1 + 2n2 + 1) × (n1 + 2n2 + 1) linear system



























n1
∑

j=0

µ̃1jA
11
ij +

2n2−1
∑

j=0

µ̃2jA
12
ij = g̃i, i = 0, . . . , n1,

n1
∑

j=0

µ̃1jA
21
ij +

2n2−1
∑

j=0

µ̃2jA
22
ij = f̃2i, i = 0, . . . , 2n2 − 1,

(3.11)

where µ̃1k ≈ µ̃1(sk), g̃k = g̃(sk), k = 0, . . . , n1, µ̃2k ≈ µ̃2(tk), f̃2k = f̃2(tk), k = 0, . . . , 2n2 − 1,
and the matrix coefficients have the form

A11
i0 = Ri +

1

2n1
H̃11(si, 0), A11

in1
= Rn1−i +

1

2n1
H̃11(si, π), i = 0, . . . , n1,

A11
ij = R|i−j| + Ri+j +

1

n1
H̃11(si, sj), i = 0, . . . , n1, j = 1, . . . , n1 − 1,

A12
ij =

1

2n2
H̃12(si, tj), i = 0, . . . , n1, j = 0, . . . , 2n2 − 1,

A21
i0 =

1

2n1
H̃21(ti, 0), A21

in1
=

1

2n1
H̃21(ti, π), i = 0, . . . , 2n2 − 1,

A21
ij =

1

n1
H̃21(ti, sj), i = 0, . . . , 2n2 − 1, j = 1, . . . , n1 − 1,

A22
ij = T|i−j| +

1

2n2

H̃22(ti, tj), i, j = 0, . . . , 2n2 − 1.

To write the linear system in operator form, we consider the trigonometric interpolation
operators

Pnℓ
: C[0, 2π] → Tnℓ

, ℓ = 1, 2,

where Tn1
and Tn2

are the spaces of trigonometric polynomials of degrees n1 and n2, respec-
tively. Then we can rewrite system (3.11) in the equivalent operator form

(U + Pn1,n2
Bn1,n2

) µ̃n1,n2
= Pn1,n2

h̃. (3.12)

Here µ̃n1,n2
:=
(

µ̃
(n1)
1 , µ̃

(n2)
2

)⊤

and

Pn1,n2
:=

(

Pn1
0

0 Pn2

)

, Bn1,n2
:=

(

Bn1

11 Bn2

12

Bn1

21 Bn2

22

)

,

where Bnℓ

ij are the corresponding approximate quadrature operators for the above integral
operators Bij .
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The convergence and error analysis for this quadrature method can be established on the
basis of the collective compact operator theory (see [4]) or on the basis of some estimate
of the trigonometric interpolation in Hölder spaces (see, for example, [5, 21]). In the latter
case, this analysis is based on the estimate

‖Pnk
µ − µ‖m,α 6 c

ln nk

nℓ−m+β−α
k

‖µ‖ℓ,β, k = 1, 2, (3.13)

for the trigonometric interpolation which is valid for 0 6 m 6 ℓ, 0 < α 6 β < 1, and some
constant c depending only on m, ℓ, α and β.

Theorem 3.4. For g̃ ∈ Cℓ,β
e [0, 2π], f̃2 ∈ Cℓ−1,β[0, 2π] and for sufficiently large n1 and n2

the system of approximate equations (3.12) has a unique solution µ̃
(n1)
1 ∈ Tn1

and µ̃
(n2)
2 ∈ Tn2

.

For the exact solution µ̃1 and µ̃2 of (3.7) we have the error estimates

‖µ̃k − µ̃
(nk)
k ‖m,α 6 Ck

ln nk

nℓ−m+β−α
k

‖µ̃k‖ℓ,β, k = 1, 2, (3.14)

for 0 6 m < ℓ, 0 < α 6 β < 1 and some constants C1 and C2 depending only on α, β, m, ℓ.

Proof. Let X = Cm−1,α
e [0, 2π] × Cm,α[0, 2π] and Y = Cm,α

e [0, 2π] × Cm−1,α[0, 2π]. By the
smoothness properties of the kernels in the operators Bij and by estimate (3.13) it can be
shown that

‖Pnk
Bnk

ik µ − Bikµ‖m,α 6 c
ln nk

nℓ−m+β−α
k

‖µ‖ℓ,β, k, i = 1, 2.

This implies, in particular, for ℓ = m the norm convergence

‖Pn1,n2
Bn1,n2

− B‖X→Y → 0, n1, n2 → ∞.

Therefore, from the Neumann series, we can conclude that, for sufficiently large n1 and n2,
the operators U+Pn1,n2

Bn1,n2
: X → Y are invertible and the inverse operators are uniformly

bounded. Then the error estimate (3.14) follows from the identity

µ̃n1,n2
− µ̃ = (U + Pn1,n2

Bn1,n2
)−1{(Pn1,n2

h̃ − h̃) + (B − Pn1,n2
Bn1,n2

)µ̃}.
2

Note that for cuts Γ1 given by analytic arcs and for analytic boundaries Γ2 and boundary
data g and f2, we can improve the above error estimate to the form

‖µ̃k − µ̃
(nk)
k ‖m,α 6 Cke

−qknk , k = 1, 2,

for some constants qk > 0 (see [15]). In addition, following [15, Section 13.4], the error
analysis can also be carried out in a Sobolev space setting.

To compute the normal derivative on the cut, we use the jump relation

∂u±

∂υ
(x) = ∓1

2
ϕ1(x) +

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(x)
ds(y) +

∫

Γ2

ϕ2(y)
∂2Φ(x, y)

∂υ(x)∂ν(y)
ds(y),

where x ∈ Γ1 \ {x∗
−1, x

∗
1} and ± refer to the two sides of the cut Γ1. The parametrization

and quadrature rules (3.10) lead to the following approximation:

∂u±

∂υ
(x̃1(si)) ≈ ∓ µ̃1i

2| sin si||x̃1(si)|
+

1

2n2

2n2−1
∑

j=0

µ̃2jL2(si, tj)+
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1

2n1

n1−1
∑

j=1

µ̃1jL1(si, sj) +
1

4n1
µ̃10L1(si, 0) +

1

4n1
µ̃1n1

L1(si, π), (3.15)

where i = 1, . . . , n1 − 1,

L1(s, σ) :=



















(x̃1(σ) − x̃1(s)) · υ(x̃1(s))

|x̃1(s) − x̃1(σ)|2 for s 6= σ,

x̃′′
1(s) · υ(x̃1(s))

2|x̃′
1(s)|2

for s = σ

and

L2(s, τ) :=
[(x2(τ) − x̃1(s)) · υ(x̃1(s))][(x̃1(s) − x2(τ)) · x′

2(τ)⊥]

|x̃1(s) − x2(τ)|4 +
υ(x̃1(s) · x′

2(τ)⊥

|x̃1(s) − x2(τ)|2 .

To generate Cauchy data in our numerical experiments, we have to calculate the trace of the
solution on Γ2. From the jump relations of the potentials the following representation holds:

u(x) = −1

2
ϕ2(x) +

∫

Γ1

ϕ1(y)Φ(x, y) ds(y) +

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y), x ∈ Γ2. (3.16)

Now, the approximate values for the solution u on Γ2 can easily be obtained by the quadra-
tures (3.10).

3.1.4. The case of a two-side Dirichlet boundary condition on the cut. Now we return to
the more general case with the boundary conditions on the cut

u± = g± on Γ1.

According to the results of [7], we seek the solution of the corresponding mixed Dirichlet —
Neumann boundary value problem in the form

u(x) =

∫

Γ1

ϕ1(y)Φ(x, y) ds(y)+

∫

Γ1

[g](y)
∂Φ(x, y)

∂υ(y)
ds(y)+

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y), x ∈ D \Γ1,

where we denote [g] := g+ − g−.
Then the unknown densities satisfy the system of integral equations







































































∫

Γ1

ϕ1(y)Φ(x, y) ds(y) +

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y) =

1

2
(g+(x) + g−(x)) −

∫

Γ1

[g](y)
∂Φ(x, y)

∂υ(y)
ds(y), x ∈ Γ1,

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂ν(x)
ds(y) +

∂

∂ν(x)

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂ν(y)
ds(y) =

f2(x) −
∫

Γ1

[g](y)
∂2Φ(x, y)

∂ν(x)∂υ(y)
ds(y), x ∈ Γ2.

(3.17)

Thus, we have obtained integral equations with singularities analogously to the above con-
sidered case. Note that if g+ = g−, then system (3.17) transforms to (3.4).
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Remark 3.2. The numerical solution of (3.17) can be realized again by the quadrature
method. In this case, to obtain the convergence order proved in Theorem 3.4, we have to take
into account the integrals contained in the term [g] on the right-hand side of system (3.17).
Interestingly, in the alternating method based on the periodic properties of the boundary
functions in the corresponding mixed problems, we can use for their numerical calculation
the quadrature rules (3.10).

3.2. Boundary value problem with a Neumann condition on the cut. We employ
a similar potential based approach to solve the mixed Neumann — Dirichlet boundary value
problem. Again, we shall work with integral equations of the first kind and firstly we present
the solution method for the case of boundary functions h+ = h− = h. For our transformation
in this case we need to change the assumption about the smoothness of the boundaries.

3.2.1. Reduction to boundary integral equations. We wish to find a function u ∈ C2(D \
Γ1)
⋂

C(D̄ \ Γ1) which satisfies the Laplace equation

∆u = 0 in D \ Γ1, (3.18)

the Neumann boundary value condition

∂u±

∂υ
= h on Γ1 \ {x∗

−1, x
∗
1} (3.19)

and the Dirichlet boundary value condition

u = f1 on Γ2. (3.20)

The gradient of the solution is assumed to satisfy (2.7). Analogously to the mixed problem
studied in Section 3.1, we have the uniqueness.

Theorem 3.5. The direct mixed Neumann — Dirichlet boundary value problem (3.18)–
(3.20) has at most one solution.

To construct a solution to (3.18)–(3.20), we again introduce u as a combination of a
double- and a single-layer potentials:

u(x) =

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(y)
ds(y) +

∫

Γ2

ϕ2(y)Φ(x, y) ds(y), x ∈ D.

To incorporate the known asymptotic at the endpoints of the cut Γ1, the unknown density
ϕ1 is assumed to be of the form

ϕ1(x) = ϕ̃1(x)
√

|x − x∗
−1||x − x∗

1|, x ∈ Γ1, ϕ̃1 ∈ C1(Γ1).

By using the properties (jump relations) of the single- and double-layer potentials the mixed
problem (3.18)–(3.20) can be reduced to the following system of integral equations of the
first kind:



























∂

∂υ(x)

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(y)
ds(y) +

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂υ(x)
ds(y) = h(x), x ∈ Γ1,

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(y)
ds(y) +

∫

Γ2

ϕ2(y)Φ(x, y) ds(y) = f1(x), x ∈ Γ2.

(3.21)
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Therefore, we again get a system of integral equations of the first kind containing both the
logarithmic singularity and the hypersingularity in the kernels.

3.2.2. Numerical solution of the boundary integral equations. We assume that the cut
Γ1 and the closed boundary part Γ2 have the parametric representation (3.5). Using the
parametrization in (3.21) and employing the cosine- substitution in combination with some
further transformations (for details, see [5, 21]), we obtain the following system of integral
equations:



































1

2π

2π
∫

0

{

µ̃′
1(σ) cot

σ − s

2
+ µ̃1(σ)K̃11(s, σ)

}

dσ +
1

2π

2π
∫

0

µ̃2(τ)K̃12(s, τ) dτ = h̃(s),

1

2π

2π
∫

0

µ̃1(σ)K̃21(t, σ)dσ +
1

2π

2π
∫

0

µ̃2(τ)

{

ln

(

4

e
sin2 t − τ

2

)

+ K̃22(t, τ)

}

dτ = f̃1(t),

(3.22)

where s, t ∈ [0, 2π]. Here, we introduced the functions µ̃1(s) := ϕ1(x̃1(s))sign(π−s), µ̃2(t) :=
ϕ2(x2(t))|x′

2(t)|, h̃(s) := 2h(x̃1(s))|x̃1(s)| sin s, f̃1(t) := −2f1(x2(t)) and the kernels

K̃11(s, σ) :=











































{

2[x̃′
1(s) · (x̃1(σ) − x̃1(s))][x̃

′
1(σ) · (x̃1(σ) − x̃1(s))]

|x̃1(s) − x̃1(σ)|4 −

x̃′
1(s) · x̃′

1(σ)

|x̃1(s) − x̃1(σ)|2 − 1

(cos s − cos σ)2

}

sin s sin σ, for s 6= σ,

{

1

6

x̃′
1(s) · x̃′′′

1 (s)

|x̃′
1(s)|2

+
1

4

x̃′′2
1 (s)

|x̃′
1(s)|2

− 1

2

(x̃′
1(t) · x̃′′

1(s))
2

|x̃′
1(s)|4

}

sin2 s, for s = σ,

K̃12(s, τ) := 2
(x2(τ) − x̃1(s)) · x̃1(s)

⊥

|x̃1(s) − x2(τ)|2 sin s, K̃21(t, σ) :=
(x̃1(σ) − x2(t)) · υ(x̃1(σ))

|x2(t) − x̃1(σ)|2 sin σ,

K̃22(t, τ) :=











ln
|x2(t) − x2(τ)|2

4
e
sin2 t−τ

2

, for t 6= τ,

ln |x′
2(t)| + 1, for t = τ.

One can check that µ̃1(s) = −µ̃1(2π − s) for s ∈ [0, π] and that the density µ̃1 is an odd
function. Moreover, the kernel K̃11 is also odd with respect to both variables and the kernels
K̃12 and K̃21 are odd in one of the variables. Denote by Cm,α

odd [0, 2π] the subspaces of the odd
functions from Cm,α[0, 2π]. By arguments as in the proof of Theorem 3.2, we can prove the
well-posedness of the integral equations system (3.22).

Theorem 3.6. For m ∈ N, m 6 p, where p describes the smoothness of Γ1 and Γ2,

h̃ ∈ Cm−1,α
odd [0, 2π], f̃1 ∈ Cm,α[0, 2π], the integral equation system (3.22) has exactly one

solution µ̃1 ∈ Cm,α
odd [0, 2π], µ̃2 ∈ Cm−1,α[0, 2π].

From this follows the existence result for the mixed problem (3.18)–(3.20).

Theorem 3.7. For each h ∈ C0,α(Γ1) and f1 ∈ C1,α(Γ2), the Neumann — Dirichlet

boundary value problem (3.18)–(3.20) has a unique solution which depends continuously on

the boundary data.
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Near the endpoints of the cut Γ1 a similar estimate holds as in Remark 3.1.
After using quadratures (3.10) for the corresponding integrals in (3.22) and by appropri-

ate collocation, we obtain the (n1 + 2n2 − 1) × (n1 + 2n2 − 1) linear system



























n1−1
∑

j=1

µ̃1jA
11
ij +

2n2−1
∑

j=0

µ̃2jA
12
ij = h̃i, i = 1, . . . , n1 − 1,

n1−1
∑

j=1

µ̃1jA
21
ij +

2n2−1
∑

j=0

µ̃2jA
22
ij = f̃1i, i = 0, . . . , 2n2 − 1,

(3.23)

where µ̃1k ≈ µ̃1(sk), h̃k = h̃(sk), k = 1, . . . , n1 − 1, µ̃2k ≈ µ̃2(tk), f̃1k = f̃1(tk), k =
0, . . . , 2n2 − 1, and the matrix coefficients have the form

A11
ij = T|i−j| − T2n1−i−j +

1

n1
K̃11(si, sj), i, j = 1, . . . , n1 − 1,

A12
ij =

1

2n2
K̃12(si, tj), i = 1, . . . , n1 − 1, j = 0, . . . , 2n2 − 1,

A21
ij =

1

n1
K̃21(ti, sj), i = 0, . . . , 2n2 − 1, j = 1, . . . , n1 − 1,

A22
ij = R|i−j| +

1

2n2
K̃22(ti, tj), i, j = 0, . . . , 2n2 − 1.

The convergence analysis and error estimate can be proved analogously to Theorem 3.4.

Theorem 3.8. For f̃1 ∈ Cℓ,β[0, 2π], h̃ ∈ Cℓ−1,β
odd [0, 2π] and sufficiently large n1 and n2

the system of approximate equations (3.23) has a unique solution µ̃
(n1)
1 ∈ Tn1

and µ̃
(n2)
2 ∈ Tn2

.

For the exact solution µ̃1 and µ̃2 of (3.22) we have the error estimates

‖µ̃k − µ̃
(nk)
k ‖m,α 6 Ck

ln nk

nℓ−m+β−α
k

‖µ̃k‖ℓ,β, k = 1, 2,

for 0 6 m 6 ℓ, 0 < α 6 β < 1 and some constants C1 and C2 depending only on α, β, m, ℓ.

The function values of the solution restricted to the cut Γ1 can be calculated as

u±(x) = ±1

2
ϕ1(x) +

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(y)
ds(y) +

∫

Γ2

ϕ2(y)Φ(x, y) ds(y), x ∈ Γ1.

After using parametrization (3.5) we can apply the trapezoidal quadrature rule from (3.10).

3.2.3. The case of two-side Neumann boundary condition on the cut. Now we consider
the case of boundary conditions on two sides of the cut

∂u±

∂υ
= h± on Γ1.

Based on the results of [23] we construct the solution of the corresponding mixed Neumann —
Dirichlet boundary value problem in the form

u(x) =

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(y)
ds(y) −

∫

Γ1

[h](y)Φ(x, y) ds(y) +

∫

Γ2

ϕ2(y)Φ(x, y) ds(y), x ∈ D \ Γ1.
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Then the unknown densities solve the system of integral equations of the first kind


































































∂

∂υ(x)

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(y)
ds(y) +

∫

Γ2

ϕ2(y)
∂Φ(x, y)

∂υ(x)
ds(y) =

1

2
(h+(x) + h−(x)) +

∫

Γ1

[h](y)
∂Φ(x, y)

∂υ(x)
ds(y), x ∈ Γ1,

∫

Γ1

ϕ1(y)
∂Φ(x, y)

∂υ(y)
ds(y) +

∫

Γ2

ϕ2(y)Φ(x, y) ds(y) =

f1(x) +

∫

Γ1

[h](y)Φ(x, y) ds(y), x ∈ Γ2.

(3.24)

Thus, the system obtained is only different from the one considered above (see (3.21)) in
terms of the right-hand side. Our Remark 3.2 concerning the calculation of integrals on the
right-hand side of (3.17) remains valid in this case too.

4. Numerical experiments

Here we present the numerical results for three different examples. In the first example, we
investigate the accuracy of the proposed numerical scheme presented in Section 3 for solving
different mixed boundary value problems that occur in the alternating method. In the
two remaining examples, we present the numerical investigations of the alternating method
proposed in Section 2 for solving the Cauchy problem (1.1), (1.2).

Example 4.1 (Tests for the mixed problems). We consider two domains bounded by an
ellipse and a rounded rectangle, respectively, containing a line segment [−1, 1] on the axis Ox1

constituting the cut Γ1 (see Fig. 4.1). The boundary Γ2 has the parametric representation

Γ
(e)
2 := {x2(t) = (3 cos t, 2 sin t), 0 6 t 6 2π}

respectively
Γ

(r)
2 := {x2(t) = r(t)(cos t, sin t), 0 6 t 6 2π},

where

r(t) =

((

1

2
cos t

)10

+

(

2

3
sin t

)10)−0.1

.

For our experiment we use the holomorphic square root function F (z) = z
√

1 − z−2, z ∈
C \ (−1, 1). Thus for the Dirichlet — Neumann mixed problem we have the following
boundary data:

g±(x) = 0, x ∈ Γ1 and f2(x) = Re {F (x1 + ix2)}, x = (x1, x2) ∈ Γ2,

and for the Neumann — Dirichlet mixed problem the boundary functions are given in the
form

h±(x) = 0, x ∈ Γ1 and f1(x) = Im {F (x1 + ix2)}, x ∈ Γ2.

The numerical results are presented in the table below. Here, we show the errors for the
solutions of the mixed problems in D \ Γ1 (see Fig. 4.1). For the calculation of the norm
‖ · ‖C(D̃) we search for the maximum of the absolute errors at 900 points uniformly distributed

in D̃ in the case (a) and at 1500 points in the case (b). The domain D̃ is marked in Fig. 4.1
by gray color. The discretization parameters are chosen as n = n1 = n2.
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332 R.Chapko and B. T. Johansson

From these results the theoretical error estimates, especially the exponential convergence,
for our numerical method proved in the previous section are confirmed.

a b

F i g 4.1. Domains with cuts: cut in the ellipse domain (a), cut in the rectangle domain (b)

‖u − uex‖
C(D̃)-errors for the mixed problems

Neumann — Dirichlet problem Dirichlet — Neumann problem

n Ellipse domain Rectangle domain Ellipse domain Rectangle domain

16 0.587853× 10−2 0.651126× 10−2 0.583429× 10−1 0.118655× 100

32 0.105372× 10−3 0.164031× 10−3 0.128893× 10−2 0.407673× 10−2

64 0.703893× 10−7 0.103009× 10−6 0.642910× 10−6 0.566353× 10−5

128 0.657252× 10−13 0.120792× 10−12 0.143363× 10−12 0.130922× 10−10

Example 4.2 (Cauchy problem with a line cut). Now we use the proposed alternating
potential approach for the Cauchy problem in the case where the planar domain is bounded
by the rounded rectangle Γ

(r)
2 and contains the line cut Γ1 (see Fig. 4.1,b). The Cauchy

data are found by solving the direct Dirichlet — Neumann mixed problem with boundary
functions g±(x1, x2) = x2

1 on Γ1 and f2 = 1 on Γ
(r)
2 and f1 is calculated by approach (3.16).

Figure 4.2 compares the exact boundary function g (here and throughout the examples, the
dashed line is the analytical solution) with the reconstruction in the cases of exact data and
5% data perturbation, respectively. Figure 4.3 shows the result of the reconstruction of the
normal derivative ∂u+

∂ν
on the boundary Γ1.

a b

F i g 4.2. Reconstruction of the normal derivative ∂u
+

∂υ
on the line cut: exact data, k∗ = 500 (a);

5% noise, k∗ = 92 (b)
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a b

F i g 4.3. Reconstruction of the normal derivative ∂u
+

∂υ
on the line cut: exact data, k∗ = 500 (a);

5% noise, k∗ = 81 (b)

The L2-errors ek := ‖u+
2k − g+‖L2(Γ1) and qk := ‖∂u+

2k+1

∂υ
− ∂u+

∂υ
‖L2(Γ1) are given in Fig. 4.4.

Here, we used the following discretization parameters: n1 = n2 = 64 and the initial guess
h±

0 = 0 on Γ1. In the case of noisy data, we point out that the result corresponded to the
minimum of the L2-error.

a b

F i g 4.4. L2-error ek and qk for the line cut: exact data (a); 5% noise (b)

Example 4.3 (Cauchy problem with a parabolic cut). In this example, the cut Γ1 has
a more complicated geometry and is given as a parabola

Γ
(p)
1 := {(t, 0.3(t2 − 0.5)),−1 6 t 6 1},

and the boundary D is bounded by Γ
(e)
2 . The boundary data are chosen as g±(x1, x2) =

exp(−x1 − 4x2) and f2(x1, x2) = 1, and the Cauchy data are generated as described in the
previous example.

The results of the reconstructions for the boundary function and the normal derivative
are presented in Fig. 4.5 and in Fig. 4.6. The behavior of the L2-error on each iteration step
is illustrated in Fig. 4.7.

As can be seen from Figure 4.7, in order to still obtain a stable approximation for the
solution u on Γ1 in the case of noisy data, the iterations have to be terminated appropriately,
otherwise, due to the ill-posedness of the Cauchy problem (1.1), (1.2), the error starts to
magnify. As in the previous example, we use the following discretization parameters: n1 =
n2 = 64 and the initial guess is h±

0 = 0 on Γ1. Moreover, the noise level is 5%.

Brought to you by | Aston University Library & Information
Authenticated

Download Date | 10/19/18 4:55 PM



334 R.Chapko and B. T. Johansson

a b

F i g 4.5. Reconstruction of the boundary function u+ on the parabolic cut: exact data, k∗ =
3000 (a); 5% noise, k∗ = 145 (b)

a b

F i g 4.6. Reconstruction of the normal derivative ∂u
+

∂υ
on the parabolic cut: exact data, k∗ =

3000 (a); 5% noise, k∗ = 140 (b)

a b

F i g 4.7. L2-error ek and qk for the parabolic cut: exact data (a); 5% noise (b)
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An alternating potential-based approach for a Cauchy problem 335

Remark 4.1. In Example 4.3, the proposed procedure was relatively slow and in the case
of noisy data the reconstructions were not accurate enough. However, there is a possibility
of accelerating the alternating procedure both to improve the convergence rate and accuracy
(see, for example, [8]). Investigations of such a procedure are deferred to future work.
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