
On the Use of Software Models during Software Execution

Nelly Bencomo
Computing Department, InfoLab21, Lancaster University, LA1 4WA, UK

nelly@acm.org

Abstract

Increasingly software systems are required to

survive variations in their execution environment
without or with only little human intervention. Such
systems are called "eternal software systems". In
contrast to the traditional view of development and
execution as separate cycles, these modern software
systems should not present such a separation.
Research in MDE has been primarily concerned with
the use of models during the first cycle or development
(i.e. during the design, implementation, and
deployment) and has shown excellent results. In this
paper the author argues that an eternal software
system must have a first-class representation of itself
available to enable change. These runtime
representations (or runtime models) will depend on the
kind of dynamic changes that we want to make
available during execution or on the kind of analysis
we want the system to support. Hence, different models
can be conceived. Self-representation inevitably
implies the use of reflection. In this paper the author
briefly summarizes research that supports the use of
runtime models, and points out different issues and
research questions.

1. Introduction

The development and execution of software systems
have been considered as separate cycles. During each
cycle two entirely different entities are managed. On
the one hand, during development, the entity
corresponds to the source code that is developed
(probably generated from models), debugged and
analyzed. On the other hand, during execution the
entity corresponds to an enclosed, incomprehensible
binary program that just can be executed [19].

However, more and more software is required to
survive variations in their execution environment
without or with little human intervention. Such systems
are called “eternal software-intensive systems” [23].
These modern and more complex systems cannot be
shutdown to be changed or updated and restarted again.
Such modern software systems need to be conceived

and considered differently. In contrast to keeping
development and execution as separate cycles, modern
complex software systems should not have such a
separation [19]. Research in Models-driven
Engineering (MDE) has been primarily concerned with
the use of models during the first cycle or development
(i.e at the design, implementation, and deployment).
Such research has proved useful with excellent results
in both academia and industry.

The author argues that these eternal modern systems
must have a first-class representation of itself (what we
call the runtime model) available to enable change.
These changes will not only be performed by humans
or other systems but also by the system itself. The
runtime representations or runtime models will depend
on the kind of dynamic changes that we want to make
available during execution or on the kind of analysis
we want the system to support. Hence, different
models can be conceived. The self-representation
inevitably implies the use of reflection [22].
Furthermore, such self-representation(s) will allow the
system to reason about itself and also facilitate the
subsequent modification, adaptation, and dynamic
evolution of the system. Early work in this emerging
MDE area has recently been presented at the MODELS
Workshop Models@run.time [4] that focuses on the
topic. As further evidence of the interest on the topic,
the IEEE Computer has recently accepted a proposal
for a special issue (October 2009).

In this paper, the author discusses early research
results that support the use of runtime models. On the
basis of these results the author outlines several issues
for future research.

2. Background

Although the research topic about the use of models
during execution is rather new, it is inspired in seminal
research work from the past. Several research projects
have already proposed initial ideas of using models
during runtime to specifically support adaptability and
software evolution [20, 13, 14, 10]. The models used in
these research projects are architecture-based models.
That is not a surprise as the crucial role of software
architecture in raising the level of abstraction when

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78889765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

developing software is repeatedly emphasized [12, 7,
1]. Some of these research projects are briefly
presented below.

Oreizy et al. [20] were novel in their adoption of an
architecture-based approach to runtime software
evolution. Their approach emphasizes the role of
software connectors in supporting runtime change and
system evolution, the explicit representations of
software components, their interdependencies, and
environmental assumptions. Oreizy et al. rationalize
about the "openness" needed to allow new application
behaviors and adaptation plans to be introduced during
runtime. The behavior of a system with an open
implementation can be altered through a meta-level
interface using reflection [21]. That is, the openness
described above does not necessarily make the system
reflective, but it can be used to offer support for
reflective capabilities. As noted in Section 1 and
further discussed in [4], computational reflection and
self-representation of the system are basic principles to
support the use of runtime models; hence the work
explained in [20] is highly relevant for the research
topic of this paper.

Another relevant work is the research by Garlan
and Schmerl [14] on system monitoring, reflection and
architectural models. Specifically, Garlan and Schmerl
describe their approach to monitor the executing
system to translate observed events to events that
construct and update an architectural model that
reflects the actual running system. The final goal is to
compare the dynamically-determined model with the
correct architectural model. Garlan and Schmerl
argument how inconsistencies found after the
comparison can be used to identify implementation
errors, or, even possibly, to effect runtime adaptations
to correct certain type of faults. Garlan and Schmerl
essentially stated the question “Does the system as
implemented have the architecture as designed?”
Certainly, the work by Garlan and Schmerl is highly
related to the topic about the use of software models
during runtime. The dynamically maintained
architectural model is indeed a self-representation of
the system from the architectural point of view. The
approach proposed in [14] is shown in Figure 1.

Crucially, Garlan and Schmerl noted that “different
architectural models or views can be chosen
depending on the system quality of interest”. They have
also emphasized that the details of how models are
derived and what to do if something is incorrect (for
example to perform an adaptation or a repair) are
localized in the external mechanisms (external to the
application) and not distributed through the
application. Finally, Garlan and Schmerl have stressed
the importance of how these models can be used as the
basis for reasoning by “exploiting a large body of

existing work on analytical methods”. This is important
as it supports the use of runtime models.

Figure 1. Approach proposed by Garlan and
Schmerl (from [14])

Floch et al. [10] bring the use of architecture
models at runtime one step further. Floch et al.
promote the use of architecture models to support the
development of adaptive applications for mobile
applications. In contrast to event-action rules, they use
goal policies expressed as utility functions leaving to
the system the decisions on the actions required to
implement the policies. The reconfiguration steps to
follow are determined by comparing the actual running
system with new architectural variant models based on
the utility function.

Another approach is Genie [2] that was developed
by the author. The implementation is called the Genie
tool and is described in detail in [5]. The Genie
approach like the case of the projects presented above
also uses architectural models, and specifically to
support the generation and operation (i.e. during
runtime) of component-based adaptive systems. The
subjacent reflective component-based technologies will
use the artifacts generated by the Genie tool to support
adaptation at the architectural level. Two kinds of
models can be generated: configuration-based models
(i.e. architectural models) and models describing the
state transitions that the system can go through. The
former models are used to describe the ongoing
architecture of the system. The latter models, the
transition states models, are used to specify the
conditions that represent the dynamic nature of the
environment and their impact on the architecture. From
the models different artifacts are generated (i.e.
configuration files in the form of XML and the even-
condition adaptation policies). Such artifacts can be
dynamically inserted during execution, as detailed in
[5,15], and therefore dynamically changing the
behavior of the system. The next section shows further
contributions made by the author and her colleagues
towards the use of software models during runtime.

3. The Role of Reflection when using
Runtime Models

In [18] and partially inspired by the work in [5,15],
we demonstrate our approach using runtime models to
generate the adaptation logic (i.e. reconfiguration
scripts) to reconfigure the system by comparing the
current configuration of the running system with a
composed model representing the target configuration
in a similar fashion as in [10]. However, different
from [10], we maintain a runtime model causally
connected with the running system (i.e. we use
reflection). Figure 2 shows the executing system in the
base-level and the runtime model in the meta-level.
The causally connected runtime model is used to
support reasoning about the system. In that sense,
runtime models provide the means to check the impact
of architectural changes before applying it to the
running system, therefore supporting the analysis for a
situation where it would be too complex, expensive, or
risky to perform on the real subject. The causal
connection can be implemented in different ways. For
instance, in [18], it is strongly synchronized from the
running system to the runtime model, to ensure the
reasoning on an updated version of the model. In
contrast, from the runtime model to the running
system, the synchronization may present a delay when
we want to guarantee the validation of the target
configuration before performing changes. As in the
cases in the previous section, the models are
architectural models. More details are described in [18]
and in the research continued by Morin et al. in [17].

Figure 2. Base-level and meta-level during

execution

Our approach can be implemented using the
facilities of execution platforms such as Fractal or
OpenCOM [5]. The OpenCOM and Fractal platforms
provide the system level facilities needed for dynamic
evolution [15], such as bringing components into safe
state (quiescence management) [16], deleting or
replacing component instances, instantiating
components, or transferring states.

Also, and different from [10] and [5], where the
explosion of the number of configurations is a potential
problem, one of our main objectives as explained in
[18] is to avoid the enumeration of all possible
configurations. A key element is the use of software
architecture patterns. These describe generalized
configurations of components that are suitable for a set
of different environment conditions. Design decisions
of patterns are made by domain experts and is further
explained in [15].

The application commonalities, i.e. the architecture
elements which are part of all configurations, are
captured in a “base” model. All the variants are then
defined as modules (specified as models) that will be
dynamically composed with the base model. The idea
is to promote loosely coupled changes [24]. From a
particular selection of variants, the corresponding
configuration can be built automatically by composing
the corresponding variant models (modules) into the
base model1 and according to changes in the
environment and context.

We specify constraints on variants that can be used
during configuration. For example, the use of a
particular functionality (variant model) might require
or exclude others. These constraints reduce the total
number of configurations by rejecting invalid
configurations. More details are shown in [9].

Our research work opens new research questions as
for example: what is the correct order of the deletion
and incorporation of components during
reconfiguration, or what is the impact on the
performance of the application. More research in that
sense is needed. We already have started tackling the
second question. In the specific context of our
research, the calculations necessary to obtain the diff
model to automatically generate the reconfiguration
scripts takes more time than the execution of
predefined scripts. In some particular cases the
consequent delay during runtime may not be
acceptable. A possible solution is to pre-generate
critical scripts before the system execution. Some early
results are already shown in [18] and [17].

1 In [18] we have used the term aspects instead of modules. The

author thinks that variant modules helps keeping the reader focused.

4. Discussion, Research Questions
Research on providing support for using runtime

models is in its early stages. Therefore, some research
questions are open and discussion is needed.

Towards a classification
France and Rumpe [11] describe two broad classes

of models, development models and runtime models.
Development models are software models “at levels of
abstraction above the code level” [11] such as
requirements, architectural, and deployment models.
Development models are clearly associated with the
entities managed during the development cycle
described in Section 1 (Introduction). Other authors
talk about another category of models called design-
time-models [10, 3] or design-time artifacts [14]. The
author is not sure if “development” models mean the
same as “design-time” models for those authors.

Runtime models provide “abstractions of runtime
phenomena” [11] and can be used by different
stakeholders in different ways. As in the case of
traditional models used during design, a runtime model
supports reasoning about a system, but can also assist
in the automated generation of implementations as was
shown in Section 3. System users can also use runtime
models to support dynamic state monitoring and
control of systems during execution, or to dynamically
observe the runtime behavior to understand a
behavioral phenomenon [11]. A runtime model can
also potentially support semantic integration of
heterogeneous software elements at runtime (e.g.
dynamically adaptable meta-models)2 in the domain of
systems of systems.

France and Rumpe [11] also picture how adaptation
agents (e.g. software maintainers, software-based
agents) can use runtime models to determine if an
adaptation is needed to consequently perform the
changes required. Performing adaptations imply
making changes to (runtime) models of the parts to be
adapted using the support provided by execution
platforms (e.g. a middleware platform with adaptation
facilities). Our work presented in [18] makes the
envisaged application of runtime models made by
France and Rumpe in FOSE (ICSE 2007) slightly
closer to reality, however, more research work is
needed. In a more visionary approach, the adaptation
agents can be envisaged using runtime models to fix
design errors or to include new design decisions into a
running system [11] to support controlled ongoing-
design. The mechanisms used to realize this vision are
expected to be more complex. Nevertheless, these

2 As suggested by Bran Selic as a panelist in the 3rd International

Workshop on Models@run.time in Toulouse, October, 2008

more complex mechanisms would be able to support
unanticipated modifications to some extent [6].

More than architectural models
The research works discussed in this paper present

the prevalent use of runtime architectural models. The
author believes the vision of models@run.time goes
further. For instance, requirements reflection [8] is an
exciting and promising research topic that studies how
the requirements and goals of a software system can be
dynamically observed, i.e. during execution [6]. In
order to do this, a model of the requirements of the
system should be maintained while the system is
running. The right associations between such
requirements models and the implementation artifacts
should also be taken into account to keep requirements
information in sync. Future work is needed to examine
how technologies may provide the infrastructure to
offer support to maintain requirement models that can
be consulted at runtime. Furthermore, explicit runtime
representations of system goals are crucial for self-
aware systems.

Figure 3. Design models vs. runtime models

Figure 3 shows an initial comparison between

traditional software models (used during design-time)
and runtime models. MDE research has tended to
concentrate on the use of design-time models. Design-
time models are transformed or compiled to create a
system that eventually will be executed.

The role of reflection and the causal connection
between the system and its self-representation (i.e. its
runtime model) is specially highlighted in the figure.
Take note how on purpose the author has made closer
the runtime model and the running system contrasting
with the bigger separation between the model used in
design and the system to be executed. With that, the
author wants to stress that the links between the
runtime model and the running system should be light
enough to ensure good performance during execution.
Any reasoning task and change effects from the

Running SystemSystem

Model@run.timeModel

Traditionally

runtimedesign time

compilation,
transformations,

Causal
connection

Runtime model

Running System

runtime model to the running system and vice versa
should not take long time and put in risk the
responsiveness of the system (as discussed in Section
3). In [18] we have shown how runtime models can be
used to generate reconfiguration scripts that will
dynamically change the running system. We have also
shown the potential use of runtime models to support
reasoning. Then again, more research efforts are
needed to further study the potential use of runtime
models.

 Final research questions
As stated in [11], the proposed classification may

evolve as the research topic of models@run.time
matures. Runtime models may be used as development
models, to dynamically evolve software systems, for
instance. Similarly, development models may be used
as runtime models to support ongoing design, for
example. Therefore, how can the classification
proposed be extended or improved, and what would be
the relationships between these two categories of
models? Specifically, in Figure 3, what are the
relationships between the traditional software models
and a runtime model? Furthermore, is an ongoing-
design of the system described by design-time models
or by runtime models? or by a combination of both?

In order to reason about the impact of changes, it
looks crucial that the history of the system must also be
fully accessible and manipulable, therefore, what role
should the models play in that task?

Other research questions, partially based on the
ideas discussed in this paper and the fruitful
discussions during the panel of the third edition of the
workshop Models@run.time 2008, are as follows:

-How are the current model synthesis technologies
(used during development) different from the more
dynamic model synthesis technologies needed when
using runtime models during execution? Are the
former technologies suitable for dynamic model
synthesis?

-What are the methods and standards for specifying
semantics suited to automated interpretation (i.e. done
during runtime)?

-How can we achieve reversible model
transformations, to deal with synchronization issues
between the runtime model and the running system,
and between the development models and runtime
models?

These questions are just few starting points for
research in this exciting research topic with potential
fruitful results for software engineering.

Acknowledgments: The author gratefully

acknowledges Gordon Blair and Robert France for
their support on this work. She also acknowledges the

support given by her colleagues in the DiVA project,
especially Brice Morin and Jean-Marc Jézéquel. This
work was partially funded by the DiVA project (EU
FP7 STREP).

5. References
[1] Len Bass, Paul Clements, and Rick Kazman.
Software Architecture in Practice. Addison-Wesley
Professional, 2nd edition, 2003.
[2] Nelly Bencomo. Supporting the Modelling
and Generation of Reflective Middleware Families and
Applications using Dynamic Variability. PhD thesis,
2008.
[3] Nelly Bencomo, Gordon Blair, and Robert
France. Models@runt.time workshop in conjunction
with MODELS 2006 Conference , October 2006
[4] Nelly Bencomo, Robert France, and Gordon
Blair. 2nd international workshop on
models@run.time. In Holger Giese, editor, Workshops
and Symposia at MODELS 2007, Lecture Notes in
Computer Science. Springer-Verlag, 2007.
[5] Nelly Bencomo, Paul Grace, Carlos Flores,
Danny Hughes, and Gordon Blair. Genie: Supporting
the model driven development of reflective,
component-based adaptive systems. In ICSE 2008 -
Formal Research Demonstrations Track, 2008.
[6] Betty H.C. Cheng, Holger Giese, Paola
Inverardi, Jeff Magee, and Rogerio de Lemos.
Software engineering for self-adaptive systems: A
research road map, Dagstuhl-seminar on software
engineering for self-adaptive systems. 2008.
[7] Paul Clements and Paul Kogut. The software
architecture renaissance. Crosstalk - The Journal of
Defense Software Engineering, 7(11), 1994.
[8] Anthony Finkelstein. Talk “requirements
reflection" in schloss Dagstuhl seminar on software
engineering for self-adaptive systems. 2008.
[9] Franck Fleurey, Vegard Dehlen, Nelly
Bencomo, Brice Morin, and Jean-Marc Jézéquel.
Modeling and validating dynamic adaptation. In
Workshops and Symposia at MODELS 2008, volume
5421M.R.V. Chaudron, 2008.
[10] Jacqueline Floch, Svein Hallsteinsen, Erlend
Stav, Frank Eliassen, Ketil Lund, and Eli Gjorven.
Using architecture models for runtime adaptability.
Software IEEE, 23(2):62–70, 2006.
[11] Robert France and Bernhard Rumpe. Model-
driven development of complex software: A research
roadmap. In L. Briand and A. Wolf, editors, Future of
Software Engineering. IEEE-CS Press, 2007.
[12] David Garlan. Software Architecture: a
Roadmap. ACM Press, 2000.

[13] David Garlan, Shang-Wen Cheng, An-Cheng
Huang, Bradley Schmerl, and Peter Steenkiste.
Rainbow: Architecture-based self-adaptation with
reusable infrastructure. IEEE Computer, 37(10):46–54,
2004.
[14] David Garlan and Bradley Schmer. Using
architectural models at runtime: Research challenges.
In European Workshop on Software Architectures, St.
Andrews, Scotland, 2004.
[15] Paul Grace, Gordon Blair, Carlos Flores, and
Nelly Bencomo. Engineering complex adaptations in
highly heterogeneous distributed systems. In 2nd
International Conference on Autonomic Computing
and Communication Systems (Autonomics 2008),
Turin, Italy, 2008.
[16] J. Kramer and J. Magee. The evolving
philosophers problem: Dynamic change management.
IEEE Transactions on Software Engineering,
16(11):1293 ––1306, 1990.
[17] Brice Morin, Olivier Barais, Gregory Nain,
and Jean-Marc Jezequel. Taming dynamically adaptive
systems using models and aspects. In International
COnference in Software Engineering (ICSE), 2009.
[18] Brice Morin, Franck Fleurey, Nelly Bencomo,
Jean-Marc Jézéquel, Arnor Solberg, Vegard Dehlen,
and Gordon Blair. An aspect-oriented and model-
driven approach for managing dynamic variability. In
MODELS'08 Conference, France, 2008.
[19] Oscar Nierstrasz, Marcus Denker, Tudor
Girba, Adrian Lienhard, and David Rothlisberger.
Challenges for Software-Intensive Systems and New
Computing Paradigm, chapter Change-Enabled
Software Systems. 2008.
[20] Peyman Oreizy, Michael M. Gorlick,
Richard N. Taylor, Dennis Heimbigner, Gregory
Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. An architecture-
based approach to self-adaptive software. IEEE
Intelligent Systems and Their Applications, 14(3):54–
62, 1999.
[21] David Röthlisberger, Marcus Denker, and
Éric Tanter. Unanticipated partial behavioral
reflection: Adapting applications at runtime. Comput.
Lang. Syst. Struct., 34(2-3):46–65, 2008.
[22] B. C. Smith. Reflection and Semantics in a
Procedural Language. PhD thesis, B. C. Smith.
Reflection and Semantics in a Procedural Language.
PhD thesis, M.I.T, 1982., 1982.
[23] Martin Wirsing and Matthias Holzl. Report of
the beyond the horizon thematic group 6 on software
intensive systems. Technical report, 2006.

[24] Edward Yourdon and Larry L. Constantine.
Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1979.

