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Abstract 

 
Increasingly software systems are required to 

survive variations in their execution environment 
without or with only little human intervention. Such 
systems are called "eternal software systems". In 
contrast to the traditional view of development and 
execution as separate cycles, these modern software 
systems should not present such a separation. 
Research in MDE has been primarily concerned with 
the use of models during the first cycle or development 
(i.e. during the design, implementation, and 
deployment) and has shown excellent results. In this 
paper the author argues that an eternal software 
system must have a first-class representation of itself 
available to enable change. These runtime 
representations (or runtime models) will depend on the 
kind of dynamic changes that we want to make 
available during execution or on the kind of analysis 
we want the system to support. Hence, different models 
can be conceived. Self-representation inevitably 
implies the use of reflection. In this paper the author 
briefly summarizes research that supports the use of 
runtime models, and points out different issues and 
research questions. 
 
1. Introduction 
 

The development and execution of software systems 
have been considered as separate cycles. During each 
cycle two entirely different entities are managed. On 
the one hand, during development, the entity 
corresponds to the source code that is developed 
(probably generated from models), debugged and 
analyzed. On the other hand, during execution the 
entity corresponds to an enclosed, incomprehensible 
binary program that just can be executed [19].  

However, more and more software is required to 
survive variations in their execution environment 
without or with little human intervention. Such systems 
are called “eternal software-intensive systems” [23]. 
These modern and more complex systems cannot be 
shutdown to be changed or updated and restarted again. 
Such modern software systems need to be conceived 

and considered differently. In contrast to keeping 
development and execution as separate cycles, modern 
complex software systems should not have such a 
separation [19]. Research in Models-driven 
Engineering (MDE) has been primarily concerned with 
the use of models during the first cycle or development 
(i.e at the design, implementation, and deployment). 
Such research has proved useful with excellent results 
in both academia and industry.  

The author argues that these eternal modern systems 
must have a first-class representation of itself (what we 
call the runtime model) available to enable change. 
These changes will not only be performed by humans 
or other systems but also by the system itself. The 
runtime representations or runtime models will depend 
on the kind of dynamic changes that we want to make 
available during execution or on the kind of analysis 
we want the system to support. Hence, different 
models can be conceived. The self-representation 
inevitably implies the use of reflection [22]. 
Furthermore, such self-representation(s) will allow the 
system to reason about itself and also facilitate the 
subsequent modification, adaptation, and dynamic 
evolution of the system. Early work in this emerging 
MDE area has recently been presented at the MODELS 
Workshop Models@run.time [4] that focuses on the 
topic. As further evidence of the interest on the topic, 
the IEEE Computer has recently accepted a proposal 
for a special issue (October 2009). 

In this paper, the author discusses early research 
results that support the use of runtime models. On the 
basis of these results the author outlines several issues 
for future research. 

 
2. Background 

Although the research topic about the use of models 
during execution is rather new, it is inspired in seminal 
research work from the past. Several research projects 
have already proposed initial ideas of using models 
during runtime to specifically support adaptability and 
software evolution [20, 13, 14, 10]. The models used in 
these research projects are architecture-based models. 
That is not a surprise as the crucial role of software 
architecture in raising the level of abstraction when 
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developing software is repeatedly emphasized [12, 7, 
1]. Some of these research projects are briefly 
presented below. 

Oreizy et al. [20] were novel in their adoption of an 
architecture-based approach to runtime software 
evolution. Their approach emphasizes the role of 
software connectors in supporting runtime change and 
system evolution, the explicit representations of 
software components, their interdependencies, and 
environmental assumptions.  Oreizy et al. rationalize 
about the "openness" needed to allow new application 
behaviors and adaptation plans to be introduced during 
runtime. The behavior of a system with an open 
implementation can be altered through a meta-level 
interface using reflection [21]. That is, the openness 
described above does not necessarily make the system 
reflective, but it can be used to offer support for 
reflective capabilities.  As noted in Section 1 and 
further discussed in [4], computational reflection and 
self-representation of the system are basic principles to 
support the use of runtime models; hence the work 
explained in [20] is highly relevant for the research 
topic of this paper.  

Another relevant work is the research by  Garlan 
and Schmerl [14] on system monitoring, reflection and 
architectural models. Specifically, Garlan and Schmerl 
describe their approach to monitor the executing 
system to translate observed events to events that 
construct and update an architectural model that 
reflects the actual running system. The final goal is to 
compare the dynamically-determined model with the 
correct architectural model. Garlan and Schmerl 
argument how inconsistencies found after the 
comparison can be used to identify implementation 
errors, or, even possibly, to effect runtime adaptations 
to correct certain type of faults. Garlan and Schmerl 
essentially stated the question “Does the system as 
implemented have the architecture as designed?” 
Certainly, the work by Garlan and Schmerl is highly 
related to the topic about the use of software models 
during runtime. The dynamically maintained 
architectural model is indeed a self-representation of 
the system from the architectural point of view. The 
approach proposed in [14] is shown in Figure 1. 

Crucially, Garlan and Schmerl noted that “different 
architectural models or views can be chosen 
depending on the system quality of interest”. They have 
also emphasized that the details of how models are 
derived and what to do if something is incorrect (for 
example to perform an adaptation or a repair) are 
localized in the external mechanisms (external to the 
application) and not distributed through the 
application. Finally, Garlan and Schmerl have stressed 
the importance of how these models can be used as the 
basis for reasoning by “exploiting a large body of 

existing work on analytical methods”. This is important 
as it supports the use of runtime models.  

 

 
Figure 1. Approach proposed by Garlan and 
Schmerl (from [14] )  

Floch et al. [10] bring the use of architecture 
models at runtime one step further. Floch et al. 
promote the use of architecture models to support the 
development of adaptive applications for mobile 
applications. In contrast to event-action rules, they use 
goal policies expressed as utility functions leaving to 
the system the decisions on the actions required to 
implement the policies. The reconfiguration steps to 
follow are determined by comparing the actual running 
system with new architectural variant models based on 
the utility function. 

Another approach is Genie [2] that was developed 
by the author. The implementation is called the Genie 
tool and is described in detail in [5]. The Genie 
approach like the case of the projects presented above 
also uses architectural models, and specifically to 
support the generation and operation (i.e. during 
runtime) of component-based adaptive systems. The 
subjacent reflective component-based technologies will 
use the artifacts generated by the Genie tool to support 
adaptation at the architectural level. Two kinds of 
models can be generated: configuration-based models 
(i.e. architectural models) and models describing the 
state transitions that the system can go through. The 
former models are used to describe the ongoing 
architecture of the system. The latter models, the 
transition states models, are used to specify the 
conditions that represent the dynamic nature of the 
environment and their impact on the architecture. From 
the models different artifacts are generated (i.e. 
configuration files in the form of XML and the even-
condition adaptation policies). Such artifacts can be 
dynamically inserted during execution, as detailed in 
[5,15], and therefore dynamically changing the 
behavior of the system. The next section shows further 
contributions made by the author and her colleagues 
towards the use of software models during runtime. 



 
3. The Role of Reflection when using 
Runtime Models 

In [18] and partially inspired by the work in [5,15], 
we demonstrate our approach using runtime models to 
generate the adaptation logic (i.e. reconfiguration 
scripts) to reconfigure the system by comparing the 
current configuration of the running system with a 
composed model representing the target configuration 
in a similar fashion as in [10].  However, different 
from [10], we maintain a runtime model causally 
connected with the running system (i.e. we use 
reflection). Figure 2 shows the executing system in the 
base-level and the runtime model in the meta-level. 
The causally connected runtime model is used to 
support reasoning about the system.  In that sense, 
runtime models provide the means to check the impact 
of architectural changes before applying it to the 
running system, therefore supporting the analysis for a 
situation where it would be too complex, expensive, or 
risky to perform on the real subject. The causal 
connection can be implemented in different ways. For 
instance, in [18], it is strongly synchronized from the 
running system to the runtime model, to ensure the 
reasoning on an updated version of the model. In 
contrast, from the runtime model to the running 
system, the synchronization may present a delay when 
we want to guarantee the validation of the target 
configuration before performing changes. As in the 
cases in the previous section, the models are 
architectural models. More details are described in [18] 
and in the research continued by Morin et al. in [17].  

 

 
Figure 2. Base-level and meta-level during 

execution 
 

Our approach can be implemented using the 
facilities of execution platforms such as Fractal or 
OpenCOM [5]. The OpenCOM and Fractal platforms 
provide the system level facilities needed for dynamic 
evolution [15], such as bringing components into safe 
state (quiescence management) [16], deleting or 
replacing component instances, instantiating 
components, or transferring states. 

Also, and different from [10] and [5], where the 
explosion of the number of configurations is a potential 
problem, one of our main objectives as explained in 
[18] is to avoid the enumeration of all possible 
configurations. A key element is the use of software 
architecture patterns. These describe generalized 
configurations of components that are suitable for a set 
of different environment conditions. Design decisions 
of patterns are made by domain experts and is further 
explained in [15].  

The application commonalities, i.e. the architecture 
elements which are part of all configurations, are 
captured in a “base” model. All the variants are then 
defined as modules (specified as models) that will be 
dynamically composed with the base model. The idea 
is to promote loosely coupled changes [24].  From a 
particular selection of variants, the corresponding 
configuration can be built automatically by composing 
the corresponding variant models (modules) into the 
base model1 and according to changes in the 
environment and context. 

We specify constraints on variants that can be used 
during configuration. For example, the use of a 
particular functionality (variant model) might require 
or exclude others. These constraints reduce the total 
number of configurations by rejecting invalid 
configurations. More details are shown in [9]. 

Our research work opens new research questions as 
for example: what is the correct order of the deletion 
and incorporation of components during 
reconfiguration, or what is the impact on the 
performance of the application. More research in that 
sense is needed. We already have started tackling the 
second question. In the specific context of our 
research, the calculations necessary to obtain the diff 
model to automatically generate the reconfiguration 
scripts takes more time than the execution of 
predefined scripts. In some particular cases the 
consequent delay during runtime may not be 
acceptable. A possible solution is to pre-generate 
critical scripts before the system execution. Some early 
results are already shown in [18] and [17]. 
 

                                                           
1 In [18] we have used the term aspects instead of modules. The 

author thinks that variant modules helps keeping the reader focused.  



4. Discussion, Research Questions  
Research on providing support for using runtime 

models is in its early stages. Therefore, some research 
questions are open and discussion is needed. 

 
Towards a classification 
France and Rumpe [11] describe two broad classes 

of models, development models and runtime models. 
Development models are software models “at levels of 
abstraction above the code level” [11] such as 
requirements, architectural, and deployment models. 
Development models are clearly associated with the 
entities managed during the development cycle 
described in Section 1 (Introduction). Other authors 
talk about another category of models called design-
time-models [10, 3] or design-time artifacts [14]. The 
author is not sure if “development” models mean the 
same as “design-time” models for those authors. 

Runtime models provide “abstractions of runtime 
phenomena” [11] and can be used by different 
stakeholders in different ways. As in the case of 
traditional models used during design, a runtime model 
supports reasoning about a system, but can also assist 
in the automated generation of implementations as was 
shown in Section 3. System users can also use runtime 
models to support dynamic state monitoring and 
control of systems during execution, or to dynamically 
observe the runtime behavior to understand a 
behavioral phenomenon [11]. A runtime model can 
also potentially support semantic integration of 
heterogeneous software elements at runtime (e.g. 
dynamically adaptable meta-models)2 in the domain of 
systems of systems. 

France and Rumpe [11] also picture how adaptation 
agents (e.g. software maintainers, software-based 
agents) can use runtime models to determine if an 
adaptation is needed to consequently perform the 
changes required. Performing adaptations imply 
making changes to (runtime) models of the parts to be 
adapted using the support provided by execution 
platforms (e.g. a middleware platform with adaptation 
facilities). Our work presented in [18] makes the 
envisaged application of runtime models made by 
France and Rumpe in FOSE (ICSE 2007) slightly 
closer to reality, however, more research work is 
needed. In a more visionary approach, the adaptation 
agents can be envisaged using runtime models to fix 
design errors or to include new design decisions into a 
running system [11] to support controlled ongoing-
design. The mechanisms used to realize this vision are 
expected to be more complex. Nevertheless, these 

                                                           
2 As suggested by Bran Selic as a panelist in the 3rd International 

Workshop on Models@run.time in Toulouse, October, 2008  

more complex mechanisms would be able to support 
unanticipated modifications to some extent [6]. 

 
More than architectural models 
The research works discussed in this paper present 

the prevalent use of runtime architectural models. The 
author believes the vision of models@run.time goes 
further. For instance, requirements reflection [8] is an 
exciting and promising research topic that studies how 
the requirements and goals of a software system can be 
dynamically observed, i.e. during execution [6]. In 
order to do this, a model of the requirements of the 
system should be maintained while the system is 
running. The right associations between such 
requirements models and the implementation artifacts 
should also be taken into account to keep requirements 
information in sync. Future work is needed to examine 
how technologies may provide the infrastructure to 
offer support to maintain requirement models that can 
be consulted at runtime. Furthermore, explicit runtime 
representations of system goals are crucial for self-
aware systems.  

  

 
 

Figure 3. Design models vs. runtime models 
 
Figure 3 shows an initial comparison between 

traditional software models (used during design-time) 
and runtime models. MDE research has tended to 
concentrate on the use of design-time models. Design-
time models are transformed or compiled to create a 
system that eventually will be executed.  

The role of reflection and the causal connection 
between the system and its self-representation (i.e. its 
runtime model) is specially highlighted in the figure. 
Take note how on purpose the author has made closer 
the runtime model and the running system contrasting 
with the bigger separation between the model used in 
design and the system to be executed. With that, the 
author wants to stress that the links between the 
runtime model and the running system should be light 
enough to ensure good performance during execution. 
Any reasoning task and change effects from the 
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runtime model to the running system and vice versa 
should not take long time and put in risk the 
responsiveness of the system (as discussed in Section 
3). In [18] we have shown how runtime models can be 
used to generate reconfiguration scripts that will 
dynamically change the running system. We have also 
shown the potential use of runtime models to support 
reasoning. Then again, more research efforts are 
needed to further study the potential use of runtime 
models. 
 

 Final research questions 
As stated in [11], the proposed classification may 

evolve as the research topic of models@run.time 
matures. Runtime models may be used as development 
models, to dynamically evolve software systems, for 
instance. Similarly, development models may be used 
as runtime models to support ongoing design, for 
example. Therefore, how can the classification 
proposed be extended or improved, and what would be 
the relationships between these two categories of 
models? Specifically, in Figure 3, what are the 
relationships between the traditional software models 
and a runtime model?  Furthermore, is an ongoing-
design of the system described by design-time models 
or by runtime models?  or by a combination of both? 

In order to reason about the impact of changes, it 
looks crucial that the history of the system must also be 
fully accessible and manipulable, therefore, what role 
should the models play in that task?  

Other research questions, partially based on the 
ideas discussed in this paper and the fruitful 
discussions during the panel of the third edition of the 
workshop Models@run.time 2008, are as follows: 

-How are the current model synthesis technologies 
(used during development) different from the more 
dynamic model synthesis technologies needed when 
using runtime models during execution? Are the 
former technologies suitable for dynamic model 
synthesis?  

-What are the methods and standards for specifying 
semantics suited to automated interpretation (i.e. done 
during runtime)? 

-How can we achieve reversible model 
transformations, to deal with synchronization issues 
between the runtime model and the running system, 
and between the development models and runtime 
models? 

These questions are just few starting points for 
research in this exciting research topic with potential 
fruitful results for software engineering. 
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