
Market-awareness in Service-based Systems

Romina Torres
Universidad Tecnica Federico Santa Maria

Chile
INRIA Paris-Rocquencourt, France

romina@inf.utfsm.cl

Nelly Bencomo
INRIA Paris-Rocquencourt

France
nelly@acm.org

Hernan Astudillo
Universidad Tecnica Federico Santa Maria

Chile
hernan@acm.org

Abstract—Service-based systems are service consumer appli-
cations built by composing pre-existing services. Both, service
providers and consumers are on a service market that is
constantly changing. We see different problems in the way
service-based systems are currently carried out. On the one
hand, consumers define requested services using specifications
that depend on the current knowledge of the market. Such
specifications may become obsolete due to the continued
improvements in the QoS of the services in the market. On
the other hand, service providers are passive entities waiting
to be discovered by the service consumers.

In this work, we propose a framework to support both,
consumers and service providers to be aware of the changes
in the market. With our approach consumers are able to
specify the required QoS using abstract specifications that
will be eventually concretized at runtime and according to
real characteristics of the market. Services are represented by
active software agents. These agents are collectively aware of
themselves and what the market requires. Agents are able of
creating and maintaining virtual organizations that not just
wait to be discovered but also react actively to demands of the
market providing self-adaptation capabilities to service-based
systems. Explanations of the current prototype are provided.

Keywords-multi-agent systems; virtual organizations; self-
adaptive systems; service-based systems; uncertainty; aware-
ness; service market; model@runtime

I. INTRODUCTION

Requirements-aware systems [1] have addressed the need
of reasoning about uncertainty to support runtime adapta-
tions. Systems that are aware of their requirements can deal
with different kinds of uncertainty [2] by monitoring their
requirement satisfaction at runtime to execute corrective
actions when deviations are detected (e.g triggering adap-
tations). One the uncertainties that have not been studied is
the uncertainty related to changes in the service market.

Traditional software development were based on the
closed-world assumption that the boundary between system
and environment is known and unchanging [3]. For Service-
based systems (SBSs), this assumption cannot be longer
maintained due to the unpredictable and uncertainty in the
behavior of the service market (improvements in qualities of
services, services becoming available or leaving the market
to name a few).

In this paper we identify two dynamics produced by the
constantly changing service market. As any other market,

supply/demand drives the evolution of the service mar-
ket. On the one hand, in order to gain niche markets,
functionally-equivalent services are constantly competing
(typically in terms of QoS and price). On the other hand,
the supply of service shapes the specifications of requests
done by client systems. To model the above dynamism,
we propose modeling service markets as self-organizing
systems (implemented as multi-agent systems) where service
providers and consumers are represented by agents that
negotiate on their behalf. We make both, service suppliers
and consumers, aware of the market: (1) service providers
are collectively aware of the current demands of the market,
other competitors and even potential partner to provide
services in conjunction and, (2) service consumers spec-
ify required QoS using abstract specifications that will be
eventually concretized at runtime and according to real
characteristics of the market.

The rest of the article is organized as follows: Section II
introduces our approach to mitigate the obsolescence of the
quality-specification models in service-based systems; Sec-
tion III introduces our approach to model the service market;
Section IV explains our proposal to present a solution, which
support service-based systems and services themselves to
address the uncertainty of the market at runtime; Section
V highlights our current implementation and Section VI
concludes the paper and presents our ongoing work.

II. MITIGATING THE OBSOLESCENCE OF
QUALITY-SPECIFICATION MODELS IN SBS

During the specification of a system, the requirements R
are transformed into specification S supported by relevant
domain knowledge K [4]. According to Zave and Jackson
[4], the specifications S and the relevant domain knowledge
K must be sufficient to guarantee that the requirements R
are satisfied:

S,K ` R (1)

During execution, it is possible to determine if the require-
ments R are satisfied or not, by monitoring the deviations
between the system’s behavior and the specification models
S [4]. Crucially, the latter is valid only if K has not
considerably changed during execution since the specifi-
cation S were defined. For the specific case of SBS, this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78889755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

assumption cannot always be guaranteed [3]. Even, if the
required functionalities of a SBS does not change, the quality
specifications which constrain functionalities are likely to
change quickly because they are highly dependent on the
characteristics of the market represented by K. In this
kind of systems, the quantifiable quality specifications S
are obtained by observation of what the service market
K is offering. Unfortunately, during execution the ever
changing market may provoke the obsolescence of S making
impossible for systems to determine if their requirements
R are being satisfied or not by the current configuration
of services C used. The result is that SBSs could miss
opportunities of adaptations because they are not aware
when requirements are becoming unsatisfied.

In [5], we have proposed an approach to tackle the
above. We addressed the uncertainty associated to QoS of
services due to the unforeseen behaviour of the market
during runtime.

Figure 1. serviceMarket

Let CSi = {s1i , s2i , ..., s
ni
i } be a functionally-equivalent

service set, which is comprised by ni ≥ 1 concrete services
that provide the same functionality i than an abstract service
sai, with 1 ≤ i ≤ I [6]. Let Q = {q1, . . . , qM} be
the set of quality attributes which allow us to distinguish
functionally-equivalent services. Let K be the service market
composed by all the functionally-equivalent service sets.
We assume that for each functionally-equivalent services
set CSi, it is possible to certify services by periodically
obtaining measurements for each quality attribute of each
service member (illustrated in Figure 1 as Kt). Services
belonging to each CSi can be ordered depending on each
of their quality attributes. According to these histograms, it
is possible to determine c overlapping groups. Each group
is a linguistic variable LV [i]. For the sake of simplicity, we
use the same five variables for each quality attribute LV [i]

j =
{“poor”, “fair”, “good”, “very good”, and “excellent”}. Each

linguistic variable is a fuzzy set denoted by µ with a
triangular shape (more details can be found in [5]).
KT allows clients to specify its quality specifications by

using the LV s, while Kt allows the systems to monitor if
the current architectural configuration C is satisfying the
concrete specifications S. The information which can be
obtained from KT and Kt is totally different. For instance
from KT we can obtain the services with “excellent” re-
sponse time of the functionally-equivalent set CSi are those
which response time value is less than 43 milliseconds and
from Kt we can obtain the service with id 23243466 which
belongs to the set CSi at time t has a response time of 113
milliseconds.

Figure 1 shows that we are constantly taking snapshots
from the current QoS of the services, Kt, as well as
monitoring if we have gathered enough evidence that the
market is changing to recalculate the meaning of LV . Notice
the frequency of generate KT is, of course, significantly
lower than the frequency of take the snapshots Kt. We
define the abstract language Ł(KT) as the set of variable
LV and their numerical meaning at runtime to be used
by consumers to annotate the requirements R, transforming
them in abstract specifications S∗ or market-aware models.
We encourage clients to specify their requirements using
linguistic variables instead of precise numbers because the
latter are more prone to obsolescence. Using our approach,
the real numerical meaning of each linguistic variable are
delayed until the moment they are used.

Figure 2. From market-aware requirements to self-adaptive systems at
runtime

Figure 2 shows an overview of the main subprocesses
of our approach to support clients to create a market-aware
specification model at design time which will be aware of the
market changes at runtime. The subprocesses are explained

as follows:
• Subprocess 1: From Requirements to Abstract Spec-

ifications. Using the abstract language Ł(KT) com-
posed of linguistic variables LV we transform require-
ments R into abstract specifications S∗. S∗ is construct-
ing as fuzzy conditional statements (e.g. IF the response
time of a service capable of sending email is at least
“fast” THEN the belonging degree to the acceptable so-
lution set is high) which are represented as a fuzzy mul-
ticriteria decision making function which must be sat-
isfied

∑I
i=1 vi

(∑J
j=1 w

[i]
j δMAC

[i]
j
(cj(C))

)
I(C, SRi)

(deeper details can be found in [5]). This subpro-
cess must be executed each time the requirements R
changes.

• Subprocess 2: From Abstract Specifications to Con-
crete Specifications. Using the abstract specifications
S∗ and the current knowledge domain KT , the abstract
specifications S∗ are mapped into concrete specifica-
tions. Each time the market has changed KT , which
is reflected in the numerical meaning of LV , this
subprocess must be re-executed.

• Subprocess 3: From Concrete Specifications to ar-
chitectural configuration. Using the concrete specifi-
cations S and the current snapshot of the market view
Kt the architectural configurations C that better satisfy
the model can be determined (deeper details can be
found in [5]).

• Subprocess 4: Adapting architectural configuration
at runtime. Each time a C is generated, it must be
subscribed to monitoring in order to allow to the system
to check if at runtime C still satisfies S. If services
s ∈ C do not satisfy R at time t and according
to the Analyzer component, this fault is not transient
but recurrent, then a new configuration C ′ should be
calculated to replace the current one.

III. FROM VIRTUAL ORGANIZATIONS TO SERVICE
COMPOSITIONS

In [7] we pointed out that, historically, the responsibility
to discover the proper services to satisfy the market demand
has been delegated to services consumers who need to
divide themselves their requests, to search services, for
each part to evaluate different alternatives, and to construct
their solutions by building compositions of these alterna-
tives. Up to now, current service composition techniques
have modeled services as passive entities waiting to be
discovered by service consumers. In this section we present
MACOCO+ which implements service providers as active
software agents collectively aware of other services. MA-
COCO+ provides a blackboard where all the demands from
service consumers are published, making services also aware
of the market.

We proposed MACOCO (Multi-Agent COmponent COm-
position) [7], an innovative approach, whose first version

allows clients to discover services, which were subscribed
to the blackboard core component. Both, services consumers
and providers were represented as software agents. Both,
were made aware of their environment (the market) by
subscribing them to the blackboard. MACOCO was inspired
on the CONOISE-G platform [8], which allows to create and
maintain virtual organizations to satisfy complex requests
for e-commerce. As CONOISE-G, the second version of
MACOCO [9], allows to service agents to communicate to
each other to create virtual organizations (VOs) which satisfy
complex requests. Then, the service compositions naturally
raised from the market. The current version of MACOCO,
MACOCO+ [10], also allows agents negotiate those aspects
which are negotiable, getting good agreements not only for
providers but also for the clients (deeper details can be found
in [10]).

Figure 3. Overview of MACOCO+ receiving a request containing
specifications S that must be satisfied by a virtual organization from the
service market

Figure 3 shows MACOCO+ receiving a specification S
(e.g. a service capable of sending email with at least a
response time less than 200 ms). The objective of MACOCO
is to find an architectural configuration C which satisfy the
specifications S. A request agent RA wraps the request
which contains the specifications S (step a). RA publishes
the request into the specific topics (functional categories) of
the blackboard (step b), where all the subscribed service
providers SA are aware of it. These service providers
compete among them to gain the contract, bidding the
request by themselves or by creating a coalition with others
to bid as a virtual organization V O (step c and d). Each
request has its own timeout. When the agent RA reaches
the timeout, it closes the offers submission process and
it proceeds to evaluate how well the several offers satisfy
the specifications S of the request. Internally, a contract

is created between the RA and the services providing
the selected configuration C. This contract establishes the
abstract and concrete specifications (S∗ and S) and which
service agents are implementing the request.

Figure 4. MACOCO+: granting the contract

Figure 4 shows the granting contract process from the
beginning to the end. The client publish a request, and
this request is wrapped into a software agent RA. Each
request has a different RA on charge. The RA publishes
the specifications S into the Blackboard where all the
services in the market are already wrapped into an agent
and subscribed to it. The request is open to bidding for a
specific time given by the client. Because the Blackboard
follows a publisher-subscriber design pattern, when an RA
publishes a request, all the SA subscribed to the pertinent
topics are notified. It is important to mention existing V O,
serving different requests, are also represented by agents that
also have the same goal of SAs: to gain the contract. More
details can be found in [10]. When agents (SAs or V Os)
receive request notifications they can decide to do nothing,
to call for partners to bid as part of a virtual organization or
to bid alone (see Figure 4). When RA reaches the timeout,
it evaluates and ranks the proposals. It negotiates with the
top-k agents representing the proposals those aspects which
are marked as negotiable. The RA selects a proposal and
grant the contract. Because the conditions of the SA or
V O agent could change, RA expects the acceptance from
the counterpart. MACOCO up to now had not provided
adaptation support to clients.

IV. PROPOSAL

In this section, we present Adaptive, our framework
which implements our proposal presented in [5] supporting
Service-based systems to drive their adaptation based on
market-awareness. Our proposal is quite similar to one of
the exemplars presented by Zambonelli [11] in which the

awareness was reached by using a blackboard to share the
relevant knowledge.

Figure 5. Overview of Adaptive

We use MACOCO+ and our approach to mitigate the
obsolescence of the specifications model S (see Figure 5).
At runtime, the agreement between clients and providers is
stored as a contract which is monitored each time there are
new snapshots available and it is recomputed each time a
new reasoning of the market is available KT .

The main differences between the Figures 5 and 2 are
explained below.
• In the subprocess 3 we have replaced the generic

transformation from specifications S to architectural
configuration C by MACOCO+, which receives the
current snapshot of the market (in order to agents reflect
the latest QoS information of the services they are
representing) and returns a web service composition (or
architectural configuration) C, capable to implement R
that emerges from the service market.

• In the subprocess 4, we have replaced the component
P (Planning component - deeper details can be found
in [5]) of the MAPE (Monitoring-Analyzing-Planning-
Executing components) feedback loop. Then, in both
schemas (Figures 5 and 2), the configuration C is
subscribed to a monitoring service in order to track
the violations in which could incur C.

In both cases the violation history is analyzed by the
Analyzer component. If there is enough evidence that C
is recurrently violating the specifications S, then a recon-
figuration is triggered. But, in this case, the reconfiguration
calculation C ′ is obtained by MACOCO+ over the latest
snapshot of the market Kt.

Each time, a new understanding of the market is produced,

KT , all abstract specifications S∗ (including those which are
subscribed to the monitoring process) must be remapped into
concrete specifications S using the current relevant knowl-
edge domain KT . Then, immediately, the monitoring process
checks all the contracts to determine if the current C under
Kt is satisfying the new S. When a new domain knowledge
is available, KT , the process 3 and 4 are automatically re-
executed.

Our model also supports requirements evolution. If the
requirements are updated, new goals are added, others are
removed, priorities change, or quality requirements change,
R and consequently S∗ are updated by manually re-execute
the subprocess 1. Then, all the following subprocesses will
be automatically executed.

V. IMPLEMENTATION

In this section we explain our implementation of the the
service market metaphor as a multi-agent system. Moreover,
in this section we explain the implementation of Adaptive.
Adaptive is an adaptation recommender system to provide
adaptation recommendations to SBSs. Adaptive implements
the MAPE-K feedback loop. We claim Adaptive as a rec-
ommender system because up to now, is not implementing
the Executing component of the MAPE-K, but instead, it
recommends to clients when and which configuration C the
client system must apply in order to adapt itself. All the mod-
ules of Adaptive are implemented in Java and the integration
functionalities are exposed as REST web services. The
integration between the several modules is through services.
In particular, the planner module is implemented under the
MACOCO+ model, which is completely implemented in
Java over JADE 1 (further details can be found in [9]). In
order to maintain the service providers and consumers aware
of the market, we shown in Figure 6 how KT and Kt are
obtained. It is important to notice, the market is the module
K of our MAPE-K implementation.

Figure 6 shows that the functional crawler component
collects from different Web-based catalogs the Web service
descriptors. The QoS certifier component runs a benchmark
tool over the endpoint list obtained by the functional crawler,
in order to gather the QoS measurements (certification
snapshots). The functional clustering component clusters
the Web services (based on their WSDL descriptor files)
according to their functionality (if there is not valid cate-
gories information available). The QoS-fuzzy clustering is
the component that clusters each quality aspect of each
functionally-equivalent service set into c classes using a
modified fuzzy c-means algorithm (deeper details in [12]).
In this work we set up c = 5.

The Monitoring and Analyzer modules have being im-
plemented up to now using very simple algorithms. The
monitoring works with the threshold specified by the clients

1http://jade.tilab.com/

Figure 6. Architecture to produce K

(e.g. a client could determine its contract is being violated
by providers if the current satisfaction of the requirements
has dropped in α percent respect to the previous monitor-
ing step). The analyzer module decides if an adaptation
is needed if the number of violations over the total of
monitored times of the specific contract is bigger than a
β percent (also defined by each request).

Figure 7 shows an initial web prototype implementation 2

of Adaptive using the as Planner the MACOCO+. This pro-
totype is to support the process 1 of the Figure 5, allowing
SBS architects to specify the abstract specification model,
which will drive the implementation at runtime. Notice that,
each time, the architect selects one quality attribute and
constrain using a linguistic variable, Adaptive is informing
which numerical meaning has that linguistic variable for that
quality attribute for that functionally equivalent set in the
current service market KT . Then, the request is send to the
MACOCO+ module to obtain an initial recommendation to
implement S.

VI. CONCLUDING REMARKS

We proposed a framework to make both, consumers and
service providers dynamically aware of the changes in the
market. Consumers are able to specify market-aware spec-
ifications that will be eventually concretized in accordance
to the real characteristics of the market at runtime. Service
providers are represented by active software agents. Agent
make service providers become collectively aware of them-
selves and what clients in the market require. Furthermore,
following the behavior of the market and instead of just
waiting to be discovered, agents are able to proactively
create and maintain virtual organizations that answer to the
demands of the market. A virtual organization join forces
of different service providers to make better offers (in price

2http://cc.toeska.cl/adaptive

Figure 7. Adaptive Web prototype

or even QoS) to clients improving the offers of independent
service providers. In this work, we showed how the self-
adaptation of SBSs can be reached by implementing services
consumers and providers as a service market metaphor.

As ongoing work, we are studying the performance of
the approach on a market with thousands of services and
hundreds of clients when it is used to allow services organize
themselves to serve new requests or maintain current ones.

ACKNOWLEDGMENT

This work was partially funded by FONDEF (grant
D09i1171), UTFSM DGIP 241167 and BASAL
FB0821(FB.02PG.11), the EU Marie Curie Project
Requirements@runtime and the EU Connect project.

REFERENCES

[1] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkel-
stein, “Requirements-aware systems: A research agenda for
RE for self-adaptive systems,” in Proceedings of the 2010
18th IEEE International Requirements Engineering Confer-
ence, ser. RE ’10. IEEE Computer Society, 2010, pp. 95–
103.

[2] A. Ramirez, A. C. Jensen, and C. B. H. C., “To appear
seventh workshop on software engineering for adaptive and
self-managing systems (SEAMS 2012),” in ICSE, 2012.

[3] L. Baresi, E. Di Nitto, and C. Ghezzi, “Toward open-
world software: Issue and challenges,” Computer, vol. 39,
no. 10, pp. 36–43, Oct. 2006. [Online]. Available: http:
//dx.doi.org/10.1109/MC.2006.362

[4] P. Zave and M. Jackson, “Four dark corners of requirements
engineering,” ACM Trans. Softw. Eng. Methodol., vol. 6,
no. 1, pp. 1–30, Jan. 1997. [Online]. Available: http:
//doi.acm.org/10.1145/237432.237434

[5] R. Torres, N. Bencomo, and H. Astudillo, “Mitigating the
obsolescence of quality-specification models in service-based
systems,” in Model-Driven Requirements Engineering Work-
shop (MoDRE) (submitted), sept. 2012.

[6] R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Miran-
dola, and G. Tamburrelli, “Dynamic QoS management and
optimization in service-based systems,” IEEE Transactions
on Software Engineering, vol. 37, no. 3, pp. 387–409, 2011.

[7] R. Torres, H. Astudillo, and E. Canessa, “MACOCO: A dis-
coverable component composition framework using a multia-
gent system,” in Proceedings of the 2010 XXIX International
Conference of the Chilean Computer Science Society, ser.
SCCC ’10. IEEE Computer Society, 2010, pp. 152–160.

[8] D. Nguyen, S. Thompson, J. Patel, L. Teacy, N. Jennings,
M. Luck, V. Dang, S. Chalmers, N. Oren, T. Norman,
A. Preece, P. Gray, G. Shercliff, P. Stockreisser, J. Shao,
W. Gray, and N. Fiddian, “Delivering services by building
and running virtual organisations,” BT Technology Journal,
vol. 24, pp. 141–152, 2006.

[9] R. Torres, D. Rivera, and H. Astudillo, “From virtual or-
ganizations to self-organizing web service compositions,” in
Proceedings of the XXIX International Conference of the
Chilean Computer Science Society, ser. SCCC ’11. IEEE
Computer Society, 2011.

[10] ——, “Web service compositions which emerge from virtual
organizations with fair agreements (best student paper),” in
Agent and Multi-Agent Systems. Technologies and Applica-
tions, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 7327, pp. 34–43.

[11] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Pu-
viani, “On self-adaptation, self-expression, and self-awareness
in autonomic service component ensembles,” in Proceedings
of the 2011 Fifth IEEE Conference on Self-Adaptive and Self-
Organizing Systems Workshops, ser. SASOW ’11. Washing-
ton, DC, USA: IEEE Computer Society, 2011, pp. 108–113.

[12] R. Torres, H. Astudillo, and R. Salas, “Self-adaptive fuzzy
QoS-driven web service discovery,” in Proceedings of the
IEEE International Conference on Services Computing, ser.
SCC ’11. IEEE Computer Society, 2011, pp. 64–71.
[Online]. Available: http://dx.doi.org/10.1109/SCC.2011.87

