
Mitigating the obsolescence of quality-specification models in service-based systems

Romina Torres
Universidad Tecnica Federico Santa Maria

Chile
INRIA Paris-Rocquencourt, France

romina@inf.utfsm.cl

Nelly Bencomo
INRIA Paris-Rocquencourt

France
nelly@acm.org

Hernan Astudillo
Universidad Tecnica Federico Santa Maria

Chile
hernan@acm.org

Abstract—Requirements-aware systems have addressed the
need of reasoning about uncertainty at runtime to support
adaptation decisions. Unfortunately, the RE research commu-
nity has not addressed yet the uncertainty about the QoS of
services generated by the market. Currently, requirements of
SBS are transformed into specification models using the domain
knowledge about the market known at design time. During
runtime, the market and therefore the domain knowledge, can
change resulting in the obsolescence of the specification models.
Obsolete specification models may make the system miss
opportunities for self-adaptation to improve its performance.
In this paper, we argue that QoS requirements should be
specified in a way that avoids its future obsolescence. We
propose an approach to address the uncertainty associated
to QoS due to the unforeseen behavior of the market during
execution. We propose the use of abstract specification models
of QoS. During runtime, these abstract specification models are
transformed into concrete specification models to determine
if the requirements are still satisfied by the current service
configuration and consequently executing an adaptation if
needed. We have applied our approach in different case studies.
Our results showed so far that in 100% of the cases, SBS using
our approach are able to detect unsatisfied requirements during
runtime and, therefore triggering suitable adaptations.

Keywords-Requirements-awareness, Quality of Service,
service-based systems, dynamically adaptive systems, require-
ments model, model@runtime.

I. INTRODUCTION

The runtime representations of requirements [1] presented
by requirements-aware systems [2] act as a base line to
drive and reason about dynamically adaptive systems (DAS).
Those systems are capable of dealing with different kinds
of uncertainty [3], reasoning over their requirements at run-
time, monitoring their satisfaction and triggering corrective
adaptations when deviations are detected between the sys-
tem’s runtime behaviour and the requirements model.

During the specification of a system, the requirements R
are transformed into specification S supported by domain
knowledge K [4]. According to Zave and Jackson [4],
the specifications S and the relevant domain knowledge K
must be sufficient to guarantee that the requirements R are
satisfied:

S,K ` R (1)

During execution, it is possible to determine if the require-
ments are satisfied or not, by monitoring the deviations
between the system’s behavior and the specification models.
The latter is valid just if K has not changed considerably
during execution since the specification S were defined.
For the specific case of service-based systems (SBS), this
assumption cannot always be guaranteed given the unprece-
dented degree of change in the service market [5]. Even,
if the required functionalities of a SBS would not change,
the quality specifications which constrain functionalities are
likely to change through the time because they are highly
dependent on the characteristics of the market represented
by K. In this kind of systems, the quantifiable quality
specifications S are obtained by observation of what the
service market K is offering.

Unfortunately, during execution the ever changing market
may provoke the obsolesce of S making impossible for
systems to determine if their requirements are being satisfied
or not by the current configuration of services. The latter is a
problem in the case that the satisfaction of the specifications
S are used by systems as a base to drive their adaptations.
The system can miss opportunities of adaptations because it
is not aware when requirements are becoming unsatisfied.

In this work, we propose an approach to support systems
to address the uncertainty of the QoS of the service mar-
ket, by mitigating the obsolescence of the specifications at
runtime in order to avoid the degradation of the adaptation
capability of the specification model.

The rest of the article is organized as follows: Section
II introduces a motivational example and the background
needed to understand following sections; Section III presents
our approach; Section IV explains the architecture which
supports this approach; Section V explains the current
dataset, describes experiments and discusses their results;
Section VI contrasts related proposals; and Section VII
concludes the paper and draws future works.

II. MOTIVATIONAL SCENARIO

Consider the following motivational scenario: our client
requires to build a service-based application to send by
email, as fast as possible, the city and state for the location
where the user is. To build such application, the architect



needs 1) to transform, at design time, the requirements R
into an specification model S using the current offering of
the service market K and then, 2) at binding time, to select
from the service market a proper architecture configuration
C (service composition), which satisfies the model, as Figure
1 shows. The process to build the specification model S is

Figure 1. Building the model at design time to drive adaptations at runtime

explained as follows:
1) From requirements to software requirements. From

the statement, architect identifies three software re-
quirements SRs: SR1, a service capable of deter-
mining the location of an IP address, SR2, a service
capable of returning the state and the city given
either a zip code or a location and, SR3 a service
capable of sending emails given an email address and
a text. At runtime time, each software requirement will
be implemented by one service or a composition of
services.

2) Prioritizing software requirements. Suppose that, in
this example SRs are prioritized as equally important.

Figure 2. Satisfaction function of the response time quality specification
by observing the current offering K

3) From quality requirements to quality specifications.
From the statement, the architect identifies the quality
requirements and then how they constrain each SR.
In this particular example, from the statement the
architect identifies the quality requirement: {“as fast
as possible”}. Architect transforms the quality con-
straint of SR3 by observing the current and relevant
offering of the service market, which is in this case,
the measurements of the response time of the services
which are capable to perform the same functionality i
required for SR3. Lets suppose the architect decides
for services providing functionality i
• “fast” are those services with response time ≤

100 milliseconds,
• “no fast” are those services with
response time ≥ 200 milliseconds and,

• for those services whose have 100 ≤
response time ≤ 200 ms, as Figure 2
shows, there is a function which measures the
proportional “fast” degree of them.

Analogously, the architect defines for SR1 a range be-
tween [10, 50] and for SR2 a range between [40, 100].
As we can see, the numerical range which represents
“fast” is different depending of which part of service
market (which kind of functionality) is relevant.

4) Prioritizing quality specifications. For each software
requirement, quality specifications are prioritized.

Figure 3. Partial view of the specification model at design time

Figure 3 partially shows the specification model S built at
design time which is used to obtain an initial configuration
C as well as to trigger the needed adaptations at runtime,
when C ceases to satisfy the model S.

Suppose that, for this particular scenario, the architect
selects at runtime an initial service composition C =
{su, sv, sw} which maximizes the satisfaction of the particu-
lar model S at time t. Suppose now that, at time t+x there



is enough evidence in K that the service sw has dropped
several times its QoS by increasing, in average, its response
time from 80 to 230 milliseconds. Then, the system must
trigger its adaptation (see Figure 4) in order to replace the
infringer service or in some cases the complete composition.
Suppose in this case that, the configuration C is replaced by
C ′ = {su, sv, so}, where the response time of service so is
91 milliseconds.

Figure 4. Driving adaptations using the specification model

Suppose now a second scenario. The response time mea-
surements of the functionally-equivalent services offering
functionality i required to implement SR3, in general, have
decreased. More than 75% of the services have now a
response time ≤ 107 milliseconds. The relevant mar-
ket K to this requirement, has drastically changed, what
may change the perception of the architect of what “fast”
means in this kind of services (e.g. architect could change
its specification from [100, 200] to [20, 50] milliseconds).
Therefore, if the specification model S is not updated in
this case and each time the assumptions under S was built
become falsified (K has drastically changed), then the model
S itself will become obsolete and it will be not able to
support SBS to drive their adaptation. Unfortunately, the
K is continuously and drastically changing because service
providers are competing by offering services with similar
functionality but different quality and cost attributes [5] [6].

This new kind of dynamism of the service market [5]
makes 1) unfeasible for humans manually maintaining their
models aware of the market and 2) unfeasible for SBS driv-
ing automatically their adaptations under these conditions.

III. PROPOSAL: MITIGATING THE OBSOLESCENCE OF
THE SPECIFICATION MODEL

In this Section, we present our approach to mitigate the
obsolescence of the specification model S at runtime, which
drives the adaptation of SBS under a ever changing market.

We propose to relieve architects from the arduous task of
transforming requirements R into measurable specifications
S, as well as maintaining synchronized R with S when
the service market K is evolving. Indeed, we encourage
architects to transform R into an abstract specification model
S∗ by using “linguistic” variables [7] instead of numerical
ones, because the latter are more prone to obsolescence.

Figure 5. Overview of the obsolescence mitigating process. Area 1 shows
how the knowledge domain is obtained; area 2 shows how the requirements
are transformed into abstract specifications; area 3 shows how the concrete
specification model is generated; and finally the area 4 shows how the SBS
drives the adaptation at runtime.

Figure 5 schematically shows the overview of our ap-
proach which consists of several subprocesses. Whenever
the market has significantly changed, the first subprocess
(area 1) is in charge of generating a new view of the
knowledge domain KT . Moreover, this process also provides
online the measurements of the services Kt. The second
subprocess (area 2) allows to each client to define an abstract
specification model S∗ from the requirements R. Given
this abstract specification S∗, our approach is capable to
automatically generate a concrete specification model S by
using the current knowledge domain KT (subprocess marked
as area 3) and, secondly, to drive the adaptation whenever
there is enough evidence that the current configuration C is
non longer satisfying the specification model S (subprocess
marked as area 4). In the following sections each subprocess
will be explained in details.



A. Subprocess 1: Obtaining the relevant knowledge domain
at runtime

Let CSi = {s1i , s2i , ..., s
ni
i } be a functionally-equivalent

service set, which is comprised by ni ≥ 1 concrete services
that provide the same functionality i than an abstract service
sai, with 1 ≤ i ≤ I [8]. Let Q = {q1, . . . , qM} be the set
of quality attributes which allow to distinguish functionally-
equivalent services. Let K be the service market composed
of all the functionally-equivalent service sets.

We assume that for each functionally-equivalent services
set CSi, it is possible to periodically obtain the measurement
for each quality attribute of each service member. Moreover
the services can be ordered according to each of these quality
attributes as well as they can be categorized in five over-
lapping groups which allow to classify them comparatively.
These groups are the linguistic variables LV s, which in this
work we assume they are LV [i]

j = {“poor”, “fair”, “good”,
“very good”, and “excellent”}. Each linguistic variable is
a fuzzy set denoted by µ with a triangular shape whose
support a1, a2 and its peak aM are calculated using KT . µ
is defined as follows:

µ(x) =


x−a1
aM−a1 if a1 ≤ x ≤ aM
x−a2
aM−a2 if aM ≤ x ≤ a2
0 otherwise,

(2)

where x is the measurement given by Kt.
Let Kτ be the measurements of the quality attributes of

all services of the market at the snapshot obtained at time
τ (τ could be considered as the time t or time T whichever
is applicable).
KT allows clients to specify its quality specifications by

using the LV s, while Kt allows the systems to monitor
if the current architecture configuration C is satisfying the
concrete specifications S. Notice that the frequency at which
the adaptation of KT is generated is significantly lower than
the frequency of Kt (see figure 6).

Figure 6.

B. Subprocess 2: Defining the abstract specification model
at design time

In this subprocess the architect specifies at design time
the abstract specification model S∗ by transforming quality
requirements into abstract quality specifications by using the
linguistic variables LV .

The abstract specification model S∗ is constructed from
a set of fuzzy conditional statements. These statements are
expressions of the form IF A and B and ... THEN Z where
A, B and Z have fuzzy meaning.

For instance, the concrete specification model which was
generated in Figure 1 can be specified as an abstract model
by using Ł instead of precise numerical values. The left
branch of the model can be specified as an abstract model
as follows: IF the response time of a service capable of
sending email is at least “fast” THEN the belonging degree
to the acceptable solution set is high, where “fast” for this
kind of service is a linguistic variable whose numerical
range is defined in KT (by simplicity we omit prioritization
in the statement). The aim of the specification model is
to allows systems to determine if the current architecture
configuration C is satisfying the requirements and to support
the assessment of replacement configurations in case of an
adaptation is needed. Therefore, we represent the abstract
specification model S∗ as a fuzzy multi-criteria decision
making function

S∗ :

I∑
i=1

vi

 J∑
j=1

w
[i]
j δMAC

[i]
j

(cj(C))

 I(C, SRi) (3)

where V = {v1, ..., vI} and W [i] = {w[i]
1 , ..., w

[i]
J } be the

sets of relative importance of each software requirement
SRi, as well as for each software requirement, the relative
importance of each quality constraint; I(C, SRi) which is an
indicator function that returns 1 if there is a service s ∈ C
providing functionality i requested by SRi or 0 if not; cj(C)
is a function which returns the current measurement value
of the service s ∈ C from Kt if applies; δ

MAC
[i]
j

is a fuzzy
function which returns the membership degree of the current
measurement of the s ∈ C to the minimal acceptable class
(MAC) which is a linguistic variable defined in KT .

C. Subprocess 3: Generating the concrete specification
model at runtime

The subprocess marked as 3 in Figure 5 shows a trans-
formation from the abstract specification model S∗ into a
concrete specification model S. This transformation is exe-
cuted each time a new KT is available. The main difference
between S∗ and S is that we incorporated the information
of the relevant knowledge domain KT in order to obtain the
numerical values of the parameters of the model equation 3.
This equation has several function δ

MAC
[i]
j

(one for each
quality attribute constrain of each functionally-equivalent
set) whose parameters must be obtained from the relevant
knowledge domain KT . Because our model allows to specify
the minimal acceptable class, services belonging to better
quality levels must also be considered with membership
degree of 1. We define each δ

MAC
[i]
j

as the fuzzy union



of the minimal acceptable class (which is one of the five
linguistic variables) with those classes which are better, as
follows

δ
MAC

[i]
j

= MIN(µMAC , µC1 , . . . , µCL
) (4)

where µC1
, . . . , µCL

are those linguistic variables whose
linguistic meanings are better than µMAC . Because, we are
assuming triangular fuzzy sets, the function µMAC is defined
as a ramp function as follows (assuming a1 ≤ a2)

µMAC =


0 if cj(C) > a2
cj(C)−a1
a2−a1 if a1 ≤ cj(C) ≤ a2

1 if cj(C) < a1

(5)

Each time the subprocess explained in subsection III-A
generates a new KT , a new concrete specification model S
will be generated.

D. Subprocess 4: Driving adaptations at runtime

The subprocess marked as 4 in Figure 5 shows how the
specification model S and the current measurements Kt are
used to determine if the current configuration C is satisfying
or not the specification model S. If the specification model S
using Kt is not satisfied by the current configuration C, then
the monitoring component in the area 4 of the Figure 5 sends
the violation to the Analyzer component which determines if
there is enough evidence to trigger an adaptation or not. The
planner component obtain a new configuration Ct by using
S and Kt. Then, this new configuration is applied. How the
configuration is applied or which adaptation strategy to use
(instead of replacement) are out of the scope of this paper.

IV. APPROACH IMPLEMENTATION

In order to maintain the specification models aware of the
market, the process 1 explained in the section III-A must
be periodically executed. Figure 7 shows the architecture to
produce new market views from the current observations.
The functional crawler component collects from different
Web-based catalogs the Web service descriptors. The QoS
certifier component runs a benchmark tool over the endpoint
list obtained by the functional crawler, in order to gather the
QoS measurements. The functional clustering component
clusters the Web services (based on their WSDL descriptor
files) according to their functionality (if there is not valid
categories information available). And the QoS-fuzzy cluster-
ing which clusters each quality aspect of each functionally-
equivalent service set into c classes using a modified fuzzy
c-means algorithm (deeper details in [9]). In this work we
set up c = 5.

Notice in the Figure 5 we have two feedback loops. The
first one is located in the market side, which is constantly
monitoring the changes in the market, analyzing if there is
enough evidence to generate a new market view, and in the

Figure 7. Architecture to produce new market snapshots

positive case, in the planning stage, generating a new market
snapshot which basically allows to update all the parameters
of the linguistic variables (fuzzy sets) of each functional-
equivalent service set which are informed to the SBS client
systems by the executing stage.

V. EXPERIMENTS

In order to show how the approach works, we have
developed a basic prototype to study how concrete specifi-
cation models become obsolete when the market is changing
and how new architecture configuration can be driven if
the obsolescence is mitigated. The prototype allows (1) to
specify a set of software requirements; (2) to prioritize them;
(3) for each software requirement to specify its quality
constrains by using linguistic variables; (4) to prioritize them
as well; (5) to find a valid architecture configuration which
maximizes the satisfaction of the model at time t; and finally
(6) to show how new configurations are recommended at
t+∆t and at t+x∆t when the configuration recommended
at t, Ct does not satisfy anymore the specifications R.

In the following subsections we explain the dataset, what
experiments we ran and what conclusions we draw from
them.

A. Dataset

The dataset consists of a subset of 1500 Web services
of the QWS Dataset 1 (all of them valid as of October
2011), which originally included 2507 actual Web service
descriptors with nine QoS measurements. The quality as-
pects are response time, availability, throughput, success-
ability, reliability, compliance, best practices, latency and
documentation.

To emulate the market changes, we have created two
new market snapshots, where QoS’ service specifications

1http://www.uoguelph.ca/∼qmahmoud/qws



are improved in the first snapshot in a random percentage
between 0% and 30%, and in the second snapshot a random
percentage between 30% and 50%. All of these modifica-
tions are applied to all services. We are not using a black
list with the services currently selected by the configurations
C of the SBS.

Our prototype follows the approach presented in our
previous work [10] to externalize adaptation capabilities by
a third application that provides the service of monitoring
subscribed contracts (requirements and current architecture
configuration in use) and monitoring the changes in the
market in order to act as a recommender system, whose
objective is to notify subscribed SBS when an adaptation
should be executed because its requirements have been
not satisfied recurrently, which could mean, probably, its
architecture is degrading and it is better to adapt it in order
to avoid it becomes obsolete.

B. Case study

We have prepared a set of ten case studies, each one
may be composed of multiple software requirements, which
themselves may be constrained by multiple quality require-
ments. Because the objective of these experiments is to study
the robustness of the model against the market changes we
are not studying prioritization. The reader can assume if a
request is divided in several software requirements, these are
prioritized as equally important (“high), and if a software
requirement is constrained by several quality requirements,
these are equally important (“high”) as well. For lack of
space, we only show four of the ten cases:

• R1: one service capable of given a zip code return
the country with at least response time “excellent”, at
least availability “excellent”, and at least throughput
“excellent”; and a second service capable of given
the latitude and longitude return a map with at least
throughput “excellent”, at least reliability “excellent”,
at least best practices “excellent” and at least latency
“excellent”.

• R3: one service capable of return the sequence of a
protein with at least response time “excellent”, at least
throughput “excellent”, and at least latency “excellent”.

• R6: one service capable of given a phone number return
its information with at least response time “excellent”,
at least throughput “excellent”, and at least best prac-
tices “excellent”; and a second service capable of send
a tex by fax with at least response time “excellent”, and
at least availability “excellent”.

• R8: one service capable of given a zip code returns
the country with at least response time “excellent”, and
at least reliability “excellent”; and a second service
capable of given a country returns its currency with
at least response time “excellent”, at least availability
“excellent”, and at least best practices “excellent”.

Figure 8. Using the prototype to asses a case study

C. Experiments and discussion

The objective of this experiment is to empirically show
that by using our approach of mitigating the obsolescence
of the specifications (or in other words, make them market-
aware models) specification models maintained at runtime
are a valid and effective base to enable systems to reason
about them whether their requirements are being satisfied by
the current architecture.

Figure 8 shows the user interface of our prototype. Soft-
ware and quality requirements, prioritization, and minimal
acceptable classes are specified. Our prototype computes
an architecture at design time (using the first snapshot)
choosing one of those whose membership degree to the
“acceptable solution” fuzzy set (defuzzifying equation 3)
is closest to 1. It is important to notice, that we choose
a fuzzy approach instead of a deterministic one in order to
avoid always recommend the best, because if we do that,
we would increasing the potential demand of some services
will face next time the market is evaluated.

Figure 9 shows the results for the request R3, where the
service with id 125858046 was selected to implement the
requirement R whose membership degree to the “acceptable
solution” set was 1. As we can see in the table below
the service selected, it is not the only one, which has a
membership degree equal to 1. Figure 9 also shows results
at runtime: Market 1 (K1) and Market 2 (K2). In K1, we
can see the service with id 125858046 drops its membership
degree to the “acceptable solution”, from 1 to 0.8471 and
in K2, it still drops even more its membership degree until
0.6667. We have to remember the K1 and K2 snapshots are
synthetical data, whose quality was randomly improved from
previous market view. Then, it is possible some services do
not experiment changes in their quality, or even when they
did, the quality fuzzy set drifted in such a way, services
still are considered in this case, of “excellent” quality (for
instance, the service with id 88047002 with membership
degree of 1 to the “acceptable solution” at design time



Figure 9. Case study results

maintains the same degree at runtime K1).
In Table I we show the results for the four requests

that we specified before. The first column shows the id
of requests, the second column shows the hypothetical
selected architecture configuration and between parenthesis
the membership degree to the “acceptable solution” set. The
third and four column shows the results obtained for the first
and second runtime snapshots respectively. For each request
we are divided the results in three rows. the first row of
each request, indicates in the second column the solution
selected C at design time with its membership degree to
the “acceptable solution” set, in the third column asses C
again but over K1 and in the four column asses it again but
over K2. The second row of each request shows in the third
column, the recommended adaptation for the system under
this new K1, and in the four column the assessment of this
recommendation but over the future K2. The third row of
each request shows in the four column, the recommended
adaptation for the system under this new K2 It is important
to notice, we are omitting deeper details as how are they
are connected or which one is the expected QoS of the
system by using these services with their particular QoS,
because this is part of our current work which is discussed
in Section VII. We can conclude based on this experiment,
if obsolescence of specifications is not mitigated, systems
using a model@runtime to drive its architecture adaptation
could miss adaptation because the obsolescence of speci-
fications is hiding requirements are becoming unsatisfied.
In the 100% of the cases, recommendations at runtime are
encouraged to replace the older ones because the current
configurations have at runtime a membership degree to the
“acceptable solution” lower than the threshold. Threshold
should be defined by each SBS owner, but now this is out
of the scope of this paper but is part of our future work.

The main contribution of mitigate the obsolescence of
specifications against of a market which is constantly chang-
ing, is SBS are not missing adaptation opportunities.

Table I
TEST CASES - EACH COLUMN SHOWS THE SERVICES IDS WHICH

SATISFY THE REQUEST AND BETWEEN PARENTHESIS IS THE BELONGING
DEGREE OF THE PROPOSED SOLUTION TO THE ACCEPTABLE SOLUTION

SPACE IN THE CURRENT AND NEXT SNAPSHOTS.

ID design-time (1st)run-time (2nd)run-time
R1 84193574,

4869688 (0.875) (0.545) (0.27)

112625634,
47714966 (1) (0.5)

131744503,
121724741 (1)

R3 15103218(1) (0.667) (0.501)

87750611(1) (0.883)

84135951(1)

R6 78667380,
23013627 (1) (0.833) (0.333)

87157455,
23013627 (1) (0.1667)

79152933,
26808021(1)

R8 112791393,
179771826 (1) (0.438) (0.137)

60150637
47714966(1) (0.417)

85415723,
21416266 (1)

VI. RELATED WORK

Ramirez et al. [3] have proposed a taxonomy of potential
sources of uncertainty at the requirements, design, and ex-
ecution phases. The authors reported on existing techniques
for mitigating specific types of uncertainty. We deal with
the uncertainty of the QoS offering of the service market
at runtime (“known unknown”). According to the proposed
taxonomy, we are dealing with run-time uncertainty whose
source is the incomplete information of the market behavior
that we have at design time. Our domain problem could
be classified into the kind of concerns tackled by different
approaches like RELAX [11] and Requirements Reflection
[1]. However, there is not research initiative that specifically
addresses this kind of uncertainty.

RELAX is a requirements language addressing the uncer-
tainty in the specification of requirements of self-adaptive
systems, which allows analysts to specify which require-
ments could be relaxed at runtime when the environment
changes. RELAX implements key ideas of Requirements
Reflection. Similar to RELAX, we also delay decisions until
runtime, and we use a language to mark which parts of
the requirements are delayed. However, RELAX works at
level of specifications of adaptive behavior while we make
recommendations of adaptations at the level of adaptive
architecture.



Welsh et al. proposed REAssuRE [12], a framework,
which monitors when assumptions made at design time are
falsified by the current conditions and therefore triggering
adaptations. With our approach, different kind of assump-
tions can be monitored. Using our approach, specifications
of the market are monitored to see if the are becoming
obsolete and are compared against the QoS offered by
the service market. In REAssuRE claims associated to
soft goals are made at design time to determine which
operationalization alternative is the more suitable decision.
During runtime, claims are monitored to check if they are
obsolete according to the current environmental conditions.
When claims are falsified, REAssuRE allows systems to
decide at runtime if an adaptation is needed (i.e. to change
to another operationalization). Similarly in our case, when
domain knowledge K changes, our approach allows systems
to reason and decide at runtime if specifications should
be synchronized to mitigate their obsolescence, and then
determine if an adaptation is needed (i.e. to change to
another proper configuration).

Baresi et al. [13] extended KAOS (Goal-Directed Require-
ments Acquisition) by including adaptive goals. Goal-based
models support the specification of “when” the adaptation
should be executed and “what” it means . Besides, authors
proposed a runtime infrastructure [14] which constantly
monitors the conditions to trigger adaptations. Baresi et al.
[15] formalized this model as FLAGS (Fuzzy Live Adaptive
Goals for Self-adaptive systems) which represents require-
ments as runtime entities, distinguishing between crisp and
fuzzy goals. Unfortunately, they use stakeholders to define
the membership function, which in our case, is not feasible.
Under a closed-world assumption [5] their approach works.
However, due to the dynamism degree of change of the QoS
offered by the service market, these specifications should
constantly be updated by stakeholders, which would be an
expensive process.

Filieri et al. [16] proposed a formal approach to adaptive
software by assuring continuously the satisfaction of non-
functional requirements. Similar to our work, they also
casted their proposal into the Zave and Jackson approach
to requirements [4]. Their approach is exemplified in the
context of service-oriented system, focusing specifically
in the non-functional requirements, they also assume the
domain knowledge regarding the qualities attributes of the
services are changing, and therefore their approach is trying
to maintain consistent the specifications with the require-
ments by estimating the knowledge periodically as a way
to determine if the requirements are becoming unsatisfied
or not. Both proposals allow the system to maintain non-
functional properties satisfied by adapting their architecture
to new conditions. However, we are specifically proposing
a framework which allows analysts to specify requirements
in such a way that they are continuously synchronized with
the open world in which service-based systems are immersed

[5].

VII. CONCLUSIONS AND FURTHER WORK

In this work we have proposed an approach to support
systems to address the uncertainty of the QoS of the service
market, by mitigating the obsolescence of the specification
models at runtime. The main contribution of this paper
is that our approach allows the system to mitigate the
degradation of the adaptation capability of the model used
during runtime. Until now, the adaptation capability of these
models depended on precise numerical quality specifications
that become rapidly obsolete against the QoS offered by
the ever-changing market.Our proposal supports the reaction
capacity of the system to detect requirements dissatisfaction,
the maintenance of the consistency of the requirements at
runtime to drive adaptations.

As future steps in our research we are considering the
following topics:
• Sensibility adaptation index: in order to compare the

adaptation capability we define the sensibility adapta-
tion index of a model as the percentage of the required
adaptations which were recommended using the model.

• Global quality: until now we are assuming the global
quality of the system under construction and mainte-
nance, can be obtained by ensuring that the quality
requirements of the parts are achieved. There are sev-
eral proposals to obtain a global model, for instance
we could the components interact between them under
a workflow model [17] where the interaction patterns
can be know in advance. Our next step in this area is
to apply our approach in this specific service-oriented
architecture to reach the global quality specifications
and not only the local ones.

• How often K should be recalculated: How much ev-
idence the monitor component of the market feedback
loop needs, to determine the K is obsolete and needs
to be recalculated?

As part of our future work, we will release a benchmark to
the community in order to asses similar models proposed by
different authors.

ACKNOWLEDGMENT

This work was partially funded by FONDEF (grant
D09i1171), UTFSM DGIP 241167 and BASAL
FB0821(FB.02PG.11), the EU Marie Curie Project
Requirements@runtime and the EU Connect project.

REFERENCES

[1] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein,
and E. Letier, “Requirements reflection: requirements as
runtime entities,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
2, ser. ICSE ’10. New York, NY, USA: ACM, 2010,
pp. 199–202. [Online]. Available: http://doi.acm.org/10.1145/
1810295.1810329



[2] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein, “Requirements-aware systems: A research
agenda for re for self-adaptive systems,” in Proceedings of
the 2010 18th IEEE International Requirements Engineering
Conference, ser. RE ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 95–103. [Online]. Available:
http://dx.doi.org/10.1109/RE.2010.21

[3] A. Ramirez, A. C. Jensen, and C. B. H. C., “To appear
seventh workshop on software engineering for adaptive and
self-managing systems (seams 2012),” in ICSE, 2012.

[4] P. Zave and M. Jackson, “Four dark corners of requirements
engineering,” ACM Trans. Softw. Eng. Methodol., vol. 6,
no. 1, pp. 1–30, Jan. 1997. [Online]. Available: http:
//doi.acm.org/10.1145/237432.237434

[5] L. Baresi, E. Di Nitto, and C. Ghezzi, “Toward open-
world software: Issue and challenges,” Computer, vol. 39,
no. 10, pp. 36–43, Oct. 2006. [Online]. Available: http:
//dx.doi.org/10.1109/MC.2006.362

[6] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou,
and K. Pohl, “A journey to highly dynamic, self-
adaptive service-based applications,” Automated Software
Engineering, vol. 15, pp. 313–341, 2008, 10.1007/s10515-
008-0032-x. [Online]. Available: http://dx.doi.org/10.1007/
s10515-008-0032-x

[7] L. A. Zadeh, “Outline of a new approach to the analysis of
complex systems and decision processes,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. SMC-3, no. 1, pp.
28 –44, jan. 1973.

[8] R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Miran-
dola, and G. Tamburrelli, “Dynamic QoS management and
optimization in service-based systems,” IEEE Transactions
on Software Engineering, vol. 37, no. 3, pp. 387–409, 2011.

[9] R. Torres, H. Astudillo, and R. Salas, “Self-adaptive fuzzy
QoS-driven web service discovery,” in Proceedings of the
IEEE International Conference on Services Computing, ser.
SCC ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 64–71. [Online]. Available: http://dx.doi.org/10.
1109/SCC.2011.87

[10] R. Torres and H. Astudillo, “Externalizing the autopoietic
part of software to achieve self-adaptability,” in Proceedings
of the 2011 IEEE World Congress on Services, ser.
SERVICES ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 107–114. [Online]. Available: http:
//dx.doi.org/10.1109/SERVICES.2011.69

[11] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng,
and J.-M. Bruel, “RELAX: a language to address
uncertainty in self-adaptive systems requirement,”
Requirements Engineering, vol. 15, pp. 177–196,
2010, 10.1007/s00766-010-0101-0. [Online]. Available:
http://dx.doi.org/10.1007/s00766-010-0101-0

[12] K. Welsh, P. Sawyer, and N. Bencomo, “Towards require-
ments aware systems: Run-time resolution of design-time
assumptions.” in ASE, P. Alexander, C. S. Pasareanu, and J. G.
Hosking, Eds. IEEE, 2011, pp. 560–563.

[13] L. Baresi and L. Pasquale, “Adaptive goals for self-adaptive
service compositions,” in IEEE International Conference on
Web Services (ICWS), july 2010, pp. 353–360.

[14] L. Baresi, S. Guinea, and L. Pasquale, “Integrated and com-
posable supervision of BPEL processes,” in Proceedings of
the 6th International Conference on Service-Oriented Com-
puting, ser. ICSOC ’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 614–619.

[15] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for
requirements-driven adaptation,” in 18th IEEE International
Requirements Engineering Conference (RE), 27 2010-oct. 1
2010, pp. 125 –134.

[16] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach
to adaptive software: continuous assurance of non-functional
requirements,” Formal Aspects of Computing, vol. 24,
pp. 163–186, 2012, 10.1007/s00165-011-0207-2. [Online].
Available: http://dx.doi.org/10.1007/s00165-011-0207-2

[17] D. Ardagna and R. Mirandola, “Per-flow optimal service se-
lection for web services based processes,” Journal of Systems
and Software, vol. 83, no. 8, pp. 1512–1523, Aug. 2010.


