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Thesis Summary
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The processing conducted by the visual system requires the combination of signals that are
detected at different locations in the visual field. The processes by which these signals are
combined are explored here using psychophysical experiments and computermodelling. Most
of the work presented in this thesis is concerned with the summation of contrast over space
at detection threshold. Previous investigations of this sort have been confounded by the inho-
mogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis
find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep
fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies
of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area sum-
mation experiments both by incorporating it into models of the visual system and by using it
to compensate stimuli in order to factor out the effects of the inhomogeneity.
The results of these area summation experiments show that the summation of contrast over
area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation be-
haviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a
fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to
investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic
observers. Finally, the methods used to study the summation of threshold contrast over area
are adapted to investigate the integration of coherent orientation signals in a texture. The re-
sults of this study are described by a two-stage model, with a mandatory local combination
stage followed by flexible global pooling of these local outputs. In each study, the results sug-
gest a more extensive combination of signals in vision than has been previously understood.
Keywords: psychophysics, spatial vision, pattern vision, contrast, area summation
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Figure 6.5 Average “Swiss cheese” data (replotted from Figure 6.3) plotted with
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hat attenuation surface. Panels a) and b) show the probability summation (PS)
model. Panels c) and d) show two versions of the noisy energy model with a
template matched to the stimulus. Panels e) and f) show another two versions
of the noisy energymodel with a templatematched to the stimulus extent. . . . 120
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Figure7.5 Diagramshowing the stimulus locations tested in this study (not to scale).
The circled "F" marking the fixation location was not present in the study. The
fixation location was either inferred from the quad of points around the stim-
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Figure 8.13 Detection thresholds from amblyopic observer S2 for 2.5 c/deg “Batten-
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Figure 8.25 Images of stimulus components (left column) and Fourier transforms of
those images (right column). In the spatial domain, the full stimulus (bottom
row) is the product of the carrier grating (top row) and the rectified orthogonal
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Figure9.5 Results from individual observers (see legendbelow) and the average re-
sults across observers (right). Performance is expressed as the threshold pro-
portion of coherent elements in the signal regions. Thresholds are expressed
as multiples relative to that for the full (0) condition (these data are replotted
in Figure 9.6). Results are shown for the noise check (a) and signal only (b) con-
ditions. Error bars show±1 standard error here and in all other graphs. . . . . . 175
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Figure 9.11 Showing the pooling strategies used in the two-stage “hybrid models”
(HM)andhybridmodelswith internal noise (HMN). In theHMNmodels the rep-
resentation of the stimulus is perturbed by independent Gaussian noise added
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elementwill rotate to cause the perception of localmotion in that element (mo-
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Figure 10.2 Demonstrating the aperture problem for identifying the motion direc-
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could correspond to several possible global motion directions (this is the aper-
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to calculate the true trajectory of the object. As each V1 neurone only receives
information from a small part of the visual field these calculations must be per-
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CHAPTER 1

Introduction

“We are so familiar with seeing, that it takes a leap of imagination to realize that
thereareproblems tobe solved. But consider it. Wearegiven tinydistortedupside-
down images in the eyes, and we see separate solid objects in surrounding space.
From the patterns of stimulation on the retina, we perceive the world of objects
and this is nothing short of a miracle.”
– Richard Gregory (1966)

T HE human visual system has evolved to perform the difficult task of extracting and inter-
preting information from the outside world in order to inform our behaviour. The retinal

circuitry transduces thepatternsof light projectedonto it by theeye into signalswhichare car-
ried and processed by neurones. At the early stages of the visual system neurones are tuned
to respond to specific stimulus properties at the retinal location which that neurone corre-
sponds to. The response from the individual neurones are ambiguous however, as although
their responses are tuned there are still many possible stimuli that could activate any single
neurone. For example in primary visual cortex, a particular neuronewill respond to a bar or an
edge in an image at a particular orientation and spatial scale. The responses of many of these
neurones can be combined to create higher-level detectors which are specific to more com-
plex stimuli such as regular textures or contours. It is this combination of signals over space
that is investigated here.
The studies conducted in this thesis investigate theways in which visual stimuli are processed
by using the complementary techniques of psychophysics and computer modelling. The brain
can be considered to be a “black box” machine which performs a set of unknown functions on
a known set of inputs to produce a measurable set of outputs. The inputs are the stimuli used
in experiments and the outputs are the responses of human observers, usually expressed as
probabilities of responding in a certain way to a particular stimulus (e.g. detecting a faint pat-
tern). The functions that the brain performs on the visual input can be inferred by the prop-
erties of the behavioural output. The range of possible mechanisms that might be used to im-
plement these functions can be guided by what is known from anatomical and physiological
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investigations. Developing mathematical and computer models of how this processing might
occur allows for predictions to be generated that can be compared against the data. If human
observers show similar behaviour to that predicted by a particular computer model, then the
processing implemented in that model may be the same as that implemented in the brain.

1.1 This thesis
This thesis details my work in applying the techniques of psychophysics and computer mod-
elling in order to explain how signals from different locations in the visual field are combined
into percepts of objects and surfaces extended in space. After this introduction (Chapter 1),
the following two chapters are a review of the relevant literature (Chapter 2) and an intro-
duction to the methods that are used in the experiments presented here (Chapter 3). A large
part of this thesis is concerned with how the detection of low contrast (faint) signals is aided
by adding together samples from different locations in the visual field. One key component in
models of these area summation tasks is a map of how the sensitivity to these signals varies
across the visual field. In the first experimental chapter (Chapter 4) the purpose was to create
a detailed model of this inhomogeneity in contrast sensitivity. This is incorporated into com-
puter models of how threshold contrast should decrease for a stimulus as it increases in size.
Thesemodels are described in the general modelling chapter (Chapter 5) and are then applied
to the empirical results in the subsequent experimental chapters.
In the first of the area summation studies shown here (Chapter 6), the models described in
Chapter 5 are tested against data collected using two different stimuli (gratings and “Swiss
cheeses”). Conditions are also tested where the stimuli are compensated to counteract the
visual field inhomogeneity in contrast sensitivity (based on the work in Chapter 4), with the
intention of finding out how large an area observers are able to combine contrast signals over.
In Chapter 7 these same techniques are applied to rectangular strips of grating presented in
the fovea, parafovea, and periphery, in order to determine whether area summation varies
between these different locations. In the next chapter (Chapter 8), area summation is investi-
gated in subjects with amblyopia, using “Battenberg” stimuli. Amblyopia is an acquired disor-
der of the visual system that is caused by impaired vision in an eye during childhood. In sub-
jects with amblyopia the development of the visual cortex is disrupted. The work presented
here investigateswhether this results in abnormal summationbehaviour. Thefinal experimen-
tal chapter (Chapter 9) adapts these area summation methods to provide an investigation of
the combination of orientation information across fields of oriented elements. Finally, there is
the discussion (Chapter 10) and the appendices (Appendix A-C).
All experimental chapters are prefaced by the “motivation and summary” for that chapter, as
well as abrief reviewof the relevant literature. Redundancy is avoidedwherepossible through
the use of references back to the LiteratureReview,GeneralMethods, andGeneralModelling,
or through references to other experimental chapters.
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CHAPTER 2

Literature Review

2.1 Introduction
As one of the fundamental tasks that must be carried out by the visual system, the combina-
tion of signals from separate locations in the visual field has been studied extensively in the
past. In this chapter I survey the previous literature concerning the summation of contrast
over area and set out the general background and motivation for the series of experiments
presented in this thesis. Additional summaries are provided of signal combination findings in
other domains.

2.2 Basic architecture of early vision

2.2.1 The retina

To a first approximation, the human visual system can be considered to consist of a series of
feedforward stages (thevisual systemdoesalso contain extensive feedback connections, how-
ever these are omitted for the sake of brevity here). The processing of visual information from
the outside world begins in the eye. Individual photoreceptors in the retina detect light of dif-
ferent intensities and wavelengths incident upon them. These signals are combined through
neuronal convergence onto ganglion cells. The geometry and polarity of the connections be-
tween the photoreceptors and the retinal ganglion cells (via the intermediate horizontal, bipo-
lar and amacrine cells) bring about their characteristic antagonistic centre-surround receptive
fields (Kuffler, 1953). These cells respond to local variations in luminance between the centre
and the concentric annulus of their receptive field (either favouring light spots as “on-centre”
retinal ganglion cells or dark spots as “off-centre” retinal ganglion cells).
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One interpretation of the ganglion cell receptive field structure is that they perform a filtering
operation on the retinal image, with the size of the excitatory and inhibitory regions determin-
ing their spatial filtering properties. Those with smaller receptive fields respond to finer de-
tails (higher spatial frequency), whereas those with larger receptive fields respond to coarser
details (lower spatial frequency). The firing of a single retinal ganglion cell therefore signals
that the retinal image contains contrast at a particular location and spatial scale. The distinc-
tion between the off- and on-centre cells also allows the phase of the input signal to be en-
coded by the activity of the ganglion cells (De Valois &De Valois, 1990a).

2.2.2 The brain

The signals from the retinal ganglion cells are communicated to the lateral geniculate nucleus
(LGN) first by the optic nerve and then by the optic tract. The properties of the receptive fields
at this stage are largely similar to those of ganglion cells in the retina, albeit with some mod-
ification to their tuning (Bullier & Norton, 1979). After the LGN, signals travel via the optic
radiation to the primary visual cortex (V1). Combination of inputs from cells in the LGN with
spatially adjacent receptive fields allows the simple cells of V1 to have responses which are
spatial frequency, phase and orientation tuned (Hubel &Wiesel, 1959, 1962). These cells are
also the first to receive input from both eyes.
WithinV1, the outputs from several simple cells converge onto complex cells (Hubel &Wiesel,
1962). Complex cells therefore inherit some of the tuning properties of their parent simple
cells, however they also exhibit spatial and phase invariance (De Valois & De Valois, 1990c).
That is, they respond to a stimulus of the appropriate scale and orientation when it is pre-
sented at any position within their (relatively large) receptive field. Following V1 the process-
ing of the retinal image continues in the extrastriate areas, which (in part) feature cells with
more complex receptive fields. Additional convergences and integrations over space and time
occur to allow for the encoding of more complex information. There is a coarse separation
of the processing of motion and form by distinct extra-striate regions of the cortex (Braddick,
O’Brien, Wattam-Bell, Atkinson, & Turner, 2000), sometimes referred to as the “dorsal” and
“ventral” streams respectively (Mishkin &Ungerleider, 1982; Goodale &Milner, 1992).

2.2.3 Inhomogeneities

The above gives a brief account of how signals from the retinal image are processed and com-
bined in the early stages of the visual system, however these operations are not applied ho-
mogeneously across the visual field. The light coming into the eye is affected by optical factors
that degrade the image at greater eccentricities. The retinal circuitry shows marked inhomo-
geneities in the densities of cones and ganglion cells, and in the degree of convergence in their
outputs (Perry & Cowey, 1985; Curcio & Allen, 1990; Curcio et al., 1990; Anderson, Mullen,
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& Hess, 1991). After the retina, there is further evidence of a preference for the preserva-
tion of information from the central visual field over that from more eccentric locations. The
fovea represents only 0.005%of the input from the eye, but it takes up 10%of the cortical sur-
face in V1 (Snowden, Thompson, & Troscianko, 2006). This rescaling of the projected image is
referred to as the cortical magnification factor (Daniel & Whitteridge, 1961; De Valois & De
Valois, 1990c). There is also a relative increase in the ratio of complex cells to simple cells in
the periphery (Wilson & Sherman, 1976). These inhomogeneities in the neural architecture
result in an impairment in performance for many visual tasks when they are performed away
from the fovea (Strasburger, Rentschler, & Jüttner, 2011), and this introduces a possible con-
found into any experiment that presents stimuli which are extended over the visual field. In
this thesis I develop a method that can be used to compensate for this confound for contrast
detection tasks (Chapter 4).

2.3 Filters, channels and transducers in the visual system

2.3.1 Spatial filtering

The spatial frequency and orientation tuned simple cells in V1 can behave as a bank of filters∗,
deconstructing the input to the visual system into its Fourier components (Graham, 1981). It
has been demonstrated that it is these components to which the cells respond (De Valois, De
Valois, & Yund, 1979). The shape of the receptive field in the spatial domain resembles that
of a Gabor patch (see Section 3.4.4), and these are frequently used as models of simple cells
(Marčelja, 1980; Jones & Palmer, 1987; De Valois & De Valois, 1990c). Convolving a stimulus
by a Gabor patch produces a filtered image, containing the spatial frequency and orientation
components that fall within the passband defined by the dimensions of the Gabor. This pass-
band can be visualised by taking the Fourier transform of the Gabor (Figure 3.3). In Fourier
space it is represented by a two-dimensional Gaussian positioned at its centre frequency and
orientation, with the radial and angular spread of that Gaussian corresponding to the spatial
frequency and orientation bandwidths respectively.
A limitation of the Gabor patch model is that the response of simple cells to stimuli of differ-
ent spatial frequencies is asymmetric on a linear spatial frequency axis and therefore does not
correspond to the Gaussian profile of the Gabor model in the Fourier domain. The simple cell
response is symmetric when plotted on a log spatial frequency axis however (De Valois, Al-
brecht, & Thorell, 1982), for this reason a log-Gabor patch is a more accurate model of the
simple cell receptive field (see Section 3.4.5). In this thesis, the responses of simple cells with
a particular spatial frequency and orientation tuning are simulated by convolving stimulus im-
ages with a log-Gabor. The value of each pixel in the output image indicates the response of

∗Their receptive field structure would also allow simple cells to behave as edge detectors (Tolhurst, 1972;
Shapley & Tolhurst, 1973;Marr &Hildreth, 1980).
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a “detector” (a hypothetical neurone with its receptive field defined by the properties of the
Gabor used in the filtering) at that location.

2.3.2 Spatial frequency and orientation channels

Groups of detectors (as described above)with the same spatial frequency andorientation tun-
ing but positioned at different locations in the visual field can be described as belonging to a
single “channel” (Graham, 1989c). Psychophysical methods are not precise enough to directly
stimulate ormeasure the response of an individual detector, but a single channel can be inves-
tigated by presenting stimuli which contain a single dominant spatial frequency and orienta-
tion (this is the case formost of the studies presented in this thesis). Thebandwidthsof individ-
ual channels have been investigated psychophysically using masking (Campbell & Kulikowski,
1966; Phillips & Wilson, 1984), adaptation (Blakemore & Campbell, 1969) and subthreshold
summation (Kulikowski, Abadi, & King-Smith, 1973) experiments.

2.3.3 Nonlinear transduction

Physiology studies indicate that the response of cortical neurones is nonlinear (Heeger, 1991,
1992; Tolhurst & Heeger, 1997; Carandini, Heeger, & Movshon, 1999). At low input magni-
tudes the responses of each detector are an accelerating function of the input, and at higher
magnitudes these responses saturate. One suggested form of the accelerating nonlinearity
is rectification followed by squaring (Heeger, 1991). Psychophysical evidence of nonlinear
transduction is provided by threshold versus contrast functions from contrast discrimination
experiments,whichmeasure the smallest detectable increment to apedestal stimuli of various
magnitudes (Stromeyer & Klein, 1974; Legge & Foley, 1980; Foley & Legge, 1981; Kontsevich
& Tyler, 1999). A linear transducer would predict that equal increments on a pedestal should
be equally discriminable, however the data typically show a characteristic “dipper” function
where small pedestal contrasts facilitatedetection. This effect is predictedbypower-law trans-
duction of low contrasts.
A linear transducer also makes a characteristic prediction for the slope of the psychomet-
ric function. This is a measure of how an observers’ performance (expressed as proportion-
correct) for detecting a stimulus should vary as a function of the stimulusmagnitude. The psy-
chometric function found in detection experiments is steeper than that predicted by a linear
system, but consistent with a power-law transducer (Tanner & Swets, 1954; Swets, Tanner, &
Birdsall, 1961; Lasley & Cohn, 1981). An accelerating nonlinear transducer is also supported
by evidence from noise-masking studies (Lu & Dosher, 2008), and some findings from area
summation experiments (see below).
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2.3.4 Uncertainty

Consider a task where an observer is required to detect a single stimulus with prior knowl-
edge of its spatial frequency, its orientation and the location in the visual field at which it will
be presented. If performance is limited by internal noise in the response of each detector, the
best strategy to adopt is tomake the decision based only on detectors that would be expected
to carry information about the stimulus. There are two conditions under which the observer
cannot adopt this strategy. The first, known as “extrinsic uncertainty”, is if there is not one sin-
gle possible stimulus but several potential stimuli (Graham, Robson, & Nachmias, 1978; Davis
& Graham, 1981; Davis, Kramer, & Graham, 1983; Graham, 1989a). In that case the observer
must monitor the detectors that would respond to all possible stimuli on each trial, and so be-
have as if they are “uncertain” of the expected stimulus. The second condition underwhich the
observermaybehave as if they are uncertain iswhere theydohave knowledgeof the expected
stimulus but are unable to apply that knowledge tomodify their behaviour (Green, 1961; Tan-
ner, 1961; Graham, 1989b). This is known as “intrinsic uncertainty”.
Regardless ofwhether the uncertainty is caused by the experimental design (extrinsic) or limi-
tations of the visual system (intrinsic), the samepredictions result for how the slopeof thepsy-
chometric function should be affected (Pelli, 1985). An observer operating under conditions
of uncertainty would have steeper psychometric function slopes for detection, indistinguish-
able from those seen with a nonlinear transducer (Lasley & Cohn, 1981). Uncertainty can also
predict the dipper shape of the threshold versus contrast function, if the pedestal has the ef-
fect of making the observer less uncertain of the properties of the expected stimulus (Tanner,
1961; Pelli, 1985). The similarity of the predictions made by models that involve intrinsic un-
certainty and those that feature a nonlinear transducer makes a distinction between the two
difficult to draw unless an experiment is designed to differentiate between them. This can be
done bymanipulating the level of extrinsic uncertainty (e.g. Meese & Summers, 2012).

2.4 Psychophysical theory

2.4.1 Sensory thresholds

One of the most basic investigations that can be made of the visual system is to measure
thresholds (Green & Swets, 1966d). In general terms a “threshold” defines a point at which
a system changes from one state to another. When used in psychophysics, “threshold” often
refers to the magnitude of the minimum perceivable change in a stimulus along a particular
dimension (e.g. contrast, orientation, size). It is thought that sensory systems are limited in
this way (as opposed to being able to reliably detect even the smallest changes in a stimulus)
due to the effects of random noise in the sensory system (Pelli, 1990). Here, this noise is as-
sumed to beGaussian and independent across space and time unless otherwise stated (Green
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Figure 2.1: Graphs illustrating the behaviours of four detection theories: High Thresh-
old Theory (HTT), Signal Detection Theory (SDT), Low Threshold Theory with a Two
State response (LTT2), and Low Threshold Theory with a Graduated response (LTTG).
They showhow an observer behaving according to eachmodel would decide to respond
in three example trials of a psychophysical task. The task is to determine which of two
intervals containeda signal that is targeted toactivate a singledetector, added toaback-
ground of internal noise in that detector. The noise levels on each trial and interval have
been chosen to illustrate the different behaviours of the four models. When operating
under the HTT or LTT2 model, the systems make their choice purely based on whether
an interval (either the T+N or N) has exceeded an internal threshold, the difference be-
tween the twomodels beingwhether this threshold is set sufficiently high that it is never
(or very rarely) activated by the internal noise alone. An observer operating according
to the SDT model has access to a graduated response in each interval, so that the two
values can be compared on each trial. The LTTGmodel also has access to this graduated
response, but only for intervals where the internal (low) threshold has been surpassed.

& Swets, 1966a). As the noise causes the responses of observers to particular stimuli to be
variable, it is typical to place the threshold at the magnitude where the change is perceptible
with a particular probability (e.g. 50%).
It is not obvious however what this threshold level of performance refers to. The existence
of a sensory threshold as a particular stimulus level with any special significance within psy-
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chophysics has long been disputed (Swets, 1961; Corso, 1963; Green & Swets, 1966e). Fre-
quently the term is used purely to refer to the stimulus level that results in a particular level
of performance, and this shall be its meaning when used in the rest of this thesis unless oth-
erwise indicated. Outlined below is a review of the four main models of “threshold” vision
within the history of psychophysics (with the signal detection theorymodel removing the idea
of a fixed threshold altogether). Figure 2.1 provides examples of the expected performance
of sensory systems performing under the various proposed theories when engaged in a task
where the observermust indicatewhich of two temporal intervals contained a signal against a
background of internal noise (the noise levels having been chosen to illustrate the character-
istic differences between these four models).

2.4.2 High threshold theory
Under high threshold theory (HTT; see Green & Swets, 1966e), it is proposed that detection is
limited by fixed thresholds which are set sufficiently high (i.e. that require such a large mag-
nitude of stimulation to be achieved) that the relevant detecting mechanism will be activated
onlywhen the stimulus towhich it is tuned is presented, andwill never (or very rarely) respond
to mere background noise. The behaviour of the detecting mechanisms under HTT is binary,
they either activate (indicating thepresenceof the stimulus) or donot (indicating its presumed
absence). Information about the magnitude of the stimulation is not communicated through
the system, though thismay be inferred by the number ofmechanisms that are activated or by
the activation of different types of mechanism. The response that is then made to a stimulus
(for example the answer to the question “Was the stimulus present or absent?”) is determined
by a higher level mechanism that monitors the outputs of these detectors (see Figure 2.1).
The application of HTT to the detection of threshold contrast has been challenged. In a task
where the presence or absence of a signal has to be determined (a yes-no task) one of the con-
sequences ofHTT is that the the hit rate (the proportion of “stimulus present” responseswhen
a stimulus is shown, in a task where the observer has to detect the presence of a stimulus) will
be independent of the proportion of false alarms (“stimulus present” responses on occasions
where no stimulus is shown), as false alarms should purely be due to guessing by the observer.
It has been shown however that the false alarm and hit rates are not independent (Green &
Swets, 1966e; Nachmias, 1981). In addition, in a task where observers had to rank four tem-
poral intervals according to their perceived likelihood of containing a signal (which was only
displayed in one interval), the second choices of those observers predicted the target interval
with a greater probability than is possible under HTT (Swets et al., 1961).

2.4.3 Signal detection theory
Signal Detection Theory (SDT) was originally formulated to study the use of radar (Marcum,
1947), andwas later developed and extended to analyse biological sensory systems (Peterson,
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Birdsall, & Fox, 1954; Tanner & Swets, 1954; Green & Swets, 1966c). Under SDT there is no
fixed threshold. The higher level decision mechanism has access to the continuous responses
of each of the detecting mechanisms that it monitors. These responses are either compared
against a criterion level for detection set by the observer (in a yes-no task), or against re-
sponses from another sampling interval (for tasks where the observer must determine which
interval contains the target, as shown in Figure 2.1).
Unlike HTT, the implication of the criterion in SDT is that the false alarm rate should vary
with the hit rate. This fits with human psychophysical data (Green & Swets, 1966e; Nachmias,
1981). It is also predicted under SDT that the observer should be able tomake second choices
in a four-alternative task at better than chance level. This prediction is accurate to data col-
lected by Swets et al. (1961). Based on this evidence and these two candidate theories alone,
HTT should be rejected in favour of SDTwhen considering the detection of threshold contrast.

2.4.4 Low threshold theories

There is also the possibility that performance is limited by a threshold which is regularly ex-
ceeded by the noise alone. Two of these Low Threshold Theories (LTT) are examined here.
The first of these is similar toHTT, however the threshold is set low enough that it is exceeded
by the noise on a significant number of trials. This Low Threshold Theory with a Two State
Response (LTT2 in Figure 2.1; also known as multi-threshold two-state theory; see Green &
Swets, 1966e) is incompatible with a posteriori probabilities of the presence of the stimulus
calculated in rating-scale experiments (Nachmias & Steinman, 1963; Krantz, 1969).
The second theory is the Low Threshold Theory with a Graduated Response (LTTG in Fig-
ure 2.1, also known as single-threshold multi-state theory; see Swets et al., 1961; Green &
Swets, 1966e). The evidence given above for SDT over HTT would also be compatible with
LTTG (Green & Swets, 1966e). There is no reason however to favour LTTG over SDT for the
detection of contrast, and the implementation of LTTGwould involve adding an additional (dif-
ficult to measure) parameter to the SDTmodel. For reasons of parsimony, the assumption will
be that there is no low threshold, and SDTwill be used in this thesis.

2.5 The interpretation of area summation data

2.5.1 Combining signals from several detectors

Figure 2.1 presents examples of how an observer could use the responses from a single detec-
tor across two intervals to make a response in a psychophysical task, however in practice any
stimulus presented to the visual system will activate many detectors (either within a single
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channel or across multiple channels). The observer can then somehow combine the outputs
of these detectors to improve their performance (e.g. detect weaker signals). In this thesis I
investigate how signals are combined from detectors positioned across the visual field. The
results from area summation experiments indicate that such processes occur, as larger stimuli
tend to be detectable at a lower magnitude than smaller stimuli. Combinations of detection
theory and hypotheses about neuronal architecture can be used to make predictions about
the decrease in threshold expected for a particular increase in stimulus size.
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Figure 2.2: The summation slopes predicted by five different summation models, show-
ing how detection threshold (in dB, see Section 3.2) declines as a function of stimulus
area (expressedas 20×log10(stimulus area) for easeof presentation). The linear summa-tion prediction has a slope of −1. The quadratic and ideal summation predictions both
have a slopeof−1

2 . Theprobability andnoisy energy (ideal summationwith a square-lawtransducer) predictions both have a slope of−1
4 .

2.5.2 Linear summation

One theory of how signals are combined across the visual field is that a particular stimulus
magnitude is required for detection, but that this same quantity can be spread out over space
without affecting stimulus detectability. This proposal, called “Ricco’s law”whenapplied to the
summation of luminance increments (Graham, Brown, & Mote, 1939) but referred to as “lin-
ear summation” when applied to the summation of contrast here, predicts a linear slope with
a gradient of−1 (see Figure 2.2) when plotting the logarithm of the threshold against the log-
arithm of the stimulus area (i.e. a doubling in the stimulus area should result in a halving of the
threshold). This is the expected behaviour for summationwithin a single detectingmechanism
if performance is limitedby additive noise. This prediction also holds for other caseswhere the
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standard deviation of the limiting noise remains constant for different stimulus sizes. For ex-
ample, summation between two detecting mechanisms where their outputs are mandatorily
added together to form the input to a single higher-level mechanism (summing themagnitude
of the signal and the variances of the independent per-detector Gaussian noise).

2.5.3 Summation following nonlinear transduction
It is also possible to obtain shallower summation slopes when outputs are being combined
across detectors. In the case where the outputs from each detector pass through an accel-
erating nonlinearity (for example, squaring; see Section 2.3.3) before being added together,
less summation will be measured (these “quadratic summation” processes are of the sort re-
quired if the higher-level mechanisms they feed into are to represent stimulus energy; see
Manahilov, Simpson, &McCulloch, 2001;Meese, 2010). A square-law transducerwill result in
a summation slope of−1

2 (see Figure 2.2), which has previously been reported under the name
of “Piper’s law” for luminance increments (Graham et al., 1939).

2.5.4 Ideal summation using templates
A summation slope of−1

2 can also be seen for linear detectors when responses are combined
optimally across them. This “ideal summation” model assumes that each detector is affected
by independent noise (which is the perfomance-limiting noise in the system), and that the ob-
server knows which detectors will be activated by the stimulus on each trial (a blocked ex-
perimental design) and uses a matched template in order to only take the output from those
detectors (Kersten, 1984; Tyler & Chen, 2000; Meese, 2010). By ignoring the noise from ir-
relevant detectors when detecting a smaller stimulus, thresholds for those conditions are im-
proved leading to a shallowing of the summation slope. A−1

2 slope is also predicted in exper-
iments that interleave several stimuli, provided that the observer has a template matched to
each stimulus and is able to perform amax operation (weighted by the expected noise in each
template) on each trial to pick the template that is most likely to bematched to the presented
stimulus (Tyler & Chen, 2000).
The similarity of the summation slope predictions between the ideal and quadratic summation
models means that they cannot be distinguished by measuring summation slopes alone with-
out designing the experiment in such a way that divergent predictions are made. For example
although the ideal summation model predicts the same summation slope for the blocked and
interleaved designs described above, the absolute threshold prediction will be higher for the
interleaved case (Meese& Summers, 2012) because of the trials onwhich thewrong template
is selected by the max operation (based on the noise level in that template exceeding the sum
of the signal and noise in the correct template). This is an effect of extrinsic uncertainty. A
quadratic summation model would predict that performance in the blocked and interleaved
conditions should be the same.
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2.5.5 Probability summation under HTT

Area summation experiments typically find shallower summation slopes than those predicted
by the linear, quadratic and ideal summation models described above. This has typically been
explained as resulting from probabilistic summation between the outputs of independently-
noisydetectors. These “probability summation”modelswereoriginally built on the framework
provided by High Threshold Theory, describing the psychometric function as a Weibull func-
tion (Nachmias, 1981; Pelli, 1985). The probability of a stimulus being detected by any one of
the detectorsmonitoring a location at which it appears is equal to 1minus the probability that
no detector was activated by the stimulus (Robson &Graham, 1981). Model predictions from
this theory are usually approximated using Minkowski summation (see Section 5.4.2; Quick,
1974), where the slope (β) of aWeibull function fitted to the detection data is used to control
the summation slope (that slope being− 1

β , with a typical value of β being 4, see Figure 2.2).

2.5.6 Probability summation under SDT

The probability summation account was updated by Pelli (1985). The HTT assumption was
removed, and instead the observerwas said to be performing the summation tasks under con-
ditionsof intrinsic uncertainty (asHTTbehaviour is approximatedbyamodel observeroperat-
ing under sufficiently high uncertainty). This model changes the theoretical interpretation of
what processes that the visual system is engaged in, without changing the way in which these
are represented mathematically (although there was a change from the mathematical mod-
els describing the exact performance of the observer tomerely being close approximations to
their performance). This account has been challenged for requiring an implausible degree of
intrinsic uncertainty on the part of the observer (Tyler & Chen, 2000).
An extensive investigation of different models of probability summation under SDT was un-
dertaken by Tyler and Chen (2000), and later extended by Meese and Summers (2012). The
key result from the analyses performedwas that probability summation under SDT is approxi-
mated byMinkowski summationwith afixedβ of 4 (see Section 5.4.3), provided that the trans-
ducer is linear and that the observer is uncertain about which detectors carry information
about the stimulus. As this value is typical of Weibull βs found in contrast detection experi-
ments, this model also describes the data from area summation studies that are well-fitted by
HTT probability summationmodels.

2.5.7 Combinationmodels

Studies that measure contrast sensitivity to stimuli of various sizes find steeper summation
slopes for small stimuli (Foley et al., 2007; Meese & Summers, 2007, 2012). Many contempo-
rarymodels of area summation feature an initial filtering stage, allowing for linear summation
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within the footprints of the filter elements (these can be analogous to simple cell receptive
fields). This results in a summation slope of −1 for small stimuli, which then becomes shal-
lower as stimuli are increased in size to be larger than the filter element.
It is also possible to achieve shallower summation slopes by combining different components
in one model. A model that features both a square-law transducer (slope of −1

2 ) and ideal
summation (slope of −1

2 ) would have a summation slope of −1
4 (and thus be difficult to dis-

tinguish fromprobability summationwhen thresholds alone aremeasured, see Figure 2.2; see
also Meese, 2010; Meese & Summers, 2012). Similarly, a model that combined a square-law
transducer (slope of −1

2 ) applied to each detector with probability summation (slope of −1
4 )

between those detectors would predict a summation slope of−1
8 (Meese & Summers, 2012).

2.6 Summation of contrast to threshold

2.6.1 Stimuli used in area summation experiments

Traditionally, stimuli used to investigate area summation in visionwere luminance increments.
These were either presented as bright discs or Gaussian blobs of various diameters (Graham
et al., 1939; Barlow, 1958; Bijl, Koenderink, & Koenderink, 1993). However, following the
recognition that stimuli are processed by the visual system in separate channels correspond-
ing to different spatial scales (Section 2.3.2), experimentswere then conducted using spatially
bandpass stimuli such as windowed sine-wave gratings and Gabor patches (see Section 3.4).
Gratings are superior to luminance increments due to the fact that varying the size of a lu-
minance stimulus will shift its energy to lower spatial frequencies. This makes the area sum-
mation properties of data from those stimuli more difficult to interpret, as changes in the size
of the stimulus are confounded with changes in its spectral properties. On the other hand,
increasing the area of a contrast-defined stimulus such as a grating will cause it to activate a
greater numberof spatially distributeddetectors tuned to the same spatial frequency. Further
support for the use of gratings comes from experiments conducted using periodic stimuli that
show a dependence of the summation effect on the number of cycles of the stimulus shown,
rather than a reliance on absolute aperture size (Hoekstra, van der Groot, van den Brink, &
Bilsen, 1974; Howell & Hess, 1978).

2.6.2 Previous results from luminance-defined stimuli

For luminance-increment stimuli, psychophysical data conform to Ricco’s law when the stim-
ulus’s size is varied within an area which is relatively small. In the fovea, linear summation is
found up to threeminutes of arc (Grahamet al., 1939), in the periphery this behaviour extends
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over larger areas (0.4 - 0.5 deg2 in Graham et al., 1939; Barlow, 1958). These data are con-
sistent with linear summation within the smallest available receptive field of the observer at
that eccentricity. Increasing the size of a luminance stimulus beyond this typically uncovers a
range of sizes over which summation has a slope of −1

2 (following Piper’s law; Barlow, 1958;
Bijl et al., 1993). Ideal summation of this kindwould be predicted if the observer had access to
equally sensitive receptivefields at every spatial frequency andwas certain about the stimulus
being shown, as the entire stimulus could then be detected by a single receptive fieldmatched
to its extent. For larger areas summation typically continues at progressively lower rates until
thresholds become entirely independent of stimulus size (Bijl et al., 1993).

2.6.3 Previous results from contrast-defined stimuli

Linear summation has been found for grating stimuli when their size is variedwithin the range
expected to be detected by the receptive field of a single simple cell (Legge, 1978; Kersten,
1984; Polat & Tyler, 1999; Foley et al., 2007). This level of summation is also seen between
a “full” grating stimulus and a contrast modulated version (“Swiss cheese” or “Battenberg”)
which has beenmultiplied by a checkerboard plaid to introduce small “checks” of full and zero
contrast (see Section 3.4.3 and 3.4.6; Meese & Summers, 2007;Meese, 2010; Baker &Meese,
2011). These linear short-range summation effects are predicted by anymodelwhich includes
a linear filtering stage (for example convolution byGabor approximations to simple cell recep-
tivefields). As the stimulus is increased in size the summation slope transitions from−1 (linear
summation) to a shallower gradient. This usually involves a region with a slope of−1

2 , though
this may be an artefact of a transition between a slope of −1 and a slope of −1

4 , rather than
representing the operation of summation processes that produce a slope with this gradient.
In the fovea, investigations of summation confound effects of stimulus size with those of the
inhomogeneity in contrast sensitivity across the visual field. This will lead to studies tending
to underestimate the level of summation between the outputs of the detectors. Nevertheless,
Kersten (1984) found summation slopes of −1

2 over four grating cycles in the fovea. Other
studies have explained foveal data by incorporating a model of the sensitivity inhomogene-
ity into their summation models, these studies typically find summation consistent with that
which would produce slopes of −1

4 , if the inhomogeneity were not present (Robson & Gra-
ham, 1981;Watson &Ahumada, 2005;Meese & Summers, 2007, 2012). Originally these data
were presented as evidence for probability summation (Robson & Graham, 1981), however
the contemporary “noisy energy”model (which combines square law transductionwith a tem-
platematched to the stimulus extent) also accounts for these data (Meese & Summers, 2012).
The effects of the inhomogeneity in contrast sensitivity across the visual field can be avoided
by presenting stimuli in the periphery, as there are areaswhere its effect is very small (Robson
& Graham, 1981). Results from summation experiments conducted in the periphery are in-
consistent however. Mayer and Tyler (1986) found linear summation (slope of−1) over more

43



than eight stimulus cycles in the periphery (much larger than the estimated size of simple cell
receptive fields), however the results of this study have not been replicated elsewhere in the
literature. Some investigations have found spatially extensive summation with a slope of −1

2

(Manahilov et al., 2001; Meese & Hess, 2007), whereas other studies have found only fourth-
root summation when testing over a wider area (Robson & Graham, 1981). It is not clear why
these differences in summation slope have been found. The steeper slopes for smaller stimuli
in the periphery could be explained in the combination model if one of the two components
shallowing the slope became inactive under those conditions, either by linearisation of the
transducer or by a breakdown in the template stage (resulting in mandatory pooling over an
inefficiently large area).

2.6.4 Conclusions from previous contrast detection threshold studies

Fromprevious data, the twomodels that provide good accounts of the data are the probability
summation model and the noisy energy model that combines square-law transduction with a
template stage (with both models including initial linear filtering stages). Additional evidence
from the empirical slopes of the psychometric functions compared against those predicted
by the models favours the noisy energy combination model (Meese & Summers, 2009, 2012).
Models of extended summation in the fovea have however always relied on their accounts
of the inhomogeneity in contrast sensitivity as a major determinant of the predictions that
they make. In addition, the inconsistent results from summation experiments conducted in
the periphery make assessments of behaviour here difficult to conduct conclusively without
further studies (as data could be selected from the literature to fit any viable model). These
outstanding issues are addressed in Chapter 6 and Chapter 7 of this thesis.

2.6.5 Area summation in contrast discrimination studies

Early studies investigating the summation of suprathreshold contrast using the contrast dis-
criminationmethod found a lack of area summation above thresholdwhen a target of increas-
ing size was placed on a pedestal matched to its extent (Legge & Foley, 1980). These find-
ings are compatible with the probability summation hypothesis, provided noise becomes cor-
related between detectors above threshold. Bymanipulating target and pedestal extent sepa-
rately however, studies have found greater levels of summation (Bonneh& Sagi, 1999;Meese,
Hess, & Williams, 2005). By measuring contrast discrimination thresholds for Swiss cheese
gratings (see Section 3.4.3) added to a full grating pedestal, Meese and Summers (2007) found
substantial summation inconsistentwith probability summation, but consistentwith the phys-
iological combination of transduced signals (combined with a suppressive contrast gain con-
trol; see Heeger, 1992; Foley, 1994).
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2.7 Signal combination over area in other domains

2.7.1 Summation ofmotion

Analogous to the area summation of local contrast, motion information can be combined over
space between individual moving elements to form a percept of global motion. Typically these
studies are carried out by having an observer identify the direction of coherent motion hid-
den within an array of elements that are independently moving in random directions. As in
the contrast summation case, it is expected that performance should improve as the number
of samples increases. Studies have found the summation of motion to be spatially extensive,
over 3.5-9 degrees (Downing&Movshon, 1989;Watamaniuk& Sekuler, 1992; Ledgeway,Mc-
Graw, & Simmers, 2011). The process by which the information is summed across individual
detectors is proposed to be either a winner-take-all (max) operation over channels tuned to
different motion directions, or a maximum likelihood estimation† over those channels (Webb,
Ledgeway, &McGraw, 2007). However, the improvement in humanperformancewith increas-
ing stimulus area underperforms thesemodel predictions (Watamaniuk, 1993).

2.7.2 Summation of orientation

The orientations of individual elements in a pattern can be combined over space in order to
make judgements about the resulting texture (Dakin & Watt, 1997). Studies of how this is
performed are often similar to those used formotion tasks, where a certain proportion of a set
of otherwise randomly oriented elements are assigned the target orientation. It is proposed
that the information is combined by either a vector average (as occurs for crowded stimuli;
see Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), a winner-takes-all (max) operation
(Husk, Huang, & Hess, 2012), or a maximum likelihood estimation, depending on the stimulus
conditions and the task set to the observer (Webb, Ledgeway, &McGraw, 2010).
Investigations of the summation of orientation information over area have found conflicting
results. A “global form” detection experiment using glass pattern stimuli has found summation
for concentric patterns but not for patterns of parallel elements (Wilson, Wilkinson, & Asaad,
1997). An absence of summation for parallel stimuli has also been found in an orientation dis-
crimination experiment using arrays of narrowband elements (Husk et al., 2012). Equivalent
noise analysis has shown however that the integration of orientation signals is governed by
an information limit, and that performance improves as the size of the stimulus increased up
to a maximum of 7 degrees (for 4 c/deg Gabors; see Dakin, 2001). A study carried out using

†The maximum likelihood estimation (MLE) strategy uses the response of the system to the stimulus to com-
pute the likelihood that each possible stimulus was presented. The decision can then be made based on which
stimuluswasmost likely to have been presented. This is themethod that the ideal observerwould use for this task,
as it bases the decision on the likelihood ratio (Green & Swets, 1966b).
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filtered noise patterns found less-than ideal summation for coherent local signals up to amax-
imum size of 2 degrees (Jones, Anderson, &Murphy, 2003).
Some of the factors that complicate the study of the integration of orientation signals over
area mirror those encountered in studies of the contrast area summation. For example, man-
agement of extent of the stimulated region and the confounding effect of inhomogeneity in
sensitivity (Jones et al., 2003) affect both types of study. An investigation of the summation of
orientation signals over space, inspired contrast detection studies, is carried out in Chapter 9.

2.8 Amblyopia
2.8.1 Aetiology
One useful strategy to investigate the processing that occurs in the visual system is to look at
situations where it functions abnormally. One such condition which is investigated as part of
this thesis is amblyopia. This is a neural condition where an impoverished input from one eye
during development (usually due to either strabismus or anisometropia) results in an long-
term impairment in vision when that eye is used, even after the optical defect is corrected.
Evidence suggests that the locus of this effect is largely cortical (Blakemore & Vital-Durand,
1986; Anderson, Holliday, & Harding, 1999; Barnes, Hess, Dumoulin, Achtman, & Pike, 2001),
and that the size of the neural impairment depends on how poor the signal is from the im-
poverished eye during development (Smith, Hung, & Harwerth, 2000). It is thought that the
binocular cells fail to develop properly in the cortex when the input from one of the eyes is
weak or absent (Hubel &Wiesel, 1970), and that the input from the deprived eye must be re-
stored before the end of some critical period if normal function is to be obtained (Blakemore
& van Sluyters, 1974).

2.8.2 Effects on performance in visual tasks
Amblyopic observers using their affected eyes exhibit poor behaviour in many tasks, not lim-
ited to those requiring binocularity or high resolution acuity (McKee, Levi, &Movshon, 2003).
The contrast sensitivity functions of amblyopes can be profoundly affected across the spatial
frequency range (Hess & Howell, 1977; Levi & Harwerth, 1977). Noise-masking studies have
found performance in detection tasks to be limited by a greater internal noise in amblyopes
(Levi & Klein, 2008). Above threshold, veridical perception of grating stimuli is marred by spa-
tial frequency specific distortions and scotomas (Hess et al., 1978). Performance on global
motion tasks is impaired (Simmers, Ledgeway, Hess, & McGraw, 2003), as it is for orientation
discrimination (Skottun, Bradley, & Freeman, 1986). The deficit that amblyopes show for tasks
involving the combination of signals over space is investigated in this thesis by looking at spa-
tial summation in amblyopes (see Chapter 8).
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2.9 Conclusion
The combination of signals over space is a necessary stage in visual processing. One expected
consequence of this signal combination is an improvement in performance for the detection of
stimuli as they increase in size. Although the existence of a performance advantage for larger
stimuli has been recognised in several domains, quantitative accounts of these improvements
are still developing. In this thesis, novel stimuli and experimentalmethods are used to uncover
new information about the processes underlying the integration of contrast signals over an
increasing stimulus area. Thesemethods are also applied to study the integration of coherent
orientation signals across the visual field.
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CHAPTER 3

General methods

3.1 Introduction
This chapter outlines the measurement conventions, equipment, stimulus paradigms, experi-
mental techniques andmethods of analysis which are used in this thesis.

3.2 Measures

3.2.1 Visual angle

Distances subtended by objects in the visual field are expressed in degrees of visual angle. To
distinguish this from the orientation of a stimulus or filter (denoted by ◦, see below) this is
always presented as the full word “degree” or its abbreviation “deg”. 1 degree of visual angle
corresponds to approximately 0.3mmon the retina (De Valois &De Valois, 1990b).

3.2.2 Spatial frequency

The spatial frequency of a sinusoidal or other periodic stimulus (see Section 3.4) is expressed
as the number of cycles per degree of visual angle (c/deg).

3.2.3 Orientation

The orientation of a stimulus or a filter is referred to throughout this work by the use of a
degree symbol (◦). Anupright vertical stimuluswill have anorientationof 0◦, and this increases
as it is rotated clockwise in the spatial domain.
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3.2.4 Contrast

An image’s contrast is the magnitude of its luminance modulation. There are several different
metrics that are used to quantify contrast. The most commonly used is Michelson contrast
which is defined as

cMichelson =
Lmax − Lmin
Lmax + Lmin

, (3.1)
whereLmax andLmin are themaximum andminimum luminances in the image.
For stimuli whose mean luminance is not the mid-point of their minimum and maximum lumi-
nances, delta-contrast is typically used in order to make the calculated contrast independent
of the phase of the stimulus (Section 3.4.1). Delta-contrast is defined as

cdelta =
max (|L− Lmean|)

Lmean
, (3.2)

where Lmean is the mean luminance of the image (L) and max (|L− Lmean|) is the largest de-
viation from that value in the image. For any single stimulus, delta-contrast is linearly related
to Michelson contrast. When not stated otherwise, “contrast” is intended as delta-contrast
throughout this thesis.
Frequently it is more convenient to express contrast logarithmically. Contrast in dB re 1% is
defined as

cdB = 20 log10(100 · cdelta). (3.3)

Whennot statedotherwise, “log-contrast” is intended as contrast expressed in dB re1%delta-
contrast throughout this thesis.

3.2.5 Size

For continuous grating stimuli, whether circular or rectangular, the dimensionsW are derived
from the full width at half magnitude (FWHM∗) throughout this work. For stimuli with hard
edges this is simply the width or height of the stimulus, however for those with blurred edges
(for example windowed by a raised cosine function, see Section 3.4.1) the effective size of the
stimulus extends beyond the plateau. The sizes of Gabor stimuli (see Section 3.4.4) are also
expressed in this waywhen they are to be compared against those of gratings.
The radius of a circular stimulus, or the width and height of a rectangular stimulus, are then
used to calculate its area. Here this is usually presented as 20× log10(area), as plotting stimu-
lus area in this way against detection thresholds expressed in dB gives an easily interpretable
meaning to linear slopes of different gradients (for example, summationwithin a linear system
would give a slope of -1, see Section 2.6.1).

∗This measure is sometimes also referred to as the “full width at half height” (FWHH).
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3.2.6 Signal-to-noise ratio
The signal-to-noise ratio (SNR) in a system is defined as the amplitude of the signal (µ) divided
by the standard deviation (σ) of the noise affecting that signal

SNR =
µ

σ
. (3.4)

To find the SNR at the decision mechanism for a model involving the linear sum over several
independent detectors (e.g. Section 5.3.2), the signal level in each channel is added. The com-
bined signal is then divided by the standard deviation of the combined noise from these detec-
tors (calculated by summing the variances).

3.2.7 Root-mean-square error
In this thesis, the differences between human behavioural data and model predictions that
describe expected behaviour on that task are reduced to a single number by calculating the
root-mean-square error (RMS error, or simply RMSe) between the data and themodel

RMSe =

√√√√√ n∑
i=1

(datai −modeli)2
n

, (3.5)

where datai is the ith data point, modeli is themodel prediction for that data point, andn is the
number of data points.

3.3 Equipment
3.3.1 CRTmonitors
In all experiments, stimuli were presented on cathode ray tube (CRT) monitors. These were
gamma-corrected according to measurements taken with photometers in order that a linear
series of requested increments to the luminance of an individual pixel in softwarewould result
in a linear series of increases in the luminance of that pixel on the monitor (Poynton, 1998;
García-Pérez & Peli, 2001). All experiments were performed in a darkened room, such that
themonitor would be the dominant source of light to the observer’s visual system.

3.3.2 Stimulus presentation
Most experiments (Chapters 4, 6 to 8) used a Cambridge Research Systems (CRS) ViSaGe vi-
sual stimulus generator to store and display the stimuli. The orientation discrimination ex-
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periment carried out in Chapter 9 used only the built-in NVIDIA GeForce 9600M of a Mac-
book Pro, as the precise presentation of threshold-level contrasts was not required here (as
opposed to in all other experiments, where this was required).

3.3.3 Software

Most of the experiments (Chapters 4, 6 to 8) were conducted using Liberator. This is a be-
spoke application for running psychophysical experiments developed by Robert Summers and
Tim Meese at Aston University. Delphi was used to write code for additional functionality
where required. The experiment presented in Chapter 9 was conducted using Psychtoolbox
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007) running under MATLAB version 2010a (The
Mathworks Inc.; Natick, Massachusetts).

3.4 Stimuli

3.4.1 Gratings

Sine-wave gratings arewidely-used stimuli for studying visual processing. They are generated
by sinusoidally modulating the luminance of a light source (typically a computer monitor) in
one dimension, for example

L[x, y] = c · sin (x− x0), (3.6)
where c is the amplitude (equivalent to delta or Michelson contrast for gratings) and x0 is the
starting position (the location of the initial zero-crossing for a sine-wave). See panels a) and d)
of Figure 3.1 for an example of a grating stimulus.
The popularity of gratings as stimuli stems from two sources. Firstly, according to the Fourier
theorem any image can be broken down into the sum of a series of 2D sine-wave gratings
of different amplitudes, frequencies, orientations and phases. This makes them a good basic
component for the study of vision. Secondly, physiological and psychophysical evidence both
indicate that the visual system performs filtering operations similar to a local Fourier analysis
at each location in the image (De Valois &De Valois, 1990b).
Gratings of arbitrary contrast (c), orientation (θ), frequency (f ) and phase (φ) can be generated
by setting

u = 2πf cos θ, (3.7)

v = 2πf sin θ, (3.8)

51



Lmin

L0

Lmax

Lu
m

in
an

ce

-2h 0 +2h
Horizontal position

-2h

0

+2h

Ve
rti

ca
l p

os
itio

n

-2h 0 +2h
Horizontal position

-2h 0 +2h
Horizontal position

a) b) c)

d) e) f)

Figure 3.1: Horizontal cross-sections (a-c) through the centres of example stimuli (d-f).
Black lines in panels a) to c) show the stimulus luminance (varying from its minimum at
Lmin to itsmaximumatLmax about themean luminanceL0), the dashed grey lines showthe envelope that is being applied to the carrier grating. Dashed white lines in panels d)
to f) show where the cross section is taken. Panels a) and d) show a vertical sine-wave
grating stimulus with wavelength λ. Panels b) and e) show this sine-wave grating win-
dowedby a raised-cosine envelopewith a plateauwidth of 6λ and a cosine sectionwidth
of 12λ. Panels c) and f) showthat samewindowedgratingwith “Swiss cheese”modulation.Themodulator wavelength is 3.2λ, giving 1.6 cycles of grating per modulator “check”.

and
L[x, y] = c · sin [u(x− x0) + v(y − y0) + φ]. (3.9)

Grating patches of different sizes and shapes can be generated by multiplying the sinusoidal
signal by an envelope. Typical shapes used include square, rectangular, and circular gratings.
The edges of these envelopes are not usually sharp however as this generates energy at many
additional spatial frequencies, the edges of the envelope can be blurred to ameliorate this.

3.4.2 Raised-cosine envelopes

For the studies presentedhere, gratingswerepresentedwithin envelopes that declined froma
gain of unity to a gain of zero in themanner of a single half-cycle of a cosine function (referred
to as a “raised-cosine” envelope). The wavelength of this cosine function (λ) is twice the width
over which the function needs to decline.
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For circular stimuli this is calculated as
λ = 2(r2 − r1), (3.10)

where r1 is half the width of the stimulus plateau and r2 is the half the width at which the
envelope reaches zero. The envelope is then defined as

E[x, y] =


1 for √x2 + y2 < r1
1
2〈1 + cos [πλ (

√
x2 + y2 − r1)]〉 for r1 <√x2 + y2 < r2

0 for √x2 + y2 > r2

. (3.11)

This makes the full width at half magnitude
W = r1 + r2, (3.12)

and the nominal stimulus area
A = π

(
W

2

)2

. (3.13)
See panels b) and e) of Figure 3.1 for an example of a grating stimulus windowed by a circular
raised-cosine envelope.
A rectangular stimulus may have a width that is different from its height. The start and end
points must be defined separately in the two dimensions (wx1 and wx2 for the horizontal, wy1
and wy2 for the vertical), and the widths of the raised cosine sections may be different. The
wavelengths for the cosine sections are calculated separately for the horizontal component
(the shape of the decline in contrast along the x axis between the locationswx1 andwx2 being
that of a cosine function with wavelength λx)

λx = 2(wx2 − wx1), (3.14)
and vertical component (the shape of the decline in contrast along the y axis between the lo-
cationswy1 andwy2 from y0 being that of a cosine function with wavelength λy)

λy = 2(wy2 − wy1). (3.15)
Envelopes are defined separately for the horizontal and vertical directions

Ex[x, y] =


1 for x < wx1
1
2〈1 + cos [ πλx (x− wx1)]〉 for wx1 < x < wx2

0 for x > wx2

, (3.16)
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Ey[x, y] =


1 for y < wy1
1
2〈1 + cos [ πλy (y − wy1)]〉 for wy1 < y < wy2

0 for x > wy2

, (3.17)

and thenmultiplied to form the rectangular envelope
E[x, y] = Ex[x, y] ·Ey[x, y]. (3.18)

The full width at half magnitude for the horizontal axis is given by
Wx = wx1 + wx2, (3.19)

and for the vertical axis
Wy = wy1 + wy2, (3.20)

and from these the nominal area† can be calculated
A =WxWy. (3.21)

The envelope defined by Equation 3.11 or Equation 3.18 is applied to the grating (defined in
Equation 3.9) as follows

L[x, y] = c ·E[x, y] · sin [u(x− x0) + v(y − y0) + φ]. (3.22)

3.4.3 Swiss cheeses

Modulating the contrast of a sine-grating by a raised plaid (scaled from 0 to 1) formed from
two orthogonal gratings creates stimuli with checkerboard patterns of unity and zero con-
trast, with smooth modulation between the two. These stimuli allow the area of the stimulus
containing contrast (signal area) to be varied whilst keeping the stimulus extent constant.
This “Swiss cheese” modulation is of the form

M[x, y] =
1

2
+

1

4
〈 cos [2πfm(x cos θm + y sin θm) + φm] + ...

cos [2πfm(x cos−θm + y sin−θm) + φm]〉,
(3.23)

where fm, θm and φm are the frequency, orientation and phase of the modulation. This can be
applied to a raised-cosine enveloped grating to produce the Swiss cheese grating stimulus

L[x, y] = c ·E[x, y] ·M[x, y] · sin [u(x− x0) + v(y − y0) + φ]. (3.24)
†This will slightly overestimate the area of the envelope which is above half-magnitude due to the combined

attenuation at the corners from thex and y components. This inaccuracy is negligible for small values ofλhowever.
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See panels c) and f) of Figure 3.1 for an example of a Swiss cheese modulated grating stimulus
windowed by a circular raised-cosine envelope.
The effective signal area of a Swiss cheese stimulus depends on the relationship between the
diameter and the modulation frequency. Where values for the signal area are presented they
are calculated as the area of the stimulus where the envelope is above half its maximum value
(equivalent to calculating its area from the dimensions at half-magnitude).

3.4.4 Gabor patches

a) b)

c) d)
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Figure 3.2: Panel c) shows a vertical Gabor stimulus with wavelength λ, an orientation
bandwidth of±25◦ and a spatial frequency bandwidth of 1.6 octaves. Panel a) shows a
cross-section through its horizontal centre (the dashed white line in panel c). The lumi-
nance profile of the stimulus (varying from its minimum atLmin to its maximum atLmaxabout the mean luminance L0) is plotted in black, the envelope in dashed grey. Panelsb) and d) show a log-Gabor stimulus with the same wavelength and bandwidths, and its
cross-section.

Another popular stimulus for research into visual perception is the Gabor patch. This is a
sine-wave gratingwindowed by a two dimensional Gaussian envelope (see Figure 3.2c; Gabor,
1946; Graham, 1989d). A Gaussian envelope with its major andminor axes along the cardinal
orientations is defined as

E[x, y] = exp

(−x2
2σ2x

)
· exp

(−y2
2σ2y

)
, (3.25)
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Figure 3.3: Panels c) and d) show the Fourier transforms of the Gabor and log-Gabor
stimuli in panels c) and d) of Figure 3.2. The spatial frequency passbands of these stimuli
at their preferred orientations (along the grey dashed line) are shown in panels a) and b).
These are plotted on linear axes expressed in terms of fs, which is the preferred spatialfrequency of the Gabor and log-Gabor patches.

whereσx andσy are the standard deviations of theGaussian function along the horizontal and
vertical axes. This envelope is applied to the grating (defined in Equation 3.9) as follows

L[x, y] = c ·E[x, y] · sin [u(x− x0) + v(y − y0) + φ]. (3.26)
For Gabor stimuli, the full width at half magnitude along an axis can be calculated from the
standard deviation (σ) of the Gaussian envelope for that axis (Graham, 1989d) as

W = 2.35σ. (3.27)

The Fourier transform of a Gabor patch is also the product of two Gaussians, positioned at
the Gabor’s preferred spatial frequency (see Figure 3.3c). The widths of these Gaussians are
inversely proportional to the widths of the Gaussian envelope in the spatial domain. Gabor
patches can also be used tofilter images by convolution in the spatial domain, ormultiplication
in the Fourier domain. It has been demonstrated that local filtering operations of this kind are
performed by the visual system (see Section 2.3.1; De Valois et al., 1979).
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3.4.5 Log-Gabor patches

Log-Gabor patches share some of their properties with Gabor patches. However, a log-Gabor
is defined in Fourier-space as the product of a one-dimensional log-Gaussian of spatial fre-
quency and an orthogonal one-dimensional Gaussian of orientation. MATLAB code to produce
log-Gabor patches is provided in Section B.1. An example of a log-Gabor patch is shown in
panels b) and d) of Figure 3.2; its Fourier transform is shown in panels b) and d) of Figure 3.3.
Log-Gabor patches are used as models of the receptive fields of simple cells in V1 (see Sec-
tion 2.2.2). Those used in this thesis have bandwidths of 1.6 octaves and ±25◦ respectively.
These values are typical of those used previously in the literature, and compatible with those
found inneurophysiological investigations (DeValois et al., 1982;DeValois&DeValois, 1990c;
Meese & Summers, 2007;Meese, 2010).
Log-Gabors are used as stimuli in experiments where the intention is to provide simple cells
with their ideal input. An additional practical advantage of using log-Gabors as stimuli is that
they are DC-balanced (the sum of the signed pixelwise deviations from mean luminance is
equal to zero) in any phase, and so have no effect on the mean luminance of the area of the
display in which they are shown.

3.4.6 Battenberg patterns

The “Battenberg” stimulus was originally used byMeese (2010) to investigate the summation
of contrast over area. It is a patternmade up of a square array of repeated elements, each one
beinga single cycleof sinewavegrating at the target spatial frequencymultipliedbyanorthog-
onal half-cycle of cosine phase grating at half that spatial frequency. Thesemicropatterns can
be arranged in different configurations to flexibly generate smooth-edged grating-like stimuli
whose signal area scales linearly with the number of elements used. Removing a subset of the
elements (by setting their contrast to zero) allows for the creation of patterns which have a
lower contrast over area, but the same extent as a “full” stimulus.
Entire Battenberg arrays can be generated at once bymodulating the contrast of a full grating.
The orthogonal rectified cosine grating (to produce an array of square Battenberg elements)
is defined relative to the carrier grating (Equation 3.9) by the following equations

ub = πf cos (θ − 90), (3.28)

vb = πf sin (θ − 90), (3.29)
and

E[x, y] = |sin [ub(x− x0) + vb(y − y0) + φb]| . (3.30)
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Figure 3.4: Horizontal cross-sections (a-c) through example “Battenberg” stimuli (d-f).
Solid black lines inpanels a) to c) showthe stimulus luminance (varying from itsminimum
at Lmin to its maximum at Lmax about the mean luminance L0), the dashed grey linesshow the envelope that is being applied to the carrier grating. Dashed white lines in
panels d) to f) showwhere the cross section is taken. Panels a) and d) show a full vertical
Battenberg array with wavelength λ. Panels b) and e) show the array modulated to give
the “black check” (no contrast in centre) condition with two cycles per check. Panels c)
and f) show the arraymodulated to give the “white check” (contrast in centre) condition.

The array (shown in Figure 3.4d) is produced bymultiplying this by the carrier grating
L[x, y] = c ·E[x, y] · sin [u(x− x0) + v(y − y0) + φ]. (3.31)

Elements from the array can be removed in a checkerboard pattern by a square-wave plaid
modulator defined by the following equation

M[x, y] = sgn〈 cos[2πfm(x cos θm + y sin θm) + φm] + ...

cos[2πfm(x cos−θm + y sin−θm) + φm]〉,
(3.32)

where fm, θm and φm are the frequency, orientation and phase of the modulation. This is mul-
tiplied by the full Battenberg to produce the checked stimulus

L[x, y] = c ·E[x, y] ·M[x, y] · sin [u(x− x0) + v(y − y0) + φ]. (3.33)
To produce stimuli made of arrangements of entire Battenberg elements, the values of fm, θm
and φmmust be chosen so as to create amodulator that lines upwith the zero-crossings in the
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stimuli (see Figure 3.4, panels b-c and e-f).
For these stimuli, the effective signal area can be calculated as

areastimulus = nelements × areaelement. (3.34)

3.5 Procedures

3.5.1 Two-interval forced-choice

Most of the experiments in this thesis (Chapters 4, 6 to 8) use a two-interval forced-choice
(2IFC) procedure where each trials contain two temporal intervals, with each marked by a
tone. In one randomly-chosen interval a stimulus is presented at a particular signal intensity
(typically a contrast level here). The other interval contains a null stimulus which is absent of
the feature that the observer is detecting, (e.g. blank for contrast detection). The observer’s
response is made by pressing one of two buttons to indicate which interval they think con-
tains the target. Feedback on the correctness of the response can be provided by the pitch of
an additional beep after the observer’s response.

3.5.2 Single-interval identification

The orientation coherence experiment carried out in Chapter 9 uses a single-interval identi-
fication procedure. This is similar to the 2IFC case given above, however there is only one
stimulus presentation interval and the observer’s task is to identify which of two stimuli (or
types of stimuli) are presented and respond accordingly.

3.5.3 Staircasemethods

The behavioural response of observers to stimuli of different magnitudes, as sampled in psy-
chophysical experiments, can beused to characterise a psychometric function. Collecting data
for this purpose by using a process that tests an equal number of times atmany stimulus levels
lacks efficiency. It is often far quicker to use an adaptivemethodwhich favours testing at stim-
ulus levels which will play a greater role in constraining the parameters of a fitted psychome-
tric function (Kingdom & Prins, 2010). The simplest of these methods are staircase methods.
These were first introduced by Dixon and Mood (1948) to study the sensitivity of explosives,
but have since foundwide use within many fields including psychophysics.
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Staircase methods involve determining the next stimulus level to be tested by reacting to the
results of previous trials. In the simplest case of a one-up one-down staircase, a correct re-
sponse on the previous trial results in the next trial being tested with a lower stimulus magni-
tude (i.e. making the task more difficult) while an incorrect response results in the next trial
being tested with a higher stimulus magnitude. As the staircase then overshoots the point
at which the behaviour changes it will reverse direction again, eventually oscillating around
a value of interest. For example, a one-up one-down staircase will tend to sample at stimulus
magnitudeswhere the probability of a correct response is approximately 0.5 (staircases of this
type are typically used for matching experiments where the point of subjective equality is the
value to be determined). It possible therefore to use the average of the staircase reversals to
calculate an estimate of the stimulusmagnitude that corresponds to thatP value, throughout
this thesis however it is the parameters of a psychometric function fitted to the datawhich are
reported (see Section 3.6 below).
Most of the studies in this thesis use three-down one-up staircases, which aim to converge
at P (correct) = 0.794 (Wetherill, 1963; Wetherill & Levitt, 1965). Simulations have shown
that the staircasemay fail to reach this value (García-Pérez, 1998), however as the thresholds
presented here are calculated using fitted psychometric functions the actual value that the
staircases converge at is not critical.
For contrast detection experiments performed in Liberator, a pair of independent three-down
one-up staircases were interleaved. The step sizes started at 12 dB and halved at each of the
first two reversals to 6 dB and then to 3 dB. Response data were not recorded until after the
second reversal. In Chapter 4, staircases terminated after 50 recorded trials. In Chapters 6
to 8 the staircases were limited to whichever was reached first of 70 trials or 12 reversals
(the minimum number of trials with which 12 reversals can be reached is 48). Details for the
staircases used in the orientation coherence study in Chapter 9 are provided in that chapter.

3.6 Psychometric functions

3.6.1 The psychometric function for detection

Psychophysical data which are expressed as the probability of the correct response to a stim-
ulus (e.g. detection) as the function of changes in some relevant property of that stimulus (e.g.
its contrast) are typically well-described by a curve that has a sigmoidal shape. There are sev-
eral types of psychometric function with this shape that are used to fit psychophysical data.
There are four degrees of freedom in these functions (shown in Figure 3.5). The lower asymp-
tote is the guess rate, the expected performance level for an observer responding without us-
ing any information from the stimulus. The upper asymptote is the level where performance
is limited only by observer “lapses”, i.e. where they fail to perform the task correctly due to
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Figure3.5: Theeffects of theparameters of aWeibull function. Startingwith theoriginal
function (grey line) in panel a), the black dashed curve shows the effect of varyingα, and
panel b) shows the effects of varying β and γ. Panel c) shows the effect of varying λ and
a function where γ = λ. Parameters for the curves are shown above the panels.

non-stimulus dependent factors such as inattention or blinking. The slope of the transition
between the two asymptotes is how quickly the observer’s behaviour changes from one per-
formance level to the other based on the use of information from the stimulus. The location
of the transition along the x-axis is controlled by the observer’s sensitivity for performing this
task (the stimulus level corresponding to a particular criterion performance level is given as
the “threshold”). For the Weibull psychometric function these are controlled by the parame-
ters γ, λ (the upper asymptote being at 1− λ), β and α respectively

f(x) = γ + (1− γ − λ) · 〈1− exp

[
−
(x
α

)β]
〉. (3.35)

Achieving reliable estimates of the relevant parameters is aided by fixing irrelevant parame-
terswhere possible. For 2IFC tasks, the guess rate (γ) can be fixed at 0.5, reducing the number
of fitted parameters to three. For data collected using a staircase, the upper asymptote (con-
trolled by λ) is not usually well-constrained and should be fixed (Prins, 2012). In the results
from2IFCexperimentspresentedhereλ isfixedat0,making theassumption that theobserver
never lapses (would always respond correctly for a stimulus of sufficiently high contrast). Al-
though this expectation is not realistic, lapse rates from experienced observers are expected
to be very low, and the only effect of changing the fixed value of λ would be to globally bias
the calculated slopes and thresholds (i.e. its effects are irrelevant when only comparisons be-
tween these parameters found for different conditions are made). This leaves the two free
parameters controlling the threshold and slope (α and β), which are then found by fitting the
psychometric function.
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3.6.2 The psychometric function for identification
In identification experiments where the observer has to determine which of two classes the
stimulus belongs to, psychometric functions plot the probability of identifying the stimulus as
belonging to a particular class (e.g. horizontal as opposed to vertical) against an abscissawhich
ranges from a stimulus values inconsistent with that class (e.g. orientations away from the
horizontal) to values consistent with that class (e.g. orientations approaching the horizontal).
The psychometric function then describes the probability that the observer will respond to a
stimulus with a particular value along that dimension by indicating that it is a member of one
class or the other. The position of the psychometric function along the x-axis indicates the bias
of the observer to respond by assigning the stimulus to a particular class, and the slope of the
function is a measure of how sensitive the observer is at the identification task.

3.6.3 Probit
In Chapter 4, thresholds were derived from cumulative Gaussian psychometric functions fit-
ted using the Probit method (Finney, 1971) in MATLAB. This fitting also gives the rejection
criteria used in the contrast detection studies where data was averaged across repetitions
(Chapters 4, 6 and 7). Where the standard error of the fit provided by this method to the
data from a particular experimental session was greater than 3 dB the subject repeated the
data collection for that session. This rejection criterion is a rule of thumb for avoiding the in-
clusion of data from sessions where unusually irregular behaviour was recorded. In the case
where a condition that produced a rejected dataset was originally run interleaved with other
conditions then all of those conditions were repeated.

3.6.4 Palamedes
In Chapters 6 to 9 psychometric function fitting was performed using the Palamedes toolbox
(Prins & Kingdom, 2009; Kingdom & Prins, 2010). In Chapters 6 to 8, Weibull psychometric
function fits were used for the sake of consistency with the analyses of results presented in
previous studies. In Chapter 9, cumulative Gaussian psychometric functions were fitted to
the orientation discrimination data.

3.7 Model fits
3.7.1 Fittingmodels to data
There are two different levels on which models of the visual system can be considered. These
are the gross level where the architecture of the model describing its component stages and
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how they are connected to each other is outlined, and the more detailed level where the pa-
rameterswhich control theprecise behaviour of these components are specified. For example,
including a filtering stage in a model is a matter of architecture, but the centre frequency and
bandwidth of that filter would be a parameter. These model parameters are often varied to
bring model predictions in line with empirical data, the purpose of which is either to find out
what value of that parameter would be consistent with the data or to simply prevent the ef-
fects of that parameter (whichmay be irrelevant to the question at hand) from influencing the
quality of the fit.

3.7.2 The downhill simplexmethod

Models are fitted to data in this thesis with the downhill simplex method (Nelder & Mead,
1965; Press, Flannery, Teukolsky, & Vetterling, 1989), implemented using the fminsearch func-
tion in MATLAB. The purpose of this method is to vary the model parameters and find the set
which results in the lowest RMS error between the model and the data. Briefly, the method
creates a simplex of n+ 1 points on an n-dimensional surface, where the elevation at each lo-
cation is the RMS error between the data and themodel predictionwith that location’s partic-
ular combination of values for the n parameters. The simplex then “walks” downhill, primarily
by replacing the point in the simplex with the highest elevation (RMSe) with its reflection on
the other side of the simplex. Using this method, minima in the surface can be found. For sit-
uations where multiple minima are likely, the chance of finding a global minimum is increased
by jittering the location of the simplex when it is stuck in a local minimum, and by running the
routine several times with different starting points.
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CHAPTER 4

The visual field inhomogeneity in
contrast sensitivity

4.1 Motivation and summary
Investigating the summation of threshold contrast across the visual field requires an under-
standing of how contrast sensitivity varies as a function of eccentricity. Sensitivity has pre-
viously been reported to decline as a linear function of eccentricity when plotted on log-lin
axes. Here, this account is challenged following experiments performed with a higher sam-
pling density in the central nine degrees of the visual field. The findings instead suggest a two-
part bilinear relationship composed of an initial steep slope followed by a shallower decline. A
method for producing an attenuation surface of this shape is put forward, along with a set of
parameters derived from the experimental results.

4.2 Introduction

4.2.1 The visual field inhomogeneity in contrast sensitivity

Visual perception beginswith the transduction of patterns of luminance incident on the retina
by photoreceptors. The neural architecture is not homogenous however, with the distribu-
tion of photoreceptors and the degree of convergence in their outputs varying over the retina
(Perry&Cowey, 1985;Curcio&Allen, 1990;Curcio et al., 1990). This, combinedwith other in-
homogeneities in the processing after the retina (Daniel &Whitteridge, 1961; Rovamo, Virsu,
& Näsänen, 1978; Rovamo & Virsu, 1979; Virsu & Rovamo, 1979), is thought to lead to better
performance in the centre of the visual field than in the periphery for most tasks (see Stras-
burger et al., 2011, for an extensive review). Here, the intent is to measure the variation in
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contrast sensitivity across the visual field in order to create a surface that describes the inho-
mogeneity. Such a surface might then be used in computational models of the visual system
(see Chapter 5), or to transform stimuli before presenting them to observers in order to com-
pensate for the effects of the inhomogeneity (see Chapters 6 and 7).
The effect of eccentricity on contrast sensitivity has been investigated extensively in the past
(Pöppel & Harvey, 1973; Hilz & Cavonius, 1974; Koenderink, Bouman, Bueno de Mesquita, &
Slappendel, 1978a,b,c,d; Rovamoet al., 1978;Rovamo&Virsu, 1979;Rijsdijk, Kroon, &vander
Wildt, 1980; Robson&Graham, 1981;Wright & Johnston, 1983; Kelly, 1984; Johnston, 1987;
Pointer & Hess, 1989; Rovamo, Franssila, & Näsänen, 1992; Foley et al., 2007; Hess, Baker,
May, &Wang, 2008). A summary of themethodology used in themost relevant previous liter-
ature is provided in Table 4.1. Previous studies typically report a linear decline in log contrast
sensitivity with increasing eccentricity (distance from the point of fixation). For those studies
that also tested spatial frequency effects (e.g. Robson&Graham, 1981; Pointer &Hess, 1989),
contrast sensitivity declined with eccentricity at roughly the same rate when the eccentricity
was expressed relative to the period of the stimulus spatial frequency i.e. in “carrier cycles” (as
opposed to being expressed in degrees of visual angle).
Where previous studies have tested contrast sensitivity over several meridians, they have
found the decline in sensitivity to be anisotropic. Pointer and Hess (1989) found that sensi-
tivity declined more steeply along the vertical meridian than along the horizontal meridian.
There have also been several reports of a superior-inferior anisotropy, in which performance
is better at isoeccentric locations in the inferior hemi-meridian than in the superior hemi-
meridian (reviewed in Abrams, Nizam, & Carrasco, 2012). Any description of how contrast
sensitivity varies over the visual fieldmust therefore take account of these anisotropies.

4.2.2 Effects of stimulus orientation

There have been several previous studies reporting that the visual system has different sen-
sitivities to stimuli of different orientations. These stimulus orientation effects come in two
different forms, where they are based either on the absolute orientation of the stimulus or on
the orientation of the stimulus relative to the polar angle of its location in the visual field. The
possibility of both absolute and relative orientation effects occurring in the region of interest
is investigated here in order to determine whether it is necessary to include these effects in a
model of the central visual field’s contrast sensitivity to oriented stimuli.
The absolute orientation effect reported previously is the “oblique effect”, where horizontally-
and vertically-oriented stimuli are more easily detected than oblique stimuli at medium to
high spatial frequencies (Campbell, Kulikowski, &Levinson, 1966;Berkley, Kitterle, &Watkins,
1975; Heeley & Timney, 1988; Long & Tuck, 1991). A relative orientation effect was first re-
ported byRovamo, Virsu, Laurinen, andHyvärinen (1982), who found a “meridional resolution
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effect” which was dependent on the stimulus orientation relative to the angle at which it ap-
peared from the point of fixation. Subjects had higher acuity for grating patches which were
radially-aligned (where the bars of the grating were parallel to a line drawn from fixation to
the grating patch) and lower acuity for patches orthogonal to those. This effect becamemore
pronounced with increasing distance from fixation (strong effects were found beyond 20 de-
grees of eccentricity). This relative orientation effect on sensitivity has also been found in
other stimulus modalities. Pointer and Hess (1989) did not find a higher contrast sensitivity
for patches aligned in this way, however such an effect has been reported by Sasaki, Rajimehr,
Kim, Ekstrom, Vanduffel, and Tootell (2006). Due to these contradictory previous results, this
issue is investigated here.

4.2.3 This study

The results from this study show that the decline in log contrast sensitivity in the central visual
field is non-linear and is best fit by a bilinear function, where the initial slope is approximately
twice as steep as the subsequent shallower decline. The scale invariance found by previous
investigators (e.g. Pointer & Hess, 1989) is confirmed, as are the two visual field anisotropies
(both the horizontal-vertical and superior-inferior anisotropies fromAbrams et al., 2012). The
results show that the stimulus orientation effects, if present at all, are small enough to not
be a necessary feature in a model of the central nine degrees of the visual field. This allows
a simple two-dimensional attenuation surface to be developed via radial interpolation of the
bilinear functions that arefitted to thedata, providingageneralisedmapof contrast sensitivity
to stimuli of arbitrary orientation in the central visual field.

4.3 Methods

4.3.1 Equipment

Three experimental set-ups were used. In each case, stimuli were stored in a CRS ViSaGe and
presented on a gamma-corrected CRT monitor (Nokia Multigraph 445X, Philips MGD403, or
Eizo Flexscan T68). All monitors had a refresh rate of 120 Hz, and mean luminances varied
from 60 to 85 cd/m2 between the monitors. The stimuli had 12 pixels per carrier cycle for
spatial frequencies of 2 to 4 c/deg (sufficient to avoid luminance artefact problems that might
arise from adjacent pixel non-linearity, see García-Pérez & Peli, 2001). The viewing distance
for the 4 c/deg stimuli was 1.19 metres. At this distance, 48 pixels on the screen subtended
1 degree of visual angle. The viewing distance was adjusted to scale the retinal image to the
desired spatial frequency (59.5 - 119 cm for the range 2 - 4 c/deg). For stimuli with a spatial
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frequencybelow2c/deg, the stimuluswasfirst doubled in size on the screen (24pixels per car-
rier cycle) and the viewing distance was adjusted appropriately (41.7 - 83.3 cm for the range
0.7 - 1.4 c/deg).
In Experiment 1, the two principal observers (ASB andDHB) used different equipment setups.
To ensure that thiswas not responsible for anydifferences in their results both observers ran a
subset of the Experiment 1 conditions on the other equipment to that onwhich they collected
their Experiment 1 data. The results from each laboratory were found to be in agreement
within observer, rather than being dependent onwhich equipment was used.

4.3.2 Stimuli

Horizontal
Left 

oblique
Right 

oblique Vertical

Figure 4.1: Cartesian-separable log-Gabor stimuli generated in cosine-phase with ori-
entations of (left to right): 90◦, 135◦, 45◦ and 0◦.

The stimuli for this experiment were luminance-modulated cosine-phase log-Gabors patches
(see General Methods chapter, Section 3.4). For the main experiments here, the stimuli used
had a spatial frequency bandwidth of 1.6 octaves (full width at half height) and an orientation
bandwidth of ±25◦ (half widths at half height). These bandwidths were chosen in order to
attempt to match the stimuli to the receptive fields found in V1 (see Section 3.4.5). The log-
Gabors used in this study were presented at four different orientations (horizontal: 90◦, left
oblique: 135◦, right oblique: 45◦ and vertical: 0◦; see Figure 4.1) and six spatial frequencies
(0.7, 1, 1.4, 2, 2.8 and 4 c/deg). The stimulus duration was 100 ms. Stimulus contrasts were
calculated as delta-contrast and expressed in dB re 1% (see Section 3.2).

4.3.3 Observers

Data were collected from four observers: ASB, DHB, SAW and TSM. The observers were 22,
28, 44 and 46 years old respectively, and wore optical correction appropriate for the viewing
distances testedwhen required. Experimentswere performed binocularlywith natural pupils.

4.3.4 Procedures

In Experiment 1, 4 c/deg log-Gabor stimuli of all four orientations were presented at four ec-
centricities (0, 6, 12 and18 cycles; or 0, 1.5, 3 and4.5 degrees of visual angle) along eight hemi-
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Figure 4.2: Diagramshowing the fourmeridians tested in these experiments, and the ec-
centricities (in carrier cycles) along thosemeridians that were used in Experiment 1. “F”
marks the fixation circle. “+ve” and “-ve” labels refer to the direction along the meridian
that is plotted in the graphs below.

meridians (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦) radiating from the centre of the vi-
sual field. A diagram of these locations is shown in Figure 4.2. Stimuli were blocked such that
in each session thresholdswere only being determined for a stimulus of a single orientation at
a single position in the visual field (i.e. this design does not feature any extrinsic uncertainty).
This gave 100 blocks (the 4 patch orientations in Figure 4.1 at each of the 25 locations in Fig-
ure 4.2), whichwere all repeated in a randomised order four times by observersASB andDHB.
Twomore observers (SAWand TSM) provided additional data for a subset of the conditions.
Thresholdsweremeasuredusinga two-interval forced-choice (2IFC) three-down, one-up stair-
case procedure (see General Methods chapter, Section 3.5). Feedback was provided. Each
condition was repeated four times by each observer. Contrast detection thresholds for each
repetition were calculated using a probit fit to the staircase data (see General Methods, Sec-
tion 3.6), allowing themean and standard error to be calculated across repetitions.
To reduce extrinsic uncertainty, there was a continuously visible circle (diameter of 3 carrier
cycles, line width of 1 pixel, with a contrast of 25%) placed to surround the location where the
target would appear. An identical circle was also used for fixation, such that in the condition
where the target was at fixation the two circles were coincident. In Experiment 2, the circles
were replacedwith pairs of dots as described in the results section for that experiment.
For themajority of the experiments the observer fixated in the centre of themonitor, with the
stimuli appearing at a location on the screen relative to this central fixation. This differs from
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themore conventional methodwhere the stimuli are located in the centre of the display in or-
der to avoid potential problems thatmight arise from inhomogeneities in themonitor (such as
variations in luminance across the display, see García-Pérez & Peli, 2001). A subset of condi-
tions from Experiment 1 were retested where the target appeared in the centre of the screen
and the fixation point was placed at various positions on the monitor to control where in the
visual field the stimulus was presented. The results from the two different experiments were
generally in agreement, with no systematic differences between them.
The methods for the other experiments were similar to those for Experiment 1, with the dif-
ferences described in the relevant part of the Results section.

4.4 Results from Experiment 1

4.4.1 Contrast sensitivity across the central visual field
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Figure 4.3: Contrast sensitivity data from Experiment 1 for observers ASB (left) and
DHB (right), normalised to theobserver’s sensitivity atfixation. The separate plots show
the sensitivity data for the detection of a 4 c/deg log-Gabor patch for each meridian,
as indicated by the diagram in each plot. The four sets of symbols show data from the
different stimulus orientations (as indicated in the legend). Eccentricity is expressed in
stimulus carrier cycles, the visual angle of the range shown here is +4.5 degrees to -4.5
degrees along each meridian. Error bars in this figure (and in all subsequent figures)
show ±1 standard error where visible. Where they are not visible this is due to their
being smaller than the symbol size.

The contrast sensitivity along the eight tested hemi-meridians for two observers can be seen
in Figure 4.3. In agreement with previous findings, the sensitivity is greatest at fixation, and
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Individual hemi-meridian fall-off fits (dB/cycle)
Angle 0◦ 180◦ 90◦ 270◦ 45◦ 135◦ 225◦ 315◦
ASB 0.72 0.65 0.55 0.55 0.61 0.64 0.65 0.59
DHB 0.79 0.92 0.79 0.74 0.70 0.90 0.86 0.84
Average Vertical Horizontal Diagonal
ASB 0.69±0.04 0.55±0.00 0.62±0.01
DHB 0.86±0.07 0.77±0.03 0.83±0.04
Table 4.2: Log-contrast sensitivity decline gradient (in dB) for linear fits to Experiment 1
data. Averages are given as themean±1 standard error.

the decline is steeper along the vertical meridian than along the horizontal meridian. The di-
agonal meridians appear to show declines in sensitivity that are intermediate between those
for the horizontal and vertical meridians (a point which will be returned to in the modelling).
The overall declines were slightly steeper than those found in previous studies, the gradients
from a linear fit (y = mx+ c, with bothm and c allowed to vary freely) are shown in Table 4.2.
To test for the absolute and relative orientation effects, a pair of 3-way repeated-measures
ANOVA testswas performedusing PASWStatistics (version 18.0, IBM) for each observer. The
first test was for factors of: eccentricity, hemi-meridian, and absolute patch orientation. The
second test was the same, but with patch orientation defined relative to themeridian that the
stimulus was placed on. For example, a right oblique patch placed on the 225◦ to 45◦meridian
(see Figure 4.3) would have an absolute orientation of 45◦, but a relative orientation of 0◦. Re-
sults fromMauchly’s test of sphericity showed that the ANOVAs that found significant results
did not suffer from a violation of sphericity, therefore no correction was required.

4.4.2 Absolute orientation effects

Significant effects of absolute patch orientation were found for both ASB (Mauchly’s test n.s.
χ2(5) = 5.45, p = 0.43; ANOVAF3,9 = 11.50, p < 0.01) andDHB (Mauchly’s test n.s. χ2(5) = 4.01,
p = 0.61; ANOVA F3,9 = 5.52, p = 0.02), but were small and not consistent across observers.
ASBwasmost sensitive to vertical patches and least sensitive to horizontal patches (compare
blue and red symbols in panels a-d of Figure 4.3), whereasDHBwasmost sensitive to horizon-
tal patches and least sensitive to left-oblique patches (compare red and magenta symbols in
the panels e-h of Figure 4.3).
In addition to the ANOVA, the absolute orientation effects were further investigated by three
paired Bonferroni-corrected t-tests per observer. In the first two tests the thresholds for or-
thogonal patch orientations were compared to each other (horizontal against vertical, and
left-oblique against right-oblique), paired by eccentricity and hemi-meridian (i.e. comparing
the thresholds for orthogonal patches at the same location in the visual field). For these analy-
ses, ASB showed significant differences in sensitivity for both comparisons (p <0.01), whereas
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DHB showed no significant difference in either the horizontal vs. vertical (p = 0.24) or the left-
vs. right-oblique (p = 0.09) tests. In the third test the results for the two cardinal stimulus
orientations (horizontal and vertical) were compared against those for the two oblique ori-
entations by averaging the pairs of thresholds from each repetition (i.e. a t-test comparing
the average of the horizontal and vertical thresholds against the average of the two oblique
thresholds at each of the tested locations in the visual field). For ASB there was a small dif-
ference (0.13 dB) between the thresholds of the cardinal and oblique patches, however this
was not significant (p = 0.23). For DHB the oblique effect was larger (0.66 dB) and achieved
significance (p < 0.01).
The oblique effect reported here is smaller than that found previously at higher spatial fre-
quencies (e.g. Campbell et al., 1966, found effects of 2 - 6 dB for spatial frequencies in the
range of 10 - 30 c/deg) but consistent with that found at similar spatial frequencies to those
tested here (see also Long & Tuck, 1991). Based on the findings here it is concluded that for
these stimulus conditions the absolute orientation effects were of little concern, since when
they were statistically significant they were inconsistent across observers and small in size.

4.4.3 Relative orientation effects

Comparing the mean contrast detection threshold of patches aligned with the meridian they
were placed on with that of patches having the orthogonal orientation, I found a small radial
advantage for bothASB (0.25dB) andDHB (0.56dB). TheANOVAthat tested relative orienta-
tion (across all four orientations) found this effect to be non-significant for ASB (ANOVA F3,9

=1.54, p=0.27), but significant forDHB (Mauchly’s test n.s. χ2(5) = 0.44, p>0.99; ANOVAF3,9

= 4.07, p = 0.04). However, despite the overall significant result on the ANOVA for DHB there
were no significant pairwise comparisons across aligned and orthogonal patches.
Previous studies that have reported an effect of relative orientation (e.g. Rovamo et al., 1982;
Sasaki et al., 2006) investigated greater eccentricities (25 deg and 15.5 deg, respectively) than
those testedhere, so it is possible that relative orientation effectsmight become strongerwith
increasing eccentricity. If this were the case within the tested eccentricity range for Exper-
iment 1, then it would appear in the two-way interaction between eccentricity and relative
orientation. The results of this analysis however did not show a significant effect for either
observer (ASB: ANOVA F6,18 = 0.59, p = 0.74; DHB: ANOVAF6,18 = 2.09, p = 0.11).

4.4.4 Results for vertical stimuli

The lack of substantial and consistent differences in sensitivity to patches of different orien-
tations means that the contrast sensitivity findings for just one patch orientation can be gen-
eralised across all patch orientations within the region of interest. Two additional observers

72



a) b)

Figure 4.4: Contrast sensitivity across the cardinalmeridians for all four observers. Ver-
tical log-Gabor stimuli with a spatial frequency of 4 c/deg were used. The black dashed
lines presented here for comparison are the gradients for the vertical (0.5 dB/cycle) and
horizontal (0.33 dB/cycle) meridians reported by Pointer andHess (1989).

(SAW and TSM) performed a subset of conditions from Experiment 1. Their data, for vertical
patches in the horizontal and vertical meridians, can be seen in Figure 4.4 along with the data
from ASB and DHB for those conditions (replotted from Figure 4.3). The sensitivity decline
gradients reported previously by Pointer and Hess (1989) are shown by the dashed lines in
Figure 4.4. A comparison of these lines with the data from this study shows that the rate of
decline found here is considerably steeper than that reported by Pointer andHess (1989).
In Figures 4.3 and 4.4 it appears that the decline in log contrast sensitivity with distance from
fixation is non-linear. For most observers and hemi-meridians there is a steep initial decline
followed by a shallower slope. However the sampling for this dataset is not sufficiently fine to
either support this interpretation over other nonlinear declines, or to pin down the location of
the transition between these two slopes (the “knee-point”, see theModelling section) beyond
placing it within the first 18 cycles (4.5 degrees). The shape of the decline, the location of the
knee-point, and whether the position of the transition is based on periods of the stimulus or
absolute position on the retina will be investigated in the results from Experiments 2 and 3.

4.5 Results from Experiment 2
4.5.1 Finely-spacedmapping of contrast sensitivity
Experiment 2was conducted in order to determine the location of the transition between the
two stages of the bilinear decline in log contrast sensitivity. A subset of the conditions of Ex-
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Figure 4.5: Fine-positioning data from Experiment 2 (triangles), plotted with the data
from Experiment 1 (circles). The data presented here are averaged across the four ob-
servers (ASB, DHB, SAW and TSM), and the four panels are fitted simultaneously with
the eight-parameter witch’s hat bilinear model (see Modelling section). Parameters for
the model fit shown here are provided in Table 4.4. The dotted lines extrapolate the ini-
tial (m1) decline.

periment 1 were repeated with finer sampling. A vertical stimulus orientation was used on
just the horizontal and vertical meridians and the eccentricities weremore closely spaced (0 -
9 cycles in intervals of 1.5 cycles). Thefixation and target location circleswere replacedby two
flanking pairs of dots, as continuing the use of circles would result in them overlapping in the
conditionswhere the targetwasnearfixation. This also required thepair of dots tobeoriented
horizontally when the vertical meridian was being tested, and vertically in the conditions that
tested the horizontal meridian. This experiment was performed by all four observers.
The results from Experiment 2 are shown in Figure 4.5 (triangles), along with a subset of the
data from Experiment 1 (circles). The model fits will be addressed in a later section. The data
shown here are averaged across all four observers. There is a strong agreement between
the data from this experiment and that from Experiment 1, despite the differences between
the two in terms of how fixation was managed. Figure 4.5 shows that the decline in contrast
sensitivity is linear out to approximately 9 cycles, and after this point becomes more shallow
(compare the data to the dotted lines which extrapolate the initial decline along each hemi-
meridian). The location of this knee-point is investigated in themodelling section below.
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4.6 Results from Experiment 3

4.6.1 Effects of spatial frequency

Experiments 1 and 2 provide evidence that the decline in log contrast sensitivity is bilinear,
with the transition between the initial sleep and subsequent shallow declines occurring at a
knee-point. As these two experiments only used stimuli of one spatial frequency however it is
not possible todetermine fromtheir resultswhether the locationof this kneepoint is absolute,
orwhether it depends on the scale of the stimulus. For thefirst case, the kneepointmight have
afixed location indegreesof visual angle (possibly basedon retinal anatomy, seeSection4.7.6),
for the second case it may be a fixed number of stimulus carrier cycles (“scale invariant”).
Experiment 3was designed to investigate the relationship between the shape of the decline in
sensitivity and the spatial frequency of the target. It was conducted based on a subset of the
conditions from Experiment 1, using horizontal log-Gabor patches of six spatial frequencies
(0.7, 1, 1.4, 2, 2.8 and 4 c/deg) surrounded by continually visible circles to indicate their posi-
tion. The 180◦ (inferior) hemimeridianwas sampled at twice the frequency as in Experiment 1
(i.e. at 0 to 18 cycles in intervals of 3 cycles).
The results from Experiment 3 are shown in Figure 4.6 (the same data are plotted in the two
columns against different x-axes). In agreement with Pointer and Hess (1989) the slopes ap-
pear parallel when eccentricity is expressed in stimulus carrier cycles (left column) but diverge
when expressed in degrees of visual angle (right column), and the observers are less sensitive
to the higher spatial frequencies than to the lower spatial frequencies. It appears from Fig-
ure 4.6 that the knee point has an eccentricity which is fixed in terms of being a constant num-
ber of carrier cycles from fixation. This, and the fitting of themodel curves, is consideredmore
closely in theModelling section below.

4.7 Modelling

4.7.1 Bilinearmodel equations

The data shown in Experiments 1 to 3 appear to have a decline in log sensitivity which is bilin-
ear. A function of this shape can be defined as

S = − log10

(
10m1E

10(m1−m2)ν + 10(m1−m2)E

)
+K, (4.1)

where S is the contrast sensitivity (expressed in dB) and E is the eccentricity expressed in
either degrees of visual angle or in stimulus carrier cycles (e.g. compare the two columns in
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Figure 4.6: Contrast sensitivity decline data from Experiment 3 for six different spatial
frequencies (indicated by their different symbols in the legend). Data are presented for
the observers three ASB, DHB and SAW in separate rows. The two columns show the
same contrast sensitivity data plotted against eccentricity expressed in stimulus carrier
cycles on the left (panels a, c and e), and in degrees of visual angle on the right (panels
b, d and f). The solid curves are witch’s hat bilinear model fits to the data (seeModelling
section). The parameters for these fits are provided in Table 4.6. The grey dashed lines
show the positions of the fitted knee points (ν) and extrapolate the initial decline (with a
negative gradient ofm1).
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Figure 4.6). The free parameters are m1 and m2 which describe the slopes of the first and
the second limbs of the bilinear function respectively (they are the gradients of the negative
slopes, in dB per unit of eccentricity), ν which controls the location of the knee point (in the
same units thatE is expressed in) andK which controls the vertical offset of the entire func-
tion. For convenience I transfer the degree of freedom fromK to k2, whereK = k1 + k2 and

k1 = log10

(
1

10(m1−m2)ν + 1

)
. (4.2)

Using k2 as the vertical offset parameter in this way is useful because that free parameter is
then the sensitivity of the observer to a stimulus presented at fixation, expressed in dB re 1%.
Apeculiar propertyofEquation4.1 is that themeaningsof them1 andm2 values switcharound
depending on which of the two is larger. The larger value will control the slope of the initial
steeper slope, and the smaller will control the slope of the subsequent decline. This can be
demonstrated by differentiating the function, revealing that

dS

dE
= −m110

m1ν+m2E +m210
m2ν+m1E

10m1ν+m2E + 10m2ν+m1E
. (4.3)

A function that allowed the meaning of the parameters to switch around in this way could
cause problems in fitting the models to the data. For this reason, the values ofm1 andm2 are
constrained such thatm1 ≥ m2.
It was desirable to compare the “concave” bilinear function (Equation 4.1) against a “convex”
bilinear function (i.e. one that flexed in the opposite direction, with an initial shallower slope
followed by a steeper slope). Equations 4.1 and 4.2 can bemodified to produce such a function
where

S = log10

(
10−m1E

10−(m1−m2)ν + 10−(m1−m2)E

)
+K, (4.4)

and
k1 = − log10

(
1

10−(m1−m2)ν + 1

)
. (4.5)

For Equations 4.4 and 4.5,m1 andm2 are constrained such thatm1 ≤ m2. This is necessary
to simplify the fitting for the same reasons as given above for the convex bilinear function.
Radial interpolation of the convex (Equations 4.1 and 4.2) and concave (Equations 4.4 and 4.5)
bilinear functions produces surfaces that have the three-dimensional shape of a witch’s hat
(shown in Figure 4.14) and a Samurai hat respectively.

4.7.2 Bilinearmodel comparison

Thedata from the threemain experiments and the two control experiments (“target central on
monitor” and “equipment swap”) were fitted by the two different bilinear functions inMATLAB
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Figure 4.7: Comparison of the quality of the fits to the data provided by using the con-
cave witch hat vs. the convex Samurai hat bilinear functions. Data are shown from
the three main experiments and the two control experiments, with each hemi-meridian
from each dataset being fitted independently by both models (each with four free pa-
rameters). The RMS errors from the two fits are plotted against each other in this scat-
ter plot. For the purposes of presentation here, RMS errors larger than 3 dBwere set to
3 dB (altering the position of a single data point so that it appears on the graph). The his-
togram shows the distribution of the differences between the witch’s hat and Samurai
hat model RMS errors, using the same colour code as the scatter plot.

using the downhill simplexmethod (see Section3.7). TheRMSerrors from thesefitswere then
compared in order to evaluate the goodness of the fit for eachmodel. The data supplied to the
fitting algorithm were from a single patch orientation on a single hemi-meridian in each case,
and they were fitted independently with the four free parameters:m1,m2, ν and k2.
The comparison of the RMS errors is shown in Figure 4.7. If the decline in sensitivity were lin-
ear, then it would be expected that the fits from the two bilinear functions in each case would
be identical (because for a linear fitm1 = m2), as would the RMS errors. This would result in
the points on the graph falling on the line y = x. For those cases where one fit is superior to
the other the pointswill either lie to the left of that line (when thefit from the concave “witch’s
hat” fit is superior) or to the right of that line (if the fit from the convex “Samurai hat” fit is su-
perior). In most cases (71 out of 76) the data were better fit by the witch’s hat function than
by the Samurai hat function. Performing a sign test for each experiment showed that this ad-
vantage was highly significant for the three main experiments (p < 0.001), and significant for
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the control experiment where sufficient data had been gather for it to be so (p = 0.031 for the
fixation control, p = 0.125 for the equipment control).

4.7.3 Determining the number of necessarymodel parameters

Model description (all include global k2 parameter) Free param. RMSe
(dB)

AIC
Separatem1,m2 and ν for each direction. 13 0.38 -13.4
Separate verticalm1,m2 and ν , combined for horizontals. 10 0.40 -17.7
Combinedm1,m2 and ν for horizontals and for verticals. 7 0.45 -19.0
Globalm1,m2 and ν . 4 0.69 -7.5
Combinedm1 andm2 for horizontals, global ν . 8 0.40 -21.2
Table 4.3: Number of parameters, RMSerror, andAkaike’s InformationCriterion for five
different versions of the witch’s hat bilinear model which were used to fit the combined
data fromExperiments1and2 (datawere averagedacross the four observers). Thevari-
ant in thebottomrow is thepreferredmodel (it has the lowestAIC score), its parameters
are given in Table 4.4 and it is shown fitted to the data in Figure 4.5.

The bilinear function (Equation 4.1) provides a good fit to data from individual meridians (Fig-
ure 4.7), it is likely however that there are some model parameters that can be generalised
across meridians. The most obvious example of this is the k2 parameter, which must by def-
inition be the same for all meridians (as it is the sensitivity at fixation). Other candidates for
parameterswhichmight be collapsed acrossmeridianswould be those thatmight bemirrored
(i.e. the left and right hemi-meridians could have the same sensitivity declines). Reducing the
number of parameters in this way has a practical benefit, as it allows a surface describing the
attenuation across the central visual field to be derived from fewer data points.
Fivemodels investigating potential symmetrieswere designed and are listed in Table 4.3, each
having different numbers of free parameters. Allowing the parameters (excluding k2) to vary
freely in every direction produced the most irregular surface (13 parameters), whereas fix-
ing the decline to be the same in every direction produced a surface which was rotationally
symmetric (4 parameters). These models were fitted to the data from Experiments 1 and 2
(averaged across observers) using a simplex algorithm, and the RMS errors were compared in
order to judge the models against each other. The assessments of the model were based not
on whichmodel fit closest to the data, but on which was themost parsimonious (i.e. balancing
the quality of the fit provided against the number of free parameters). Thiswas assessed using
Akaike’s Information Criterion (AIC; Akaike, 1974; Peirce, 2007) which is defined as

AIC = n log(RMSe) + 2p, (4.6)
where n is the number of data points, RMSe is the error of the model fit to the data, and p is
the number of model parameters. The preferredmodel is the onewith the lowest AIC score.
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From Table 4.3 it can be seen that the eight-parameter model had the lowest AIC score. This
model has a fixed knee point position and symmetrical horizontal declines, but asymmetrical
superior and inferior declines. This choice was also supported by nested-model hypothesis
testing (F-statistic,with significance set atp = 0.05). TheRMSerrorof thisfit is onlymarginally
(0.02 dB) worse than that provided by fitting eachmeridian separately (top row of Table 4.3).

Superior Inferior Horizontal Global
Observer m1 m2 m1 m2 m1 m2 ν k2

ASB 1.05 0.40 1.05 0.21 0.76 0.31 8.0 8.6
DHB 1.05 0.56 1.31 0.27 1.00 0.47 8.2 12.6
SAW 1.01 0.49 1.09 0.33 0.92 0.44 10.5 12.2
TSM 1.38 0.49 1.35 0.28 1.22 0.45 7.9 8.5
Average 1.12 0.50 1.20 0.28 0.97 0.43 8.5 10.5

Table 4.4: Parameters obtained from fitting the preferred (eight-parameter) witch’s hat
bilinearmodel (see Table 4.3) to the combined data fromExperiments 1 and 2. Different
rows show the parameters given by fitting to each observer’s data individually, and to
the average of the observers’ data.

The eight-parameter model fits to the combined data from Experiments 1 and 2 (averaged
across all observers) are shown in Figure 4.5. Table 4.4 shows the parameters for these fits,
and for fitting the samemodel to the individual observer data. The global ν parameter for this
model means that the knee point location is constant across different meridians (at 8.5 cycles
for the averaged observer). Fitting where ν was allowed to vary with them1 andm2 param-
eters (i.e. different knee point locations were permitted for superior, inferior and horizontal)
neither improved the quality of the fit nor changed the value of the fitted ν parameter.

4.7.4 Radial interpolation

The bilinear model has been shown to provide a good fit to the experimental data collected
along the cardinal meridians, but the desired outcome for this series of experiments is to gen-
erate a map of contrast sensitivity across the central visual field. Abrams et al. (2012) found
the sensitivity along diagonal (“intercardinal”) meridians to be intermediate between the sen-
sitivities at the cardinalmeridians. This suggests that predictions for sensitivity along diagonal
meridians can be made via interpolation between the fitted cardinal meridians to create a 2D
attenuation surface. This can be achieved by varying the fitted bilinear model parameters el-
liptically with polar angle (seeMATLAB code in Section B.2).
The radial interpolation method was tested using the results from Experiment 1. An eight-
parameter bilinear fit was made to the data from the cardinal meridians (horizontal and ver-
tical). These fits were then interpolated to produce predictions for the two diagonal merid-
ians. A comparison of this interpolated prediction against a direct fit to the data (shown in
Figure 4.8, see also the caption to this figure) provides evidence that this method is valid.
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Figure 4.8: A comparison of a direct fit to the data collected along diagonal meridians in
Experiment 1 against a prediction made by interpolating between the fitted horizontal
and vertical meridians. The left and right plots show the data for ASB and DHB respec-
tively. Thedirectfit is providedbyfitting eachdiagonalmeridian individuallywith a four-
parameter witch’s hat bilinear function, allowing the gradients (m1 and m2) and kneepoint position (ν) to vary but fixing the vertical offset (k2) across all four hemi-meridians(giving 13 free parameters per plot). The interpolated fit was created by generating a
surface using just the horizontal and vertical data, to then extract the radially interpo-
lateddiagonal values fromthat surface (no freeparameters). ForASB theRMSerrors for
the direct and interpolated fits were 0.03 and 0.63 dB respectively. For DHB the RMS
errors were 0.09 and 0.96 dB. The dotted grey lines are extrapolations of the gradient
of the initial decline from the direct fit (m1).
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4.7.5 Scale invariance

Previous studies have found the decline in contrast sensitivity to be scale invariant within
broad spatial frequency ranges. Pointer and Hess (1989) found that, for spatial frequencies
of 1.6 to 12.8 c/deg, the log-sensitivity versus eccentricity functionswere vertical translations
of each other when eccentricity was expressed in stimulus carrier cycles. Although this may
be true for the linear declines in log sensitivity reported previously, it is possible that themore
complex bilinear decline reported here violates this scale invariance. For example it could be
that the knee point location (ν), rather than being located at an eccentricity which is constant
when expressed in carrier cycles (8.5 cycles for the fit to the averaged data), is located at a
constant position on the retina (2.125 degrees).
Parameter RMS error for model variant (dB)
ν Fix ν in cycles Fix ν in degrees
m1 m1 dB/cycle m1 dB/degree m1 dB/cycle m1 dB/degree
m2 m2 cy m2 deg m2 cy m2 deg m2 cy m2 deg m2 cy m2 deg
ASB 0.740 0.827 1.143 2.258 1.099 1.726 1.252 2.359
DHB 1.157 1.185 0.977 1.877 0.757 2.142 1.007 1.938
SAW 0.679 1.322 1.744 3.000 1.233 9.380 1.445 3.272
Average 0.594 1.238 0.864 2.290 0.745 1.784 0.981 2.422
Table 4.5: RMS errors for the 2x2x2 factorial model analysis. This covers each possible
combination of the twomethods of scaling the model parameters (i.e. whether they are
fixed across spatial frequency in terms of carrier cycles or in terms of visual angle). Each
model variant was fit to individual datasets from Experiment 3 for each observer (the
models in the leftmost and rightmost columnsof this table are shown in the left and right
columns of Figure 4.6 respectively), and to data averaged across the three observers.
Themodels were fit to the data from all spatial frequencies simultaneously in each case.
For space reasons, the “dB/cycle” and “dB/degree” units in the row of the table defining
the behaviour of them2 parameter are abbreviated to “cy” and “deg” respectively.

The data fromExperiment 3werefittedwith several different variations of the bilinearmodel.
This tested each combination of a parameter being fixed in terms of degrees, or in terms of cy-
cles. Doing this for both ν (testingwhether the location of the knee point was a constant num-
ber of cycles across spatial frequency or whether its location was a fixed number of degrees
from fixation) and for the slope parametersm1 andm2 (testing whether the gradients of the
decline were a constant number of decibels per cycle or per degree of visual angle) resulted in
a comparison between eight different models which are listed in Table 4.5.
The data for all three observers (and their averaged data) are better fit by a model where all
parameters are defined in cycles rather than in degrees (compare the column on the left of Ta-
ble 4.5 against the rightmost column). For ASB, SAW and the averaged data this fit was also
superior to all of the other combinations. DHB showed a preference to a fit where the knee
point was defined in terms of degrees of visual angle (rather than carrier cycles), with the gra-
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dients still being defined in dB/cycle. The RMS error of the scale invariant fit for DHB is not
much worse than for this preferred model however, so it is concluded that a scale-invariant
description of the contrast sensitivity decline is adequate within the tested range.

Observer Gradients (dB/cycle) Knee (cycles)
m1 m2 ν

ASB 1.14 0.40 7.94
DHB 0.97 0.55 9.85
SAW 2.15 0.63 4.64
Average 1.08 0.40 10.5

Vertical offset k2 (dB) per spatial frequency
0.7 c/deg 1 c/deg 1.4 c/deg 2 c/deg 2.8 c/deg 4 c/deg

ASB -5.40 -3.50 -5.49 -4.89 -8.45 -9.66
DHB -5.94 -6.30 -6.79 -9.18 -11.11 -14.16
SAW -0.73 -1.27 -1.91 -6.21 -5.29 -9.90
Average -4.61 -4.28 -5.32 -7.35 -8.87 -11.82

Table 4.6: Parameters for thewitch’s hat bilinearmodel fits to the data fromExperiment
3 for each observer (plotted in the left column of Figure 4.6) and to the data averaged
across the three observers.

The parameters for the scale invariantfits (i.e. those from the leftmost columnof Table 4.5) are
provided in Table 4.6. These are shown fitted to the data in the left column of Figure 4.6 (the
right column shows fits where parameters were defined in terms of degrees of visual angle).
The parameters for optimal fits for the three observers tested here show greater variability
than was present in the fits to the data from Experiments 1 and 2 (Table 4.4). This is partially
due to the interaction between the gradient parameters and the location of the knee point.
Fixing the position of the knee point for each observer such that it is constrained to be in the
same location as was reported in Table 4.4 provided similar scale invariant fits for a small in-
crease in RMS error (not shown).

4.7.6 Comparisonwith physiology

A scale-invariant decline in contrast sensitivity is in agreement with previous psychophysical
results (Robson&Graham, 1981; Pointer &Hess, 1989). Some previous studies have however
made use of attenuation surfaces based on retinal physiology (e.g. Ahumada&Watson, 2011).
A physiologically-derived model was created in order to investigate whether scale invariance
could be predicted from the decline in photoreceptor density with eccentricity. Cone density
data were extracted from Curcio et al. (1990) and fitted with a polynomial function. This de-
scription of density as a continuous one-dimensional function of eccentricity (Figure 4.9), was
then radially interpolated to create a two dimensional function (d). This densitymapwas used
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Figure 4.9: A description of the decline in cone density (in thousands of cones/mm2)
with eccentricity, derived by fitting a 10th order polynomial to the density data of Cur-
cio et al. (1990). Data were combined over the superior, inferior, nasal and temporal
hemi-meridians. This one-dimensional function is radially interpolated tomake the two-
dimensional function d, used in themodelling here.

to simulate a square cone matrix, after Anderson et al. (1991). A contrast attenuation factor
(a), which is proportional to theNyquist frequency (Andersonet al., 1991;Ahumada&Watson,
2011), was calculated from the cone density as

ai =
√
di. (4.7)

This function was then normalised to have a gain of unity at fixation.
The attenuation surfacederived from the conedensity functionwas incorporated into amodel
that combined responses from individual locations over space in order to predict the relative
sensitivity (presented as the signal-to-noise ratio or SNR) to log-Gabor patches at different
eccentricities (0 - 12 degrees) and spatial frequencies (0.7 - 8.0 c/deg).
The sensitivity predictions were calculated as follows. The response (ri) at each (i) of n loca-
tions is weighted by the attenuation factor for that location (ai). Matching a template to the
expected signal results in these terms being squared in the numerator, after which they are
scaled by the stimulus contrast (c). I assume the signal at each location to be perturbed by in-
dependent Gaussian noise with unit standard deviation. Therefore, the noise is also weighted
by the template. The standard deviation of the noise at each location is squared, and then
these variances are summed and the square root is taken to find the standard deviation of the
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Figure 4.10: Relative contrast sensitivity predicted by the signal-to-noise ratios derived
from Equation 4.9 and the cone density data in Figure 4.9. Eccentricity is plotted in car-
rier cycles in the left column, and in degrees of visual angle in the right column. In the
top row each curve is normalised to the SNR for the 0.7 c/deg patch at fixation. In the
bottom row each curve is normalised to SNR for that curve at fixation.

combined noise. The signal-to-noise ratio (SNR) is therefore calculated as

SNR =

n∑
i=1

(cs2i a
2
i )√

n∑
i=1

(s2i a
2
i )

. (4.8)

Simplifying Equation 4.8 for a contrast of unity and substituting√d for a (Equation 4.7) gives
the equation that I used to create the curves shown in Figure 4.10

SNR =

√√√√ n∑
i=1

(s2i di). (4.9)

The curves in Figure 4.10 are close to parallel when eccentricity is expressed in degrees, but
diverge when it is expressed in carrier cycles. The sensitivity functions expressed against ec-
centricity in carrier cycles are simply those for the case where eccentricity is expressed in de-
grees scaled horizontally by a factor equal to the spatial frequency, these two properties are
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fundamentally incompatible. The separation between the normalised curves in Figure 4.10d
is due to the rounding off of the peaked sensitivity decline function caused by the larger abso-
lute size of the stimuli for the lower spatial frequencies (the effect of using stimuli of any size
in this model is effectively to convolve the sensitivity decline with the stimulus envelope).
The prediction of the attenuation surface based on cone density shown here ismost similar to
the scale invariant result when the spatial frequency of the stimulus is approximately 2 c/deg.
This may account for why previous models that have used an attenuation surface based on
cone density could provide acceptablefits for data from stimuli in that spatial frequency range
(e.g. Ahumada&Watson, 2011). The lack of scale invariance demonstratedwith the cone den-
sity model shown here does not depend critically on either the precise shape of the decline
or how the signal and noise are combined over space. Altering these factors produced similar
behaviour, merely changing the slope or the shape of the scale-dependent decline.

4.8 Further experiments in the periphery

4.8.1 The sensitivity decline from 18 to 62 cycles
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Figure 4.11: Data from two observers (ASB and DHB) showing the decline in con-
trast sensitivity along the 45◦ (upper-right diagonal) hemi-meridian to the four different
patch orientations. The target spatial frequencywas 4 c/deg. These datawere collected
at greater eccentricities than those tested in Experiment 1. The solid grey lines show
linear fits to the most eccentric three data points (those at: 18, 40 and 62 cycles; equiv-
alent to 4.5, 10, and 15.5 degrees).

To reconcile this study with the results of Sasaki et al. (2006) who did find a strong relative
orientation effect, an additional experiment was carried out where more eccentric locations
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along the 45◦ (superior-right diagonal) hemi-meridian were tested (0, 18, 40 and 62 cycles;
equivalent to 0, 4.5, 10 and 15.5 degrees) using larger stimuli to bring the contrast thresholds
for these locations down into ameasurable range (the spatial frequency and orientation band-
widths were halved to 0.8 octaves and±12.5◦ respectively). There is no evident relative ori-
entation effect present in the results (Figure 4.11), which for this hemi-meridian would cause
a higher sensitivity to the right-oblique patches. This is the case even at 15.5 degrees of vi-
sual angle (the eccentricity tested by Sasaki et al., 2006). Sensitivity appears to decrease with
eccentricity in the same manner for all four patch orientations, undergoing a slightly steeper
decline within the first 18 cycles (due to them1 region) and then transitioning to a shallower
slope that continues out to at least 62 cycles (0.33 and 0.31 dB/cycle respectively for the ob-
servers ASB and DHB here). These gradients are slightly shallower than both the directly fit-
tedm2 values (0.49 and0.39dB/cycle) and the interpolatedm2 values (0.41 and0.61dB/cycle)
for this hemi-meridian (shown in Figure 4.8).

4.8.2 Relative orientation effects appear on the horizontal meridian
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Figure 4.12: Data from two observers (ASB and DHB) showing the contrast sensitivity
to the four different patch orientations at an eccentricity of 62 cycles (15.5 degrees),
as a function of hemi-meridian angle. The data for the 45◦ hemi-meridian are replotted
from Figure 4.11.

Additional data were collected at the greatest eccentricity (62 cycles, equivalent to 15.5 de-
grees) for the0◦ and90◦ hemi-meridians (superior-vertical and right-horizontal). The contrast
sensitivity for each patch orientation is plotted as a function of hemi-meridian angle in Fig-
ure 4.12. A relative orientation effect is visible for both observers on the 90◦ hemi-meridian,
as evidenced by large advantage in the detectability of horizontal patches at this location (4.9
and 4.3 dB for observers ASB and DHB respectively). The two other hemi-meridians do not
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show this effect. Testing the 90◦ hemi-meridian at a lesser eccentricity of 40 cycles (10 de-
grees) did not find any advantage of horizontal stimuli over vertical stimuli, indicating that the
relative orientation effect does not appear before this point (i.e. it is restricted to the more
eccentric locations).
It is possible that relative orientation effects for other meridians might also appear at greater
eccentricities than those tested here, however for the purpose of this study (seeking to char-
acterise the central visual field) the results indicate that these effects can be ignored. It is
also not possible to conclude from these results whether the effect is caused by neural fac-
tors or if it is due to optical aberrations in the eye. An uncorrected cylindrical refractive error
in the periphery would selectively affect the detection of stimuli with particular orientations,
dependent on the axis of the cylinder. This confound was ruled out as an explanation of the
resolution effects found byRovamo et al. (1982), by attempting to correct any possible refrac-
tive error with cylinder lenses. The previous study that reported a contrast sensitivity effect
however did not control for these optical factors (Sasaki et al., 2006).

4.9 Discussion

4.9.1 Bilinearity

Rather than the linear decline in log contrast sensitivitywith eccentricity described in the pre-
vious literature, it is demonstrated here that the shape of the decline is bilinearwithin the cen-
tral visual field (for stimuli within the spatial frequency range 0.7 - 4 c/deg). The initial slope
of this decline (0.97 - 1.20 dB/cycle) is more than twice as steep as slopes reported previously
for linear declines (0.33 - 0.50 dB/cycle in Pointer & Hess, 1989). This indicates that stimuli
shown in the centre of the visual field are subject to an attenuation which is more severe than
would be suggested fromprevious results. Thebilinear decline transitions to a shallower slope
at a knee-pointwhich is placed at approximately 8.5 cycles, afterwhich it has a gradient of less
than half its original value (0.28 - 0.50 dB/cycle).
The rate of decline in contrast sensitivity after the knee point is much closer to the classical
results (e.g. Pointer &Hess, 1989), which is likely due to those studies measuring over a wider
area and therefore biasing their results to the secondary slope. There is some evidence of
bilinearity in the data of Pointer and Hess (1989), however their relatively sparse sampling of
eccentricities acts to obscure this feature. It is also possible that the larger stimulus sizes used
in previous studies would act to blur the features of the decline. In agreement with previous
results however, the data collected from awider range of eccentricities (shown in Figure 4.11)
suggest that after the knee point the decline continues at roughly the m2 gradient out to at
least 62 cycles.
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4.9.2 Scale invariance

The scale-invariant decline reported here is consistent with previous results (e.g. Robson &
Graham, 1981; Pointer & Hess, 1989), though a scale invariant decline in contrast sensitivity
can not be easily derived from retinal physiology (Section 4.7.6). It is unclear how the scale in-
variance I find here can be accounted for (though see Section 4.9.5), however the attenuation
surface described here is accurate to the psychophysical data which is the goal of this study.

4.9.3 Orientation effects

Theexperiments that investigated theobliqueeffect foundonly small and inconsistent results.
The relative orientation effect found at 62 cycles confirms the results of Sasaki et al. (2006),
though the experiments here indicate that strong effects are confined to the more eccentric
locations (>40cycles). The absenceof orientation effects (relative or absolute)within the cen-
tral visual field indicates that these are not relevant to the purposes of this study. This means
that amap of the sensitivity in this area can be derived using stimuli of a single orientation.

4.9.4 Meridional anisotropies and the attenuation surface

The findings from this study confirm the twomeridional anisotropies reported in the previous
literature (the “horizontal-vertical” and “superior-inferior” anisotropies reviewed by Abrams
et al., 2012). The decline in sensitivity along the horizontal meridian is shallower than that
along the vertical meridian (in agreement with Pointer & Hess, 1989). The relative steep-
ness of the initial (m1) decline along the superior and inferior hemi-meridians varied across
the observers. For ASB and SAW the slopes of the declinewere roughly equal for the superior
and inferior hemi-meridians; whereas for DHB, TSM and the averaged data the initial decline
along the inferior hemi-meridianwas steeper than that along the superior hemi-meridian. For
all four observers however (and for their averaged data) the second (m2) limb of the bilinear
function was shallower along the inferior than along the superior hemi-meridian. This is in
agreement with the previously reported “superior-inferior” anisotropy (Abrams et al., 2012).
The success of interpolating the fits to the cardinal meridians to predict the sensitivity along
the diagonal meridians indicates that it is only necessary to collect data along the horizontal
and vertical meridians to generate an attenuation surface. The parameters being mirrored
across the horizontal meridian means that the amount of data collected along this meridian
can be halved whilst still providing a prediction with the same level of confidence for this
meridian as for theverticalmeridian (by collapsingdata across thehorizontal hemi-meridians).
The scale-invariance of the result within the frequency range tested (0.7 - 4 c/deg) allows an
attenuation surfacemeasured for one spatial frequency to be generalised to other spatial fre-
quencies within this range (when eccentricities are expressed in stimulus carrier cycles).
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Figure 4.13: A contour map of contrast sensitivity within the central 18 cycles of the
visual field. The numbers labelling the contours indicate the amount of contrast attenu-
ation (in dB). This map is based on a radial interpolation of the model fit to the average
data in the bottom row of Table 4.4.

The witch’s hat generated by radially interpolating the fits to the averaged data from Experi-
ment 2 (the bottom row of Table 4.4) is shown as a contour plot in Figure 4.13 and as a three-
dimensional surface (two spatial dimensions and contrast sensitivity) in Figure 4.14. TheMAT-
LAB code for producing the attenuation surface is provided in Section B.2 of Appendix B. This
attenuation surface gives a more detailed account of the inhomogeneity in contrast sensitiv-
ity within the central visual field than was previously available. It is useful both as a stage in
a model of spatial vision (see Section 5.2.1) and to transform stimuli before presentation in
order tomake them equally detectable at each point in space (see Chapters 6 and 7).

4.9.5 Witch hat compensation

Other studies presented in this thesis (Chapters 6 and 7) provide a proof of concept that ap-
plying witch hat compensation for the visual field inhomogeneity can factor out the effects of
eccentricity on effective stimulus contrast for area summation tasks. Previous attempts have
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Figure 4.14: The same map of the contrast sensitivity inhomogeneity as that shown in
Figure 4.13, displayed as a three dimensional surface. It is from the shape of this surface
that the “witch’s hat” bilinear model draws its name.

been made to equalise performance across the visual field by increasing the size of a stimu-
lus with eccentricity, either based on the cortical magnification factor (Daniel &Whitteridge,
1961; Rovamoet al., 1978; Rovamo&Virsu, 1979; Virsu&Rovamo, 1979) or on empirical psy-
chophysical results (Watson, 1987). Rovamo and Virsu (1979) applied this M-scaling method
and successfully brought contrast sensitivity functions measured in different regions of the
visual field into a reasonable correspondence, however they fell short of equalising contrast
thresholds (by a factor of 2). Several other studies have also shown that size scaling alone
does not equalise performance (for reviews see García-Pérez & Sierra-Vázquez, 1996; Stras-
burger et al., 2011). More recentwork has overcome these failings by building contrast scaling
into the compensation alongside size scaling (Mäkelä, Näsänen, Rovamo, & Melmoth, 2001;
Rovamo &Melmoth, 2002; Melmoth & Rovamo, 2003). For the contrast detection threshold
experiments conducted in this thesis, contrast scaling alone appears to be sufficient. It is pos-
sible however that this could be replaced by a combination of contrast and size scaling.
Although the attenuation surface provides an accurate description of how the empirical con-
trast sensitivity varies with eccentricity, the functional properties of the visual system that it
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models are open to interpretation. The simplest architecture implied by the summation mod-
els used in this thesis (see Chapter 5) is that of a visual field tiled by a regular square array of
detectors. In this case the function of the witch’s hat surface as applied in the model is to in-
crease the gain of the less eccentric detectors relative to that of the eccentric detectors (an al-
ternative account would be that the internal noise becomes greater with eccentricity). Based
on what is known about the cortical magnification factor in the mapping of the visual field by
the brain however, the assumption of a regular array of detectors with equal density spanning
the visual field seems unlikely.
A more likely account of the witch’s hat attenuation surface consistent with the idea of an in-
homogeneousmappingof the visualfieldwouldbe if detectors tuned toeach spatial frequency
decreased in densitywith eccentricity (with a common rule based on eccentricity in cycles, see
Section 4.7.5). If detectors were affected by independent Gaussian noise, each locationwould
have sensitivity proportional to the square root of the number of detectors at that location.
The decline in performance with eccentricity could then be accounted for by a concomitant
reduction in the density of detectors tuned to the stimulus. Under this account, the attenua-
tion surface as applied in the modelling here would simply be a shorthand for a more compli-
cated process of performing spatial transformations on the stimulus to decrease the sampling
density in the periphery.
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CHAPTER 5

Summationmodelling

5.1 Introduction

5.1.1 Analytic and stochastic models of area summation

This chapter presents general models developed to account for the summation of contrast
over area. There are three types of model described here: analytic, stochastic and analytic
approximation. Analytic models feature a closed-form solution for the detection threshold
of a stimulus based on the signal-to-noise ratio (SNR; see Section 3.2.6) at the decision stage.
Stochastic models simulate a visual system with the modelled architecture and behaviour re-
sponding to the experimental task, and analyse the data from these simulations to generate
model predictions. Analytic approximations feature closed-formshorthands that approximate
the behaviour of models for which the analytic solution would be difficult or impossible to de-
rive. In the application of these models in future chapters only analytic versions and analytic
approximations are used where possible, however stochastic versions were developed along-
side these to ensure their behaviour was identical and to model conditions for which no ana-
lytic solution or approximation was available.

5.1.2 Fitting summationmodels to data

Where predictions from summation models are presented in this thesis they are fitted to the
data to minimise the RMS error of the fit using a Simplex algorithm (see Section 3.7). The fits
are performed by allowing the model prediction curves to translate vertically along the log-
threshold axis. For all models, this corresponds to a global change in the sensitivity of the
modelled visual system (i.e. the ratio between the magnitude of the input signal and the stan-
dard deviation of the limiting noise). In this sense the parameter that varies in order to fit the
models to the data does not reflect any changes in the summation behaviour of thosemodels.
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5.2 Model stages

5.2.1 Stimulus attenuated according to contrast sensitivity inhomogeneity

a) Stimulus image b) Attenuation surface c) Attenuated stimulus

Figure 5.1: Multiplication of the “Battenberg” stimulus in panel a) (see Section 3.4.6) by
the witch’s hat attenuation surface in panel b) (see Section 4.9.4) gives the attenuated
stimulus in panel c). The contrast of the image decreases from the centre outward at the
same rate as the decline in contrast sensitivity in human vision.

In all of themodels featured here, the contrast of the stimulus image is first adjusted to reflect
the variation in sensitivity across the visual field (see Figure 5.1). A witch’s hat attenuation
surface derived from empirical measurements (see Section 4.9.4) is generated for the appro-
priate observer, fixation location, and spatial frequency. This is a 2D matrix the same size as
the stimulus image with the value at each location being the gain of the input stage of the vi-
sual system at that location relative to that at fixation (giving a gain of unity at fixation, and
below that elsewhere). This attenuation surface (A) is multiplied by the stimulus image (S) to
provide the attenuated image (Satt), which is used as the input for the next stage of themodel

Satt[x, y] = S[x, y] ·A[x, y]. (5.1)

5.2.2 Spatial filtering by log-Gabor patches

The next stage is the spatial filtering of the image in analogy to the process performed by the
visual system up to the simple cell stage in V1 (see Section 2.3.1). Where stimuli were pre-
sented with a single target orientation and spatial frequency (as is the case for all of the con-
trast detection studiespresentedhere) this ismodelledasoccurringwithin a singleorientation-
and frequency-tuned channel (see Section 2.3.2). This is implemented by convolving the stim-
ulus images with a log-Gabor patch.
The bandwidths of the log-Gabors used here (±25◦ orientation, 1.6 octaves spatial frequency)
were consistent with those used in previous summation models, chosen there to reflect the
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a) Sin log-Gabor filtered b) Cos log-Gabor filtered c) Complex

Figure 5.2: The output of filtering the attenuated stimulus (Figure 5.1c) with a sine-
phase log-Gabor (a) and a cosine-phase log-Gabor (b). The simulated complex cell re-
sponse calculated by taking the Pythagorean sum of the sine and cosine responses is
shown in c). Inset in a) andb) are the sine-phase (Lsin) and cosine-phase (Lcos) log-Gaborsused to perform the filtering.

bandwidths found in simple cells (Meese & Summers, 2007; Meese, 2010). The output of this
stage is an image where the intensity of each pixel reflects the activity of a model simple cell
(also referred to as a “detector”) at that location (see Figure 5.2). The spatial frequency, orien-
tation, and phase tuning is defined by the the properties of the log-Gabor filter element.
The responses of the sin-phase log-Gabor filter elements (Ssin) are calculated by convolving
the attenuated stimulus image (Satt) with a sin-phase log-Gabor (Lsin)

Ssin = Satt ∗ Lsin, (5.2)
the cosine-phase responses (Scos) are calculated using a cosine-phase log-Gabor (Lcos)

Scos = Satt ∗ Lcos, (5.3)
and the complex response (Scomplex) is calculated from the Pythagorean sum of the sine and
cosine responses

Scomplex[x, y] =
√

Ssin[x, y]2 + Scos[x, y]2. (5.4)
For the summation modelling presented here there is little to no difference in predictions
made bymodels with sine phase, cosine phase, or complex responses from the filtering stage.
To perform the convolution, the Fourier transform of the attenuated image is multiplied by
the Fourier transform of a log-Gabor patch. The output of this process is then converted
back to the spatial domain to give the filtered image. Summation within the simulated recep-
tive fields of this stage bypasses any subsequent nonlinearities. This within-filter summation
causesmodels to behave as if theywere linear for stimuli which are smaller than the filter ele-
ments, and increases the predicted summation for stimuli of a similar size to thefilter element.
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5.2.3 Rectification and nonlinear transduction of filter outputs

a) Rectified filter output b) Squared filter output

Figure 5.3: The rectified output from filtering with a sin-phase log-Gabor patch (Fig-
ure 5.2) is shown in panel a). The image in panel b) shows the effect of squaring the value
at each pixel (representing the nonlinear transduction of filter outputs).

Thefilter outputs are rectified (Srect) by taking theabsolutevalueof eachpixel (seeFigure5.3a)

Srect[x, y] = |Ssin[x, y]|. (5.5)
This represents the unsignedmagnitude of the filter outputs.
Thepixel values representing thefilter outputsmay thenundergononlinear transduction (Strans)
by raising them to a powerm (see Figure 5.3b)

Strans[x, y] = (Srect[x, y])m. (5.6)

5.2.4 Pixelwise additive Gaussian noise

The output of each filter element is perturbed by internal noise. This is modelled as indepen-
dent additive Gaussian noise with a mean of zero and a constant variance. The assumption of
Gaussian noise is made in accordance with the Central Limit Theorem (Peterson et al., 1954;
Tyler & Chen, 2000). In stochastic models (see Figure 5.4a), this is simulated and added to the
transduced stimulus image to give the noisy filter outputs (Snoisy)

Snoisy[x, y] = Strans[x, y] +N(µ, σ2), (5.7)
where N(µ, σ2) is a sample from Gaussian noise with mean µ and standard deviation σ. For
analytic models (see Figure 5.4b), the noise is represented in the calculations by a separate
matrix (G) containing the standarddeviations of the noise for the output of eachfilter element

G[x, y] = σ. (5.8)
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a) Stochastic noise b) Analytic representation of noise

Figure5.4: Noise is representeddifferently in the two typesofmodel. In stochasticmod-
els (a) independent Gaussian noise is added to the pixel value at each location in the fil-
tered stimulus image. In analyticmodels (b) thenoise is representedas a separatematrix
containing the standard deviations of the noise for each pixel in the filtered stimulus.

The only model architectures considered here are those where the dominant source of noise
comesafter thenonlinear transduction stage. According toBirdsall’s theorem, dominantnoise
placed before transduction linearises the transducer. This makes the behaviour of such a sys-
tem equivalent to that of a systemwith a linear transducer (though see Appendix A).

5.2.5 Templatematching

a) No template b) Ideal template c) Stimulus extent

Figure 5.5: Different template strategies are shown here, demonstrated using the
stochastic model. Panel a) shows the noisy stimulus image with no template applied.
Panel b) shows the image multiplied by a template which is matched to the stimulus ex-
actly (an “ideal” template). Panel c) shows the image multiplied by a template that is
matched to the stimulus extent (without the “Battenberg”modulation). In both b) and c)
the weighting of the templates declines with eccentricity in proportion to the expected
signal to noise ratio resulting from the attenuation surface.

An observer behaving with knowledge of the expected stimulus could choose to improve the
signal-to-noise ratio at the decision stage by combining a weighted input from each detector,
according to a template. The “ideal” template would be matched exactly to the stimulus (see
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Figure 5.5b). The output of this stage (Stemp) is obtained by multiplying the noisy stimulus by
the attenuated, filtered, and transduced stimulus (Strans) in the stochastic model

Stemp[x, y] = Snoisy[x, y] · Strans[x, y], (5.9)
whilst in the analytic model the template is applied both to the signal matrix and to the stan-
dard deviations of the pixelwise noise

Stemp[x, y] = Strans[x, y] · Strans[x, y], (5.10)

Gtemp[x, y] = G[x, y] · Strans[x, y]. (5.11)

Models with a template matched to the stimulus envelope make similar predictions to those
madebyamodelwith the idealmatched template. Thesematchedandenvelope templateswill
both include the attenuation introduced by the visualfield inhomogeneity in contrast sensitiv-
ity. Input from more eccentric locations is weighted to have less of an effect on the decision
than the input from the fovea, in proportion to the expected signal to noise ratio. Templates
which do not feature this variation in weighting over their surface due to the attenuation are
referred to as “flat” in this thesis. Where the template is matched to the extent of the stimu-
lus envelope (e.g. is a continuous square or circle, even when the stimulus contains holes), the
noise remains in the areas within the stimulus that do not feature signal (Figure 5.5c).

5.2.6 Spatial summation and calculation of the detection threshold

The signals from each location in the stimulus image are combined, either through a linear
sum of the pixel values or a max operation over the image. For stochastic models these val-
ues are then provided to the decision mechanism. In a simulation of a 2IFC experiment the
output from one interval will then be compared against the output from another interval in
order to choose the one most likely to contain the stimulus. Repeating this many times with
signals of different strengths allows an experiment to be simulated, the results of which give
themodel prediction (threshold contrast is found by fitting psychometric functions to the sim-
ulated data). For analyticmodels the predictions are derived by calculating the signal-to-noise
ratio at the decision stage (see Section 5.3).
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5.3 Analytic predictions formodels involving linear summation

5.3.1 Building the summationmodels

This section will use the component stages outlined above to develop four analytic summa-
tion models. In each case the detection thresholds predicted by the models can be found by a
single equation operating over the attenuated, filtered, and transduced stimulus image Srect.
Rearranging and simplifying this equation provides a prediction of how threshold should vary
with stimulus area if the stimulus has a contrast profile which is effectively “flat”. In each case
the models predict a relationship of the form cthresh ∝ 1

a√n , which corresponds to a straight
line with a gradient of−a on log-log axes.

5.3.2 Linear summationmodel

σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ

∑
Witch hat 

attenuation Spatial filtering
Additive 

Gaussian noise Summation

sin cos

sfbw: 1.6 oct.
oribw: ±25°

Rectification

Figure 5.6: Architecture of the linear summationmodel.

Tofind the SNRat the decisionmechanism for amodel involving the linear sumover the image,
the signal level of the detector at each monitored location is added. The combined signal is
thendividedby the standarddeviation of the combinednoise from these detectors (calculated
by summing thevariances). For the linear summationmodel (seeFigure5.6) this takes the form

SNR =

∑
x,y

(sx,y)√∑
x,y

(σ2x,y)
, (5.12)

where sx,y and σx,y are the pixel values at those locations in Srect andG.
For ease of presentation this 2D matrix of responses is reduced to a single dimension (with
each detector being the ith in a list of n) in subsequent equations

SNR =

n∑
i=1

(c · si)√
n∑
i=1

(σ2i )

. (5.13)

99



As there is no template being applied to the stimulus, the total level of noise (σtot) remains con-
stant for any stimulus size. The stimulus contrast is a constant factor for the whole stimulus,
so this can be factored out of the summation term. This allows us to simplify to

SNR =

c ·
n∑
i=1

(si)

σtot
. (5.14)

The contrast that gives a signal-to-noise ratio of 1 (which is taken to be the detection thresh-
old) can then be found by solving for c

cthresh =
σtot
n∑
i=1

(si)

, (5.15)

this is the general version of the linear summationmodel. For a constant σtot of 1 and si of s
cthresh =

1

n · s, (5.16)
so for any s

cthresh ∝
1

n
. (5.17)

This means that for a stimulus with a flat contrast profile at the summation stage, the contrast
detection threshold should decrease in proportion to the area of the stimulus. Otherwise, the
detection thresholdwill decrease at a rate that can be calculated fromEquation 5.14. This will
depend on any variation in contrast across the image, which may arise solely from the visual
field inhomogeneity (if a stimulus with a flat contrast profile is presented on the display).

5.3.3 Nonlinear and quadratic summationmodels
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Figure 5.7: Architecture of the nonlinear and quadratic summationmodels.

For a model similar to that given above in Section 5.3.2, but featuring a nonlinear transducer
(see Figure 5.7), the signal from each detector is raised to a power (m)

SNR =

n∑
i=1

(c · si)m√
n∑
i=1

(σ2i )

. (5.18)
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The contrast term (cm) can be factored out as it is constant for each location in the image, and
as there is no template the noise can be treated as constant for any stimulus size

SNR =

cm ·
n∑
i=1

(si)
m

σtot
. (5.19)

Solving for threshold contrast at an SNR of 1 gives the general nonlinear summationmodel

cthresh =
m

√√√√ σtot
n∑
i=1

(si)m
. (5.20)

For a constant σtot of 1 and si of s

cthresh = m

√
1

n · sm , (5.21)

so for any s
cthresh ∝

1
m
√
n
. (5.22)

So in this model the detection threshold of a stimulus with a flat contrast profile at the sum-
mation stage should decrease in proportion to themth root of the area of the stimulus.
For anm of 2, Equation 5.20 is the general version of the quadratic summationmodel

cthresh =
√√√√ σtot

n∑
i=1

(si)2
. (5.23)

In this model, for a constant σtot of 1 and any fixed s
cthresh ∝

1√
n
. (5.24)

5.3.4 Template and ideal summationmodels
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Figure 5.8: Architecture of the template and ideal summationmodels.

101



For a model similar to that given above in Section 5.3.2, but featuring a template stage where
each detector (represented by a pixel in the filtered and transduced image) is multiplied by its
weighting ti (see Figure 5.8)

SNR =

n∑
i=1

(c · si · ti)√
n∑
i=1

(σi · ti)2
. (5.25)

The contrast term c can be factored out. The noise cannot be treated as constant because it
varies with the size of the stimulus (as it is weighted by the template)

SNR =

c ·
n∑
i=1

(si · ti)√
n∑
i=1

(σi · ti)2
. (5.26)

Solving for threshold contrast at an SNR of 1 gives

cthresh =

√
n∑
i=1

(σi · ti)2

n∑
i=1

(si · ti)
. (5.27)

For a constant σi of 1 and si of s

cthresh =

√
n∑
i=1

(ti)2

s ·
n∑
i=1

(ti)

. (5.28)

For the casewhere the template ismatched to the stimulus (ideal summation), ti = si so Equa-
tion 5.27 simplifies to

cthresh =

√
n∑
i=1

(σi · si)2

n∑
i=1

(si)2
, (5.29)

this is the general version of the ideal summation∗ model. For a constant σi of 1 and si of s
cthresh =

1√
n · s, (5.30)

so for any s
cthresh ∝

1√
n
. (5.31)

So in this model the detection threshold of a stimulus with a flat contrast profile at the sum-
∗A theoretical ideal detector does not feature internal noise. Thismodel is “ideal” only given that it is necessary

for themodelled system to contain performance-limiting internal noise.
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mation stage should decrease in proportion to the square root of the area of the stimulus.

5.3.5 Combination and noisy energymodels
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Figure 5.9: Architecture of the combination and noisy energymodels.

These models feature both nonlinear transduction and template stages (see Figure 5.9), mak-
ing their derivation a combination of that presented in Sections 5.3.3 and 5.3.4

SNR =

n∑
i=1

[(c · si)m · ti]√
n∑
i=1

(σi · ti)2
. (5.32)

The contrast term cm can be factored out. The noise cannot be treated as constant because it
varies with the size of the stimulus (as it is weighted by the template)

SNR =

cm ·
n∑
i=1

(smi · ti)√
n∑
i=1

(σ2i · t2i )
. (5.33)

Solving for threshold contrast gives

cthresh =
m

√√√√√√√√
√

n∑
i=1

(σ2i · t2i )

n∑
i=1

(smi · ti)
, (5.34)

which is the general form of the combinationmodel.
For a template model involving transduction, two kinds of matched template can be consid-
ered. In the first the template is equal to the stimulus before transduction (ti = si), making the
threshold contrast

cthresh =
m

√√√√√√√√
√

n∑
i=1

(σ2i · s2i )

n∑
i=1

[s
(m+1)
i ]

, (5.35)
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whereas in the second case the template is equal to the stimulus after transduction (ti = smi ).
This is the ideal template strategy, making the threshold contrast

cthresh =
m

√√√√√√√√
√

n∑
i=1

[σ2i · s
(2m)
i ]

n∑
i=1

[s
(2m)
i ]

. (5.36)

For a constant σi of 1 and si of s, Equations 5.35 and 5.36 both simplify to
cthresh =

1
2m
√
n · s, (5.37)

so for any s
cthresh ∝

1
2m
√
n
, (5.38)

indicating that in thismodel the threshold for a stimuluswith aflat contrast profile at the sum-
mation stage should decrease in proportion to the 2mth root of the area of the stimulus.
For anm of 2, Equation 5.36 is the noisy energymodel

cthresh =

√√√√√√√√
√

n∑
i=1

[σ2i · s4i ]

n∑
i=1

[s4i ]

, (5.39)

a stochastic version of this model was used to account for the area summation data reported
inMeese and Summers (2012). For a constant σi of 1 and si of s

cthresh =
1

4
√
n · s, (5.40)

so for any s
cthresh ∝

1
4
√
n
. (5.41)

5.4 Analytic approximations

5.4.1 Models without linear summation stages

For model architectures that do not add local outputs in a higher level mechanism but instead
achieve improvements in performancewith increasing stimulus area through probability sum-
mation, the predictions depend onwhether the system is assumed to be operating under high
threshold theory (HTT, see Section 2.5.5) or signal detection theory (SDT, see Section 2.5.6).
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Both versions of the probability summation model are presented here as analytic approxima-
tions performed usingMinkowski summation

f(X) =

(
n∑
i=1

|xi|m
) 1

m

. (5.42)

Minkowski summation is frequently used in models of signal combination due the flexibility
and simplicitywithwhich it canmodel differentbehaviours as theexponent (m) changes (Quick,
1974; To, Lovell, Troscianko, & Tolhurst, 2008;Mullen, Beaudot, & Ivanov, 2011; To, Baddeley,
Troscianko, & Tolhurst, 2011). For both forms of the probability summationmodel,Minkowski
summation is conducted over the attenuated, filtered, and rectified image Srect.

5.4.2 HTT probability summationmodel
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Figure 5.10: Architecture of the probability summationmodel under HTT.

For the HTT case (see Figure 5.10), the response from each location in the image is perturbed
by independent noise. Following this there is a threshold set sufficiently high that it is never
(or very rarely) exceeded by the noise alone. If the threshold is exceeded then that detector
enters the “detect” state. The system as a whole detects the stimulus if the response in any
detector exceeds the threshold. The probability of the detection of the stimulus P (detect)
can therefore be derived by combining the probabilities from each individual detector Pi(si)

P (detect) = 1−
n∏
i=1

[1− Pi(si)]. (5.43)

The sensitivity (S, the reciprocal of the threshold contrast cthresh) of such a system is approxi-
mated byMinkowski summation (Equation 5.42) over the detector outputs (si) wherem = β,
the slope parameter of aWeibull psychometric function fitted to the data (Quick, 1974; Rob-
son &Graham, 1981). The detection threshold is therefore

cthresh =
(

n∑
i=1

smi

)− 1
m

. (5.44)
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5.4.3 SDT probability summationmodel
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Figure 5.11: Architecture of the probability summationmodel under SDT.

A significant shortcoming of the original formulation of probability summation is that it was
rooted in high threshold theory, the implications of which are at odds with empirical findings
(see Section 2.4.2). Probability summation has been reformulated under SDT (Pelli, 1985;
Tyler & Chen, 2000) where the high threshold assumption is dropped, and the combination
of the detection probabilities of each channel is replaced by a max operator that passes the
signal level from the most activated detector. Under the conditions of high uncertainty (see
Section 2.3.4) about which channels contain task-relevant signal proposed by Pelli (1985), the
effect of summationon threshold is approximatedbyEquation5.44usingm = β for the values
of β typically reported from empirical results (β ≈ 4).
The account of probability summation under SDT has been developed further in a study of the
behaviour of stochasticmodels conducted by Tyler andChen (2000), who also find that a good
approximation is provided byMinkowski summation. In agreement with Pelli (1985), the best
fit is foundwhen the exponentm is fixed at 4

cthresh =
(

n∑
i=1

s4i

)− 1
4

. (5.45)

As this equation provides a good approximation to the summation behaviour of a system op-
erating under probability summation given certain conditions aremet (a linear transducer and
additive Gaussian noise), referencesmade elsewhere in this thesis to “the probability summa-
tionmodel” refer to the predictionsmade by this equation unless otherwise indicated.

5.5 Conclusions

5.5.1 Summary ofmodel predictions

Themodels put forwardhere all predict that log contrast detection threshold should decline in
proportion to the log of the stimulus area. The slopeof that decline canbeused todiscriminate
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between somemodels (the linear,matched template, andquadratic summationmodels all pre-
dict shallower summation slopes), but several share the same fourth-root prediction (slope of
−1

4 ). This is also the summation slope that is most frequently found in psychophysical experi-
ments. Themodels predicting this slope are the noisy energymodel, the SDT probability sum-
mationmodel, and theHTT probability summationmodel when β = 4 (values in this range are
frequently found in psychophysical experiments). The HTT probability summation model can
be rejected however due to the lack of support for the HTT assumption (see Section 2.4.2).
The two remaining fourth-rootmodels (noisy energy and SDTprobability summation), despite
making identical predictions for how thresholds should decline as a stimulus increases in size,
do predict different psychometric function slopes. Meese and Summers (2012) performed a
summation experimentwhere psychometric function slopeswere included in the analysis and
found results incompatible with SDT probability summation, but in accordance with the pre-
dictionsmadeby the noisy energymodel. Anotherway to distinguish between these twomod-
els is by designing an experiment in such a way as to bypass the template stage in the noisy
energy model. The experiments performed by Meese (2010) with “Battenberg” stimuli (see
Section 3.4.6) found√2 summation consistent with the quadratic summation model. One ex-
planation for this would be that the noisy energy model is unable to match a template to the
Battenberg stimuli, and defaults to summing over the entire display.
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CHAPTER 6

Area summation with witch hat
compensation

6.1 Motivation and summary
Previous studies investigating the summation of contrast over area in the central visual field
have necessarily confounded stimulus extent with the effects of the visual field inhomogene-
ity in contrast sensitivity. Here, the inverse of the attenuation surface measured in Chapter 4
is applied to stimuli in order to equate the effective contrast across the visual field. The re-
sults from this study reveal for the first time that the summation of contrast over the central
visual field is both spatially extensive (occurring over at least 33 cycles) and governed by a sin-
gle fourth-root summation rule. A summation slope of this gradient is consistent with either
probability summation or a noisy energymodel.

6.2 Introduction

6.2.1 Area summation of low-contrast gratings to threshold

The contrast detection threshold for grating stimuli decreases as a function of the stimulus
area. A general review of the results from previous area summation experiments is provided
in Section 2.6.1 of the Literature Review. In brief, these studies have found thresholds to de-
cline steeply initially (approximately proportional to the stimulus area for very small stimuli)
followed by a period of fourth-root summation (thresholds decline proportional to the fourth-
root of the stimulus area), before shallowing off for larger stimulus sizes.
One reason for the summation slopes to flatten for larger stimulus sizes is because the log
contrast sensitivity of the human visual system declines as a bilinear function of eccentricity
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(see Chapter 4; Baldwin, Meese, & Baker, 2012). The effective contrast of a stimulus there-
fore decreases as it is moved further from the fixation point. This introduces a confound in
area summation experiments, as increments in the size of a stimulus are typically presented
at increasingly eccentric locations. Some previous studies have avoided this by either pre-
senting stimuli across regions of the peripherywhere contrast sensitivity is relatively constant
(see Chapter 7; Robson & Graham, 1981; Mayer & Tyler, 1986; Manahilov & Simpson, 2001;
Meese & Hess, 2007), or by using “Swiss cheese” (Meese & Summers, 2007, 2009; Baker &
Meese, 2011; Meese & Baker, 2011) or “Battenberg” (Meese, 2010) stimuli that allow for the
signal area of a stimulus to be varied whilst keeping its extent constant.
The degree of summation found in previous studies that counteracted the effects of the in-
homogeneity is still less than that expected from a linear system (which would predict that
detection thresholds should decrease in proportion to the stimulus area). Possible nonlinear-
ities in the visual system that would decrease the rate at which the thresholds decline include
nonlinear transduction of the input signal (e.g. an energy model; see Manahilov et al., 2001),
changes in the amount of integrated noisewith increasing stimulus size (e.g. a templatemodel;
see Watson & Ahumada, 2005), and nonlinear summation operators (e.g. the max operator;
see Tyler & Chen, 2000). Robson and Graham (1981) explained the fourth-root summation
found in their study as being due to probability summation (see Section 2.5.5) over indepen-
dent noisy detectors, which can be approximated byMinkowski summation (see Section 5.4.2;
Quick, 1974). This probability summation account (andupdated variants, seePelli, 1985; Tyler
& Chen, 2000) has found wide acceptance and is frequently used as a “back-pocket” model
of how signals are combined to achieve detection threshold in several domains (e.g. To et al.,
2008;Mullen et al., 2011; To et al., 2011).
More recent studies have found levels of summation and psychometric function slopes incom-
patible with the probability summation account (Manahilov et al., 2001;Meese &Hess, 2007;
Meese & Summers, 2007, 2009; Meese, 2010; Meese & Summers, 2012). The results from
these studies instead favour a model that combines nonlinear transduction of local filter re-
sponses (with an exponent of 2) with semi-flexible task-dependent pooling of signal and noise
(template matching with a limited range of possible templates), followed by a linear sum of
the pooled responses. This model predicts fourth-root summation for growing grating stimuli
(similar to probability summation), but quadratic summation when the template stage fails to
match the stimulus. The matched template strategy is thought to fail for distinguishing the
Swiss cheese and Battenberg stimuli from ordinary grating stimuli, and it may also do so for
stimuli presented in the periphery (though see Chapter 7).

6.2.2 This study

What has not been possible previously however is to investigate area summation across the
central visual field without the effect of the visual field inhomogeneity. Stimuli which are pre-

109



sented in the periphery to counteract this effect can only subtend an area of limited size be-
fore they encroach on regions of the visual field with significantly different contrast sensitiv-
ity. A method that avoided the effects of the inhomogeneity could reveal the extent that the
observer is capable of pooling over. Howell and Hess (1978) found little change in threshold
with increasing area for stimuli more than 20 cycles wide, suggesting this was a limit for the
pooling of threshold contrast. In a study that used both square and circular gratings, Rovamo,
Luntinen, and Näsänen (1993) found a “critical area” beyond which summation did not lower
detection thresholds. The size of the critical area depended on the spatial frequency of the
grating For 4 c/deg stimuli (as used in this study) performance asymptoted at 65 square cycles,
which is equivalent to a diameter of 9 cycles for circular gratings. Another previous study that
used Swiss cheese stimuli with a range of modulator frequencies proposed that linear sum-
mation of transduced signal occurs over circular 12 - 45 cycle diameter regions, followed by
probability summation between those regions (Baker &Meese, 2011).
In this study, I have usedmydetailed “witch hat” account of the variation in contrast sensitivity
over the visual field (Chapter 4) to transform stimuli of the sort used in previous studies (grat-
ings and Swiss cheese modulated gratings) to be equally detectable across their area. With
the effects of the inhomogeneity factored out, the prediction of all of themodels presented in
Chapter 5 is that the log contrast sensitivity should decline linearlywith the log of the stimulus
area. The slope of the decline indicateswhich behaviour the human visual system implements,
and any shallowing orflattening of that slopewould showa limit on the summation of contrast
over area. Witch hat attenuation surfaces were also incorporated into the computer mod-
elling. These stimuli and modelling methods were used to measure the summation behaviour
of the visual system without the confounding effects of the visual field inhomogeneity. The
results from this study show full summation of contrast over 33 grating cycles, suggesting that
the shallowing of the measured summation curves in previous studies (within this range, at
least) is due to the inhomogeneity rather than any changes in summation behaviour with in-
creasing stimulus extent.

6.3 Methods

6.3.1 Equipment

Stimuli were stored in a CRS ViSaGe and presented on a gamma-corrected CRTmonitor (Eizo
Flexscan T68). The monitor had a refresh rate of 120 Hz, and a mean luminance of 75 cd/m2.
The monitor was viewed from a distance of 1.19 metres, having a resolution of 48 pixels per
degree of visual angle at this distance (12 pixels/cycle for the 4 c/deg stimuli used here).
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Stimulus diameter (cycles)
Sizes 1.3 2.3 4.3 8.3 11.7 19.0 26.0 33.0

Signal area (cycles2) above half-magnitude
Grating 1.4 4.3 14.8 54.5 106.9 283.5 530.9 855.3
Swiss cheese Black check 30.5 49.7 143.3 252.4 409.0

White check 20.8 48.7 126.6 260.5 422.9
Table 6.1: Stimulus diameters and the signal areas where the stimulus is above half-
magnitude for the grating and “Swiss cheese” stimuli used in this study.

6.3.2 Stimuli
Two types of stimuli were used: circular 4 c/deg sine-phase horizontal gratings, and Swiss
cheese modulated versions of those same gratings (see General Methods Sections 3.4.1 and
3.4.3 for general information about these stimuli). Stimuli were windowed by raised-cosine
envelopes with a bandwidth (λ) of 12 pixels. The Swiss cheese modulations had a spatial fre-
quency of 0.8 c/deg andwere performed in both cosine (“white” check) and anticosine (“black”
check) phase. Eight stimulus sizeswere used for the gratings, withfive of those also being used
for the Swiss cheeses. The diameters and signal areas of the stimuli are shown in Table 6.1.
Stimuli were presented both with flat contrast profiles (uncompensated) and with witch hat
compensation for the visual field inhomogeneity (see Figure 6.1). The compensated stimuli
weremultiplied by the inverse of the attenuation surfacemeasured for eachobserver inChap-
ter 4, counteracting the effects of the inhomogeneity and therefore giving them an effectively
flat contrast profile at the summation stage of the visual system. The nominal contrast of the
witch hat compensated stimuli is their contrast at fixation.
Observersfixated centrally. A quad offixation points (black 2x2 pixel squares) surrounded the
stimuli. Observerswere able to use the location of the fixation points to infer the stimulus size
and the location of the centre of the display. The stimulus duration was 100ms.

6.3.3 Observers
Data were collected from three observers: ASB, DHB and TSM. The observers were 22, 28
and 46 years old respectively and all three were experienced psychophysical observers. Op-
tical correction appropriate for the viewing distances tested was worn when required. All ex-
periments were performed binocularly with natural pupils.

6.3.4 Procedures
Thresholdsweremeasuredusinga two-interval forced-choice (2IFC) three-down, one-up stair-
case procedure (see General Methods chapter, Section 3.5). Feedback on correctness of re-
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a)

c)

e)

b)

d)

f)

Figure 6.1: Example uncompensated and witch hat compensated grating (a-b), “black”
check “Swiss cheese” (c-d), and “white” check Swiss cheese (e-f) stimuli used in this study.
Those shown are the largest of the stimuli used in this study (33 cycle diameter).
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sponsewas provided. Each conditionwas repeated four times by each observer, except for the
Swiss cheese data for observer TSM where data was only gathered for two repetitions. The
standard error bars shown in Figure 6.3 indicate that these data were sufficient to constrain
the estimate of the threshold for this observer. The contrast detection thresholds for each
repetition were calculated using aWeibull fit to the data in Palamedes (see General Methods
chapter, Section3.6), allowing themeanand standarderror tobe calculatedacross repetitions.
Average psychometric function slopes (Weibull β) were also calculated, from per-repetition
slopes constrained to have a maximum value of β = 10. This constraint was necessary as the
error surface for the slope parameter of a fitted psychometric function becomes very shallow
when the data are sampled from a function with a steep slope.

6.4 Results

6.4.1 Gratings
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Figure 6.2: Contrast detection thresholds for the grating stimuli fromASB, DHB&TSM,
and the average of those data. Log-threshold (in dB) is plotted as a function of the log
of the squared stimulus diameter (the square of the diameter multiplied by a factor of π4gives the stimulus area, which would be a shift of -2.1 units on this axis). Panel a) shows
the results for the flat stimuli, panel b) shows the results for stimuli that had beenmulti-
plied by the inverse of the witch hat attenuation surface. The solid, dashed, and dotted
grey lines show slopes of −1, −1

2 , and −1
4 respectively. Error bars show ± 1 standarderror here and in all future graphs.

Threshold contrasts for thedetectionof the circular grating stimuli arepresented inFigure6.2.
Results are shown from the three observers, and the average of those data. The initial steep
section of the summation slopes for both the uncompensated (a) and the witch hat compen-
sated (b) thresholds is explained by linear summationwithin the receptivefields of simple cells
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(Meese, 2010). For theuncompensated stimuli (Figure6.2a), the rate of threshold decline then
decreases from fourth-root tomore shallow for larger stimulus sizes. This is consistent with a
diminishing return ineffective signal for larger stimuli due to theeffectsof thevisualfield inho-
mogeneity in contrast sensitivity. For the witch hat compensated stimuli (Figure 6.2b) thresh-
olds declined in proportion to the fourth root of the stimulus area (grey dotted line). Summa-
tion slopes of this gradient have previously been explained by probability summation (Robson
&Graham, 1981; Tyler & Chen, 2000) or noisy energy (Meese & Summers, 2012) models.
The three observers show some individual differences. For observer ASB thresholds level off
for the largest stimulus sizes (19 - 33 cycles), implying amaximumarea that canbepooled over
to improve performance at detection threshold. The other two observers do not show this
effect. For observer TSM thresholds decrease at a slightly steeper rate than that shown by
the other two observers. Individual differences such as these have been found previously (e.g.
Baker &Meese, 2011), possible explanations for these will be returned to in the Discussion.

6.4.2 Swiss cheese
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Figure 6.3: Contrast detection thresholds for the “Swiss cheese” stimuli fromASB, DHB
& TSM, and the average of those data. Average grating data are also replotted from Fig-
ure 6.2. Log-threshold (in dB) is plotted as a function of the log of the squared stimulus
diameter (the scales of both axes are different from those in Figure 6.2). Panel a) shows
the results for the flat stimuli, panel b) shows the results for stimuli that had beenmulti-
plied by the inverse of the witch hat attenuation surface. The solid, dashed, and dotted
grey lines show slopes of−1,−1

2 , and−1
4 respectively.

Figure 6.3 shows results from the three observers, and the average of those data, for the de-
tection of the Swiss cheese modulated stimuli. Average thresholds for the grating stimuli are
also replotted here from Figure 6.2. Thresholds for Swiss cheese stimuli were 4.5 to 6 dB
higher than those for grating stimuli of the same spatial extent (but approximately half the
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equivalent signal area due to the contrastmodulation, seeTable 6.1). Swiss cheese stimuliwith
the black and white modulator phases had similar detection thresholds. As with the grating
stimuli of the same diameter, thresholds do not decrease for non-compensated stimuli (Fig-
ure 6.3a) as they increase in size (due to the effects of the visual field inhomogeneity), but
thresholds for the witch hat compensated stimuli (Figure 6.3b) decrease parallel to those for
gratings (fourth-root summation).
There were some differences between the behaviours for the three observers. For ASB, de-
tection thresholds did not decreasewith stimulus size for the larger Swiss cheese stimuli, even
when the stimuli were compensated for the visual field inhomogeneity. This is consistent with
the effect seen in the grating data for this observer, supporting a maximum contrast integra-
tion extent based on stimulus diameter that is within the range tested in this study. For DHB
and TSMhowever, thresholds did decrease with increasing stimulus size.

6.4.3 Psychometric function slopes

The estimated psychometric function slopes from this study may be of interest for compari-
son against those found in previous studies or for use in models that rely on the slope of the
psychometric function as a parameter (e.g. the high threshold theory formulation of proba-
bility summation that uses Weibull β as the Minkowski exponent). Consistent with previous
studies (Mayer & Tyler, 1986; Meese & Summers, 2012; Wallis, Baker, Meese, & Georgeson,
2013), psychometric function slopes did not vary systematically over the different summation
conditions. Across both the grating and Swiss cheese conditions the averaged slopes (Weibull
β) of the psychometric functions were 3.4, 4.8, and 4.2 respectively for observers ASB, DHB
and TSM. Across all three observers the average slope was 4.0. Previous studies by Robson
and Graham (1981), Mayer and Tyler (1986) and Meese and Summers (2012) found average
slopes of 3.5, 3.5, and 3.6 respectively. The psychometric function slopes in this study were
therefore slightly steeper than those reported previously. Steeper slopes are expected from
fits to data collected using adaptive staircase methods (Kaernbach, 2001), and can also result
fromundersampling of the psychometric function (Wichmann&Hill, 2001;Wallis et al., 2013).

6.5 Modelling

6.5.1 Analytic models of area summation

Elevenarea summationmodels basedon thosedescribed inChapter5were considered. These
were the linear (Section 5.3.2), quadratic (Section 5.3.3), and SDT probability summation (Sec-
tion 5.4.3) models, and four versions each of the template (Section 5.3.4) and noisy energy
(Section 5.3.5) models. These models are listed in Table 6.2. The HTT probability summation
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modelwas not implemented as sufficient evidencehas beenpresented in previous studies (see
Section 2.4.2; Swets et al., 1961; Green& Swets, 1966e; Nachmias, 1981; Laming, 2013) to re-
ject the high threshold assumption. Regardless, the prediction of the HTT probability summa-
tionmodel would be identical to that for the SDT probability summationmodel (Tyler & Chen,
2000) in this case, as the averageWeibull β = 4. Eachmodel was fitted to all of the data (from
both the flat and the compensated stimuli) using a single free parameter which controlled the
global sensitivity (equivalent to adjusting the variance of the noise).
For all models the stimulus was first multiplied by the witch hat attenuation surface to simu-
late the visual field inhomogeneity in contrast sensitivity, and then filtered with a horizontal
sine-phase log-Gabor patch (spatial frequency bandwidth of 1.6 octaves, orientation band-
width of ±25◦) in analogy to the spatial filtering present at the simple cell level of the visual
system. The attenuated and filtered stimulus image was fed into the relevant equation in Ta-
ble 6.2 to find the threshold contrast (ct). The pixel values of the attenuated and filtered image
were rearranged into a 1D array (s1 to sn) of local detector responses, and the standard devi-
ation of the Gaussian noise affecting each detector (σi) was assumed to be constant.
The matched template (T) and noisy energy (NE) models both featured templates that were
matched to the stimulus exactly (ti = si). For theothermodels featuring template stages these
weredefined separately. For theflat template (FT) andflat templatenoisy energy (FTNE)mod-
els the template was a version of the stimulus without any variation in contrast over its area
from the visual field inhomogeneity or from thewitch hat compensation for that inhomogene-
ity. This models the behaviour of a system that does not represent the expected contrast of
the stimulus at each location in its template. For the “extent” noisy energy (ENE) model, the
template did not feature the contrast modulation present in the Swiss cheese stimuli (i.e. the
template was that of the grating with the same diameter). This represents the behaviour of a
systemwhere the range of possible templates is limited to not allow the Swiss cheese contrast
modulation to be represented (consistent with the inability to discriminate between gratings
and Swiss cheeses at threshold reported by Meese & Summers, 2007). The flat extent noisy
energymodel (FENE) features both of these constraints on its template stage.
Several of these models make very similar predictions. The probability summation model and
the four noisy energy model variants all predict that contrast detection threshold should de-
cline in proportion to the fourth-root of the stimulus area. The matched template and ex-
tent template versions of the noisy energymodel can be distinguished by their predictions for
the Swiss cheese stimuli, with the extent template predicting more summation between the
gratings and the Swiss cheeses. The template and quadratic models both predict that thresh-
olds should decrease in proportion to the square-root of the stimulus area. Despite this, all
eleven distinct summation models are presented here both for the sake of completeness and
to demonstrate the conditions under which they are similar and the conditions under which
they are different.
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Figure 6.4: Average grating data (replotted from Figure 6.2) fitted by the summation
models described in Chapter 5. RMS errors and vertical offset parameters are provided
in Table 6.2. Both rows show the same data. Panels a) and c) show the results for the flat
stimuli, panels b) and d) show the results for stimuli that had been multiplied by the in-
verse of the witch hat attenuation surface. In panels a) and b), the data are fitted by the
models which involve a linear transducer. These are the linear (L), template (two ver-
sions: matched template T and flat template FT), and probability summation (PS) mod-
els. In panels c) and d), the data are fitted by themodels which feature a nonlinear trans-
ducer. These are the quadratic (Q) and noisy energy (two versions: matched template
NE and flat template FTNE) models.

Eachmodel was fitted to the averaged grating data using the downhill simplexmethod inMat-
lab (see Section 3.7) to minimise the RMS error between the data and the model prediction.
The only parameter varied was the global sensitivity of the model (equivalent to varying the
standard deviation of the internal noise in thesemodels) which does not effect summaton be-
haviour, only translating the model prediction curves vertically along the log-threshold axis.
Fitsweremade simultaneously to the thresholds for the non-compensated andwitch hat com-
pensated grating stimuli, yielding a single vertical offset (global sensitivity) parameter. Fig-
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ure 6.4 shows the model fits to the averaged data, and Table 6.2 provides the RMS errors and
vertical offset parameters for those fits. It was not necessary to plot the models with tem-
platesmatched to the stimulus extent (ENE and FENE), as the predictions for the grating stim-
uli would be no different from thosemade by the NE and FTNEmodels.
For thewitchhat compensated stimuli (panel b), the linear summationmodel (pink curves) pre-
dicts a summation slopeof−1. This ismuch steeper than the rateof thresholddecline in the re-
sults. After the initial steeper decline that results from linear summationwithinfilter elements
(simple cell analogues), the quadratic (red curves) and template (orange and blue curves)mod-
els both predict summation slopes of approximately −1

2 , which are also steeper than the de-
cline in threshold seen in the data. The probability summation (green curves) and both ver-
sions of the noisy energymodel (purple and turquoise curves) predict slopes of approximately
−1

4 , which are consistent with rate of threshold decline in the data. The predictions of the
probability summation and matched template noisy energy models are in fact identical (see
Section 5.5.1) with both giving an RMS error of 0.44 dB, and the prediction of the noisy energy
model with the flat template is very similar (RMSe = 0.50 dB). An extensive previous study in-
vestigating the slopes of the psychometric functions and the effects of uncertainty (in addition
to summation slopes) byMeese and Summers (2012) favours noisy energy models over prob-
ability summation models, however the results presented in that study were not sufficient to
constrain any particular version of the template stage (NE or FTNE).

6.5.3 Swiss cheese

The vertical offset parameters from the three best-fitting models presented in Table 6.2 were
used to generate predictions for the Swiss cheese stimulus thresholds. These predictions are
presented with the average data in Figure 6.5, and the RMS errors between the predictions
and the averaged data are presented in right-hand column of Table 6.2. In addition to the
model predictions shown in Figure 6.4, two additional model predictions are plotted. These
are from the noisy energy models with template matched to the stimulus envelope without
the Swiss cheese modulation (i.e. using the envelopes from the grating stimuli of the same
size). At a first glance, all of themodels presented here provide a good fit to the data.
The model predictions for the probability summation (top row, green and purple curves) and
matched template noisy energy (middle row, blue and red curves) models are once again iden-
tical, and both provide reasonable fits to the Swiss cheese data (RMSe = 1.29 dB). The flat
template noisy energy model (middle row, cyan and orange dashed curves) model is also very
similar to that for the PS and NE models and provides only a marginally superior fit (RMSe =
1.21 dB). All three models predict slightly too little summation. Modifying the template stage
of the noisy energy model such that it is matched to the stimulus without the Swiss cheese
modulation increases the predicted summation for these conditions (essentially removing the
effect of the template stage).
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Figure 6.5: Average “Swiss cheese” data (replotted from Figure 6.3) plotted with area
summation model predictions based on the fits shown in Figure 6.4. RMS errors are
provided in Table 6.2. Results from grating stimuli are omitted from this figure to allow
for a finer y-axis scale. All three rows show the same data. Panels a), c), and e) show the
results for the flat stimuli. Panels b), d) and f) show the results for stimuli that had been
multiplied by the inverse of the witch hat attenuation surface. Panels a) and b) show
the probability summation (PS) model. Panels c) and d) show two versions of the noisy
energy model with a template matched to the stimulus. Panels e) and f) show another
two versions of the noisy energymodel with a templatematched to the stimulus extent.
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The matched template (ENE, bottom row, lilac and blue curves) and flat template (FENE, bot-
tom row, turquoise and pink dashed curves) versions of this model provide a numerically bet-
ter fit than the othermodels (RMSe = 0.54 and 0.59 dB respectively), however the predictions
from all five models fall within the variability of the data. The results of this study can not
therefore be used to reliably distinguish between them. This is partly due to a shortcoming of
the Swiss cheese stimulus when used to investigate the summation levels. Because there are
large overlapping regions of non-zero contrast in the component black check andwhite check
stimuli, extensive linear summation occurs in those regions regardless of the model architec-
ture. This obscures the detailed summation behaviour of the different model architectures.

6.5.4 Interleaved designs and thematched template
The model predictions made that feature a template matched to the stimulus exactly intro-
duce a complication for studies where stimuli are interleaved. As the observer cannot know
which of the interleaved stimuli to expect on each trial they will necessarily bemonitoring the
template for each possible stimulus on each trial. The observer must then make a decision on
a trial-by-trial basis using the templatemost likely tomatch the stimulus. Meese and Summers
(2012) implemented this in their models by taking the max across the response from the pos-
sible stimulus templates on each trial (based on theoretical work by Tyler & Chen, 2000). The
most activated template was the one most likely to contain the stimulus, so the decision as to
which trial contained the target wasmade on the basis of its responsemagnitude.
In this study, the uncompensated and witch hat compensated versions of each stimulus were
interleaved. For the flat template models (FT, FTNE and FENE) this does not present an issue
as the templates for both versions of the stimuli are identical. For thematched templatemod-
els (T, NE and ENE) the predicted behaviour is based on an observer who always uses the cor-
rect template on each trial. That is to say, the internal noise never causes this observer to se-
lect the incorrect template. Under signal detection theory, such an assumption is invalid, how-
ever the difference made by incorporating a max-across-templates stage in this model would
be so slight that it would make no appreciable difference to the model predictions. The cor-
rected prediction for each model would be intermediate between that made by the matched
template version and that made by the flat template version. This issue is explored further in
the next chapter (Section 7.5.4).

6.6 Discussion
6.6.1 The integration of contrast over space is extensive
The results and modelling from this study show that the integration of contrast over area is
extensive, extending out to at least 33 carrier cycles for two out of the three observers tested
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here (DHB and TSM), and for the averaged data. This can be seen in Figure 6.2b, where after
the initial steeper slope caused by linear summation within filter elements, summation occurs
according to a single rule (fourth-root summation) up to the largest stimulus size tested. Al-
though the noisy energymodel (with a template matched to the stimulus extent) provides the
best fit to the data presented here, this study cannot reliably distinguish between the pre-
dictions of the probability summation and noisy energy models. Based on the evidence from
previous studies (e.g. Meese & Summers, 2012), the noisy energy model interpretation of the
results is favoured.
The results from this study show summation occured over a greater extent than that reported
previously by Howell and Hess (1978) who found the improvement in performance with in-
creasing stimulus area to asymptote at 20 cycles, or by Rovamo et al. (1993) who did not find
any summation beyond 9 cycles for 4 c/deg gratings. The results presented here can be rec-
onciled with those of Baker and Meese (2011), whose model featured linear summation of
transduced contrast over 12 - 64 cycles followed by probability summation between those in-
tegration regions, if the size of the maximum linear integration region in their model were set
to at least 33 cycles in diameter.

6.6.2 Individual differences for the extent of area summation

The data for observer ASB show a shallowing of the summation slope for the largest compen-
sated grating and Swiss cheese stimuli (diameters of 19 - 33 cycles). The other two observers
show summation over the entire stimulus range tested here (33 cycles). Previous studies have
also reported individual differences in the extents over which observers sum contrast (e.g.
Baker &Meese, 2011, 2012), however these studies have inferred the summation region size
in their modelling rather than being able to demonstrate it directly as is shown here.
The summation slope for observer TSM is steeper than that for eitherASBorDHB. This is con-
sistent with previous area summation studies (e.g. Meese & Summers, 2009; Baker & Meese,
2011), where TSM reliably shows more summation than other observers. Previously these
data could be explained if the decline in contrast sensitivity with eccentricity was shallower
for TSM than for other observers, however the compensationmethods used here rule out that
explanation. Alternative explanations for the increased summation in this observer would in-
clude an increase in receptive field size with eccentricity, a shallower transducer exponent, or
an over-estimation of the stimulus extent at the template stage for smaller stimuli.
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CHAPTER 7

Area summation across the visual field

7.1 Motivation and summary
Several previous studies have measured the summation of contrast across strips of grating
where the bars of the grating are perpendicular to the axis of elongation (“tiger-tail” stim-
uli). Where these stimuli are presented in the fovea, the results usually show little summation
(fourth-root or less) due to the effects of the visual field inhomogeneity in contrast sensitivity.
In the periphery however a variety of summation behaviours have been reported ranging from
linear (Mayer & Tyler, 1986), to quadratic (Manahilov & Simpson, 2001;Meese &Hess, 2007),
to fourth-root (Robson & Graham, 1981; Mayer & Tyler, 1986; Meese & Hess, 2007). An ex-
tensive study of summation in the fovea, parafovea, and periphery was carried out in order to
try and reconcile these previous conflictingfindings. The results of this study showsummation
behaviour to be identical across the visual field once the inhomogeneity in contrast sensitivity
is compensated for. Data collected in the fovea, parafovea, and peripherywerewell-described
by a single noisy energymodel.

7.2 Introduction

7.2.1 Spatial summation along strips of grating

As reported in Chapter 6, the threshold contrast for the detection of a stimulus decreases
as the stimulus area increases. The shape of this summation slope can reveal properties of
the mechanisms in the visual system that combine signals over space. Increasing the size of a
stimulus does however necessitate that the increments to the stimulus be presented to loca-
tions in the visual fieldwhichwere not being stimulated by the smaller stimuli. This introduces
a confound, as log contrast sensitivity is not homogeneous over the visual field and instead
declines in a bilinear fashion with increasing eccentricity from fixation (see Chapter 4).
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Figure 7.1: Results from previous studies that presented “tiger-tail” stimuli in the fovea
(these are listed in Table 7.1). Contrast detection thresholds were extracted from the
results presented in those publications and plotted (in dB re 1%) against the log stimulus
area. Results are plotted separately for each observer (S1 - S2) in each study, and for
whether the orientation of the grating stripes in the stimulus was horizontal or vertical.
The solid, dashed, and dotted grey curves show slopes of−1,−1

2 and−1
4 respectively.
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Robson and Graham (1981) avoided the variation in sensitivity over the visual field in their
study of area summation by positioning the stimuli in a locationwhere they hadmeasured the
contrast sensitivity to be homogeneous (a horizontal strip 42 carrier cycles above the fixa-
tion point). Here they found the contrast detection threshold to decrease in proportion to the
fourth root of the stimulus area. This was presented as evidence for probability summation
under high threshold theory, however this result is also consistent with probability summa-
tion under signal detection theory or with a noisy energymodel (see Section 6.5).

7.2.2 Summation in the fovea and the periphery
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Figure 7.2: Results from Foley et al. (2007), where “tiger-tail” stimuli were presented in
the fovea (the details of this study are listed in Table 7.1). Contrast detection thresholds
were extracted from the results presented in this publication and plotted (in dB re 1%)
against the log stimulus area. Results are plotted separately for each observer (S1 - S2)
in the study. The solid, dashed, and dotted grey curves show slopes of −1, −1

2 and −1
4respectively.

Several other studies have also investigated area summation along rectangular or oval strips
of grating. Where the orientation of the carrier grating is orthogonal to the elongated axis
these are sometimes known as “tiger-tail” stimuli. Stimuli with their major axis aligned along
the grating stripes are sometimes known as “skunk-tail” stimuli. Skunk-tail stimuli typically
show more summation than tiger-tail stimuli, however the reported magnitude of this effect
has varied between studies (Polat & Tyler, 1999; Foley et al., 2007; Meese &Hess, 2007). The
increased summation for skunk-tails has been explained by receptive fields elongated along
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the bars of the grating (leading to more within-filter summation, see Section 5.2.2), prefer-
ential collinear connections, or mismatched templates (Polat & Tyler, 1999; Meese & Hess,
2007). As these effects would complicate this initial attempt to examine the summation be-
haviour across the visual field, the scope of this study is restricted to tiger-tail stimuli.
A summary of the methods used in previous tiger-tail summation studies is presented in Ta-
ble 7.1. The results from all but one of the foveal studies are replotted here in Figure 7.1. In
general these show fourth-root or shallower summation slopes as the stimulus grows in size,
however they will all be confounded by the visual field inhomogeneity in contrast sensitivity.
Figure 7.2 shows the replotted data from Foley et al. (2007). This study tested much smaller
stimuli in the fovea (down to 0.2 cycles2) and found a very steep summation slope. This in-
creased summation for very small stimuli is predicted by within-filter summation if the small-
est simulated receptive fields available are larger than the stimuli.
In the periphery awider range of summation behaviours are seen (Figure 7.3). The larger stim-
uli of Mayer and Tyler (1986) and some conditions with smaller stimuli in Meese and Hess
(2007) replicate the fourth-root summation seen in Robson andGraham (1981). Other condi-
tions inMeese andHess (2007) andManahilov et al. (2001)find steeper, quadratic summation.
The conditions in Mayer and Tyler (1986) that use smaller stimuli find steep (linear) summa-
tion, over a range of sizes where such an effect is not seen in other studies. The variety in the
previously reported summation results means that at least one study can be found to support
each of a wide range of model architectures, including those that contradict each other (for
example, any of the models presented in Chapter 5 would predict either the linear, quadratic,
or fourth-root summation slopes listed above).
One interesting feature of the data presented in Figure 7.3 is that studies that found quadratic
summation (Meese&Hess, 2007;Manahilov et al., 2001) testedwith smaller stimuli thanwere
used in the study that found fourth-root summation (Robson & Graham, 1981). In fact, the
steeper summation slope seen for the leftmost points in the 3 c/deg data from Robson and
Graham (1981) indicates that the two datasets might each be sampled from the same smooth
summation curve (which is initially quadratic before shallowing to fourth-root). The range of
stimulus sizes used in this study (indicated by the label above the plot in Figure 7.3) has been
chosen to investigate this possibility.

7.2.3 This study

Due to the differences in summation that have previously been identified between the fovea
and the periphery, and the apparent contradictions of the results from previous studies (Rob-
son&Graham, 1981;Mayer&Tyler, 1986;Manahilov& Simpson, 2001;Meese&Hess, 2007),
an experiment was carried out to investigate spatial summation over strips of grating at three
locations in the visual field. The locations chosen were the fovea (0 degrees eccentricity), the
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Figure 7.3: Results from previous studies that presented “tiger-tail” stimuli in the pe-
riphery (these studies are listed in Table 7.1). Contrast detection thresholds were ex-
tracted from the results presented in those publications and plotted (in dB re 1%)
against the log stimulus area. Results are plotted separately for each observer (S1 - S5)
in each study, and for whether the orientation of the grating stripes in the stimulus was
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4 respectively.
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parafovea (3 degrees) and the periphery (10.5 degrees). The stimuli were presented bothwith
a constant contrast over area (“flat”), and multiplied by the inverse of the attenuation surface
described inChapter 4 such that theywere equally detectable at any location (“witch hat com-
pensated”, see Section 4.9.5). The effects of the visualfield inhomogeneity therefore no longer
confound the investigation of area summation for these stimuli.
This study reveals a summation of contrast over area that is remarkably similar at the three
different locations tested, with a fourth-root summation slope consistent with a noisy energy
model (Meese & Summers, 2012). In nearly all cases, applying the witch hat compensation
equalises the performance across the visualfield. The predictions from this singlemodelfitted
the data across the stimulus size range tested in this study. Possible reasons for the inconsis-
tent results found previously are considered in the discussion.

7.3 Methods

7.3.1 Equipment

Stimuli were stored in a CRS ViSaGe and presented on a gamma-corrected CRTmonitor (Eizo
Flexscan T68). The monitor had a refresh rate of 120 Hz, and a mean luminance of 75 cd/m2.
Themonitor was viewed from a distance of 1.19metres. At this distance there were 48 pixels
per degree of visual angle, giving the 4 c/deg stimuli used in this study 12 pixels per cycle.

7.3.2 Stimuli

Tiger-tail rectangular grating stimuliwere formed from4c/degvertical “Battenberg” elements
(see General Methods chapter, Section 3.4). Stimuli were presented with six different widths
(1, 2, 4, 8, 16 and 32 cycles) and three different heights (1, 2 and 4 cycles). The areas of the
stimuli were calculated as the product of the width and height where the stimulus envelope
was above zero (note that this is different from how the areas were calculated in Table 7.1,
where the full width at half magnitude was used). These sizes were chosen to cover most of
the range tested in previous studies (as demonstrated by the labels above Figures 7.1 to 7.3).
Stimuli were generated both with flat contrast profiles and with witch hat compensation for
the visual field inhomogeneity. The compensated stimuli weremultiplied by the inverse of the
witch’s hat attenuation surfacemeasured for each observer in Chapter 4 in order to give them
an effectively flat contrast profile following the inhomogeneity. The nominal contrast of the
compensated stimuli was their contrast before the surface was applied. This is equivalent to
the contrast at fixation (where the attenuation surface was at unity) for the foveal stimuli.
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Figure 7.4: Examples of stimuli used in this study. The narrowest (1 cycle) and widest
(32 cycles) examples of the non-compensated stimuli of each stimulus height (1, 2 and 4
cycles) are shown. Also shown are the quads of pixels shown around these stimuli that
indicated the stimulus extent to the observer. Foveal witch hat compensated stimuli are
shown for the the 1x4 and 32x4 stimulus conditions. These stimuli demonstrate the
fixation paradigm used in the fovea, where fixation location was inferred from a quad of
points (coincident with the stimulus extent quad for the 1x4 condition).

7.3.3 Observers

Data were collected from three observers: ASB, DHB and SAW. The observers were 22, 28
and 46 years old respectively. Observers wore optical correction appropriate for the view-
ing distances tested when required. All experiments were performed binocularly with natural
pupils.

7.3.4 Procedures

Stimuli were presented both centred on fixation and at two eccentric locations (12 and 42
stimulus carrier cycles, equivalent to3 and10.5degrees of visual angle) as shown inFigure7.5.
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F

12 cycles
3 degrees

42 cycles
10.5 degrees

Fovea

Parafovea

Periphery

Figure 7.5: Diagram showing the stimulus locations tested in this study (not to scale).
The circled "F" marking the fixation location was not present in the study. The fixation
location was either inferred from the quad of points around the stimulus (in the fovea)
or indicated by a 2 pixel square black dot (parafovea) or red LED (periphery).

These three conditions are labelled as testing the fovea (taken to be the areawithin 2 degrees
of fixation), the parafovea (2 - 10 degrees), and the periphery (beyond 10 degrees) respec-
tively. As the stimuli were extended over space however these labels refer only to the ec-
centricity of the stimulus centre, and there was some overlap in the eccentricities tested (the
outer edges of the largest stimuli were at 4 deg, 5 deg, and 11.2 deg respectively for the foveal,
parafoveal, and peripheral conditions).
Observers ASB and DHB were tested at all three locations. Observer SAW was tested only
in the fovea and parafovea. Stimulus extent was indicated by a quad of black dots that sur-
rounded the corners of the stimulus. For the foveal and parafoveal conditions these dotswere
2 x 2 pixel squares. To ensure visibility in the peripheral condition, the size of these dots was
increased to 4 x 4 pixels. Depending on the stimulus location, the intended fixation location
was indicated either by an additional quad of dots around that location (for stimuli presented
in the fovea), by a single 2 pixel square dot (for stimuli presented in the parafovea), or by a dim
red LEDpositioned at the appropriate distancebelow themonitor (for stimuli presented in the
periphery).
Stimuli were blocked by size and location, but the non-compensated and witch hat compen-
sated conditions were interleaved. Thresholds were measured using a two-interval forced-
choice (2IFC) three-down, one-up staircase procedure (see Section 3.5). Feedback on correct-
ness of responsewas provided. Each conditionwas repeated four times by each observer. The
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contrast detection thresholds for each repetition were calculated using a Weibull fit to the
staircase data in Palamedes (see General Methods chapter, Section 3.6), allowing the mean
threshold and standard error to be calculated across repetitions.

7.4 Results

7.4.1 Foveal and parafoveal tiger tail summation
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Figure 7.6: Detection thresholds for “tiger-tail” stimuli presented in the fovea and the
parafovea (12 cycles eccentricity). Results are shownseparately for the threeobservers.
The top three panels (a-c) show thresholds for the conditionwith the non-compensated
stimuli, the bottom three panels (d-f) show thresholds for the witch hat compensated
stimuli. The data are fitted by predictions from the noisy energy (NE) model (see Sec-
tion 7.5). In panels a) to c) the predicted behaviour for the two stimulus locations is
shown by the two vertically-offset curves plotted for each stimulus height. In panels
d) to f) the model predictions are identical, and so the two curves overlap. The solid,
dashed, and dotted grey curves in this and all other figures show slopes of −1, −1

2 and
−1

4 respectively.
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The results from the three observers for the foveal and parafoveal condition are shown in
Figure 7.6 (fitted by the noisy energy model, see Section 7.5). Results for the periphery are
shown in the next section, for convenience of presentation. Thresholds decreasewith increas-
ing stimulus area for all conditions. For the non-compensated stimuli (panels a-c), summation
in stimuli centred on the fovea (circle symbols) is initially steeper, and then flattens out for
larger stimulus sizes due to the visual field inhomogeneity in contrast sensitivity. This is the
same result as has been found in the fovea previously (see Figure 7.1).
Applying the witch hat compensation for the inhomogeneity (panels d-f) straightens out the
summation slopes to reveal extensive summation of contrast (with a slope of−1

4 ) in the fovea
that is not apparent with the non-compensated stimuli (as in Chapter 6). Summation extends
across 32 cycles of the 4 c/deg stimulus, equivalent to 8 degrees of visual angle. The witch
hat compensation has less of an effect on the summation slopes for stimuli centred on the
parafovea (compare diamonds in panels a-c with those in d-f) due to the relative homogeneity
of sensitivity in this region. Both stimulus conditions show fourth-root summation over 32
cycles in theparafovea,which is shallower than that foundbyManahilovet al. (2001) at around
this eccentricity (Figure 7.3).
Applying the witch hat compensation to the stimuli equates thresholds in the fovea and the
parafovea. This suggests that i) the attenuation surfaces are accurate, and ii) summation in
these locations occurs according to the same rule once the inhomogeneity is factored out. For
observers ASB and DHB (panels d-e), the symbols for the foveal and parafoveal conditions
(circles and diamonds respectively) overlap for most stimulus sizes. For observer SAW there
is some disparity between the results for these two locations. The summation slope for the 4
cycle high stimuli is steeper in the parafovea than in the fovea (panel f, blue circles and blue
diamonds). This point shall be returned to in themodelling (Section 7.5.3).

7.4.2 Peripheral tiger tail summation

Results from the two observers for the peripheral condition are shown in Figure 7.7. Within
this region contrast sensitivity is relatively constant (Robson & Graham, 1981), and so the
witch hat compensation has little effect on the shape of the summation slope. In general both
observers show fourth-root summationas the stimulus size increasesup to itsmaximumwidth
of 32 cycles, which is consistent with the result reported by Robson and Graham (1981) for
this location (Figure 7.3). Possible explanations for the steeper summation slope for the 1 cy-
cle high stimuli in observer ASBwill be explored in themodelling (Section 7.5.3).
The results presented in Figures7.6 and7.7 therefore show that for the foveal, parafoveal, and
peripheral locations tested here (stimuli centred at 0, 12, and42 cycles superior to thefixation
point, equivalent to 0, 3, and 10.5 degrees of visual angle), fourth-root summation extended
over 32 grating cycles (equivalent to 8 degrees of visual angle).
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Figure 7.7: Contrast detection thresholds for “tiger-tail” stimuli presented in the pe-
riphery (centered at 42 cycles). The top two panels (a-b) show thresholds for the con-
dition with the non-compensated stimuli, the bottom two panels (c-d) show thresholds
for thewitch hat compensated stimuli. The data are plottedwith predictionsmade from
the noisy energy model (NE) fit to the foveal and parafoveal data (dashed curves). Solid
curves show direct model fits to the peripheral data (see Section 7.5).

7.5 Modelling

7.5.1 Model fitting

Two of the models tested in Chapter 6 are fitted to the data here. These are the noisy energy
model (NE) and the noisy energymodelwith theflat template (FTNE). The difference between
the two is that in the NE model the observers use a template matched to the expected signal
exactly (including the attenuationwith eccentricity), whereas in the FTNEmodel the template
gives an equal weighting to the entire stimulus (a flat template). These models were chosen
because the versions of these models with the template based on the stimulus extent (ENE
and FENE) were the best fitting models tested in the previous chapter (see Section 6.5), and
in this study the predictions from the NE and FTNE models are identical to those that would
be made by the ENE and FENE models (the templates in each model are the same because
unlike the “Swiss cheese” stimuli tested in the previous chapter, the tiger-tail stimuli do not
have “holes” in them).
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The NE and FTNE models are compared here in order to demonstrate the effect of having a
matched template versus a flat template, and to evaluate the prediction made by each model
against the data from this study. Although the distinction between the two models is subtle,
they carry quite different theoretical implications. Thematched template (NE)model involves
an “ideal” combination of signal and noise over area by an observer that is aware both of the
expected stimulus and of how the visual field inhomogeneity in contrast sensitivity will affect
that stimulus. The flat template (FTNE) model, on the other hand, can represent an observer
who simply ignores input fromregions of thedisplay thatwill not contain signal. Formally, both
models implemented here assume the observer uses a template that follows the sinusoidal
luminancemodulation of the stimulus (rather than simplymatching a template to the stimulus
envelope), however this feature makes very little difference to the summation prediction as it
is the effect of adding cycles to the stimulus that is under investigation here rather than the
detail of what happens within a single cycle (Meese & Summers, 2012).
In the models tested here, the stimulus image is first multiplied by the witch hat attenua-
tion surface as measured for each observer (see Section 5.2.1), and filtered by sine-phase log-
Gabor filter elements (see Section 5.2.2). Each pixel of the output of this filtering is taken to
represent the activity of a detector at that location. The behaviour of both models is then de-
scribed by summing over the detectors

ct =

√√√√√√√√
√

n∑
i=1

(σ2 · t2i )

n∑
i=1

(s2i · ti)
, (7.1)

where ct is the contrast detection threshold, si is the pixel value at each location in the attenu-
ated and filtered image, σi is the standard deviation of the noise, and ti is the template at that
location. This is derived in Section 5.3.5. In the application of themodel here it is assumed that
the noise is constant (σi = 1) and Gaussian.
For a template which is matched to the transduced stimulus exactly (ti = s2i ), Equation 7.1
is the noisy energy model (NE). The flat template noisy energy model (FTNE) has templates
(ti) unaffected by the visual field inhomogeneity or witch hat compensation (the template al-
ways has a flat contrast profile). Summation slope predictions from the Minkowski summa-
tion approximation to the signal detection theory (SDT) probability summation model would
be identical to those from the noisy energy model in this case (see Section 5.5.1). Predictions
from the high threshold theory (HTT) probability summation model based on the psychomet-
ric slopewould be similar, as theWeibullβ for eachobserverwas approximately 4. Regardless,
as stated previously the HTT probability summation model has been thoroughly discredited
(see Section 2.4.2; Swets et al., 1961; Green & Swets, 1966e; Nachmias, 1981; Laming, 2013).
The two models were fitted to the thresholds from the three observers, using the downhill
simplex method (see Section 3.7) to minimise the RMS error between the data and the model
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Fovea & parafovea Periphery
Model Observer Offset (dB) RMSe (dB) Offset (dB) RMSe (dB)
Noisy energy
(NE)

ASB
DHB
SAW

13.53
14.85
11.47

0.79
0.95
1.51

1.39
-4.89

2.37
1.21

Flat template
noisy energy
(FTNE)

ASB
DHB
SAW

13.48
14.76
11.38

0.78
0.91
1.46

1.44
-4.81

2.38
1.21

Table 7.2: Vertical offset parameters andRMSerrors for thenoisy energy (NE)modelfit-
ted to the data in Figures 7.6 and 7.7, and the flat template noisy energy (FTNE) model
fitted to the data in Figures 7.8 and 7.9. The fitted offset parameter in the periphery
is the additional offset needed on top of that derived from the fits to the foveal and
parafoveal data.

predictions. The only free parameter was the vertical offset of the model prediction curves
(equivalent to varying the global sensitivity). In the first instance only the data for the foveal
and parafoveal conditions were fitted. A prediction was then made for the peripheral con-
dition based on the offset parameter from this fit. As the peripheral stimuli were presented
beyond the region where the witch’s hat was measured however, this prediction is based on
extrapolating the attenuation surface beyond the region where it is empirically supported. To
correct for this, an additional fit was performed solely to the peripheral data. The variation in
contrast sensitivity over the stimulus display region at that eccentricity would be very minor
(itwas chosen for this reasonbyRobson&Graham,1981), so an inaccuracy in theextrapolated
witch’s hat at this eccentricity would only cause a global over- or underestimation in sensitiv-
ity. This is entirely compensated for by refitting the offset parameter for this condition. The
RMS errors and fitted vertical offset parameters for all of these fits are shown in Table 7.2.

7.5.2 Comparing themodel predictions to the data

The noisy energy models with the matched template (NE) and the flat template (FTNE) are
fitted to the foveal and parafoveal results from the three observers in Figures 7.6 and 7.8 re-
spectively. The predicted and direct fits to the peripheral data are shown in Figures 7.7 and
7.9. The predictions from the twomodels are very similar, and this is reflected in themarginal
differences in theRMSerror that result from fitting them (see Table 7.2). Themajor difference
between the two models is that the FTNE model predicts that thresholds should increase for
the largest non-compensated stimuli presented in the fovea, as extending the template into
these less sensitive regions results in the accretion ofmore noise than signal. TheNEmodel on
the other hand predicts monotonic summation slopes, as thematched template downweights
the contribution of the signal and noise from themore eccentric regions. Due to the similarity
of the model predictions for these two architectures, it is not possible to distinguish between
them in this study. From this point, referenceswill bemade to thefigureswith the FTNEmodel
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Figure 7.8: As Figure 7.6, but fitted with the flat template noisy energymodel (FTNE).

fits (Figures 7.8 and 7.9), however in all cases the NEmodel fits were similar.
For all locations and observers, the noisy energy models provide a good fit to the data. The
models predict the initial steep (≈ −1

2 ) decline in threshold fromwithin-filter summation, the
subsequent fourth-root summation slope, and the differences in sensitivity between the fovea
and theparafovea. Themodels also capture the shallowingof the summation slope that results
from the visual field inhomogeneity for the non-compensated stimuli (Figure 7.8a-c). For the
witch hat compensated stimuli (Figure 7.8d-f) the models predict that results from the differ-
ent locations should be identical, as the effects of the visual field inhomogeneity have been
factored out. The empirical results are in agreement with this prediction (with the exception
of one condition for observer SAW, discussed below).
The prediction for the peripheral stimuli made using the extrapolatedwitch’s hat for observer
ASB is very close to that found by fitting the model directly to the peripheral data (cf. dashed
and solid curves in Figure7.9a and c). For observerDHB, the extrapolatedwitch’s hat underes-
timated the sensitivity in the periphery (cf. dashed and solid curves in Figure 7.9b and d). This
is consistent with the results presented in Section 4.8.1, which show that the true sensitivity
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Figure 7.9: As Figure 7.7, but fitted with the flat template noisy energymodel (FTNE).

decline beyond 18 cycles is slightly shallower than that predicted by the witch’s hat.

7.5.3 Individual differences

In general, the model predictions provide excellent fits to the data. There are two cases how-
ever where observers show more summation than is predicted by either model. The first is
found in observer SAWwhen4 cycle high stimuli were presented in the parafovea. Thresholds
for this conditionwere systematically lower than themodel prediction. One possible explana-
tion for this discrepancy would be if the receptive fields for this observer became elongated
in the parafovea. This would result in more extensive linear within-filter summation. Another
consequence of receptive field size covarying with eccentricity would be that the stimuli used
tomap thewitch’s hat attenuation surface (which were log-Gabors with constant bandwidths
equal to those used in the filtering here) would overestimate the sensitivity decline. This is in
agreement with the effect seen in Figure 7.8, where data from the 4 cycle high stimuli in the
parafovea lie consistently below themodel prediction curve.
Figure 7.10 shows a modified FTNE model fit to the data for observer SAW. The orientation
bandwidth of the log-Gabor used for filtering the stimuli in the parafovea was reduced from
±25◦ to±14.7◦, elongating the receptive fields along the grating stripes. This parameter was
adjusted by hand to fit the data. As the assumption of equal receptive field size underlying the
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Figure 7.10: A modified version of the FTNE model fitted to the foveal and parafoveal
data for observer SAW (cf. Figure 7.8). For clarity, the data from the two locations are
shown in separate subplots (b-c) for thewitch hat compensated stimuli. The orientation
bandwidth of the log-Gabor used in thefiltering stage for the parafoveal stimuliwas nar-
rower (±14.7◦), elongating the simulated receptive field. The foveal and parafoveal data
were fittedwith separate vertical offset parameters (10.25 dB for the foveal fit, 6.58 dB
for the parafoveal fit). This model provides a superior fit to the data (RMSe = 0.71 dB).

attenuation surface was violated, the model curves were fitted with separate vertical offset
parameters for the foveal and parafoveal data. The fit from this model (RMSe = 0.71 dB) was
superior to that from the model with equal filter bandwidths (RMSe = 1.46 dB). This was also
the case for the Akaike’s Information Criterion (AIC, see Section 4.7.3) scores, which take ac-
count of the additional two parameters for the modified model when assessing the fit quality
(lower scores are better, for the twomodels these were -13.18 vs. 23.19). A nestedmodel hy-
pothesis test found the improvement in the quality of the fit provided by the addition of these
two parameters to be highly significant (F2,53 = 85.56, P < 0.001).
For observer ASB, thresholds for the smallest stimuli (1 cycle high, 1-4 cycles wide) were ap-
proximately 3 dB higher in the periphery than the models predicted (Figure 7.9a and c). Re-
ceptive field elongation would not explain this result, as the sensitivity offset this predicts
for different stimulus heights would apply for all stimulus widths. One possible explanation
would be if the observer could not use a template matched to the stimulus for these condi-
tions. This would make the amount of noise integrated in the summation process constant
across the smaller sizes, therefore steepening the summation slopes to that predicted by a
quadratic summation model. This causes the data to lie above the model prediction because
the witch’s hat was not sampled in this region and therefore the effect is not built into the at-
tenuation surface. Such a limitation on the template stage may result from uncertainty about

139



the location of the stimulus in the periphery, ormandatory signal combination over aminimum
summation region (i.e. crowding; see Parkes et al., 2001).

7.5.4 The stochastic max-across-templatesmodel
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Figure 7.11: Stochastic Monte-Carlo model predictions generated for the max-across-
templates noisy energy (MTNE) model. Average thresholds and the standard deviation
of the threshold estimate (blue shaded region) were calculated from 10 repetitions of a
simulated experiment (50 trials per point on every psychometric function in each repe-
tition), using the witch hat attenuation surface from observer ASB. TheMTNEmodel is
plotted with the NE and FTNEmodels.

The complication for applyingmatched templatemodels to experimentswhich interleaveddif-
ferent stimuli (discussed in Section 6.5.4) is revisited here. As in the previous chapter, the non-
compensated and witch hat compensated stimuli were interleaved in this study. This compli-
cates the prediction from the NE model for this condition, as the observer would not know
on each trial whether to use the template matched to the non-compensated or to the witch-
hat compensated stimuli. As a result, the analytic formulation of the NE model would slightly
overestimate performance. The FTNE model does not have such a problem, as the templates
used in this model were identical for the two conditions.
Amore plausible version of theNEmodelwould be one thatmonitored the templates for both
types of stimulus in each interval, and then used the templatemost likely to bematched to the
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stimulus. This is the method proposed by Meese and Summers (2012), who used a max op-
erator to select the more activated template (after normalising by the standard deviation of
the expected combined noise in each template). The analytic derivation of such amodelwould
be quite difficult however, in this case it is simpler to generate a stochastic prediction. Fig-
ure 7.11 shows predictions for this max-across-templates noisy energy (MTNE) model com-
pared against the predictions from the NE and FTNEmodels. The predictions from theMTNE
model are very similar to those from the NE and FTNEmodel. It is apparent that the stimulus
conditions tested in this study could not clearly distinguish between the threemodels.

7.6 Discussion

7.6.1 Summation behaviour is the same across the visual field

Once the effects of the visual field inhomogeneity are compensated for, summation behaviour
becomes equivalent across the visual field. For all observers the results were well-described
by the noisy energy model. It is recognised however that the results of this study could also
be fit by a probability summation model, which is rejected for other reasons (see Meese &
Summers, 2012). Whether the template stage in themodel featuresmatchedorflat templates,
and the way in which these templates were selected, made little effect on the prediction for
these results. Distinguishing between these model variants would require a study specifically
designed to exaggerate the differences in the predictions.
The visual field inhomogeneity in contrast sensitivity (see Chapter 4) will have prevented pre-
vious studies frombeing able tofind this resultwhen presenting stimuli to the fovea. Although
some data from previous foveal studies have a fourth-root summation slope (e.g. some ob-
servers and conditions in Robson & Graham, 1981; Polat & Norcia, 1998; Polat & Tyler, 1999;
Meese & Hess, 2007) in most cases summation slopes become shallower as the stimulus size
increases (see Figure 7.1). Without the compensation used here for the visual field inhomo-
geneity it has not previously been possible to demonstrate that summation behaviour in the
fovea, the parafovea, and the periphery follows the same rule.
The fourth-root summation found in the periphery here agreeswith the results of some previ-
ous studies (see Figure 7.3; Robson & Graham, 1981; Meese & Hess, 2007). The within-filter
summation between the smallest stimulus sizes (1 and 2 cycles wide) steepens the summa-
tion slope to the−1

2 gradient found in some other studies that tested in the periphery, but not
for stimuli of comparable size (Figure 7.3; Manahilov et al., 2001; Meese & Hess, 2007). An
alternative explanation for these results is given below. I found no evidence to support the lin-
ear summation found in the periphery by Mayer and Tyler (1986). It is not clear whether this
aberrant result can be reconciled with the findings from other studies.
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7.6.2 Receptive field elongation and template effects

The results from twoof the observers do show small differences in behaviour under the differ-
ent location conditions. In both cases, more summation than predicted by the basic version of
the models is shown at the more eccentric locations. For observer SAW this increase in sum-
mation is explained by an elongation of the receptive fields in the parafovea. Building this ef-
fect into themodel does then equalise summation behaviour between the different locations.
Such amodification could be justifiedby reference to animal physiology,where increases in re-
ceptive field sizewith eccentricity have previously been found (Wilson& Sherman, 1976). The
two other observers do not show any evidence of receptive field elongation with eccentricity.
For observer ASB, the increased summation found in the periphery for the smallest stimuli
cannot be explained by changes in receptive field size. One possible explanation for this result
would be a limitation on template stage such that matched templates could not be formed for
these stimuli in the periphery. If this were the case the internal noise would remain constant
across the smallest stimulus conditions, increasing the rate of threshold decline (effectively
turning the noisy energy model into the quadratic model for those stimuli, see Section 5.3.3).
Problems with the template stage could also explain the quadratic summation found in some
previous studies that tested small stimuli in the periphery (Manahilov et al., 2001; Meese &
Hess, 2007). AlthoughManahilov et al. (2001) attempted to reduce uncertainty by presenting
a suprathreshold stimulus example before each block, is is possible that the observer would
not be able tomaintain a template at the correct size and location frommemory alone. Further
work is required to determine whether a breakdown in the template stage can explain the
increased summation found under these conditions.
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CHAPTER 8

Battenberg summation in amblyopes

8.1 Motivation and summary
Previous chapters (6 - 7) have investigated area summation in the normal visual system,where
I have been able to predict behaviour under a range of stimulus conditions. One case in which
the visual system behaves abnormally is the clinical condition of amblyopia. Previous experi-
ments conducted on amblyopes have found higher thresholds for contrast detection, but nor-
mal summation behaviour. At the time thiswas accounted for by the same probability summa-
tion model as was popular for normal vision. Recent work has suggested that a better expla-
nation of area summation in normal vision is provided by a noisy energymodel. This raises the
question of whether the interpretation of summation in amblyopes should also be updated.
The “Battenberg” study conducted by Meese (2010) was designed to differentiate between
the predictions from probability summation and noisy energy models. Stimuli were designed
such that summation could be measured without the confounding effects of the visual field
inhomogeneity in contrast sensitivity andwhilst keeping the overall stimulus extent constant.
This study found more summation in normal observers than would be possible under prob-
ability summation, instead agreeing with a noisy energy model. I have repeated this experi-
ment with amblyopic observers to investigate summation behaviour in amblyopia, and deter-
minewhichmodel provides abetter account. Myfindings suggest that although thresholds are
higher in the amblyopic eyes of amblyopes, summation behaviour is normal in the two eyes.

8.2 Introduction
8.2.1 Battenberg summation in the normal visual system
The study of area summation is complicated both by the visual field inhomogeneity in contrast
sensitivity (as described in Chapter 4), and the accumulation of additional noise as the stimu-
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lus size increases (if the observer can adjust the monitored region of the visual field). Meese
(2010) introduced Battenberg stimuli to counteract both of these effects (described in Sec-
tion 3.4.6 and shown in Figure 8.1). Briefly, these stimuli are formed from arrays of micropat-
tern elements. Each element is a single cycle of a sine wave carrier grating windowed by an
orthogonal cosine half-cycle at half the spatial frequency of the carrier. Varying the number
and position of the elements in the display allows for area summation behaviour to be mea-
sured across sets of stimuli with a constant extent. This mitigates the confounding effects of
both the inhomogeneity and the variation in the amount of integrated noise for stimuli of dif-
ferent sizes, allowing the measured threshold difference to reflect only the effect of adding
additional signal to the stimulus.
In the Battenberg stimuli themicropattern elements are arranged in a “checkerboard” pattern
of regions containing contrast and regionswhich are blank. Each checkedBattenberg stimulus
contains approximately half of the total contrast over its area as the full stimulus. Comparing
thresholds for the checked Battenberg stimuli to those for the “full” stimulus therefore allows
the level of area summation to be measured and expressed as a summation ratio (this can be
expressed either directly as a ratio, or in dB). By adjusting the scale of the checkerboard pat-
tern the Battenberg stimuli can be used tomeasure local summation occurring over short dis-
tances (smaller check sizes), or long-range summation occurring over greater distances (larger
check sizes).
The level of summation found for smaller check sizes by Meese (2010) was 6 dB (thresholds
doubled for the checked Battenberg stimuli), which can be explained by short-range linear
summation within the receptive fields of simple cells (sometimes also referred to as “within-
filter” summation). For the larger check sizes, 3 dB of summation was found (√2 increase in
threshold between the full and Battenberg stimuli). This long-range summation is greater
than would be possible under probability summation (see Section 5.4.3). It would be consis-
tent howeverwith the quadratic summationmodel (Section 5.3.3), the ideal summationmodel
(Section 5.3.4), or the noisy energy model (Section 5.3.5) in the case where the observer was
unable to match a template to the checkerboard stimulus pattern and instead defaulted to
summing over the entire stimulus. Previous work presented elsewhere (e.g. Meese, 2010;
Meese & Summers, 2012) and in this thesis (Chapters 6 - 7) supports the noisy energy inter-
pretation of theMeese (2010) result.

8.2.2 The neural deficit in amblyopia

Amblyopia is an acquired disorder of the visual system that results in a permanent poor qual-
ity of vision in an eye. It is caused by an impairment in that eye during the development of
the visual system in childhood (usually caused by either strabismus or anisometropia). Pre-
vious research suggests that the amblyopic deficit is due to abnormal development of the
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binocular cells in visual cortex (see Section 2.8.1; Hubel & Wiesel, 1970; Blakemore & Vital-
Durand, 1986; Anderson et al., 1999; Barnes et al., 2001). Observers using their amblyopic
eye to perform a task typically exhibit poor acuity, higher contrast detection thresholds (par-
ticularly for high spatial frequency stimuli), and perceptual distortions (see Section 2.8.2). The
non-amblyopic (“fellow fixing”) eye of an amblyope is thought to be functionally normal, and is
often used as a convenient control (e.g. Hess et al., 1978).
The normal visual system is understood to perform spatial filtering operations on stimuli and
represent the information from those stimuli in channels which are tuned to different spatial
scales (see Section 2.3.2; Campbell & Robson, 1968). The existence of these channels is evi-
denced by adaptation studies (Blakemore&Campbell, 1969), and similar studies conducted in
amblyope observers reveal that they are still present in amblyopia (Hess, 1980). The sensitiv-
ity for each spatial frequency can be determined by measuring a contrast sensitivity function
(CSF). The manner in which amblyopia affects the CSF shows considerable variation across
observers, prompting some authors to suggest that there may be separate types of ambly-
opia with different functional effects (Hess & Howell, 1977). Some amblyope observers show
no loss of sensitivity, some a loss of contrast sensitivity only to higher spatial frequencies, and
others a loss across the entire spatial frequency range (Hess&Howell, 1977; Levi &Harwerth,
1977; Hess et al., 1978; Thomas, 1978; Levi, Harwerth, &Manny, 1979).

8.2.3 Area summation in the amblyopic visual system

For the summation of luminance-defined stimuli, amblyopic vision has been found to behave
like the peripheral vision of normal observers (Flynn, 1967). This is consistent with ideal sum-
mation in the smallest available receptive field size, if the both the normal periphery and the
amblyopic fovea suffer from a loss of detectors tuned to higher spatial frequencies (see Sec-
tion 2.6.2). With contrast-defined (luminance modulated) stimuli such as a sine wave grating,
area summation has been demonstrated to be normal in amblyopes (Hess & Howell, 1978;
Hess & Campbell, 1980). These summation results were explained at the time by the prob-
ability summation model that was typically used to account for summation in the normal vi-
sual system (see Section 2.5.5). Second-order (contrast modulation) summation has also been
demonstrated to be similar to that seen in normal observers (Wong & Levi, 2005).

8.2.4 This study

Previous research has found area summation over contrast-defined stimuli to be normal in
amblyopes, and explained by probability summation. As the probability summation account
of the behaviour of normal observers has recently been challenged however (Meese, 2010;
Meese & Summers, 2012), amblyope summation behaviour was re-examined here using the
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Battenberg stimulus paradigm. This stimulus design has previously been successful in dis-
tinguishing between probability summation and noisy energy model predictions, in the case
where the observer is not able tomatch a template to the checkerboard pattern in the Batten-
berg stimuli. The results indicate that area summation is normal in amblyopia. For three out
of six observers tested, behaviour was best described by a noisy energy model. For the other
three observers the results were inconclusive.

8.3 Methods

8.3.1 Equipment

Stimuli were stored in a CRS ViSaGe and presented on a gamma-corrected CRTmonitor (Mit-
subishi Diamond Pro 2070). The monitor had a refresh rate of 120 Hz, and a mean luminance
of 52.4 cd/m2. The monitor was viewed from a distance of 1.19 metres for the 4 c/deg stimuli
(at this distance there were 48 pixels per degree of visual angle). This viewing distance was
adjusted in order to present the stimuli at the appropriate spatial frequency for each observer
(2.5 to 8 c/deg, corresponding to viewing distances of 0.74 to 2.38metres).

8.3.2 Stimuli

This experiment used horizontal Battenberg stimuli composed of similar micro-pattern ele-
ments as those used to generate the “tiger-tail” stimuli in Chapter 7. The Battenberg stimulus
design is described in Section 3.4.6, and the stimuli used in this study are shown in Figure 8.1.
Stimuli were 42 by 42 cycle arrays of Battenberg elements. In addition to the full stimulus
(which has a nominal check size of 0), five check sizes were used (having 1, 2, 4, 6 and 8 ele-
ment wide checks). Stimuli were presented in both the “white” (signal in centre) and “black”
(no signal in centre) check phases.

8.3.3 Observers

Data were collected from one normal (ASB) and six amblyope (S1 - S6) observers. Details for
each amblyopeobserver are provided inAppendixC.ASBwas tested at 2.5, 4, and8 c/deg. The
tested spatial frequency for each amblyopeobserverwas decidedbasedon apilot experiment.
Detection thresholds were obtained for the full (0) stimulus in each eye, first at 2.5 c/deg and
then increasing in spatial frequency (from4 to6 c/deg) until a difference in thresholdof at least
6 dBwas found between the two eyes. Data are presented from all of the amblyope observers
whowere recruited for this experiment. The intentionwas to repeat each condition four times
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Figure 8.1: The “Battenberg” stimuli used in the experiments in this chapter. The full
stimulus is shown, aswell as thefivedifferent check sizes used in the experiments (check
widths of 1, 2, 4, 6 and 8 elements). Each stimulus is shown in both the “black” and the
“white” check phases.
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for each observer, however due to time constraints this aim was not met and the number of
repetitions varied across observer and condition (see Table 8.1).
Observers wore optical correction appropriate to the viewing distance. For amblyopeswhose
prescribed correction did not provide them with their best possible visual acuity, additional
correction was added based on tests conducted in the lab. The experiments were carried out
monocularly, alternating between the two eyes on each block. The non-tested eye in each
block was occluded by an eyepatch. Observers gave informed consent before participation.

Black checks White checks
Check size 0 1 2 4 6 8 0 1 2 4 6 8

Observer SF (c/deg) Eye Number of repetitions
ASB 2.5 RE 4 4 4 4 4 4 4 4 4 4 4 4

LE 4 4 4 4 4 4 4 4 4 4 4 4
ASB 4 RE 4 4 4 4 4 4 4 4 4 4 4 4
ASB 8 RE 2 2 2 2 2 2 2 2 2 2 2 2

LE 2 2 2 2 2 2 2 2 2 2 2 2
S1 2.5 FFE 2 2 2 2 2 2 2 2 2 2 1 2

AMB 3 3 3 3 3 3 3 3 3 3 3 3
S2 2.5 FFE 3 3 4 3 3 3 3 3 4 2 3 3

AMB 3 3 3 3 3 3 3 3 3 3 3 3
S3 4 FFE 3 2 3 2 3 2 1 2 3 2 3 2

AMB 2 2 2 2 2 2 2 2 2 2 2 2
S4 6 FFE 1 2 2 2 2 2 3 1 2 2 2 2

AMB 2 3 3 2 2 2 2 2 2 2 2 2
S5 4 FFE 2 4 4 4 4 4 4 4 4 4 4 4

AMB 3 4 4 4 4 4 3 4 4 4 4 4
S6 2.5 FFE 1 0 1 0 1 0 1 0 1 0 1 0

AMB 1 0 1 0 1 1 1 1 1 0 1 1
Table 8.1: The number of repetitions used to generate the averaged data plotted for
each observer and condition in this chapter. For the normal observer ASB, numbers of
repetitions are shown separately for the right (RE) and left (LE) eyes. For the amblyopes
the eyes are labelled as the fellow fixing eye (FFE) and the amblyopic eye (AMB).

8.3.4 Procedures

Thresholdsweremeasuredusinga two-interval forced-choice (2IFC) three-down, one-up stair-
case procedure (see General Methods chapter, Section 3.5). For the normal observer (ASB)
stimuli were organised into two blocks. In one block the full, 2 by 2 check, and 6 by 6 check
conditions were interleaved (both black and white phases). In the other block, the 1 by 1, 4
by 4, and 8 by 8 check conditions were interleaved (both phases). For the amblyope observers
these stimuli were reorganised into four smaller blocks in order to make each testing session
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shorter. These were the full and the 2 by 2 check stimuli, the full and the 6 by 6 check stimuli,
the 1 by 1 and the 4 by 4 check stimuli, and the 1 by 1 and the 8 by 8 check stimuli.
Feedback on correctness of response was provided. The contrast detection thresholds for
each repeat were calculated using a Weibull fit to the staircase data in Palamedes (see Gen-
eral Methods chapter, Section 3.6), allowing the mean and standard error to be calculated
across repetitions. Owing to the limited amount of time available for testing the amblyopic
subjects, the rejection criterion based on the standard error from a Probit fit to the data (see
Section 3.6.3) was relaxed to amaximum error of 5 dB in this study.

8.4 Modelling

8.4.1 Model architectures
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Figure 8.2: “Battenberg” summation data for normal observers reproduced fromMeese
(2010) and plotted with predictions from the probability summation model (PS), “max-
across-templates” noisy energy model (MTNE), the “extent” noisy energy model (ENE),
and the “flat extent” noisy energy model (FENE). The shaded area shows the standard
deviation of the responses from the stochastic MTNE model. All model prediction
curves, and the data from Meese (2010), were normalised so that the full (0) stimulus
had a threshold of 0 dB. The spatial frequency used inMeese (2010) was 2.5 c/deg.

The models considered in this chapter are the signal detection theory (SDT) probability sum-
mation model (PS) and the “flat extent” noisy energy model (FENE). “Flat extent” refers to the
nature of the template used to detect the stimulus, which ismatched to the extent of the stim-
ulus and has a constantweighting across its surface (it does not follow the checkerboardmod-
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ulation in the stimuli, see Section 5.2.5). The PS and FENE models are respectively the previ-
ously proposed model for summation in amblyopia and the current favoured model for sum-
mation in the normal visual system. The aim of this study is to determine which model better
characterises behaviour in amblyopia. Themax-across-templates noisy energymodel (MTNE)
and the extent noisy energymodel (ENE) are also presented in this section for completeness.
The FENE model is roughly equivalent to that found to provide the best account of the data
in the previous Battenberg study (Meese, 2010), with the main difference being the inclusion
of the bilinear witch’s hat attenuation surface to account for the visual field inhomogeneity
in contrast sensitivity (Chapter 4; Baldwin et al., 2012) as opposed to the linear decline in log
sensitivity used in Meese (2010). Where only data from observer ASB were being fitted, the
witch’s hat parametersmeasured for that observerwereused to generate the attenuation sur-
face. Where data from other observers were fitted the attenuation surface used was that de-
rived from fits to the averaged data from four observers (presented in Chapter 4).
There are two potential objections to the use of the witch’s hat attenuation surface here. The
first is that the surfaces are based on a binocular study, but their usage here is as a model
of monocular sensitivity. The second is that these descriptions of the sensitivity of normal
observers are used here to model amblyope behaviour. In response to the first objection,
although it is possible that a monocular attenuation surface would feature asymmetries not
present in the witch’s hat (a nasal-temporal asymmetry would be predicted from the physiol-
ogy, see Anderson et al., 1991), there is no reason to expect these asymmetries to affect the
pattern of thresholds for the detection of symmetrical stimuli such as the ones used here. In
response to the second objection, the stimuli are designed in such away that the effects of the
visual field inhomogeneity are largely mitigated (compare the predictions of the FENE model
for theblack andwhite check stimuli in Figure8.2). For that reason it is unlikely that anydistor-
tions to the attenuation surface that might be caused by amblyopia would affect the findings.
Following the witch’s hat attenuation of the stimulus image, all four models shown in Fig-
ure 8.2 include filtering by sine-phase log-Gabor filter elements (spatial frequency bandwidth
of 1.6 octaves, orientation bandwidth of ±25◦). The PS model then uses Minkowski summa-
tion to approximate probability summation over independently noisy local detectors (see Sec-
tion5.4.3). TheMTNEmodel is basedona combinationof square law transduction followedby
a template matched exactly to the stimulus. As the different stimuli were interleaved in this
study however, the observer could not know in advance which stimulus to use on each trial.
For this reason, the stochastic implementation shown previously in Section 7.5.4 was used, in
which the observer tests the squared filter responses against the templates for each of the
possible stimuli and then selects the template which provides the best match by performing a
max operation over the outputs from the templates.
The ENE and FENE models are the same as those shown in Section 6.5, and are equivalent to
the NE and FTNE models when the stimuli do not have “holes” in them (i.e. for stimuli which
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are not “Swiss cheeses” or Battenbergs). These feature square law transduction followed by a
template stagewhere the template ismatched to the stimulus extent (does not follow the con-
trast modulation present in the checked Battenberg stimuli). In the ENE model the template
weighting decreases with eccentricity according to the decline from the attenuation surface
(providing an ideal weighting at each location according to the expected signal to noise ratio),
whereas in the FENEmodel the template is flat (constant weighting across the template).

8.4.2 Model predictions

In Figure 8.2, the predictions from each model are plotted as summation ratios. The summa-
tion ratio for each checked Battenberg stimulus is the difference in threshold between that
stimulus and the full stimulus (which had approximately twice the signal area of the checked
stimuli). This is equivalent to plotting predicted thresholds if the prediction were normalised
to be at 0 dB for the full (0) stimulus. Although all four models predict the same initial 6 dB
peak in summation with a doubling of signal area (from linear summation within the receptive
fields), the predicted summation from each model diverges for the larger check sizes. The PS
model predicts that summation should asymptote at 1.5 dB. The FENE model predicts that
the level of summation should decrease to approximately 3 dB. Predicted summation levels
are slightly higher for the black check stimuli (see Figure 8.2a) and slightly lower for the white
check stimuli (see Figure 8.2a) due to the effects of the inhomogeneity in contrast sensitivity.
The ENE prediction is similar to the FENE prediction whereas the MTNE prediction is more
similar to the PS prediction. The inhomogeneity of the template in the MTNE and ENE mod-
els however causes their predictions for the two different check phases to diverge more than
they do in the PS and FENE models. The data from Meese (2010) are best described by the
FENEmodel, which is in agreement with the findings of that study.

8.4.3 Fitting themodel predictions to the data

Model curves were fitted to the results from the normal and amblyope observers below us-
ing the downhill Simplex method to minimise the RMS error between the model prediction
and the data (see Section 3.7). These fits were performed independently for each eye, using a
single free parameter which controlled global sensitivity (equivalent to varying the standard
deviation of the internal noise).
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8.5 Results
8.5.1 Normal observer
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Figure 8.3: Detection thresholds for the “full” Battenberg stimuli for observer ASB at
three spatial frequencies (c1, c2, and c3). The labels a2 and a3 indicate the spatial fre-quency of the artefacts introduced by the 1 by 1 check Battenberg modulation in the 4
c/deg and 8 c/deg stimuli respectively (see Section 8.5.3).

A contrast sensitivity function (CSF) for observer ASB showing sensitivity at the three spatial
frequencies at which this observer was tested (derived from the thresholds for the “full” Bat-
tenberg stimulus) is shown in Figure 8.3. Sensitivity is highest at 2.5 c/deg, and then declines
for 4 c/deg and 8 c/deg. Figures 8.4 - 8.9 showBattenberg summation data from this observer
at these three spatial frequencies. The results are plotted as summation, which is calculated
by normalising the threshold data to the average threshold for the full (0) stimulus. Results are
plotted for 2.5 and 8 c/deg for both the dominant (RE) and non-dominant (LE) eyes, as deter-
mined by theMiles test. For the 2.5 c/deg data (Figure 8.4) the results are very similar from the
two eyes. For the 8 c/deg data (Figure 8.8) the results from the dominant eye (RE) are consid-
erably more variable than those from the non-dominant eye (LE), as is evidenced by the much
larger error bars. These data are from only two repetitions however (see Table 8.1), and the
pattern of the mean thresholds is similar in the two eyes. At 4 c/deg data were collected only
from the dominant eye (Figure 8.6).
For the 2.5 c/deg data (Figure 8.4) the results look similar to those foundpreviously at this spa-
tial frequency (Meese, 2010), as shown in Figure 8.2. Summationwas around 6 dB (thresholds
approximately doubled) for the smallest check size (1 by 1), before declining to approximately
3 dB of summation for the larger check sizes. Results at 4 c/deg were similar for the larger
check sizes (Figure 8.6), however the initial peak in summation for the smaller check size stim-
uli is reduced to approximately 3 dB. The results from 8 c/deg are also similar for the larger
check sizes, however at this spatial frequency the initial summation peak is even smaller.
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Figure 8.4: Detection thresholds from observer ASB for 2.5 c/deg “Battenberg” stimuli
presented to the dominant (RE) and non-dominant (LE) eyes. The data are fitted by the
prediction from the FENEmodel.
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Figure 8.5: Detection thresholds replotted from Figure 8.4. The data are fitted by the
prediction from the PSmodel.

FENEmodel PSmodel
Observer SF (c/deg) Eye Figure RMSe (dB) Figure RMSe (dB)
ASB 2.5 RE 8.4 0.89 8.5 1.22

LE 0.87 1.13
ASB 4 RE 8.6 1.31 8.7 1.64
ASB 8 RE 8.8 1.69 8.9 2.16

LE 1.89 2.29
Table 8.2: RMS errors between the data from observer ASB and the FENE and PSmodel
predictions for the fits shown in Figures 8.4 - 8.9. The rows labelled RE and LE refer to
the data collected from the right and left eyes respectively.

Analysis presented later in this chapter indicates that the loss of the initial summation peak
for higher spatial frequency stimuli might be due to artefacts in the Battenberg stimuli con-

153



0 2 4 6 8
Check size

-3

0

3

6

9

Su
m

m
at

io
n 

(d
B)

a) ASB 4 c/deg RE

RMSe = 1.31 dB

0 2 4 6 8
Check size

6

9

12

15

Th
re

sh
ol

d 
(d

B 
re

 1
%

)

Black check
White check

0 2 4 6 8
Check size

6

9

12

15

Black check
White check

Data:

0 2 4 6 8
Check size

6

9

12

15

Th
re

sh
ol

d 
(d

B 
re

 1
%

)

Black check
White check

0 2 4 6 8
Check size

6

9

12

15

Black check
White check

FENE model:

Figure 8.6: Detection thresholds from observer ASB for 4 c/deg “Battenberg” stimuli
presented to the dominant (RE) eye. The data arefitted by the prediction from the FENE
model.
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Figure 8.7: Detection thresholds replotted from Figure 8.6. The data are fitted by the
prediction from the PSmodel.

tributingenergyat spatial frequenciesother than the carrier (this is discussed inSection8.5.3).
The observer could then use information from these artefacts to assist in the detection of the
checked Battenberg stimuli, thus obscuring the magnitude of the full summation effect. The
lack of such an effect in 2.5 c/deg data and in the previous Battenberg study (Meese, 2010)
could be explained if stimuli were presented at themost detectable spatial frequency there.
The pairs of Figures 8.4 - 8.5, 8.6 - 8.7, and 8.8 - 8.9 each show the same data sets fitted by
two different model predictions (those being from the FENE and PS models). The shapes of
the model predictions differ slightly from those shown in Figure 8.2 because the witch’s hat
attenuation surface in the model for the predictions shown here is based only on data from
observer ASB. In all cases the predictions from the FENE model provided a better fit to the
data∗ than the PS model predictions (see Table 8.2). The linear filtering stage in the models
causes them to both predict that for the smallest check size there should be a 6 dB increase in
threshold from that for the full condition. This results from linear summationwithin the simple
cell receptive fields being represented at the initial filtering stage in the models. As discussed
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Figure 8.8: Detection thresholds from observer ASB for 8 c/deg “Battenberg” stimuli
presented to the dominant (RE) and non-dominant (LE) eyes. The data are fitted by the
prediction from the FENEmodel.
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Figure 8.9: Detection thresholds replotted from Figure 8.8. The data are fitted by the
prediction from the PSmodel.

above, the peaks in the data are accurate to those predicted by the models for the 2.5 c/deg
stimuli but smaller than predicted for the 4 and 8 c/deg stimuli.
After the initial 6 dB peak for the smallest check size, which is explained by linear summation
within receptive fields, summation decreases to approximately 3 dB. It is the summation level
for these larger check size stimuli which is critical for preferring the FENE model over the PS
model, as the FENE model predicts 3 dB of summation for the larger check sizes whereas the
PS model predicts 1.5 dB of summation. The superiority of the fit for the FENEmodel in each
case reflects that the level of long-range summation found is closer to that predicted by the
FENEmodel than that by thePSmodel, which is to say that there is toomuch summation in the
data for the probability summation account to prevail. For the larger check sizes the thresh-
olds for thewhite andblack check stimuli are similar inmost cases. There is some separation in

∗The fitting of the model predictions in this study (allowing sensitivity to vary) is more generous to the PS
model than that used by Meese (2010), who normalised the prediction to the threshold for the “full” stimulus. In
this analysis the fit of the PS prediction can be improved by the fitting procedure overestimating the threshold for
the full stimulus (reducing the difference between themodels regarding the prediction for the checked stimuli).
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the right eye for the 2.5 c/deg stimuli (Figure 8.4a), where (contrary to the model predictions)
thresholds are higher for the white check stimuli. The cause of this result is not clear.

8.5.2 Amblyopic observers

The threshold differences between the two eyes of the amblyopic observers tested in this
study are shown in Figure 8.10a. For two observers (S4 and S5) these differences are less than
the 6 dB soughtwhen choosing the target spatial frequency. For these observers performance
in the amblyopic eyewas better relative to the normal eye on themain experiment than it was
in the pilot experiment used to select the target spatial frequency. Figure 8.10b shows the dif-
ferences in summation between the two eyes, calculated by subtracting the fellow fixing eye
summation levels from the amblyopic eye summation levels. The data show that on average
there is little difference in summation between the two eyes for the smallest (1 by 1) or larger
(4 by 4 - 8 by 8) stimuli and 3 dBmore summation for the fellow fixing eye for the 2 by 2 check
stimuli. The summation results from the different amblyope subjects show considerable vari-
ability however, so in this section the data from each observer will be looked at individually
and compared against the predictions from the FENE and PSmodels.
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Figure 8.10: Panel a) shows the average threshold differences between the two eyes for
each amblyope (S1 - S6) across the stimulus conditions tested here. Panel b) shows the
difference in summation for each check condition, equivalent to the threshold differ-
ence between the two eyes normalised to that for the “full” (0) stimulus.

Figures 8.11 - 8.23 show summation results from the six amblyopic observers. Data are pre-
sented from the fellow fixing (FFE) and amblyopic (AMB) eyes in the two panels a) and b). The
figures corresponding to each observer and model prediction are detailed in Table 8.3. For
observer S4, thresholds for two conditions in the fellow fixing eye were much higher than
those in the other conditions (see Figure 8.17a). These anomalous data were removed and
the FENE model prediction was refit (Figure 8.18). This restricted data set was also fitted by
the PS model (Figure 8.19). As above, the key distinction between the FENE and PS model
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Figure 8.11: Detection thresholds from amblyopic observer S1 for 2.5 c/deg “Batten-
berg” stimuli presented to the fellow fixing (FFE) and amblyopic (AMB) eyes. The data
are fitted by the prediction from the FENEmodel.
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Figure 8.12: Detection thresholds replotted fromFigure 8.11. The data are fitted by the
prediction from the PSmodel.
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Figure 8.13: Detection thresholds from amblyopic observer S2 for 2.5 c/deg “Batten-
berg” stimuli presented to the fellow fixing (FFE) and amblyopic (AMB) eyes. The data
are fitted by the prediction from the FENEmodel.

157



predictions here is that for the FENE model summation should asymptote at approximately
3 dB for the largest stimulus size, whereas for the PS model summation should asymptote at
approximately 1.5 dB.
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Figure 8.14: Detection thresholds replotted fromFigure 8.13. The data are fitted by the
prediction from the PSmodel.
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Figure 8.15: Detection thresholds from amblyopic observer S3 for 4 c/deg “Battenberg”
stimuli presented to the fellow fixing (FFE) and amblyopic (AMB) eyes. The data are fit-
ted by the prediction from the FENEmodel.

If the fellow fixing eyes of amblyopes are functionally normal, it would be expected that am-
blyopes using those eyes should behave in a similar manner to the normal observer tested in
this study (ASB), and to those tested byMeese (2010). The fellow fixing eyes of observers S1,
S5, and S6 provide data that are similar to previous results. Data from the other observers (S2,
S3, andS4) donot clearly show the stereotypical patternof threshold elevation for theBatten-
berg check conditions. For observer S3 (Figure8.15) the initial summation peak is smaller than
that predicted from linear summation within receptive fields. For the only amblyope tested at
6 c/deg (S4, see Figure 8.18) this initial summation peak is missing entirely. This may be due to
the same problems with stimulus artefacts that I suggest caused a similar effect in the normal
observer (see Section 8.5.3). In all cases however the data from the fellow fixing eyes of the
amblyopes were fit better by the FENE prediction than by the PS prediction (see Table 8.3).
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Figure 8.16: Detection thresholds replotted fromFigure 8.15. The data are fitted by the
prediction from the PSmodel.
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Figure 8.17: Detection thresholds from amblyopic observer S4 for 6 c/deg “Battenberg”
stimuli presented to the fellow fixing (FFE) and amblyopic (AMB) eyes. The data are fit-
ted by the prediction from the FENEmodel.
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Figure 8.18: Detection thresholds from amblyopic observer S4 for 6 c/deg “Battenberg”
stimuli presented to the fellow fixing (FFE) and amblyopic (AMB) eyes. These data are
replotted from Figure 8.17 however the three conditions for which thresholds were un-
usually high in that figure are omitted here. The data are fitted by the prediction from
the FENEmodel.
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Figure 8.19: Detection thresholds replotted fromFigure 8.18. The data are fitted by the
prediction from the PSmodel.

0 2 4 6 8
Check size

-3

0

3

6

9

Su
m

m
at

io
n 

(d
B)

0 2 4 6 8
Check size

a) S5 4 c/deg FFE b) S5 4 c/deg AMB

RMSe = 1.73 dB RMSe = 1.07 dB

0 2 4 6 8
Check size

6

9

12

15

Th
re

sh
ol

d 
(d

B 
re

 1
%

)
Black check
White check

0 2 4 6 8
Check size

6

9

12

15

Black check
White check

Data:

0 2 4 6 8
Check size

6

9

12

15

Th
re

sh
ol

d 
(d

B 
re

 1
%

)

Black check
White check

0 2 4 6 8
Check size

6

9

12

15

Black check
White check

FENE model:

Figure 8.20: Detection thresholds from amblyopic observer S5 for 4 c/deg “Battenberg”
stimuli presented to the fellow fixing (FFE) and amblyopic (AMB) eyes. The data are fit-
ted by the prediction from the FENEmodel.
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Figure 8.21: Detection thresholds replotted fromFigure 8.20. The data are fitted by the
prediction from the PSmodel.
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Figure 8.22: Detection thresholds from amblyopic observer S6 for 2.5 c/deg “Batten-
berg” stimuli presented to the fellow fixing (FFE) and amblyopic (AMB) eyes. The data
are fitted by the prediction from the FENEmodel.
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Figure 8.23: Detection thresholds replotted fromFigure 8.22. The data are fitted by the
prediction from the PSmodel.
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The data collected from the amblyopic observers were quite variable. The quality of the data
did however seem to be similar regardless ofwhether the amblyopic or fellowfixing eyeswere
being tested. This suggests that the complications of using relatively naïve subjects for this
extensive psychophysical studymay bearmore responsibility for the quality of their data than
the pathology of their visual systems. On the other hand, those observers who provided clear
data from their fellow fixing eyes (S1, S5, and S6) showed summation in their amblyopic eyes
that appearednormal (despite their elevated thresholds), andwasbetterfit in twoout of three
cases by the FENEmodel than by the PS model (Figures 8.11b - 8.12b and 8.20b - 8.21b). For
observer S6, whose data were slightly better fit by the PSmodel, very little data had been col-
lected and the difference between the two RMS errors wasmarginal (Figures 8.22b - 8.23b).

FENEmodel PSmodel
Observer SF (c/deg) Eye Figure RMSe (dB) Figure RMSe (dB)
S1 2.5 FFE 8.11 0.88 8.12 1.16

AMB 1.07 1.44
S2 2.5 FFE 8.13 1.42 8.14 2.64

AMB 1.44 3.13
S3 2.5 FFE 8.15 2.33 8.16 2.78

AMB 4.29 4.18
S4 2.5 FFE 8.18 2.53 8.19 3.09

AMB 1.70 1.66
S5 2.5 FFE 8.20 1.73 8.21 2.04

AMB 1.07 1.67
S6 2.5 FFE 8.22 0.70 8.23 0.76

AMB 1.06 0.99
Table 8.3: RMS errors between the data from observer ASB and the FENE and PSmodel
predictions for the fits shown in Figures 8.11 - 8.23 (Figure 8.17 excluded). The rows
labelled FFE and AMB refer to the data collected from the observer’s fellow fixing eyes
and amblyopic eyes respectively.

For the other three amblyopic observers, the data from the amblyopic eyes were more diffi-
cult to interpret. Observer S2 shows a loss of the expected initial linear summation peak at
2.5 c/deg (Figures 8.13b - 8.14b), similar to that seen for higher spatial frequencies in the nor-
mal observer and the fellow fixing eyes of some of the other amblyopes. Observer S3 shows
a greater sensitivity to the 1 by 1 check condition than to the full condition (Figures 8.15b -
8.16b). Both of these results could be explained if the observerwasmore sensitive to the arte-
facts introduced by the Battenberg modulation in the checked stimuli than they were to the
carrier grating itself (see Section 8.5.3). The data fromobserver S4 appeared to roughly follow
the predicted summation behaviour from the two models, with both the FENE and PS model
predictions providing fits of similar quality (Figures 8.18b - 8.19b).
The results of fitting the FENE and PS models to the amblyope data are summarised in Ta-
ble 8.3. As noted above, in all cases the data from the fellow fixing (FFE) eyes are better fit by
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the FENEmodel (differences in RMSe ranged from 0.06 to 1.22 dB). For the amblyopic (AMB)
eyes RMS errors were lower for the FENE model (differences in RMSe ranged from 0.37 to
1.69 dB) in three out of six cases (S1, S2, and S5). For the other three observers the data were
only slightly better fit by the PSmodel (differences in RMSe ranged from 0.04 to 0.11 dB).

8.5.3 Artefacts
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Figure 8.24: Example contrast sensitivity function (CSF) from the fellow fixing (FFE) and
amblyopic (AMB) eyes of an amblyope replotted from Hess et al. (1978), Figure 7. The
sold grey line labelled cmarks a possible stimulus carrier frequency (2.5 c/deg) and the
dashed lines labelled a1 and a2 show the frequencies of the artefacts introduced belowand above that spatial frequency by the 1 by 1 check Battenbergmodulation.

The loss of the initial 6 dBpeak from short-range linear summationwithin receptivefields can-
not be explainedwithin the single-channelmodels tested here. Instead, an explanation for this
effect must rely on interactions from other spatial frequency and orientation channels (see
Section 2.3.2). As detailed in Section 3.4.6, Battenberg stimuli are created by multiplying sev-
eral component images together. These are a sine-wave carrier grating and a rectified orthog-
onal grating at half the spatial frequency, which are multiplied to generate the “full” stimulus
(see left column of Figure 8.25). The checked Battenberg stimuli are then generated bymulti-
plying this full stimulus by a square-wave checkerboard (see left column of Figure 8.26).
The Fourier transforms of the images used at each stage are shown in the right columns of
Figures 8.25 and 8.26. As multiplication in the spatial domain is equivalent to convolution in
the Fourier domain, the Battenberg stimuli acquire artefacts (easily visible in the Fourier do-
main) at spatial frequencies and orientations other than that of the carrier. Those which may
have a confounding effect in this study are the ones introduced by the squarewavemodulating
plaid used to create checkerboard pattern in theBattenberg stimuli. For the 1by1 check stim-
uli, this manipulation introduces stimulus energy at spatial frequencies at factors of√2 above
and below the carrier. When the carrier spatial frequency is not at the peak of the CSF (i.e. is
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Figure 8.25: Images of stimulus components (left column) and Fourier transforms of
those images (right column). In the spatial domain, the full stimulus (bottom row) is the
product of the carrier grating (top row) and the rectified orthogonal modulator grating
(middle row). The modulator is generated at half the spatial frequency of the carrier
(therefore it has the same periodicity after full-wave rectification).

not among the most detectable frequencies) it is possible that these artefacts introduced at
other, possibly more detectable, spatial frequencies will lower detection thresholds (see Fig-
ure 8.24). Such an effectwould explain the absence of linear summation for the smallest check
size in several observers. This could be the case whether those data are from the amblyopic
eye at a lower spatial frequency, or a normal eye at a higher spatial frequency.

164



a) b)

c) d)

Sq
ua

re
w

av
e 

pl
ai

d
Ba

tte
nb

er
g 

st
im

ul
us

Spatial domain Fourier domain

Figure 8.26: Images of squarewave plaidmodulator and 1 by 1 check “Battenberg” stim-
ulus (left column) and Fourier transforms of those images (right column). The Batten-
berg stimulus (bottom row) is the product of the full stimulus from Figure 8.25e and the
squarewave plaid modulator (in the spatial domain).

Figure 8.3 shows a portion of theCSF for observerASB,with the artefact frequencies for the 4
c/deg and 8 c/deg stimuli labelled a2 and a3 respectively. The figure shows that these frequen-
cies are more detectable than the carrier in each instance, supporting the possibility that the
observermay have improved their performance for the 1 by1 check stimuli by detecting these
artefacts. This would explain the reduced short-range summation found for these conditions
(see Figures 8.6 and 8.8). For the 2.5 c/deg stimuli there was no data from the relevant fre-
quency (1.8 c/deg) to determinewhether this stimulus was at the peak of the CSF, therefore it
is not known whether an explanation based on sensitivity to artefact frequencies would pre-
dict the presence of the full linear summation effect for stimuli of this spatial frequency.
Amblyopic observer S1 showed full linear summation for the 1 by 1 check stimuli in both eyes.
Observer S2 showed slightly less than linear summation in the fellow fixing eye, and no sum-
mation in the amblyopic eye. Figure 8.27 shows contrast detection thresholds collected from
these two amblyopic observers in their fellow fixing and amblyopic eyes for gratings at the
carrier spatial frequency (2.5 c/deg) and at a factor of √2 below the carrier frequency (1.8
c/deg). The stimuli used were 42 by 42 cycle horizontal gratings generated with a fixed num-
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Figure 8.27: Contrast detection thresholds for two amblyopic observers (S1 and S2) at
1.8 and 2.5 c/deg. Data are shown for the fellow fixing (FFE) and amblyopic (AMB) eyes.

ber of cycles on the screen. The methods used were otherwise similar to those presented in
themethods section of this chapter.
For the observer who shows normal linear summation (S1), thresholds for the artefact spatial
frequency were 1.05 dB higher than those for the carrier spatial frequency in the amblyopic
eye (Figure 8.27b). For the observer who does not show any summation for the 1 by 1 check
stimuli (S2), thresholds were 2.24 dB lower for the artefact spatial frequency than for the car-
rier spatial frequency. In the fellow fixing eyes (Figure 8.27a) the differences were smaller
direction of these effectswas reversed, with observer S1 showing a 0.92 dB advantage for the
artefact spatial frequency, and observer S2 showing a 0.59 dB disadvantage. These findings
support the possibility that the lack of summation for the 1 by 1 check stimuli in the amblyopic
eye of observer S2 is due to the shape of the CSF for this observer favouring the detection of
the artefacts introduced to the stimulus by the Battenberg modulation, however a full expla-
nationwould require amodel of how stimulus information is combined across different spatial
frequency channels.

8.6 Discussion

8.6.1 Area summation in amblyopes appears to be normal

The results from this study support the established finding that although contrast detection
thresholds are higher in amblyopia, the summation of contrast over area occurs in a similar
manner to that found in normal observers (Hess & Howell, 1978; Hess & Campbell, 1980).
For three out of six observers (S1, S2, and S5) the amount of summation found was greater
than that predicted by a probability summation model, instead favouring a linear sum of the
squared local filter outputs. This behaviour would be consistent with the noisy energy model
put forward in previous chapters, if the observer were unable to match a template to the

166



checkerboard pattern in the stimuli here and instead summed signal and noise over the stim-
ulus extent. For the other three observers (S3, S4, and S6) the results were inconclusive as
similar RMS errors were obtained by fitting either model prediction (probability summation
or noisy energy) to the data.

8.6.2 Complications involved in the use of the Battenberg stimulus

The results from both a subset of the amblyopic observers and the normal observer at higher
spatial frequencies are fundamentally incompatiblewith the single-channelmodels used here.
One possible explanation of these results would be that the artefacts introduced at other spa-
tial frequencies in the Battenberg stimulus generation were contributing to the detection of
the checked stimuli. Where larger amounts of summation are found (such as in the observers
that are best fit by the FENE model prediction here) this is no cause for concern, as a con-
tribution to detection from the artefacts can only decrease the measured level of summation.
Where less summation is found than expected however these artefacts may be responsible.
The possibility that unintended artefacts may affect the results obtained using Battenberg
stimuli should be considered in studies that use them.
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CHAPTER 9

Summation of orientation signals

9.1 Motivation and summary
Previous chapters in this thesis have focused on how threshold contrast signals are combined
across the visual field. In this chapter, the same techniques used to study those processes are
applied to an investigation of how local orientations in a suprathreshold pattern are pooled
over space into a coherent global percept. Although previous studies have addressed the sig-
nal combination process at length (i.e. how an estimate of global orientation is calculated from
the local samples), the strategy by which samples are chosen to be pooled (e.g. whether the
observer is able to ignore samples from irrelevant locations) is a topic that has attracted sur-
prisingly little attention previously. A set of orientation discrimination experiments are per-
formed here with novel “Battenberg” stimuli. The results suggest the combination of orienta-
tion signals over space to be a two-stage process. The first stage is amandatory integration of
local signals over a fixed area, limited by internal noise at each location. The second stage is a
task-dependent flexible combination of the outputs from the first stage.

9.2 Introduction

9.2.1 Combining orientation signals over space

Theperception of coherent textures requires the integration of orientation signals over space.
The definition of regions in an image that “belong” to the same texture is a necessary inter-
mediate step to higher-level processes such as finding boundaries between different textures
(Marr, 1982; Landy & Graham, 2004). Although texture boundaries are not the only cue to
used to segregate objects from each other in normal viewing they do provide at least some in-
formation (see Figure 9.1). Research on human behaviour in this area has focused on address-
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b)a)

Figure 9.1: Demonstration of coherent texture. Panel a) shows an image of a natural
scene. This was filtered by a pair of quadrature-phase vertical log-Gabor elements (in-
set), the complex response at each location was calculated as the Pythagorean sum of
the sin and cosine responses. Pink locations in the image indicate where this response
exceeded an arbitrary threshold. Panel b) shows the vertical energy in the image at the
spatial scale at which the filtering in panel a) was conducted. The tree trunk on the left
of the image, and the fences on each side of the bridge, are represented by clear regions
of coherent vertical texture.

ing the process by which signals are combined, rather than the effects of the spatial arrange-
ment of the signals in the stimulus. Differential behaviours in psychophysical tasks would re-
sult from the various possible strategies by which signals could be pooled into the combina-
tion process. It is recognised that the pooling strategy leading to the perception of a coherent
texture must involve both a local integration phase∗ where the orientation statistics at each
location are estimated, and further operations performed over those local estimates (Vorhees
& Poggio, 1988; Sagi, 1990; Dakin &Watt, 1997). This study focuses on examining the strate-
gies used for pooling samples over space in the two stages by measuring and modelling the
integration of local orientation signals across the visual field.

9.2.2 Signal combination processes

Effectsof spatial configurationaside, theprocessbywhich thevisual systemcalculates aglobal
orientation from an array of local orientations has been found to depend on the task set to the

∗The structure of the local mandatory phase is described by a linear-nonlinear-linear (LNL) model (Landy &
Graham, 2004), where the non-linear stage sandwiched between the two linear signal combination stages is nec-
essary for the predictions to be different from thosemadeby a simpler linearmodel (e.g. for stimuli where the local
responses from the first linear stage are out of phase).
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observer. Similar dependencies have also been reported in studies that investigated the inte-
gration of local motion signals. When the observer is required to distinguish between stimuli
with weak horizontal or vertical orientation coherence (i.e. with a large difference between
the two target orientations), observersfilter the imageat the twopotential target orientations
and then choose the orientation of the more activated filter (Husk et al., 2012). A winner-
takes-all process similar to this has been found in analagous studies performed with motion
stimuli in monkeys (Salzman &Newsome, 1994).
Under conditions where finer judgements of the global orientation of a texture need to be
made, theobserver calculates thevector averageof the local orientations (Dakin&Watt, 1997;
Webbet al., 2010). Similar changes in the combinationprocess usedbyobservers basedon the
difference between the discriminated orientations have been demonstrated in themotion do-
main (Nichols & Newsome, 2002; Webb et al., 2007). The ideal strategy for any task would
be to use all of the information available from the stimulus on each trial to calculate which re-
sponse is most likely to be correct (maximum likelihood estimation, orMLE). Studies designed
to producedistinct predictions fromMLEhave found that observers use this processwhen the
stimulus is displayed for a sufficient duration (longer than 1 second inWebb et al., 2010).
The largeorientationdifferences and short stimulus durations used in the current studywould
be expected to cause the observer tomax over filter outputs (the design of this study is similar
to that ofHusk et al., 2012), however it is not necessary to assume that theobservermakesuse
of a particular process for the purposes of this study (see Section 9.5.2). Instead, what is of in-
terest is the effect of the pooling strategy used to select the samples for this combination. The
filtermaxing and vector averagingmodels are both implementedhere in order to demonstrate
that theymake near-identical predictions for the tasks in this study.

9.2.3 Pooling strategies and summation effects

Most signal combination processeswould predict an improvement in performance for detect-
ing weak signals as the number of samples increases. Provided that the noise affecting each
sample is at least partially independent, the limiting effect of the noise on performance can be
reduced by exploiting the information from multiple samples. This will improve performance
whether the observer is filter-maxing, vector-averaging, or performingMLE. Different strate-
gies for pooling signals over space make different predictions for how performance should
improve with additional signal samples. Previous work where the number of samples avail-
able for combination is varied have found conflicting results of either improvements reflect-
ing ideal summation under a flexible pooling strategy (Jones et al., 2003), or no benefit from
increasing the number of samples whatsoever (Husk et al., 2012). Dakin (2001) found “en-
tirely flexible” combinationwith respect to signal location over a limited number of samples in
the display. This was presented as an “information limit” for orientation integration.
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9.2.4 This study

Although several studies have investigated the combination process underlying the judge-
ment of global orientation, relatively little attention has been paid to the pooling strategy that
is used to select the samples for combination. The summationeffects resulting from increasing
the number of samples available for integration are investigated here using novel Battenberg
stimuli and computer modelling. The Battenberg stimuli allow for manipulation of the spatial
arrangement of signal within a stimulus of fixed extent and eccentricity. This reduces the con-
founding effects of any inhomogeneities in sensitivity for performing the global orientation
task. Jones et al. (2003) suggested that such an effect may have reduced the level of summa-
tion measured in their study. The results of the experiments conducted in this chapter show
that the pooling of orientation information is a two-stage process, with mandatory local inte-
gration (affected by internal noise at each location) followed by flexible long-range pooling.

9.3 Methods

9.3.1 Equipment

Stimuli were presented on a gamma-corrected CRT monitor using Psychtoolbox (Brainard,
1997; Kleiner et al., 2007) running under MATLAB. The data collection for these experiments
was split between two different equipment setups. The first was an Apple Macbook Pro with
an NVIDIA GeForce 9600M graphics card presenting stimuli on a Philips MGD403 monitor,
the second was an Apple Macbook Pro with an NVIDIA GeForce 8600M graphics card pre-
senting stimuli on a Compaqmonitor. Themonitors had refresh rates of 75 Hz and 90Hz, and
mean luminances of 77.2 and 26.9 cd/m2 respectively. Observers viewed the monitors from a
distance of 0.51 metres. At this viewing distance the screen had a resolution of 24 pixels per
degree of visual angle, giving 6 pixels per cycle for the 4 c/deg stimuli used here.

9.3.2 Stimuli

Stimuli were 29 by 29 element arrays of 4 c/deg cosine-phase log-Gabor patches (spatial fre-
quency and orientation bandwidths of 1.6 octaves and ±25◦ respectively; see Section 3.4.5),
spaced1degree apart in a square grid. Stimuli were displayed at 80%delta-contrast. Each log-
Gaborwas either a potential signal or a noise element. Potential signal elements had probabil-
ity P (coherence) of assuming the target orientation (which was either horizontal or vertical),
otherwise they assumedanorientationdrawnat random fromauniformdistribution. All noise
elements assumed random orientations. The orientation of each element was rounded to the
nearest degree before stimulus generation. The range of potential element orientations was
0◦ to 179◦ (angles beyond this were redundant for the cosine-phase elements used here).
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Figure9.2: Example of the stimulus designused in these experiments. The stimuli shown
are 7 by 7 element arrays (smaller than the 29 by 29 arrays used in this study) with a 3
by3 check size. Thefigure includes “white” and “black” check versions of the noise check
and signal only stimuli, shown at 100% coherence.

Two types of stimuli were tested, “full” and “Battenberg”. In the full stimuli all of the elements
were potential signal elements. For theBattenberg stimuli, the potential signal elementswere
assigned to locations in the stimulus defined by a checkerboard (a square-wave plaid). This
gave a stimulus tiled with square signal and non-signal regions. Two types of Battenberg stim-
uli were tested. For the “noise check” condition the non-signal regions contained randomly-
oriented elements. For the “signal only” condition the non-signal regions were blank (mean
luminance). Each of the Battenberg conditions contained the same total number of elements,
but approximately half asmany signal elements as the full (all-signal) condition (see Table 9.1).
The spatial arrangement of the signal regions in the stimuluswasmanipulated by adjusting the
frequency and the phase of the square-wave plaid modulator† that defined the checkerboard.
Decreasing or increasing the frequencymade the signal regions larger or smaller respectively,
and this was used to create the five different check sizes. These gave stimuli tiled with 1, 3,
5, 9 and 15 element square signal regions (i.e. the largest check size had 15 by 15 element

†This modulator was generated as the product of vertical and horizontal square wave gratings (scaled 0 - 1),
rather than by summing orthogonal oblique gratings.
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Figure 9.3: The numbers of potential signal and noise (always randomly-oriented) ele-
ments in each stimulus. In the noise check stimuli (panel a) the total number of elements
(841) remained constant. In the signal only stimuli (panel b) the checked stimuli con-
tained approximately half as many elements as the full (0) stimulus.

White check Black check
Check size # signal elements Proportion # signal elements Proportion
1 by 1 421 50.1% 420 49.9%
3 by 3 420 49.9% 421 50.1%
5 by 5 421 50.1% 445 52.9%
9 by 9 396 47.1% 421 50.1%
15 by 15 421 50.1% 420 49.9%

Table 9.1: Numbers and proportions of potential signal elements in the various “Batten-
berg” stimuli used in this study. The total numberof elements in the full Battenberg stim-
ulus was 841. Noise check stimuli always contained 841 elements, with the non-signal
elements set to random orientations. Signal only stimuli did not contain any elements
other than those which were potential signal elements.

“checks”). The phase of the modulation was also manipulated to test stimuli in both cosine
(“white check”) and anticosine (“black check”) phase. Miniature example stimuli are shown in
Figure 9.2. The numbers of potential signal and noise (always randomly oriented) elements in
each stimulus are plotted in Figure 9.3. The full stimuli were referred to as having a check size
of zero for the purposes of plotting the data.

9.3.3 Observers

Seven observerswere used. Onewas the author (ASB), fourwere experienced psychophysical
observers (DHB, JSH, RJS & SAW), and two were naïve undergraduate students (LFE & VRP).
All had either normal or corrected-to-normal vision.
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9.3.4 Procedures

A blocked single-interval identification task was performed to find the threshold coherence
for each check size, phase (white vs. black check), and Battenberg type (noise check vs. signal
only). Threshold coherence was tracked using a pair of three-down one-up staircases (maxi-
mum120 trials or 12 reversals), one for horizontal signal trials and the other for vertical signal
trials (see Section 3.5). The staircases for the two signal orientations were interleaved ran-
domly. Once the staircase for one orientation had terminated, dummy trials (where no data
were recorded) were still presented with that orientation until the staircase for the other ori-
entation terminated. Staircases started at a high level in order to inform the observers ofwhat
stimulus to expect in each block.
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Figure 9.4: Showing the method by which threshold coherence levels were calculated.
Data from the two interleaved staircases (one for each signal orientation) were com-
bined and fitted with a cumulative normal to give a single psychometric function.

Stimuliwere presented for 250ms. Stimulus onsetwas accompanied by a beep. Observersfix-
ated centrally, with the help of a black fixation dot that was shown between trials. A keyboard
was used for the response. The observers pressed a key to indicate whether the stimulus con-
tained either “Horizontal” or “Vertical” coherence. The observers’ responsewas followed by a
feedback beep that indicatedwhether itwas correct or incorrect, and then a 300ms pause be-
fore the presentation of the next stimulus. Each observer performed four repetitions for each
combination of check size (0 to 15), Battenberg modulator phase (white or black check), and
Battenberg type (noise check or signal only). As the full (0) stimuluswas identical regardless of
Battenberg type ormodulator phase, each observer collected four times asmuch data for this
condition (sixteen repetitions). These were averaged to give a single threshold per observer.
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9.3.5 Analysis

Data from the horizontal and vertical staircases were combined into a single psychometric
function for each repetition, condition, and observer. This was then fit by a cumulative normal
function using Palamedes (see Section 3.6; Prins & Kingdom, 2009). The fitted function gave
the probability of responding “Horizontal” to either a vertical stimulus (plotted as negative co-
herence) or ahorizontal stimulus (plotted as positive coherence). The coherence level atwhich
the function reached P (“Horizontal”) = 0.5 gave the bias for the observer categorising a stim-
ulus as horizontal rather than vertical (or vice-versa), and the threshold could be calculated
as the difference between the coherence level at this point and that where P (“Horizontal”) =
0.75 or P (“Horizontal”) = 0.25.

9.4 Results

9.4.1 Noise check
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Figure 9.5: Results from individual observers (see legend below) and the average results
across observers (right). Performance is expressed as the threshold proportion of co-
herent elements in the signal regions. Thresholds are expressed as multiples relative to
that for the full (0) condition (these data are replotted in Figure 9.6). Results are shown
for the noise check (a) and signal only (b) conditions. Error bars show±1 standard error
here and in all other graphs.

Results from the seven observers, and the average of their results, are shown in Figure 9.5.
Coherence thresholds (proportion of elements in the potential signal region that assume the
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Figure 9.6: The data from Figure 9.5 are replotted here as the threshold number of el-
ements in the stimulus (panels a-b), the threshold percentage of signal elements in the
potential signal region (panels c-d), and the threshold percentage of signal elements in
the entire stimulus (panels e-f). Other figures in this chapter use the representation of
the threshold signal level shown in panels c) and d), with these “coherence thresholds”
expressed asmultiples relative to that of the full (0) stimulus.

target orientation) for each stimulus are plotted asmultiples relative to that of the full (0) con-
dition, which had a threshold of approximately 10%. Figure 9.6 provides more information on
how to interpret this figure. Figure 9.5a shows the results for the noise check condition. For
smaller check sizes (1 to 3) the threshold coherence for the Battenberg stimuli was approx-
imately double that for the full (0) stimulus. This means that approximately the same num-
ber of signal elements across the entire stimulus were required to reach the threshold perfor-
mance level in each case (see Figure 9.6a). For medium sizes (5 to 9) the threshold elevation
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decreased to√2, which is consistent with a strategy that uses information from potential sig-
nal regions but ignores irrelevant (noise-only) regions (as the noise resulting from the combi-
nation of multiple equally-noisy samples is proportional to the square root of the number of
samples combined). This point will be returned to in themodelling.
One of the purposes of the Battenberg stimulus design is to reduce the effect of visual field
inhomogeneities in sensitivity on the measurement of area summation. For stimuli with large
check sizes relative to their extent though, these effects will return. For the largest (15) check
size, performance diverged dependent onwhether the stimuluswas in thewhite check (foveal
signal, peripheral noise) or black check (foveal noise, peripheral signal) phase. Thresholdswere
almost as low for the white check stimulus as they were for the full (0) stimulus. This means
that the observers required around half as many signal elements across the entire stimulus
when most of those elements were presented in the centre of the display (Figure 9.6a). For
the black check stimulus, coherence thresholds were approximately double that of the full (0)
stimulus. This means observers required the same number of signal elements in the largest
black check stimulus as they did in the full (0) stimulus (Figure 9.6a). This would be consistent
either with a relative insensitivity for this task in the periphery or a failure in segregating the
noise present in the centre of the display (this is discussed further below).

9.4.2 Signal only

Figure 9.5b shows the results for the signal only condition. For the smaller check sizes in the
signal only condition, thresholds increase to approximately double that for the full (0) stimulus
in a similar manner to that seen in the noise check condition. This is unexpected, as the pre-
dicted threshold for this condition based on the stimulus properties alone would be a factor
of√2 above that for the full (0) condition (there are no noise-only elements, so the threshold
would be proportional to the square root of the number of elements in the display). These
results suggest that the limiting noise for this task does not come from the responses to the
individual elements (i.e. is not “early”). The noise cannot be “late” and constant across condi-
tions however, as this would predict the same performance level for all of the checked stimuli.
Instead, these results suggest that observers are mandatorily integrating internal noise from
blank display regions (or are limited by late noise that is proportional to the monitored area)
for the smaller check sizes but are able to exclude this noise for the larger check sizes. A pos-
sible explanation for this behaviour will be offered in themodelling (Section 9.5.7).
For the largest (15) white check stimuli averaged thresholds are similar in the noise check and
signal only conditions, suggesting that the pooling of samples (and segregation of noise) in
these two conditions is similar. Performance for the largest (15) black check stimulus in the
signal only condition is a factor of√2 better than that in the noise check condition, meaning
that at least part of the deficit for detecting that stimulus was due to inefficient pooling of
noise in the noise check condition rather than a relative insensitivity for performing the task
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in the periphery (e.g. it may be more difficult for the observer to keep track of the signal and
non-signal regions in the noise check condition). Observers JSH and LWE show similar perfor-
mance for the largest black check stimulus in the two conditions (noise check and signal only),
suggesting that in their case it is the insensitivity of the periphery that is the limiting factor. Ex-
cluding these observers from the averaging (not shown) does not affect the thresholds for the
largest (15) check sizes in the noise check condition, but does lower the threshold for the black
check stimulus in the signal-only condition to approximately 4

√
2 (increasing the difference be-

tween thenoise check and signal only conditions for the largest black check stimulus). Possible
explanations for the advantage found for the largest white check stimuli are addressed in the
modelling section.

9.5 Modelling

9.5.1 Monte Carlo simulations
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Figure 9.7: Predictions for the noise check condition frommodels using the vector aver-
aging (a) and filter maxing (b) combination processes and a variety of different pooling
strategies. Each plot shows predictions for models that combine over all elements (SA),
combine ideally (SI), and a two-stagehybridmodel (HM)ofmandatory local combination
followed by ideal pooling (see Section 9.5.5).

A set of models was developed in order to investigate the pooling strategy used by the ob-
servers to perform the task in this study. The main aim of the modelling was to explain the
surprising equivalence between the smallest check sizes in the noise check and signal only
conditions. Models were developed using stochastic Monte Carlo methods (Section 5.1). A
set of model observers was developed with different pooling strategies and combination pro-
cesses in MATLAB and run through 2,000 simulated trials per stimulus level of a method of
constant stimuli (MCS) version of the experiment. The thresholds for each model observer
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performing each condition were then calculated using the simulated data and expressed as
relative thresholds (i.e. the threshold for each Battenberg condition expressed as a multiple
of that for the full (0) condition) allowing them to be compared directly to the data (obviating
the need to fit themodels to the human data).

9.5.2 Combination processes
Several combination processes for the calculation of global orientation from individual local
samples have been suggested previously. Here I implement the two strongest candidates that
the observers may be using for the tasks in this study: vector-averaging of individual element
orientations (found for orientation discrimination of glass patterns by Webb et al., 2010) or
selecting the orientation of the most strongly activated filter (found for an orientation coher-
ence task similar to this onebyHusk et al., 2012). These two combinationprocessesmake very
similar predictions for how performance on the task investigated here should depend on the
number of integrated signal and noise samples (see Figure 9.7). To demonstrate this however,
and for the sake of completeness, both are implemented here.

9.5.3 Vector averaging

162° 25° 40° 46° 87°

20° 90° 90° 130° 90°

13° 90° 153° 45° 90°

90° 167° 90° 103° 16°

72° 131° 171° 90° 146°

Vector 
average

86.5°

Figure 9.8: Demonstration of the vector averaging combination process. The orienta-
tionof eachpooledelement is input into thevector averaging formula (seeEquation9.1),
fromwhich the average orientation is then calculated.

In the vector averaging model (Dakin &Watt, 1997), each pooled element is represented as a
vector with magnitudemi and orientation θi (see Figure 9.8). It is assumed that the observer
is able to extract the orientation of each element (in the model this is implemented by taking
the orientations directly from the stimulus generation procedure). These are then combined
using vector averaging to get the average orientation

θavg =
1

2
tan−1


n∑
i=1

mi sin 2θi

n∑
i=1

mi cos 2θi

 . (9.1)
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Note that the local orientations are doubled before averaging, and that the output of the vec-
tor averaging operation is halved. This wraps the orientations at 180◦ (rather than at 360◦,
which is the usual limit) because each element in the display is symmetrical across its major
andminor axes (a 90◦ element is identical to a 270◦ element).
Wheneveryelement isweightedequally all elements are representedbyunit vectors (mi = 1).
In the case where the elements have different expected signal-to-noise ratios (e.g. the sec-
ond stage of the two-stage hybrid model below), the magnitudes of the local vectors are each
weighted by a template in order to control the contribution each local vector makes to the
calculated average (see Section 9.5.5). The model then picks the potential target orientation
closest to the calculated average orientation. The predictions from vector averaging models
using the different pooling strategies given in Section 9.5.5 are shown in panel a) of Figure 9.7.

9.5.4 Filter maxing

∗

∗
Σ(|rx,y |)

†

Σ(|rx,y |)
† Compare

†For the internal noise (HMN) model:
Σ[|rx,y | + N(μ,σ 2 )]
μ = 0, σ controls overall sensitivity

Figure 9.9: The filter maxing combination process. The stimulus is filtered at the two
possible target orientations by log-Gabor patches matched to the signal elements. The
magnitudes of the filter responses at each pooled location are then summed over the
image and the responses from the two orientations are compared to pick the larger.

In the filter maxing model (Jones et al., 2003), the stimulus is first filtered at the two poten-
tial target orientations (see Figure 9.9). The filter elements were a pair of log-Gabor elements
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with the same properties as those used in the generation of the stimuli. The rectified filter re-
sponses in the pooled regions are then summed over the image for each orientation and these
values are compared to each other. The observer picks the orientation with the largest fil-
ter response. The predictions from filter maxingmodels using the different pooling strategies
given in Section 9.5.5 are shown in panel b) of Figure 9.7.
Comparing the model predictions for the three different pooling strategies between the two
panels in Figure 9.7 shows that the combination process used does not affect the model pre-
diction. This is unsurprising as previous studies that have found differential predictions from
these models have done so by varying the distribution of the element orientations (e.g. Webb
et al., 2007; Husk et al., 2012), whereas this is kept constant across the conditions tested here.
Due to the similarity of the predictions from the two combination processes, only the predic-
tions from the filter maxingmodels are used in the rest of this chapter.

9.5.5 Pooling strategies

f(    )s1,1 n2,1 n3,1 n4,1 s5,1

n1,2 s2,2 s3,2 s4,2 n5,2
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where f(S) is either signal combination 
process (vector averaging or filter maxing)

Sum all (SA)

Sum ideally (SI)

Figure 9.10: Showing the “sum all” (SA) and “sum ideally” (SI) pooling strategies. The
orange regions in the diagram show locations of potential signal elements, the blue re-
gions show locations of noise or blank elements. The SA strategy combines information
from all locations in the stimulus (signal and noise/blank), the SI strategy uses only in-
formation from the potential signal regions. The function f(X) represents either vector
averaging or filter maxing depending onwhich combination process is being used.

The simplest pooling strategy considered is the “sum all” (SA) strategy, where the observer
combines information fromevery element in the stimulus regardless ofwhether it is a noise or
potential signal element (seeFigure9.10). Modelswith this strategypredict that the threshold
coherence for the noise check stimuli should be approximately twice that for the full (0) stim-
ulus (Figure 9.7), which is equivalent to requiring the same threshold proportion of coherent
signal elements across the whole stimulus (“approximately” because the checked stimuli do
not contain exactly half as many potential signal elements as the full stimulus, see Table 9.1).
For the signal only stimuli the predicted threshold elevation is a factor of√2, as there are no
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interstitial noise elements integrated to limit performance in that condition. Models with this
strategy capture the performance for the small check sizes (1 to 3) in the noise check condi-
tion, the medium check sizes (5 to 9) in the signal only condition and the largest black check
size (15) in both the noise check and signal only conditions (see Figure 9.12a-b).
The “sum ideally” strategy (SI) involves combination of orientation information only from po-
tential signal elements (see Figure 9.10). Modelswith this strategy predict threshold elevation
of a factor of approximately√2 for both of the checked conditions (Figure 9.7), which is iden-
tical to the prediction for the signal only stimuli with the SA model. For this reason, the data
in the signal only condition which were well-described by SAmodels are fit just as well by the
SI models (see Figure 9.12c-d). In addition, the SI models predict the √2 summation for the
medium check sizes in the noise check condition.

9.5.6 Two-stage hybridmodels
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Figure 9.11: Showing the pooling strategies used in the two-stage “hybridmodels” (HM)
and hybrid models with internal noise (HMN). In the HMN models the representation
of the stimulus is perturbed by independent Gaussian noise added at each location (in-
cluding blank regions). In the HMmodels no noise is added. Following this, mandatory
local signal combination takes place over 3 by 3 regions to create a new matrix where
each element represents the pooled information from a local region in the original im-
age (at this stagebehaving according to the SA strategy). This is then followedbyflexible
combination of information over that matrix, with the contribution from each element
weighted according to its expected signal to noise ratio (at this stage behaving according
to the SI strategy).

The fact that the simpler candidate models featuring the two different pooling strategies (SA
and SI) each predicted performance for different subsets of the data suggested that a com-
plete account could be provided by a model that combined their two behaviours. In the two-
stage “hybridmodels” (HM; see Figure 9.11)mandatory local combination over a 3 by 3 region
(behaving like the SA model) is followed by flexible pooling of the outputs from those regions
weighted by their expected signal to noise ratios which were applied as a template (as in the
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Figure 9.12: Coherence threshold data plotted with model predictions from the filter
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the same averaged dataset replotted fromFigure 9.5. The only fitted parameterwas the
size of the pooling regions in theHMandHMNmodels (3 by 3), whichwas performed by
hand. RMS errors between themodel predictions and data are shown in dB.
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SI model). The size of the local pooling region was the only parameter in this model. It was
adjusted by hand to fit the data. In the noise check condition this model predicts an initial
doubling of the threshold coherence for the small check sizes, followed by an improvement in
performance to approach a factor of√2 for themedium and large check sizes (see Figure 9.7).
This captures the performance for all but the largest (15) check sizes (Figure 9.12e-f). In the
signal only condition the predictions are once again the same as for models with the SA and SI
strategies, as there is still no additional noise to limit performance for the smaller check sizes.

9.5.7 Internal noise

The SA, SI and HMmodels all predict identical performance for the signal only condition. This
is because there are no interstitial noise elements in that condition that canbe inappropriately
pooled to elevate the threshold coherence. The data however show a doubling of threshold
for the small check sizes that is the same in the noise check and signal only conditions. This is a
larger performancedeficit than canbe accounted for by anyof the threemodels (which all pre-
dict a√2 threshold increase for this condition). A two-stage hybrid model featuring additive
Gaussian internal noise at each location (HMN) does however predict similar performance for
the signal only conditions as for the noise check conditions (see Figure 9.7). Because of the
mandatory combination rule at the first pooling stage, this early noise model is equivalent to
a model where performance is limited by noise affecting the output of the first pooling stage.
This noise is discussed further in Section 9.6.2.
The standard deviation of the internal noise is nowan additional parameter in themodel, serv-
ing only to increase or decrease the sensitivity equally for all conditions. Calculating the rel-
ative thresholds from the output of the model therefore factors out the effects of this model
parameter (meaning that it does not need to be adjusted to fit themodel to the data). The pre-
dictions from the HMN model account for the average human thresholds in the noise check
condition for all but the largest check size (Figure 9.12g-h). In the signal only condition thresh-
olds are lower than that predicted by themodel for themedium (9) and largest (15) white con-
dition, but for all other conditions the human behaviour is captured by the model. The under-
performance of the model compared to the data for the medium check size stimuli is driven
entirely by the results from observers RJS and SAW (see Figure 9.5b), omitting these two ob-
servers from the analysis (not shown) raises the thresholds from these conditions into close
agreement with themodel.

9.5.8 Effects of eccentricity

In theHMNmodels, there are several possible reasonswhy thresholds couldbeelevatedwhen
signal is presented only in the periphery (compare black and white check thresholds for the
largest check size stimulus in Figure 9.13). One possibility would be if the observer was only
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Figure 9.13: Coherence threshold data (replotted from Figure 9.5) plotted with model
predictions from the filter maxing version of the HMNI model. The mandatory pooling
regionwas set to 3 by 3 elements, and the aperture beyondwhich elements could not be
pooled was set to 19 by 19 elements. These two parameters were fitted to the data by
hand. RMS errors between themodel predictions and data are shown in dB.

able topool information fromelements in the centreof thedisplay. Thiswas testedusing a “hy-
bridmodelwith internal noise and inhomogeneity” (HMNI), where themodel observer only had
access to information fromelements thatwerewithin a central 19 by 19 element square aper-
ture (equivalent to 19 degrees or 76 carrier cycles). This aperture size provided the best fit
to the data (compared to other square apertures with integer dimensions). Figure 9.13 shows
the prediction from this model plotted against the data from the noise check and signal only
conditions. The HMNImodel prediction is similar to that made by the HMNmodel for all con-
ditions except for the largest check size (15). The data from the noise check condition are
well-described by thismodel, providing a better fit than theHMNmodel (0.62 dB vs. 1.04 dB).
The fit is also superior for the signal only condition (1.31 dB vs. 1.45 dB), however the model
predicts that thresholds should be higher in the largest (15) black check condition than they
are in the data (predicting the same threshold for the noise check and signal only condition).
Alternative explanations for the divergence in performance for the largest check size are con-
sidered in the Discussion (Section 9.6.3).

9.6 Discussion

9.6.1 Orientation integration is a noisy two-stage process

The results of this study suggest that the combination of orientation information over space is
a noisy two-stage process (Figure 9.14). The results here can be accounted for by amodel that
performs mandatory local integration affected by internal noise at each location (this noise
is discussed further below) followed by flexible pooling over the outputs from those regions.
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This is the case regardless of the assumed signal combination process for the two considered
here (vector averaging versusmaxing over filter outputs). These results are in agreementwith
previous studies that have found lower thresholds for stimuliwith a greater signal area (Dakin,
2001; Jones et al., 2003). The effect found for the arrangement of the elements in the display
(which forms the basis for the proposed noisy two-stage model) contradicts the flexibility at-
tributed to the pooling of local samplesDakin (2001). Concerning the information limit theory
presented in that study, it is not possible to determine whether the observers here are pool-
ing across the entire stimulus or making their decision based on only a small proportion of the
local samples in the display (in accordance with the information limit theory).
It is not entirely clear how the results presented here can be reconciled with those of Husk
et al. (2012), who found no summationwith increasing signal area for similar stimuli. Themain
difference between the stimuli used in the two studies is that this study used the Battenberg
summation paradigm, whereas Husk et al. (2012) increased the signal area of their stimuli by
increasing their diameter. It is possible that a combination of decreasing sensitivity for the
local orientation discrimination task and increasing mandatory summation region size with
eccentricity might flatten the threshold versus area functions (see below).

9.6.2 The nature of the limiting internal noise

The similarity of the results from the noise check and signal only conditions suggests that the
noise limiting performance in this study does not occur in the response to individual elements.
Instead, these results suggest that a level of noise is pooled that is proportional to the num-
ber of locations being monitored, including blank locations which are being mandatorily in-
tegrated at the first stage of the two-stage model. Jones et al. (2003) included similiar “late
noise”whenmodelling data fromanorientation coherence experiment that usedfilterednoise
as stimuli, however in themodelling for that study the late noisewas constant for different sig-
nal areas (this would beNlate in Figure 9.14). Such a model would not explain the results from
this study, as the improvement in performance seen for themedium check size stimuli (in both
the noise check and signal only conditions) requires that the observer is able to segregate out
the limiting noise in irrelevant regions from the second combination stage (if dominant noise
is contributed from each monitored location then this could be performed by weighting the
local outputs according to a templatew, as shown in Figure 9.14).
In the modelling performed here (see Figure 9.14) the noise was implemented at each pooled
location after the initial filtering stage (Nearly), however due to the mandatory local combi-
nation at the first combination stage this is equivalent to adding noise to the combined local
outputs (Nmid). From the results of this study it is not possible to determine whether the lim-
iting noise should beNearly orNmid in Figure 9.14, howeverNmid seems more plausible as the
level of early noise needed tomatch or exceed the noise introduced by the randomly oriented
elements in the noise check stimuli would be very high. There is also the possibility that the
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Figure 9.14: Diagram of the two-stage hybrid model with internal noise, using the filter
maxing combination process. This diagram shows how the “vertical” response is deter-
mined by filtering with a vertical filter element, mandatory local summation, and then
global summation of the local outputs weighted by the expected signal-to-noise ratio
(w). The “horizontal” response would be calculated in an identical manner, except with
a horizontal filter element at the convolution stage. Nearly, Nmid, and Nlate show threepossible locations for the limiting internal noise (discussed in the text).

limiting internal noise could be multiplicative, rather than the additive noise implemented in
the modelling here. Modifying the stimuli used in this study to perform an equivalent noise
experiment would allow for the properties of this noise to be investigated further.
Another open question is whether this noise is affecting filter responses within an oriented
channel,whichwould impair performancewhenmaxingacrossfilter outputs (as inFigure9.14),
or if the noise is instead affecting some estimate of local orientation (as it would in a model
that was performing a vector average to combine local samples). This chapter has compared
the predictions fromfiltermaxing and vector averagingmodels, where these combination pro-
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cesses were used in both pooling stages (the local mandatory integration and the “global” flex-
ible pooling of these local outputs) however the fact that there appear to be two stages brings
up the possibility that one combination processmay be used locally and another used globally.
In future work the orientation Battenberg stimuli used in this study could be adapted to test
this hypothesis and determine which combination process is used at each of the two stages.

9.6.3 Effects of eccentricity

TheBattenberg stimuli used in this studyweredesignedwith the intentionof factoring out the
effects of eccentricity. Thiswas largely successful as performancewas similar for theblack and
white check phases for all stimuli except for the largest check size. In this case performance
diverged, with the coherence thresholds for the white check stimuli decreasing to around the
level for the full stimulus (meaning that approximately half as many signal elements in the en-
tire display were required for detection, see Figure 9.6a-b). In the noise check condition the
threshold for the black checkswas approximately twice as high as for the full stimulus, indicat-
ing that the same number of signal elements in the entire display were required for detection
(Figure 9.6a). In the signal only condition the performance deficit for the black checks condi-
tion wasmuch smaller.
One explanation for these datawould be if local sensitivity for performing the orientation task
was poorer in the periphery (Jones et al., 2003). Restricting the integration region to the cen-
tral 19 by 19 elements provided a good fit to the noise check data, but predicted too much of
a performance deficit for the largest black check stimulus in the signal only condition. In fact,
any model that accounts for the noise check data using a sensitivity decline with eccentricity
would make the same prediction for the signal only condition. The difference in performance
between the noise check and signal only conditions for the largest black check stimulus sug-
gests that if performance is limited by an inhomogeneity in sensitivity then the observer must
be exploiting some other process to improve performance in the signal only condition. One
possible way in which this could be done would be if there were multiple apertures available
after the second combination stage that the observer then combines information over, mak-
ing a three-stagehybridmodel. In order tomake adistinct prediction from the two-stagehybrid
model, this third combination processwould have to followanother nonlinearity (one possibil-
ity would be probability summation over multiple apertures, after Baker &Meese, 2011).
Alternatively, the maximum integration aperture at the second stage could be a limited num-
ber of elements rather than a spatial limit (although this would predict different thresholds
in the noise check and signal only conditions for the smallest check sizes, an effect that is not
seen in the data). Other possiblities would include an increase in the size of the mandatory
local integration region with eccentricity (making this local combination stage equivalent to
crowding, see Parkes et al., 2001), or constraints on the flexible pooling that prevent an ideal
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strategy being adopted for this condition (for example, pooling may not occur around an an-
nulus). Although these questions are important for the development of a full account of how
orientation signals are integrated over space, this study is not designed in such a way as to
constrain any analysis of the effects of eccentricity on the pooling (instead being designed to
factor out these effects where possible).
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CHAPTER 10

Discussion

“To know the brain... is equivalent to ascertaining the material course of thought
and will, to discovering the intimate history of life in its perpetual duel with exter-
nal forces.”
– Santiago Ramón y Cajal

T HEwork presented in the five experimental chapters of this thesis provides an account of
how signals are combined over space in the human visual system, including the effects of

the inhomogeneous sensitivity to contrast across the visual field. The summation of contrast
over space in amblyopia is also addressed, as well as the summation of coherent orientation
signals. In this chapter I summarise my findings and suggest future studies that I aim to carry
out in order to further develop this work.

10.1 Conclusions from thework presented here

10.1.1 The visual field inhomogeneity in log contrast sensitivity is bilinear

Previously, the decline in log contrast sensitivity for grating patches was understood to be a
linear function of eccentricity. For a wide range of spatial frequencies (1.6 - 12.8 c/deg) the
slope of the decline was constant when eccentricity was expressed in stimulus carrier cycles
(Pointer & Hess, 1989). The study presented in Chapter 4 establishes that the decline in log
contrast sensitivity in the central visual field (within 18 cycles of fixation) is better charac-
terised as bilinear, initially steep before then shallowing to around half that gradient. As a 3D
surface that is a function of both horizontal and vertical eccentricity, this bilinear sensitivity
decline takes the form of a witch’s hat (Baldwin et al., 2012).
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Like thePointer andHess (1989) result, thebilinear sensitivity functions reported in this thesis
are scale invariant across a wide range of spatial frequencies (0.7 - 4.0 c/deg) and show a shal-
lower decline across the horizontal meridian than across the vertical meridian. The superior
and inferior declines of the verticalmeridianwere asymmetric, with the second slopeof the in-
ferior decline being more shallow than that of the superior decline. This is in agreement with
the vertical meridian asymmetry reported previously (for a review, see Abrams et al., 2012).
The study conducted here did not find any strong or consistent effect of stimulus orientation
within the central visual field, indicating that these results can be generalised across different
orientations.
The attenuation surface developed in Chapter 4 provides amore accurate account of the con-
trast sensitivity decline within the central visual field than has been reported previously. It is
used elsewhere in this thesis both inmodels of the visual system (Chapter 5) and to transform
stimuli in order to counteract the effects of the inhomogeneity in sensitivity (see below). It
is not clear what physiological feature or features of the visual system might cause the scale
invariant bilinear decline reported here. Ahumada and Watson (2011) suggested that sensi-
tivity could be predicted from the retinal cone density functions (see Section 4.7.6). Although
this correctly predicts the concave shapeof the log contrast sensitivity declines, amodel based
on cone density would fail to predict the scale invariance found here. In order for the effect
to be scale invariant, the strongest part of the inhomogeneitymust occur where neurones are
spatial frequency selective. The earliest point at which this is seen is the ganglion cell layer
in the retina. Recent work by Bradley and Geisler (2012) has attempted to build a bottom-up
model of visual processing starting from the ganglion cell stage. I have been in contactwith the
authors to try to establish whether this model can predict the witch’s hat attenuation surface.

10.1.2 Area summation is spatially extensive and occurs according to a single rule

By applying the inverse of the attenuation surface to the stimuli Chapter 6 demonstrates that
the summation of threshold contrast occurs under a single (fourth-root) rule over at least 33
cycles once the visual field inhomogeneity in contrast sensitivity is factored out. These data
were fit by a variety of summation models (developed in Chapter 5). The summation slopes
foundwere consistent with either a probability summationmodel or noisy energymodel. The
results of previous studies (e.g. Meese & Summers, 2012) lead me to favour the noisy energy
model interpretation of the results. As the final stage of the noisy energymodel is a linear sum
performed over the local filtered, transduced, and template-weighted responses to the stim-
ulus image, this suggests that either i) a linear summingmechanism exists in the visual system
that combines the outputs from simple cells over at least 33 cycles, or ii) several such mech-
anisms of smaller sizes (e.g. complex cells) exist, whose outputs are then also combined by a
linear sum over at least 33 cycles (a series of two linear summation operations being indistin-
guishable from a single linear sum).
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The findings in Chapter 7 show that area summation occurs according to a single (fourth-root)
summation rule in the fovea, parafovea, and periphery. As above, the noisy energy model is
favoured over the probability summation model based on the results from other studies (e.g.
Meese & Summers, 2012). This finding suggests that themost of the differences in the results
from summation experiments conducted at different locations in the visual field would be ac-
counted for by the visual field inhomogeneity in contrast sensitivity. After the initial attenua-
tion and filtering stages, the responses from the detectors appear to have been combined by a
common set of processes at the threedifferent locations tested in this study. Oneobserver did
show some additional summation in the parafoveawhichmay have been caused by elongation
of the filter elements (simple cell receptive field analogues) with eccentricity, and another ob-
server showed someunusually high thresholds for very small stimuli in the periphery, however
in general the model provided an excellent account of the data with a single fitted parameter
(global sensitivity) for each observer.

10.1.3 Summation of threshold contrast over area is normal in amblyopia

Spatial summation in amblyopia had previously been explained by a probability summation
model (Hess & Howell, 1978; Hess & Campbell, 1980), however the rejection of this model
as an account of summation in the normal visual system (in favour of a noisy energy model)
prompted me to investigate whether summation in amblyopia also needs to be reevaluated.
The “Battenberg” study on area summation in amblyopia presented in Chapter 8 shows that
spatial summation is normal in amblyopia in at least some cases and is best explained by a
model which features linear filtering followed by a linear sum of the squared filter outputs.
This is consistent with the noisy energy model if it cannot match a template to the contrast
modulation in the Battenberg stimulus and instead pools contrast over the stimulus extent (as
was reported in the original study conducted in normal observers byMeese, 2010).
It is suspected that the results for some of the observers in this study were confounded by
artefacts introduced by the checkerboard modulation of the Battenberg stimuli, leading to
anomalous short-range summation results for thenormal observer atmediumspatial frequen-
cies (4 - 8 c/deg) and for some of the amblyope observers. This effect could only reduce the
amountofmeasured summationhowever, and socouldnot account for the caseswheregreater
summation was found than that predicted by the probability summation model (as is the case
for half of the amblyopes tested in Chapter 8). From this finding it appears that amblyopes
showthe samespatial summationbehaviour asnormal observers. This suggests that thehigher-
levelmechanisms that sum the responses fromdetectors positioned across the visual field are
intact in amblyopia.
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10.1.4 The summation of orientation signals is a noisy two-stage process

By extending the Battenberg stimulus paradigm to the orientation domain (Chapter 9), I have
found that the spatial configuration of the signal areas in a stimulus has a significant effect on
its coherence threshold. This is surprising because previous studies have indicated that the ar-
rangement of the stimulus elements does not affect performance (Dakin, 2001). For the stim-
uli that contained a checkerboard pattern of potential signal and noise regions (“noise check”
condition), thresholds initially doubled compared to the “full” stimulus for the smallest check
sizes (consistent with the observer combining information from all elements in the stimulus)
before decreasing to a factor of approximately √2 above the full stimulus threshold for the
medium check sizes (consistent with the observer only monitoring potential signal elements).
The data from the noise check experimentwerewell-described by a two-stage “hybridmodel”
that first performed a mandatory local integration of elements within a fixed radius before
then combining the outputs of that first stage ideally. The only data points not fit by thismodel
were those from the largest check size, where performance diverged dependent on whether
most of the signalwas presented to the fovea or in the periphery. Limiting the observer to only
use information from the elements presentedwithin a square 19 by 19 degree (76 by 76 stim-
ulus carrier cycle) aperture in the centre of the display provided a much better fit to the data.
This is similar to the result from a previous experiment on the summation of threshold con-
trast over large areas that found a maximum integration region (Baker &Meese, 2011). Note
that the aperture size proposed here ismuch larger than the region tested in the area summa-
tion experiment presented in Chapter 6, which found no limit on the summation of contrast
over 33 stimulus carrier cycles.
Coherence thresholds for Battenberg stimuli were similar when the noise regions were re-
placed by blank space (“signal only” condition). This was an unexpected finding, as based on
the information from the stimulus alone a√2 threshold elevation would be expected for all of
the Battenberg conditions (as there are no noise elements in the non-signal regions to impair
performance). This indicates that the noise introduced by the randomly oriented elements
in those regions was not the limiting factor on performance. This result would be consistent
with performance for the task being limited by internal noise that is proportional to the area
being monitored, regardless of the element density in that area. This can be built into the hy-
brid two-stagemodel by adding internal noise at each location in the input stage, however the
mandatory summation in the first stage of the model means that the limiting internal noise
could also be placed between the first and second stages. Further work is needed to explore
the nature of the limiting internal noise, and to determinewhether this model can be adjusted
to account for the differences in performance for the noise check and signal only conditions
when signal is presented to the periphery.
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10.2 Futurework

10.2.1 Summation of contrast over space

Together with other recent work (Meese & Summers, 2007; Meese, 2010; Baker & Meese,
2011; Meese & Summers, 2012), the results reported in this study provide strong support for
a noisy energy model interpretation of area summation across the visual field. There are still
some questions left unanswered however. The first of these is whether there is in fact a limit
on the extent over which contrast can be combined. Chapter 6 finds that two out of three
observers were able to combine signal over at least 33 cycles, whereas the third observer’s
performance asymptoted at 19 cycles. It is not clear whether this observer might be capable
of summingover a greater areaunder different experimental conditions. For theother twoob-
servers, there is an open question ofwhether there ismaximumextent overwhich summation
can occur. An area summation experiment conducted with witch hat compensated gratings
having amuchwider range of stimulus sizes could reveal whether such a limit exists.
Using larger stimuli may also shed some light on whether themore accurate form of the noisy
energymodel includes aweighting of the template to account for the visual field inhomogene-
ity in contrast sensitivity. The studies presented in Chapters 6 and 7 show a slight preference
for a noisy energy model with a “flat” template (i.e. without any weighting by the attenuation
surface) however the design of these studies causes the predictions from the two models to
be very difficult to distinguish. For larger non-compensated gratings the inefficiency of mon-
itoring the peripheral regions of the stimulus would be sufficient to separate the predictions
made bymodels featuring the two different kinds of template.

10.2.2 Integration of orientation signals

The orientation integration study conducted here raises several questions that could be ad-
dressed in future studies. Thefirst of these iswhether themethodused toperformthe integra-
tion over the Battenberg stimuli is maxing over filter outputs or whether it is performing an-
other operation such as vector averaging. In particular, it would be interesting to see whether
behaviour might switch from one strategy to the other between the “full” and “checked” stim-
uli. Although these different integration processes made the same prediction for the study
presented in this thesis, they could be distinguished between by investigating performance
when the orientation of the noise elements is biased (Webb et al., 2007).
Although the study presented can draw some conclusions about how elements are pooled
over space to calculate a global orientation, a more complete account of this process could be
uncovered through theuseof psychophysical reverse correlation (Neri, 2002). Thismethod in-
volves keeping trackof stimulus information for each trial alongwith a recordof theobserver’s
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response in order to work out which features of the stimulus the observer was responding to.
Futurework could also investigate thenatureof thenoise that limits performance for this task.
The study presented in Chapter 9 suggests that performance is not limited by noise affecting
the response to each element, but instead to noise that varies with the monitored signal area
(whether it contains elements or not). An equivalent noise method (similar to that used by
Dakin, 2001) could be used to determine the nature of the limiting noise for this task.

10.2.3 Extending the orientation Battenbergwork to themotion domain

a) b) c)

Figure10.1: Preliminary design formotionBattenberg stimuli (a). The phase of each ele-
mentwill rotate to cause the perception of local motion in that element (motion vectors
are shownby the black arrows). This can then give coherentmotion in elements that are
in the signal regions of the checkerboard pattern (b, grey boxes indicate signal regions,
background image omitted for clarity). This can also be done for stimuli where elements
have different orientations to give a complex motion task (c). For this stimulus the rate
of phase rotation in signal elements will depend on their orientation, to give the impres-
sion of a single patterned object moving in one direction behind a grid of apertures.

a) b)

Figure 10.2: Demonstrating the aperture problem for identifying the motion direction
of an object from its local motion vectors. The object in panel a) moves behind a screen
with many apertures in panel b). The movement of the object’s edges seen within each
aperture do not necessarily correspond to the direction of the motion of the object.
For any single aperture these local motion vectors could correspond to several possible
globalmotion directions (this is the aperture problem). Multiplemotion vectorsmust be
combined over space in order to calculate the true trajectory of the object. As each V1
neurone only receives information froma small part of the visualfield these calculations
must be performed by the visual system to determine the trajectory of any object.

The orientation Battenberg experiment can be considered to test global form perception. An
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analogous series of experiments could be designed to test global motion. The detection of
globalmotion is thought to occur in a separate extra-striate regionof thebrain to that of global
form (Mishkin & Ungerleider, 1982; Goodale &Milner, 1992; Braddick et al., 2000), however
the pooling involved in each may result from the outputs of common mechanisms or involve
similar strategies. A comparison could be made between the global processing of form and
that of motion by designing Battenberg stimuli that differ only in whether they contain co-
herent form or coherent motion. These stimuli could be used to investigate the extra-striate
deficit reported in amblyopia (Simmers et al., 2003; Simmers, Ledgeway, & Hess, 2005; Hess,
Mansouri, Dakin, & Allen, 2006).
Additional studies could then be performed on the integration of complex signals (formed
from more than one component signal) over area. In the motion domain this processing is
required to overcome the aperture problem, where the local direction of motion in a stimulus
may correspond to several possible directions of globalmotion for the complete pattern that it
is sampled from. Some spatial properties of this combination formotion stimuli havebeenpre-
viously examined in neurophysiology (Majaj, Carandini, &Movshon, 2007) and psychophysics
(Amano, Edwards, Badcock, & Nishida, 2009), however the spatial limits of the integration of
these complex signals have not yet been addressed. A Battenberg stimulus could be used to
investigate the spatial properties of the signal combination.

10.3 Conclusion
The findings reported in this thesis add several key features to the understanding of how the
visual system combines signals over area. Thewitch’s hat attenuation surface provides amore
accurate model of how contrast sensitivity varies as a function of eccentricity than has been
reported previously. The spatial summation studies demonstrate for the first time that stimu-
lus contrast is summed over at least 33 grating carrier cycles according to a fourth-root sum-
mation rule (interpreted as a noisy energy model here) and that this same summation rule is
followed in the fovea, parafovea, and periphery. The Battenberg summation study conducted
on amblyopes suggests that this same noisy energymodel describes how contrast is combined
over the visual field in the amblyopic visual system. Finally, extending the methods used for
the contrast studies here to the combination of orientation signals across the visual field has
revealed that the configuration of signals in the stimulus has an effect on the detectability of
coherent orientation. I have developed a noisy two-stage combination model in order to ex-
plain the human performance for this task.
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APPENDIX A

Birdsall’s theorem

A.1 Early noise and nonlinear transduction

A.1.1 Single-channel systems
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Figure A.1: Psychometric functions generated from a stochastic Monte Carlo simula-
tion (5,000 iterations) of a detection task in a single-channel system (nc = 1) featuring
early Gaussian noise (µ = 0, σ = 1) followed by nonlinear transduction with a range of
different exponents (m).

Thenonlinear transductionmodels tested in this thesis are all limitedbyadditive internal noise
placed after the transduction stage (“late” noise). Where the detection performance of a sys-
tem with a single channel is limited by additive noise before monotonic nonlinear transduc-
tion (“early” noise) the noise has the effect of linearising the transducer. This means that for
single-channel early noise models, the transducer exponent does not affect the trial-by-trial
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performance (Lasley & Cohn, 1981). This can be illustrated by considering the effects of noise
and nonlinear transduction on a single trial in a 2IFC task

Rtarget = [N(µ, σ) + S]m, (A.1)
and

Rnull = [N(µ, σ)]m, (A.2)
where Rtarget is the response to the target interval, Rnull is the response to the null interval,
N(µ, σ) is a noise sample from a Gaussian distribution with a mean µ and standard deviation
σ, S is the signal increment in the target interval, andm is the transducer exponent. The signal
is detected on trials where

Rtarget > Rnull. (A.3)
Equations A.1 to A.3 show that when the dominant noise source is placed before the trans-
ducer then that transducer does not affect the trial-by-trial detection performance.
FigureA.1 shows the simulatedbehaviour of a single-channel systemwith early noise followed
by nonlinear transduction. The simulations were conducted by modelling a system behaving
according to Equations A.1 to A.3 with several different signal levels (S). Weibull psychomet-
ric functions were fitted to the simulated data using the Palamedes toolbox. A range of trans-
ducer exponents fromm = 1 (a linear system) tom = 32 produce exactly the same behaviour.
The threshold (Weibull α) remains constant at 1.8 dB (it is determined by the standard devia-
tion of the simulated noise). The slope (Weibull β) of the psychometric functions is 1.3, which
is characteristic of a linear system.

A.1.2 Multi-channel systems

In a system with multiple independently noisy channels, Birdsall’s theorem no longer applies
(Pelli, 1991). Figure A.2 shows the results of simulations of multi-channel systems with early
noise followed by nonlinear transduction such that

Rtarget =
nc∑
i=1

[N(µ, σ) + Si]
m, (A.4)

and
Rnull =

nc∑
i=1

[N(µ, σ)]m, (A.5)

where eachN(µ, σ) is an independent noise sample, Si is the signal level in each channel, and
nc is the number of channels. In this case, the different transducers do affect the behaviour of
the systems. Increasing the transducer exponent in a range fromm = 1 (a linear system) to
m = 32 raises the threshold (Weibullα), and slightly shallows the slope (Weibull β). Increasing
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Figure A.2: Psychometric functions generated from stochasticMonte Carlo simulations
(5,000 iterations) of a detection task in systemswith 100 and 10,000 channels featuring
independent early Gaussian noise (µ = 0, σ = 1) in each channel followed by nonlinear
transducers with different exponents (m).

the number of channels in the system (nc) exaggerates the effect of the transducer exponent
on the threshold (and also increases the overall sensitivity).

A.1.3 Area summationwith early noise

Area summation behaviour in multi-channel systems would also differ from that expected if
Birdsall’s theoremwas to apply. Figure A.3 shows the decreases in threshold that result from
a doubling in the number of signal-carrying channels (from nc

2 to nc) in systems with different
numbers of channels and with a range of transducer exponents. The simulated system moni-
tored its channels ideally, attending only to relevant channels on each trial (ignoring the input
from the non-signal channels in the half-signal condition). If Birdsall’s theorem was to apply,
the summation ratio would be expected to remain constant at√2 (see Section 5.3.4). Instead,
it decreases as the exponent (m) increases. In the limit case this behaviour is expected, be-
cause Equations A.4 and A.5 will behave more like max operators asm tends to infinity. Simu-
lating higher exponents would therefore lead to the early noise prediction asymptoting at the
summation ratio predicted by a late noise exponent of 8 (due to the combination of the square
law effect from the ideal summation strategy and a Minkowski exponent of 4 from the SDT
probability summation model; see Section 5.4.3). The predictions in Figure A.3 show that as
the number of channels (nc) increases larger exponents are required to switch the behaviour
away from that expected in a linear system.
As the psychometric function slopes in this model are still very shallow compared to the em-
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Figure A.3: Summation behaviour in multi-channel systems with either “early” noise
placed before nonlinear transduction, or “late” noise placed after nonlinear transduction.
The early noise predictions are calculated from the mean of 20 stochastic Monte Carlo
simulations (500 iterations each). The blue shaded area shows the standard deviation
of the simulated data. Late noise predictions are derived using Equation 5.22. Models
featured either 2, 100, or 10,000 channels, and a range of transducer exponents from
m = 1 tom = 16. The summation ratio plotted is that between thresholds for stimuli
presented tohalf of the channels or all of the channels in the system. Themodel featured
a matched template, so the systemmonitored only relevant inputs (ignoring non-signal
channels).

pirical data, a complete summation model based on early noise would have to rely on an ad-
ditional component to steepen them. One way to achieve this would be to introduce a large
amount of uncertainty about which channels contain task-relevant signal (Pelli, 1985; Tyler
& Chen, 2000). Such large amounts of intrinsic uncertainty also predict there should be little
effect on detection threshold for interleaving stimuli of different sizes versus blocking those
stimuli. Results from studies that have made this manipulation however do show differences
in threshold across these two conditions (Meese& Summers, 2012). In the absence of another
method to reconcile this disparity between the predictions of the early noise model and em-
pirical findings, I conclude that it is not necessary to consider suchmodels in this thesis.
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APPENDIX B

MATLAB code

B.1 Log-Gabors

B.1.1 MATLAB code to produce log-Gabor patches

The function supplied below generates cartesian-separable log-Gabor patches, as described
in Section 3.4.5. It has been tested inMATLAB versions 2010a and 2012a.

B.1.2 loggabor.m

function logGabor = loggabor(w, pixPerDeg, sf, ori, sfBW, oriBW, phase, c)
% ASB - January 2012 - adapted and optimised from code by Tim Meese
% Makes a log-Gabor stimulus (cartesian-separable)
% INPUT: w = size of the output image (pixels)
% pixPerDeg = number of pixels in one degree of visual angle
% sf = spatial frequency (c/deg)
% ori = orientation (degrees)
% sfBW = sf bandwidth (octaves, full width @ half height)
% oriBW = ori bandwidth (degrees, half width @ half height)
% phase = phase (degrees)
% c = nominal contrast (0-1)
% OUTPUT: lgImage = an image scaled between -1 and +1

% Convert degrees to radians.
ori = ori*(pi/180);
oriBW = oriBW*(pi/180);
phase = phase*(pi/180);
% SF scaled to Fourier dom & w.
fFT = sf * (w / pixPerDeg);
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% CALC OF LOG-GAUSSIAN SPREAD PARAMETERS
% N.B: 1.18sigmaU = 0.5W = 0.5SFBandwidth.
logSigmaU = log10(2^sfBW) / (2 * 1.18); % units c/deg
lgV = log10(cos(oriBW));
gSF = exp(-(lgV^2 / (2*logSigmaU^2)));

% Multiplying by SF maintains scale invariance.
sigmaV = 2 * sf * sin(oriBW) * sqrt((-1)/(2*log(0.5/gSF)));

% Absolute value of sigmaV
% (which is then converted to F-domain pixels).
sigmaVPix = abs(sigmaV) * w/(pixPerDeg * 2);

% Preallocate for speed
cxGauss1 = ones(w) .* complex(0,0);
cxGauss2 = cxGauss1;
% Fourier origin = [1,1] px
u0 = ((w+2)/2); v0 = ((w+2)/2);

% MATRIX OPERATIONS (replaces loop)
u = meshgrid(1:w,1:w); v = u’;
% Polar coordinates
r = sqrt((u-u0).^2 + (v-v0).^2);
% Rotate coordinates to desired orientation
ang = atan2((v-v0),(u-u0)) - ori;
% convert to Cartesian coordinates
uft = r.*cos(ang); vft = r.*sin(ang);

% +uft is +ve :: Equiv of uft - fFT (Linear Gabor)
lgf = log10(+uft(uft>0) ./ fFT);
gauss = exp(-(lgf.^2)./(2*logSigmaU^2)) .* ...

exp(-(vft(uft>0).^2) * 1/(2*sigmaVPix^2));
cxGauss1(uft>0) = complex(gauss.*sin(phase), -gauss.*cos(phase));

% -uft is +ve :: Equiv of uft - fFT (Linear Gabor)
lgf = log10(-uft(uft<0) ./ fFT);
gauss = exp(-(lgf.^2)./(2*logSigmaU^2)) .* ...

exp(-(vft(uft<0).^2) * 1/(2*sigmaVPix^2));
cxGauss2(uft<0) = complex(gauss.*sin(phase), gauss.*cos(phase));
% Combine the gaussians to produce the filter
cxGauss = cxGauss1 + cxGauss2;

% transform back to spatial domain
imageRaw = real(ifftshift(ifft2(fftshift(cxGauss))));
% scale by peak (don’t trust Michelson)
logGabor = c .* (imageRaw ./ max(abs(imageRaw(:))));

return
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B.2 Thewitch’s hat

B.2.1 MATLAB code to produce awitch’s hat attenuation surface

The function supplied below generates a witch’s hat attenuation surface (see Section 4.7.4).
This code has been tested inMATLAB versions 2010a and 2012a.

B.2.2 witchhat.m

function witchHat = witchhat(imSize,pixPerCycle,p)
% ASB - February 2012 - adapted and optimised from code by Tim Meese
% Makes a witch’s hat attenuation surface
% INPUT: imSize - the output image size
% pixPerCycle - the wavelength of the spatial frequency
% p - a vector describing the bilinear falloff
% [m1_sup m2_sup m1_inf m2_inf m1_hor m2_hor kneepoint]
% OUTPUT: witchHat - the witch hat attenuation surface

% Convert input p to full 12-parameter witch’s hat description
x1dBL = p(5); x1dBR = p(5); y1dBU = p(1); y1dBD = p(3);
x2dBL = p(6); x2dBR = p(6); y2dBU = p(2); y2dBD = p(4);
kinkxL = p(7); kinkxR = p(7); kinkyU = p(7); kinkyD = p(7);

% Create variables holding position information
x0 = ((imSize+1)/2); y0 = ((imSize+1)/2);
[xx, yy] = meshgrid(1:imSize, 1:imSize);
x1 = xx-x0; y1 = yy-y0;

% Do geometry
x1sq = real(x1.*x1); y1sq = real(y1.*y1);
r = real(sqrt(x1sq + y1sq));
ang = atan2(y1, x1);

% Populate H&V meridian column vectors with parameters
m1h = x1dBL.*(x1<0) + x1dBR.*(x1>0);
m2h = x2dBL.*(x1<0) + x2dBR.*(x1>0);
m1v = y1dBU.*(y1>0) + y1dBD.*(y1<0);
m2v = y2dBU.*(y1>0) + y2dBD.*(y1<0);
kneeh = kinkxL.*(x1<0) + kinkxR.*(x1>0);
kneev = kinkyU.*(y1>0) + kinkyD.*(y1<0);

% Interpolate between cardinals using the equation for an ellipse
% m1 & m2 (N.B. using the reciprocal of the gradient parameters)
m1dB = (1./(m1h.*m1v))./(sqrt((cos(ang)./m1v).^2 + ...

(sin(ang)./m1h).^2));
m2dB = (1./(m2h.*m2v))./(sqrt((cos(ang)./m2v).^2 + ...
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(sin(ang)./m2h).^2));
% kneepoint (N.B. not using the reciprocal of the knee parameter)
knee = (kneeh.*kneev)./(sqrt((kneev.*cos(ang)).^2 + ...

(kneeh.*sin(ang)).^2));

% This is the standard bilinear equation, as a function of radial
% distance. Three parameters (m1, m2 and the knee) vary with angle.
% Note that the gradient parameters (m1 and m2) are stored as
% reciprocals, so must be reciprocated again in this equation.

k1 = log10(1 ./ (10 .^ ((1./m1dB - 1./m2dB) .* knee) + 1));

surface = -log10( ...
(10.^((1./m1dB) .* r./pixPerCycle)) ./ ...
(10.^((1./m1dB - 1./m2dB) .* knee) + ...
(10.^((1./m1dB - 1./m2dB) .* r./pixPerCycle))) ...

) + k1;
witchHat = flipud(surface);

return
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APPENDIX C

Amblyope subjects

C.1 Table of amblyope subject information

Corrected acuity
# Type Right eye Left eye
1 Strabismic 20/20 20/400
2 Strabismic/Anisometropic 20/250 20/20
3 Strabismic 20/200 20/30
4 Strabismic/Anisometropic 20/20 20/60
5 Strabismic 20/20 20/100
6 Strabismic 20/100 20/20
Table C.1: Details for the six amblyope observers tested in Chapter 8.
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