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Abstract: We report a numerical study showing how the random intensity
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the optical supercontinuum provides a highly versatile means of study-
ing and generating a wide class of random processes at optical wavelengths.
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1. Introduction

The study of Supercontinuum (SC) generation in optical fiber has been a field of intense re-
search over the last decade, leading to a number of important advances in both fundamental
and applied science [1–3]. Although the physical mechanisms leading to SC spectral broad-
ening are now well understood [4], recent studies have focussed on the instability properties
of the SC. These results have yielded greatly improved insight into the noise-sensitivity of the
nonlinear dynamics of SC generation, particularly with regard to establishing intriguing links
with the study of extreme events and rogue waves in other systems [5–8].

Another field of optics research that has seen comparable recent interest has concerned the in-
herent randomness of nonlinear dynamical systems. A particular motivation here has been the
generation of random numbers using physical (rather than algorithmic) approaches, as there
are many applications of physical random numbers in information theory, cryptography, Monte
Carlo simulation and so on. The advantage of optical techniques is that they can exploit a phys-
ical random process to generate random numbers at high repetition rate and at optical wave-
lengths directly compatible with future demands of all-optical integration. Examples of such
physical optical random number generators include chaotic lasers and optoelectronic systems,
photon counting and homodyne detection of vacuum fluctuations, and spontaneous emission
and superluminescent diodes [9–15]. Although the results obtained have been promising, the
systems studied have generally operated over a limited wavelength range, whereas future needs
of optical random numbers may require physical generators at essentially arbitrary wavelengths.

To this end, we present in this paper a numerical study exploring the potential of the broad-
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band optical SC as a source of physical randomness. Using numerical simulations of SC gen-
eration in the incoherent regime, we study the randomness inherent in SC generation from
two different perspectives. In particular, although we indeed demonstrate the potential of SC
fluctuations for physical random number generation, we begin with a more general discussion
of the randomness properties of SC generation, showing that the intensity and phase fluctu-
ations of the SC can be interpreted in terms of the random processes of random walks and
Lévy flight-like evolution. We stress that although the intensity and phase fluctuations of the
SC spectra that we study are computed numerically, convenient experimental procedures are
readily available for practical implementation: intensity measurements are straightforward, and
optical phase measurement is enabled through heterodyne detection (with a local oscillator).
Since SC generation has been reported over a wide parameter range and using pump sources
from the MHz-GHz range, our results suggest that the SC should provide a versatile platform
for the study and application of random processes at optical wavelengths. Our aim is to antic-
ipate possible future studies of random walk processes and random number generation using
optoelectronic implementations, and to show that the supercontinuum can provide a convenient
physical source of random fluctuations that can be applied for this purpose.

2. Supercontinuum intensity and phase fluctuations

We first review the general properties of SC intensity and phase instability under conditions
where the dynamics are well known to lead to severe shot-to-shot fluctuations [4]. Specifically,
we consider results from noise-seeded generalized nonlinear Schrödinger equation (GNLSE)
simulations where SC spectral broadening is seeded by picosecond pulses, and where the dy-
namics are dominated by noise-driven modulation instability [6, 16].

The general characteristics of these fluctuations can be seen clearly by inspecting the numer-
ical results shown in Fig. 1. The parameters used in the simulations correspond to a realistic
photonic crystal fiber with zero dispersion wavelength at 1060 nm. We consider 3 ps pulses
of 200 W peak power injected at 1064 nm slightly in the anomalous dispersion regime, and
we consider a 20 m fiber length where the nonlinearity coefficient is γNL = 11 W−1 km−1

and the dispersion coefficients at the pump wavelength are: β2 = −4.10 × 10−1 ps2 km−1,
β3 = 6.87 × 10−2 ps3 km−1, β4 = −9.29 × 10−5 ps4 km−1, β5 = 2.45 × 10−7 ps5 km−1,
β6 = −9.79 × 10−10 ps6 km−1, β7 = 3.95 × 10−12 ps7 km−1, β8 = −1.12 × 10−14 ps8 km−1,
β9 = 1.90 ×10−17 ps9 km−1, β10 =−1.51 ×10−20 ps10 km−1. The optical shock timescale used
was τshock = 0.56 fs [4].

In the results that follow we have used a noise model of a one photon per mode background
with random phase, but near-identical results are obtained using intensity noise in the time do-
main; in fact, the qualitative nature of the fluctuations observed are largely independent of the
nature of the noise model used [17]. Of particular interest in our work, however, is the fact
that there is noise on the input field over only a 45 nm bandwidth about the pump wavelength.
Outside this bandwidth, the noise level is at the numerical precision of the computation. The
use of a finite bandwidth for the initial noise is so that we can can be sure that the random-
ness we study at any particular wavelength is not simply amplification of initial noise at that
wavelength, but rather due to the intrinsic chaotic nature of the nonlinear dynamics [18] that
transfers the noise around the pump to a much broader wavelength range across the SC. Similar
noise transfer processes are common in other systems in nonlinear optics such as amplifiers and
wavelength conversion [19, 20], but to our knowledge have not been explicitly studied in the
context of SC generation.

In our simulations, we generate a large ensemble of 200000 different realizations of SC
broadening over 20 m propagation, each realization using identical parameters aside from
the initial noise seed. A subset of 1000 individual output spectra from this ensemble is

#164626 - $15.00 USD Received 14 Mar 2012; revised 18 Apr 2012; accepted 18 Apr 2012; published 30 Apr 2012
(C) 2012 OSA 7 May 2012 / Vol. 20,  No. 10 / OPTICS EXPRESS  11145



shown as the superposed gray curves in Fig. 1(a). The solid line is the calculated mean of
these results, and we clearly see the presence of significant fluctuations between realizations.
These intensity fluctuations are accompanied by shot-to-shot variation in the spectral phase
at each wavelength, which can be readily quantified through the degree of mutual coherence

|g(1)12 (ω)| = |〈Ã∗
i (ω)Ã j(ω)〉/〈|Ãi(ω)|2〉〈|Ã j(ω)|2〉1/2| where angle-brackets indicate ensemble

averages over the spectral amplitudes at each wavelength and the indices i, j with i �= j indicate
different realizations in the ensemble [21]. This regime of unstable SC generation is associated

with essentially near zero mutual coherence (g(1)12 < 0.05) across the spectral bandwidth shown
in the upper sub-figure.

The statistical properties of the shot-to-shot fluctuations are shown in Figs 1(b)-1(d) where
we filter the SC at different wavelength regions using a 20 nm bandwidth filter as shown, and
determine histograms based on the energy of the corresponding temporal pulses [22]. These
results illustrate the different nature of the SC fluctuations at different wavelength ranges. Near
the spectral edges [(b) and (d)] we see highly skewed and long-tailed distributions, whereas
near the center [(c)] we observe a narrower near-symmetric distribution. The insets plot the
histograms on log scales to highlight the characteristics in the wings. The qualitative character-
istics of these histograms can be complemented by standard statistical tests for distribution fits.
We find for example, that the near-symmetric histogram in Fig. 1(c) can be fitted by a Gaussian
distribution at the 0.05 significance level (chi-squared statistic), whereas no such meaningful
Gaussian fit can be made to the long tailed distributions in Figs 1(b) and 1(d). On the other
hand, the histograms in Figs 1(b) and 1(d) are well-fitted by the long tailed Frechet distribution
at the 0.05 significance level (chi-squared statistic), and are indeed qualitatively very far from
Gaussian distributions.

3. Random walks and Lévy flights

The intensity and phase fluctuations in SC generation are often represented in terms of results
such as those in Fig. 1, as the spectral fluctuations and their probability distributions can be
directly accessible via experiment. In this section, however, we consider a novel and alterna-
tive representation when we consider how the SC instabilities can be represented in a way
that makes links with other classes of physical random process more apparent. This approach
provides new insights into the nature of the intensity and phase fluctuations in SC generation.

The first process we discuss is the generic case of the random walk (Brownian motion)
[23, 24]. In particular, we consider how the loss of spectral coherence in SC generation aris-
ing from spectral phase fluctuations can be used to construct an isotropic random walk in two
dimensions. Using the simulation results above, the first step in this approach is to consider
phase fluctuations at a wavelength where the coherence is near-zero, and verify that the phase
is uniformly distributed across the ensemble in the range 0−2π . This is straightforward using
standard statistical tests. For the results in Fig. 1, the SC phase distribution was found to be
fitted by a uniform distribution at the 0.05 confidence level at all wavelengths where the mu-

tual coherence satisfied g(1)12 < 0.02. Note here we consider the phase extracted at a particular
wavelength at the resolution of the simulation discretization.

We show in Fig. 2(a) how these phase fluctuations can be used to construct a two dimensional
random walk. Here, the randomly-varying phase from the different realizations k in the ensem-
ble is used to determine the direction of a series of sequential unit length complex vectors. In
particular, each SC realization yields a vector rk = exp(iϕk), and by combining different real-
izations we trace an n-step trajectory r(n) = Σn

k=1 rk in the complex plane. Typical results are
shown in Fig. 2(a) where we construct a trajectory from 1000 realizations (i.e. a walk of length
n = 1000 steps) with the phase properties extracted from the SC at 1100 nm. Note that the
figure superposes the results of 20 such 1000-step trajectories to highlight how the uniformity
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Fig. 1. (a) Individual output spectra from each of 1000 individual realizations (gray) and
calculated mean (black). The mutual coherence is plotted in the upper subfigure. His-
tograms from all 200000 events calculated from the energy filtered from a 20 nm bandpass
filter with central wavelength (b) λ =880 nm; (c) λ =1100 nm; (d) λ =1270 nm.

of the SC phase distribution leads to directional isotropy over multiple walks. The evolution
of any particular trajectory resembles qualitatively that expected of a random walk, with the
inset illustrating clearly the random direction of different steps near the end point of a partic-
ular trace. We stress that there was no noise on the input field at the SC wavelength at which
these phase fluctuations are extracted; their origin is from the nonlinear transfer of noise over a
limited bandwidth near the pump to other wavelengths across the SC spectrum.

We can readily test these results quantitatively using standard theory. Specifically, we
calculate the mean squared displacement (MSD) of a particular trajectory after n steps as
MSD(n) = 〈|r(n)|2〉 where r(n) is the displacement from the origin after n steps. The results in
Fig. 2(b) show the calculated MSD as a function of the number of steps n up to n = 1000 and
where the ensemble average 〈 〉 is evaluated over 200 such trajectories (so that we use the full
ensemble). We show results using the phase extracted from three different wavelengths in the
SC (880 nm, 1100 nm, and 1270 nm), and we note that the results show essentially identical be-
havior. We can also readily verify that the MSD scales as expected for an ideal unit step random
walk according to 〈|r(n)|2〉= n; this expected result is shown as the solid black line in the fig-
ure. Significantly, the near-identical random walk behavior at different wavelengths highlights
the independence of intensity and phase statistics; we see phase isotropy at all wavelengths
even though the results in Fig. 1 show very different intensity statistics at the three wavelength
ranges considered.

The results above combining the random phase properties of the SC with unit steps can be
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Fig. 2. (a) Representation of 20 walks of 1000 unit steps in the complex plane based only on
phase fluctuations in the SC using a fixed imposed unit step length. The phase is extracted
from the SC at 1100 nm. (b) Mean squared displacement (MSD) plotted as a function of
step number calculated from an ensemble average of 200 realizations. Results for the phase
extracted from three wavelengths are shown: 880 nm (black diamonds), 1100 nm (blue
circles), 1270 nm (red squares). The black line shows the expected MSD 〈|r(n)|2〉= n for
an ideal random walk of unit steps.

readily generalized to study a wider class of random walk process. In particular, motivated by
important analogies with hydrodynamics, there has recently been much interest in the highly
skewed probability distribution of SC amplitude noise at wavelengths near the long-wavelength
edge of the spectrum; we show here that we can exploit this also to study more general classes
of random walk. In particular, we use the properties of an optical SC in the regime of long-
tailed intensity distribution to construct two dimensional trajectories, and we discuss how this
leads to characteristics similar to the Lévy flight, an important class of random walk where
steps are made in isotropic random directions but with step-lengths governed by a probability
distribution that is heavy-tailed. Lévy flights and Lévy statistics are of increasing importance
in understanding many classes of system in diverse fields such as physics and biology, and
it is interesting to see how the same characteristics can also appear in the spectral intensity
characteristics of an optical SC.

The presence of long tailed distributions near the spectral edges is seen clearly in Figs 1(b)
and 1(d), arising from physical mechanisms associated with soliton dynamics that are partic-
ularly sensitive to input noise [25]. For our purposes, the wavelength ranges where such long
tailed distributions are observed are those where we can consider extracting SC characteristics
for the construction of Lévy flight-like trajectories. In contrast to the results in Fig. 2, the idea
here is to use both the intensity and phase properties of the SC in constructing the random
walk. That is, the long-tailed distributions of pulse intensity at particular wavelengths are used
to determine the lengths of particular steps in the walk, whereas the corresponding direction at
each step is determined by the phase taken from the same wavelength region.

We first show in Figs 3(a)-3(c) the general form of such trajectories obtained by constructing
random walks from the SC characteristics at the three wavelengths shown in Fig. 1(a) 880 nm,
1(b) 1100 nm, and 1(c) 1270 nm. In each case, each realization is used to yield: (i) a step
length determined from the energy calculated over a 20 nm bandwidth about the specified
center wavelength, and (ii) a step direction determined from the phase at the wavelength in the
center of the 20 nm band.

Note that the phase distributions were well-fitted by uniform distributions as described above,
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Fig. 3. For wavelengths of (a) 880 nm, (b) 1100 nm, and (c) 1270 nm, the upper panels show
results of 20 walks of 1000 steps. The lower panels show the corresponding mean square
displacement (MSD) plotted as a function of step number calculated from an ensemble
average of 200 realizations.

but the different intensity distributions in each wavelength region lead to very different char-
acteristics for the associated random walks. Near the spectral edges, where the distribution is
highly skewed [see Figs 1(b) and 1(d)], the trajectories are associated with rare long flight
segments between turning points about clusters of shorter flight segments. This qualitative be-
havior, shown in Figs 3(a) and 3(c), is that which is typical of Lévy flights [26–30]. On the other
hand, near the pump wavelength, Fig. 3(b) shows trajectories where the intensity distribution is
approximately symmetric and Gaussian-distributed [see Fig. 1(c)]. In this case, the calculated
MSD exhibits a linear dependence with step number with 〈|r(n)|2〉 = Dn (where we define D
as a fitting constant). Note that the value of the constant D = 3.46× 108 agrees well with the
calculated mean square step length 〈|rk|2〉= 3.68×108 ∼ D.

A characteristic feature of the Lévy-flight like trajectories in Figs 3(a) and 3(c) is the obser-
vation of “superdiffusion” where the MSD varies with step number according to a more general
power law of the form 〈|r(n)|2〉= Dnα with α > 1. The lower subfigures in Figs 3(a) and 3(c)
show the evolution of MSD with n for these trajectories. Note that because of our limited size
ensemble, fitting the observed MSD evolution with step length is not meaningful, but we show
the slope of the strictly linear evolution with α = 1 for comparison.

An additional interesting feature of the trajectories constructed with step lengths associated
with long-tailed distributions is the fact that they exhibit clustering in self-similar patterns char-
acteristic of fractals. This is shown by taking particular trajectories from Figs 3(a) and 3(c)
and examining their characteristics under successive zooms about turning and clustering points
in the trajectory path. Figure 4 shows this behavior for trajectories constructed from SC char-
acteristics at (a) 1270 nm and (b) 880 nm, clearly revealing the qualitative features of fractal
scale-invariance.
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Fig. 4. Plotting successive zooms about turning and clustering points as shown for tra-
jectories at (a) 1270 nm and (b) 880 nm reveals the qualitative features of fractal scale
invariance.

4. Random number generation

The results above show that the intensity and phase fluctuations of supercontinuum generation
indeed exhibit characteristics of random processes. An application that immediately suggests
itself is in the generation of random numbers, a field that has received much attention recently in
photonics as advances in information technology have highlighted the need for physical random
number generators at optical wavelengths [10, 11, 14, 15]. In this section we use simulations
to assess the ability of the optical SC to be applied as a physical random number generator for
this purpose.

We consider simulation parameters similar to those used above: 3 ps pulses of 300 W peak
power injected at 1064 nm and propagating in 10 m of fiber. Note here that we use a higher
peak power and shorter fiber length allowing us to generate broad SC bandwidth at a signif-
icantly reduced computational cost; this is necessary in order to generate an ensemble of 106

realizations in order to perform meaningful statistical tests as we describe below.
The underlying principle of random number generation from a noisy SC is to convert the in-

tensity at a particular wavelength in the SC into either a 0 or a 1 depending on its value relative
to a threshold, exploiting shot-to-shot fluctuations between different realizations in the ensem-
ble to generate a random binary sequence. In practice, the different SC in the ensemble would
be generated from an incident pulse train from a mode-locked laser which would determine the
sequence repetition rate. For our proof-of-principle study, we use the same approach as above,
seeding the SC with noise only over a finite range of wavelengths around the pump, and sam-
pling the SC fluctuations at wavelengths outside this range. This is to distinguish the random
characteristics of the sequence due to nonlinear propagation dynamics from the properties of
the noise seed.

The manner in which random numbers are extracted from the SC ensemble is illustrated in
Fig. 5. For each realization, we extract the intensity at a particular wavelength at the resolution
of the simulation discretization, and the first step is to process a sub-sequence of realizations in
order to determine a median to define a threshold value. A plot of the spectra generated under
these conditions is shown in Fig. 5(a), and Fig. 5(b) plots a time series (as the gray points)
of filtered intensities at 1140 nm obtained by plotting the intensity at this wavelength over

#164626 - $15.00 USD Received 14 Mar 2012; revised 18 Apr 2012; accepted 18 Apr 2012; published 30 Apr 2012
(C) 2012 OSA 7 May 2012 / Vol. 20,  No. 10 / OPTICS EXPRESS  11150



Fig. 5. Schematic showing random number number generation from spectral instabilities.
(a) Results from 50000 simulations (gray) and calculated mean (black). The red line shows
a particular sample wavelength of 1140 nm. (b) For this wavelength, we construct a time
series from individual realizations in the ensemble and calculate a rolling median to deter-
mine a threshold over the first 50000 realizations. (c) Subsequent intensity values at this
wavelength are compared to this threshold to yield a binary sequence.

50000 realizations. The median of the time series (black line) is computed dynamically as a
function of the number of realizations processed, and stabilizes rapidly as seen in the figure.
Note that for a total sequence length of 106, we found that determining the threshold over
the first 50000 realizations yielded good results. After this initial step, intensity values from
following realizations are converted to 1 or 0 respectively depending on whether they are above
or below threshold. This is illustrated in Fig. 5(c) and allows us to generate a longer binary
sequence (106) with the required symmetric distribution of 0 and 1’s [31].

The degree of randomness of computed binary sequences can be readily tested using the
standard statistical benchmark provided by the National Institute of Standards (NIST) [32], but
a sequence length of only 106 bits is insufficient to pass the NIST benchmarks with appropri-
ate statistical significance. Nonetheless, we note that the results of the NIST test for the raw
sequence of 106 bits were consistent with the results obtained using the same sequence length
of pseudo-random numbers generated from well-known algorithms.

Generating the required sequence length of > 108 bits numerically for a meaningful NIST
test is computationally prohibitive, but we note that it would actually be trivial in an experiment
by using a high-repetition rate MHz or GHz source. On the other hand, we have found that we
can generate a suitable longer sequence suitable for NIST testing from our simulation results
by a spectral multiplexing step, concatenating sequences of 106 bits generated at 200 different
wavelengths across the SC extracted uniformly from the wavelength ranges shown as the shaded
regions on both short and long wavelength ranges of the SC in Fig. 5(a).

We remove the possibility of any residual bias associated with binary conversion and wave-
length correlation using a time-delay exclusive-or (XOR) operation with a delay of Δk = 50
realizations, and in this case the resulting sequence consistently passed all of the NIST statisti-
cal tests for randomness, as shown in Table 1 which lists the results of the NIST tests applied
to 200 samples (i.e. wavelengths) of 106 bit records obtained from the XORed sequence x[n] ⊕
x[n+50]. In order to pass each of the statistical tests, the composite P-value must exceed 10−4,
and there may be no more than 7 failures out of 200 trials. (The random excursion variant test
may have no more than 5 failures out of 120 trials.) The XORed data set passes all of the NIST
statistical tests, and we also note that we obtain similar successful results for various delays in
the XORed sequences (e.g. Δk = 10, 20, 100) and when using different number of realizations
for establishing a comparative threshold (e.g. 10000).
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Table 1. NIST benchmark tests results for 200 sequences of 106 bits. For 200 sequences
and a significance level α = 0.01, the P-value (uniformity of p-values) should be larger
than 0.001 and a proportion of 193 test success for the whole benchmark (115 for random
excursion (variant) tests) is required to succeed statistical tests. Note: In case of a test
producing multiple result outputs, the worst case is shown.

Statistical test P-value Proportion Result
Frequency 0.834308 198/200 Success
Block frequency 0.564639 198/200 Success
Cumulative sums 0.224821 197/200 Success
Runs 0.825505 198/200 Success
Longest run 0.554420 197/200 Success
Rank 0.455937 199/200 Success
FFT 0.068999 196/200 Success
Non overlapping template 0.564639 194/200 Success
Overlapping template 0.788728 199/200 Success
Universal 0.524101 200/200 Success
Approximate entropy 0.978072 199/200 Success
Random excursions 0.074177 117/120 Success
Random excursions variant 0.116519 118/120 Success
Serial 0.816537 199/200 Success
Linear complexity 0.890582 198/200 Success

5. Conclusion

Supercontinuum generation in optical fibres is a complex nonlinear dynamical process, and
any noise present on the input field is well-known to generate significant fluctuations in the
output spectra. In this paper, we have shown how these fluctuations can be interpreted in a
novel fundamental way in terms of the characteristics of random walks , and we have shown an
important applications potential of the supercontinuum as a physical random number generator.
Our results also suggest new links with broader areas of optics and physics. In particular, for
regimes of supercontinuum generation where long tailed intensity distributions are observed
near the spectral edges, our results have shown how the statistics can be used to construct
Lévy flight like processes. Since these long-tailed statistics correspond to the regime of rogue
wave like behavior, our results suggest an important link between the dynamics underlying the
generation of rogue waves and Lévy flights. Although we have studied this link in the specific
case of an optical nonlinearity, we anticipate that it will hold generally for rogue waves in other
systems.
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