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Abstract Self-adaptive systems have the capability to autonomously modify their

behavior at run-time in response to changes in their environment. Self-adaptation is

particularly necessary for applications that must run continuously, even under adverse

conditions and changing requirements; sample domains include automotive systems,

telecommunications, and environmental monitoring systems. While a few techniques

have been developed to support the monitoring and analysis of requirements for adap-

tive systems, limited attention has been paid to the actual creation and specification of

requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in

an ad-hoc manner. In order to support the rigorous specification of adaptive systems

requirements, this paper introduces RELAX, a new requirements language for self-

adaptive systems that explicitly addresses uncertainty inherent in adaptive systems.

We present the formal semantics for RELAX in terms of fuzzy logic, thus enabling a

rigorous treatment of requirements that include uncertainty. RELAX enables devel-

opers to identify uncertainty in the requirements, thereby facilitating the design of

systems that are, by definition, more flexible and amenable to adaptation in a system-

atic fashion. We illustrate the use of RELAX on smart home applications, including

an adaptive assisted living system.

1 Introduction

As applications continue to grow in size, complexity, and heterogeneity, it becomes in-

creasingly necessary for computing-based systems to dynamically self-adapt to chang-

ing environmental conditions. We call these systems dynamically adaptive systems

(DASs). Example applications that require DAS capabilities include automotive sys-

tems, telecommunication systems, environmental monitoring, and power grid manage-

ment systems. The distributed nature of DASs and changing environmental factors

(including human interaction) make it difficult to anticipate all the explicit states in

which the system will be during its lifetime. As such, a DAS needs to be able to tolerate

a range of environmental conditions and contexts, but the exact nature of these con-

texts remains imperfectly understood. One overarching challenge in developing DASs,
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therefore, is how to handle the inherent uncertainty posed by the respective application

domains. This paper presents RELAX, a new requirements language for DASs, where

explicit constructs are included to handle uncertainty. We illustrate the use of RELAX

on a number of examples from the adaptive smart home domain.

The need for DASs is typically due to two key sources of uncertainty. First is the

uncertainty due to changing environmental conditions, such as sensor failures, noisy

networks, malicious threats, and unexpected (human) input; we use the term environ-

mental uncertainty to capture this class of uncertainty. IBM, for example, originally

proposed the area of autonomic computing [16] to handle environmental uncertainty,

thereby enabling computing-based systems to use high-level application goals and re-

quirements to guide run-time self-management, including self-monitoring, self-healing,

and self-configuration.

A second form of uncertainty is behavioral uncertainty. Whereas environmental un-

certainty refers to maintaining the same requirements in unknown contexts, behavioral

uncertainty refers to situations where the requirements themselves need to change. For

example, the requirements of a space probe may change mid-flight in order to pursue

science opportunities not foreseen by the designers. It is difficult to know all require-

ments changes at design time and, in particular, it may not be possible to enumerate

all possible alternatives.

This paper describes a requirements language called RELAX that supports the

explicit expression of uncertainty in requirements. We have designed the vocabulary of

RELAX to enable analysts to identify requirements that may change at run time when

the environment changes. Hence, RELAX addresses both environmental and behavioral

uncertainty. The system might wish, for example, to temporarily ignore a non-critical

requirement in an emergency situation in order to ensure that critical requirements

can still be met. When specifying RELAX-ed system requirements, the execution envi-

ronment that affects system behavior is explicitly identified, and the components that

enable the system to monitor those environmental conditions are specified. RELAX

supports a declarative style for specifying both sources of uncertainty, rather than

by enumerating all alternative requirements. Doing so enables adaptation modules to

reason about requirement satisfaction at run time in such a way that critical require-

ments are never jeopardized but non-critical requirements may be deferred or even left

unsatisfied.

The paper also outlines a process for translating traditional requirements into RE-

LAX requirements. This process supports requirements engineers who must determine

points of flexibility in their requirements. For non-invariant requirements (i.e., those

requirements that may not have to be satisfied at all times), we use RELAX opera-

tors to introduce flexibility into SHALL statements of a system.1 Several dimensions of

flexibility are supported, including duration and frequency of system states; possible

states of a system; and configurations for a system. While the RELAX specifications

are in the form of structured natural language with Boolean expressions, the semantics

for RELAX have been defined in terms of temporal fuzzy logic.

We illustrate the use of RELAX with a case study based on an assisted living sce-

nario obtained from an industrial collaborator. The remainder of the paper is organized

as follows. Section 2 introduces the RELAX language and uses a smart office appli-

1 SHALL statements are commonly used to specify requirements, indicating a contractual
relationship between the customer and the developer as to what functionality should be in-
cluded in the system.
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cation to illustrate its features. The grammar for RELAX is introduced in Section 3,

and the formal semantics for RELAX defined in terms of fuzzy logic is also presented.

Section 4 gives a process for creating RELAX specifications based on traditional re-

quirements stated in terms of SHALL statements. A detailed description of how we

used RELAX to specify the requirements for an adaptive assisted living smart home

is given in Section 5. Section 6 relfects on the RELAX language and process, offerings

lessons learned and directions for future work. Section 7 overviews related work, and

we conclude in Section 8.

2 RELAX Overview

This section presents the RELAX language, leveraging and extending preliminary

work [40, 41] that introduced the basic concepts for and elements of the language.

RELAX takes the form of a structured natural language, including operators designed

specifically to capture uncertainty. These operators are introduced in this section and

their formal semantics is given in Section 3. This paper refines the operators, formalizes

them, and applies them to a case study provided by an industrial collaborator.

The focus in RELAX is on structured natural language requirements. Typically,

textual requirements prescribe behavior using a modal verb such as SHALL (or WILL)

that defines actions or functionality that a software system must always provide. For

self-adaptive systems, however, environmental uncertainty may mean that it is not

always possible to achieve all of these SHALL statements and trade-offs between SHALL

statements may be necessary and tolerated to relax non-critical statements in favor of

other, more critical ones. The RELAX operators are designed to enable requirements

engineers to explicitly identify requirements that should never change (invariants) as

well as requirements that a system could temporarily relax under certain conditions.

RELAX can also be used to specify constraints on how these requirements can be

relaxed.

2.1 RELAX Vocabulary

Table 2.1 gives the set of RELAX operators, organized into modal, temporal, and ordi-

nal operators and uncertainty factors. Note that RELAX includes standard operators

from temporal logic, such as EVENTUALLY and UNTIL. (We do not include a NEXT

operator in this paper, but the underlying semantic model supports it.) The contri-

bution of RELAX is in the operators that support uncertainty – namely, those that

include the phrase “as possible”.

We retain the conventional modal verb SHALL for expressing a requirement, but

the introduction of RELAX operators offers more flexibility in how and when that

functionality may be delivered. More specifically, for a requirement that contributes

to the satisfaction of goals that may be temporarily left unsatisfied, the inclusion of

an alternative, temporal or ordinal RELAX-ation modifier will define the requirement

as RELAX-able.2 For example, one can write “the system SHALL do something AS

EARLY AS POSSIBLE”.

2 Note that we take the liberty to use the RELAX name as a verb to indicate the insertion
of RELAX operators.



4

RELAX operator Description

Modal Operators

SHALL a requirement must hold

MAY . . . OR a requirement specifies one or more alterna-
tives

Temporal Operators

EVENTUALLY a requirement must hold eventually

UNTIL a requirement must hold until a future posi-
tion

BEFORE, AFTER a requirement must hold before or after a
particular event

IN a requirement must hold during a particular
time interval

AS EARLY, LATE AS POSSIBLE a requirement specifies something that
should hold as soon as possible or should be
delayed as long as possible

AS CLOSE AS POSSIBLE TO [frequency] a requirement specifies something that hap-
pens repeatedly but the frequency may be
relaxed

Ordinal Operators

AS CLOSE AS POSSIBLE TO [quantity] a requirement specifies a countable quantity
but the exact count may be relaxed

AS MANY, FEW AS POSSIBLE a requirement specifies a countable quantity
but the exact count may be relaxed

Uncertainty Factors

ENV defines a set of properties that define the
system’s environment

MON defines a set of properties that can be mon-
itored by the system

REL defines the relationship between the ENV
and MON properties

DEP identifies the dependencies between the (re-
laxed and invariant) requirements

Table 1 RELAX Operators

Each of the relaxation operators define constraints on how a requirement may be

relaxed at run time. In addition, it is important to indicate what uncertainty factors

warrant a relaxation of these requirements, thereby requiring adaptive behavior. This

information is specified respectively using the MON (monitor), ENV (environment),

REL (relationship), and DEP (dependency) keywords. The environment properties

capture the “state of the world” – i.e., they are characteristics of the operating context

of the system. Often, however, environmental properties cannot be monitored directly

because they are not observable. The MON keyword is used to define those properties

that are directly observable and that may contribute information towards determining

the state of the environment. RELAX is intended to specify the software requirements,

once hardware constraints have already been defined. For example, MON is used to

delimit the properties to be monitored by physical sensors.

The REL keyword is used to specify in what way the observables (given by MON)

can be used to derive information about the environment (as given by ENV). The

distinction between ENV and MON is analogous to elements from the field of control

theory wherein parameters to be estimated cannot necessarily be directly observed. For
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example, an aircraft equipped only with direction finding equipment cannot directly

estimate its position. Rather, it can observe its distance from a set of known waypoints

and must compute its position from these measurements. In our parlance, the aircraft

position is a property of the environment, whereas the distances from waypoints are

monitorables. REL would be used to define how to compute the position from the

distance measurements. Finally requirements dependencies are delimited by DEP, as

it is important to assess the impact on dependent requirements after RELAX-ing a

given requirement.

2.2 Illustrative Example

We illustrate RELAX here using a simple example from the smart office domain:

Alice’s office detects her arrival every morning and initiates a data synchronization

process to ensure that Alice’s Blackberry, iPhone, and desktop all maintain a consistent

list of business contacts. This synchronization process is repeated every 30 minutes as

long as Alice is in the room.

Given the task of deriving requirements for this smart office environment, a tra-

ditional requirements engineering process might result in the two following SHALL

statements.

S1: The synchronization process SHALL be initiated when Alice enters the room and at 30

minute intervals thereafter.

S2: The synchronization process SHALL distribute data to all connected devices in such a

way that all devices are using the same data at all times.

These requirements represent an ideal situation. Given these requirements, a de-

signer might, for example, implement the synchronization process as a two-phase com-

mit protocol that would distribute data to all connected devices, except in the case of

failure, in which case the system would roll back so that devices use a previous version

of the data consistently. The designers of the smart room, however, would like to build

in self-adaptivity to make the system more flexible in an uncertain environment. For

example, network outages or device malfunctions could mean that it may not always

be possible to consistently synchronize all devices. In this case, instead of rolling back

(which may result in Alice missing important data), the system might be able to find

another way of reaching a malfunctioning device (e.g., by communication via a neigh-

boring PDA or other networking medium, such as Bluetooth), or might temporarily

tolerate inconsistent databases.

Of course, a requirements engineer could make an analysis of the existing require-

ments and derive specific instances where adaptivity, such as the example given above,

might be desired. In such a case, one could easily reformulate the requirements. For

example, S2 could be modified to the following statement:

S2-alt: The synchronization process SHALL distribute data to all connected devices in such

a way that all devices are using the same data at all times. If a device is malfunctioning,

synchronization SHALL be carried out by communication with a neighboring device.

The problem with this approach is that the requirements engineer must enumerate all

possible points where adaptivity might be required. The result, in effect, would be a

tree of alternative requirements, where each path through the tree defines a possible
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behavior of the system for different environmental conditions. In particular, this ap-

proach would not allow for unanticipated environmental conditions and/or adaptations

because possible behaviors are only those predefined by the set of enumerations.

Instead, RELAX can be used at development time to identify specific points of

flexibility or uncertainty, but does not mandate a specific set of alternative require-

ments. In this way, potentially unanticipated adaptations are allowed, as long as they

conform to the declaratively specified flexibilities in the requirements. We continue

with the smart office example and show how to use RELAX to explicitly incorporate

flexibilities into the requirements S1 and S2. In essence, each requirement is exam-

ined to determine under which environmental conditions the requirement might not

be satisfiable. For each such notable set of environmental conditions, the requirements

engineer should then ask: (i) Is it essential for the requirement to be satisfied? If so,

then the requirement is considered to be an invariant and should not be RELAX-ed.

(ii) Is adaptivity required to enable satisfaction of the requirement? If (ii), then the

requirement is augmented to use the RELAX vocabulary and to include environmental

aspects to monitor.

To illustrate, consider requirement S1. Now imagine that the requirement cannot

be satisfied for some reason – perhaps communication links are broken, or perhaps

the smart office system is redeployed in a different environment where devices have

different characteristics. In either case, synchronization may not be possible every 30

minutes. We RELAX S1 and S2 to obtain requirements S1’ and S2’ as given below,

where RELAX operators are italicized in all caps.

S1’: The synchronization process SHALL be initiated AS EARLY AS POSSIBLE AFTER

Alice enters the room and AS CLOSE AS POSSIBLE TO 30 minute intervals thereafter.

ENV: location of Alice; synchronization interval.

MON: motion sensors; network sensors

REL: motion sensors provide location of Alice; network sensors provide synchronization in-

terval

S2’: The synchronization process SHALL distribute data to all connected devices in such a

way that AS MANY devices AS POSSIBLE are using the same data at all times. EVEN-

TUALLY, all devices SHALL use the same data.

ENV: number of consistent devices; time taken until consistency is reached.

MON: network sensors; device sensors

REL: network and device sensors provide number of consistent devices and time

S1’ includes a characterization of the portion of the environment relevant to this

requirement. For example, S1’ requires that the system knows Alice’s location and so

her location is a key property of the environment. The MON information then defines

how this environmental property can be monitored – in this case, by using motion

sensors. The decision on this definition is made according to any design constraints

imposed on the requirements engineer.

Consider the RELAX-ed requirement for S2. In fact, S2’ supports a high degree

of flexibility that goes well beyond the original requirements. Once the requirements

engineer determines that indeed this level of flexibility can be tolerated, then the down-

stream developers, including the designers and programmers have the flexibility to in-

corporate the most suitable adaptive mechanisms to support the desired functionality.

These decisions may be made at design time and/or run time [4, 18]. In this case, S2’
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makes use of two RELAX keywords – AS MANY and EVENTUALLY – to specify that

temporary business contact data inconsistencies can be tolerated.

The RELAX-ed requirements declaratively specify (using the SHALL statements)

where flexibility in the behavior is tolerated, and uses the keywords, ENV, MON,

and REL to identify the parts of the environment that generate the uncertainty. By

RELAX-ing the SHALL statements in this way, the requirements are less prescriptive

and, in particular, give the flexibility for the run-time system to trade-off requirements

when unknown situations are encountered at run time that were not known at design

time.

3 RELAX Syntax and Semantics

This section presents a formal syntax and semantics for the RELAX language. The

semantics is defined by mapping RELAX to fuzzy branching temporal logic (FBTL)

[26].

We briefly motivate here the use of FBTL for formalizing the RELAX semantics.

The use of a temporal logic is clearly required as many of the RELAX operators capture

temporal information (e.g., EVENTUALLY, UNTIL, BEFORE and AFTER). In

fact, RELAX relies upon standard operators of temporal logics, as will be seen below;

for example, EVENTUALLY maps in a straightforward manner to the well-known

future F operator (eventually, in the future, some property will hold on a given path of

execution). But the decision to go beyond standard temporal logic and choose a fuzzy

logic requires further elaboration.

Uncertainty is inherent in a RELAX specification. For example, the statement

AS EARLY AS POSSIBLE AFTER e φ expresses the requirement that φ occurs

after the occurrence of event e, but it is uncertain how much time it takes for φ to

occur after event e has happened. The statement simply expresses a desire for the time

period between the occurrences of e and φ to be as small as possible. A logic with

built-in uncertainty is therefore necessary to formalize the RELAX semantics.

Note that probabilistic logics [1] do not capture our intended semantics. One

could express a probability that φ becomes true within a specified time threshold after

the occurrence of e; extending this, one could define a probability density function

(pdf) that captures the probability of φ becoming true at each possible time threshold.

However, this is not quite the semantics of AS EARLY AS POSSIBLE. The pdf represents

the chance of φ occurring at a particular time point; it does not provide any way of

deciding whether or not the time of occurrence of φ is “early enough”. Put another

way, given a set and uncertainty as to whether a variable is in the set, then fuzzy logic

answers the question how much a variable is in the set, whereas probability theory

answers the question how probable is it that a variable is in the set. In the latter case,

the variable is either in the set or it is not. In the former case, the variable may be

“roughly” in the set. Returning to the example of AS EARLY AS POSSIBLE , fuzzy

logic allows one to define “as early as possible” as “roughly at zero time”. In summary,

fuzziness and probability are distinct yet complementary concepts [26].
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3.1 Syntax

The syntax of RELAX expressions is defined by the grammar given below. Parameters

of RELAX operators are typed as follows: p is an atomic proposition, e is an event, t is a

time interval, f is a frequency and q is a quantity. An event is a notable occurrence that

takes place at a particular instant in time. A time interval is any length of time bounded

by two time instants. A frequency defines a number of occurrences of an event within a

given time interval. If the number of occurrences is unspecified, then it is assumed to be

one. A quantity is something measurable, that is, it can be enumerated. In particular,

a RELAX expression φ is said to be quantifiable if and only if there exists a function

∆ such that ∆(φ) is a quantity.

A valid RELAX expression is any conjunction of statements s1; . . . ; sm where each

si is generated by the following grammar.

φ := true | false | p | SHALL φ

| MAY φ1 OR MAY φ2

| EVENTUALLY φ | φ1 UNTIL φ2

| BEFORE e φ | AFTER e φ | IN t φ

| AS CLOSE AS POSSIBLE TO f φ

| AS CLOSE AS POSSIBLE TO q φ

| AS {EARLY, LATE, MANY, FEW} AS POSSIBLE φ

It is straightforward to rewrite RELAX textual requirements in terms of this gram-

mar, thereby making RELAX requirements amenable to tool support [17]. As an ex-

ample, S2’ from Section 2 would be represented as:

SHALL ( AS MANY AS POSSIBLE p); EVENTUALLY ( SHALL q), where p de-

notes “distribute data to all connected devices”, q denotes “all devices use the same

data”, and p is quantifiable with ∆(p) defined as the number of connected devices using

the same data. This example illustrates the use of the ∆ operator for quantification.

It is a convenient way of capturing the fact that an expression is associated with a

quantity – in this case, the number of connected devices.

3.2 Semantics

As mentioned previously, the semantics of RELAX expressions is defined in terms of

fuzzy branching temporal logic (FBTL). FBTL can describe a branching temporal

model with uncertain temporal and logical information.

A fuzzy set is a set whose elements have degrees of membership. In classical set

theory, a member either belongs to a set or it does not. Fuzzy set theory permits the

gradual assessment of membership of elements in a set, which is described using a

membership function in the range of real numbers [0, 1]. In other words, a fuzzy set is

a pair (A,m) where A is a set and m : A → [0, 1] captures the degree of membership

of A.

A fuzzy number is a fuzzy subset of real numbers whose membership function is

convex and normalized, i.e., max(m(a)) = 1. Typically, a fuzzy number is defined with

a triangular membership function, in the sense that the membership graph describes

a triangle with a vertex showing a degree of membership of value 1. For example,

Figure 1 shows a fuzzy number two, which captures the fact that the precise value
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of the number is uncertain, or, in other words, that the number represents roughly

two. The triangular membership function states that any value below 1.5 or above 2.5

is definitely not considered to be roughly 2, that 2.0 is absolutely considered to be

roughly 2, whereas values in between 1.5 and 2.5 are roughly 2 with differing degrees

of confidence. Note that the membership function need not be triangular but can be

defined to fit the characteristics of the problem under study.

In FBTL, the concept of fuzzy number is extended to fuzzy duration. The duration

d ∈ R+ is a fuzzy duration if there is fuzzy uncertainty about the exact length of the

duration. That is, it is associated with a fuzzy number defining a fuzzy length of time.

We can now define FBTL [26].

!"#$ !"%$&"%$

&"#$

'(')(*+,-.$

Fig. 1 Fuzzy numbers – “roughly 2”.

Definition 1: Fuzzy Branching Temporal Logic (FBTL) has path formulae and state for-
mulae defined inductively as follows.
The state formulae are defined as:

– if p is a proposition, then p is a state formula;
– if p and q are state formulae, then ¬p and p ∧ q are also state formulae;
– if p is a path formula, then Ep and Ap are state formulae.

And the path formulae are defined as:

– each state formula is also a path formula;
– if p and q are path formulae, then ¬p and p ∧ q are also path formulae;
– if p and q are path formulae, then p Uq is also a path formula;
– if p is a path formula, then XRdp is also a path formula, where R ∈ {≤,≥,=, <,>} and
d is a normalized fuzzy duration on a time domain;

and the state formulae are the well-formed formulae of FBTL.

Path and state formulae are familiar from the usual definitions of branching tempo-

ral logics. Recall that, in branching temporal logic, state formulae quantify over states

of the system, whereas path formulae quantify over possible execution paths of the

system; that is, a chosen execution path defines a sequence of states through which

the system passes. E and A are the usual “exist” and “all” operators, respectively. U
denotes “until” as with standard temporal logic. X , which takes the truth value of its

formula after a time duration, is unique to FBTL and denotes a delay operator. The

duration d ∈ R+ can be a fuzzy duration or a crisp (i.e., non-fuzzy) duration. The

expression X=d means “after exactly d”; X<d represents “before d has passed”; and

X>d is “after d has passed”. Therefore, if d is fuzzy, then the delay operator can be

used to express relations with an uncertain time interval.

The shorthand notations customarily used in branching temporal logic are also

available. In particular, Fp = true Up and Gp = ¬F¬p, where F means eventually

and G means always. Recall that in branching time logics, E and A quantify over

execution paths, whereas G and F quantify over states within a given execution path.
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For example, Gp is true if p holds on the entire subsequent path, whereas Ap is true

if p holds on all paths starting from the current state. Highest binding power is given

to the temporal operators F and G followed by X and U . The logical operator ¬ is

next, followed by ∧. The formal semantics of FBTL is given in [26].

We are now ready to define the semantics of RELAX expressions in terms of FBTL.

Table 2 gives the formal definitions using FBTL. The second column in the table gives

an informal description of the meaning of each expression. The third column gives the

interpretation as a FBTL formula.

We briefly explain the semantic definitions in Table 2. The first four entries are

standard and so are not explained.

BEFORE and AFTER are defined in terms of the FBTL delay operator. In both

cases, ed defines a duration up until event e next occurs. Recall that a duration is a

positive real number (i.e., a length of time). Hence, the formalization expresses that

before this duration has passed (i.e., before e next occurs), φ holds. Similarly, for

AFTER. Note that the duration in these cases is a crisp (i.e., non-fuzzy) duration;

there is no uncertainty in these operators.

IN is defined in terms of BEFORE and AFTER. For φ to occur in a time interval,

t, then it must occur either after the start of t or before the end of t. The start and

end of the interval is defined using the events tstart and tend, which define events

capturing the beginning and end of the interval, respectively.

AS EARLY AS POSSIBLE relies on a fuzzy duration. The fuzzy logic definition for-

malizes the notion of “early enough”. Intuitively, AS EARLY AS POSSIBLE is

similar to AFTER except that φ should happen after the current point in time

(rather than after an event e). Also, whereas AFTER is defined in terms of a crisp

duration, AS EARLY AS POSSIBLE must be defined using a fuzzy duration be-

cause there is uncertainty about what constitutes “as early as possible”. To capture

this, a fuzzy duration is used whose membership function has its maximum value

at 0 – i.e., at the current point in time. The membership function tails off gradu-

ally ad infinitum – i.e., it has a triangular membership graph that is asymptotic.

This membership graph captures the meaning of AS EARLY AS POSSIBLE be-

cause if φ occurs immediately, then it is definitely “as early as possible”. The

later φ occurs, the less it satisfies “as early as possible”. However, the statement

AS EARLY AS POSSIBLE φ technically allows φ to become true at any point af-

ter the current time. Therefore, the membership function for the duration is never

zero but approaches zero gradually as time increases.

AS LATE AS POSSIBLE is similar except that the duration has its membership

function with minimum value at the current time and increasing gradually. This

captures the fact that later is better; the statement “as late as possible” only be-

comes certain when t =∞.

AS CLOSE AS POSSIBLE TO f φ says that φ occurs periodically and expresses a con-

straint that the period is as close as possible to f . Formally, this is defined using

a fuzzy duration whose membership function has its maximum when the period is

exactly f and tails off either side of f . The membership function tails off asymptot-

ically to∞ for values greater than f and converges to 0 for values less than f . Con-

sider the formal definition in Table 2. It states that AS CLOSE AS POSSIBLE TO f φ

holds if and only if X=vφ holds for every duration v that corresponds to a multiple

of the frequency, f . In other words, “as close as possible” is satisfied more when

the frequency of φ is closer f .
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AS CLOSE AS POSSIBLE TO q φ is similar to the previous case but concerns close-

ness to a quantity. Note that φ must be quantifiable – i.e., there is a function ∆

where ∆(φ) is a quantity. This allows one to measure φ against the ideal quantity,

q. The formal definition then simply compares the difference (∆(φ) − q) and asks

whether it is roughly zero. The fuzzy set S defines the number “roughly zero”.

AS MANY AS POSSIBLE and AS FEW AS POSSIBLE are similar to the previ-

ous case in that they compare a quantity with an ideal case using a fuzzy number.

4 A Process for Applying RELAX

Prior to applying RELAX, we assume that a conventional process of requirements dis-

covery has been applied to yield a set of SHALL statements. Figure 2 overviews the

process for RELAX-ing requirements; this process also identifies the invariant require-

ments. Each step is described.

For each SHALL statement, apply the following steps:

1. Must SHALL statement always be satisfied? For each SHALL statement, de-

termine whether it must always be satisfied (e.g., safety property), or whether it could

be relaxed under certain circumstances. In the former case, leave the SHALL statement

as is, and denote it as an invariant requirement. A non-invariant requirement is po-

tentially RELAX-able, thus implying that some form of run-time adaptation may be

necessary to make the best use of the available resources while delivering acceptable

behavior.

2. Identify uncertainty factors. For each potentially RELAX-able requirement:

– Identify and describe the part of the environment relevant to this requirement

(ENV). The objective is to help the requirements engineer ascertain whether un-

certainty exists in the ENV, thus potentially making satisfaction of the requirement

problematic and necessitate its RELAX-ation.

– Identify the observable properties of the environment that can be monitored (MON)

– We expect the ENV and MON attributes to coincide except in cases where envi-

ronmental properties cannot be directly observed. The ENV/MON relationship is

made explicit by REL

– Requirements often make competing demands on resources. Thus requirements

have inter-dependencies (DEP) and it is particularly important to understand these

when assessing the uncertainty surrounding a requirement.

3. Must SHALL statement be RELAX-ed to handle uncertainty factors? An-

alyze the uncertainty factors to determine if sufficient uncertainty exists in the environ-

ment that makes absolute satisfaction of the requirement problematic or undesirable.

If so, then this SHALL statement needs to proceed to the next step for introducing

RELAX operators. If, however, the analysis reveals no uncertainty in its scope of the

environment, then the requirement is potentially always satisfiable and therefore iden-

tified and maintained as an invariant.

4. Introduce RELAX operator(s). Given the sources of uncertainty, determine

whether a requirement should be relaxed to introduce ordinal, temporal, or modal be-

havior flexibility at run time. Sources for uncertainty include: contention for resources,

adverse environmental conditions, timing of events, and the duration of conditions.
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RELAX Expression Informal FBTL Formalization

SHALL φ φ is true in any
state

AGφ

MAY φ1 OR MAY φ2 in any state, ei-
ther φ1 or φ2 is
true

AG(φ1 ∨ φ2)

EVENTUALLY φ φ will be true
in some future
state

AFφ

φ1 U φ2 φ1 will be true
until φ2 becomes
true

A(φ1 U φ2)

BEFORE e φ φ is true in any
state occurring
prior to event e

AX<ed
φ where ed is the du-

ration up until the next occur-
rence of e

AFTER e φ φ is true in any
state occurring
after event e

AX>ed
φ

IN t φ φ is true in any
state in the time
interval t

(AFTER tstart φ ∧
BEFORE tend φ) where
tstart, tend are events denoting
the start and end of interval t
respectively

AS EARLY AS POSSIBLE φ φ becomes true
in some state as
close to the cur-
rent time as pos-
sible

AX≥d
φ where d is a fuzzy

duration defined such that its
membership function has its
maximum at 0 (i.e., m(0) = 1)
and decreases continuously for
values > 0

AS LATE AS POSSIBLE φ φ becomes true
in some state as
close to time t =
∞ as possible

AX≥d
φ where d is a fuzzy

duration defined such that its
membership function has its
minimum value at 0 (i.e.,
m(0) = 0) and increases con-
tinuously for values > 0

AS CLOSE AS POSSIBLE TO f φ φ is true at pe-
riodic intervals
where the period
is as close to f as
possible

A(X=dφ∧X=2dφ∧X=3dφ∧. . .)
where d is a fuzzy duration
defined such that its member-
ship function has its maximum
value at the period defined by
f (i.e., m(d) = m(2d) = . . . =
1) and decreases continuously
for values less than and greater
than d (and 2d, . . .)

AS CLOSE AS POSSIBLE TO q φ there is some
function ∆ such
that ∆(φ) is
quantifiable and
(∆(φ) − q) is
as close to 0 as
possible

AF((∆(φ)−q) ∈ S) where S is
a fuzzy set whose membership
function has value 1 at zero
(m(0) = 1) and decreases con-
tinuously around zero. ∆(φ)
“counts” the quantifiable that
will be compared to q.

AS MANY AS POSSIBLE φ there is some
function ∆ such
that ∆(φ) is as
close to ∞ as
possible

AF(∆(φ) ∈ S) where S is
a fuzzy set whose membership
function has value 0 at zero
(m(0) = 0) and increases con-
tinuously around zero

AS FEW AS POSSIBLE φ there is some
function ∆ such
that ∆(φ) is
quantifiable and
is as close as
possible to 0

AF(∆(φ) ∈ S) where S is
a fuzzy set whose membership
function has value 1 at zero
(m(0) = 1) and decreases con-
tinuously around zero

Table 2 Semantics of RELAX expressions
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For each  SHALL

 statement DO the

 following 

2. Identify 

 Uncertainty

 factors 

1. Must  

SHALL stmt  always

 be satisfied? 

3. Must  

SHALL statement be

 RELAX-ed to handle 
Uncertainty factors? 

YES 
NO 

YES 

NO 

4. Introduce RELAX

 operator(s) 

INVARIANT

 requirement 

RELAXed

 requirement 

Fig. 2 RELAX Process

Note that the process describes a way of incrementally building up a model of

the environment. This approach is in contrast to including an explicit task to model

the environment. The latter is difficult in practice because it may not be clear which

environmental factors might be relevant. It is also important to note that each iteration

of the RELAX-ation process implicitly includes a form of regression assessment to

ensure that the dependencies between the requirements are considered.

5 Example Application

To validate RELAX, we conducted a case study provided by Fraunhofer IESE in the

form of an existing concept document describing a smart home for assisted living. 1 The

concept document was written previously and independently of the RELAX research

work. Below is an excerpt:

1 See www.iese.fraunhofer.de/fhg/iese/projects/med projects/aal-lab/index.jsp
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Mary is a widow. She is 65 years old, overweight and has high blood pres-

sure and cholesterol levels. Mary gets a new intelligent fridge. It comes with

4 temperature and 2 humidity sensors and is able to read, store, and commu-

nicate RFID information on food packages. The fridge communicates with the

Ambient Assisted Living (AAL) system in the house and integrates itself. In

particular, it detects the presence of spoiled food and discovers and receives a

diet plan to be monitored based on what food items Mary is consuming.

An important part of Mary’s diet is to ensure minimum liquid intake. The

intelligent fridge partially contributes to it. To improve the accuracy, special

sensor-enabled cups are used: some have sensors that beep when fluid intake is

necessary and have a level to monitor the fluid consumed; others additionally

have a gyro detecting spillage. They seamlessly coordinate in order to estimate

the amount of liquid taken: the latter informs the former about spillages so

that it can update the water intake level. However, Mary sometimes uses the

cup to water flowers. Sensors in the faucets and in the toilet also provide a

means to monitor this measurement.

Advanced smart homes, such as Mary’s AAL, rely on adaptivity to work properly. For

example, the sensor-enabled cups may fail, but since maintaining a minimum of liquid

intake is a life-critical feature, the AAL should be able to respond by achieving this

requirement in some other way.

5.1 Applying RELAX to the AAL

To apply RELAX, we first extracted a set of requirements from the concept document,

structured as a list of SHALL statements. We then applied the process in Figure 2

to identify which of these SHALL statements should be relaxed. It is important to

note that the decision of whether a requirement is invariant or not is an issue for the

system stakeholders, aided by the requirements engineer. We have reverse-engineered

the concept document description to simulate this decision point, but the analysis of

the non-invariant requirements is accurately portrayed in the case study.

Requirements on the AAL at several abstraction levels can be extracted from the

concept document. At the highest level is an implicit goal of keeping Mary healthy.

From this goal, the following requirement can be identified:

R1: The system SHALL monitor Mary’s health and SHALL notify emergency services in

case of emergency.

It is then possible to identify a set of user-level requirements that support R1, where a

small subset are given in Figure 3. These user-level requirements represent the essential

properties of the AAL at a level of abstraction that is amenable to trade-off analysis.

However, the RELAX process can be applied at different levels of granularity and might

equally be applied at a lower level such as, for example, requirements specifying the

detection of water spillage using the gyro-enabled cup.

Note that R1.5 follows common practice of deferring the quantifying of a variable

(in this case, the maximum period of no detected activity before the emergency services

are alerted) until further analysis allows an appropriate value to be determined.
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R1.1 : The fridge SHALL detect and communicate with food packages.

R1.2 : The fridge SHALL monitor and adjust the diet plan.

R1.3 : The system SHALL ensure a minimum of liquid intake.

R1.4 : The system SHALL minimize energy consumption during normal operation.

R1.5 : The system SHALL raise an alarm if no activity by Mary is detected for t.b.d.
hours during normal waking hours.

R1.6 : The system SHALL minimize latency when an alarm has been raised.

Fig. 3 Subset of requirements that support R1

Once the requirements have been formulated as SHALL statements, the require-

ments engineer must work through the list, classifying the requirements as either in-

variant or relaxable. Starting with R1.1, the requirements engineer must determine

whether or not to relax R1.1. To make this decision, the requirements engineer must

ask whether the system will simply fail to satisfy R1 if complete food information is

not available, or if it is possible for the system to continue to operate but at a reduced

capacity. Less than full functionality might be necessary to handle an emergency situ-

ation, e.g., where it might be preferable to divert resources from the intelligent fridge

to support emergency functions, such as the latency requirement specified by R1.5. If

R1.1 were made an invariant statement, then an autonomous system will not have the

flexibility to redirect resources in this way. Therefore, by relaxing R1.1, we allow for

an adaptive system to balance resources in order to optimize global system parameters.

RELAX-ing R1.1 gives the following requirement R1.1’. For all RELAX require-

ments that follow in this section, we present them in a box with a number of slots: the

RELAX requirement itself; the ENV, MON, REL, and DEP specifications; the RE-

LAX statement written in the RELAX grammar; the formalized version in FBTL; and

any explanations for the formal definitions. We include the last three for completeness

and so the reader can see how RELAX requirements are formalized in FBTL. Note

that the requirements engineer does not specify these.

R1.1’: The fridge SHALL detect and communicate information with AS MANY food
packages AS POSSIBLE.
ENV: Food locations, food item information (type, calories) & food state (spoiled,
unspoiled).
MON: RFID readers; Cameras; Weight sensors.
REL: RFID tags provide food locations/food information/food state; Cameras provide food
locations; Weight sensors provide food information (whether eaten or not).
DEP: R1.1’ negatively impacts R1.2’; R1.1’ positively impacts R1.4 and R1.6

Grammar Expression: SHALL ( AS MANY AS POSSIBLE p)
Formal RELAX expression: AGF(∆(p) ∈ S)
Definitions. p is “The fridge detects and communicates information with food packages”
and ∆(p) is the number of food packages

R1.1’ conforms to the grammar expression SHALL ( AS MANY AS POSSIBLE p),

where p corresponds to the fridge detects and communicates information with food

packages. In the FBTL expression of R1.1’, ∆(p) represents the number of food pack-

ages the fridge actually detects and resolves information about using the means avail-

able to it as defined in the requirement’s RELAX uncertainty factors (discussed be-

low). The set S is a fuzzy set whose membership function m has value 0 at zero

(m(0) = 0) and increases continuously around zero to 1 at n, where n is the total num-

ber of food packages contained by the fridge. Hence, if all food packages in the fridge
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are detected, m(∆(p)) = 1. If none of the food packages in the fridge are detected,

m(∆(p)) = 0. In the general case where some of the food packages in the fridge are

detected, 0 < m(∆(p)) < 1. In a scenario where there were 10 food packages in the

fridge of which 8 were detected, m(∆(p)) would be close to but a little less than 1;

it might be said to have a value of “roughly” 1. When combined with the quantifiers

AGF, R1.1’ can be read as: eventually, by using all the available sensors and the

computational resources available to process the sensor data and fuse the partial data,

the fridge will be able to maximise detection of the number of food packages and col-

lation of information about those food packages, subject to uncertainties arising from

resolution of sensor data, positioning of food, nature of the food’s containers, etc.

The DEP attribute provides a place to describe how the relaxation of R1.1 will

impact other requirements, where this field may be updated as the requirements are

RELAX-ed. In this case, relaxing R1.1 will impair the system’s ability to suggest an

appropriate diet plan (R1.2’). However, it will support the requirement to minimize

latency during emergency operation (R1.5) as well as minimizing energy consumption

during normal operation (R1.4). The other three attributes for the relaxed R1.1’ are

ENV, MON and REL as explained in Section 2. In the case of R1.1’, the fridge needs

to ascertain information about where food items are located and the nutritional in-

formation of these food items. To monitor these characteristics, the original concept

document explicitly mentioned RFID tag monitoring. We suppressed mention of this

solution technology when formulating R1.1, to maintain a separation of concerns be-

tween the specification of behaviour and selection of the solution. However, providing

values for the ENV and MON attributes prompts the requirements engineer to con-

sider the question of whether the system has the resources to sense its environment and

thus is able to collect the data needed to make adaptation decisions. Sometimes, as is

the case here, explicitly identifying ENV and MON forces the requirements engineer

to posit solution technologies and provide a rationale for their choice. Hence, RFID

tags on food packages would provide a partial solution, but it is likely that not all food

items will have RFID tags and partially eaten food would be difficult to detect. Using

cameras and weight sensors would permit data, albeit imperfect, to be collected about

all food items, even if they were untagged.

R1.1’ therefore states that the system should be able to tolerate incomplete infor-

mation about food packages. Despite using RELAX to help identify a range of sensor

types with which to monitor the food in the fridge, it may be impossible to gather

complete information, forcing the system to work with incomplete data. Note that the

incompleteness of R1.1’ has important consequences: (1) on other requirements – can

R1.2 still be satisfied given incomplete information? (2) on design decisions – if we

accept the incomplete information assumption, we need to design algorithms that can

satisfice dietplans rather than simply calculate them.

The uncertainty about the presence (i.e., availability) of food identified in R1.1

poses problems for the formulation of diet plans using the food available within Mary’s

house. Consequently, it was also necessary to relax R1.2, making explicit the task of

the dietplan to optimise Mary’s calorie intake, and the need to adapt the dietplan

according to Mary’s actual consumption. Mary’s actual consumption formed the ENV

property, measured by the fridge and trash can sensors specified by the MON property.

Mary’s actual calorie intake is in any case uncertain because of uncertainty that all

food can be accurately sensed. Hence, for example, identifying untagged food that is

discarded is problematic even if the trash can is instrumented with weight and RFID

tag sensors.
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R1.2’: The fridge SHALL suggest a dietplan with total calories AS CLOSE AS POSSIBLE
TO the daily ideal calories. The fridge SHALL adjust the dietplan in line with Mary’s actual
calorie consumption.
ENV: Mary’s daily calorie consumption.
MON: RFID readers and weight sensors in fridge and trash can.
REL: RFID readers and weight sensors provide consumed items; items vanish from fridge
and the items (if uneaten) or the packaging (if eaten) appears in trash can.
DEP: R1.2’ is negatively impacted by R1.1’; R1.2’ negatively impacts R1

Grammar Expression: SHALL (AS CLOSE AS POSSIBLE TO q p); SHALL r
Formal RELAX expression: AGF((∆(p)− q) ∈ S); AGr
Definitions. p is “The fridge suggests a dietplan”; ∆(p) is the dietplan total calories and
q is the daily ideal calories. r is “The fridge adjusts the dietplan in line with Mary’s actual
calorie consumption”

In the first clause of the FBTL expression of R1.2’, p is the fridge suggests a

dietplan’; ∆(p) is the dietplan total calories and q is the daily ideal calories. The

difference between ∆(p) and q is therefore the dietplan’s deviation from the ideal

expressed in calories. S is a fuzzy set whose membership function has value 1 at zero

(m(0) = 1) and decreases continuously around zero. Hence, if the dietplan matches

Mary’s ideal calorie intake, the membership function returns 1, which is the ideal

result. If there is only a small deviation in calories, the membership function will

return a value less than but close to 1; of about 1. Combined with the quantifiers,

the expression specifies that, subject to constraints about what is known about the

contents of the fridge and depending on the computational and other resources that

are available, the fridge will construct a dietplan that gives Mary as close to an optimal

calorie consumption as is feasible. In the second clause r is the fridge adjusts the dietplan

in line with Mary’s actual calorie consumption, which is the subject of a conventional

SHALL statement.

Note that relaxing R1.2 affects satisfaction of R1. The same is true of R1.3

that needs to be relaxed because the system could tolerate temporarily relaxing the

requirement to monitor Mary’s liquid intake. As with Mary’s food consumption, it

is not possible to estimate Mary’s liquid consumption with complete certainty. We

explore this problem in more detail below. Here however, it is sufficient to note that

the intended effect of R1.3’ is ensure that the AAL makes a best effort to make Mary’s

liquid intake adequate during the day, ensuring that this is so by the time Mary goes

to bed at night.

R1.3’: The system SHALL ensure that Mary’s liquid intake is as AS CLOSE AS POS-
SIBLE TO ideal during the course of the day. The system SHALL ensure minimum liquid
intake BEFORE bedtime.
ENV: Mary’s daily liquid intake.
MON: fluid monitoring cups; orientation sensor-enabled cups; faucet sensors; flowerpot
moisture sensors; timers correlating temporal events of different sensors - was cup emptied
down sink, into flower pot or did Mary drink from it?
REL: cup sensors & moisture sensors & faucet sensors & sink outlet sensors & timers all
interact to collaboratively determine Mary’s daily liquid intake.
DEP: R1.3 negatively impacts R1.

Grammar Exp.: SHALL (AS CLOSE AS POSSIBLE TO q p); SHALL ( BEFORE e r)
Formal RELAX expression: AGF((∆(p)− q) ∈ S); AGX<ed

r

Definitions. p is “The system ensures a liquid intake”; ∆(p) is the volume of liquid and q
is the required minimum volume. r is “The system ensures minimum liquid intake”. e is the
“bedtime” event which occurs after a duration ed.
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R1.3’ uses the same RELAX operators as R1.2’, but deals with liquid intake

instead of calories. The FBTL expression of R1.3’ therefore mirrors that of R1.2’.

Requirement R1.4, which specifies the minimization of energy consumption, is in-

teresting because there is a potential for impact with R1.6 that mandates that latency

should be minimized during emergencies. The course of action chosen was to RELAX

R1.4 and treat R1.6 as an invariant because of its implicit criticality to Mary’s health.

Thus, while R1.6 was unchanged by the RELAX process, it would need to be treated

as a critical non-fuctional requirement in the conventional way, beginning with quan-

tification of the minimum acceptable level of latency (not shown here). By contrast,

RELAX-ation of R1.4 resulted in its reformulation using the RELAX syntax to be-

come:

R1.4’: The system SHALL consume AS FEW units of energy AS POSSIBLE during
normal operation.
ENV: Total energy consumption.
MON: Smart energy monitors.
REL: Smart energy monitors can sense device energy consumption and sense activity within
the AAL, and use these to control (e.g.) lighting and heating.
DEP: R1.4’ is negatively impacted by R1.5

Grammar Expression: SHALL ( AS FEW AS POSSIBLE p)
Formal RELAX expression: AGF(∆(p) ∈ S)
Definitions. p is “The system consumes energy during normal operation” and ∆(p) is the
units of energy consumed

In the FBTL expression of R1.4’, p is the system consumes energy during normal

operation and ∆(p) is the units of energy consumed. S is a fuzzy set whose membership

function has value 1 at zero (m(0) = 1) and decreases continuously around zero. Hence,

in the ideal situation of the AAL consuming no energy, the membership function would

return 1. By specifying that the membership function returns a value as close as possible

to close to 1, the formal requirement constrains the AAL to be as energy-efficient as is

feasible under normal operation and given uncertainty about Mary’s habits (below).

What is specified by R1.4’ is the same as R1.4. However, the uncertainty factors

help to identify the means to achieve the desired behavior. Although energy consump-

tion can be measured accurately, the behavior of Mary cannot be predicted or controlled

completely. Thus, for example, if the periods when Mary is up and active and when

she is asleep vary significantly, it may prove hard to optimize the heating and lighting.

Finally, R1.5 was considered an invariant and was thus unchanged, since it specified

behavior that may be critical to Mary’s health.

5.2 Applying the Uncertainty Factors

RELAX-ation prompts the requirements engineer to understand the sources of envi-

ronmental uncertainty and to document them using the RELAX uncertainty factors.

The ENV and MON attributes are particularly useful for documenting whether the

system has the means for monitoring the important aspects of the environment. By

collecting together the various ENV and MON attributes, we can build up a model of

the environment in which the system will operate, as well as a model of how the system

will monitor its environment. Modeling the environment can be done with the aid of a

conceptual model such as that shown in Figure 4. Figure 4 uses a UML class diagram

to model the environment as subclasses of an ENV stereotype, a set of sensors modeled
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as subclasses of a MON stereotype, their relationships modeled as REL associations

and the physical entities that the sensors are used to instrument.

Fig. 4 AAL Conceptual Model

Tables 3 and 4 document and elaborate upon the domain model. Table 3 simply

lists the environment variables. In Table 4, the first column gives the sensor, the sec-

ond column states what data the sensors provide, and the third column states about

which environment variables the sensor data provides information. These are marked

as either complete or incomplete according to whether the data provides a complete

characterization of the variable or whether additional data from other sensors is nec-

essary.

The process of identifying and enumerating the uncertainty factors for a RELAX-ed

requirement should stimulate a search for the means to mitigate them; if the uncertainty

can be fully mitigated, then, in principle, the requirement can be completely satisfied

and need not be RELAX-ed. Attempting to mitigate the uncertainty can be viewed as

a validation of the requirement’s RELAX-ation. If the uncertainty can’t be mitigated,

then run-time overhead of RELAX-ing the requirement in terms of (e.g.) monitoring, as

well as the implied additional development costs of (e.g.) testing for emergent behavior,

can be better justified.
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Environment to be Monitored

Food locations

Food item information (type, calories)

Food state (spoiled, unspoiled)

Mary’s daily liquid intake

Total energy consumption

Mary’s daily calorie consumption

Table 3 System environment variables

Sensor Data provided Contributes to

RFID readers (in Fridge) Food information
(type, calories)
Location of food
item (if RFID tag
detected, in fridge)

Food locations (complete) Food in-
formation (complete) Marys daily
calorie consumption (incomplete)

Cameras in Fridge Location of food
item

Food locations (complete)

Trash can RFID reader Location of food
item; Food infor-
mation (type, calo-
ries)

Food locations (complete); Food
item information (complete); Mary’s
daily calorie consumption (incom-
plete)

Trash can weight sensor Food item weight Mary’s daily calorie consumption
(incomplete)

Fridge weight sensors Food item wieght Food information (incomplete)

Cup volume sensors Presence of liquid Mary’s daily liquid intake (incom-
plete)

Cup orientations Transfer of con-
tents from cup

Mary’s daily liquid intake (incom-
plete)

Flower pot moisture sensors Presence of liquid Mary’s daily liquid intake (incom-
plete)

Faucet sensors Water drawn off Mary’s daily liquid intake (incom-
plete)

Sink outlet sensors Water poured away Mary’s daily liquid intake (incom-
plete)

Timers Elapsed time Mary’s daily liquid intake (incom-
plete)

Energy meters Energy usage Total energy consumption (com-
plete)

Table 4 System monitoring capabilities

6 Discussion

In this section, we reflect upon our experiences with applying RELAX. Although RE-

LAX has not yet been applied independently by industrial partners, our comments are

based both on the authors’ experience of applying RELAX to a number of smart home

adaptive applications as well as discussions with other researchers who have indepen-

dently applied RELAX (e.g., [28, 29]). We perceive a number of benefits of RELAX,

outlined briefly below, and also present some interesting research challenges with re-

gards to how to use RELAX in a software engineering methodology for the development

of self-adaptive systems.
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6.1 Scoping Adaptive Behavior

RELAX gives us a means to establish the boundaries of adaptive behavior. That is,

we must explicitly distinguish invariant from non-invariant requirements, identify and

monitor the sources of uncertainty, and then describe what dimensions of the require-

ments can be relaxed and satisfied by adaptive behavior. The invariants provide a point

of reference for adaptive behavior. The RELAX process also forced us to consider each

non-invariant requirement in isolation, with the effect of incrementally revealing each

requirements interdependencies and generating what is effectively trace information in

the DEP attribute (cf. [39]).

In addition, by separately describing the environment and the monitoring, we can

identify deficiencies in the monitoring infrastructure. Given that a DAS can only adapt

based on its monitoring information, missing or insufficient sensors for the environment

in question significantly impact the effectiveness of the DAS. An adaptive system senses

its environment and then reacts accordingly. However, a tough question when design-

ing an adaptive system is to determine the minimal monitoring infrastructure that is

required. To be effective, the DAS must be equipped with enough sensors to adequately

monitor the environment but resource constraints limit the monitoring infrastructure

that can be provided. In practical cases, such as in Mary’s smart home system, deciding

on the optimal monitoring infrastructure is highly non-trivial. RELAX provides a sys-

tematic process to evaluate the current sensing infrastructure and to decide if there are

adaptations that are required but are not possible without adding new monitors. For

example, in R1.1, we found that RFID tags would not provide sufficiently complete

data about the presence and consumption of food. With the original sensor resources,

we were unable to address the uncertainty posed by the environment, thus prompting

us to posit other sensor types that would help gather more data and potentially reduce

the uncertainty.

We have begun initial work on formalizing this process of assessing the monitoring

infrastructure as a variation of threat modeling. Threat modeling [32,34,37] is a tech-

nique used in security analysis of systems to systematically posit threats to a system

architecture, to prioritize risks based on those threats, and then to extend the archi-

tecture to resist the most important threats. A similar process can usefully be applied

in RELAX to uncover missing monitoring requirements or missing sensors. For each

RELAX-ed requirement, the requirements engineer asks what information is necessary

to invoke the adaptation corresponding to the requirement. If the current monitoring

infrastructure does not provide enough information about the environment, then either

the monitoring infrastructure should be extended or, if resources do not permit it, the

adaptive capability must be reduced. This kind of trade-off analysis can be effectively

modeled using goal-based requirements languages (in particular, obstacle analysis in

KAOS [36] provides a variant of threat modeling). Cheng et al. [7] reports on our first

attempts in this direction of work.

6.2 Implementing RELAX requirements

An important future question to consider is how to design and implement RELAX-ed

requirements. Because of their adaptive nature, they must be implemented using an

adaptive infrastructure. There are many possible ways of doing so – for example, using

adaptive architectures (e.g., [13, 18]), using techniques based on run-time switching of
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features (aka dynamic software product lines) [15], using advanced AI techniques such

as neural nets or genetic algorithms, or using optimization techniques (e.g., partial

satisfaction planning [23]). An important driver when developing RELAX, however,

was to maintain independence from any of these design techniques. We see this as

a key advantage over previous attempts to derive requirements for adaptive systems.

For example, Lapouchnian et al. [21] describe an approach based on goal-modeling in

which sub-goals are used to derive alternative behaviors corresponding to adaptations.

The alternatives can then be implemented as adaptations using an appropriate archi-

tecture. The approach requires an explicit enumeration of the alternative behaviors

and hence does not support adaptive behaviors that have not been “designed in”. The

extent to which designers wish to hard-code adaptations in this way depends on the

application domain. There is a range of adaptivity in DASs – from adaptive systems

able to deal in only a minor way with unknown environmental conditions (e.g., because

the alternatives are explictly designed and therefore limited) to those able to deal with

the “so-called unknown unknowns” (e.g., highly adaptive systems based on AI). The

main observation regarding RELAX is that it is agnostic to whichever style of design

is chosen. The result is a very clear separation of adaptivity requirements and the

adaptive infrastructure used to implement them.

As future work, we are investigating how to map RELAX requirements to a vari-

ety of different adaptive infrastructures. The mapping cannot be defined independently

from the choice of infrastructure. For example, most existing work on software architec-

tures for adaptive systems works by defining specific thresholds which, when reached,

trigger an adaptation. These thresholds consist of concrete values for sensor attributes

and are deliberately not defined in RELAX in order to maintain the separation of

requirements and design. Therefore, to map to such an architectural style would re-

quire these thresholds to be defined as part of the mapping process. Equally, however,

one could map RELAX to a less prescriptive architecture in which thresholds are not

concrete, fixed values but are (e.g.) fuzzy, derived at runtime using machine learning

techniques, or evolve autonomously using genetic algorithms.

6.3 Analyzing RELAX requirements

We have not yet implemented any analysis techniques for RELAX requirements. The

formal semantics is a prerequisite for this, of course. In general, there are a number of

different kinds of analysis that could be applied to RELAX, ranging from simple type-

checking to more sophisticated model checking. The typed grammar (see Section 3)

permits straightforward type-checking algorithms to be applied to RELAX statements.

A more involved analysis would be to check whether a RELAX specification is in fact

satisfiable (or satisfice-able). Given the highly declarative nature of RELAX statements,

it is possible to write a specification that is impossible to implement because (e.g.) two

RELAX requirements directly conflict with each other. Traditional model checking or

constraint satisfaction techniques could be usefully applied to uncover such problems.

More interestingly, heuristic checking methods may be desired to highlight speci-

fications that, whilst technically satisfiable, are not well-specified or meaningful. For

example, one RELAX statement might require AS MANY AS POSSIBLE of a par-

ticular quantity whereas another requires AS FEW AS POSSIBLE . Whilst this is

implementable (by simply choosing the midpoint value of the quantity), it may not

be the best way to write the specification. Heuristic methods that could point out po-
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tential issues could serve as a useful aid when developing the specification. Note that

this issue is not particular to RELAX but is because of the very nature of adaptive

systems, which must by necessity involve trade-offs.

6.4 Requirements Reflection

RELAX is the first step towards a longer term vision which we are calling “require-

ments reflection”3. Computational reflection is the ability of a program to observe and

possibly modify its design [25]. When source code is compiled, information about the

structure of the program is normally lost as lower level code is produced. If a system

supports reflection, the structure is preserved as metadata.

In a similar way, requirements reflection refers to a case where knowledge of the

structure and content of the system requirements is available at runtime to support

dynamic requirements introspection and analysis. Currently, systems have no explicit

knowledge of their requirements. At best, adaptive systems monitor for threshold values

which have been derived from requirements, but these systems are not cognizant of the

requirements themselves. Requirements reflection aims to make requirements first-class

entities at runtime. By so doing, software implemented using requirements reflection

will be able to reconsider decisions at runtime when more precise, complete, and up-

to-date information can be obtained through observation of the system execution.

Furthermore, in order for users to trust adaptive systems, it is essential that the system

be able to explain its adaptations in terms that are meaningful to users. Requirements

reflection will support this ability by allowing the system to explain its changes in terms

of elements in its requirements model, such as the context that motivated the change

and the expected impact of the change on the levels of requirements satisfaction.

Requirements reflection relies on an explicit runtime representation of requirements

(in the same way that architectural reflection explicitly represents a system’s architec-

ture [25]). We see RELAX as the first step towards tackling this challenge since RELAX

scopes the envelope of adaptivity as discussed earlier. Precise requirements languages,

which include support for specifying adaptivity, are required for this purpose. RELAX

is not yet the answer to do this but future work will investigate how to combine RELAX

with goal modeling languages such as KAOS.

7 Related Work

Recently, there has been a surge of interest in software engineering research for self-

adaptive systems [6]. For requirements engineering, Berry et al. [3] have defined a

framework of discourse for DAS requirements. Goal-based modeling has been used for

specifying the adaptation choices that a DAS must make [14, 22, 27, 43] as well as

for the specification of monitoring and switching between adaptive behaviors [31]. A

particular strength of goal-based modeling is that it supports the modeling of non-

functional trade-offs, which can be used to capture some elements of environmental

uncertainty. This is well illustrated by work on partial goal satisfaction (e.g., [14,24]).

A feature common to these works is that they assume that all adaptation choices are

known and enumerated at design time. Hence, unanticipated adaptations are difficult

3 a term coined by Anthony Finkelstein at a Dagstuhl workshop on software engineering for
self-adaptive systems, January 2008
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to specify and analyze. RELAX avoids this problem by specifying declaratively the

ways in which a requirement may be RELAX-ed. RELAX does not require all possible

alternative adaptations to be specified during requirements engineering. This flexibility

leaves open the design choice as to how to achieve adaptation and therefore supports

designs based on adaptation rules, planning algorithms, control theory algorithms, etc.

Having said this, RELAX and goal-based approaches can be used in a complementary

fashion. Recently, we have used KAOS [36] to show how obstacle modeling can be used

to reason about uncertainty and identify where it impacts on the goal hierarchy [7].

We performed an initial goal refinement and then used obstacle analysis modeling (as

described in Section 5) to capture the uncertainty in the environment. Once the impact

of the uncertainty on the goals is understood, RELAX-ation can be applied to mitigate

the uncertainty.

Regardless of how a DAS’s requirements are specified, the requirements must be

properly integrated into a run-time requirements monitoring and adaptation infras-

tructure. Run-time monitoring dynamically assesses the conformance of runtime be-

havior to the specified requirements. At run-time, a monitor runs concurrently with

the system to detect violations of monitored assertions [35] and informs the choice

of run-time adaptation. In the web services domain, the idea of run-time monitoring

has rapidly gained ground, driven by web services’ capacity for dynamic (re-)binding

and the presumed availability of alternative, functionally equivalent services offered by

competing service providers [2, 33]. In web services, the requirements that are moni-

tored are typically qualities of service (QoS), such as response time, which are specified

as service-level agreements (SLAs). Web services, however, may be viewed as a special

case where a restricted but fairly general class of QoS requirements has wide relevance,

where standards have emerged that support machine-interpretable SLA specification,

and where monitors may exploit defined message formats with which service-based

systems communicate. The choice of run-time adaptation in response to detected SLA

violations is similarly bounded; typically dynamic renegotiation of the SLA or binding

to an alternative service.

Outside the domain of web services, where standards are weaker and the run-time

platforms potentially more heterogeneous, the question of what and how to monitor

is more open. Nevertheless, a number of requirements monitoring frameworks have

been defined, including [11, 12, 30], in which system developers must specify a set of

conditions the software should monitor, a set of tuneable system parameters and design

alternatives, and a set of adaptation rules defining when and how to tune the system

parameters and switch to an alternative design based on the monitored conditions.

Using, for example, the ReqMon framework [30], RELAX-ed requirements could be

mapped to monitors specified using a monitor specification language. The RELAX

ENV, MON and REL uncertainty factors have been specifically designed to facilitate

this mapping. Our ultimate vision is to enable a DAS to dynamically (i.e. during

execution) reason about its own requirements and goals, that is, achieve “requirements

reflection” [8]). Explicit run-time representations of system requirements incorporating

uncertainty are crucial for this vision. A good step in this direction is provided by the

work of Wang et al. [38], which monitors goals at run-time and applies AI diagnostic

theories to diagnose failed goals.

Software engineering activities downstream from requirements are much better rep-

resented when it comes to architecting DASs. Without fully elaborating on the large

body of work, we refer readers to a roadmap paper [18] which discusses the state-of-

the-art in software architecture for DASs. Progress has also been made in addressing
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assurance of adaptive systems [5, 19, 20, 44–46]. AI techniques for implementing DASs

include approaches building on model-based diagnosis [10] and planning (e.g., [42]).

8 Conclusions

This paper has presented a new requirements specification language called RELAX

designed to explicitly address uncertainty for specifying the behavior of dynamically

adaptive systems. RELAX has three types of operators to handle uncertainty: tempo-

ral, ordinal, and modal. We consider two key sources of uncertainty. Environmental

uncertainty refers to the (possibly unexpected) changing conditions of the execution

environment. Behavioral uncertainty refers to the need to change system behavior at

run time in response to the environmental uncertainty. In some cases, behavioral uncer-

tainty can also be due to lack of sufficient information about the application’s intended

behavior at development time, thus still requiring run-time adaptation. We introduced

a process for using the RELAX language that incrementally builds up a view of the

execution environment, while introducing RELAX operators to the non-invariant re-

quirements.

After applying RELAX to a number of smart home adaptive applications, we ob-

served several key benefits. First, RELAX gives us a means to establish the bound-

aries of adaptive behavior. That is, we must explicitly distinguish invariant from non-

invariant requirements, identify and monitor the sources of uncertainty, and then de-

scribe what dimensions of the requirements can be relaxed and satisfied by adaptive

behavior. The invariants provide a point of reference for adaptive behavior. Second, the

RELAX process forced us to consider each non-invariant requirement in isolation, with

the effect of incrementally revealing each requirements interdependencies and gener-

ating what is effectively trace information in the DEP attribute (cf. [39]). Third, by

separately describing the environment and the monitoring, we can identify deficien-

cies in the monitoring infrastructure. Given that a DAS can only adapt based on its

monitoring information, missing or insufficient sensors for the environment in question

significantly impact the effectiveness of the DAS.

Many possible directions for future work are possible. Additional uncertainty fac-

tors may facilitate the RELAX process. For example, recently we have used a variation

of threat modeling techniques to assess ways in which uncertainty from the changing

environment may impact goals [7]. Different mitigation strategies are used to address

the uncertainty, including RELAXing a given goal. A natural progression is to explore

how RELAXed goals can be used to guide the design refinement process for adaptive

systems. One approach is to use RELAX specifications to guide the automatic gener-

ation of software models for adaptive systems, such as the evolutionary computation

approach by Goldsby and Cheng [14] that returns a suite of solutions for a set of system

requirements. We are exploring specification patterns for RELAX to be used in con-

junction with Spider [17], a natural-language interface for specification patterns and

analysis tools to further facilitate the use of RELAX by the DAS community. Finally,

we are investigating different requirements monitoring options that will enable RELAX

requirements to be monitored at run time.
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