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Summary

The focus of this study is development of parallelised version of severely sequential and
iterative numerical algorithms based on multi-threaded parallel platform such as a graph-
ics processing unit. This requires design and development of a platform-specific numerical
solution that can benefit from the parallel capabilities of the chosen platform.

Graphics processing unit was chosen as a parallel platform for design and development of
a numerical solution for a specific physical model in non-linear optics. This problem appears
in describing ultra-short pulse propagation in bulk transparent media that has recently been
subject to several theoretical and numerical studies. The mathematical model describing this
phenomenon is a challenging and complex problem and its numerical modeling limited on
current modern workstations.

Numerical modeling of this problem requires a parallelisation of an essentially serial
algorithms and elimination of numerical bottlenecks. The main challenge to overcome is
parallelisation of the globally non-local mathematical model.

This thesis presents a numerical solution for elimination of numerical bottleneck associ-
ated with the non-local nature of the mathematical model. The accuracy and performance of
the parallel code is identified by back-to-back testing with a similar serial version.

Keywords: Femtosecond phenomena, Non-linear Schrödinger equation, Parallel numerical
simulations
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Chapter 1

Introduction

Mathematical models describing physical phenomena are widely used in science and engi-

neering applications whenever real world experiments are dangerous, expensive or impossi-

ble. Building a realistic simulation model of a physical experiment requires a large number

of data inputs and a large number of intricate interactions. This in turn requires a high capac-

ity/bandwidth memory and high computation power. High Performance Computing (HPC)

makes this possible using parallel hardware to increase the computation power and achieve

more accurate results whilst reducing the processing time.

Parallel implementation of numerical models means collaboration of a number of com-

puter resources to solve the problem simultaneously. Most importantly, parallel implemen-

tation can lead to elimination of bottlenecks which are parts of the program that are slow

resulting in limitation of the overall speed of the program. This thesis is focused on effec-

tive use of HPC for eliminating bottlenecks and increasing the speed of complex numerical

applications. The results of this research have been published and presented in [1–8].

The main focus of this work is design and development of numerical algorithms based on
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CHAPTER 1. INTRODUCTION

multi-threaded hardware for high performance modeling of a specific physical problem ap-

pearing in a wide class of phenomena in non-linear optics. This physical problem appears in

describing ultra-short pulse propagation in bulk transparent media. Considering the fact that

efficient numerical modeling is highly dependent on efficient usage of the HPC resources,

this work includes a description of different HPC platforms and that of the chosen parallel

hardware.

The mathematical model for the above mentioned physical problem, presented in Chap-

ter 3, is a challenging and complex extended version of the Non-Linear Schrödinger Equa-

tion(NLSE). The extended NLSE coupled to the Drude model of plasma results is the subject

of this work, addressed by the Non-local Non-Linear Schrödinger Equation (NNLSE). 3D

numerical modeling of such problem is not feasible on modern workstations. However, the

high performance computing based on the multithreaded hardware overcomes this limitation.

This work presents a platform specific numerical solution based on the split-step Fourier

technique by a problem specific succession of linear and nonlinear operators that approxi-

mate the original solution (Chapter 4). The solution of both the linear and the non-linear

operators requires parallelisation of some essentially serial algorithms and elimination of the

numerical bottlenecks by exploiting the parallel capabilities of the specific hardware. The

non-local nature of the non-linear operator makes the parallel implementation challenging.

Hence, in Chapter 4 a novel approach is adopted for an efficient parallel solution to the

non-local non-linear operator.

In addition, this work also contributes to efforts on exploiting parallel capabilities of the

specific hardware for design and development of numerical algorithms as separate modules

(Chapter 6). These modules together form the parallel implementation of the numerical

model. Proof of efficiency, accuracy and robustness of this implementation is also pre-

11
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sented based on by back-to-back testing in a realistic context, reflecting typical experimental

regimes of femtosecond laser inscription.

This work also contributes by adopting a novel approach for identification of roughness

(poor resolution) in results obtained from a serial CPU-based numerical implementation of

the physical problem which was previously developed and implemented in [7,9,10] (Chapter

5). The data obtained from this implementation suffers from insufficient numerical resolution

and require refinement of the grids for which identification of roughness is necessary.

1.1 Thesis structure

The thesis is structured according to the following scheme:

Chapter 1 summarises the main contributions of this work.

Chapter 2 introduces high performance computing for development of complicated scien-

tific applications. This chapter describes the limitations of single processors and intro-

duces a number of HPC platforms. CUDA-enabled GPUs are also introduced in this

chapter as the chosen parallel hardware for this work.

Chapter 3 presents a mathematical model for ultra-short pulse propagation in bulk transpar-

ent media based on non-linear wave equation. In this chapter a description of all the

linear and non-linear regimes that effects this process is given.

Chapter 4 describes the numerical scheme used for solution of the non-local non-linear

Schrödinger equation using the split-step method.

Chapter 5 introduces an adaptive mesh refinement routine to obtain higher resolution from

the data produced by the serial or parallel Schrödinger solver.

12



CHAPTER 1. INTRODUCTION

Chapter 6 describes the parallel design and implementation of all the numerical modules

needed for solution of the non-local non-linear Schrödinger equation.

Chapter 7 verifies the results obtained from the parallel non-local non-linear Schrödinger

equation which is obtained by comparing the time efficiency and accuracy with a sim-

ilar CPU serial implementation.

In Conclusion a summary of the results is provided, as well as a discussion of possible

future work.

13



Chapter 2

Overview and Choice of Computing

Platform

2.1 Computer Architecture

The traditional serial computers are simply described by a memory, which is connected to a

processor through a data-path. The processing speed of these computers is directly affected

by bottlenecks caused by all these three elements [11]. To overcome these bottlenecks differ-

ent architectural innovations have been implemented during the years, among which clever

pipelining and constant increase in the number of transistors can be named.

However, recently the rapid pace of advances in technology has been slowing down as

it is getting harder and harder to reduce the heat produced and the power consumption by

a large number of transistors on a single chip. In other words, faster uni-processors can be

obtained by increasing the clock frequency or the pipelining depth. Increasing the clock fre-

quency requires a very large transistor count which results in a significant increase in energy

14
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consumption, heating up the computer chip severely. As for the pipelining depth, problems

such as branch prediction prevent addition of more pipelining stages. This means that single

processors cannot have massive speed ups anymore and to acquire a faster computer, more

and more processors are needed beside each other to form multi-core systems or multipro-

cessors [12].

Multi-core systems are equipped with a number of processors integrated on a single chip.

As for multiprocessors, multiple processors in one single computer or multiple computers

are interconnected to share their resource to create a massively parallel system. As it will be

explained later, communication between cores is faster in multi-core computing (inter-CPU

communication) than that of multiprocessors where the communication is through a network

or the motherboard, and hence is slower [12].

2.1.1 Parallel Architecture

Parallelism in computer systems can be in instruction or data stream, and is categorized by

Flynn [13] into four different groups:

• Single Instruction, Single Data stream (SISD), uni-processors or the traditional Per-

sonal Computer(PC) that operates sequentially.

• Single Instruction, Multiple Data stream (SIMD), where the same control unit sends a

set of instructions to each processing unit to execute them on different data elements

simultaneously. SIMD architecture provides data level parallelism by executing the

same instructions in parallel on structured data elements, such as arrays. The archi-

tecture design of the SIMD model is based on the regular structured computations

needed for applications like image processing and graphics. It is used in Graphics

15
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Figure 2.1: SIMD and shared memory MIMD architecture [11]

Processing Units (GPUs) where the same operation is executed on a large number of

pixels [11, 12].

• Multiple Instruction, Single Data stream (MISD), where independent processing units

operate on the same data stream. This model in not used in HPC.

• Multiple Instruction, Multiple Data stream (MIMD), comprises many processors that

have the capability to execute different set of instructions on different data elements.

The MIMD model provides task level parallelism which is seen in clusters where

nodes are independent and have their own local memory [14].

Fig. 2.1 shows a SIMD model where only one control unit operates and as a result in com-

parison to the MIMD model, SIMD requires less hardware. In both the SIMD and MIMD

parallel models, communication can occur via shared memory access model or distributed

memory access. In the shared memory access, the processing elements communicate via
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Figure 2.2: Data Level Parallelism in SIMD machines

a common memory, where each processing element is additionally equipped with its own

local memory. Cache memory is an instance of processing element’s local memory, used to

reduce memory latency by bringing data closer to processors. Multiprocessors work with the

shared memory access model of the MIMD architecture [11].

In distributed memory access communication occurs by passing messages through a

communication network or interconnect. The distributed or message passing model consists

of a number of nodes like clusters which are connected through an interconnect, providing

means for data transfer between the processing nodes [11].

Considering the memory model of the parallel computers, communication of data be-

tween the processes can incur a great cost. Programming model between processors in the

distributed memory and shared memory model is described in [14]. As described in this

paper, communication between processors in distributed memory model is usually done us-

ing the message passing interface and the communication latency varies depending on the

17



CHAPTER 2. OVERVIEW AND CHOICE OF COMPUTING PLATFORM

!"#$%&% !"#$%'%

!"#$%(%

)*+,-##+*%

&%

!"##$$

%&##"'&$
)*+,-##+*%

'%

Figure 2.3: Task Level Parallelism in MIMD machines

choice of the interconnect. For the shared memory model, parallelism is provided for exam-

ple by the OpenMP programming interface, where still accessing a non-local memory has

a high overhead depending on the memory layout of the specific system. However, since

each processor can execute different set of instructions synchronously, MIMD machines are

more flexible and they have the capability of executing other HPC models. They are com-

monly used for executing parallel applications. Fig. 2.3 illustrates the task level parallelism

in distributed memory MIMD machines, where two processors execute in parallel Task0 and

Task1. After completion of these tasks, the message passing interface is used to send the

result from one machine to the other before execution of Task2.

The SIMD architecture model is more suitable for scientific computing where repetitious

calculations are required for structured data elements in parallel. Fig. 2.2 shows the program-
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ming model for a SIMD machine, where the same operation (division by 2) is performed on

all elements of an array in parallel by a number of threads. A thread is the smallest process-

ing unit, managed by the operating system, which executes a collection of instructions. It

should be noted that due to their data parallel programming model, SIMD machines are less

flexible and only certain kinds of parallel algorithms work well with them [11, 15].

As mentioned earlier, graphic processing units are designed based on the SIMD archi-

tecture model for graphics rendering of a large number of pixels. GPUs can also be used for

non-graphics applications, like numerical applications, where the same instruction has to be

executed on elements of an array or a matrix in parallel. This is possible by converting a

desktop computer to a supercomputer utilizing GPUs. In this way, GPUs will work as co-

processors for CPUs to exploit parallelism. It should be noted that the cost of purchase, set

up and maintenance of the GPUs is drastically lower than clusters. At this point a decision

had to be made on the choice of the parallel hardware between multi-core CPUs, clusters and

GPUs. The next section describes all the considerations that had to be taken into account to

this effect.

2.2 Choice of Parallel Hardware

Recent advances in CPUs have lead to the use of multi-core systems with hyper-threading

technology, where every processor core can run two independent threads at once. For in-

stance, let’s consider a multi-threaded single core processor equipped with hardware that

can execute multiple threads efficiently. Multi-threading in single core processors is possible

through time multiplexing, where the processor switches between different threads. Time

multiplexing happens so frequently that it is perceived as if the threads are running simul-
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taneously. In this single core system there is one thread of execution at every instance of

time. In a multi-core system, all the CPU resources are replicated into cores. Parallelism

is achieved by assignment of threads to these cores to work in parallel. In this way, higher

throughput is gained by simultaneous execution of instructions on each core [16].

The Intel Core i7 used in this work has 4 cores with hyper-thread technology. This results

in having 8 concurrent threads with the power to calculate 69.23 GIGA Floating Point Op-

erations Per Second (GFLOPS). Superior performance is achieved in GPUs by combining

the SIMD architecture and the multi-core technology. This is achieved by assigning several

Arithmetic Logic Units (ALU) for logic and arithmetic operations on integers to every core.

This means that a large number of ALUs will perform the same set of instructions on differ-

ent data elements through the SIMD architecture. GPU technology is capable of running a

significantly higher number of active threads, 32 for NVidia and 64 for AMD [16].

To process a large array of scientific data using clusters, initially data should be divided

into batches. Subsequently each individual batch should be sent across the interconnect to a

processing node where computation will be performed on the data. Frequent communication

between the nodes through the network is required, which results in high ratio of communi-

cation to processing time, causing communication inefficiencies. Also increasing the number

of nodes, increases the performance but at the same time produces more intercommunication

overhead.

Even though the cost of a commodity single cluster node is low, this cost increases sig-

nificantly by increasing the number of nodes. Also the cost of maintaining all these nodes is

quite high. In contrast, GPUs provide high performance computing with significantly lower

cost. As an instance, NVidia’s Tesla technology provides multi-core GPU design by assign-

ing an ALU to every core. The Tesla C1060 is equipped with a total of 30 multiprocessors,
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each containing 8 cores, these GPUs provide a total of 240 cores at a relatively small cost.

While the lower cost of purchase and maintenance of GPUs is an advantage, one must

also consider their arithmetic precision. CPU and cluster node’s Floating Point Units (FPU)1

support 80-bit units equivalent to extended double, whereas not all the graphics cards support

double precision. Most GPUs use a 32 bit equivalent of single precision floating point. On

the other hand while CPUs have only one FPU unit per core, GPUs are equipped with 32

FPU units per multiprocessor. Considering the fact that high-end CPUs are equipped with

four cores and GPUs with several hundred multiprocessors, this makes a big difference when

using many floating point operations [17].

The lack of double precision in many GPUs is due to the fact that they were initially

designed for a graphics pipeline, for which single precision floating point operations are

sufficient. For general purpose computing, double precision support is increasing but its

speed is still slower than that of single precision floating point operations. Major graphics

card manufacturers like NVidia, AMD/ATI have included double precision to their latest

products but in a limited capacity (not every streaming processor or core is equipped with

a double precision unit). These units are shared between more processors which leads to

reduction in the double precision throughput [18].

Taking into account the different parallel hardware described above, considering the fo-

cus of this work on elimination of bottlenecks from specific scientific applications, the deci-

sion was made to use GPUs as the chosen HPC hardware. This decision was based on the

numerical nature of the scientific applications, the SIMD parallel model of GPUs and also

the lower cost of purchase and maintenance.

1FPUs perform arithmetic operations between two floating-point values
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2.2.1 Graphics Processing Units

GPU’s throughput-oriented design with multi-core multi-threading and high memory band-

width has become more and more optimized. In the past decade, GPU’s usage has changed

from only graphics rendering to general-purpose applications, where their highly parallel ca-

pabilities can be put to good use. The challenge in programming GPUs is converting a serial

code to a parallel one by adapting different algorithms. Consideration should be given to the

limitation on number of threads running on GPUs, which depends on the amount of memory

resources needed per thread. In other words, whenever large number of registers (or amount

of memory) is needed, the limit on the number of threads reduces accordingly [16].

Not all applications can produce better results on GPUs. Applications that have the

following characteristics work well with GPUs:

• Application where the number of threads is far larger than the number of GPU cores.

This is due to the fact that GPUs are designed to handle a large number of threads.

• Numerical applications where data is stored in structures like arrays, where the same

operation is executed on all the elements of the array using threads. Hence, assigning

one thread to every element of array and utilizing a large number of parallel threads

(data parallelism).

• Applications where sharing data between threads is only needed for threads in the

same block.

• Also applications that use hardware-supported local operations like exponential or

square root, which can be executed faster on GPUs in comparison with CPUs.

On the contrary, applications that are serial, have branches (conditional statements), need
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Figure 2.6: Cuda threads, blocks and grids [20]

2.4 Thread Management

As mentioned in the previous chapter, top of the range CPUs (or hosts) can support execution

of a small number of threads, 8 on quad-core computers, whereas NVidia CUDA GPUs

(devices) can support up to 768, 1024, 1536 active threads per multiprocessor depending on

the GPU capabilities. Apart from the differences in quantities of the active threads on host

and device, their entities also differ. CPUs support heavy-weight threads which require slow

and expensive context switching to switch from one thread to another (i.e., it is costly to

assign/stall CPU threads). CUDA threads are lightweight; they operate on small data units

and can be scheduled/stalled with little cost. At the same time, a big number of threads can

be active at once. This is the exact reason why GPUs are good for data parallelism and CPUs

for task parallelism [24].
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Both data parallel and task parallel execution are supported in OpenCL [21].

To conclude, it should be noted that commodity numerical software is typically devel-

oped for sequential algorithms whereas parallel implementation of numerical operations de-

pends on the choice of hardware platform. For example, to employ clusters the problem

should be divided into disjoint domains, where each individual domain will be executed on

one cluster serially. Parallel environments deal with the entire domain at the same time,

hence the numerical solution should be platform specific. In this study GPUs were chosen

considering the data-parallel nature of the scientific applications and specifically CUDA-

enabled GPUs were chosen considering their adaptability and programming model.

2.3 The CUDA Computing Platform

CUDA is a commodity co-processor that makes parallel programming possible at a small

cost. CUDA-enabled GPUs bring the high computational power and memory bandwidth

needed for graphics rendering to general purpose programming [20].
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Figure 2.4: Comparison of Memory Bandwidth in GPUs and CPUs (GB/sec) [22, 23]
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Figure 2.5: Comparison of Floating Point Operations per Second on GPUs and CPUs
(GFLOP/sec) [22, 23]

Figures 2.4 and 2.5 show the superior improvement of GPUs performance compared to

CPUs. As illustrated in these figures, the potential floating point speed on GPUs has raised

significantly since 2004 (significant increase in the GPU/CPU ratio from 3 to 12). In 2010

this ratio was obtained from comparing NVidia GeForce GTX 480 with 1344.96 GFLOPS

and Intel Core i7-980X with 109 GFLOPS. The performance difference shown in these two

figures is a result of the sequential performance of CPUs compared to parallel design of

GPUs.

In this parallel design, transistors are more involved in data processing procedures and

less in data caching and flow control. NVidia’s GPUs use the Single Instruction Multiple

Thread (SIMT) architecture or multiple SIMD, which will execute only one single instruc-

tion on multiple data elements. As a result, there will be less need for flow control. In this

model, since the same instruction is executed on different data elements, the delay due to

memory access can be concealed with computation and there will not be any need for big

caches [20].
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2.4 Thread Management

As mentioned in the previous chapter, top of the range CPUs (or hosts) can support execution

of a small number of threads, 8 on quad-core computers, whereas NVidia CUDA GPUs

(devices) can support up to 768, 1024, 1536 active threads per multiprocessor depending on

the GPU capabilities. Apart from the differences in quantities of the active threads on host

and device, their entities also differ. CPUs support heavy-weight threads which require slow

and expensive context switching to switch from one thread to another (i.e., it is costly to

assign/stall CPU threads). CUDA threads are lightweight; they operate on small data units

and can be scheduled/stalled with little cost. At the same time, a big number of threads can

be active at once. This is the exact reason why GPUs are good for data parallelism and CPUs

for task parallelism [24].
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In CUDA’s parallel design, a large number of pixels are mapped to parallel threads for

graphics rendering. For numerical applications, data elements (e.g. elements of an array)

are mapped to threads for parallel execution of numerical algorithms. Figure 2.6 illustrates a

number of threads that are grouped together to form a block, and these blocks are structured

into a grid, where all the threads in a grid execute the same set of instructions. The CUDA

device defines the maximum number of threads and blocks in each grid. However, the de-

veloper should specify the actual number of threads used in each application. Consequently,

the actual number of blocks is usually calculated by the problem size and the number of

processors in the system [20].

GPU Compute
Capabil-
ity

Max
Threads/Block

Max Block Di-
mensions

Max Grid Dimensions Max Active
threads/MP

Quadro FX 570 1.1 512 512×512×64 65535×65535 768

Tesla C 1060 1.3 512 512×512×64 65535×65535 1024

Tesla M 2050 2.0 1024 1024 × 1024 × 64 65535 ×65535×65535 1536

Table 2.1: Maximum number of threads and maximum block and grid dimension on several
CUDA-enabled GPUs (MP stands for multiprocessor) [20, 25, 26]

Table 2.1 shows the maximum number of threads and blocks for three different CUDA-

enabled GPUs. In this table, Compute Capability describes the hardware specifications of

CUDA cores and consists of two parts: the major revision number which is the whole number

part and the minor revision number which is the number after the decimal point. Devices

with the same major revision number are of the same architecture and minor revision number

describes the minor changes and improvements to the cores [20].

Using CUDA as the programming interface, the GPU acts as the computation and to-

gether with a traditional CPU will run the application. The host will send the highly parallel
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computational instructions to the device and the threads on the device will perform them in

parallel. The part of the application that needs to be executed many times on different data

elements can be defined as a function, which is called the kernel. Once a kernel is launched,

a grid of thread blocks will be created comprising of a large number of lightweight threads

to execute this kernel on different data elements [20].

CUDA provides a software environment that enables programming using a high level

languages similar to C. This software environment is a combination of a set of extensions to

the C language and a runtime library. These extensions are used by the developer to write the

kernel as a C function and also set the number of threads and blocks for kernel execution. The

runtime library provides means for device initialisation, memory and context management

using C functions executed on the host. Compilation of the kernel code to the binary code is

done by NVidia’s own C compiler driver called NVCC for execution on the device [20].

2.5 Hardware Model

CUDA’s hardware consists of an array of multi-threaded Streaming Multiprocessors(SM)

and each SM contains a number of computation engines called Streaming Processor(SP)

which are equipped with ALUs. The numbers of SMs and SPs for three different CUDA-

enabled GPUs are shown in Table 2.2. The fourth column of this table indicates the number

of CUDA cores, or in other words, the total number of SPs on the graphics card. Each CUDA

core for devices of compute capability 2.x has a pipelined floating point unit in addition to the

pipelined integer unit supporting both single and double precision arithmetic. Tesla M2050

supports 515 GFLOPS for double and 1030 GFLOPS for single precision with its advanced

new Fermi architecture [26, 27]. It should be mentioned that the number of SPs in each SM

28



CHAPTER 2. OVERVIEW AND CHOICE OF COMPUTING PLATFORM

determines the instruction throughput. The higher the number of SPs, the more instructions

are processed at the same time [20].

GPU Compute
Capabil-
ity

No. of Streaming Mul-
tiprocessor

No. of Streaming Pro-
cessor

No. of CUDA cores

Quadro FX 570 1.1 4 8 32

Tesla C 1060 1.3 30 8 240

Tesla M 2050 2.0 14 32 448

Table 2.2: Number of SMs, SPs and CUDA cores [20, 25, 26]

When the host launches a kernel grid, multiple thread blocks will be assigned to SMs

based on the resource usage. For example in Tesla C 1060, maximum 8 blocks can be

assigned to each SM. Threads in each block perform simultaneously and different block can

work in parallel on each SM. Every time a block terminates, new blocks will be invoked to

finish the execution of the kernel [28].

Threads in each multiprocessor are scheduled to operate in groups of size 32 parallel

threads which is called a warp. Once a warp stalls, the SM can switch to another resident

warp with zero overhead, this helps to hide the memory and arithmetic latency. It should be

noted that assigning the number of threads to a multiple of 32 (warp size), results in a more

efficient thread management [28].

CUDA needs one of NVidia’s CUDA-enabled GPUs that include GEFORCE 8, 9 and

200 series, TESLA or QUADRO architecture. On devices with compute capability of 2.0

and higher, more than one kernel can be executed at any time instance. This in-turn im-

proves CUDA’s flexibility significantly. The SIMT architecture used in CUDA provides data

level parallelism through coordinated threads, as well as thread level parallelism through in-
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Figure 2.7: Fermi based hardware architecture of Tesla M 2050, with 14 SMs containing 32
SPs where each core contains a floating point unit(FP) and an Integer unit(INT) [27]

dependent threads. The CUDA toolkit contains a CUDA version of the BLAS library called

CUBLAS for linear algebra computations and a CUDA version of FFT called CUFFT for

Fourier transform. Also a set of very efficient numerical algorithms is available in the CUDA

Software Development Kit (SDK).

2.6 Memory Model

Memory management and optimization is one of the more complicated aspects of CUDA.

Developers need to fully comprehend different features of all the memory spaces on the

device. CUDA devices are equipped with different memory spaces with different features,
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which make them suitable for specific usage. These memories are shown in Figure 2.8 and

are described below:

• Global memory: off-chip DRAM memory where all the threads in the grid have access

to. The host also has read/write access to this memory. For this reason, Global mem-

ory is used for communication between host and device. Global memory has larger

capacity and higher access latency.

• Local memory: off-chip memory and private to each thread. Accessing local mem-

ory takes as much time as accessing global memory since its not cached. It is used

whenever the available register space is not enough to hold the required variables;

• Shared memory: on-chip memory where all the threads in each block have access to.

This memory is faster than local and global memory;

• Constant memory and Texture memory: read-only cache memory, all the threads in the

grid can read these two memories;

• Registers: each thread in every block has access to its own registers. As there is only

very limited number of registers available to each thread, if more registers is needed

for a program, the data will be saved to local memory. Accessing registers might be

delayed when reading/writing the same address at once [24].

Table 2.3 shows memory capacities for three different CUDA-enabled GPU cards. As

shown in this table, global memory is the largest memory space and the only memory that

can be accessed from CPU. Hence, using the C runtime for CUDA, developers can allocate,

deallocate, copy data to the global memory, as well as transferring data back to host memory.

Limited amount of available registers per thread in CUDA, limits the number of threads per
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Figure 2.8: Cuda memory access [20]

multiprocessor. For instance, the number of 32 bit registers per streaming multiprocessor in

Tesla C 1060 is 16K, which adds up to 128K register for the device. This means if invoking

768 threads in an SM, 20 registers will be available to each thread. Increasing the amount

of registers available to each thread, means decreasing the number of threads per SM. The

amount of shared memory assigned to each block also limits the number of threads [29].

In the CUDA programming interface, it is desired to limit the host and device data trans-

fer to absolute minimum due to the low bandwidth between host and device memory. This

in turn might lead to execution of parts of the application on GPU that will not speedup the

process, but still the cost of data transfer back to CPU for performance will be higher. On

this platform, developers are highly encouraged to make use of the faster shared memory in-

stead of the global memory inside the kernel. Since shared memory is smaller than the global

memory, this can be done by dividing data into subsets that can fit into shared memory and
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can be processed independently [24, 29].

GPU 32-bit Registers
(per SM)

Shared Memory
(per SM)

Global Memory Constant Memory

Quadro FX 570 8K 16KB 256MB 64KB

Tesla C 1060 16K 16KB 4GB 64KB

Tesla M 2050 32K 48KB 3GB 64KB

Table 2.3: Comparison of memory capacities on different GPUs [20, 25, 26]

It should be noted that the highest memory bandwidth while accessing device’s global

memory can be reached using coalesced memory access. This can be achieved by arranging

the threads to access many consecutive memory locations together. This way all the threads

that belong to the same warp, can access consecutive memory locations using a minimal

number of transactions [29].

With regards to the shared memory, it is important to know that it is divided into memory

modules of equal size called banks. The shared memory banks can be accessed simultane-

ously by different threads, but a request for the same memory bank by two different threads

cannot be processed at once which will lead to serial access of the memory [24].

2.7 Application Development on CUDA

Finally, it should be mentioned that certain parts of applications can run on CUDA-enabled

GPUs efficiently and the following should be considered when making a decision on which

parts to run on a GPU [20, 24, 29, 30]:

• Data-parallel applications, which perform arithmetic operations using a large number

of lightweight threads on large data sets, hide global memory latency and work well
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on CUDA.

• Better use of on-chip registers and shared memory reduces bandwidth usage. It should

be noted that shared memory and registers have both limited capacity and are divided

between thread blocks.

• Control flow divergence within warps slows down performance. It is better to avoid

divergence by reorganizing threads.

• Coalesced memory access pattern leads to coherent memory management for CUDA

applications.

• Data transfer between host memory and CUDA’s global memory is costly. As a result,

the cost of executing the operations on CPU should be higher than the cost of CPU-

GPU data transfer. In other words, executing a small number of operations using small

number of threads wont provide any performance advantages.

• Those parts of the code that are serial and cannot be parallelised should remain on the

CPU and only execution of parallelised algorithms should be transferred to GPU.

A group of Berkeley researchers specified the numerical domain in which parallel archi-

tectures should perform well in comparison to serial architectures [31]. They presented 13

classes of algorithmic methods called dwarves, where each class applies to similar computa-

tion and communication of numerical data. Currently there is ongoing work on most classes

of the dwarves among which Fast Fourier Transform is covered in [32], N-Body in [33] and

Monte Carlo in [34].

A different subset of dwarves is also studied by Che et al in [35] where he has performed

a quantitative comparison of GPU/CPU performance on structured grid, unstructured grid,
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combinational logic, dynamic programming and dense linear algebra. This comparison is

made on an NVidia GeForce GPU and a dual-core hyper-threaded CPU. The first comparison

for structured grid is made on SRAD method, which is used for noise reduction on ultrasound

images based on partial differential equations. The solution includes a reduction, followed

by an update of each data elements using its neighboring elements and then update of each

element using its north and west neighbors on a 2D matrix. It is reported in this paper that for

a 2048×2048 data size, the CUDA implementation is 17 times faster than the single-thread

CPU version and 5 times faster than the hyper-threaded CPU version.

Another comparison is focused on combinational logic and includes an encryption and

decryption algorithm called DES, which involves a number of bit-level permutations. The

sequential version of the algorithm includes conditional statements which leads to control

flow divergence in the CUDA version and slows down the execution significantly. This

problem has been overcome by using look-up tables. Che et al in [35], reports speed-up

of 12× over the hyper-threaded CPU implementation and 37× over a single threaded CPU

implementation for a problem of size 218. Overall, six different data parallel algorithms

are addressed in [35]. Implementation of all these algorithms shows impressive speed-up in

comparison to both single threaded and hyper threaded CPU implementations.
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Chapter 3

Femtosecond Laser Pulse in Transparent

Materials

This chapter presents the fundamental background of the physical problem that is numeri-

cally solved using the GPU hardware platform. In this chapter, all the linear and non-linear

effects that are present during ultra-short pulse propagation in bulk transparent material are

explained and moreover a mathematical model is presented to describe these effects.

3.0.1 Ultra-short Pulse Lasers

There has been extensive advances in ultra-short pulse lasers starting with De Maria’s work

in [36], for electromagnetic pulses with time duration in picosecond range. Since then, the

peak intensity of the ultra-short pulses has increased due to the concentration of energy in

a short time frame, leading to better performance of ultra-fast lasers in femtoseconds and

attoseconds range. These lasers are used for various applications according to their unique

features that are described below:
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• The ultra short duration of these lasers provides fast temporal resolution, making it

possible to capture extremely fast processes or fast moving objects such as electrons

and molecules accurately [37–39];

• The high repetition rate alongside the high average power of ultrashort lasers is

used in Optical clocks to achieve high clock rates on microprocessors [37];

• The ultra broad spectrum in ultrashort lasers provides spatial resolution for Optical

Coherence Tomography(OCT), where the short coherence length of these lasers allows

cross sectional 3D imaging of soft tissues.

• The ultra high peak intensity of these lasers is very effective for fabricating micrometer-

structures or micro-machining in solid materials through ablation. Here ablation causes

the direct change of material from solid state to gas, which is achieved without in-

crease in the temperature. The non-thermal phase transition from solid to gas using

ultra-short lasers is proven to be useful in various fields(e.g. medical and surgical

applications) [37, 40].

Non-linear propagation of these ultra-short lasers in materials and also the laser-matter

interactions have been subject to several studies [41–44]. Generally, light passing through a

transparent material does not result in changes in the material or the light itself. However,

when a high intensity femtosecond laser pulse passes through transparent material, it results

in changes both in the material and the light interaction. In other words, when material is

exposed to the high power and intensity of the ultra-short pulse lasers, it responds in a non-

linear way. As a result, several fundamental non-linear mechanisms effect the interaction of

the light with the material [39].
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Figure 3.1: Micro-fabrication of dielectric material, where laser pulse enters from left to
right

In this process both laser and material parameters affect the energy absorption and the

result of the micro-machining (machining micro structures on surface or bulk of materials).

These parameters include energy and duration of the pulse, pulse repetition rate and wave-

length, the band-gap and thermal properties of the material. The high intensity of the pulse

causes non-linear absorption in the material and the short duration of the pulse causes the

energy to be absorbed by the electrons before any thermal effect [45].

In the world of photonics, with the technical advances in ultra-short pulse lasers [41, 42,

44], study of pulse propagation in different materials is proven to be essential. It should

be mentioned here that laser light in this context is a laser beam in space and a laser pulse

in time. Hence, it is limited to space and time and its called a bullet. When femtosecond

bullets, with high peak intensity, propagate through transparent media (e.g. glass), self-

focusing increases the intensity. This in turn, leads to plasma generation and creation of

permanent micro-fabrication of solid materials. Typical applications of this phenomenon are
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femtosecond (fs) laser inscription for micro-fabrication and micro-machining.

The purpose of this chapter is to describe the linear and nonlinear phenomena which

effect micro-machining of solid materials using ultra-short lasers. This chapter also presents

a mathematical model for these phenomena based on the wave equation. The main focus is

on the use of femtosecond pulse to induce microstructures and to fabricate bulk transparent

material where a non-linear absorption regime transfers laser energy into the material and

starts the process of electron ionization.

Fabrication of transparent materials using femtoseconds laser has been studied exten-

sively for over a decade. These studies include both fabrication of waveguides inside glass

and modification of refractive index inside transparent solids using laser systems. Fig. 3.1

shows micro-fabrication of transparent material (by focusing the laser beam into the material

using a microscope object) [45].

3.1 Pulse Propagation

The narrow bandwidth wave propagation in envelope approximation can be described us-

ing the non-linear wave equation in the form of the Generalised Non-Linear Schrödinger

Equation (GNLSE) which is a generic mathematical model. This section is focused on a nu-

merical solution for a specific model, which describes femtosecond laser pulse propagation

in transparent media. In this model, GNLSE is coupled to the Drude model of plasma result-

ing from multi-photon and avalanche ionization processes [9,10,46]. However this approach

can be extended to similar models.

Ultra-short laser pulse propagation in medium is best described by the derivation of elec-

tromagnetic wave equation from the system of Maxwell equations:
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5×E =−∂B
∂t

, (3.1)

5×H =
∂D
∂t

+ J , (3.2)

5·D = ρ , (3.3)

5·B = 0 . (3.4)

In this system, E and H represent the electric and magnetic field vectors. Subsequently,

D and B are the electric and magnetic flux densities. Source of the electromagnetic field in

this system is presented by the electron current density vector J and the electric concentration

ρ [47].

Propagation of the electric and magnetic fields in the medium creates densities D and B

which can be stated through the following equations:

D = ε0E +P , (3.5)

B = µ0H +M , (3.6)

where ε0 and µ0 are the vacuum permittivity and permeability respectively and P and M

stand for the induced electric and magnetic polarisation (for dielectric materials which are

nonmagnetic, M = 0).

To obtain the wave equation that describes ultra-short laser pulse propagation, Eq. 3.6 is

substituted in Eq. 3.1. Then the rotation or curl of the result is taken as shown below:

5×5×E =−µ0
∂5×H

∂t
. (3.7)
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Subsequently substituting Eqs. 3.2 and 3.5 in Eq. 3.7, results in the following, where c

is the speed of light in the vacuum:

5×5×E =− 1
c2

∂2E
∂t2 −µ0

(
∂2P
∂t2 +

∂J
∂t

)
, µ0ε0 =

1
c2 . (3.8)

Here, relation5×5×E ≡5(5.E)−52E can be used, where5.E = 0. This is due

to the fact that in the charge neutral media there is equal amount of free electron density ρe

and electron hole density ρh (5.D = ρ = ρe−ρh = 0). As a result, Eq. 3.8 can be written

as the following:

52E − 1
c2

∂2E
∂t2 = µ0

(
∂2P
∂t2 +

∂J
∂t

)
, µ0ε0 =

1
c2 . (3.9)

Here the Laplacian operator 52 =4= ∂2/∂x2 +∂2/∂y2 +∂2/∂z2 is used to expand the

equation in x,y and z direction. However, since electric wave propagates in one direction in

space and time, only the z divergence is considered and the x and y divergence are substituted

with ∆⊥, where ∆⊥ = ∂2/∂x2 + ∂2/∂y2. This will result in the following equation in which

∆⊥ represents transverse diffraction of the laser pulse,

∂2

∂z2 E +∆⊥E − 1
c2

∂2E
∂t2 = µ0

(
∂2P
∂t2 +

∂J
∂t

)
, µ0ε0 =

1
c2 . (3.10)

The next step will be writing polarisation P = PL +PN L in terms of the electric field E .

Here polarisation is decomposed into a linear (PL ) and non-linear (PN L ) part. Polarisation

for isotropic, homogenous mediums can be written as the following power series:
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P̂ = P̂ (1)(r,ω)+ P̂ (3)(r,ω)+ ... ,

= ε0χ
(1)(ω)Ê(r,ω)+ ε0χ

(3)(ω)|Ê(r,ω)|2Ê(r,ω)+ ... , (3.11)

where ω is the angular frequency of light and χ is the electric susceptibility. This equa-

tions shows that polarization at position r is directly related to electric field at point r. It

should be noted that glass is amorphous and has inversion symmetry which results in elimi-

nation of all the even terms from the polarisation equation above.

Here the following two expressions are used to define the Fourier transform and the

inverse Fourier transform,

Ê(r,ω) =
+∞∫
−∞

E(r, t)eiωtdt , (3.12)

E(r, t) =
1

2π

+∞∫
−∞

Ê(r,ω)e−iωtdω . (3.13)

In this relation, the linear polarisation (PL ≡ P (1)) for linear materials is quantified by the

first order electric susceptibility (χ(1)). For non-linear materials, the non-linear polarisation is

quantified by higher orders of electric susceptibility. Also, the frequency dependent dielectric

constant is quantified in terms of the electric susceptibility by the following relation [48],

ε(ω) = χ
(1)(ω)+1 . (3.14)

By Fourier transformation, Eq. 3.10, is written as follows:
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(
∂

2
z + ε(ω)

ω2

c2 +∆⊥

)
Ê(r,ω) =−µ0ω

2F̂NL , (3.15)

where F̂NL ≡ P̂NL + iĴ /ω presents the non-linear effects caused due to non-linear polar-

isation and electron current density J .

Propagation of ultra-short pulse in transparent media is effected by a number of lin-

ear and non-linear effects. Theses effects consist of dispersion, Kerr non-linearity, plasma

absorption and defocusing, multi-photon absorption, avalanche and plasma ionization. It

should be noted that multi-photon absorption results in creation of plasma by multi-photon

and avalanche ionization. This, in turn, leads to resistive absorption of laser light and it’s de-

focusing. These effects together with Kerr effect, diffraction and dispersion make the pulse

propagation a very complex phenomenon developing over a range of scales in space and

time. Detailed description of these effects is given in the following sections.

3.1.1 Dispersion

The dispersion effect describes the dependence of the phase velocity of light on frequency.

Phase velocity of the wave in a medium is calculated by v = c/n, c being the speed of light in

vacuum and n the refractive index of the medium. Phase velocity is the speed at which phase

of different frequencies of light will travel. This phenomenon is caused due to wavelength

dependence of the refractive index. The propagation rate of the changes in the amplitude is

called the Group Velocity, which can be written in terms of frequency:

vg = k′−1
=

(
∂k(ω)

∂ω

)−1

where k = n(ω)
ω

c
, (3.16)

where k presents the wave vector. Frequency dependence of this function means that
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different frequencies of light will travel with different speed. This phenomenon is called the

Group Velocity Dispersion (GVD) and quantified by d = ∂2k(ω)/∂ω2.

To simplify deriving the dispersion effect, only the linear terms on the left hand side of

Eq. 3.15 are considered. In this equation the dielectric constant (ε(ω)) is a complex value,

where its real part is related to the refractive index n(ω) and its imaginary part is related to

absorption coefficient. For materials with low optical losses, the imaginary part is negligible

and the dielectric constant ε(ω) can be replaced by n2(ω) [47]:

(
∂2Ê
∂z2 +n2(ω)

ω2

c2 +∆⊥

)
Ê(r,ω)

=

(
∂2Ê
∂z2 + k2(ω)+∆⊥

)
Ê(r,ω) . (3.17)

This equation, currently only showing a trivial transformation of Eq. 3.15, shows that

for linear propagation of the laser pulse, the refractive index, wave vector and frequency are

connected. Here the k2(ω) can be expanded using the Taylor series into the following:

k(ω) = k(ω0)+
∂k
∂ω

∣∣∣∣
ω0

(ω−ω0)+
1
2

∂2k
∂ω2

∣∣∣∣
ω0

(ω−ω0)
2 + ... ,

k2(ω) = k2(ω0)+
∂k2

∂ω

∣∣∣∣
ω0

(ω−ω0)+
1
2

∂2k2

∂ω2

∣∣∣∣
ω0

(ω−ω0)
2 + ... . (3.18)

The next step is to transfer Eq. 3.17 back to time domain, where −i(ω−ω0)→ ∂/∂t and

−(ω−ω0)
2→ ∂2/∂t2, as shown below:
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Figure 3.2: Slowly varying amplitude of the electric field

∂2E
∂z2 +∆⊥E + k2

0E −2ik0v−1
g

∂

∂t
E − 1

2
d

∂2

∂t2 Ê = 0 , (3.19)

where Group Velocity is defined by vg = k′−1 = ∂ω/∂k and Group Velocity Dispersion

by d = k′′ = ∂2k/∂ω2.

On the other hand, E can be described in terms of the envelope amplitude of electric field

(u) (shown in Fig. 3.2):

E = u(r, t,z)ei(kz−ωt) , (3.20)

where ei(kz−ωt) describes quick oscillation with angular frequency ω and the wave vec-

tor k, where ∂/∂z = ik + ∂/∂z and ∂/∂t = iω+ ∂/∂t. Second derivative of Equation 3.20

(∂2E/∂z2 = [∂2u/∂z2 + 2ik0(∂u/∂z)− k2
0u]ei(kz−ωt)) is substituted in Eq. 3.19, resulting in

the following:

∂2u
∂z2 +2ik0

(
∂u
∂z

)
+∆⊥u−2ik0v−1

g
∂

∂t
u− 1

2
d∂ttu = 0 . (3.21)

In this equation, u presents the slowly varying envelope of the electric field moving with

group velocity vg, in the moving frame of coordinate shown below:
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t→ t ′− z′/vg , (3.22)

z→ z′ . (3.23)

Fig. 3.2 illustrates the small rate of change in the amplitude of the electric field where

|∂u/∂z| � |ikzu|. This results in a negligible value for ∂2u/∂z2. Furthermore the following

expansion can be made based on 3.23:

∂u
∂z

=
∂u
∂z′

∂z′

∂z
+

∂u
∂t ′

∂t ′

∂z
=

∂u
∂z′

+
1
vg

∂u
∂t ′

,

∂u
∂t

=
∂u
∂t ′

∂t ′

∂t
+

∂u
∂z′

∂z′

∂z′
=

∂u
∂t ′

.

This in turn further simplifies Eq. 3.21 into the following:

2ik0

(
∂u
∂z

)
− 1

2
d∂ttu+∆⊥u = 0 . (3.24)

As mentioned earlier, d is the GVD parameter which will calculate dispersion’s sign and

magnitude.

3.1.2 Optical Kerr Effect

This effect describes the increase in the local refractive index of the material caused by the

high intensity of the laser pulse. This effect is defined by n = n0 +n2 | u |2 , where n2 is the

46



CHAPTER 3. FEMTOSECOND LASER PULSE IN TRANSPARENT MATERIALS

non-linear index which changes the refractive index of the material proportional to intensity

(I =| u |2) [48, 49].

The Kerr effect is also responsible for self-focusing, which is limited by plasma and

multi-photon absorption. Positive value of n2 for most materials means that the local re-

fractive index increases with intensity variations. This means that the refractive index will

have a bigger value at the center of the laser beam, acting as a lens to focus the beam. It

should be noted that while the change in refractive index is intensity dependent, the effect of

self-focusing is dependent on the peak power of the pulse [10, 39].

The strength of self-focusing increases with the increase in the power of the laser pulse.

However, when this value exceeds the critical power of self-focusing, the laser beam will

collapse. The critical power (Pcr) of the laser pulse is calculated by the relation given below,

where λ represents the wavelength of the laser [39]:

Pcr =
3.77λ2

8πn0n2
. (3.25)

Another effect that changes refractive index is defocusing. This effect causes a nega-

tive change of the refractive index, prevents more self-focusing and causes the catastrophic

collapse of the beam. A more detailed description of this regime is given in the next section.

The optical Kerr effect is described by the third order non-linear polarisation (PN L =

P (3)),

∂u
∂z

= ikn2|u|2u where n2 =
ωχ(3)

2cn0k
. (3.26)

As a result of this relation, the refractive index will change with the non-linear rate n2|u|2.
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3.1.3 Plasma Absorption and Defocusing

Propagation of a femtosecond pulse in bulk transparent material will form an electron con-

centration. As this concentration grows, the electron density will become plasma. This

plasma density will have two effects on the laser pulse, rapid absorption of energy and de-

focusing of the pulse. The first effect is due to the absorption of the laser energy and the

latter is caused by the negative effect of the free electrons on refractive index. As refractive

index of the plasma is lower than the surrounding material, it causes a defocusing effect on

the pulse. As mentioned earlier in section 3.1.2, this effect prevents catastrophic collapse of

the beam caused by self-focusing [39].

Plasma absorption and defocusing is derived using the Drude model of plasma, which

describes acceleration of electrons in an electromagnetic field:

me
∂ve

∂t
=−eE − me

τc
ve , (3.27)

where ve is electron velocity, e is electron charge and finally me is electron mass. In this

equation, collision causes changes in electron momentum which is described by (meve)/τc.

Here τc is the time taken between collisions for electrons to relax. Since collision causes

reduction in electron momentum, it should be subtracted from equation of motion as shown

above. Moreover, a linear relationship between the free electrons and the induced current

density J exists as shown below:

J =−eρve . (3.28)

This relation is used for solution of ∂J/∂t in Eq. 3.10, to derive plasma absorption and
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defocusing effect. This is achieved by writing Eq. 3.27 to oscillate at −iω to achieve the

following:

ve =−
eE
me

τc(1− iωτc)
−1 . (3.29)

Substituting Eq. 3.29 into 3.28 will provide current density J in terms of the electric

field:

J =−e2 ρE
me

τc
(1+ iωτc)

(1+ω2τ2
c)

. (3.30)

This in turn will lead to derivation of the plasma absorption and defocusing as shown

below:

∂u
∂z

=
σ

2
(1+ iωτ)ρu where σ =

µ0e2

mek(1+ω2τ2)
. (3.31)

3.1.4 Multi-photon Absorption

Individual photons lack enough energy for electron excitation in transparent material. How-

ever, absorption of multiple photons at once can cause excitation of the electrons as illus-

trated in Fig. 3.3. Multi-Photon Absorption (MPA) describes the probability of absorption

of a number (K) of photons simultaneously. Here the total energy of the K photons matches

the energy needed to excite electrons from the valence band to the conduction band [10,46].

The MPA process results in changes in the number of electron density and as a result this

term is placed on the right hand side of current density equation. Fenq et al in [49], presents

the following relation to describe MPA:
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Figure 3.3: Multi-photon absorption regime where an electron is excited from valence band
to the conduction band.

∂u
∂z

= i
β(K)

2
|E|2(K−1)E , (3.32)

where β(K) controls the K-photon absorption. This equation shows that the rate of K-

photon absorption is proportional to K. The order of photon absorption is simply estimated

by K = (Eg/h̄ω), which indicates the smallest number of photons with energy h̄ω that is

required to overcome Eg. Here, Eg is the energy to free an electron [10, 49].

3.1.5 Multi-photon and Avalanche Ionisation

Multi-photon Ionisation

This effect happens due to ionization of the electrons by high intensity laser field. MPI can

happen through two different mechanisms based on the frequency and intensity of the laser:

multi-photon ionisation (MPI) and tunneling ionisation. Illustration of these two regimes is
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Figure 3.4: Photon Ionization for different values of the Keldysh parameter γ; Multi-photon
ionization for γ > 1.5 and tunneling ionization for smaller values of γ

given in Fig. 3.4.

For low frequency and high intensity lasers, the tunneling mechanism causes the electron

ionization. In this regime, the strong electric field causes the electrons to tunnel their way

through the atom barrier and become free. For high frequency lasers, multi-photon ionization

happens when a bound electron is hit by a number of photons simultaneously. MPI occurs

when the right number of photons is absorbed for successful ionization. This means that the

number of absorbed photons multiplied by the photon’s energy should be bigger than the

band gap [39].

Multi-photon and tunneling ionization can be distinguished by the Keldysh parameter

γ = ω/e(mcnε0Eg/I)1/2 [50]. For γ > 1.5 multi-photon ionization happens and for smaller

values of γ, tunneling will happen. The value for this parameter in this thesis is greater than

1.8, hence multi-photon ionization is the dominant regime.
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Figure 3.5: Avalanche ionization, (A) an initially free electron absorbing energy. (B) this
electron impact ionizing another electron by collisional energy transfer.

Avalanche Ionization

Avalanche ionization describes the collisional energy transfer from free electrons high in the

conduction band to bound electrons as illustrated in Fig. 3.5. In this regime, the free elec-

trons (or seeds) continue to absorb energy and free bound electrons by impact ionization.

This in turn will result in having two electrons in the minimum conduction band that will

subsequently act as seeds. These seeds absorb multiple photons one after another and pro-

mote to higher energies in the conduction band, which will result in further impact ionization

of electrons. It should be mentioned that first multi-photon ionization causes generation of

free seed electrons and then avalanche ionization starts the impact ionization regime. Fig.

3.5 illustrates this process [39].

The Drude model of plasma (Eq. 3.27 and Eq. 3.28) is employed to describe the evolution

of plasma in bulk material. For the purpose of this work, the following model presented
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in [49] is used. This model describes multi-photon and avalanche ionization as the main

sources of plasma in electromagnetic field (∂ρ/∂t),

i
∂ρ

∂t
=

1
n2

σbs

Eg
ρ|u|2 + β(K)

k~ω
|u|2K , (3.33)

where σbs is the cross-section for the electron neutral inverse Bremsstrahlung, Eg is the

ionization energy and β(K) controls the K-photon absorption.

3.2 Non-local Non-Linear Schrödinger Equation

As mentioned in the previous sections, propagation of ultra-short pulse in transparent me-

dia is effected by a number of linear and non-linear effects including dispersion, Kerr non-

linearity, plasma absorption and defocusing and multi-photon absorption. The combination

of all these effects form the extended non-linear Schrödinger equation (Eq. 3.34) which is

presented based on the mathematical model used by Fenq et al in [49]. This model was orig-

inally studied by Feit and Fleck in [51] and later on generalised in [49] to add the GVD and

the MPA regimes,

∂zu+
1
2k

∆⊥u− 1
2

d∂ttu+ k0n2|u|2u =− iσ
2
(1+ iωτ)ρu− i

β

2
|u|2(K−1)u . (3.34)

To simplify this analysis, Eqs. 3.34 and 3.33 are rescaled to a dimensionless format.

Hence, the following dimensionless variables are introduced,

t→ tpt ′ , ρ→ ρBDρ
′ , (3.35)
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where ρBD represents plasma breakdown intensity and tp presents the pulse width. Fur-

thermore, intensity threshold of multi-photon ionization (IMPA) is used to normalise the elec-

tric field. This is due to the fact that only intensities higher than the MPA intensity threshold

result in seeding electrons. Since it is the generation of plasma which results in micro-

machining of material, the numerical modeling is set to start when I ∼ IMPA.

To achieve a dimensionless model normalised with IMPA the following is derived from

Eq. 3.33:

ρBD

tp

∂ρ′

∂t ′
=

σbsρBD

n2
bEg

ρ
′|u|2 + β(K)

k~ω
|u|2K ,

∂ρ′

∂t ′
=

σbsρBDtp

n2
bEgρBD

IMPAρ
′ |u|2

IMPA
+

β(K)IK
MPAtp

k~ωρBD

|u|2K

IK
MPA

.

It is desired to set the intensity of the electric field at the point where plasma ionization

rate becomes steep. To achieve this MPA intensity threshold is set to the following:

IMPA =

(
k~ωρBD

β(K)tp

) 1
K

. (3.36)

As a result, a dimensionless model is obtained where u′ = u/
√

IMPA and u0 =
√

IMPA:

∂zu− iκ∆⊥u− iσ|u|2u =−id∂ttu− γ(1+ iωτ)ρu−µ|u|2(K−1)u , (3.37)

∂ρ

∂t
= νρ | u |2 +

(
| u |
u0

)2K

. (3.38)
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Eq. 3.37 describes an envelope amplitude u of the laser wave coupled to an equation

describing concentration of plasma carriers ρ along the z-axis. These two equation together

form the Non-local Non-linear Schrödinger Equation, called here after the NNLSE and are

employed in the following chapters to present a numerical scheme for the above mentioned

physical phenomena.

The terms in the left hand-side of Eq. 3.37 describe the effects of beam diffraction and

Kerr self-refraction. These terms alone form the well-known GNLSE. Kerr effect leads to

a singular catastrophic self-focusing which is ultimately arrested by effects of dispersion,

multi-photon absorption, plasma absorption and defocusing. The first term in the right hand-

side of Eq. 3.37 describes dispersion. The second term on the right hand side γ(1+ iωτ)ρu

comprises effects of plasma absorption and defocusing and the final term in this equation

describes MPA [10].

As for the Eq. 3.38, the first term in the right hand side describes avalanche ionization

and the second term describes multi-photon ionization.
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Chapter 4

Numerical Scheme for Modeling

Femtosecond Pulse Propagation

The high intensity of the laser field used in this research results in complex processes of

material ionization and evolution of plasma that comprises cascaded multi-photon absorp-

tion, plasma absorption, and defocusing. As mentioned in Chapter 3, a combination of these

non-linear effects results in an extremely complex mathematical model that is an extended

version of the Generalised Non-linear Schrödinger Equation. This extended model, called

the Non-local Non-linear Schrödinger Equation, is derived from coupling between the ex-

tended NLSE and the particle balance equation for plasma resulting from multi-photon and

avalanche ionization processes.

NNLSE in Chapter 3 is presented in the form of Eqs. 3.37 and 3.38 and is a system

of non-linear partial differential equations which cannot be solved analytically. Two main

numerical approaches have been used for solution of GNLSE type equations, known as Finite

Difference and Pseudo-spectral methods. The non-local interaction of wave and plasma
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makes it impossible to use a straightforward parallel implementation, typical for explicit

finite difference methods. The pseudo-spectral methods are proven to be faster and in that

category Spilt-Step Fourier Method (SSFM) is known to be the most efficient. It should be

mentioned that the Finite Difference method uses paraxial approximation in time domain to

solve the problem, whereas the SSFM uses spectral methods for a faster solution [47, 52].

In [53, 54], Taha and Ablowitz compared different numerical solutions for GNLSE in-

cluding the SSFM and finite difference methods and stated the superior performance of the

SSFM on CPUs. In [55], SSFM and the fourth-order Runge-Kutta method were implemented

for parallel simulation of GNLSE using GPUs which indicated similar computation time for

both methods.

The Split-Step Fourier method can be easily modified for different differential operators

(e.g a more complex dispersion term) and it is universal regarding independent linear and

non-linear operators. Due to the versatility of the SSFM, this method was chosen similar

to that in [9, 49] to reduce NNLSE into a succession of small linear and non-linear steps by

dividing the propagation.

Parallel solution of GNLSE-like systems have been discussed previously by Zoldi et al

in [56]. In 2009, Hellerband et al used the same approach to implement a parallel solution

for GNLSE on GPUs in [57, 58]. Both Zoldi and Hellerband used SSFM for large scale

problems, where parallelisation of the Fast Fourier Transform (FFT) is addressed.

Operator splitting techniques address the numerical solution of GNLSE-type problems

(i.e. partial differential equations comprising linear differential operator and local non-linear

terms). This technique solves the GNLSE by a problem-specific succession of linear and

non-linear operators that approximate the original equation [47, 52].

Solution of the linear problem, referred to as the linear step, is usually efficiently per-
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formed using spectral methods which often have efficient parallel numerical implementa-

tions such as FFT. Efficiency of the spectral methods results from reducing the solution to

a discretised linear partial differential equation as a matrix inversion problem into a set of

trivial uncoupled equations in the corresponding spectral domain. Similarly, the non-linear

problem, or the nonlinear step, is usually already local i.e. already represents a set of uncou-

pled equations. Thus operator splitting makes possible efficient parallel implementations for

equations with local non-linearities as shown e.g. in [56].

In this research we consider a more complicated model which describes ultra-short laser

pulse propagation in transparent media (see e.g. [48]). A fundamental difference between

relevant mathematical models and the NNLSE, is in the nature of the non-linear term which

is non-local in time due to peculiar interaction of laser light with plasma.

This chapter addresses the problem of eliminating a numerical bottleneck associated with

non-local nature of the non-linear terms in the wave equation. A conventional operator split-

ting technique is exploited to efficiently deal with the linear operator, while special attention

is paid to constructing an efficient parallel method for the non-linear operator. Since the typ-

ical problem size of 104× 104 fits to the GPU memory, well-developed existing numerical

implementations are used such as an optimised off-the-shelf FFT.

4.1 Split-Step Method

The split-step method derives an approximate discretised solution by considering effects

of linearity and non-linearity independently by dividing the problem into two sequential

steps where in the first step non-linearity acts alone and the second step is for independent

linear effect. These two steps are derived from Eq. 3.37 and denoted by L and N which
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schematically denote the linear and non-linear operators correspondingly [47]:

∂zu = Lu =−iκ∆⊥u+ id∂ttu , (4.1)

∂zu = Nu =−iγ(1+ iωτ)ρu−σ|u|2u− iµ|u|2(K−1)u , (4.2)

where the linear term L includes the dispersive and diffraction effects while the non-

linear term N includes plasma absorption and defocusing, non-linear Kerr effect and MPA.

The consecutive application of the linear and the non-linear operators after finite increment

of the evolution variable z approximates the original system of differential equations:

u(z+∆z) = exp
(

N
2

∆z+L∆z+
N
2

∆z
)

u(z) (4.3)

As stated in [47], here a symmetrised SSFM technique is used where the nonlinear effect

is included in the middle of the step to reduce the leading error to third order in step size z.

Using this technique, pulse propagates along the z-axis from z to z+∆z by taking a small

step ∆z/2 to progress the non-linear term in the field. After that the linear term makes a full

step of size ∆z to bring the linear term further in the field. Consequently another half step

∆z/2 is taken to advance the non-linear term. This process is repeated to propagate the laser

pulse in the spatial coordinate. This mathematical approach is based on the fact that both

linear and non-linear effects act concurrently and using a very small step size ∆z, they can

interplay as two separate linear and non-linear effect [49, 57].

The solving of the linear term can be preformed in the frequency domain where an effi-

cient implementation of FFT is available. This approach implies a periodic boundary con-
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dition. It should be noted that since the laser pulse vanishes close to the boundaries while

propagating in time, these boundaries do not cause any limitations on the problem. Mean-

while, the non-linear term is implemented in the time domain. Choosing the right value

for the step size is important to produce reliable results [57, 59]. The method used in this

research for calculation of the step size is described in detailed in section 4.3.

A detailed description of the solving method for the linear and non-linear term is given

in the next sections.

4.1.1 Linear term

This section provides a parallel solving method for the linear term (Eq. 4.4) of the Split-Step

Fourier method,

i∂zu+κ∆⊥u−d∂ttu = 0 . (4.4)

Here the initial pulse is stored in a matrix of size Nr×Nt with Nt pointing along the time

domain and Nr pointing along the radial domain as shown in Fig. 4.1.

Fast Fourier Transform is applied to the amplitude of the electric field (u) to solve Eq.

4.4 in the frequency domain. The transformation is applied to batches of size Nt for every

radial position that will result in the following:

i∂zũ+κ∆⊥ũ+dω
2ũ = 0 where ũ = F ·u . (4.5)

Subsequently, matrix transposition is used to rearrange the Nr×Nt matrix into a Nt×Nr.

Eq. 4.5 is to be solved with the initial condition u0 = u(z = z0). To solve this equation,

the Laplacian ∆⊥ is written in polar coordinates as a radial diffraction [60]:
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Figure 4.1: Initial data saved in a Matrix of size Nr×Nt

.

∆⊥u =
∂2u
∂r2 +

1
r

∂u
∂r

. (4.6)

Here Eq. 4.6 is discretized using the central difference scheme where rn = n×∆r and

expanded into the following equation:

∆⊥u =
un+1−2un +un−1

∆r2 +
1
rn

un+1−un−1

2∆r
. (4.7)

The second term in Eq. 4.6 can result in a division by Zero problem, whenever r = 0.

To overcome this problem, the L’Hopital rule is used to differentiate ∂u/r∂r as shown below

[60]:

∂

∂r
(
∂u
∂r

)

∂

∂r
r

=
∂2u
∂r2 |r=0 . (4.8)

This will result in the following for the laplacian ∆⊥:
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∆⊥u =


2

∂2u
∂2r

= 4
(

u1−u0

∆r2

)
if r = 0 ,

un+1−2un +un−1

∆r2 +
1
rn

un+1−un−1

2∆r
otherwise .

(4.9)

To simplify the third term in the Eq. 4.4, variable v = eidω2zû is defined. Substituting v

in this equation results in the ω independent relation shown below:

i∂zv+κ∆⊥v = 0 . (4.10)

The next step will be discretisation over z, which is achieved using the Crank Nicolson

method, to derive the following equation [61]:

i
vm+1− vm

∆z
+

1
2

κ∆⊥
[
vm+1 + vm]= 0 . (4.11)

As described in [61], since the linear term is essentially a time-dependent equation, the

Crank Nicolson method provides both stability and second order accuracy in space and time

and results in a complex tridiagonal system by the following rearrangement,

[
i+

∆z
2

κ∆⊥

]
vm+1 =

[
i− ∆z

2
κ∆⊥

]
vm , (4.12)

where the transverse diffraction operator and the dispersion operators are diagonal and a

tridiagonal solver can be used to calculate vm+1. Eq. 4.13 shows that for very small values

of step size ∆z, there will not be a significant change in the amplitude of the electric field

described by the linear effects ( vm+1 −→ vm for ∆z−→ ε):
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Figure 4.2: Solution of the Linear term in Frequency domain

vm+1 =

[
1− i

∆z
2

Dv

]−1 [
1+ i

∆z
2

Dv

]
vm . (4.13)

Fig. 4.2 shows all the steps to be taken for the solution of the linear term. It should be

noted that to obtain the final result in time domain, a transpose operation to inverse the result

back to Nr×Nt dimension and an inverse fast Fourier transform is necessary (these steps are

shown in Fig. 4.3).

4.1.2 Non-Linear Term

This section presents a novel approach for numerical modeling of the non-linear part of the

extended non-local non-linear Schrödinger equation in parallel (Eq. 4.14). While routines

like Fast Fourier Transform and tridiagonal solver provide a satisfactory scalable parallel

solution for numerical integration of the linear operator, the non-linear step is a convoluted
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Figure 4.3: Final Solution of the Linear term in time domain

non-local operator. The coupling between Eqs. 4.14 and 4.15 makes the solution non-local,

which results in impossible straightforward parallel implementation.

Straightforward solutions to coupled differential equations are easily obtained when deal-

ing with local coupling where interaction between the equations is based on the same space/time

point. In some cases, interaction between the equations happens over an interval of space/time

leading to non-local coupling. In these cases, the behavior of different effects should be cal-

culated over a ”region” in time or space rather than a single point [62]. This is illustrated in

Fig. 4.4 which shows the dependence of ρ on u as an integral over time resulting in non-local

coupling of Eqs. 4.14 and 4.15:

∂zu =−iγ(1+ iωτ)ρu−σ|u|2u− iµ|u|2(K−1)u , (4.14)

∂tρ = νρ|u|2 + |u|2K . (4.15)

64



CHAPTER 4. NUMERICAL SCHEME FOR MODELING FEMTOSECOND PULSE PROPAGATION

!"#$%&

'()%&
*+& &*,&&&&&&&&&&&&*-&&&&&&&&&&&&*.&&&&&&&&&&&&&&&&&&&&&&/&&&&&&&&&&&&&&&&&&&&&&&&&/&&&&&&&&&&&&&&&&&&&&&&&&&/&&&&&&&&&&&&&&&&&&*012&&&&&&&&*0&&&&

!"#!"$%#

#

Figure 4.4: Non-local dependence of ρ on u in time domain

To solve the non-linear term, Eq. 4.14 is split into an amplitude and phase as shown

below:

f (ρ, I) = ∂zI =−2(γρI +µIK) , (4.16)

and

∂zφ = σI− γωτρ , (4.17)

where u =
√

Ieiφ and I presents the amplitude of the electric field.

First the amplitude relation (Eq. 4.16) is solved using a leapfrog integration over z step

for every t [61],

Ik+ 1
2
= Ik +

1
2

f (ρk, Ik)∆z and Ik+1 = Ik + f (ρk+1/2, Ik+1/2)∆z where z→ k. (4.18)

To calculate f (ρ, I), Eq. 4.15 is usually solved using one of the methods for numerical

integration for first order ordinary differential equations, which is essentially a serial proce-
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dure. This work contributes to a novel parallel solution by analytical integration of ρ over

time which is valid since, for a given intensity |u|2, Eq. 4.15 is linear for ρ.

Here, considering the choice of parallel hardware and also considering the easier parallel

implementation of integration, the second method is used. This method parallelises the so-

lution by splitting the problem as an integral equation in time domain. This method is used

to solve Eq. 4.15 and then the result is used for the solution of the non-linear term.

This solution starts by writing Eq. 4.15, which describes plasma evolution at the rate of

multi-photon and avalanche ionizations, in terms of intensity, where I = |u|2:

∂tρ = νρI + IK . (4.19)

This equation is solved using the variation of constants method. Using this method, first

the homogenous part of the equation (∂tρ = νρI) is divided by ρ:

∂tρ

ρ
−νI = 0 . (4.20)

Subsequently integration will result in the following:

ln|ρ|−ν

t∫
−∞

Idt = c , (4.21)

where c is the integration constant. Taking the exponential of both sides of Eq. 4.21 will

result in the equation shown below:
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ρe

−ν

t∫
−∞

Idt

= ec ,

ρ =Ce

ν

t∫
−∞

I dt

where C = ec . (4.22)

The following term can be used to further simplify the plasma equation:

φ = ν

t∫
−∞

I dt and φ
′ = νI . (4.23)

This will yield to the equation shown below derived from Eqs. 4.22 and 4.23:

ρ =Ceφ . (4.24)

Now it is time to address the inhomogeneous part of Eq. 4.19. Here, due to variation of

constants, constant C will be replaced with function Ct and yield to the following:

Cteφ = IK ,

Ct = IKe−φ , (4.25)

where integration over time will yield to the following:

C =

t∫
−∞

IKe−φdt . (4.26)

Finally the plasma ρ can be derived from Eqs. 4.26 and 4.24 as shown below:
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ρ(t) = eφ

t∫
−∞

IKe−φ dt where φ =

t∫
−∞

I dt . (4.27)

This term is true from t0 = −∞ since ρ(t = −∞) = 0. The proof of this solution can be

achieved by taking derivative of Eq. 4.27, as shown below:

ρ
′(t) = (eφ)′

t∫
−∞

IKe−φ dt + eφIKe−φ

= eφ
φ
′

t∫
−∞

IKe−φ dt + IK . (4.28)

Here considering φ′ = νI, we can derive the following:

ρ
′(t) = νIeφ

t∫
−∞

IkKe−φ dt + IkK

= νIρ+ IK .

Finally, after calculating f (ρ, I) of the amplitude term in 4.18, the phase Eq. 4.17 is

solved using the following second order scheme:

φn+1−φn

∂z
=

σ

2
(Ik + Ik+1)−

γωτ

2
(ρk +ρk+1) . (4.29)
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4.2 Initial Condition

The initial electric field is considered to have geometry of a Gaussian pulse which is fo-

cused through a lens into the bulk transparent media equivalent to that used in [49]. The

radially symmetric initial conditions with Gaussian shape in radial and temporal dimension

is presented below,

E(r,z = 0, t) = E0exp

(
− r2

ω2
0
− ikr2

2 f
− t2

t2
p

)
, (4.30)

where ω0 and r are the waist and radius of the incident beam accordingly. In this equa-

tion, f presents the focal length of the lens and tp presents the pulse-width,

4.3 Adaptive Step Size

In order to obtain reliable results for numerical modeling of pulse propagation along the z-

axis, the value of step size (∆z) should be chosen carefully. Choosing a large step size, will

produce unreliable results. On the other hand, choosing a small value leads into implemen-

tation of a large number of steps [57].

To calculate a suitable step size and obtain relative smoothness, the electric field u(r, t)

should change slowly. Here u(r, t) is a discretisation of the continuous electric field stored in

a complex matrix. This smooth change is obtained when both the amplitude and the phase

of the complex data changes slowly. For this reason ∆φ and ∆|u| are chosen to be less than a

prescribed limit (1%).

To ensure a proper approximation of the discrete numerical scheme, the numerical step

in evolution variable z is varied. By calculating the individual linear and non-linear effects
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separately, critical step size associated with each effect is obtained. Ultimately the minimum

step size that presents the most dangerous or dominant effect is chosen. In other words, ∆z

is calculated by testing all the possible limitations that are enforced by different linear and

non-linear effects.

In this thesis, numerical discretisation of the extended NLSE is used for estimation of

the correct step size. This approach is only used in the set step routine to prevent unreliable

estimation of the step size.

du
dz
→ ∆u

∆z
= iκ∆⊥u+ iσ|u|2u− id∂ttu− γ(1+ iωτ)ρu−µ|u|2(K−1)u . (4.31)

This equation can be written as the following:

∆u = (iκ∆⊥u+ iσ|u|2u− id∂ttu− γ(1+ iωτ)ρu−µ|u|2(K−1)u)∆z . (4.32)

It can be seen in the equation above that the maximum Kerr self-refraction effect and

multi-photon absorption (the second and last term on the right hand-side) depends on maxi-

mum intensity Imax = |umax|2. Consequently, for the plasma absorption and defocusing (the

forth term on the right hand-side), the maximum effect depends on the maximum plasma

ρmax.

The following steps is taken to calculate the step size for the maximum optical Kerr

effect:
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du
dz

= iσ|u|2u ,

u∗
du
dz

= iσ|u|2|u|2 ,

u∗uz =−iσ|u|4 ,

R(eiφ)z =−iσR2Reiφ where u = Reiφ ,

eiφiφz =−iσR2eiφ ,

φz = σR2 .

Finally step size for the Kerr effect can be calculated from ∆φ = σ|u|2∆z. This equation

shows the direct dependence of ∆z on |u|2. Here ∆zKerr addresses the step size obtained from

the optical Kerr effect:

∆zKerr =
∆φ

σ|u|2
. (4.33)

The same solution can be applied to the MPA term, which leads to calculation of the step

size for the MPA effect based on |u|2:

∆zMPA =
∆φ

µ|u|2(K−1)
. (4.34)

Maximum step size for the plasma absorption (∆zabs) and defocusing (∆zde f oc) effects is

presented by,

∆zabs =
∆φ

γρ
and ∆zde f oc =

∆φ

γωτρ
. (4.35)
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As for the solution of the linear terms (dispersion and beam diffraction), a matrix trans-

pose will be needed. Maximum dispersion will be calculated by taking the discrete derivative

of the dispersion term, utt = d(un+1−2un +un−1)/∆t2. For this effect, the step size ∆z de-

pends on the time step size ∆t.

Subsequently maximum diffraction will be calculated by ∆⊥u = K(urr + ur/r), where

step size ∆z, is calculated from radial step size ∆r. This approach chooses the minimal step

size associated with the most dominant effect for the steps size of the combined numerical

scheme.
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Chapter 5

Numerical Modeling of Ultra-short Pulse

Propagation on CPU

A serial and CPU-based numerical solution to the NNLSE is used in [7, 9, 10] for numerical

modeling of femtosecond laser pulse propagation in bulk transparent material. The data

obtained from this implementation suffers from insufficient numerical resolution whenever

sudden changes in the intensity of the electric field occur. This is due to the multi-scale nature

of the pulse propagation that causes intrinsic stiffness in the mathematical problem. To obtain

a finer grid, a hierarchy of adaptive refinement is used, where the grids are dynamically

refined in both the spatial and temporal features to generate adequate numerical resolution

during the evolution along the z-axis as described in [9].

To refine the data obtained from the serial NNLSE solver, after a certain number of steps

are taken along the z-axis, the local resolution of the grids should be checked to ensure suffi-

cient resolution of the grid. Whenever poor numerical resolution is identified, the refinement

routine should be started to produce a finer grid. This is achieved by increasing the number
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Figure 5.1: Radial profile of the electric field at specific point along the z-axis

of mesh points and refining the under-resolved areas with grids of higher resolution similar

to that used in [63]. This procedure is repeated whenever inadequate resolution in the local

grid is detected.

In this chapter, the adaptive mesh refinement routine is facilitated by the design and

implementation of a numerical routine for detection of the approximate point with poor res-

olution in the grid. A sample of poor resolution of the data profile is shown in Fig. 5.1. This

figure shows an under-resolved profile, which makes identification of the maximum intensity

unreliable.

5.1 Detection of Poor Resolution

This study presents a new method to detect and locate the approximate point with poor res-

olution by calculation of the amplitude’s rate of change in time and radial domain using

the second discrete derivation. This is approximated by the 3-point centered second differ-
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ence [64]:

D1 =
un+1−2un +un−1

h2 , (5.1)

and

D2 =
un+2−2un +un−2

4h2 , (5.2)

where h presents the step size and un the amplitude of the electric field. Here, u is defined

as a 2-D Complex matrix of size Nr×Nt where every row contains u(t) for a fixed radial

position. Note that here the discrete second second derivative should provide close results

for a properly resolved mesh function since second derivatives are the highest differential

terms involved in our model.

These two equations describe the discretised curvature of the field un. This means suf-

ficiently close values of D1 and D2 indicates proper discrete resolution while significant

discrepancy between the two indicates poor approximation resulting in poor resolution. It

should be noted that for small values of u, D1 and D2 will be minor and this can lead to

irregularities. Therefore, peripheral stability is achieved by focusing the refinement on ar-

eas where the amplitude of the beam is greater than a small percentage of the maximum

amplitude defined by uthreshold = 10%×Max(|ur,t |).

Ultimately the maximum roughness in radial or time domain can be calculated and nor-

malised by the maximum amplitude in the time/radial profile for every z step accordingly,

roughness =
|D1−D2|

Max(|uLocal|)
, (5.3)

75



CHAPTER 5. NUMERICAL MODELING OF ULTRA-SHORT PULSE PROPAGATION ON CPU

where the results obtained from the detection routine will be used for adaptive mesh

refinement.

The serial NNLSE solver together with the adaptive mesh refinement routine was used

in [7] for numerical modeling of femtosecond pulse propagation. In this work, the focus is

on energy deposition for typical regimes of femtosecond inscription in fused silica by funda-

mental harmonics at 1030 nm and second harmonics at 515 nm. In this work, absorption of

energy is analysed which is defined by Ein−Eout , where Ein =E(z= 0) and Eout is computed

by the following:

E(z) =
∞∫
−∞

dt
∞∫
0

rdr|u|2 (5.4)

This paper shows that different absorption effects dominate in different regimes. As a

result, for lower energy regions, MPA is the dominating effect while the plasma absorption

is the dominating effect for the higher energies. Distribution of the plasma density for both

fundamental and second harmonics wavelength produced by the serial NNLSE solver and

refined by the adaptive mesh routine is shown in Fig. 5.2 [7].
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Figure 5.2: Distribution of the plasma density for wavelength λ = 1030 nm (left column),
λ = 515 nm (right column) with different initial pulse energies: a),b)-41 nJ; c),d)-132 nJ;
e),f)-335 nJ. [7]
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Chapter 6

Parallel Implementation of Non-local

Non-linear Schrödinger Equation on

GPUs

This chapter describes the parallel implementation of a specific numerical model that sim-

ulates femtosecond laser pulse propagation in transparent media. This implementation was

developed based on NVidia’s CUDA parallel hardware. Performance of the mentioned multi-

threaded parallel code will be compared with a serial CPU version similar to that described

in [9,10]. In this chapter, the CPU implementation will be addressed by serial NNLSE solver

and the parallel GPU-based implementation will be addressed by NNLSE solver.

Development of the mentioned code started by profiling the existing serial CPU version

to identify the numerical bottlenecks associated with different modules in this code. The

results obtained from profiling the serial NNLSE solver can help identifying opportunities to

eliminate bottlenecks and gain speed by a parallel implementation.
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Figure 6.1: Results obtained from profiling the existing serial NNLSE solver

The profiling output of the serial NNLSE solver is illustrated in Fig. 6.1. This fig-

ure shows that 33.35% of the running time (6.83s) belongs to the NonLinearStep method,

responsible for solving the non-linear term. This method includes a number of standard

mathematical functions that execute faster on parallel hardware. The second method with

the highest running time is a tridiagonal solver that solves a tridiagonal matrix serially using

the LU decomposition method. Fig. 6.1 shows that this method takes 24.46% of the running

time (5.01s). Solving a tridiagonal matrix using a parallel algorithm in CUDA should reduce

this method’s running time by assigning concurrent threads to elements of the tridiagonal

matrix. It should be noted that the LinearStep routine, responsible for solution of the linear

term, includes execution of the Fourier transform and the tridiagonal solver module. How-

ever, the time shown in Fig. 6.1 indicates only the time spent in the Linear step routine and

not any of the modules called by the Linear Step routine. As it can be seen from the profiling
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Figure 6.2: Average run time obtained from implementation of standard math func-
tions(Power and Square root) on CPU and GPU

report, there are a number of bottlenecks in the existing serial NNLSE Solver. This chapter

aims to remove these bottlenecks by using the highly parallel capabilities of the NVidia’s

CUDA .

Solving the NNLSE includes the execution of a number of standard mathematical oper-

ations such as square root or power. To examine the time it takes to run these functions in

both CPU and GPU, a test program was developed to execute the pre-defined math functions

pow and sqrt. These functions are used to calculate power and square root of all the elements

of an array of type floating point. The average run time of these two implementations for

input size from 212 up to 222 is illustrated in Fig. 6.2. This figure shows the GPU’s run

time of the pow and sqrt function is identical and is significantly faster that the CPUs serial

implementation.

As mentioned in the previous chapter, the split-step method is used for solution of the

NNLSE. Using this method data is first initialised with radially symmetric Gaussian pulse
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Figure 6.3: Order of linear and nonlinear split steps taken along the z-axis

and then the step size ∆z is computed based on routines described in sections 4.2 and 4.3

in the SetStep routine. Subsequently, the non-linear step will be executed over step size

of ∆z/2 in NonlinearStep routine, after which the signal is transformed to Fourier domain

for implementation of the linear term(LinearStep routine). After execution of the inverse

Fourier transform, another non-linear step is taken with step size of length ∆z/2. As a result

the implementation of the NNLSE solver will consist of three main routines for calculation

of the linear term, the non-linear term and the step size as illustrated in Fig. 6.3. Each of

these routines will make use of parallel modules including tridiagonal solver, FFT and etc.

A parallel implementation of these two routines and the modules is described in sections 6.1

and 6.2.

It should be noted that the initial pulse is stored in a complex matrix u(m,n) which is a

discretisation of the continuous field u(r, t). To boost performance, this matrix is physically

stored as a 1D array of size Nr×Nt where Nr and Nt stand for the number of grid points in

radial and time direction accordingly. Every row in this matrix contains u(t) for a fixed radial

position. The array is periodically reorganised using parallel routines to perform matrix

transposition in order to provide continuous storage for coordinate-wise parallel operations

such as Fourier transform and integration of the radial operator using the Crank-Nicolson

scheme [61]. The numerical step in the evolution variable z is varied to ensure a proper

81



CHAPTER 6. PARALLEL IMPLEMENTATION OF NNLSE ON GPUS

!" !"!"# !$# !%# !%&'# !%&&# !%&(# !%&)# !%&*# !&$"# !&$$#

#$%&'$"()*%+,"

-.'+)/"()*%+,"

!"# !$# !%# !%&'#!" !%&&# !"!%&(# !%&)# !%&*# !&$"# !&$$#

0$%12"3" 0$%12"4"

!"#$%$ !"#$&$ !"#$'$ !"#$$

'()$

!"#$$

'(($
!" !"#$%$

$

!"#$&$ !"#$'$ !"#$$

'()$

!"#$$

'(($
!"

%!"# %!$# %!%# %!%&'#!" %!%&&# !"%!%&(# %!%&)# %!%&*# %!&$"# %!&$$#

!" !"!"# !$# !%# !%&'# !%&&# !%&(# !%&)# !%&*# !&$"# !&$$#

#$%&'$"()*%+,"

-.'+)/"()*%+,"

Figure 6.4: Execution of independent operation on data stored in 1-D array in CUDA

approximation of the discrete numerical scheme.

Both the linear and the non-linear routines include execution of independent operations

on data input (e.g. multiplication of all the elements of the data array by a constant). Imple-

mentation of such operations is straightforward as there is no memory dependency. Fig.6.4

illustrates an execution of a single independent operation on all the elements of the input

array. To execute such operations efficiently, initially data is loaded into the low-latency

shared memory and assigned to thread blocks. This data is accessed by CUDA thread blocks

through thread ID and block ID, which are distinctive coordinates assigned by the CUDA

runtime. Thread ID and block ID can be used to perform various operations on elements of

an ordered data input like arrays and matrices. Using these IDs, parallel implementation is

achieved by assigning one thread to each data element as shown in Fig. 6.4. As it can be seen

in this figure, every 256 threads form a thread block, where the threads within each block

have read/write access to the same shared memory [20, 29].
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Figure 6.5: Naive algorithm for implementation of exclusive scan [65]

6.1 Non-linear Step

The non-linear routine is implemented for execution of the non-linear term in the NNLSE

solver. As mentioned in part 4.1.2, parallelisation of the solution of the non-local non-linear

term is done by splitting the problem as an integral equation in time domain. The parallel

implementation of this routine requires the modules described in the following subsections.

6.1.1 Scan Sum

This module performs the all-prefix-sum operation on all the elements of the input array as

shown below:

Ordered data input,

[F0, F1, ..., FN−1] . (6.1)
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Figure 6.6: Work efficient algorithm to implement parallel exclusive scan [65]

Ordered data output,

[0, F0, F0 +F1, ..., F0 +F1 + ...+FN−1] . (6.2)

This operation takes an array of size N as input and produces an array of the same size

where each element is equal to the sum of all the previous elements which is also referred as

exclusive scan sum [66, 67].

Blelloch in [66,67] stated the possibility of efficient parallel implementation of this essen-

tially serial operation. In [65], Harris described an efficient parallel algorithm to implement

exclusive scan on CUDA architecture. He started by describing a naive algorithm shown in

Fig. 6.5, where numerous addition operations result in inefficient parallel implementation

of this module. Subsequently, an efficient scan algorithm is described in [65], which uses

the balanced tree approach. This efficient algorithm works by creating a balance tree on the

input data and calculating the exclusive scan by sweeping up and down this tree as shown in

Fig. 6.6.
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Figure 6.7: Implementation of integration using trapezoidal rule

The parallel prefix sum code described in [65] and provided in the CUDA SDK [68] is

used for implementation of the scan sum operation in this work.

6.1.2 Integration

As mentioned in section 4.1.2, partial numerical integration is required to approximate evo-

lution of plasma over time. This is achieved by delegation of the trapezoidal rule to concur-

rently running threads [61].

ρ(t) = eφ

t∫
−∞

Ike−φ dt where φ =

t∫
−∞

I dt . (6.3)

To implement this code, a stand-alone module was initially implemented to calculate

cosh(x) by integration for the following equation:
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1∫
−1

(
1
2
(ex + e−x)

)
dx . (6.4)

Integration was implemented using the trapezoidal rule to approximate the area under

the graph of the function f (x) =
∫ 1
−1
(1

2(e
x + e−x)

)
dx for the interval a = -1 to b = 1 for n

subintervals.

b∫
a

f (x)dx =
∆t
2
( f (1)+2

n−1

∑
k=1

f (k)+ f (n)) where ∆t =
b−a

n
. (6.5)

Parallel implementation of the integral module is achieved by executing the steps shown

in Fig. 6.7. The first step shown in this figure is implementation of the all-prefix-sum oper-

ation which was described in the previous section as a separate module. Following the scan

sum, a number of independent operations are executed in the same manner shown in Fig.

6.4.

Accuracy of the integration module is tested by comparing the results obtained from im-

plementation of Eq. 6.4 with sinh(x). Based on relation 6.6, comparing the results obtained

from calculation of these two terms, shows the accuracy of the integration.

∫ (1
2
(ex + e−x)

)
dx = sinh(x) . (6.6)

The integration module was developed both in the C programming language for a CPU

platform and through the CUDA interface for a GPU platform. Comparison of the results

obtained from implementation of Eq. 6.6 is performed by calculation of the relative error for

each implementation,
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Figure 6.8: The average accuracy of the integration for the CPU and the GPU, measured
using Eq. 6.7

sinh(x)−
∫ (1

2(e
x + e−x)

)
dx

max(sinh(x))
. (6.7)

Figure 6.8 shows the accuracy of the integration routine both on the GPU and CPU. As

shown in this figure, when the number of elements n grows from 32 to 1024 the error reduces

from 10−4 to 10−6 . This reduction in the relative error is better shown in Fig 6.9 which

plots relative error in the GPU from n = 4 to 1000. This figure shows error reducing from

10−2 to 10−6 , resulting in four orders of magnitude reduction in the error, providing floating

point precision for mesh points greater than 100.

In addition to accuracy, the run time of the two implementation are shown in Fig. 6.10,

which indicates that GPUs give a superior performance as expected.
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Eq. 6.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mesh Points

E
x
e
c
u
ti
o
n
 T

im
e
(S

e
c
)

 

 

CPU integration

GPU integration

Figure 6.10: CPU vs GPU comparison of the average run time of the integration routine for
mesh size 32x32 to 1024x1024

88



CHAPTER 6. PARALLEL IMPLEMENTATION OF NNLSE ON GPUS

6.2 Linear Step

The linear method is implemented for execution of the linear term in the extended non-linear

Schrödinger equation. As mentioned in part 4.1.1, parallelisation of the solution of the linear

term includes parallel implementation of a tridiagonal solver and a Fourier transform. These

modules are described in detail in following sections.

6.2.1 Tridiagonal Solver

This module provides a solution for large tridiagonal matrices, which contain nonzero el-

ements only on the diagonal, upper diagonal and lower diagonal. The tridiagonal solver

module is used frequently in numerical applications. Therefore, it is trivial to find a fast

optimised solution for these matrices.

A tridiagonal matrix is usually solved using the LU decomposition method. This method

presents the matrix as a product of an upper and a lower triangular matrix. Then it uses

forward substitution and backward substitution to get the unknown vector x. This method,

which is also known as the Thomas algorithm, was first presented in [61, 69].

The matrix equation is:

A ·x = b , (6.8)

where A is a tridiagonal matrix, b is a known column vector on the right-hand side and x

is an unknown column vector.

LU decomposition on A is:

L ·U = A , (6.9)
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where L is the lower triangular, U is the upper triangular. The original equation can be

written as b = (L.U).x, which can be presented as b = L.(U.x). Here an unknown vector y

can be used to solve b = L.y by forward substitution which in turn leads to solution of the

the original problem by backward substitution y =U.x. Hence, the original problem can be

decomposed into the following steps:

L ·y = b , (6.10)

U ·x = y . (6.11)

This recursive method is well suited when there is a single processor, single thread system

and the matrix is solved serially. For large matrices with a large number of equations a

parallel solution can speed up the computations. The first parallel algorithm for solution of

a tridiagonal matrix called The Cyclic Reduction was developed by R.W. Hockney in [70].

Following that, Stone in [71] presented a recursive double algorithm for parallel solution of

the tridiagonal equation.

In [72], Stone compared different algorithms for solution of a tridiagonal matrix including

the odd-even cyclic reduction algorithm by Buzbee et al. [73], the Buneman algorithm [74]

and his own double recursive algorithm. Subsequently he stated the cyclic odd-even reduc-

tion method as the most efficient algorithm.

The cyclic odd-even reduction method was chosen for parallel implementation of a tridi-

agonal solver on CUDA. Fig. 6.11 illustrates the cyclic odd-even reduction method where

reduction is performed by eliminating the odd entries in parallel. This is done by combining

the equations in groups of three and eliminating the even ones in succession [75].
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For example, the first three equations in the matrix shown in Fig. 6.11 are presented below:

b0x0 + c0x1 = f0 ,

a1x0 +b1x1 + c1x2 = f2 ,

a2x1 +b2x2 + c2x3 = f3 .

(6.12)

To perform cyclic reduction, three new variables α, β and γ are defined as shown below:

α =
−a1

b0
, β = 1, γ =

−c1

b2
. (6.13)

The following relationship is true for these variables:

αb0 +βa1 = 0 and βc1 + γb2 = 0 . (6.14)

Subsequently, the Eqs. 6.12 are multiplied by these variables respectively:

αb0x0 +αc0x1 = α f0 ,

βa1x0 +βb1x1 +βc1x2 = γ f2 ,

γa2x1 + γb2x2 + γc2x3 = γ f3 .

(6.15)

At this stage, combining these three equations, will result in the following single equation

in:

(αc0 +βb1 + γa2)x1 +(γc2)x3 = α f0 +β f1 + γ f2 ,

b′1x1 + c′1x3 = f ′1 .

(6.16)

As it can be seen above, the even unknowns are eliminated in the final equation and only odd
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Figure 6.11: solution of a tridiagonal matrix using the cyclic reduction method [75]

unknowns are left. This process is performed in parallel and successively until the system is

reduced to only one equation with one unknown. After calculating the value of this unknown,

back substitution is used to calculate the value of all the other unknowns [75]. This process

is illustrated in Fig. 6.11.

Implementation of the cyclic reduction routine requires specification of the level of paral-

lelism considering the choice of hardware. This has been analysed in several papers for

different systems, Kershaw has designed a system for Cray in [76], Lambiotee et al in [77]

for CDC STAR-100 (a vector supercomputer) and Cox in [78] for an FPS-T20 (a parallel

processing system with vector processors in a hypercube topology). A derivation of the di-

vide and conquer strategy that was presented in [78] is used in this work as a solution of the

tridiagonal solver in CUDA.

In this system, a tridiagonal matrix of size N×N and a platform with P processors is con-

sidered, where N = 2n− 1 and P = 2p− 1. An execution of k = n− p consecutive cycles

are required to reduce the system. The number of equations in each local processor will be

Np = 2k+1−1 and the number of common unknowns in each processor will be Cn = 2k−1.

This is illustrated in Fig. 6.12 which shows the cyclic reduction of a 15×15 matrix in a sys-
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Figure 6.12: solution of a tridiagonal matrix using the cyclic reduction method on CUDA

tem with three processors, where n = 4, p = 2. In this system a collection of seven equations

is assigned to each processor and each processor will reduce the number of equations in two

cycles ( k = 2 ). Subsequently, the final reduced equation in each processor is send back to

CPU. The CPUs host code performs further reduction to narrow down the whole matrix to

one single equation that leads to straightforward calculation of all the unknowns.

It should be noted that here parallelism is achieved by processing a very large array with

multiple thread-blocks, where each thread-blocks reduces a portion of the array. Here final

reduction of the results obtained in each thread-blocks requires synchronized communication

between thread-blocks. However, CUDA does not support global synchronization which is

the reason why the partial results are communicated back to CPU for the final reduction.

93



CHAPTER 6. PARALLEL IMPLEMENTATION OF NNLSE ON GPUS

!"# !$# !%# &# &# &# '!($#

!"# !$# !%# &# &# &# '!($#

)*+#"#

)*+#$#

,"#

,$#

!"# !$# !%# &# &# &# '!($#

)*+#%#

,%#

-./#

!"# !$# !%# !0# !1# !2# !3#,"#

)*+#"#
)*+#$#

)*+#%#

!$# !0# !2#

)*+#$#

!0#

45
67
#

45
67
#

-8/#

Figure 6.13: Assignment of threads for implementation of (A) the cyclic reduction routine
(B) the LU decomposition method for solution of a tridiagonal matrix.

In this thesis, two different methods were implemented for solution of the tridiagonal matrix;

the first one uses the cyclic reduction method as described above and the second one uses

the LU decomposition method. As mentioned earlier, the LU decomposition is a recursive

and serial procedure more suitable for single processors. Here considering the nature of the

problem, where it is required to find solution of a tridiagonal solution for every row of a 2D

matrix, LU decomposition can be parallelised by assigning one thread to every row. The

thread assignment for both implementation is illustrated in Fig. 6.13. As it is shown in this

figure, one thread is assigned to every row for parallel LU decomposition of individual rows.

Comparison of the run time of the two different methods shows a superior performance of

the serial LU decomposition method. As stated in [79] by Zhang et al, the cyclic reduction

method suffers from bad thread utilisation. This is shown clearly in Fig. 6.13, where lower

stages of the reduction and substitution leaves most of the threads idle. In this method also

coalesced memory access is impossible since every thread needs to access three equations at
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Figure 6.14: Average run time of the cyclic reduction and the LU decomposition method for
both the CPU and GPU implementation

once. The timeline for execution of these two methods in the CPU and the GPU is presented

in Fig. 6.14.

6.2.2 Fast Fourier Transform

This section describes an early investigation of the CUDA version of the Fast Fourier Trans-

form called CUFFT [32]. Here CUDA’s CUFFT library is compared with one of the most

popular FFT libraries called Fast Fourier Transform in the West (FFTW) for CPUs [80].

This comparison has been investigated previously in [81–84], where [82] and [83] stated the

superior performance of the CUFFT library for data sets of size 2n where n≥ 13. Also [84]
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stated that the time needed to transfer data to GPU’s global memory dominates in this pro-

cess. These papers reported up to 10× speedup over FFTW.

Implementation of FFT for the NNLSE solver requires batched FFT where a Complex to

Complex Fast Fourier Transform has to be implemented on every row of the input matrix.

The CUFFT library provides a batched FFT function for 1-Dimensional data input which is

suitable for the NNLSE solver [32].

To transform data to Fourier domain using both FFTW and CUFFT, two functions should be

called. The first one creates a Plan to store all the information needed for the transformation

and the second one Executes this plan on the input array. Using the CUFFT library means

that in addition to these two functions, CUDA’s memcpy function should be called to transfer

data between CPU and GPU. Fig. 6.15 presents two plots, showing the run time of these two

functions on CPU and GPU separately. The left plot presents the run time of FFT using the

CUFFT library, where the data transfer time (blue bar) is significantly larger than run time.

However, for NNLSE solver the initial data is produced in the GPU and kept in GPU’s global

memory for execution of a number of linear and non-linear steps. As a result no data transfer

is needed for executing the Fourier transform. As for the plan creation, both the FFTW and

the CUFFT implementation create a single plan once and then use it repeatedly for each step

along the z-axis.

As a result, when comparing batched FFTW and CUFFT, only the run time of these two

libraries is considered. This is shown in Fig. 6.16.
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Figure 6.16: Average run time of the batched Fourier Transform employing CUFFT and
FFTW library. This figure illustrates only the time taken to execute fast Fourier transform
using the two different libraries and excludes data transfer and plan time.

6.3 Set Step

The Set Step method is implemented for calculation of the step size. As mentioned in sec-

tion 4.3, femtosecond pulse propagates along the z-axis by step size ∆z. This step size is

computed by calculation of the maximum step size (∆zmax) obtained from all the linear and

non-linear effects independently. The set step routine method requires implementation of a

parallel module to find the maximum value in a given array. This is implemented using a

parallel Reduction algorithm, to be discussed in the following section.

6.3.1 Reduction

A reduction algorithm is used whenever it is required to combine an input data set in some

way to acquire a single answer. On a traditional computer this can be achieved by using a

loop to go through all the elements serially and combine the data. This approach is not ideal
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Figure 6.17: Execution of an efficient parallel reduction algorithm

on parallel hardware considering the essentially serial nature of these loops. To achieve a

better performance on parallel hardware, a parallel reduction algorithm is used where each

thread is responsible for combining a pair of data input. This will halve the number of data

to be processed in a tree like approach. The pairwise combination will be executed step by

step until a single result is obtained [85].

The CUDA SDK provides an optimised parallel reduction that calculates the sum of all the

values in an array in parallel. This sample code uses an efficient tree-like approach in each

thread block to reduce the input data. It divides the code into a number of kernels to provide

global synchronisation between all the thread blocks and uses sequential addressing to avoid

shared memory bank conflicts [86, 87].

As mentioned in section 2.6, GPU’s shared memory is divided into 32-bit banks and each

bank can only be accessed by one thread per instruction cycle. As a result, it is beneficiary to

arrange the data such that consecutive data elements are stored in different banks of shared

memory. This will result in spacing the data out so that none of them lie in the same bank.
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Considering the fact that addresses 0,16,32, ... belong to bank 0, addresses 1,17,33, ... be-

long to bank 1 and so on, conflict-free shared memory access is guaranteed in this code using

sequential addressing as illustrated in Fig. 6.17 [20, 87].

The NNLSE solver uses a version of the reduction algorithm where the pair of data are

compared and the greater value is chosen. This will mean that at the end of the reduction, the

maximum value stored in the array is obtained. For this, a modified version of the reduction

code provided in the CUDA SDK was used [86].

After development and testing of all the modules required for implementation of the NNLSE

solver in CUDA, these modules were put together to form the main two routines for cal-

culation of the linear and non-linear terms. Comparison of these two implementations was

performed in two different ways: accuracy and time efficiency. This comparison is described

in detail in the next chapter.
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Chapter 7

Comparison of Serial and Parallel

GPU-based Implementation of the

Non-linear Schrödinger Solver

In this chapter, the performance of the GPU-based parallel NNLSE solver is compared with

a serial CPU version similar to that described in [9, 10]. These two implementations are

compared based on their run time and accuracy.

Two platforms were used for this comparison:

- A GPU platform with a NVidia Tesla C1060, NVidia driver 195.36 and CUDA version

3.0;

- A CPU platform with Intel Core i7, 2.67 GHz, 6 GB RAM.

As mentioned in chapter 2, the NVidia card has 30 streaming multiprocessors (SM), where

each multi-processor is comprised of 8 streaming processors (SP), providing a total of 240

101



CHAPTER 7. COMPARION OF SERIAL AND PARALLEL IMPLEMENTATIONS OF NNLSE SOLVER

10
3

10
4

10
5

10
6

10
7

10
!6

10
!5

10
!4

10
!3

Number of mesh points

R
e
la

ti
v
e

 e
rr

o
r

642

1282

2562
5122 10242

Figure 7.1: Relative error derived from comparison of results produced by CPU and GPU for
different number of mesh points starting from Nr×Nt = 64×64 up to Nr×Nt = 1024×1024.

cores. A 16KB shared memory is assigned to each SM, providing a fast low-latency data

cache. Additionally, there is 4GB of device memory available on the GPU. The results

obtained from implementation of the NNLSE solver on these two platforms are compared

here for their accuracy and run time.

In this research, the results obtained from the CPU implementation are considered to be ex-

act and the parallel implementation approximates these results. As a result, the accuracy of

the results is calculated from the difference between the results obtained from the CPU and

the GPU implementation. This difference is computed by calculation of the absolute error

defined by |ucpu−ugpu|, where indices cpu and gpu present results obtained from the serial

NNLSE solver on CPU and the parallel NNLSE solver on GPU accordingly. When dealing

with very small values of ucpu and ugpu, these points might cross zero which leads to in-

accuracies in calculation of the absolute error. To overcome this problem and also obtain a

unit-less error, the absolute error is normalised. Here relative error is obtained by normalisa-
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Figure 7.2: Relative error derived from comparison of results produced by CPU and GPU for
different number of mesh points starting from Nr×Nt = 64×64 up to Nr×Nt = 64×1024

tion where the absolute error is divided by the peak intensity(|ucpu−ugpu|/max|ucpu|) [88].

Figures 7.1 and 7.2, plot the maximum relative error calculated from the result of the NNLSE

solver provided by CPU and GPU for square and non-square problems. Both the CPU and

the GPU results are obtained from completion of ten split steps combining both the linear

and non-linear routines in the NNLSE solver.

Fig. 7.1 illustrates the value of 10−3 for relative error of a very coarse resolution of 322. This

figure shows that as the mesh density increases, the maximum error becomes very small in

the range of 10−6 which is the arithmetic precision limitation. Since the implementation of

this code differs in CPU and GPU due to the peculiar parallelisation of the GPU code, this

figure proves that both methods converge with sufficiently high accuracy at finer resolutions.

The same conclusion can be made for the non-square data shown in Fig. 7.2.

The robustness and accuracy of the parallel NNLSE solver is analysed by increasing the
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Figure 7.3: Relative error derived from comparison of results produced by CPU and GPU
for increasing number split steps for mesh size 5122

number of split steps along the z-axis as illustrated in Fig. 7.3. This figure shows that

when increasing the number of steps, the difference between the results obtained from the

CPU and GPU increases slightly. This is due to the difference in implementation of the

numerical method for the non-linear step as well as the internal precision of CPU’s floating

point operations. This means that while preforming 32-bit single precision operations, the

CPUs hardware will round all the 32-bit floats to its internal 80-bit long double. Then, again

after execution of the operation, the number will be rounded back from 80-bit long double

to 32-bit float. As a result, due to rounding the number twice, there will be a difference

between the results obtained from the two different platforms. Using the newer series of

CUDA-enabled GPUs, with double precision support, will provide better accuracy for the

parallel NNLSE solver [89].

The results obtained from the parallel and serial NNLSE solver is verified by back to back
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testing of these two implementations as shown in figure 7.4. These figures illustrate nor-

malised intensity dynamics of a femtosecond pulse at different points along the propagation

axis z produced by the CPU and the GPU implementation. As it can be seen, these results

illustrate the identical behavior of the femtosecond pulse intensity obtained from these two

implementations. This set of figures show that as the pulse propagates in the transparent

material, focusing causes the pulse to become narrow and sharp. Eventually the absorption

happens right in the middle of the pulse, producing crescent like structure which merges

again into a single pulse.

The run time of these two implementations is calculated by taking the wall clock time on

both CPU and GPU. On the GPU platform this time includes the initial set-up and the data

transfer time between CPU’s host memory and GPU’s global memory. Data transfer time is

mainly for transferring the calculated result back to the CPU after completion of every split

step.

Timing of both the CPU and the GPU implementation was measured using the gettimeofday

function declared in sys/time.h library in Linux. This function provides high-resolution tim-

ing with 1 micro second resolution. Fig. 7.5 illustrates the run time of the CPU and GPU

implementation after completion of 10 split steps for various number of mesh points [90,91].

Fig. 7.5 shows that as the problem size increases, the GPU computing speed is notably

increased providing 21× speed-up for mesh size 10242 after execution of 10 steps. Here the

speed-up is calculated by dividing the run time on CPU by the acquired run time on GPU.

Fig. 7.6 shows the run time of the NNLSE solver on CPU and GPU for mesh size 2562 for

various number of steps starting from 10, up to 500 split steps. It can be concluded from that

as the number of steps increases, the GPU/CPU speed up increases. This shows that after

initial set up of the code (e.g. reading the initial parameter from file, transferring parameters
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to CUDA’s constant parameter), increasing the number of steps will not increase GPU’s run

time significantly.
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a) CPU, z = 0.1695mm b) GPU, z = 0.1695mm

c) CPU, z = 0.1747mm d) GPU, z = 0.1747mm

c) CPU, z = 0.2030mm d) GPU, z = 0.2030mm

Figure 7.4: Evolution of the light intensity pattern along the z-axis. These results are ob-
tained from the CPU and the GPU implementation of the NNLSE solver.
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Figure 7.5: Run time of NNLSE Solver on CPU and GPU for 10 split steps
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Figure 7.6: Run time of NNLSE Solver on CPU and GPU for various number of steps on
mesh size 2562
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Chapter 8

Conclusions and future work

The main objective of this study is design and development of numerical algorithms based

on multi-threaded parallel hardware. After extensive study of high performance computing

platforms, NVidia’s CUDA-enabled graphics card was chosen for parallel implementation

of the specific problems addressed in this research.

In this study a platform-specific numerical solution for a physical problem appearing in

a wide class of phenomena in non-linear optics is presented. This problem has recently

been subject to several theoretical and numerical studies and appears in describing ultra-

short pulse propagation in transparent media. The mathematical model describing this phe-

nomenon, is a challenging and complex extended version of the non-linear Schrödinger

equation. 3D numerical modeling of such problems is not feasible on modern workstations.

However, the high performance computing based on the GPU multithreaded overcomes this

limitation.

The numerical solution presented uses the split-step Fourier technique to solve the model by

a problem specific succession of linear and nonlinear operators that approximate the original
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solution. The solution of both the linear and the non-linear operators requires parallelisa-

tion of some essentially serial algorithms and elimination of the numerical bottlenecks by

exploiting the parallel capabilities of the specific hardware. The parallel solution of the lin-

ear problem is efficiently performed using spectral methods which employ efficient parallel

numerical implementations of the fast Fourier transform. The non-local nature of the non-

linear operator makes the parallel implementation challenging. Hence, special attention is

paid to constructing an efficient parallel solution for the non-local non-linear operator.

The efficiency, accuracy and robustness of the above mentioned implementation is evaluated

by back-to-back testing in a realistic context, reflecting typical experimental regimes of fem-

tosecond laser inscription. All the work is proof principle on single precision floating point

platform which has limit of 10−6 due to arithmetic truncation. This figure scales down on

newer versions of the hardware platform supporting double precision. The run time of the

new GPU implementation showed 25× speed-up for mesh size 5122 for the propagation of

a femtosecond pulse along the z-axis.

Future work could include execution of the specific problem on double precision hardware

for higher accuracy or modification of the numerical implementation for execution on multi-

GPUs/ GPU clusters to achieve faster run time. Moreover, the approach developed in this

study can be applied to numerical modeling of a wide range of physical problems. This

model could be applicable to numerical modeling of dispersion-managed solitons subject

to [92] which is based on non-linear Schrödinger type equation. Also numerical simulations

similar to that described in [93] could benefit from this model for numerical simulation of

self-focusing lasers in silica.
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