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On the numerical solution of a Cauchy problem in an
elastostatic half-plane with a bounded inclusion

Roman Chapko 1, B. Tomas Johansson 2 and Oleh Sobeyko1

Abstract: We propose an iterative procedure for the inverse problem of deter-
mining the displacement vector on the boundary of a bounded planar inclusion
given the displacement and stress fields on an infinite (planar) line-segment. At
each iteration step mixed boundary value problems in an elastostatic half-plane
containing the bounded inclusion are solved. For efficient numerical implementa-
tion of the procedure these mixed problems are reduced to integral equations over
the bounded inclusion. Well-posedness and numerical solution of these boundary
integral equations are presented, and a proof of convergence of the procedure for
the inverse problem to the original solution is given. Numerical investigations are
presented both for the direct and inverse problems, and these results show in par-
ticular that the displacement vector on the boundary of the inclusion can be found
in an accurate and stable way with small computational cost.

Keywords: Alternating method, Boundary integral equations, Cauchy problem,
Elastostatics, Green’s function, Quadrature method, Trigonometric interpolation.

1 Introduction

In practical applications, to approximate the elastic plane stress field in a large
domain, a widely used model is to consider the problem in an unbounded homoge-
neous elastic region such as a half-plane. Now, unbounded planar stress and strain
field determination in unbounded domains are challenging since there can be infi-
nite displacements subject to static load, which is not the case in three-dimensions.
Due to this, displacement-based methods, such as the Finite Element Method, re-
quire additional non-trivial modifications to be applied in the planar case. Also,
typically the domain is needed to be truncated to a finite one, often involving an
artificial boundary being introduced. However, the stress and strain fields in planar
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unbounded domains are well-behaved, and are of practical interest to compute.

We shall propose a numerical procedure in elastostatics for the inverse problem of
calculating the displacement on the boundary of a bounded planar inclusion given
the values of the displacement and stress vectors on an infinite-line segment. To find
this vector in a stable way, we extend the alternating method proposed for bounded
domains in Kozlov and Maz’ya (1989), where at each iteration step mixed problems
are needed to be solved. We point out that for stationary heat conduction governed
by the Laplace equation the alternating method was successfully extended and im-
plemented for unbounded regions in Chapko and Johansson (2008). For more on
inverse problems in elasticity in bounded domains, see, for example, Kubo (1988);
Maniatty, Zabaras and Stelson (1989); Marin, Hào and Lesnic (2002); Marin and
Lesnic (2005) and references therein. For some recent results on the reconstruction
of the solution from Cauchy data for the Laplace equation, see, for example, Ling
and Takeuchi (2008); Mera, Elliott, Ingham, and Lesnic (2000).

To formulate the problem that we shall consider, let (x,y) denote an element in IR2.
Furthermore, let D1 ⊂ IR2 be the upper half-plane y > 0 with boundary

Γ1 = {γ1(t) = (t,0) : t ∈ IR}. (1)

We assume that the half-plane D1 is filled with an isotropic and homogeneous elas-
tic medium with Lamé constants µ and λ satisfying λ >−µ and µ > 0.

Let then D2 be a simply connected bounded domain in IR2 with C2-smooth bound-
ary Γ2, such that D̄2 ⊂ D1 (see Fig.1). Moreover, it is assumed that the boundary
Γ2 has the parametric representation

Γ2 = {γ2(t) = (γ21(t),γ22(t)) : t ∈ [0,2π]}, (2)

where γ2 : [0,2π]→ IR2 is injective and two times continuously differentiable. By
θ we denote the unit tangent vector to Γ2 given by θ(t) = |γ ′2(t)|−1γ ′2(t) and by
υ = Qθ the unit normal vector, where Q denotes the unitary matrix

Q :=
(

0 1
−1 0

)
.

Moreover, we denote by D the unbounded solution domain where D := D1 \ D̄2,
and let ν be the outward unit normal vector to Γ1, see further Fig.1.

Given the displacement f1 and stress f2 on the boundary part Γ1 we consider the
inverse problem of reconstructing the displacement u on Γ2, i.e. to construct a
solution u such that




µ∆u+(λ + µ)graddivu = 0 in D,
u = f1 on Γ1,
Tu = f2 on Γ1,

(3)
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Figure 1: The upper half-plane with a bounded inclusion D2.

solution u such that




µ∆u+(λ + µ)graddivu = 0 in D,
u = f1 on Γ1,
Tu = f2 on Γ1,

(3)

where the equations in D in (3) are the Navier equations and T is the traction oper-
ator given by

Tu := λ div(u)ν +2µ (ν ·grad)u+ µ div(Qu)Qν . (4)

This problem may be considered as a sub-problem of reconstructing the functions
u and Tu (with a given normal vector) at any point of the domain D and particularly
on the interior boundary Γ2.

For regularity, we require that u is bounded and u ∈ C2(D)∩C1(D̄). Throughout
the paper the function spaces such as C2(D) and C(Γ2) have to be understood as
vector-valued, i.e., u : D→ IR2 and ψ : Γ2→ IR2.

Note that there is at most one solution to (3) due to unique continuation properties
of elliptic equations and we shall assume that data are chosen such that there exists
a solution, see further Yeih, Koya and Mura (1993).

At each iteration step of the method we propose for solving the above inverse prob-
lem we solve mixed boundary value problems for the elastostatic (Navier) equa-
tions. We need the solution of the Neumann-Dirichlet boundary value problem in
which the vector function u satisfies the mixed boundary value problem





µ∆u+(λ + µ)graddivu = 0 in D,
u = f1 on Γ1,
Tu = g2 on Γ2.

(5)

Also, we have to construct the solution of the Dirichlet-Neumann boundary prob-
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on the interior boundary Γ2.
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
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(5)

Also, we have to construct the solution of the Dirichlet-Neumann boundary prob-
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Tu = f2 on Γ1,
u = g1 on Γ2.
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The procedure starts by solving (5) with an initial guess of g2. Then g1 is con-
structed from the solution of (5), and (6) is solved with this g1 as data. We then
again solve (5) for a certain value of g2 constructed from the previous iteration, and
the method continues in this way by updating g2 and g1 and solving (5) and (6),
respectively, to obtain a sequence of approximations to (3), see further Section 2.

To find the solutions to (5) and (6) we propose an integral equation technique based
on Green’s formula in combination with certain fundamental solutions. The main
advantage with our approach is that each mixed problem is reduced to a boundary
integral equation over the boundary of the bounded inclusion, making it compu-
tationally efficient. We note that using results from complex variable theory, such
as conformal mappings, it is possible in certain cases to obtain analytical formulas
for the solution to planar elastostatic problems, see, for example, Sun and Peng
(2003). However, the method we shall propose can easily be generalized to three-
dimensions.

The outline of the paper is the following. In Section 2, we propose the numerical
procedure for the inverse problem and outline the convergence of it. In Section
3, we show how to reduce the mixed problems (5) and (6) to boundary integral
equations on the bounded boundary Γ2 only by employing the fundamental solution
for the elastostatic half-plane. In Section 4, we use the parameterisations of the
different boundary parts and describe how to numerically implement the method for
the direct problems taking the singularity of each of the kernels into account. Well-
posedness of the boundary integral equations is also included, see Theorems 4.1
and 4.2. Finally, in Section 5, numerical experiments are presented.

2 An alternating procedure for the Cauchy problem (3)

Following Kozlov and Maz’ya (1989) we propose the following procedure to find
the displacement vector u in (3):

• The first approximation u0 to the solution u of (3) is obtained by solving (5)
with g2 = g0, where g0 is an arbitrary initial guess of the stress on the bound-
ary Γ2.

• Once u2k has been constructed, we find u2k+1 by solving problem (6) with
g1 = u2k|Γ2 .

• Then the element u2k+2 is obtained by solving problem (5) with g2 = Tu2k+1|Γ2 .

In the case of exact data the procedure then continues by iterating in the last two
steps.
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To give a stopping rule for the case of noisy data, let w1 be the element obtained
from the second approximation in the proposed alternating procedure, with initial
guess g0 = 0, and define the element F( f1, f2) by

F( f1, f2) = Tw1|Γ2 . (7)

Then, for noisy data f δ
1 and f δ

2 , where δ > 0, and

‖F( f δ
1 , f δ

2 )−F( f1, f2)‖ ≤ δ , (8)

the discrepancy principle can be employed as a stopping rule. This implies in par-
ticular that if k = k(δ ) is the smallest integer with

‖Tuδ
2k+1−Tuδ

2k−1‖ ≤ bδ (9)

for given b > 1, then uδ
k(δ ) converges to the exact solution of (3) when δ → 0.

To see this let u0 be the solution to (5), for given functions g2 = g and f1 = 0. Then
let u1 be the solution to (6) with f2 = 0 and g1 = u0 on Γ2. The operator B is defined
by

Bg = Tu1|Γ2 . (10)

This is a well-defined linear operator. The Cauchy problem (3) is equivalent with
the fixed point equation

Bg+F( f1, f2) = g. (11)

Thus, for the convergence of alternating procedure one has to investigate the proper-
ties of the operator B. From Kozlov and Maz’ya (1989) and Chapko and Johansson
(2008), it can be shown that B (using appropriate function spaces) is self-adjoint,
non-negative, non-expansive, and the number one is not an eigenvalue. This imply
convergence of the procedure. Moreover, according to Chapt. 3, Sect. 3 inVainikko
and Veretennikov (1986), the discrepancy principle can be employed as a stopping
rule in case of noisy data.

3 Reduction of the mixed boundary value problems to integral equations

As is well-known, see Chen and Zhou (1992), the fundamental solution to the
Navier equation in (5) is given by

Φ(x,y) :=
c1

4π
Ψ(x,y) I +

c2

4π
J(x− y),
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where

c1 :=
λ +3µ

µ(λ +2µ)
, c2 :=

λ + µ
µ(λ +2µ)

and
Ψ(x,y) := ln

1
|x− y| , x 6= y.

Here, I is the 2×2 identity matrix, and the matrix J is defined by J(w) := ww>/|w|2
in terms of a dyadic product of w ∈ IR2 \{0} and its transpose w>.

Since we are working in a semi-infinite solution domain and have an integral rep-
resentation for the solution, the application of the Green’s function technique is
preferable in this case. The Green’s function (or Green’s tensor) for the Navier
equation in (5) in the upper half-plane D1 with the Dirichlet condition of (5) im-
posed on its boundary Γ1, can be represented in the following way (see Sheremet
(1984))

G(x,y) = Φ(x,y)+U(x,y), x,y ∈ D1,

where the matrix U is composed by the elements

u11(x,y) :=
1

4π

[
−c1− c2(x1− y1)

∂
∂y1

+2c3x2y2
∂ 2

∂y2
1

]
Ψ(x,y∗),

u12(x,y) :=
1

4π

[
−c2(x2− y2)+2c3x2y2

∂
∂y2

]
∂Ψ(x,y∗)

∂y1
,

u21(x,y) :=
1

4π

[
−c2(x2− y2)−2c3x2y2

∂
∂y2

]
∂Ψ(x,y∗)

∂y1
,

u22(x,y) :=
1

4π

[
−c1 + c2(x2 + y2)

∂
∂y2
−2c3x2y2

∂ 2

∂y2
2

]
Ψ(x,y∗)

with y∗ := (y1,−y2) and c3 :=
(λ + µ)2

µ(λ +2µ)(λ +3µ)
.

We shall use the indirect boundary integral equation method for the mixed bound-
ary value problem (5). Taking into account that we are working in a semi-infinite
region, we consider the following modification of the elastic single-layer potential

U(x) =
∫

Γ2

G(x,y)ψ(y)ds(y),

with an unknown vector density ψ on the boundary Γ2. Note here that the possi-
bility to use the Green’s function technique in the case of elasticity is discussed in
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Kupradze (1965) in general and in Arens (1999) for the elastodynamic half-plane.
Based on the definition of the Green function G we see that the above potential U
has the properties of the classical elastic single-layer potential. Also, we note that
U(x) = 0 for x ∈ Γ1. Let w be some function, which satisfies the elastostatic equa-
tion in the semi-infinite domain D1 and the boundary value condition w = f1 on Γ1.
Now, we can seek the solution of the boundary value problem (5) in the form

u = U +w in D.

It is straightforward to see that the function u satisfies the elastostatic equation and
the Dirichlet boundary condition on the boundary Γ1. In general the function w can
be represented in the form

w(x) =−
∫

Γ1

[TyG(y,x)]> f1(y)ds(y).

We assume the following asymptotic behaviour for the boundary function f1

f1(x) = O(|x|1−ε), ε > 0, |x| → ∞. (12)

Summarizing we represent the solution of (5) as

u(x) =
∫

Γ2

G(x,y)ψ(y)ds(y)−
∫

Γ1

[TyG(y,x)]> f1(y)ds(y), x ∈ D, (13)

with an unknown vector density ψ on Γ2 and T defined by (4).

Using the well-known properties of the restriction of the single-layer elasticity po-
tential to the boundary, we reduce the boundary value problem (5) to the following
integral equation of the second kind

−1
2

ψ(x)+
∫

Γ2

TxG(x,y)ψ(y)ds(y)= g2(x)+
∫

Γ1

Tx[TyG(y,x)]> f1(y)ds(y), x∈Γ2.

(14)

The kernel of the equation (14) has a strong singularity and the corresponding in-
tegral is interpreted as a Cauchy principal value integral.

Also in the case of the Neumann boundary condition of (6) the indirect boundary
integral equation method with the Green’s function technique is used. The corre-
sponding Green’s function again has the form

N(x,y) = Φ(x,y)+V (x,y), x,y ∈ D1,
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where the regular matrix V is composed by the elements

v11(x,y) :=
c2

4π

[
−4x2y2(x1− y1)2

|x− y∗|4 +
c4(x1− y1)2 +2x2y2

|x− y∗|2 − c5Ψ(x,y∗)
]
,

v12(x,y) :=
c2

4π

[
4x2y2(x1− y1)(x2 + y2)

|x− y∗|4 +
c4(x1− y1)(x2− y2)

|x− y∗|2 + c6 arctan
y1− x1

x2 + y2

]
,

v21(x,y) :=
c2

4π

[
4x2y2(y1− x1)(x2 + y2)

|x− y∗|4 +
c4(x1− y1)(x2− y2)

|x− y∗|2 − c6 arctan
y1− x1

x2 + y2

]
,

v22(x,y) :=
c2

4π

[
4x2y2(x2 + y2)2

|x− y∗|4 +
c4(x2 + y2)2−2x2y2

|x− y∗|2 − c5Ψ(x,y∗)
]

with constants c4 := (λ +3µ)/(λ + µ), c5 :=−(λ 2 +4λ µ +5µ2)/(λ + µ)2, c6 =
2µ(λ +2µ)/(λ + µ2).
Thus, the solution of the boundary value problem (6) can be written in the integral
form

u(x) =
∫

Γ2

N(x,y)ψ(y)ds(y)+
∫

Γ1

N(x,y) f2(y)ds(y)+α, x ∈ D, (15)

with an unknown density ψ on Γ2 and a constant vector α . In order to satisfy the
boundedness condition at infinity, the side condition

∫

Γ2

ψ(y)ds(y) = 0

is imposed. Also we suppose that the following conditions for the boundary func-
tion f2 are satisfied

f2(x) = O(|x|−1−ε), ε > 0, |x| → ∞,
∫

Γ1

f2(y)ds(y) = 0. (16)

Considering well-known properties of a single-layer potential on the boundary the
problem (6) can be reduced to a system of integral equations of the first kind




∫

Γ2

N(x,y)ψ(y)ds(y)+α = g1(x)−
∫

Γ1

N(x,y) f2(y)ds(y), x ∈ Γ2,

∫

Γ2

ψ(y)ds(y) = 0.

(17)

We point out that the kernel of the left-hand side integral in the first equation con-
tains a logarithmic singularity.
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4 Numerical solution of the integral equations

4.1 Numerical solution of (14)

Using the parameterizations (1) and (2) for the boundaries of the solution domain D,
we can transform (14) into the parametric form

− ϕ(t)
|γ ′2(t)|

+
1

2π

∫ 2π

0

[
c7

|γ ′2(t)|
cot

t− τ
2

Q+K1(t,τ)
]

ϕ(τ)dτ = w(t), t ∈ [0,2π], (18)

where ϕ(t) := ψ(γ2(t))|γ ′2(t)|, c7 := µ/(λ +2µ) and

w(t) := 2g2(γ2(t))+
1

2π

∫ ∞

−∞
K2(t,τ) f1(γ1(τ))dτ. (19)

The kernel K1 has the form:

K1(t,τ) := K11(t,τ)−K12(t,τ),

where

K11(t,τ) :=
2
|γ ′2(t)|

{
c7M1(t,τ)Q−M2(t,τ)[c7I + c8J̃(t,τ)]

}
,

and
K12(t,τ) := 2πTxU(x,y)

∣∣
x=γ2(t),y=γ2(τ) .

Here, we introduced the constant c8 := 2(λ + µ)/(λ +2µ) and the matrices

M1(t,τ) :=





1
2

cot
τ− t

2
+

(γ2(t)− γ2(τ))γ ′2(t)
|γ2(t)− γ2(τ)|2 , for t 6= τ,

γ ′′2 (t)γ ′2(t)
2|γ ′2(t)|2

, for t = τ,

M2(t,τ) :=





(γ2(t)− γ2(τ))Qγ ′2(t)
|γ2(t)− γ2(τ)|2 , for t 6= τ,

−γ ′′2 (t)Qγ ′2(t)
2|γ ′2(t)|2

, for t = τ,

and

J̃(t,τ) =





J(γ2(t)− γ2(τ)), for t 6= τ,

γ ′2(t)γ ′2(t)>

|γ ′2(t)|2
, for t = τ.
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The kernel K2 is given as

K2(t,τ) := 2πTx[TyG(y,x)]>
∣∣
x=γ2(t),y=γ1(τ) .

Note that the kernels K12 and K2 are continuous and their analytical expressions
can be obtained by direct calculations by hand, however, the use of some system of
computer algebra is recommended.

For m∈ IN∪{0} and 0 < α < 1, by Cm,α [0,2π] we denote the space of m-times uni-
formly Hölder with exponent α continuously differentiable and 2π-periodic vector
functions equipped with the usual Hölder norm. For the well-posedness of the
integral equation (18) we have the following result:

Theorem 4.1 For m∈ IN∪{0}, Γ2 ∈Cm+2, g2 ∈Cm,α [0,2π] and f1 ∈C(Γ1) satisfying
the condition (12), the integral equation (18) has exactly one solution ϕ ∈Cm,α [0,2π].

For the full discretization of the integral equation (18), which has a strong singularity,
we apply a quadrature method together with the quadrature rule Chapko (2004);
Kress (1999) based on trigonometric interpolation. For this purpose, we choose an
equidistant mesh by setting

ti := iπ/M, i = 0, . . . ,2M−1, M ∈ IN

and use the quadrature rules

1
2π

2π∫

0

f (τ)dτ ≈ 1
2M

2M−1

∑
j=0

f (t j) (20)

and
1

2π

2π∫

0

f (τ)cot
t− τ

2
dτ ≈

2M−1

∑
j=0

T̃j(t) f (t j)

with weight functions

T̃k(t) =− 1
M

M−1

∑
m=1

sinm(t− tk)−
1

2M
sinM(t− tk).

For the numerical calculation of the integrals in (19), we apply the so-called sinc-
quadrature rule

∞∫

−∞

f (τ)dτ ≈ h∞

M1

∑
i=−M1

f (ih∞), M1 ∈ IN, h∞ =
c√
M1

, c > 0. (21)
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Thus, after the application of the Nyström method to the integral equations (18)
and the quadrature rule (21) for the computation of the integral in the right-hand
side of (19), we obtain the following system of linear equations

− ϕ̃(tk)
|γ ′2(tk)|

+
2M−1

∑
j=0

[
c7

|γ ′2(tk)|
T̃j(tk)Q+

1
2M

K1(tk, t j)
]

ϕ̃(t j)= w̃(tk), k = 0, . . . ,2M−1,

with the right-hand side

w̃(tk) := 2g2(γ2(tk))+
h∞

2π

M1

∑
i=−M1

K2(tk, ih∞) f1(γ1(ih∞)).

A convergence and error analysis for the Nyström method can be found, for ex-
ample, in Kress (1999). This analysis exhibits the dependence of the convergence
rate on the smoothness of the boundary curve Γ2 of the inclusion and the boundary
function g2, i.e. the proposed method belongs to the class of algorithms without
"saturation effect". The numerical solution uM = (u1,M,u2,M) of the problem (5)
can be obtained by discretization of the representation (13) via the quadratures (20)
and (21).

4.2 Numerical solution of (17)

We can also numerically solve (17) with the above technique and we therefore
only shortly describe the numerical solution of the system (17). After using the
parametrizations (1) and (2) we arrive to the parametrized system of integral equa-
tions which could be transformed as follows:




1
2π

2π∫

0

[
−c1

4
ln
{

4
e

sin2 t− τ
2

}
I +H1(t,τ)

]
ϕ(τ)dτ +α = ω(t), t ∈ [0,2π],

2π∫

0

ψ(τ)dτ = 0,

(22)

where ϕ(t) := ψ(γ2(t))|γ ′2(t)| and the right hand side is given as

ω(t) := g1(γ2(t))−
1

2π

∞∫

−∞

H2(t,τ) f2(γ1(τ))dτ. (23)
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The kernels have the form

H1(t,τ) := H11(t,τ)+H12(t,τ),

where

H11(t,τ) :=





c1

4
ln
{

4
e

sin2 t− τ
2

}
I +

c2

2
J̃(t,τ) for t 6= τ,

c1

4
ln
{

1
e|γ ′2(t)|2

}
+

c2

2
J̃(t, t) for t = τ,

and

H12(t,τ) := 2πV (γ2(t),γ2(τ)), H2(t,τ) := 2πN(γ2(t),γ1(τ)).

The following classical result about well-posedness holds Kress (1999); McLean
(2000).

Theorem 4.2 For m ∈ IN∪ {0}, Γ2 ∈ Cm+2, g1 ∈ Cm+1,β [0,2π] and f2 ∈ C(Γ1)
satisfying the conditions (16), the integral equation (22) has exactly one solution
ϕ ∈Cm,β [0,2π] and α ∈ IR2.

For the full discretization of (22) the quadrature method based on the trigonometric
interpolation is applied again Chapko and Kress (1993); Kress (1999). We use the
quadrature (20) for the integrals without singularities and in the case of a logarith-
mic singularity the following quadrature rule Kress (1999)

1
2π

2π∫

0

ln
{

4
e

sin2 t− τ
2

}
f (τ)dτ ≈

2M−1

∑
j=0

R j(t) f (t j) (24)

with known weight functions

R j(t) =− 1
2M

{
1+2

M−1

∑
k=1

1
k

cosk(t− t j)+
1
M

cos(t− t j)

}
.

For the integrals in the right-hand side in (23) the sinc-quadrature (21) is applied.
The numerical solution of the mixed problem (6) can be obtained by discretization
of the representation (15) via the quadratures (20), (21) and (24).
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5 Numerical experiments

Ex.1 First, we shall investigate the proposed numerical method for the direct mixed
Neumann-Dirichlet problem (5). The chosen boundary curves are illustrated in
Fig.2.

Here, Γ1 and the boundary of the inclusion, i.e. Γ2, are described by the parametriza-
tions

Γ1 =
{
(x1,x2)| x1(t) = t,x2(t) = 0, −∞ < t < ∞

}
,

Γ2 =
{
(x1,x2)|x1(t) = r(t)cos t,x2(t) = r(t)sin t +2,r(t) =

√
cos2 t +0.25sin2 t,

t ∈ [0,2π]
}
.

The Lamé constants in (5) are µ = 1 and λ = 1, and the boundary functions are
given by

g2(x) = (x1 + x2,x1− x2) on Γ2, f1(x) = (x1e−x2
1 ,x1e−x2

1) on Γ1.

To produce numerical results we choose three points in the solution domain D and
these points have coordinates (0,0.4), (1.4,1), and (0,3), respectively, and are
marked out in Fig.2.

In Table 1 we demonstrate the convergence of our proposed boundary integral
method from Sections 3 and 4, for the mixed Neumann-Dirichlet boundary value
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5 Numerical experiments

Ex.1 First, we shall investigate the proposed numerical method for the direct mixed
Neumann-Dirichlet problem (5). The chosen boundary curves are illustrated in
Fig.2. Here, Γ1 and the boundary of the inclusion, i.e. Γ2, are described by the

Figure 2: Half-plane with a bounded inclusion.
Figure 2: Half-plane with a bounded inclusion.
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Table 1: Numerical results for the displacement solution UM = (U1,M,U2,M) in the
Neumann-Dirichlet problem (5).

x M u1,M u2,M

(0,0.4) 16 -0.33684693676588 0.48560794330456
32 -0.33684812513376 0.48560925550574
64 -0.33684812524779 0.48560925562875

128 -0.33684812524779 0.48560925562875
(1.4,1) 16 -1.27722557867857 0.30228160310729

32 -1.27722902221229 0.30228260448122
64 -1.27722902253654 0.30228260457376

128 -1.27722902253654 0.30228260457376
(0,3) 16 -2.86917184535060 1.89717003519494

32 -2.86918172557303 1.89718275876519
64 -2.86918172650555 1.89718276002206

128 -2.86918172650555 1.89718276002206

problem (5), with respect to the number of collocation points M for the three dif-
ferent points (in the solution domain D) given above and fixed M1 = 1000. The
exponential convergence with respect to the number M is clearly exhibited in all
cases.

Ex.2 Here, we investigate the numerical method proposed for the direct mixed
Dirichlet-Neumann boundary value problem (6). The boundary curves are as in the
previous example, see Fig.2, and the boundary data functions are given by

g1(x) = (x1 + x2,x1− x2) on Γ2, f2(x) =
(

x1e−x2
1 ,x1e−x2

1

)
on Γ1.

Moreover, the same three points as above are chosen in the solution domain D.
In Table 2 we demonstrate the convergence of our method from Sections 3 and 4
for the mixed Dirichlet-Neumann boundary value problem (6) with respect to the
number of collocation points M for fixed M1 = 1000. Again, we clearly see the
exponential convergence with respect to the number M.

Ex.3 In this numerical example we finally investigate convergence of the alternating
algorithm for the Cauchy problem (3). We choose the exact solution of the problem
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The Lamé parameters are set to λ = µ = 1. The discretization parameters for the
direct problems are M = 32 and M1 = 500. The boundary curves are the same as in
the previous numerical examples.

In this test example, the exact input Cauchy data are generated from the exact so-
lution (25). The initial guess for the alternating algorithm is chosen as a perturbed
exact solution with high rate of perturbation. The perturbed Cauchy data were ob-
tained from the exact input data by adding at each point some arbitrary value which
is not greater than the predefined level of noise δ . For visual comparison pur-
poses we demonstrate the exact components of the displacements field in (a part
of) the unbounded domain D in Fig. 5. The behaviour of the L2-errors between
the exact and computed displacements and stress (traction) field reconstructions,
respectively, on the inner boundary Γ2 are shown in Fig. 3 and Fig. 4 . The results
of the reconstruction of the displacements on the inner boundary Γ2 and inside of
the domain in case of the exact input data and in case of the perturbed input data
are shown in Fig. 61. As expected, the accuracy for the stress field reconstructions
is less than the corresponding accuracy of the displacement field. However, it is
still a reasonable accurate reconstruction also for the stress field. Furthermore, in
the case of noisy data, due to the ill-posedness of the Cauchy problem (3), the alter-
nating iterative procedure has to be terminated since the error in the data will start
to magnify after a certain number of iterations. A stopping rule, the discrepancy
principle, can be employed to terminate the iterations as explained in Section 2.

Figure 3: L2-errors after 600 alternating iterations for the displacements (a)) and
for the tractions (b)) in case of the exact Cauchy data.

1 We point out that the triangular mesh was used only for purpose of data visualisation and it has no
relation to the process of solving of the inverse problem.

Figure 3: L2-errors after 600 alternating iterations for the displacements (a)) and
for the tractions (b)) in case of the exact Cauchy data.
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Figure 4: L2-errors after 2000 alternating iterations for the displacements (a)) and
for the tractions (b)) in case of a 10% input data perturbation.

Figure 5: Exact displacement field in D. a) represents the displacement field com-
ponent u1 and b) represents the displacement field component u2.

Figure 4: L2-errors after 2000 alternating iterations for the displacements (a)) and
for the tractions (b)) in case of a 10% input data perturbation.
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Figure 4: L2-errors after 2000 alternating iterations for the displacements (a)) and
for the tractions (b)) in case of a 10% input data perturbation.

Figure 5: Exact displacement field in D. a) represents the displacement field com-
ponent u1 and b) represents the displacement field component u2.
Figure 5: Exact displacement field in D. a) represents the displacement field com-
ponent u1 and b) represents the displacement field component u2.
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Table 2: Numerical results for the displacement solution UM = (U1,M,U2,M) in the
Dirichlet-Neumann problem (6)

x M u1,M u2,M

(0,0.4) 16 1.64758725469458 -1.19947152991989
32 1.64758725187306 -1.19947153235628
64 1.64758725187314 -1.19947153235656

128 1.64758725187314 -1.19947153235656
(1.4,1) 16 1.85977712177613 -1.35488948702158

32 1.85977712931313 -1.35488950906986
64 1.85977712931324 -1.35488950906975

128 1.85977712931324 -1.35488950906975
(0,3) 16 2.61131218205450 -2.55788373094839

32 2.61131222241267 -2.55788359505479
64 2.61131222241262 -2.55788359505479

128 2.61131222241262 -2.55788359505479

given by:

u(x) :=




−x2
1−2x1(x2−2)+(x2−2)2

(x2
1 +(x2−2)2)2

x2
1−2x1(x2−2)− (x2−2)2

(x2
1 +(x2−2)2)2




. (25)

The Lamé parameters are set to λ = µ = 1. The discretization parameters for the
direct problems are M = 32 and M1 = 500. The boundary curves are the same as in
the previous numerical examples.

In this test example, the exact input Cauchy data are generated from the exact so-
lution (25). The initial guess for the alternating algorithm is chosen as a perturbed
exact solution with high rate of perturbation. The perturbed Cauchy data were ob-
tained from the exact input data by adding at each point some arbitrary value which
is not greater than the predefined level of noise δ . For visual comparison purposes
we demonstrate the exact components of the displacements field in (a part of) the
unbounded domain D in Fig. 511. The behaviour of the L2-errors between the
exact and computed displacements and stress (traction) field reconstructions, re-
spectively, on the inner boundary Γ2 are shown in Fig. 3 and Fig. 4 . The results of
the reconstruction of the displacements on the inner boundary Γ2 and inside of the
domain in case of the exact input data and in case of the perturbed input data are
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Figure 6: Reconstruction of the displacement field in D. a) and c) are the displace-
ment field components u1 and u2 respectively after 1000 iterations in case of the
exact input data; b) and d) are the corresponding results obtained after 600 itera-
tions (minimal errors) in case of a 10% perturbation of the input data.
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Figure 6: Reconstruction of the displacement field in D. a) and c) are the displace-
ment field components u1 and u2 respectively after 1000 iterations in case of the
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shown in Fig. 62. As expected, the accuracy for the stress field reconstructions is
less than the corresponding accuracy of the displacement field. However, it is still
a reasonable accurate reconstruction also for the stress field. Furthermore, in the
case of noisy data, due to the ill-posedness of the Cauchy problem (3), the alter-
nating iterative procedure has to be terminated since the error in the data will start
to magnify after a certain number of iterations. A stopping rule, the discrepancy
principle, can be employed to terminate the iterations as explained in Section 2.

2 We point out that the triangular mesh was used only for purpose of data visualisation and it has no
relation to the process of solving of the inverse problem.
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