
Genetic algorithms for discovery of matrix

multiplication methods

A. Joó1,2, A. Ekárt1 and J. P. Neirotti1

1Aston University, Aston Triangle, Birmingham B4 7ET, UK
Email: {jooam, a.ekart, j.p.neirotti}@aston.ac.uk
2Sapientia University, 540485 Corunca, 1C Soseaua Sighisoarei, Romania

Abstract

We present a parallel genetic algorithm for �nding matrix multiplication algo-

rithms. For 3 × 3 matrices our genetic algorithm successfully discovered algo-

rithms requiring 23 multiplications, which are equivalent to the currently best

known human-developed algorithms. We also studied the cases with less mul-

tiplications and evaluated the suitability of the methods discovered. Although

our evolutionary method did not reach the theoretical lower bound it led to an

approximate solution for 22 multiplications.

Matrix multiplication (MM) has numerous applications, where computational ef-
�ciency is crucial. The standard algorithm for multiplying two square matrices
in Mn×n requires n3 multiplications and n2(n − 1) additions. In 1969, Strassen
published a recursive algorithm that requires nlog2 7 multiplications forMn×n ma-
trices provided that n is a power of 2 [10]. Since then, considerable e�ort has been
spent on �nding algorithms that require fewer multiplications than the traditional
algorithm at the price of more additions.

For matrices of size 3×3 the minimum number of multiplications required,
σm = 19 [3]. The best known exact algorithms use 23 multiplications [7, 5], while
the best known approximate algorithm uses 22 [1]. A recursive MM algorithm
over Mn×n, where n is a power of 3, more e�cient than Strassen's cannot use
more than nlog3 21 multiplications (as log3 21 < log2 7 < log3 22).

In order to apply genetic algorithms (GA) to the discovery of MM algorithms,
we need to de�ne the search space, the �tness function and the genetic operators.
Many of the concepts used in this investigation are based on [6].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78889673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Problem de�nition

For matrices X and Y ∈Mδ×δ and their product Z using σ multiplications, the
GA search space is determined by matrices Ar,Br,Cr ∈ Mδ×δ, 1 ≤ r ≤ σ, such
that

zmn =
δ∑
p=1

xmpypn =
σ∑
r=1

(
δ∑

i,j=1

arijxij

)(
δ∑

k,l=1

brklykl

)
crmn. (1)

Ar and Br uniquely determine the MM algorithm [6]. Therefore, a genome
G ≡ (Ar,Br) is an element of K2δ2σ where K is an arbitrary �eld.

Table 1 shows the size of the genome de�ned by the number of elements
making up a solution, the size of the search space considering all elements for
K = {−1, 0, 1} and the size of neighbourhood de�ned as the number of genomes
which di�er from a given genome in one position. The numbers indicate that
enumeration of the whole space is not possible.

Table 1: Search space description.

δ σ Genome size Search space size Neighbourhood size
[G = 2δ2σ] [S = 3G] [N = 2G]

2 7 56 5.23e+26 112
3 21 378 2.25e+180 756
3 22 396 8.71e+188 792
3 23 414 3.37e+197 828

Fitness measure

As described in [6], for a genomeG letA ≡ A(G) ∈Mδ4×σ the matrix that has as
columns the Kronecker products (ρ(Ar)⊗ρ(Br))T , where ρ(·) is an operator which
rewrites its argument in row-major format. Consider the matrix S ∈ Mδ4×δ2

with elements Sαβ = 1 if α = γ(δ2 − 1) + κ, β = i(δ − 1) + j, κ = k(δ − 1) + j,
γ = i(δ − 1) + k and 1 ≤ i, j, k ≤ δ and 0 otherwise.

The multiplication error of G is de�ned as E(A) = A(ATA)−1ATS − S
if ATA is non-singular and ∞ otherwise [6]. We de�ne the �tness of G as

f(G) =
1

1 + ||E(A)||
, where ||E(A)|| = tr(E(A)TE(A)). We use this �tness

function as (1) it is based on the error, (2) has a value of 1 corresponding to a
perfect solution, (3) it has previously been used successfully for matrices of size 2
and (4) allows comparison with [6].

2

Genetic algorithm and search operators

The representation of the genome consists of a �xed length string containing
elements arij, b

r
kl, 1 ≤ i, j, k, l ≤ δ, 1 ≤ r ≤ σ. GAs with ternary {−1, 0, 1}

encoding have led to MM algorithms equivalent to Strassen's algorithm [6, 8]. So
far no GA has been shown to be capable of evolving MM algorithms for matrices
of size 3× 3.

We extended both methods [6, 8] to matrices in M3×3. Despite the parallel
implementation no solution could be located. We consider the discrete (ternary)
representation one of the main limitations of these approaches. Therefore, we
propose to use continuous real-valued representation.

Consider a nonsingular matrix A ∈ Mδ4×σ and matrices A1 ∈ Mδ4×q and
A2 ∈ Mq×σ, such that A = A1A2. Then it is possible to prove that E(A) =
E(A1), and so, in particular, E(αA) = E(A), α ∈ R. This means that using real
genes of �xed precision of p decimals is equivalent to using integers, as A can be
multiplied by α = 10p to contain integer values only.

We deployed a parallel GA for the evolution of MM algorithms for δ = 3.
We report the parameter settings that produced the best results. 64 islands run
the same steady-state, elitist GA, evolving 20 . . . 300 individuals independently.
Each individual is initialized based on allele values in the range [-50,50]. Fitness-
proportionate selection, randomly selected crossover and mutation operators are
applied with probabilities 0.9 and 0.05, respectively. The following crossover types
were used:

1. Gaussian blend crossover. Each gene gi in the o�spring genome is calculated
using the corresponding parent genes gfi and gmi by sampling the normal
distribution N (0.5(gfi + gmi), 0.5|g

f
i − gmi |).

2. Real blend crossover. Similar to the Gaussian blend crossover with the
di�erence that o�spring gene gi is obtained by sampling uniformly [gfi , g

m
i].

3. Quasi momentum crossover. First a di�erence vector d is calculated as
d = sgn

(
f(gf)− f(gm)

) (
f(gf)− f(gm)

)
. The o�spring's genes are calcu-

lated as g1i = gmi + γdi and g2i = gfi + γdi, where is γ is a granularity
parameter generated uniformly from [0.1, 0.5].

The following types of mutation were employed:

1. Gaussian mutation. The selected gene gi is mutated according to gi =
gi+µN (0, 1), where µ denotes the mutation step. Adaptivity has been built
into Gaussian mutation as follows. Let f1, f2 and f3 be the �tness values
of the best individuals measured at consecutive equal time intervals. The
mutation step µ is updated according to the relative amount of improvement
observed, i.e. µ = (1− 0.1α)µ, where α = sgn(2f2 − f1 − f3).

3

2. Simple mutation. The selected gene gi is mutated according to gi = gi + κ,
where κ is sampled uniformly from [−10, 10].

3. Permutation mutation. Two randomly selected genes are swapped.

As GAs are prone to premature convergence, we explicitly enforced diversity

by disallowing individuals with the same genotype or �tness in a population.
The islands are organized in a standard unidirectional ring topology [4]. At

every 5000 generations the best individual together with 5 . . . 50 randomly selected
individuals from each island migrate according to the ring topology.

The termination condition was the discovery of a solution of �tness 1− 10−10

or by manual termination.
The genetic algorithm was implemented in C++ based on the BOOST, GALib

and Armadillo [9] libraries. The hardware platform consisted of a SGI cluster
featuring 32 nodes 8-core Intel Xeon 2.5 GHz processors.

Results

The convergence of the best �tness on all individual islands using 23 and 22
multiplications are depicted in Figure 1. For 23 multiplications a perfect solution
is reached. For 22 multiplications a solution of �tness 0.9978 is found1. For 21
multiplications the best �tness was below 0.5.

0 1 2 3 4 5 6

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

B
e
s
t
fi
tn

e
s
s

3x3, 23 multiplications

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

B
e

s
t

fi
tn

e
s
s

3x3, 22 multiplications

Figure 1: GA convergence for 23 and 22 multiplications. The vertical jumps in
�tness are due to the migration of the best individuals.

1The best individual is available in the supplementary material on http://ieeexplore.

ieee.org.

4

We compared the quality of our GA to its predecessors, Kolen and Bruce's
algorithm (KB) [6] and Oh and Moon's algorithm (OM) [8].

We implemented a parallel version of KB. We tried to keep the parameters and
features as described in the article. Population size 300, cross-breeding, uniform
crossover, mutation with probability 0.7 and introduction of 10 random individ-
uals in each generation were implemented. Similarly to [6] �tness penalties were
applied to sparse A matrices and to aging individuals. KB was parallelised for
ring topology with 64 islands, migration rate of 10 and migration frequency of
10. The algorithm was allowed to run for 4.2× 105 generations. The evolution of
�tness for 23 and 22 multiplications is shown in Figure 2. The best �tness could
not reach a value above 0.11 in any of the runs.

0 1 2 3 4 5

x 10
5

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Generation

B
e
s
t
fi
tn

e
s
s

KB, 3x3, 23 multiplications

0 1 2 3 4 5

x 10
5

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Generation

B
e
s
t
fi
tn

e
s
s

KB, 3x3, 22 multiplications

Figure 2: KB convergence for 23 and 22 multiplications.

We also implemented a parallelised version of OM scaled for 3 × 3 matrices.
The implementation cannot follow the OM algorithm in all respects due to the
mutation including an exhaustive local search (ELS). For 2 × 2 matrices, ELS
has to consider 1600 cases for each individual. ELS is technically not feasible for
square matrices of size 3, as it would need to consider 9.684×107 cases. Therefore
we replaced ELS with the checking of 1600 random cases. Put in the same parallel
framework as our GA, OM could not �nd any individual of non-zero �tness.

We employ a universal evaluation method that is appropriate to assess the
quality of any approximate MM method described by Bard [2]. We de�ne the
multiplication error of a MM algorithm f on X,Y ∈ Mδ×δ as ε(f |X,Y) ≡
‖f(X,Y)−XY‖∞ , where ‖X‖∞ = max

i

∑
j

|Xij| . In the characterization of a

MM algorithm f we calculated the mean and standard deviation of ε averaged

5

over the 81 pairs Bi, Bj of elements from the canonical basis of Mδ×δ[R]. We
found that ε = 0.25 ± 0.13 for the parallel KB whilst ε = 5.5 10−3 ± 3.1 10−3 for
our genetic algorithm.

Conclusion

We have presented an application of parallel GAs to �nd the parameters of MM
algorithms for square matrices. The required number of multiplications is a pa-
rameter of our algorithm, so various values within the range from the lower bound
to the currently best known number can be used in the hope of �nding better al-
gorithms (i.e. with fewer multiplications) than the currently known best ones.

Our algorithm successfully discovered solutions requiring 23multiplications for
square matrices of size 3, which are equivalent to the currently best known human-
developed algorithms. For 22multiplications, our algorithm found an approximate
solution of �tness 0.9978. We believe that the key to �nding a perfect solution,
if there exists one, is �tness landscape analysis followed by the design of genetic
operators according to this analysis. In summary, in our opinion the success of
our approach has four major components: 1) The use of continuous representation
instead of discrete representation, 2) the use of a parallel strategy, 3) the use of
migration and explicit diversity maintenance to avoid premature convergence and
4) the use of a variety of genetic operators.

References

[1] G. Bard. New practical Strassen-like approximate matrix multiplication al-
gorithms found via solving a system of cubic equations. http://www-users.
math.umd.edu/~bardg/publications.html.

[2] G. Bard. A practical algorithm for massively-parallel dense matrix multiplica-
tion in time n2.777 over any �eld someday, but for now, the reals, 2008. http:
//www.usna.edu/Users/math/wdj/colloq/bard-usna-talk2008.pdf.

[3] M. Bläser. Lower bounds for the multiplicative complexity of matrix multi-
plication. Computational Complexity, 8:203�226, 1999.

[4] E. Cantú-Paz. Migration policies, selection pressure, and parallel evolution-
ary algorithms. Journal of Heuristics, 7(4):311�334, 2001.

[5] R. W. Johnson and A. M. McLoughlin. Noncommutative bilinear algorithms
for 3× 3 matrix multiplication. SIAM J. Comput., 2:595�603, 1986.

[6] J. F. Kolen and P. Bruce. Evolutionary search for matrix multiplication
algorithms. In FLAIRS, pages 161�165, 2001.

6

[7] J. D. Laderman. A noncommutative algorithm for multiplying 3 x 3 matrices
using 23 multiplications. Bulletin of the American Mathematical Society,
82(1):126�128, 1976.

[8] S. Oh and B.-R. Moon. Automatic reproduction of a genius algorithm:
Strassen's algorithm revisited by genetic search. IEEE Transactions on Evo-

lutionary Computation, 14(2):246�251, April 2010.

[9] C. Sanderson. Armadillo: An open source C++ linear algebra library for fast
prototyping and computationally intensive experiments. Technical report,
NICTA, 2010.

[10] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354�356,
1969.

7

