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Abstract

It is proposed that convection driven dynamos operating in planetary cores could be
oscillatory even when the oscillations are not directly noticeable from the outside.
Examples of dynamo simulations are pointed out that exhibit oscillations in the
structure of the azimuthally averaged toroidal magnetic flux while the mean poloidal
field shows only variations in its amplitude. In the case of the geomagnetic field,
global excursions may be associated with these oscillations. Long period dynamo
simulations indicate that the oscillations may cause reversals once in a while. No
special attempt has been made to use most realistic parameter values. Nevertheless
some similarities between the simulations and the paleomagnetic record can be
pointed out.
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1 Introduction

The origin of geomagnetic reversals is a much debated subject among scientists
in the fields of paleomagnetism and dynamo theory. There is general agreement
that a detailed understanding of reversals is a key issue of geodynamo theory.
In this connection also the problem of global excursions of the geomagnetic
field in which the dipole strength reaches temporarily unusually low values
has been discussed and it has been suggested (Doell & Cox (1972), Hoffman
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(1981), see also Merrill et al. (1996) and later papers by Gubbins (1999) and
Wicht (2005)) that global excursions are aborted reversals. Not all recorded
excursions are global ones, but global excursions still appear to occur more
frequently than reversals. Langereis et al. (1997) identified at least six global
excursions in the last about 800 ky since the Brunhes/Matuyama reversal, but
in the last decade many more global excursions have been found according to
Lund et al. (2006). In this letter we wish to support the notion that global
excursions and reversals originate from the same mechanism. An oscillatory
dynamo process that manifests itself primarily in the toroidal component of
the magnetic field will be proposed as such a mechanism. Indeed, from the
perspective of the oscillations, excursions must be considered as the normal
behavior, while a reversal represents an exceptional excursion in which the
mean poloidal field is perturbed more strongly that it can recover from its
low-amplitude state only with the opposite sign.

Traditionally the geodynamo is regarded as a stationary dynamo in contrast to
the solar dynamo which exhibits a 22-year period. Dynamo simulations have
shown, however, that in rapidly rotating spherical fluid shells with significant
differential rotation often oscillatory dynamos are found. That dynamo oscil-
lations may not be visible from the exterior of the conducting fluid sphere
has been pointed out previously (Busse & Simitev (2006)). The present let-
ter intends to demonstrate how oscillations can lead to global excursions and
more rarely to reversals. While the simulations are based on the fundamental
equations governing the generation of magnetic fields by convection flows in
rotating spherical shells, only a minimum of physical parameters is introduced
and a faithful modeling of the Earth’s core has not been the primary goal.

2 Mathematical formulation

We consider a spherical fluid shell of thickness d rotating with a constant
angular velocity Ω. It is assumed that a static state exists with the temperature
distribution TS = T0 − βd2r2/2. Here rd is the length of the position vector,
r, with respect to the center of the sphere. The gravity field is g = −dγr.
In addition to the length d, the time d2/ν, the temperature ν2/γαd4 and
the magnetic flux density ν(µ̺)1/2/d are used as scales for the dimensionless
description of the problem where ν denotes the kinematic viscosity of the fluid,
κ its thermal diffusivity, ̺ its density, α its coefficient of thermal expansion
and µ is its magnetic permeability. The Boussinesq approximation is assumed.
Accordingly, the velocity field u as well as the magnetic flux density B are
solenoidal vector fields for which the general representation in terms of poloidal
and toroidal components can be used,

u = ∇× (∇v × r) +∇w × r , (1a)

B = ∇× (∇h× r) +∇g × r . (1b)
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By multiplying the (curl)2 and the curl of the equation of motion and of the
induction equation by r, we obtain four equations for v and w and for h and
g. These four equations together with the heat equation for the dimensionless
deviation Θ from the static temperature distribution and with the appropriate
boundary conditions represent the basis for the mathematical description of
the evolution in time of thermal convection in the rotating spherical shell and
of the magnetic field generated by it. Since these equations have been given in
previous papers (Simitev & Busse (2005), Busse & Simitev (2006)), we list
here only the dimensionless parameters, the Rayleigh number R, the Coriolis
number τ , the Prandtl number P and the magnetic Prandtl number Pm,

R =
αγβd6

νκ
, τ =

2Ωd2

ν
, P =

ν

κ
, Pm =

ν

λ
, (2)

where λ is the magnetic diffusivity. We assume stress-free boundaries with
fixed temperatures and use the radius ratio ri/ro = 0.4,

v = ∂2
rrv = ∂r(w/r) = Θ = 0

at r = ri ≡ 2/3 and r = ro ≡ 5/3. (3)

For the magnetic field an electrically insulating outer boundary is assumed
such that the poloidal function h must be matched to the function h(e) which
describes the potential field outside the fluid shell

g = h− h(e) = ∂r(h− h(e)) = 0 at r = ro ≡ 5/3. (4)

In order to avoid the computation of h and g in the inner core, r ≤ ri, we
assume either an electrically insulating inner boundary,

g = h− h(e) = ∂r(h− h(e)) = 0 at r = ri ≡ 2/3, (5)

or a perfectly conducting inner core in which case the conditions

h = ∂r(rg) = 0 at r = ri ≡ 2/3 (6)

must be applied. The numerical integration of the equations for v, w,Θ, h and
g together with boundary conditions (3), (4) and (5) or (6) proceeds with
the pseudo-spectral method as described by Tilgner (1999) which is based on
an expansion of all dependent variables in spherical harmonics for the θ, ϕ-
dependences, i.e. h =

∑

l,m

Hm
l (r, t)Pm

l (cos θ) exp{imϕ} (7)

and analogous expressions for the other variables, v, w,Θ and g. Pm
l denotes

the associated Legendre functions. For the r-dependence expansions in Cheby-
chev polynomials are used. Azimuthally averaged components of the fields
v, w,Θ, h and g will be indicated by an overbar. For most computations to
be reported here a minimum of 33 collocation points in the radial direction
and spherical harmonics up to the order 96 have been used. But this high
resolution was not needed in all cases. Instead of the time t based on the vis-
cous time scale we shall use in the following the time t∗ = t/Pm based on the
magnetic diffusion time, d2/λ.
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3 Oscillations of the Toroidal Magnetic Flux

Even in their turbulent state of motion, convection flows outside the tangent
cylinder which touches the inner core boundary at its equator remain essen-
tially symmetric with respect to equatorial plane as is evident from figure 1.
For this reason dynamo solutions characterized by an axial dipole correspond
to a mean azimuthal magnetic flux that is antisymmetric with respect to the
equatorial plane. Oscillations of these axisymmetric flux tubes originate from
the creation of a pair of new flux tubes with opposite signs at the equatorial
plane which grow and push the older flux towards higher latitudes as shown in
figure 2. This process is strongly dependent on the differential rotation which
is prograde at larger distances from the axis and retrograde at smaller ones.
The oscillations can be described by Parker’s dynamo wave model (Parker
(1955)) as has been done by Busse & Simitev (2006). In the present case of
figure 2 the oscillation is modified in two respects. First, the mean toroidal
field becomes nearly quadrupolar, i.e. symmetric about the equatorial plane, as
the amplitudes of the mean poloidal field and of the differential rotation reach
their minimum values. Secondly and more importantly, the mean poloidal field
participates in the oscillation only as far as its amplitude varies. In the case
of figure 2 its amplitude decays and reaches a minimum around t∗ ≈ 1.6 at
which time a magnetic eddy emerges with the opposite sign of the given mean
poloidal field. Usually this eddy drifts outward and dissipates as it reaches the
surface of the conducting region such that the original poloidal field prevails.
Now a relatively long time passes before the process repeats itself and new
toroidal flux emerges at the equatorial plane. In contrast to the thinner flux
tubes of dynamos at higher Prandtl numbers which exhibit a more sinusoidal
oscillation as shown in section (b) of figure 3, the oscillation in the present
case resembles more a relaxation oscillation as shown in section (a) of figure
3. The amplitudes H0

l , G
0
l in this figure are assumed at the mid-radius of the

fluid shell, but H0
1 usually does not differ much from the dipole component

describing the magnetic field outside the fluid shell.

While the process visualized in figure 2 shares several features with global
excursions, it may also give rise to reversals. These happen in some cases
when the emerging eddy with the opposite sign of the poloidal field replaces
the latter as shown in figure 4. This situation occurs most likely if the eddy
with the opposite sign emerges near the equatorial plane such that it splits
the original field into two parts. It is remarkable that the reversed poloidal
field appears first at low latitudes as has also been observed in the case of
geomagnetic reversals (Clement (2004)). Note that the radius r = ro + 1.3
corresponds approximately to the Earth’s surface. The occurrence of a reversal
seems to be promoted by a particularly strong equatorially symmetric toroidal
flux as appears to be indicated by the correlation between reversals and relative
high absolute values of the coefficient G0

1 in sections (b) and (c) of figure 3. We
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note in passing that Li et al. (2002), propose a reversal mechanism in which
the quadrupole mode grows, exceeding the dipole mode before the reversal in a
manner similar to what happens near the minimum of the oscillations shown in
figure 2. In contrast, however, our dynamo solutions do not alternate between
high- and low-energy states, nor do they exhibit a broken columnar vortex
structure of the velocity field.

The examples discussed so far all correspond to a single set of parameter val-
ues. In particular condition (6) for a highly electrically conducting core has
been used. In order to demonstrate the robust nature of the mechanism of
global excursions and reversals, we show in figure 5 a sequence of plots ex-
hibiting a reversal from a dynamo simulation with a quite different set of
parameters for which condition (5) instead of (6) has been applied. The oscil-
lations occur somewhat less regularly in this case as is evident from the time
series of the amplitude of the axial dipole component shown in section (c) of
figure 3, but the average period is again close to half a magnetic diffusion time.
A common property of the oscillations is that the quadrupolar components of
the axisymmetric magnetic field play a significant role. In this respect some
similarity may be noted with the oscillations displayed in figures 12 and 13 of
Busse & Simitev (2006).

Although the inner core does not participate in the oscillations in either of the
boundary conditions (5) and (6), we expect that the use of a vanishing jump
of the electrical conductivity at r = ri will not affect the results significantly.
As has been observed in the dynamo simulations of Wicht (2002) and of
Simitev & Busse (2005), because of its small volume the inner core does not
appear to have a significant effect on the dynamo process.

4 Discussion

In selecting the dynamo cases displayed in figures 2, 4 and 5 we have em-
phasized a high value of τ and a reasonably high value of R for which the
available computer capacity allows to obtain time records extending over
many magnetic diffusion times. The critical values of the Rayleigh numbers for
τ = 3×104 and τ = 105 are Rc = 2.35×104 with mc = 10 and Rc = 1.05×106

with mc = 11, respectively. Hence the Rayleigh numbers used for the cases of
figures 2, 4 and 5 exceed their critical values by nearly a factor of four. The
corresponding average Nusselt numbers at the inner boundary are Nui = 1.58
and Nui = 1.73 and the corresponding magnetic Reynolds numbers, defined
by Rm ≡ Pm

√
2E, are Rm = 210 and Rm = 156, respectively. The Prandtl

number P = 0.1 was used in both cases since it appears to be a reasonable
compromise between the molecular value P = 0.05 estimated for the outer
core (Poirier (1988)) and a value of the order unity usually assumed for a
highly turbulent fluid. Moreover, the choice of a low value of P has allowed
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us to choose a desirable relatively low value of Pm.

The successful application of Parker’s kinematic model for dynamo waves em-
ployed by Busse & Simitev (2006) suggests that the oscillations depend pri-
marily on the differential rotation and the mean helicity of convection which
are assumed as given. The modified oscillation considered in the present paper
is characterized by an extended phase of a dominant equatorially symmetric
(quadrupolar) mean toroidal field which is responsible for the property that
the period becomes comparable to the magnetic diffusion time. The variations
of the amplitude of convection and of the differential rotation seem to be of
lesser importance.

Using the depth d ≈ 2200 km of the liquid outer core and a typical and
often quoted value λ ≈ 2 m2/s we find 0.8 × 105 years as the magnetic dif-
fusion time of the Earth’s core which corresponds to t∗ = 1 in the figures
of this paper. The oscillation period T ∗ ≈ 0.5 obtained in the time series
of figure 3(a) thus roughly equals about 40 ky in the Earth’s core. This
period is quite comparable to the broad maximum in the region of 30-50
ky that seems to characterize the spectrum of the amplitude variations of
the geomagnetic field (Tauxe & Shackleton (1994), Tauxe & Hartl (1997),
Guyodo & Valet (1999)) throughout the last million years. A more recent
analysis (Constable & Johnson (2005)) has shed some doubts on the exis-
tence of such a spectral peak, but still confirms a sharp decrease of the spectral
power for periods shorter than about 30 ky. We also like to draw attention to
the property that the typical separation between global excursions in table 1
of Lund et al. (2006) varies between 30 and 50 ky.

From the reversals exhibited in figures 3, 4 and 5 it appears that the amplitude
increases more sharply after the reversal than it decays towards the reversal. To
demonstrate this effect more clearly we have plotted in figure 6 the coefficient
H0

1 in proximity of the reversal as a function of time for each of the last 4
reversals that have been obtained in the cases a) and c) of figure 3. Although
the asymmetry between the dipole strengths before and after the reversal is not
as strong as has been found in the case of paleomagnetic reversals (Valet et al.
(2005),Guyodo & Valet (2006)), a similar effect seems to exist. Since the time
records of figure 3 do not exhibit this effect very well we have plotted in figure
6 values of H0

1 at r = ri+0.5 for shorter time periods. In the case R = 850000
H0

1 at r = ro is also shown (by solid lines) since it represents the axial dipole
strength of the potential field outside the fluid shell. Apart from a small shift
in time the value of H0

1 does not vary much as function of the radius. In the
continuing investigation of the dynamo oscillations it will be attempted to find
even closer correspondences with paleomagnetic observations.

The possibility of toroidal flux oscillations as origin of global excursions and
reversals proposed in this paper differs from all other mechanisms proposed
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in the literature for reversals and excursions and resembles more the mecha-
nisms considered for the solar cycle. In the latter the mean poloidal field fully
participates, of course, similarly as in the dipole oscillation of figure 10 of
Busse & Simitev (2006) except for the property that the solar dynamo wave
propagates towards lower instead of higher latitudes. A comparison of different
mechanisms for geomagnetic reversals would go beyond the scope of present
paper and should be postponed until more detailed computational results for
a wider range of parameters become available.
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Fig. 1. (color online). Typical structures of the velocity field in the case P = 0.1,
τ = 105, R = 4 × 106, Pm = 0.5 with a perfectly electrically conducting inner
core. The left plot shows lines of constant uϕ in the left half and streamlines
r sin θ∂θv =const. in the right half, all in the meridional plane. The right plot shows
lines of constant ur at r = ri + 0.5 at the time t∗ = 1.486. Positive and negative
values are indicated by solid (red online) and dashed (blue online) lines.
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Fig. 2. (color online). Dynamo oscillation in the case P = 0.1, τ = 105, R = 4×106,
Pm = 0.5 with perfectly conducting inner core. The half circles show lines of constant
uϕ. The full circles show meridional isolines of Bϕ (left half) and of r sin θ∂θh (right
half) at times t∗ = 1.490, 1.538, 1.586, 1.634, (first column, from top to bottom)
and t∗ = 1.682, 1.810, 1.954, 2.034 (second column). The times t∗ refer to figure
3(a).
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Fig. 3. (color online). Selected coefficients at r = ri + 0.5 in the cases (a) P = 0.1,
τ = 105, R = 4 × 106, Pm = 0.5 with perfectly conducting inner core; (b) P = 5,
τ = 5000, R = 600000, Pm = 10 with electrically insulating inner core; (c) P = 0.1,
τ = 3 × 104, R = 850000, Pm = 1 with insulating inner core. The coefficient of
the axial dipole component H0

1 (axial quadrupole component H0
2 ) is indicated by a

solid/red online (dashed/blue online) line. The coefficient G0
2 in (a) is indicated by

a dashed/green online line.
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Fig. 4. (color online). Magnetic field polarity reversal in the case P = 0.1, τ = 105,
R = 4× 106, Pm = 0.5 with perfectly conducting inner core. The left column shows
meridional isolines of Bϕ (left half) and of r sin θ∂θh (right half). The right column
shows lines Br = const. at r = ro+1.3. The interval between the plots is ∆t∗ = 0.048
with the first plot at t∗ = 0.994 (see figure 3(a)).
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Fig. 5. (color online). Same as figure 4, but for P = 0.1, τ = 3 × 104, R = 850000,
Pm = 1 with insulating inner core. The interval between the plots is ∆t∗ = 0.07
with the first plot at t∗ = 26.155 (see figure 3(c)).
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Fig. 6. (color online). Time-series of the coefficients of the axial dipole component
H0

1 at r = ri + 0.5 across the last 4 reversals in the cases P = 0.1, τ = 105,
R = 4 × 106, Pm = 0.5 with perfectly conducting inner core (top) and P = 0.1,
τ = 3× 104, R = 850000, Pm = 1 with insulating inner core (bottom). For the sake
of comparison, the time series have been translated along the time axis so that the
polarity transitions occur at t = 0 and −H0

1 is plotted for every second reversal. In
both panels, black, red, blue and green color correspond to reversals 1(2) to 4(5) of
the respective cases in figure 3. In the bottom panel, H0

1 at r = ro has been included
in order to represent the axial dipole strength of the potential field outside the fluid
shell. H0

1 at r = ri + 0.5 (given by dashed lines) precedes it by about ∆t∗ ≈ 0.04

14


	Introduction
	Mathematical formulation
	Oscillations of the Toroidal Magnetic Flux
	Discussion

