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SUMMARY 
 

 Cardiovascular diseases (CVD) contributed to almost 30% of worldwide mortality; with heart 
failure being one class of CVD. One popular and widely available treatment for heart failure is the 
intra-aortic balloon pump (IABP). This heart assist device is used in counterpulsation to improve 
myocardial function by increasing coronary perfusion, and decreasing aortic end-diastolic 
pressure (i.e. the resistance to blood ejection from the heart). However, this device can only be 
used acutely, and patients are bedridden. The subject of this research is a novel heart assist 
treatment called the Chronic Intermittent Mechanical Support (CIMS) which was conceived to 
offer advantages of the IABP device chronically, whilst overcoming its disadvantages. The CIMS 
device comprises an implantable balloon pump, a percutaneous drive line, and a wearable driver 
console. The research here aims to determine the haemodynamic effect of balloon pump 
activation under in vitro conditions. 

A human mock circulatory loop (MCL) with systemic and coronary perfusion was constructed, 
capable of simulating various degrees of heart failure. Two prototypes of the CIMS balloon pump 
were made with varying stiffness. Several experimental factors (balloon inflation/deflation timing, 
Helium gas volume, arterial compliance, balloon pump stiffness and heart valve type) form the 
factorial design experiments. A simple modification to the MCL allowed flow visualisation 
experiments using video recording. Suitable statistical tests were used to analyse the data 
obtained from all experiments. 

Balloon inflation and deflation in the ascending aorta of the MCL yielded favourable results. The 
sudden balloon deflation caused the heart valve to open earlier, thus causing longer valve 
opening duration in a cardiac cycle. It was also found that pressure augmentation in diastole was 
significantly correlated with increased cardiac output and coronary flowrate. With an optimum 
combination (low arterial compliance and low balloon pump stiffness), systemic and coronary 
perfusions were increased by 18% and 21% respectively, while the aortic end-diastolic pressure 
(forward flow resistance) decreased by 17%. Consequently, the ratio of oxygen supply and 
demand to myocardium (endocardial viability ratio, EVR) increased between 33% and 75%. The 
increase was mostly attributed to diastolic augmentation rather than systolic unloading. 

 

 

Keywords:  mechanical heart assist device, arterial compliance, counterpulsation, diastolic 
augmentation, endocardial viability ratio
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Notation 
 

   Mean of the first variable  

   Mean of the second variable  

∆P Pressure difference mmHg 

∆Proot Pressure difference at aortic root mmHg 

∆V Volume difference mL 

BSA Body surface area m2 

C Compliance mmHg/mL 

CO Cardiac output L/min 

covxy Covariance of x and y  

EF Ejection fraction  

h height cm 

H height m2 

HR Heart rate beats/min  

L Length of vessel m 

LVVed Left Ventricular Volume at end of diastole  mL 

MAP Mean arterial pressure mmHg 

Pdia Aortic end-diastolic pressure mmHg 

PP Pulse pressure mmHg 

Psys Aortic systolic pressure mmHg 

Q Blood flowrate L/min 

QcorMean Left coronary artery mean flowrate mL/min 

r Radius μm 

R Resistance mmHg/mL/min or 
dynes.s/cm5 

r Coefficient of correlation  

R2 Coefficient of determination  

rS Spearman’s coefficient of correlation  

S Myocardium wall stress dyne/cm2 

SV Stroke volume  mL 

sx Standard deviation of the first variable  

sy Standard deviation of the second variable  

W Weight kg 

η Fluid viscosity cP 

TTI Tension Time Index mmHg.s 

DPTI Diastolic Pressure Time Index mmgh.s 
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Acronyms 
 

ACC/AHA  American College of Cardiology and American Heart Association 

AoEDP  Aortic End Diastolic Pressure 

AoP  Aortic Pressure 

AoPmax  Aortic Systolic Pressure 

BSA  Body Surface Area 

BTR  Bridge-to-Recovery 

BTT  Bridge-to-Transplantation 

CABG  Coronary Artery Bypass Graft 

CAD  Coronary Artery Disease 

CB  Compliant Body 

CHF  Congestive Heart Failure 

CI  Cardiac Index 

CIMS  Chronic Intermittent Mechanical Support 

CO  Cardiac Output 

DOE  Design of Experiment 

dP  Pressure difference (PADA – AoPmax) 

DPTI  Diastolic Pressure Time Index 

DT  Destination Theraphy 

EABP  Extra Aortic Balloon Pump 

EC  European Commission 

ECG  Electrocardiography 

EDPVR  End-Diastolic Pressure-Volume Relationship 

EF  Ejection Fraction 

EU  European Union 

EVR  Endocardial Variability Ratio 

EVR  Endocardial Viability Ratio 

GLP  Good Laboratory Practice 

HF  Heart Failure 
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HR   Heart Rate 

IABP  Intra Aortic Balloon Pump 

ID  Inner Diameter 

IDCM  Idiopathic Dilated Cardiomyopathy 

IPBP  Internal Pressure Balloon Pump 

LA  Left Atrium 

LAP  Left Atrial Pressure 

LCA  Left Coronary Artery 

LV  Left Ventricle 

LVAD  Left Ventricular Assist Device 

LVEDD  Left Ventricular End-Diastolic Diameter 

LVEDV  Left Ventricular End Diastolic Volume 

LVEF  Left Ventricular Ejection Fraction 

LVESV  Left Ventricular End Systolic Volume 

LVP  Left Ventricular Pressure 

MCL  Mock Circulatory Loop 

MI  Myocardial infarction 

NGO  Non-governmental Organisation 

NHLBI  National Heart, Lung, and Blood Institute 

NYHA  New York Heart Association 

OC  Outer Case 

OD  Outer Diameter 

PACD  Peri Aortic Counterpulsation Device 

PADA  Peak Aortic Diastolic Augmentation 

PP  Pulse Pressure 

QcorMean  Left Coronary Artery Mean Flowrate 

RBP  Rotary blood pump 

SB  Straight Body 

SV  Stroke Volume 

SVR  Systemic Vascular Resistance 

TTI  Tension Time Index 
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UK  United Kingdom 

USA  United States of America 

VAD  Ventricular Assist Device 

WIA  Wave Intensity Analysis 
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Chapter 1 Introduction 
 

This chapter introduces briefly the concept of the Chronic Intermittent Mechanical Support 

(CIMS) system. The CIMS system is intended as a device to treat heart failure, primarily for a 

specific patient cohort suffering from heart failure secondary to idiopathic dilated 

cardiomyopathy (IDCM), or ischaemic heart failure. The CIMS device may also be used for those 

with other causes of heart failure as a chronic support device for the patient to recover or as 

supporting device whilst awaiting heart donation. 

This thesis discusses the development and testing of an in vitro model of the CIMS balloon pump. 

In the CIMS system, the balloon pump is implanted at the ascending aorta while connected to the 

driver console. Experimental work on a human mock circulatory loop (MCL) was carried out to 

discern the effect of various experimental factors on CIMS balloon pump efficacy whilst implanted 

in the ascending aortic of the MCL.   

 

1.1 Heart Assist Device for Heart Failure Treatment 
 

The heart is a vital organ; the transport of oxygen and nutrients to every cell in human body is 

carried out by way of blood circulation network consisting of systemic (from the heart to body 

and back to the heart) and pulmonary (from the heart to the lungs and back to the heart) 

circulation as illustrated in Figure 1-1. As a result of a number of physiological complications the 

heart may degrade to a state where its main function cannot be delivered satisfactorily. Without 

corrective measures being taken, the heart will deteriorate to congestive heart failure condition, 

and may lead to certain mortality within a short time frame. 

The treatment of congestive heart failure, more simply known as heart failure (HF), depends on 

the severity of the disease. Patients suffering from heart failure exhibit symptoms such as 

shortness of breath, fatigue, and fluid retention either in the lungs or at extremities (i.e. 

hands/ankles). Early stage HF, once diagnosed, may be treated with medical intervention 

including drugs, overall lifestyle adjustment focusing on better stress management, food intake 

adjustment and physical exercise. Though some people may recover or at least remain stable, for 

some, the disease progresses further, restricting everyday activity and requiring more 

comprehensive treatment. Treatment usually begins with pharmacological drug treatment, where 
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the drug dosage depends on the patient condition; with increasing severity, drug dosage may be 

increased, or necessitate stronger pharmacological products. In some cases, corrective surgery is 

performed. For a patient refractory to drug treatment, heart transplant is the definitive therapy 

(‘the gold standard’ treatment). However, access to transplantation is limited, and some patients 

are contraindicated for heart transplantation; an alternative is mechanical assistance for their 

failing heart. 

 

Figure 1-1: Blood circulation in the human body, the red vessel is the arteries, while the blue blood vessels are the 
veins.  (With kind permission from Wellcome Library, London) 

 

Heart failure can be treated with mechanical heart assist devices. A review of existing mechanical 

heart assist device and their classification is presented in Chapter 2. 

Mechanical heart assist device can be categorised by 1) how the device is positioned in the blood 

circulation (either series or parallel), 2) the blood pump type (rotary/displacement) and 3) 

duration used (short/acute, medium, or long term). The parallel type includes pusher plate type 

(synchronous activation) and rotary blood pumps (typically constant speed). An example of a 

parallel and long term pusher plate type heart assist device is illustrated in Figure 1-2; the pusher 
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type balloon pump is attached to the heart’s apex, and the outflow conduit anastomosed to the 

ascending aorta.  

 

Figure 1-2: An example of a series type balloon pump. The blood is sucked into the blood pump chamber from the 
apex of the left ventricle and pushed out into the ascending aorta via an outflow conduit anastomosed to the 
ascending aorta. Reproduced with permission from (Slaughter et al., 2009) Copyright Massachusetts Medical Society 

 

The series type devices are always counterpulsation (explained further below), and mounted in 

the aorta. A well known example is the intra-aortic balloon pump (IABP), illustrated in Figure 1-3, 

which is widely used and understood by medical practitioners; however, the IABP is an acute 

assist device. Another example is the chronic support extra-aortic balloon pump (EABP), a cuff-

type balloon pump that tries to capitalize on counterpulsation, however, the EABP type still faces 

some problems in counterpulsation.  

Counterpulsation technique, employed by the IABP, works by inflating the balloon at the 

descending aorta in diastole (heart relaxation period), thus pushing blood in both upstream 

(towards the heart) and downstream towards other organs thus increasing flow rate in both 

directions. Just prior to systole (heart contraction period), wherein blood is ejected from the left 

ventricle, the device deflates reducing the pressure in the root of the aorta and removing 

obstruction to blood flow into the aorta. The reduced pressure leads to less work performed by 

the left ventricle, and this relieves the heart thus increasing myocardial function. 
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Figure 1-3: Intra aortic balloon pump (IABP) inserted from femoral artery up to 10-20 mm from left subclavian artery 

 

The IABP device is used routinely on a failing heart from a few hours to a few weeks and effective 

for myocardial function improvement with small volume displacement ranging from 30 mL to 50 

mL; device implantation is usually through the femoral artery and it is placed about 10 to 20 mm 

distal to the left subclavian artery (Quall, 1993a, Vohra and Rosin, 2004). The benefits from IABP 

counterpulsation are increased myocardial oxygen supply, decreased myocardial oxygen demand 

by decreasing resistance to blood ejection (Krishna and Zacharowski, 2009), and increased 

perfusion to the coronary arteries (Trost and Hillis, 2006). One measure of the balance between 

oxygen supply and demand is the endocardial viability ratio (EVR) which is discussed in 

relationship to IABP in chapter 2. 
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1.2 Chronic Intermittent Mechanical Support (CIMS) 
 

The success of counterpulsation devices such as the IABP in relieving heart failure symptoms 

acutely is a great motivation in this study to develop a chronic counterpulsation device. It would 

be beneficial to have a device that employs a counterpulsation method which can be implanted at 

the ascending aorta, as it is has been shown that greater haemodynamic augmentation can be 

yielded by a device located closer to the aortic valve than one located more distally (Nosé et al., 

1963, Furman et al., 1970). More proximal location brings the added advantage of reducing 

resistance faced by the heart when ejecting blood; this is discussed more in subchapter 2.5.   

The Chronic Intermittent Mechanical Support (CIMS) – is proposed as a new device which is the 

subject of this study (Tansley and Richens, 2010). The CIMS device is designed with several 

objectives in mind: 

1. to provide chronic heart treatment by relieving heart failure symptoms for specific 

cohorts of patients, 

2. to augment systemic and coronary circulation by implanting the balloon pump at the 

ascending aorta. Increased coronary perfusion means increased myocardial oxygen 

supply,  

3. to decrease the afterload (the resistance to blood egress from the ventricle) faced by the 

heart, thus decreasing myocardial oxygen demand. 

The CIMS device comprises of a double layered balloon pump made from biomedical grade 

flexible membrane enclosed by a vascular graft illustrated in Figure 1-4.  

 

Figure 1-4: Proposed in vivo CIMS balloon pump with a front view and isometric cross sectional view 
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This is to be implanted in-series at the ascending aorta (after resecting a portion of aorta) 

between the aortic valve and the brachiocephalic artery. This device also includes a percutaneous 

driveline, consisting of Helium gas driveline and an electrical signal line, connecting the balloon 

pump and an external ambulatory driver which will cause the balloon to inflate and deflate. Figure 

1-5 illustrates the position of implantation of the balloon of the CIMS within the ascending aorta. 

 

Figure 1-5: The implantation site for a CIMS balloon in the ascending aorta distal to the aortic valve and proximal to 
the brachiocephalic artery. A portion of the ascending aorta is resected and the balloon pump graft is sewn inter-
positionally. 

 

Figure 1-6 shows the assembly of implanted CIMS device in a patient. A human skin interface that 

serves as the connector between the percutaneous line and the wearable device outside of the 

patient’s body is placed at the waist. CIMS usage would differ from IABP usage, as the IABP 

patient is immobilised by the bulky IABP driver console (refer to Figure 3-59) and fragility of the 

femoral cannula. The human skin interface acts as a gateway into the human body, allowing 

disconnection; the driver console can be plugged in when required and disconnected when 

mechanical support is not needed. The electrocardiogram (ECG) signal from the heart is collected 

and analysed by the wearable driver and used as the activation reference for the balloon pump. 

Normally for an IABP patient, the timing for balloon inflation and deflation can be adjusted using 

either ECG waveform or by using the aortic pressure waveform. The CIMS device proposed here 

will also use either the ECG signal or the aortic pressure waveform as the trigger for balloon 

activation. The wearable external control driver also houses the Helium gas canister and a 
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dedicated pump for the implanted balloon activation. A battery to power the driver and pumping 

action of the CIMS balloon pump is placed alongside the driver.  

 

Figure 1-6: CIMS device showing: the externally-worn controller and battery on the patient’s waist, a percutaneous 
driveline breaking through the skin and which carries pulses of Helium gas to the implanted balloon, and implanted 
balloon housed within the walls of the aorta which ejects blood from the aorta on balloon inflation. 

 

Any biomedical device designed for human implantation will have to go through several 

development and testing steps before it can be implanted in humans. The logical and ethical way 

is to conduct early-stage experiments outside of the body i.e. in vitro. This is also a prerequisite 

for any medical device to be approved by the FDA (in the USA) under Good Laboratory Practice 

(GLP), as well as in Europe where approved medical devices are awarded the CE mark (Klepinski, 

2006). Any results yielded from in vitro tests while they may not be fully representative of 

haemodynamics and neurohormonal response of a human body, will pave the way for further 

redesigns to ensure better reliability and increase the device’s efficacy. This thesis focuses on in 

vitro study to understand the CIMS balloon pump characteristics. 
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Further elaboration on CIMS is given later (2.6 Chronic Intermittent Mechanical Support (CIMS)), 

especially suggestions for the indications and contraindications for its implantation. 

 

1.3 Research Aims 
 

The research aims are to develop an in vitro CIMS balloon pump prototype and determine the 

level of augmentation to systemic and left coronary artery circulation, and the reduction of aortic 

end diastolic pressure i.e. resistance to blood ejection arising from its use, as well as the 

augmentation of myocardial oxygen supply/demand ratio. 

 

1.4 Research Objectives 
 

To achieve the above aims the following objectives were planned: 

1. to assemble a physiologically correct human mock circulatory loop simulating systemic 

and left coronary artery circulation to serve as an in vitro test platform, 

2. to construct a balloon pump prototype that was able to deliver adequate displacement 

volume for the counterpulsation technique, 

3. to investigate the flow augmentation by the CIMS balloon pump prototype within the 

human mock circulatory loop,  

4. to show that the aortic end diastolic pressure (AoEDP) is reduced due to 

counterpulsation, 

5. to investigate the flow dynamics effects due to balloon pumping using appropriate flow 

visualisation techniques, 

6. to establish that the CIMS device is appropriate for supporting a specific cohort of 

patients. 

 

 

 

 



Chapter 1 Introduction 
 

32 
 

A.Z.M. Khudzari 

1.5 Thesis structure 
 

This thesis consists of six chapters. 

The second chapter gives background information and recent literature necessary to enable the 

reader to understand where CIMS device will fit into the heart treatment arsenal.  A brief 

explanation on how the heart works, as well as a comprehensive review on heart failure and its 

treatment - especially involving mechanical heart assist devices is given. The intra aortic balloon 

pump (IABP) is the precursor to the CIMS device; a brief but concise subchapter is dedicated to 

reviewing IABP and similar volume-displacement mechanical heart assist devices using the 

counterpulsation technique, and then a comprehensive sub-chapter is dedicated to discuss CIMS 

treatment including possible patient selection criteria. The first step in the device development 

was to make an in vitro prototype. Thus, an in vitro human mock circulatory loop (MCL) was 

needed, and a subchapter is dedicated to giving a brief introduction to MCL. Different kinds of 

MCLs have been assembled in research centres around the world, with varying degrees of 

complexity and purpose, and as such the ability to mimic physiological conditions also differs 

amongst these MCLs.  A summary of important aspects of a mock circulatory loop is presented.  

Chapter 3 is dedicated to Methodology. The rationale for in vitro modelling of the CIMS balloon 

pump is explained and the construction of in vitro prototypes is presented. The human mock 

circulatory loop (MCL) is essential to the experimental exercise and its assembly is explained in 

detail. Haemodynamics data is acquired using specialised hardware which drives a data 

acquisition system; this custom program using Labview™ software was used to monitor and 

change the working parameters, and to record haemodynamics data concurrently. Different heart 

conditions were simulated by manipulating the experimental rig. The experimental procedure for 

the CIMS balloon pump is presented A factorial design method was used to design experimental 

procedures to minimise error and confounding variables effect, as well as to reduce the duration 

of the experimental period, due to several interconnected experimental factors that might affect 

the interpretation of experimental results. Appropriate statistical analysis was chosen and the 

justification is given. Prior to systole, due to sudden balloon deflation, the pressure decrease was 

seen to cause premature aortic valve opening. Video recording was employed to record these 

events and to help explain the mechanics of premature valve opening.  

Results from the experiments described in Chapter 3 are presented in two subsequent chapters. 
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In Chapter 4, the results from factorial design experiments are presented. The experiments were 

conducted to determine the effect of experimental factors such as arterial compliance to 

response outputs such as cardiac output, left coronary artery flowrate and aortic pressure 

changes. Statistical test such as two-way ANOVA or the non-parametric equivalent of ANOVA, the 

Scheirer-Ray-Hare test, were employed as the statistical tools to analyze all the data from two or 

more experimental factors. The correlations between diastolic pressure augmentation with 

cardiac output or left coronary artery flowrate are also presented. A subchapter is dedicated to 

presenting and discussing the ratio between oxygen supply versus demand (i.e. EVR), and the 

implication to heart failure treatment from CIMS balloon pump implantation.  

In Chapter 5, the effects of sudden balloon deflation just before left ventricle contraction are 

discussed. Due to the decreased pressure in the ascending aorta from balloon deflation, the aortic 

valve opened prematurely, and the mechanical heart valve was observed to verify this. The 

variable factors that was chosen to investigate premature valve opening were balloon pump 

deflation time and arterial compliance. Video recording was employed to get a qualitative result. 

Aortic pressure difference across the aortic heart valve was analysed to get better insight of 

earlier heart valve opening. At the end of chapter 5, a discussion is presented as to whether 

premature valve leaflet opening is likely to be detrimental to myocardial function. 

Finally, conclusions drawn from all the experiments are presented in Chapter 6. Since the CIMS 

balloon pump tested for this work is an in vitro model, obviously an in vivo version for clinical trial 

needs to be manufactured. The results and conclusions from this study are used to suggest future 

direction for CIMS device development and development of a treatment modality which would 

use CIMS. 
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Chapter 2 Background Review 

 

This chapter will serve as a platform to familiarize the reader with necessary background 

information concerning heart failure treatment especially using mechanical-based heart assist 

devices. The CIMS device is elaborated further.  

 

2.1 Introduction 
 

This chapter starts with the heart’s anatomical and physiological characteristics and its cardiac 

cycle. Subsequently the chapter discusses congestive heart failure (CHF) (also simply known as 

heart failure (HF)), followed by the many treatment options for heart failure. One treatment for 

heart failure is mechanical assistance, which is of particular relevance to this work. A thorough 

explanation of the history and the development of ventricular assist devices (VAD) are presented. 

The Chronic Intermittent Mechanical Support (CIMS) system is similar in activation technique i.e. 

counterpulsation with the Intra Aortic Balloon Pump (IABP), so a subchapter is dedicated to the 

IABP and similar counterpulsation based VADs implanted in and around the aorta. A more 

detailed explanation of CIMS is presented. Human mock circulatory loop review is also given as a 

prelude to the one used in this study. A summary is given at the end of this chapter. 

 

2.2 The Human Heart 

Discussion on the human heart: the history, anatomy and cardiovascular functions are presented. 

 

2.2.1 A Brief History of the Heart 

 

Starting with the Greek scholars (e.g. Galen) thousands of years ago, to Muslim physicians (e.g. 

Ibn Nafs and Avicenna) continuing to Italian Renaissance artists, most notably Leonardo da Vinci, 

the heart has been a fascinating topic for scholars, although their understanding was quite 

different from modern scientifically derived fact. Scientific understanding of the heart and body 

circulation started when William Harvey published his seminal text “Exercitatio Anatomica de 
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Motu Cordis et Sanguinis in Animalibus” (Exercise on the Anatomical Motion of the Heart and 

Blood in Animals) in 1628 (Harvey 1628). The authoritative book for several centuries dispelled 

the myths surrounding blood circulations and heart movement through scientific observation.  

The heart is a vital organ to humans and one of the components in the cardiovascular system, the 

other one being the blood vessels. The heart is situated between two lungs, with two thirds 

situated to the left of the breastbone, illustrated in Figure 2-7. It beats at rest around 60 - 80 

times per minute (variations exist for individuals) pumping out blood from the left ventricle, 

amounting to 5 - 7 litres per minute (L/min).  

 

Figure 2-7: Heart position in the human body between lungs (H. Gray 1918) 

 

The human heart is divided into four chambers. The upper chambers are the atria, while the lower 

chambers are the ventricles. Normally the chambers are identified by its position, i.e. left ventricle 

or right atrium. The myocardium cells i.e. myocytes of the heart makes up the muscle of each 

chamber; another specialised cells form the conduction fibers as the excitatory systems 

responsible for heart rhythm. 
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Figure 2-8: In-series and in-parallel configuration for vascular networks 

 

Another aspect worth noting is how the atria and ventricles are configured in an in-series 

configuration. Blood moves from one heart chamber to the next one in unidirectional flow, and 

any changes in any heart chamber will affect the others and alter the whole body perfusion, and 

further explained in subchapter 2.2.5 Frank-Starling Mechanism.) Circulation for the kidneys 

and other organs, illustrated in Figure 2-8, is in-parallel circulation, which means that the blood 

flows into several organs from a main blood vessel.  

Blood circulation in the human body can be divided into two: systemic and pulmonary circulation, 

illustrated in Figure 2-9. Pulmonary circulation is the flow circuit of deoxygenated blood for 

gaseous exchange from the heart through the lungs, and oxygenated blood from the lungs back to 

the heart. Systemic circulation is the blood circulation from the heart to blood vessels and other 

organs and back to the heart.  The heart pumps oxygenated blood packed also with fluid, 

biochemical hormones, nutrients to peripheral organs by way of the arteries. An artery’s main 

function is to transport blood at high pressure (mean arterial pressure at 90 to 100 mmHg). From 

the largest blood vessel i.e. the aorta, blood is transported until it reaches capillaries which are 

smallest in diameter (approximately 1 µm). The thin walled capillaries facilitate efficient nutrient, 
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O2 and CO2 exchange by diffusion. Heat exchange between cells and the outside environment is 

also facilitated by the heart through tiny capillaries near the skin. After the exchange process, 

deoxygenated blood packed with metabolic process by-products (e.g. waste, CO2) flows into the 

venule, converging into veins before flowing into the venae cavae, the last stop before the right 

atrium.  

 

Figure 2-9: Pulmonary and systemic circulation of the human body. The numbers in brackets show the normal range 
of pressure fluctuation in respective chambers. The heart chambers is an in-series configuration pumps. RA: Right 
atrium, RV: Right ventricle, LA: Left atrium, LV: Left Ventricle, CVP: Central Venous Pressure, Pmc: Mean Circulatory 
Pressure (mmHg). 

 

2.2.2 Cardiac Cycle  

 

The heart pumps blood into lungs and the rest of the body intermittently causing pulsatile flow 

that resembles superposition of sinusoidal waves. The contraction and relaxation of heart 

chambers are controlled by opposing autonomic nerves; composed of the sympathetic and 

parasympathetic nerves innervating the myocardium. At the sinoatrial (SA) node which is the 

intrinsic pacemaker, action potential is generated thus causing atria contraction. The action 

potential propagates through the atrioventricular (AV) node before being conducted through a 

specialised pathway consisting of the HIS bundle branches and the Purkinje’s fibres initiating 

ventricular contraction.  

The relaxation and contraction phases of the heart muscles in a cardiac cycle are called diastole 

and systole. The cardiac cycle can be further categorised into four distinct phases. Each phase is 
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separated by the opening and closing actions of the heart valves. One cardiac cycle normally lasts 

for 0.8 - 1.0 second (60 - 80 beat per minute; beats/min), although the heart rate (HR) will change 

in accordance to physiological needs controlled by the autonomic nerves.  

 

Figure 2-10: Blood circulation in the heart from the venae cavae to the right atrium, filling the right ventricle before 
being pumped into the pulmonary arteries. Oxygenated blood then flows into the left atrium before filling the left 
ventricle during diastole before ejected into the aorta. (With kind permission from Wellcome Library, London)  

Figure 2-10 illustrates the complete flow loop to and from the heart. Blood flows from the body 

via the superior and the inferior venae cavae into the right atrium due to the pressure gradient 

between the mean circulatory pressure (Pmc) observed at the veins and the central venous 

pressure at the right atrium. The Pmc at the veins is maintained at approximately 7 mmHg 

(Klabunde, 2005, Levick, 2003, Guyton and Hall, 2006), while the central venous pressure (CVP) is 

typically 0 mmHg.  

In early diastole, blood enters the right ventricle passively, but once the SA node triggers the 

electrical signal, the right atrium contracts thereby forcing more blood into the right ventricle. 

Once ventricular systole starts, right ventricular contraction increases the intraventricular 

pressure before pumping the blood into the pulmonary circulatory loop. The contraction imparts 

the blood with a pressure of about 25 mmHg. Gaseous exchange occurs in the lung, exchanging 

carbon dioxide (CO2) with oxygen by diffusion processes. Once the exchange processes are 

completed, blood is directed to the left atrium by way of the pulmonary arteries. The blood 

pressure past the lungs is around 10 mmHg, and since the left atrium internal pressure oscillates 
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from 8 - 10 mmHg throughout the cardiac cycle, blood fills the left atrium passively due to the 

pressure gradient between ventricle and atrium (Guyton and Hall, 2006, Timms et al., 2005a). 

 

Figure 2-11: Cardiac cycle of the LV, LA, and aorta from systole to diastole. Electrocardiogram (ECG) signal is 
represented by P,Q,R,S and T wave, while S1 to S4 represent the heart sound due to valve opening/closing, heart 
chamber vibration or tensing of chordae tendineae

1
 and atrioventricular ring in the heart chamber.(With kind 

permission from Klabunde (Klabunde, 1998)) 

Figure 2-11 illustrates the pressure waveform in a cardiac cycle in synchrony with the ECG signal 

and the resulting heart sounds. The cardiac cycle, focussing on the left ventricle, is described 

below (Levick, 2003, Klabunde, 2005). 

 

Electrokardiogram (ECG) Signal 

As mentioned previously and illustrated in Figure 2-11, the electrical signal triggers ventricular 

contraction originated at the SA node before propagating throughout the heart. The P, Q, R, S and 

T signage are explained in Table 2-1. 

 

 

 

                                                           
1
 Chordae tendineae: The heart strings, made of tendons, that connects heart valves (mitral and triscuspid) 

to papillary muscles. 
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Table 2-1: The P, Q, R , S and T wave of ECG signal and their meaning(Klabunde, 2005) 

Nomenclature Detail 

P wave When SA node is triggered, electrical current is propagated to AV node, 

and this causes atrial contraction.  

QRS complex The electrical current travels to the HIS bundle branch and Purkinje 

fibers, causing ventricular contraction i.e. a rapid depolarization occurs 

at the right and left ventricle. This is recorded by the longer duration 

and higher amplitude of QRS complex (particularly R wave) 

T wave Once electrical impulse has finished depolarizing ventricular muscle, 

then ventricular polarization takes place, during which the ventricle 

relaxes; this is represented by the T wave.  

 

Phase 1: Filling (Diastole)  

The filling phase of the LV starts when the intraventricular pressure decreases to a point where 

the pressure in the atrium is greater than the ventricular pressure. The pressure gradient opens 

up the mitral valve (inlet valve) allowing blood to flow passively into the ventricle from the 

pulmonary veins. This phase lasts roughly two-thirds (0.5 to 0.6 s) of the cardiac cycle. Atrial 

systole initiated by the P waves of the ECG contributes additional filling of the ventricle by 10% to 

15% as compared to without the atrial contraction (sometimes known as atrial kick). During 

exercise, ventricular diastolic period is shortened while the contribution from atrial contraction is 

increases up to 40%. Intraventricular pressure at the end of diastole is called End-Diastolic 

Pressure (EDP), and is around 8 mmHg, while the ventricular volume, End-Diastolic Volume (EDV) 

is around 120mL. The aortic valve (outflow valve) is closed since intraventricular pressure is lower 

than the ascending aorta’s pressure.  

Phase 2: Isovolumetric Contraction (Systole) 

Systole or ventricular contraction is initiated by the QRS complex of the ECG. The left ventricle 

contracts, and intraventricular pressure rises rapidly exceeding left atrial pressure but still below 

the pressure in the ascending aorta; both the inlet and outlet valve are closed thus making the left 

ventricle a closed space. The rapid rise of pressure reaches a point where the intraventricular 

pressure exceeds the ascending aortic pressure. This phase would be affected by CIMS balloon 

deflation; it is hypothesised to decrease end-diastolic aortic pressure, thus intraventricular 

pressure as well. Once the aortic valve opens, this phase is over.  
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Phase 3: Ejection (Systole) 

Due to the higher pressure generated during the previous phase, the aortic valve is opened and 

the blood is ejected very rapidly into the ascending aorta. Within this period of about 0.3 second, 

almost two-thirds of the blood volume (70 to 80 mL) in the left ventricle is ejected, with the 

majority during early systole. The compliant ascending aorta expands to accommodate the 

incoming blood volume, since within that short amount of time blood cannot be ushered to 

peripheral arteries easily. Intra-aortic pressure will also increase accordingly.  

As contraction of the ventricle weakens, so does the velocity of the blood ejected and 

intraventricular pressure. Eventually, the ventricular pressure will drop slightly below aortic 

pressure (by about 2 – 3 mmHg), although due to the outflow momentum of the blood, the aortic 

valve will not close immediately. Once the aortic valve closes, due to the closing of the aortic 

valve, a pressure surge, known as the dicrotic notch, occurs within the ascending aorta.  

Phase 4: Isovolumetric Relaxation (Diastole) 

Continuing from the previous phase, the aortic valve is closed, this makes the ventricle a closed 

chamber again since the mitral valve is also still closed. In this phase, the remaining blood volume, 

about 50 mL, is called the End-Systolic Volume (ESV). The heart relaxes and pressure within the 

chambers falls which leads to the opening of the mitral valve due to the pressure gradient 

between the pulmonary artery and the left ventricle. The next cardiac cycle commences again 

from phase 1. 
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2.2.3 Pressure-Volume Loop 

 

Blood pressure and volume fluctuation in the left ventricle in one cardiac cycle can be plotted 

against each other, illustrated in Figure 2-12 making a close loop, termed as the pressure-volume 

(PV) loop. 

 

Figure 2-12: Left ventricular pressure and blood volume changes within a cardiac cycle (left) and the corresponding 
pressure-volume (PV) loop (right). EDV: End diastolic volume, ESV: End systolic volume, SV: Stroke volume, ESPVR: 
End-systolic pressure-volume relationship, EDPVR: End-diastolic pressure volume relationship (With permission from 
Klabunde (Klabunde, 1998)) 

 

The PV loop is plotted using mitral valve closure as the starting point (1). Once systole has started, 

the left ventricular pressure builds up, but the blood volume remains constant (Isovolumetric 

contraction), marking the vertical (b) line. Eventually the left ventricular pressure exceeds the 

aortic pressure at point 2, opening the aortic valve and ejecting blood into the ascending aorta. 

The pressure increase and decreasing blood volume yield line (c), which peaks before settling to 

point 3. The aortic valve closes indicating the start of diastole period. Since both the aortic valve 

and mitral valve are closed at this point, pressure decreases due to LV relaxation i.e. isovolumetric 

relaxation, which is reflected in vertical line (d). After a while, the mitral valve opens (at point 4), 

and the filling phase is started. The volume of blood remaining inside the left ventricle before 

chamber filling starts is known as the end-systolic volume (ESV). A slight pressure increase 

accompanies a big change in blood volume and that is marked by line (a), the end point of which 

represents the maximal left ventricular end-diastolic pressure (EDP) and end-diastolic volume 

(EDV).  
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The difference between EDV and ESV is the stroke volume (SV) i.e. the amount of blood ejected in 

a cardiac cycle. The filling curve (line a) is also known as the end-diastolic pressure volume 

relationship (EDPVR) and this curve signifies ventricle compliance. For a stiffened hypertrophied 

heart, the EDPVR slope is increased. The effect of a dilated heart to the PV loop is explained later 

(refer to Figure 2-20). Normal to the EDPVR line is the ventricular elastance or ‘stiffness’ since 

compliance is reciprocal of stiffness.  

The end-systolic pressure volume relationship (ESPVR) line represents the limit of left ventricle 

contractility. Depending on the sympathetic nerve signal or any positive inotropic drug boosting 

heart contractility, the ESPVR line changes accordingly; the maximum pressure the left ventricle 

can generate at any given amount of end-diastolic blood volume is limited by the ESPVR line 

(Klabunde 2005). The heart condition whether it is normal or not, can be determined by PV loop 

tracing and discussed more in later subchapter (2.3.5 Cardiomyopathy). 

 

2.2.4 Blood Circulation 

 

The amount of blood ejected from a healthy heart at rest is usually around 5 - 7 L/min, termed  as 

cardiac output (CO), and is computed by multiplying stroke volume, SV, with the number of heart 

beats in a minute (HR) as Eq. 2.1: 

            2.1  

 

Thus, SV is easily computed, for example, with a CO = 5 L/min and HR = 60 beats/min, the SV is 

roughly 83 mL. During exercise, cardiac output may rise to 20 – 35 L/min from 5 – 7 L/min at rest. 

Indeed, from a normal resting rate of 50 - 100 beats/min, heart rate can shoot up to 180 - 200 

beats/min during heavy exercise (Levick, 2003). During heightened bodily activity, the 

sympathetic nerves increase the rate of electrical impulses at the SA node, thus increasing the CO. 

Initially the increased HR means that the filling time is decreased (systole time is mostly fixed), 

and this could mean decreased SV. However, SV is increased by combinations of increased mean 

arterial pressure, pulse pressure, and central venous pressure (CVP) that leads to increased 

contractility from the Frank-Starling mechanism (refer to 2.2.5). The sympathetic nerve also 

increases SV by increasing contractility, increasing the rate of muscle heart relaxation to facilitate 

easier ventricular filling, and facilitating systemic vascular resistance reduction, thus increasing 

blood perfusion to periphery.  
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Cardiac output can also be described using Eq. 2.2. This method allows for a direct comparison 

between patients with regards to body structure.  

    
  

   
 2.2  

 

where CI is the cardiac index, while BSA is the body surface area. There are several formulae to 

compute BSA [m2], of which two are presented: 

a) The Du Bois and Du Bois formula (Du Bois and Du Bois, 1916) 

                           2.3  

 

where H is the height [m2] , and W is the patient’s weight. 

b) The Mosteller formula (Mosteller, 1987) 

        
   

    
  2.4  

where h is the height in cm.  

Using a representative sample of h = 1.8 m and W = 70 kg, the BSA calculated is 1.81 (Du Bois & 

Du Bois) and 1.87 (Mosteller), and with normal range of CO at 5 L/min, the CI is 2.76 L/min/m2 (Du 

Bois), and 2.67 (Mosteller) L/min/m2. The normal range of cardiac index is 2.6 - 4.2 L/min/m2 

(Klabunde, 2005). 

The SV is influenced by two factors: 

1) Myocardial contraction energy 

Myocardial contraction can be heightened in two ways: (1a) the intrinsic mechanism of the 

heart muscle (2.2.5 Frank-Starling Mechanism) responding to preload, which is the 

myocardium wall stress, and (1b) from the sympathetic nerves intervention and the 

circulating hormone adrenaline. Increased contraction in turn ejects a greater amount of 

blood from the heart, thus increasing SV. 

2) Afterload 

The afterload is defined as the amount of myocardium wall stress, S, that is needed to eject 

blood. The wall stress is generated by the myocardium in a chamber with w thickness, r 

radius and P intraventricular pressure, described by Laplace’s equation in Eq. 2.5. 
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  2.5  

High arterial pressure means that the myocardium has to work harder since intraventricular 

pressure P must be greater than ascending aortic pressure for ejection to start. Normally, the 

aortic pressure is taken as afterload although that is not entirely accurate.  

The calculation for mean arterial pressure (MAP) is not the arithmetic average of systolic and 

diastolic pressure as the time spent in diastole is normally 2/3 of the whole cardiac cycle and 

computed as Eq. 2.6: 

           
            

 
  2.6  

 

 

Figure 2-13: Blood pressure distribution across the systemic and pulmonary circulation. The dotted line is the MAP. It 
is highest at the aorta before gradually decreasing at capillaries (With kind permission from Elsevier) (Guyton and 
Hall, 2006) 

 

Figure 2-13 illustrates the blood pressure distribution throughout the blood vessels in one full 

circulation. The MAP at the aorta is around 95 to 100 mmHg. The pulse pressure (PP: the 

difference between aortic systolic and diastolic pressures) increases as the blood flows into larger 

arteries such as the abdominal aorta but the MAP remains constant or decreases a little bit. The 

increasing PP (refer to Figure 2-15) at large arteries farther from the heart is caused by several 

factors: wave reflection, aorta becoming tapered downstream, blood vessel stiffness and wave 

reflection speed (Levick, 2003). The pulsatility of the blood pressure resumes at the pulmonary 

artery and lungs with MAP of about 16 mmHg (Guyton and Hall, 2006). 
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The aorta and other big arteries (> 1 mm) provide no real resistance.  Starting in the smaller 

arteries region, MAP starts to decrease quite rapidly due to increasing collective resistance that 

offers the biggest resistance to blood flow. However, MAP maintains a constant pressure of about 

17 mmHg at the vascular bed, enough for fluid exchange at the capillaries. The vascular resistance 

from arteries is sometimes called systemic vascular resistance (SVR) or total peripheral resistance 

(TPR). The relationship between MAP, CO and SVR (and CVP) can be summarised as:  

                    2.7  

 

or when rearranged, 

     
         

   
 2.8  

 

but since CVP is normally zero, then the equation is simplified: 

    
   

   
  2.9  

 

 

Figure 2-14: The relationship between MAP, CO, SVR and CVP. The MAP is generated with incoming CO from the 
heart and the SVR from the periphery. The CVP near the right atrium is normally 0 mmHg. (With permission from 
Klabunde (Klabunde, 1998)) 
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Figure 2-14 illustrates the interconnectedness between CO, MAP and SVR; the CVP is normally at 

0 (zero) mmHg, and influences the CO level by way of Frank-Starling mechanism, while SVR is 

independent of CO and MAP.  

Blood flow, Q, in an artery is determined by two factors: 1) ∆P, the pressure gradient and 2) R, 

resistance impeding blood flow, between two points in the blood vessel. The relationship is 

expressed in Eq. 2.10, known as Darcy’s law of flow (can also be applied to any geometric 

channel), which resembles Ohm’s Law of current and voltage.  

    
  

 
  2.10  

The biggest resistance to blood flow originates from small arterioles which contribute almost 2/3 

of total systemic resistance (Guyton and Hall, 2006). Resistance can be expressed using Poiseulle 

Law which states that resistance is proportional to the tube radius’ raised to the fourth power, r4, 

expressed by Eq. 2.11. 

    
   

   
  2.11  

Where L = length of the vessel, η = viscosity of the fluid (blood viscosity is 3 - 4 mPa.s at 37°C 

(Burton, 1972)2), r = radius of the blood vessel (in case of small arterioles, it is around 10 – 20 μm). 

One of the assumptions of Poiseuille’s law is the flow in the tube is laminar. Although blood 

exhibits non-Newtonian characteristics in nature, especially in small vessels (higher apparent 

viscosity), in high shear rates vicinity e.g. at the aorta, blood can be thought of as a Newtonian 

fluid (Shah, 2011). When Eq. 2.11 is substituted into Eq. 2.10: 

    
  

 
 
     

   
  2.12  

 

The Poiseuille Law shows that resistance is extremely sensitive to radius changes. Local blood flow 

can be regulated by changing blood vessel radius resulting in a rapidly changing resistance due to 

the radius factor in Poiseuille’s formula. Vessel arrangement contributes differently to total 

resistance value, in series arrangement yields a straightforward addition of all vessel resistance 

(      ), while in parallel arrangement resistance is as: 

 
 

  
 
 

  
 
 

  
 
 

  
    

 

  
  2.13  

                                                           
2
 Water’s viscosity is 1 mPa.s at 20.2°C. 1 mPa.s =1 cP (CGS unit) 
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Big blood vessels, and capillaries that form the vascular bed are arranged in parallel, and results in 

a low resistance environment compared to in series arranged small arterioles that offer much 

more resistance to blood flow. The SI metric unit for SVR is mmHg/mL/min; the old CGS metric 

system stated this as dynes.s/cm5. The conversion factor between both units is: 1 dynes.s/cm5 = 

1333 mmHg/mL/s. 

 

2.2.5 Frank-Starling Mechanism 

 

Frank-Starling mechanism is one of the ways to increase the contraction energy of the heart, the 

other one is by hormonal secretion of adrenalin and sympathetic stimulation. The Franks-Starling 

mechanism dictates that whenever there is an increase in venous return due to increased CVP to 

the heart, heart chambers will expand (initial sarcomere length in myocytes is increased) thus 

generating correspondingly extra force to eject blood. The increased blood and pressure increases 

the preload, which is the diastolic wall stress that leads to increased contractility. 

The Frank-Starling mechanism is important to maintain blood volume equilibrium between both 

sides of the heart, without which there would be a catastrophic imbalance between input and 

output from both sides of the heart, since input and output values are fixed. For example, if the 

right ventricle is ejecting 10% more than usual, while the left ventricle output remains the same, 

then the increasing blood volume output from the right heart would congest the lung and 

pulmonary circulation leading to pulmonary oedema (Burton, 1972, Guyton and Hall, 2006). 

The main factor influencing the Frank-Starling mechanism is the venous return i.e. blood volume 

returning to the right atrium, although there are some that argue that CVP is a much better 

determinant for the stroke volume (Levick, 2003). CVP in turn is affected by mean circulatory 

pressure, Pmc. 

 

2.2.6 Vasculature Compliance and Pulse Pressure 

 

The blood ejected from the left ventricle during systole collects momentarily in the expanding 

ascending aorta since blood from the previous cardiac cycle has not completely drained into the 

distal arteries. Once the heart valve is closed, the aorta wall recoils and pushes the remaining 
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blood to the peripheral circulation. The intra aortic pressure decreases gradually, but end-

diastolic pressure never reduces to zero due to blood vessel compliance. The pulse pressure (PP) 

for a normal young person is 40 to 45 mmHg. The distensibility of the aorta and arterial tree helps 

to maintain mean arterial pressure (MAP), thus providing constant blood flow to peripheral 

circulation. Without blood vessel compliance, the aortic pressure fluctuation would follow the left 

ventricle pressure waveform, and require more work from the heart to pump the same amount of 

stroke volume (Berne et al., 2004, Klabunde, 2005, Nichols and O'Rourke, 2005).  

Compliance, C, is computed by dividing volumetric increase or stroke volume with pressure 

difference or PP:  

    
  

  
  
  

  
  2.14  

 

The unit for compliance is mL/mmHg. The arterial compliance however is not a linear relationship, 

with higher pressure and blood volume, compliance declines i.e. the blood vessel stiffens, and this 

increases the pulse pressure.  

Arterial compliance also declines with advancing age due to atherosclerosis i.e. stiffening of 

arteries (Mitchell et al., 2004). For older people, the stiff vasculature causes higher PP with higher 

systolic pressure and lower diastolic pressure for a given stroke volume (Safar and Laurent, 2003), 

as illustrated in Figure 2-15.  
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Figure 2-15: Pulse pressure wave progression along the blood vessel from ascending aorta until femoral artery. The 
pulse pressure increased as the measurement point getting farther from aorta i.e. PP increasing along the blood 
vessel. The PP also increasing with age (Nichols et al., 1998, Safar and Laurent, 2003). 

 

The increase in systolic pressure, poses the heart with a mounting workload to overcome. 

Another adverse effect of arterial stiffening is faster wave reflection velocity. Ejection of blood 

distends the aortic wall and causes pressure waves to propagate into the periphery. Once it 

reaches the bifurcated branches, the pressure wave is reflected back. The reflected pulse wave 

then coincides with pulse pressure from the next cardiac cycle. In young normal adults, the 

reflected wave arrives to the aorta in late systole; while for older people, due to increased wave 

speed, it arrives earlier causing higher systolic pressure (Westerhof et al., 2010, Nichols and 

O'Rourke, 2005). Increased pulse pressure due to aging is also the best predictor index of 

mortality(Glynn et al., 2000). For heart failure patients, this poses another set of problems since 

the reflected pulse wave affects blood flow and has an adverse affects on systole augmentation 

(Cockcroft et al., 1997). Other diseases affecting arterial compliance are arterial hypertension 

(Dzau and Safar, 1988) and diabetes (Salomaa et al., 1995). 

 

 

 



Chapter 2 Background Review 
 

51 
 

A.Z.M. Khudzari 

2.2.7 Coronary Circulation 

 

Coronary circulation is vital for the heart to operate in normal fashion. In Figure 2-16, the left and 

right coronary arteries originate from the aortic root at the coronary ostia, just distal to the aortic 

valve. Each left and right branch covers respective parts of the heart although some overlap may 

exist. 

 

Figure 2-16: Coronary arteries originating from the root of ascending aorta and branched out to cover both left and 
right part of the heart. (With kind permission from Wellcome Library, London) 

 

There are variations between individuals as to which artery is the dominant coronary blood 

vessel; 50% of individuals have the right coronary artery as the dominant artery, 30% receive 

equal amounts of blood from both arteries, while the remaining 20% have the left coronary artery 

as dominant (Berne et al., 2004). The major coronary arteries are on the surface of the 

myocardium i.e. the epicardial region. Farther away from the ostia, the arteries branch out and 

become smaller diving into the myocardium, i.e. subepicardial region, to form extensive 

microvascular resistance vessel that distributes blood to all myocytes. These microvascular vessels 

are essential in coronary flow distribution, especially on the left coronary arteries.  

The mean coronary flow is around 225 mL/min (Guyton and Hall, 2006), although it is normally 

expressed in term of myocardial mass. In a normal resting condition, mean coronary flow is 

around 70 - 80 mL/min/100 g, during heightened physical activity coronary flowrate may increase 

up to 300 - 400 mL/min/100 g (Levick, 2003, Klabunde, 2005)3. 

                                                           
3
 The weight for a 70 kg man’s heart is around 350 g (Levick, 2003) 



Chapter 2 Background Review 
 

52 
 

A.Z.M. Khudzari 

The left coronary artery has a unique flow characteristic. The microvascular capillaries in the 

subepicardial region are very sensitive to external pressure making it the main source of left 

coronary resistance. In early systole, myocardium compression rapidly increases resistance in the 

coronary arteries stopping or at least reducing the flow rate to almost zero. The coronary flow 

resumes during diastole as illustrated in Figure 2-17. The right coronary artery is also affected by 

the myocardial compression; however, the effect is not as severe as in the left coronary artery 

(Berne et al., 2004). 

 

Figure 2-17: Pulsatile nature of the left coronary artery blood flow. During early systole, due to myocardial 
compression, the flow decreases to almost zero and picks up again during diastole. a: isovolumetric contraction in 
early systole, b: ejection in systole, c: diastole (With kind permission from Klabunde (Klabunde, 1998)).  

 

2.3 Heart Failure 

The heart failure disease is explained in detail in this subchapter.  

 

2.3.1 Definition of Heart Failure 

 

Cardiovascular disease (CVD) continues to be one of the top causes of mortality in the world and 

comprises range of diseases including coronary heart disease (CAD), valvular heart disease, 

hypertension, myocardial infarction and ultimately congestive heart failure (CHF), normally known 

as heart failure (HF). The World Heart Organization (WHO) reported that in 2004, CVD contributed 

to almost 30% of death of estimated worldwide death figures (58 million), with almost 32% of 

deaths being women, followed by men with almost 27%. The overall death reported worldwide 

due to cardiovascular disease was a little over 17 million and is projected to increase almost 30% 

to 23.4 million by 2030 (Mathers, 2004). In the United States of America, in 2006, there were 
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about 34% of deaths (actual figure of deaths = 2 426 264) attributed to CVD, with 287 754 deaths 

(11.9%) mentioning HF in the death certificate (Lloyd-Jones et al., 2010). 

The textbook definition of heart failure (HF) is “failure of the heart to pump enough blood to 

satisfy the needs of the body” (Guyton and Hall, 2006). However, there are other definitions given 

by scholars such as by Denolin and his co-workers which states that: 

“Heart failure is the state of any heart disease in which, despite adequate ventricular 

filling, the heart’s output is decreased or in which the heart is unable to pump blood at a 

rate adequate for satisfying the requirements of the tissues with function parameters 

remaining within normal limits” (Denolin et al., 1983). 

Another definition of heart failure is at the point which the heart cannot maintain cardiac function 

without increasing the filling pressure i.e. atrial pressure.  

These are not the only definitions proposed by scholars. However, there are many disagreements 

on HF definition due to conflict between physiological symptoms, which focus on circulatory 

organ dysfunction, and clinical symptoms such as dyspnoea (breathlessness) and lethargy (Adams 

and Zannad, 1998). To incorporate both physiological and clinical symptomatic markers, the Task 

Force of the European Society of Cardiology proposed the definition in 1995. The first and second 

criteria must be fulfilled in all cases (Cardiology, 1995, Remme and Swedberg, 2001): 

1. symptoms of HF ( at rest or during exercise), 

2. objective evidence of cardiac dysfunction (at rest), 

3. response to treatment directed towards HF (in cases where the diagnosis is in doubt). 

 

The apparent similarity between definitions which point out the heart inability to supply blood 

according to the body’s demand is evident. Due to the differences in defining what HF is, 

researchers use different guidelines for their studies and consequently published different 

conclusions. Brief HF prevalence, incidence, aetiology and some of the common symptoms of HF 

and physiological cardiac dysfunction are explained in later subchapter. 
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2.3.2 Heart Failure Risk Factor, Aetiology, Prevalence & Incidence  

 

The risk factors of heart failure are not unique and are attributes of other diseases as well. The 

risk factors for the USA populations are (Jiang et al., 2001): 

 gender (male) 

 less education 

 low physical activity 

 cigarette smoking 

 overweight 

 hypertension 

 diabetes 

 valvular heart disease 

 coronary heart disease (CAD). 

For example, obese people are likely to suffer hypertension before progressing further to heart 

failure. From Jiang et al. (2001) study, coronary heart disease is the biggest risk factor with a 

relative risk of 8.11 (95% CI = 6.95 – 9.46)(Jiang et al., 2001). A 17-year longitudinal study in 

Sweden showed that hypertension and smoking were the biggest heart failure risk, while other 

independent risk factors were body weight, heart volume, ECG abnormality (at T-wave), variability 

of heart rate, breath flowrate index, stress and possibly a genetic marker (Fy-antigen)(Eriksson et 

al., 1989).   

Various aetiology studies have discovered that coronary artery disease (CAD), hypertension, valve 

dysfunction, cardiomyopathy (e.g. dilated, hypertrophic and alcoholic), cardiac 

arrhythmias/conduction disturbance, pericardial disease, or viral infection (rheumatic fever or 

pregnancy) are causing heart failure in general population (McKee et al., 1971, McDonagh et al., 

1997, Cowie, 2000, McMurray and Stewart, 2000, Klabunde, 2005). 

Prevalence is the term to describe the amount of HF patients per population within the time 

frame of the study. A review study reported that the overall prevalence rate is from 3/1000 to 

21/1000 (McMurray and Stewart, 2000). 

Incidence is new occurrences that take place within the time frame of study, however the 

incidence rate is lesser known than prevalence of HF (McMurray and Stewart, 2000). Framingham 

Heart Study reported a 2/1000 cases per year (Ho et al., 1993b) while another study reported 

1/1000 to 12/1000 cases per year ( > 85 years) (Cowie, 2000). Some other studies gave 8/1000 
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(Remes et al., 1992), or 16/1000 (Rodeheffer et al., 1993). The apparent differences between 

these studies can be attributed to methodology used. 

 

2.3.3  HF Survival and Mortality Rate 

 

The prognosis for HF is not good. Once diagnosed, the one-year survival rate is 57% for men and 

64% for women;  the rate further decreased to 25% and 38% at 5-year respectively for men and 

women as tabulated in Table 2-2 (Ho et al., 1993a). It has even been reported that the clinical 

course and prognosis of CHF are “surprisingly grim and not much better than those for cancer in 

general” (McKee et al., 1971). A recent finding has suggested that HF is as deadly as most types of 

cancer when taking five-year survival rate for cancer into account, with only lung cancer rated as 

having a worse prognosis (Stewart et al., 2001).  

Table 2-2: Estimation using Kaplan-Meier curve for overall survival rate after diagnosed with congestive HF (CHF) 
from Framingham Heart Study (Ho et al., 1993a) 

 Median (years) 90 days 1 year 2 years 5 years 10 years 

Men 1.66 0.73±0.02 0.57±0.03 0.46±0.03 0.25±0.02 0.11±0.02 

Women 3.17 0.72±0.03 0.64±0.03 0.56±0.03 0.38±0.03 0.21±0.03 

 

It is difficult to actually determine the mortality rates in the UK and other countries, due to the 

explicit guideline, by the World Health Organization (WHO), for doctors not to put HF as the 

underlying cause of death but rather as the mode of dying.((WHO), 1977) . In spite of that, there 

are studies that compiled the death certificate in the UK, and computed the mortality rate from 

HF; for example a group reported an annual rate of -2.9% (men) and -2.6% (women)(Goldacre et 

al., 2005). 

 

2.3.4  Heart Failure Symptoms  

 

The simplest definition of heart failure (HF) attributes the inability of heart to supply adequate 

perfusion to the whole body. Due to decreased perfusion, whenever there is an increased physical 

activity, fatigue and dyspnoea (breathlessness) occur. This is one of the main symptoms of HF. 
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Another symptom is oedema or fluid retention that normally shows at the ankle or inferior 

extremities (peripheral oedema), or fluid retention at lungs (pulmonary oedema) depending on 

which side of the heart is failing. 

In case of the left side failure, the inability of heart to pump adequate blood increases hydrostatic 

pressure differences between the heart and the lung, which hinders blood entry into the left 

heart. This causes fluid retention in the lungs, causing the patient to experience breathlessness. In 

a patient’s x-ray, pulmonary oedema will manifest itself as an anomaly in the lung, as illustrated in 

Figure 2-18. For the right side failure, the systemic circulation faces an increasing pressure 

gradient from the right atrium due to increased right atrial pressure. Instead of CVP roughly at 0 

mmHg, the CVP increases up to +5 mmHg, which is typical in damaged heart (Guyton and Hall, 

2006), and causes peripheral oedema at lower extremities such as at the ankle. 

 

Figure 2-18: X-ray of a HF patient showing a dilated heart and excessive fluid at the lungs. (Picture courtesy of 
Wellcome Library, London) 

 

Another way of categorising HF depends whether dysfunction occurs in systole or diastole. For 

the systolic dysfunction, it is characterized by reduction in the ejection fraction (EF) due to 

pumping failure, caused by enlarged end-diastolic chamber volume due to myocardium 

enlargement. It is rare to find systolic dysfunction without accompanying diastolic impairment; in 

clinical practice, the occurrences of HF with cardiomegaly are normally associated with systolic 

dysfunction characteristics. Diastolic dysfunction, on the other hand, although is not so easily 

diagnosed is defined as filling volume impairment due to increased filling resistant (Federmann 
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and Hess, 1994). The increased filling pressure due to hypertrophied heart leads to increased 

pressure within the lungs, and this brings about pulmonary oedema.  

 

2.3.5 Cardiomyopathy 

 

The cardiomyopathy (a form of heart failure) is a disease where the heart experiences structural 

changes resulting in enlargement (dilation) and/or hypertrophy (stiffening) of ventricular 

chamber. The incidence of dilated cardiomyopathy is 36.5/100,000 as opposed to hypertrophied 

cardiomyopathy at 17.9/100,000 population (Codd et al., 1989). There are various kinds of 

cardiomyopathy as tabulated in Table 2-3: 

Table 2-3: Types of cardiomyopathy and its dysfunction category 

 

 

 

 

 

 

Depending on types of cardiomyopathy the resulting HF is either an inability to pump blood 

efficiently due to loss of inotropic ability (systolic) or it could be a normal ejection fraction but 

with increased filling pressure (diastolic), and if left untreated would progress to congestive HF. 

In this report, the dilated cardiomyopathy (DCM) is discussed in general and the idiopathic dilated 

cardiomyopathy (IDCM) will be further explained. Compared to other types of cardiomyopathy, 

the dilated cardiomyopathy is much more common (Mohan et al., 2002, Lloyd-Jones et al., 2010), 

although some of the patients may be without any symptoms, while the rest would progress to 

congestive heart failure (CHF) stage. Figure 2-19 is an image of a heart with a dilated 

cardiomyopathy. There are various kinds of causes leading to DCM such as electrolyte, nutritional 

or endocrine abnormalities, chronic hypertension, infection, infiltrative or rheumatologic or 

valvular heart or neuromuscular disease, myocardial ischaemia, tachyarrhythmia and toxins 

(Mohan et al., 2002).  

Systolic Dysfunction Diastolic dysfunction 

 Dilated cardiomyopathy (DCM)  Hypertrophied cardiomyopathy 

 Ischaemic cardiomyopathy  Restrictive cardiomyopathy 

 Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 

 

 Non-compaction cardiomyopathy  
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Figure 2-19: Cross section of a HF secondary to idiopathic dilated cardiomyopathy. Note the enlarged size and 
spherical shape of the LV wall. (Image courtesy of Public Health Image Library (PHIL). http://phil.cdc.gov) 

 

Since the cardiomyopathy is one of the causes leading to HF, the clinical features are quite similar 

to HF, with symptoms relating to left ventricular or biventricular systolic dysfunction. Vague 

symptoms without any specific cause such as fatigue, weight loss, appetite loss first emerge 

before further progressing to peripheral oedema, dyspnoea, orthopnoea 4  and paroxysmal 

nocturnal dyspnoea5. There were also cases of sudden death secondary to IDCM although 

uncommon (Mohan et al., 2002). 

The systolic dysfunction effect is loss of inotropy i.e. weakening myocardial contractile power to 

push blood into the next chamber. The effect of IDCM to the PV loop is illustrated in Figure 2-20, 

where the systolic dysfunction is illustrated by the decreased ESPVR slope.  There is a reduction in 

the volume of blood ejected from the left ventricle in systole due to the loss of ventricular 

contractility. The increasing end-systolic blood volume means with incoming blood during 

diastole, the end-diastolic volume increases, and in effect shifts the end point (point 1 of Figure 2-

12) to the right on the compliance curve i.e. EDPVR line which also means an increase in preload. 

However, the combined end-diastolic blood volume is smaller than end-systolic volume, hence 

decrease in SV ejected (Kato et al., 1996, Klabunde, 2005). 

                                                           
4
 A type of breathing difficulty occurs when lying down. The symptom is relieved when taking upright 

position. 
5
 Paroxysmal nocturnal dyspnoea: a type of dyspnoea (shortness of breath) that occurs when the patient 

sleeps, often after one or two hours. It is relieved by sleeping in upright position 
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Figure 2-20: The effect of IDCM to PV loop. The ESPVR slope reduction means reduced contractility, as well as EDPVR 
curve shift to the right hence increasing both end-systolic and end-diastolic blood volume; this leads to overall less 
stroke volume and reduced left ventricular peak systolic pressure  

 

Normal ejection fraction (EF) is around 65% - 70%, but in cases of systolic dysfunction HFthis may 

fall below 20%. One of the inclusion criteria for IDCM is an ejection fraction of below 45% as 

shown in Table 2-4. 

Table 2-4: Diagnostic criterion for IDCM (Mohan et al. 2002) 

Inclusion  LVEF  < 45% and/or fractional shortening  < 25% (>2 SD below mean) 

 LV end-diastolic diameter > 117% of the predicted value 

Exclusion   Systemic hypertension (>160/100 mmHg) 

 Coronary artery disease (>50% in one or more major branches) 

 Chronic excess alcohol (>40g/day :women, >80g/day : men) 

 Systemic disease known to cause dilated cardiomyopathy 

 Pericardial diseases 

 Congenital heart disease 

 Cor pulmonale 

 Rapid, sustained supraventricular tachycardia 

 

The diagnosis of IDCM is done by exclusion of other aspects of cardiomyopathy rather than 

diagnosing IDCM directly (Manolio et al., 1992, Mohan et al., 2002). 
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There has been lots of evidence that IDC patients respond well to treatment by Left Ventricular 

Assist Device (LVAD), Hetzer et al. (1999) reported that all 19 patients suffering HF secondary to 

DCM enrolled in their trial evaluating mechanical heart assistance had improved cardiac functions 

(Hetzer et al., 1999). Other notable studies reported 75% survival rates over 5 years after 

explantation of LVAD (Dandel et al., 2005), while another study reported over 85% survival rates 

after 4 years with aggressive drug treatment (Birks et al., 2006).  

 

2.4 Method of Treatment  

 

Heart failure (HF) is initiated from various pathophysiological causes (refer to 2.3.2 Heart 

Failure Risk Factor, Aetiology). There are several models to explain HF progression. Those models 

are: the haemodynamics model consisting of cardiorenal and cardiocirculatory models, and the 

neurohormonal model. Each model yields specific treatment strategy focusing on respective 

model prediction of HF mechanism (Mann and Bristow, 2005). For example, cardiocirculatory 

model was proposed as a result of observation that in HF patients, compromised blood perfusion 

from reduced cardiac output was the result of myocardial pump failure. That finding leads to 

administration of positive inotropes increasing the heart’s contractility, and intravenous 

vasodilator decreasing peripheral resistance to boost cardiac output.  

The goals of HF treatment are: 

1) to reduce the clinical symptoms of HF i.e. alleviating pulmonary/peripheral oedema and 

dyspnoea, 

2) to slow HF deteriorating process , if the above is difficult,  

3) to improve myocardial function, 

4) increasing survival rate. 

There are two HF classification systems in use at present to diagnose the level of HF disease. The 

New York Heart Association (NYHA) classification, a functional classification, recognises the 

symptomatic condition of the disease. NYHA classification divides HF into four classes, from mild 

cases (Class I) to severe and chronic cases (Class IV) (Association, 1964). However, NYHA 

classification does not address any possibility of patients with underlying risk factor progressing to 

HF, thus hindering effective treatment management (Mosterd and Hoes, 2007). 
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The American College of Cardiology and American Heart Association (ACC/AHA) proposed a 

classification system that focuses on the evolution and progress of HF. The ACC/AHA classification 

has four categories, namely stage A to D (Hunt et al., 2001). Both classifications, NYHA and 

ACC/AHA, are usable and overlap with each other. One interesting fact about ACC/AHA 

classification is that a patient may progress from stage A to stage D, but the recovery path is not 

in reverse, contrary to NYHA functional classification where with some pharmacological 

treatment, patient with NYHA Class IV could be reversed to Class III (M. Jessup & Brozena 2003). 

Table 2-5 tabulates both NYHA and ACC/AHA classifications.  

 

Table 2-5: HF classification coding and corresponding treatment 

NYHA class AAC stage Treatment 

- 

A 

-At high risk developing 

HF in the future but no 

functional or structural 

disorder 

 Lifestyle adjustment, education 

 Reduction of risk factors 

 Treatment for underlying disease 

such as diabetes and/or 

hypertension by prescribing ACE 

inhibitors or angiotensin-receptor 

blocker (ARB) in some patient 

I 

-no daily limitation 

and no symptoms 

from ordinary 

activities 

 

B 

-Those with structural 

disorder but no 

symptoms at any stage 

 ACE inhibitors and β-blocker in all 

patients 

II 

-slight or mild 

limitation of activity. 

Comfortable at rest 

but can tolerate mild 

exertion 

C 

- has previous or 

current symptoms of 

HF in the context of an 

underlying structural 

heart problem, but 

 Administration of diuretics and 

digoxin, and salt intake reduction 

 Cardiac resynchronization (in case of 

bundle-branch block) 

 Surgical intervention, heart valve 
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III 

-has considerable 

limitation on any 

activity, only 

comfortable at rest 

managed with medical 

treatment 

corrective surgery 

 Aldosterone antagonist 

IV 

-any physical activity 

brings on discomfort 

and symptoms occurs 

even at rest 

D 

- advanced stage 

requiring hospital 

based support, a heart 

transplant or palliative 

care 

 Inotropes 

 Mechanical assistance 

 Heart transplantation 

 Hospice 

 

 

Figure 2-21: The HF treatment in accordant to classification by ACC/AHA. Reproduced with permission from (Birks et 
al., 2006) Copyright Massachusetts Medical Society 

 

Figure 2-21 illustrates the treatment given to a patient, which can be divided into several distinct 

ways: pharmacological treatment, non-pharmacological treatment such as cardiac 

resynchronization therapy (CRT), surgical intervention or mechanical assistance i.e. left ventricular 

assist device (LVAD), total artificial heart (TAH), and lastly heart transplantation (Birks et al., 

2006). An example of surgical intervention is corrective surgery on impaired coronary artery 
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which might involve revascularization (enlargement of the coronary artery) by angioplasty, stent 

introduction or surgical approach such as the coronary artery bypass graft (CABG) or the off-pump 

coronary artery bypass (OPCAB) surgery. It was reported that these approaches improved cardiac 

performance and reduced sudden death risk (Baumgartner 2001). Other examples of surgical 

intervention are valve restructuring or exchange of native valve to prosthetic valve, either 

mechanical heart valve (MHV) or bio-prosthetic valve.  

The standard pharmacological drugs for congestive HF treatment are tabulated in Table 2-6 

(Remme and Swedberg, 2001, Levick, 2003, Klabunde, 2005). 

Table 2-6: Standard pharmacological drugs for HF patient 

Drug Effect/objective 

ACE inhibitors The main effect is decreasing vascular resistance thus increasing CO. The 

drug works by lowering the level of angiotensin II, consequently the level of 

aldosterone. This reduces the level of arterial vasoconstriction. ACE inhibitor 

dilates the arteries and veins, thus decreasing vascular resistance. 

Loop diuretics Its main objective is to reduce fluid retention thus reducing cardiac 

distension, dyspnoea and oedema (pulmonary, peripheral). 

Beta blocker Reducing heart rate thus increasing ejection fraction. 

Positive Inotropes Increasing failing heart’s contractility thus increasing cardiac output. 
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Figure 2-22: Medical treatment to the failing heart is almost always a multi fold approach. The prescribed medicines 
not only intended for the heart, but also affecting other organs such as the kidneys that controls angiotensin, and 
renin secretion. Reproduced with permission from (Birks et al., 2006) Copyright Massachusetts Medical Society 

 

Figure 2-22 illustrates the target organs of pharmacological drugs. The objectives are to improve 

symptoms and to reverse the damage from cardiovascular disease. Some of the drugs are also 

used for other disease, e.g. ACE inhibitors for hypertension. For example, the ACE inhibitor affects 

peripheral arteries vasodilation, the kidneys secretion of renin and aldosterone, the heart’s 

remodelling and hypertrophy and renal blood flow(Birks et al., 2006).  

The last available option for HF treatment and also the gold standard is the heart transplantation. 

The first human transplantation was successfully carried out in 1967, although the patient died 

from complications (Barnard, 1967). Compared to early days of heart transplantation, where the 

actuarial survival rate for one, five and ten years was 68%, 41% and 24% respectively (Robbins et 

al., 1999); the prognosis of heart transplantation has progressed tremendously at around 87% for 

1-year survival rate, 72% for 5-year survival rate and 50% for 10-year survival rate (UNOS, 2007). 

The cyclosporine introduction in 1985 increased survival rate from 70% at 1-year to more than 

80% at 1-year (Hunt, 1998). Figure 2-23 illustrates the Kaplan-Meir survival trend for heart 

transplantation surgery. 
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Figure 2-23: The Kaplan-Meier survival for heart transplantation between January 1982 and June 2003. (With  kind 
permission from Elsevier) (Taylor et al., 2005)  

In spite of the excellent heart transplantation track record, donor limitation has made it difficult 

for this treatment to be in widespread use. In the UK, donated heart figure for cardiac 

transplantation has not changed much since 1979, or even in the whole world, and most probably 

this trend continues in the future. Heart transplant operation in the UK for year 2007/2008 was 

just 135 cases, a clear decrease from 162 recorded for year 2006/2007 (Transplant, 2008). 

Worldwide, heart transplantation surgery record was around 3000 cases/year with the USA 

leading the pack; for example 2333 cases of heart transplantation were reported in 20106.  

 

2.5 Mechanical Assistance for the Failing Heart 
Another option to treat heart failure is by mechanical assistance, which is discussed hereafter. 

 

2.5.1 Brief History of Heart Assist Device 

 

One French physiologist in 1812, Le Gallois, put forward suggestion that by providing perfusion to 

an organ, it can be kept alive. The first documented description of artificial heart was penned and 

illustrated by Étienne-Jules Marey in 1881 (Ratner, 2004). Carrel and Lindbergh back in 1935 

described the usage of mechanical circulatory assistance in animal testing in their seminal book 

‘The Culture of Organs’ (Carrel and Lindbergh, 1935). The first successful mechanical circulatory 

assist in clinical setting on human was demonstrated by Dr. Gibbon when he used the heart-lung 

machine to perform cardiopulmonary bypass surgery in 1953, successfully proving that human 

can be supported by machine (Gibbon, 1954). The roller pump, invented by a Dr DeBakey, 

                                                           
6
 http://optn.transplant.hrsa.gov/latestData/rptData.asp 
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originally intended for donor-to-patient blood transfusion, was incorporated in the heart lung 

machine and  still remained in use (DeBakey, 2003). 

An early example of a total artificial heart (TAH) was in 1957, where Dr. Kolff’s group headed by 

Dr. Akutsu fabricated an artificial heart made of polyvinylchloride, and implanted the TAH in an 

anaesthetised dog. The dog was supported for 90 minutes thus proving that an artificial heart 

could support the circulation of an animal (Akutsu and Kolff, 1958). Another example was from 

Dr. DeBakey’s group where a patient was successfully supported postcardiotomy by using a 

biventricular device until the patient heart was strong enough to be weaned off after 10 days of 

support (Liotta et al., 1963, DeBakey, 1971). 

The desperate need to treat congestive HF spurred a new interest onto LVAD, especially in the 

wake of dismal result from early years of heart transplantation period. After support from the 

USA government through the National Heart, Lung, and Blood Institute (NHLBI) in the 70’s and 

80’s, the result was evident in 1978, when the first usage of LVAD as a bridge to transplantation 

(BTT) for heart and kidney was successful (Norman et al., 1978). Early LVADs were pneumatically 

driven, however an electrically actuated LVAD7 were successfully tested in 1984 (Portner et al., 

1985). The mechanical heart assist devices available now range from a simple and relatively cheap 

balloon pump to a more expensive and complex TAH. 

The mechanical assistance is recognized as a stop-gap option for the most severe patients while 

serves to assist blood circulation for the other less severe patients. Normal indicators for 

implantation of a heart assist device into a HF patient are: patient’s condition (NYHA class III or 

IV), refractory to pharmacologic treatment, receiving maximal inotrope support and/or receiving 

an intra aortic balloon support. Those in the heart transplantation list who exhibit severe chronic 

HF criteria such as cardiac index less than 2 L/min.m2 is considered for heart assist device 

implantation, with intention of Bridge-to-Transplantation (Mancini and Burkhoff, 2005). More 

exhaustive indications are tabulated in Table 2-7 (Kirklin and Naftel, 2008). 

 

 

 

 

                                                           
7
 Novacor LVAD, World Heart Corp, California, USA 
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Table 2-7: LVAD indications depending on the treatment intention (Kirklin and Naftel, 2008)  

Treatment intention Indication 

Bridge to Transplantation (BTT) 

 

(The device is implanted with 

intention of supporting the 

patient until heart donor is 

found) 

 End stage HF despite inotropic support 

 Supported with/without IABP 

 Acute renal dysfunction 

 Pulmonary hypertension (PA systolic pressure > 60 

mmHg) 

 Refractory to inotropic support 

 Deemed to be suitable for mechanical assist therapy 

Bridge to Recovery (BTR) 

(Patient is expected to recover 

when implanted with an LVAD) 

 Acute myocardial infarction 

 Acute myocarditis with shock 

 Acute cardiac failure post cardiac surgery 

Destination Therapy (DT) 

 

(For end-stage HF patient, and 

also not included in the 

transplantation list, DT device is 

implanted permanently) 

 Class IV HF with chronic disabling condition 

 Refractory to optimal therapy 

 Low myocardial oxygen consumption < 12-14 mL/(kg-

min) 

 Dependant to inotropic support intraveneously 

 Expected mortality rate within a year > 50% 

 

A more thorough lists of LVAD indication/contraindication as a DT is given by Stevenson and 

Shekar (2005) in their review of LVAD as a long term mechanical support.  The patient can only be 

included into the selection if he/she is at the end stage condition for more than 60 days out of the 

three months under observation (Stevenson and Shekar, 2005). 

The LVAD implantation is also extended for those not included in the heart transplantation list. 

Depending on the respective HF treatment centre inclusion criteria, the patient could be 

implanted with the intention of Bridge-to-Transplantation (BTT), Bridge-to-Recovery (BTR) or 

Destination Therapy (DT)(Mancini and Burkhoff, 2005, Williams and Oz, 2001).  

There are three ways of using mechanical means to augment blood perfusion (Jeevanandam et 

al., 2002): 

1. direct augmentation to the heart using a deformable membrane wrapping the heart. This 

technique is known as dynamic cardiomyoplasty, 

2. using a mechanical pump to direct blood from the left atrium/ventricle to the aorta, 
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3. energy is supplied to a portion of the vascular system during diastole to increase blood 

perfusion and to reduce afterload. 

The third method is also known as counterpulsation. Figure 2-24 illustrates the classification of 

various heart assist devices according to the type of augmentation method. 

 

Figure 2-24: Classification of mechanical heart assist devices. The devices are classified according to activation 
method, either by pushing blood from the device chamber by deformable membrane, or by using impeller, or by 
replacing the native heart with an artificial heart. (With kind permission from Sage Publications) (Reul and Akdis, 
2000)  
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Displacement blood pump are also known as pulsatile blood pump due to the usage of pusher 

plate or a deformable membrane. The activation of pulsatile blood pump might be independent 

of heart rhythm, or it could be anti-phasic such as IABP. The displacement pump is sensitive to 

preload but can withstand high afterload. 

Contrary to the displacement blood pump, flow from the rotary blood pump is continuous flow. 

The rotary blood pump (RBP) is categorised into axial, radial, or diagonal type. Hydraulic efficiency 

(i.e. maximum flow output vs supplied power) is best in the radial design, but similar output can 

be achieved with a smaller axial type. The rotary blood pump has the characteristics of preload 

insensitivity and afterload sensitivity (Miller, 2006).  

There are differences between a radial and an axial rotary blood pump, but the most prominent is 

the size. Axial flow blood pumps are smaller and only have one moving part (the central impeller), 

suspended by magnetic bearing, thus decreasing thrombus formation. The flow output of a radial 

blood pump is around 5 – 7 L/min with 100 mHg pressure increase; however, an axial blood pump 

has to rotate at a much higher velocity to achieve the same output thus the rotational speed of 

the diffuser is very high at 15,000 – 25,000 rpm compared to radial/diagonal design (1500 – 3000 

rpm) (Miller, 2006). 

The diagonal type combines both axial and radial characteristics, thus has mixed advantages and 

disadvantages. Due to the advantages of rotary blood pumps such as lower blood damage, 

smaller size, lower filling volume, better transportability and absence of spallation, rotary blood 

pumps have been introduced for medical applications where the majority of rotary type pump are 

of radial type(Reul and Akdis, 2000). Among rotary blood pumps available are Jarvik 2000 (axial 

type), DeBakey (axial type) (Figure 2-25), and Medos DeltaStream DP1 ® (diagonal). 

 

Figure 2-25: A cross section of the MicroMed DeBakey VAD. (With kind permission from Elsevier) (Frazier and Jacob, 
2007) 
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An orthotropic Total Artificial Heart (TAH) is a blood pump that replaces the explanted natural 

heart in terms of anatomical replacement and function. Such a system, which would replace the 

human heart reliably and without complications for months or eventually years, does not yet 

exist. The TAH is used for terminally ill patients at end-stage of CHF and either waiting for heart 

transplantation, or not listed in heart transplantation list. The TAH device available in the market 

is intended for BTT. An example is the SynCardia temporary TAH illustrated in Figure 2-26, which 

is now a FDA, CE and Health Canada approved TAH8. 

 

Figure 2-26: A SynCardia temporary total artificial heart implanted to replace failing native heart as a temporary 
measure awaiting heart for transplantation. (With kind permission from SynCardia System Inc.) 
(http://www.syncardia.com) 

 

A 10-year pivotal study using SynCardia temporary TAH was conducted at five separate centres on 

81 patients. The survival rate to transplantation between TAH implanted and non-implanted 

control group was statistically significant (79% vs. 46%, p < 0.001). The post-implantation rate of 

survival for transplanted patient with a TAH are 86% (one-year) and 64% (five-years) (Copeland et 

al., 2004). 

There is another type of a blood pump classifications proposed by Olsen (2000) that classified the 

blood pump type into several generations. The first generation blood pumps are the pulsatile or 

positive displacement blood pumps, which are primarily used as a BTT device. The second 

generation is the blood contacting mechanical bearing rotary blood pump, which then progressed 

to the third generation blood pump with a magnetic levitation system that minimises contact with 

moving parts; in the third generation type, only the levitated impeller is the moving part. The 

                                                           
8
 http://www.syncardia.com/images/stories/files/FactSheet_Total-Artificial-Heart.pdf 
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fourth generation blood pump was theorised to move blood using magneto-hydrodynamics 

principle (Olsen, 2000).   

 

Figure 2-27: Heart assist device classification based on the intended us of device, from short term to long term 
support (with kind permission from Sage Publications) (Wheeldon, 2003) 

 

Figure 2-27 illustrates another classification system that divides devices according to period of 

use; from a very short term of a couple of hours (Class I) to few weeks to months (Class II), or the 

Class III (extended support group) that was designed to become the alternative to the heart 

transplantation with some permanently implanted, hence the Destination Therapy (DT) subgroup 

(Wheeldon, 2003).  

A multi centre randomised trial (REMATCH: Randomized Evaluation of Mechanical Assistance for 

the Treatment of Congestive Heart Failure) was conducted with the objective of studying the 

effectiveness of mechanical heart assist devices compared with optimal medical management. 

The LVAD used was a pulsatile displacement type9. The result tabulated in Table 2-8 shows that 

the usage of LVAD prolonged the survival of patients compared to those in the medical therapy 

group at one-year and two-year evaluation period (Rose et al., 2001). The finding from that 

                                                           
9
 HeartMate VE, Thoratec Corporation, CA, USA. 
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seminal paper won the approval from the FDA to classify the LVAD as a BTT device while being a 

candidate for a DT device. 

 

Table 2-8: Survival rate for one year and two years reproduced from REMATCH study (Frazier et al., 2001)  

Kaplan-Meier 

survival rate 

LVAD 

treatment 

Medical 

therapy 

1-year 52% 25% 

2-year 23% 8% 

 

A non-randomised trial (INTrEPID: Investigation of Nontransplant-Eligible Patients Who Are 

Inotrope Dependant) aimed to determine the long term effectiveness of Novacor LVAD10 on non 

transplant candidate patients. Both 6 months and 12 months results showed significant LVAD 

effect compared to optimum medical treatment (6 months: 46% vs. 22%,p = 0.03; 12 months: 

27% vs. 11%, p = 0.02)(Rogers et al., 2007). This has reinforced the positive effect of LVAD 

augmentation on LV functional capacity, as well as prolonging the survival of the patient.  

There has been quite a polemic on the differences between pulsatile and non-pulsatile blood 

pumps, especially the effect of pulsatility to human physiology (Undar and Fraser, 2002, Undar, 

2004, Travis et al., 2007). A randomised trial was carried out by Slaughter et al. (2009) to compare 

the outcome between pulsatile11 and non-pulsatile i.e. continuous axial blood flow12. The result is 

tabulated in Table 2-9, where the non-pulsatile i.e. continuous flow blood pump patients showed 

a higher survival rate, although both pulsatile and non-pulsatile type yielded a significant effect in 

increasing patient’s quality of life and functional capacity (Slaughter et al., 2009). 

Table 2-9: Survival rate between non-pulsatile and pulsatile blood pump at one-year and two-year period (Slaughter 
et al., 2009) 

Kaplan-Meier survival rate Non-pulsatile blood pump Pulsatile blood pump 

1-year 68% 55% 

2-year 58% 24% 

 

                                                           
10

 World-Heart, Oakland, California, USA 
11

 HeartMate, XVE, Thoratec Corp., CA, USA 
12

 HeartMate II, Thoratec Corp., CA, USA 
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The main reason given for the low rate of pulsatile flow blood pump survival rate was durability of 

the heart assist device. In the pulsatile blood pump cohort, 36% (24 out of 66 patients) was 

excluded from the trial due to pump replacement or repair operation. For the non-pulsatile blood 

pump patient, the value was only 10% (Slaughter et al. 2009).  

Two important findings from above are:  

1) mechanical heart assist device is proven to prolong end-stage HF patient life far better 

than with optimal medical treatment only, 

2) continuous flow blood pump has shown to increase survival rate compared to pulsatile 

blood pump due to its durability.  

There is an ongoing registry for clinical trials conducted using blood pump at the USA since 2003. 

The INTERMACS registry was set up to collect relevant information regarding VADs implantation 

all over the USA. The data is then used to provide better guidance for researchers to improve 

patient selection criteria, upgrade existing heart failure treatment strategy. The same data is also 

used to improve existing and next generation devices development and relevant regulation. 

Furthermore, with the registry information, further heart failure treatment research can be 

carried out more effectively (Kirklin et al., 2008). At present, there are more than 6000 patients 

registered with the INTERMACS since 2006.  

The patients enrolled in the INTERMACS were divided into seven profiles as depending on the 

conditions when VAD was implanted as tabulated below (Stevenson et al., 2009).  

 

Table 2-10: INTERMACS profile description(Stevenson et al., 2009) 

 INTERMACS profile Description 

1 Critical cardiogenic 

shock 

Also known as “Crash and burn” patients. Patients are in critical 

condition refractive to increased inotropic support leading to 

life-threatening hypotension. The condition is further confirmed 

with increasingly dangerous acidosis and/or lactate levels. 

2 Progressive decline Despite intraveneous inotropic support, patients bodily function 

continue to decline with evidence from renal function, decreased 

nutritional absorption, and deteriorating  volume balance. 

“Sliding on inotropes”. Patients are also intolerant to inotropic 

theraphy 
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3 Stable but inotrope 

dependent 

The patient bodily function is stable with the help of intravenous 

inotropic support, or temporary circulatory support device, or 

both. However, effort to wean patient has failed. “Dependent 

stability” 

4 Resting symptoms The patients show congestion symptom daily while in rest or 

during activities of daily living. Administration of diuretics is 

difficult due to frequent congestion level change. May change 

from/to profile 5. 

5 Exertion intolerant House bound patient who is comfortable at rest, and even during 

normal daily activity. Further intervention depend on nutritional 

status and organ function performance. 

6 Exertion limited No evidence of oedema, patient is able to perform daily activity, 

and comfortable at rest, although after a few minutes of 

meaningful activity, the patient tend to be overcome with 

fatigue.”Walking wounded” 

7 Advanced NYHA III The patient is healthy enough to withstand meaningful activity 

(although limited up to mild physical exertion). 

 

There has been tremendous change in the way heart failure treatment is managed with the 

advent of the INTERMACS registry. Data from the INTERMACS was disseminated quickly, 

compromise of thousands of valuable data unrestricted by limitation of randomized clinical trial 

scope. The clinical practice has evolved thanks to the data gained and managed by the 

INTERMACS registry (Miller et al., 2010). 

 

2.5.2 Myocardium Reverse Remodelling 

 

One favourable effect of HF treatment is myocardium reverse remodelling. There are several ways 

ventricular remodelling can be initiated. Those would be: 1) from myocardial infarction (MI), 

which occurs acutely and insults the myocardium causing myocyte necrosis, thus initiating infarct 

expansion acutely and chronically, 2) aortic valve stenosis, thus restricting the left ventricular 

outflow, causing increased intraventricular pressure i.e. pressure overload, 3) mitral valve 

regurgitation which causes volume overload to the left ventricle; also a factor inducing ventricular 
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remodelling (Opie et al., 2006) and 4) aortic regurgitation which causes increased preload and 

end-diastolic volume (Bonow et al., 2011). 

In response to all those factors, heart remodelling is indicated by several physiological changes 

such as cardiomyocyte hypertrophy, changes in collagen amount, phenotype and collagen cross-

linking. For HF patients especially secondary to the dilated cardiomyopathy, the severity of the 

disease is manifested by the leftwards shift of end-diastolic pressure volume relationship (EDPVR) 

(in PV loop), decreased ejection fraction, wall thinning, and geometrical change in the LV chamber 

from the normal elongated to a more spherical shape (Levin et al., 1995, Pieske, 2004).  

Alongside with study focusing on pharmacological drug effect (further discussed below), there 

were several other studies that investigated the effect of LVAD on reverse remodelling of the 

dilated heart. 

Studies of the LVAD’s effect on HF patients have revealed many interesting facts. The mechanical 

unloading of the heart reduces the heart’s workload, as well as increasing coronary perfusion and 

this further decreases the myocardium oxygen demand. The mechanical unloading of the LV led 

to increased LV function in term of EDPVR normalisation (Levin et al., 1995, Madigan et al., 2001), 

LV ejection fraction (Frazier et al., 1996, Müller et al., 1997, Hetzer et al., 1999, Frazier and Myers, 

1999), cardiothoracic ratio (Frazier et al., 1996), and histological data showed that with LVAD 

myocyte recovery is feasible (Dipla et al., 1998).  

Not only the LVAD implantation contributed to haemodynamic aspect, but was also found to 

encourage reverse remodelling in a dilated heart independently. One hypothesis is that LVAD 

induced favourable systemic condition (biochemical milieu) for normalising beta-adrenergic axis 

separately from haemodynamic support effect (Klotz et al., 2005). Another major contributor for 

myocardial reverse remodelling is by the regression of cellular hypertrophy (Zafeiridis et al., 

1998). 

A study was published reporting that it takes almost 40 days for the myocardium to reach 

maximum structural reverse remodelling (Madigan et al., 2001), and for molecular reverse 

remodelling, it is even quicker, at 20 days. The finding of a peak time for myocardium 

normalization by Madigan’s group was also reported by various other researchers albeit at 

different time at around 30 days (Frazier et al., 1996, Birks et al., 2006, Maybaum et al., 2007).  

There are studies questioning effect of prolonged LVAD support to myocardium recovery 

(McCarthy et al., 1995), and weaning concept after supported by LVAD for an extended time 

(Hetzer et al., 1999). That doubt was further exacerbated when patient explanted from the LVAD 
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had a recurrence of HF and died despite showing remarkable improvement during LVAD 

implantation; five patients from Hetzer et al. (1999) study died after HF recurrence post-

explantation. Although some of the researchers expressed doubts regarding the effect of LVAD 

post-explantation, there have been studies that showed the possibility of LVAD explantation with 

increasing success.  

Non-standard drug treatment affecting collagen cross-linking has been suggested as the proper 

way to go forward in HF management treatment (Brower et al., 2006). Another example is with an 

aggressive non-standard pharmacological regime, using clenbuterol coupled with an efficient 

LVAD  (pulsatile blood pump) management, it was possible to achieve a high percentage of 

explantation rate at 73%, and freedom from HF recurrence after explantation, at 100% (one-year) 

and 89% (four-years) (Birks et al., 2006). Birks et al. result, however, is unique, since some 

research centres recorded around 24% to 30% wean rate (Müller et al., 1997, Dandel et al., 2005). 

Recently, using continuous flow blood pump, the same group has managed to replicate the result 

from the previous study for 60% of their patient, with an estimated survival rate of 88.3% at 1 and 

3 years, without any HF recurrence (Birks et al., 2011). The initial concept of LVAD as BTT has 

shifted to BTR and even DT for congestive heart failure patient with contraindication to 

transplantation. 

One study has shown that there are several factors that can serve as a cardiac stability predictor 

index after weaning from the LVAD. Those are pre-explantation LV ejection fraction (LVEF), left 

ventricular end-diastolic diameter (LVEDD) and relative wall thickness, as well as the stability of 

cardiac recovery from unloading, duration of LVAD support and HF duration before LVAD 

implantation, although the study was concentrated to patients suffering from idiopathic DCM 

(Dandel et al., 2008).  

 

2.5.3 Intra Aortic Balloon Pump (IABP) 

 

The intra aortic balloon pump (IABP) is a volume displacement type blood pump, used in various 

stages of invasive heart surgery from peri-operative, intra-operative to post-operative, to help 

maintain a stable cardiac function. The IABP is also used for patients undergoing percutaneous 

coronary angioplasty, or suffering unstable angina pectoris or cardiogenic shock. In the USA, it 

was estimated that IABP was used on 42,000 patients in 2002 (Kozak et al., 2005). 
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The feasibility of the counterpulsation technique that takes advantage of decreased coronary 

resistance during diastole was first demonstrated by the Kantrowitz brothers in their seminal 

paper “Experimental Augmentation of Coronary Flow by Retardation of the Arterial Pressure 

Pulse” (Kantrowitz, 1953). Although the study is not quite related to the aortic flow diastolic 

augmentation, it paved the way to the inception of the IABP. The first successful attempt on 

working IABP was by Mouloupolous group in a mock loop setting in 1962. The balloon pump was 

made by placing a distensible balloon condom over a catheter that later was inserted into an 

aorta. Carbon dioxide, CO2, was used as the transport gas in the driveline, and the IABP was 

inflated during diastole and deflated during systole (Moulopoulos et al., 1962). The development 

of various counterpulsation devices was actively undertaken by many researchers, such as Clauss 

et al. (1961) whom tested an extracorporeal pump that remove blood from the femoral artery 

during systole and pump it back during diastole (Clauss et al., 1961). Counterpulsation technique 

using autologous muscle in a hemidiaphragm wrapped around the distal thoracic aorta, also 

known as aortomyoplasty, was also investigated (Kantrowitz, 1987). 

In Kantrowitz’s 1968 seminal paper introducing the IABP for the first time in a clinical setting, the 

IABP was inserted into two patients. Both of them showed a tremendous recovery. One of the 

patients, a 45 years old female with a myocardial infarction prior to hospitalization, was in 

cardiogenic shock, comatose, in an anuric condition and refractory to medical treatment. Just 

when the prognosis was deemed hopeless, the IABP was inserted. The patient showed “…upward 

trends in systolic and diastolic pressure and a reduction in central venous pressure were observed 

during intervals of pumping. The urinary output increased from zero to an average of 40 

cc/hour”(Kantrowitz et al., 1968). After 7 hours of IABP support, one of the patients recovered 

and eventually discharged from hospital. The other patient also showed an improvement from 

cold and clammy body to warm and dry. However, during repositioning of balloon pump when the 

activation of the IABP was discontinued, the patient’s condition deteriorated and he died. 

Autopsy revealed many underlying contraindications, which were eventually included  into 

present guidelines criteria, particularly the anterior descending branch of the left carotid artery 

was occluded (Kantrowitz et al., 1968). 

The indications for the IABP are (Trost and Hillis, 2006): 

 cardiogenic shock  

 intractable ventricular arrhythmias  

 post-myocardial infarction (MI) angina or unstable angina refractory to medical 

therapy 
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 HF refractory to medical therapy (only used as a temporary supportive measure while 

awaiting cardiac transplantation) 

 haemodynamic support and stabilisation for high-risk catheterisation, angioplasty and 

coronary artery bypass grafting (CABG). 

 

The above list was supported by a worldwide registry study from over 243 hospitals in 18 

countries comprising 17540 records of 16909 patients, although the number one indicator for the 

IABP deployment was to provide support and stabilisation (at 20.6%) (Ferguson et al., 2001). 

Subsequent report of the same registry database still showed similar indications (Cohen et al., 

2003). In spite of numerous indications, those with an aortic regurgitation, a severe peripheral 

vascular disease and an uncontrolled septicaemia or a bleeding diathesis are contraindicated from 

using the IABP (Trost and Hillis, 2006). 

Complication due to the IABP is low; only 2.6% of patients suffered severe effect due to major 

limb ischaemia, severe bleeding, balloon leak, failed insertion and death from the IABP 

failure(Ferguson et al., 2001). In another study, the highest complication is the limb ischaemia at 

0.9% and the mortality directly caused by IABP was 0.05% (Cohen et al., 2003). 

The balloon deflation is usually triggered by the peak R wave of the ECG waveform that 

corresponds to end of systole. Figure 2-28 illustrates the signals used to initiate balloon inflation. 

The inflation of the balloon commences in the middle of T wave. Sometimes, due to electrical 

interference or from electrocautery, the ECG signal is inadequate to guide balloon activation. 

Instead, arterial waveform can be used by matching balloon inflation at the time of dicrotic notch 

which marks aortic valve closure (Trost and Hillis, 2006, Stenz, 2006).  

 

Figure 2-28: The timing for IABP's balloon activation can be selected using either aortic pressure's dicrotic notch or 
the ECG’s T wave. AP: Aortic pressure, ECG: Electrocardiography 
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The effectiveness of flow augmentation is determined by the correct and precise timing of balloon 

inflation and deflation. As stated by Kantrowitz, “The hemodynamic efficacy of balloon pumping is 

critically dependent on precise timing of both inflation and deflation in relation to the events of 

the cardiac cycle” (Kantrowitz et al., 1992). The operator of the driver console monitors the 

augmentation of diastole pressure, and selectively controls the inflation and deflation of the 

balloon to achieve a proper and safe IABP timing (Quall, 1993c). Indeed, improper timing yielded 

reduction in cardiac output (Wieting et al., 1971). A computer simulation by Jaron et al (1985) 

yield results suggesting optimal inflation point at dicrotic notch, while deflation timing is a 

tradeoff between external (blood perfusion) and internal (cardiac energy consumption) variables 

(Jaron et al., 1985). An in vitro study revealed that inflation timing had little influence on stroke 

volume, while early deflation had some minor negative effect on stroke volume (Niederer and 

Schilt, 1988). 

 

Figure 2-29: Balloon inflation and deflation causing diastolic augmentation and also reducing afterload  

 

Figure 2-29 illustrates the effect of diastolic augmentation to aortic pressure waveform. The 

action of elevating arterial pressure during diastole is called the diastolic augmentation. The 

balloon inflation during diastole pushes blood proximally and distally and helps peripheral and 

coronary perfusion respectively. The deflation of balloon just before systole creates very low 

pressure region decreasing the aortic pressure; consequently the resistance to eject blood by the 

LV is reduced. The effect of aortic diastolic pressure reduction can be seen by lowering of peak 

systolic pressure compared with non-assisted systolic pressure. Less resistance by the left 
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ventricle decreases myocardial workload (Quall, 1993b, Trost and Hillis, 2006), although the 

reduction of aortic end-diastolic pressure effect is lost when the patient is in hypotensive 

condition (Akyurekli et al., 1980). 

In terms of metabolic effect, the patient benefits by decreasing myocardial oxygen demand due to 

afterload reduction and this helps relieve the LV from excessive work to pump blood into the 

ascending aorta. Left ventricular function is increased by heightened myocardial perfusion due to 

the increased diastolic pressure in the ascending aorta thus increasing coronary flow (Akyurekli et 

al., 1980). As a result, global LV systolic function improved (Cheung et al., 1996) as well as diastolic 

function (Khir et al., 2003). Coronary artery perfusion is greatly dependant on normal arterial 

structure, since severe aortic stenosis will impede any diastolic augmentation effect from the IABP 

(Kern et al., 1993). Even the activation of IABP only yield small percentage of blood displaced 

toward coronary arteries with regards to balloon volume, although still considered a significant 

increase in coronary perfusion (Kolyva et al., 2010b). Decreased myocardial oxygen consumption 

was reported to be directly correlated with afterload reduction, and not increased coronary flow 

for ischaemic patients suffering from medically refractory angina(Williams et al., 1982). Other 

metabolic effects are favourable increase of urine output, lactate usage and venous oxygen 

saturation while lactic acidosis is decreased (Papaioannou and Stefanadis, 2005).  

The main effect of diastolic augmentation from IABP use is increased myocardium oxygen supply 

versus myocardium oxygen demand. One way to quantify myocardium oxygen supply and 

demand is by using endocardial viability ratio (EVR). Myocardial oxygen demand for total left 

ventricular work has been correlated with the area under the LV systolic curve, termed as tension 

time index (TTI), thus serves as a reliable predictor (Sarnoff et al., 1957). While myocardial oxygen 

supply from coronary flow can be determined using diastolic pressure time index (DPTI). The DPTI 

is defined as the net area between aortic pressure and left ventricular pressure during diastole. 

Figure 2-30 illustrates an example of how DPTI and TTI is defined. The ratio of oxygen supply and 

demand can be estimated by dividing DPTI with TTI, termed as endocardial viability ratio (EVR) 

(Philips et al., 1975), expressed in Eq. 2.15.  

 

      
    

   
 2.15  
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Figure 2-30: The diastolic pressure time index and tension time index is defined as per different shaded area. (With 
kind permission from Elsevier, (Cmolik et al., 2001)) 

The ratio of demand and supply varies from healthy heart to failing heart. In a healthy person, the 

EVR is 1.0, a perfect balance of supply against demand (Quall, 1993b). A failing heart suffering 

from diminished aortic pressure and increased myocardial oxygen demand naturally has a lower 

EVR value. Diastolic augmentation by counterpulsation (e.g. through the use of an IABP) has been 

shown to increase EVR. EVR is investigated in Chapter 4 in association with the CIMS balloon 

pump.  

Technical and biological factors affecting the performance of IABP are (Papaioannou and 

Stefanadis, 2005): 

1) aortic blood pressure, a systolic blood pressure less than 60 mmHg will render the IABP 

ineffective, 

2) stroke volume ejected during systole should be almost the same value as the IABP balloon 

capacity to render optimal effect, 

3) heart rate, the range of 80 to 110b pm is deemed the best range for IABP efficiency, 

4) arterial stiffness; stiffer arterial has been shown to increase IABP efficiency especially on 

cardiac output, 

5) balloon displacement volume. Bigger balloon means that higher volumetric displacement 

can be achieved. However, care must be taken not to occlude inside lumen of the aorta, 

6) balloon inflation/deflation speed must be as fast as possible. 
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A low arterial compliance blood vessel induced low arterial pressure changes from the IABP 

augmentation (Papaioannou and Stefanadis, 2005). The effect of arterial compliance on the 

efficacy of the IABP seems to go beyond arterial blood pressure and heart rate as demonstrated in 

mock circulatory loop and clinical studies. In fact, arterial compliance can be thought as the 

independent factor determining the efficacy of IABP augmentation (Papaioannou et al., 2002, 

Papaioannou et al., 2004). 

The indications for intra-operative and post-operative are well known, but indications and 

effectiveness for peri-operative are still an ongoing debate (Baskett et al., 2002, Baskett et al., 

2005).  

In short, intra aortic balloon pump (IABP) is an acute mechanical heart assist device that delivers 

relief to heart failure patients; by increasing myocardial perfusion, decreasing resistance faced by 

the heart from the aorta, decreasing myocardial work, and increasing the ratio of myocardial 

oxygen supply versus demand. However, aside from the short-term usage of IABP, this mode of 

treatment is non-ambulatory thus depriving the patient of mobility and normal quality of life.  

 

2.5.4 Pulsatile VAD in, on and around the Aorta 

 

Since the introduction of counterpulsation method by Moulopoulos in 1962, and subsequent 

successful clinical application by Kantrowitz brothers in 1968, IABP technology gradually matured 

to present level. There have been considerable spin-off projects trying to manipulate 

counterpulsation technique on the aorta using various balloon pump designs. 

The research on the most optimum site for a balloon pump was conducted by Nosé et al. (1963) 

and, in separate research, by Furman et al. (1970). Findings from both works indicate the 

ascending aorta as being the optimal location for diastolic augmentation (Nosé et al., 1963, 

Furman et al., 1970). The greater the distance of the assist device from the aortic valve, the lower 

the effect of augmentation would be. Figure 2-31 shows the implantation sites of the assist device 

by Nosé’s group.  
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Figure 2-31 : Various experimentation site for diastolic augmentation effect ; A) abdominal aorta, B) thoracic aorta, C) 
end-to-side anastomosis at ascending aorta and D) bypass end-to-side bridging between ascending and descending 
aorta. (With kind permission from Wolters Kluwer/Lippincott, Williams & Wilkins) (Nosé et al., 1963) 

 

Furman’s group made a silicone rubber cuff reinforced with a Dacron graft and a 15 mL 

polyurethane balloon taped onto it. The cuff was then wrapped around the ascending aorta of a 

mongrel dog, activated using counterpulsation method. Their results, other than confirming the 

finding of Nosé’s group, showed that a smaller displacement volume (10 mL) at the ascending 

aorta was better than an intra aortic balloon pump (30 mL) placed at descending aorta (Furman et 

al., 1970).  

Another attempt to exploit the ascending aorta as implantation site was led by J.N. Nanas. The 

device was quite similar to configuration C of Nosé’s trial in Figure 2-31. A chamber made out of 

polyurethane with a valveless orifice is implanted at the ascending aorta by way of a Dacron 

vascular graft illustrated in Figure 2-32. The efficacy of the paraaortic counterpulsation device 

(PACD) was demonstrated by trials on animals comparing PACD with IABP (Zelano et al., 1992, 

Charitos et al., 1998), and on patients with severe HF condition (Nanas et al., 1996). It was 

demonstrated that even for a small capacity of 30 mL stroke volume, the PACD was significantly 

better compared to a 40 mL IABP (Terrovitis et al., 2003). The valveless balloon structure might 

have increased blood volume stored at the aorta during systole, thus increasing local compliance. 

The stored blood volume is ejected during diastole thus increasing cardiac output.  
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Figure 2-32 : Paraaortic Counterpulsation Device (PACD) implanted at the ascending aorta. (With kind permission 
from Springer Science+Business Media)(Terrovitis et al. 2003) 

 

After IABP, Kantrowitz tried many other types of heart assist device employing counterpulsation 

technique. Using findings from Nosé’s experiment of optimal augmentation site, a balloon pump 

was positioned along the aortic arch, and the tip of the balloon was a mere centimetre from the 

aortic valve. They however abandoned the project because “it proved too cumbersome” 

(Kantrowitz, 1987).  

 

Figure 2-33 : The ascending aortic balloon pump has an oval shape to increase aortic diastolic pressure by occluding 
the ascending aorta during diastole. (With permission from Elsevier) (B. P. Meyns et al. 2000) 
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A group from Catholic University Leuven of Belgium tested an oval shaped balloon pump named 

ICS-Supracor13 illustrated in Figure 2-33. Contrary to the IABP, the device is implanted at the 

ascending aorta just distal to the heart. The oval-shaped balloon occludes the entire ascending 

aorta when inflated thus increasing aortic root pressure. The animal trial showed a significant 

increase in the peak diastolic aortic pressure as well as myocardial blood flow (Meyns et al., 

2000). 

Another version of an implantable IABP, the Kantrowitz CardioVAD (KCV) was designed by 

Kantrowitz’s group using knowledge and expertise gained from the IABP and previously 

discontinued devices, illustrated in Figure 2-34 (Kantrowitz, 1987).  

 

Figure 2-34 : Diagram of Kantrowitz CardioVAD (KCV) implanted in human body consisting of a) blood pump, b) 
percutaneous access site and c) ambulatory driver console. (With kind permission from Wolters Kluwer/Lippincott, 

Williams & Wilkins)(Valluvan Jeevanandam et al. 2002) 

The KCV uses the counterpulsation method to displace blood. Contrary to the short term IABP, 

the KCV is implanted permanently by replacing an excised portion at the descending aorta. 

Inflation and deflation of KCV’s balloon pump is similar to the IABP, but it is carried out through an 

external drive unit by way of a percutaneous line. The KCV displacement volume is 60 ml, far 

larger than adult version of the IABP. One important aspect of the KCV is the percutaneous access 

                                                           
13

 Abiomed, Denvers, MA, USA 
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device (PAD) that uses autologous fibroblast cultured from a skin sample of intended patient. 

Previous animal test had shown no adverse chronic effect (Freed et al., 1985).  

KCV was designed not to take over heart’s native function to pump blood but rather the design 

intent was to support the heart by decreasing afterload. With a non-valve construction, the 

probability of mechanical failure that has plagued positive displacement balloon pump as 

reported by Slaughter et. al. (2009) could decrease significantly (2.5.1 Brief History of Heart Assist 

Device). The KCV balloon pump blood contacting area is textured polyurethane, intended to foster 

the formation of a nonthrombogenic psesudointima over the intravascular surface of the pump, 

and as such no anti-coagulation is needed. The control algorithm used by the external device is 

quite simple; for patient with severe biventricular dysfunction, uncontrolled tachyarrhythmia or 

native valvular disease, KCV is contraindicated. Clinical trial showed good result, the cardiac 

output was increased by 40% depending on afterload condition of the patient. There were 

reductions in the pulmonary capillary wedge pressure (PCWP), and the right atrium pressure, with 

an increase in cardiac index after one month of implantation. The KCV is designed as a non-

obligatory LVAD, where the patient can turn it on or off, and also an option to disconnect from 

the external unit, for example during personal cleansing (bathing or showering), amongst useful 

features that increase quality of life (Valluvan Jeevanandam et al. 2002; Valluvan Jeevanandam 

2004). 

Another attempt on commercialisation of balloon pump technology is the C-Pulse VAD or also 

known as extra-aortic balloon pump (EABP)14. The device is wrapped around the ascending aorta 

and secured in place using a Dacron tape thus making it a non-contacting blood pump. The EABP 

is pneumatically driven through a percutaneous line using an external drive and was designed for 

ambulatory setting. Displaced blood volume is 20 mL. During diastole, a portion of the cuff is 

inflated, causing a “thumb printing” effect onto the ascending aorta. Figure 2-35 illustrates how 

the EABP activates and pushes the blood in the ascending aorta proximally and distally. 

                                                           
14

 Sunshine Heart Inc, NSW, Australia.  
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Figure 2-35: Extra-aortic balloon is wrapped around the ascending aorta. The left figure is during systole i.e. non-
assisted period, while the right one is when the balloon is activated thus pushing the blood bidirectional in the aorta. 

(With kind permission from Wolters Kluwer/Lippincott, Williams & Wilkins)(Legget et al., 2005)  

 

The non-blood contacting feature of the EABP diminished any contact with blood so no anti-

coagulation drug is needed, thus the risk of emboli and haemorrhage is lowered. Although there 

might be complication from continuous contact between the cuff and the outer cells, acute trial 

showed no adverse effect on the ascending aorta (Legget et al., 2005). It was also reported that 

diastolic augmentation by the EABP is comparable to the IABP even though displacement volume 

is 20 mL, half of 40 mL IABP (Legget et al., 2005); this is most probably due to the implantation 

site of the EABP at the ascending aorta. In another study comparing the EABP and IABP on 

coronary flow index, the EABP was much more effective in augmenting diastolic coronary flow by 

more than two fold (Davies et al., 2005). A multi-centre human trial in the USA is in progress 

(Sales and McCarthy, 2010). 

 

2.5.5 Counterpulsation LVAD summary 

 

It is evident that counterpulsation technique is effective in providing mechanical unloading; more 

so when coupled with optimum implantation site at the ascending aorta that maximizes 

unloading factor with minimal volume displacement. Increased peripheral and coronary flow  

relieve organ demand and reduce lethargy, while decreased afterload allows  myocardium to 

work less, and this may initiates reverse remodelling. Coronary flow augmentation helps overall 

LV diastolic function further (Khir et al., 2003). 

The non-obligatory feature of two LVADs discussed previously allowed a better quality of life by 

offering the option to turn the LVAD on or off. The percutaneous line can also be unhooked if the 
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patients intend to have a shower or any other activities. The option of not using anti-coagulation 

drug is also a plus factor for the KCV and EABP devices. Polyurethane elastomer used in the KVC 

promotes the formation of endothelial cells, and this decreases any formation of thrombus due to 

immunological rejection. The EABP which is wrapped around the ascending aorta might pose 

chronic problem with aorta adventitia.  

There has been suggestions that counterpulsation is the best way to help maximize recovery if the 

amount of unloading necessary for recovery can be quantified and translated for better HF 

treatment management (Simon et al., 2008). The CIMS device proposed in this study is a novel 

idea that implants a balloon pump at the ascending aorta, with all the advantages of non-

obligatory support system for a specific cohort of HF patients. 

 

2.6 Chronic Intermittent Mechanical Support (CIMS)  
 

The CIMS device is further discussed here.  This subchapter discusses the structure of the device, 

the control of the device and its indications. 

 

2.6.1 CIMS Indication and Contraindication 

 

The CIMS device is introduced in the first chapter, while this subchapter describes the rationale of 

HF treatment using CIMS device, and presents the indications and contraindications of the CIMS 

device. 

The objective of the CIMS device is to improve myocardial oxygen balance, and chronic support of 

the failing heart. These are achieved by augmenting perfusion to the coronary artery and 

peripheral circulations and through afterload reduction. Mechanical unloading provided from 

afterload reduction is also hypothesised to facilitate myocardium reverse remodelling (a 

reduction in the severity of myocardial dysfunction) in specific patient populations. The level of 

support given by the balloon pump will be commensurate with the patient’s condition. A patient 

in end-stage heart failure condition who is severely affected by heart disease will have to keep the 

device functioning continuously, but for those with less pronounced cardiomyopathy, the device 

may be turned off for extended periods. However, since the balloon pump is implanted 

permanently by replacing the native ascending aorta, it will not be explanted; in case of a relapse 
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reactivation of device will be swift. The CIMS devices may be thought of as a portable IABP, but 

which should deliver similar (or better) therapeutic value with less displacement volume.  

The patient cohort that will most likely to benefits from this modality treatment has to meet 

several criteria: 

 diagnosed with heart failure in NYHA Class III or IV 

 refractory to tolerable standard medical treatment (beta-blocker, ACE inhibitor, 

diuretics, positive inotrope) 

 cause of heart failure is dilated cardiomyopathy (idiotic, ischaemic, or other 

irreversible cause) 

 cardiac index < 2.0 L/min.m2 

 patients excluded for transplantation. 

 

These indications are taking into account criteria off IABP and similar counterpulsation device 

(Trost and Hillis, 2006, Jeevanandam et al., 2002, Hayward et al., 2010). The inclusion of IDCM as 

one of the criteria for the CIMS device implantation, comes from the feasibility of recovery due to 

mechanical unloading being applied on the heart (Mueller and Wallukat, 2007). Other factors that 

might be favourable for the CIMS balloon pump effectiveness are: 

1) ‘stiff’ vasculature or low arterial compliance vasculature. 

 There are evidences that in a low compliance vasculature i.e. stiff vasculature, balloon pump 

augments better compared to high compliance vasculature are presented (refer to 2.2.6

 Vasculature Compliance and Pulse Pressure). The CIMS balloon pump manipulates this 

fact. Also, since the CIMS balloon pump implantation site is at the ascending aorta, which 

contributes greatly to total arterial compliance (Westerhof et al., 2009), vascular and device 

compliance factor is deemed important. 

2)  Pulsatile flow balloon pump. 

There is also a suggestion that pulsatile flow blood pump is more suited for myocardial 

recovery compared to non-pulsatile i.e. continuous flow blood pump (Krabatsch et al., 2011). 

Pulsatile blood pumps generate physiological nature of flow while unloading the heart, and 

this is apparently an important factor for reverse remodelling. Studies by Birks et al. (2006) 

supported this suggestion. Since the CIMS is a pulsatile flow device providing mechanical 

unloading, the right combination for myocardial recovery is available. 
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Combining these factors support the CIMS device claim to be an ideal candidate for HF treatment 

as a BTR or DT for specific cohort of HF patients. Heart failure due to ischaemic heart disease or 

other systolic dysfunction HF may be applicable as well if the intention is BTT or DT. The exclusion 

criteria or the contraindications for chronic support by the CIMS device are:  

 aortic dissection, 

 arrhythmia. 

 

However, arrhythmia might not be a contraindication if a preventive measure such as pacemaker 

is implanted. 

 

2.6.2 Pressure Detection Mechanism  

 

For the IABP device, balloon activation is timed to coincide with diastole by either synchronizing 

with the dicrotic notch (using a pressure sensor) or with the T wave of the ECG signal (Figure 2-

27). Balloon activation is managed automatically in the driver console using either signal. There is 

a dedicated tiny hole for blood pressure measurement at the tip of the IABP connected to a 

pressure transducer. The implanted CIMS device cannot use the same feature for possible 

infection and thrombus formation. The CIMS device has to rely on a separate detection signal 

method to IABP. Similar to the IABP, there are two ways balloon activation timing can be 

synchronised using physiological signals:  

 

1) ECG signal 

Electrodes implanted directly on the heart’s epicardial region relay the ECG signal through 

percutaneous driveline to the wearable driver outside on the patient’s waist. An example 

of a VAD using this method is the C-Pulse VAD (an EABP) (Mitnovetski et al., 2008). 

2) Aortic pressure waveform. 

The pressure fluctuation in the ascending aorta is detected by placing a pressure 

transducer at the proximal part of the balloon pump, allowing precise pressure 

measurement, and a faster reaction time from the controller. A suitable pressure 

transducer may be a piezoresistive-based strain gauge device, as drift in these devices is 

unimportant since only a relative value of pressure is needed to detect the dicrotic notch 

and not an absolute value (as is needed by rotary VADs). 
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An appropriate algorithm to automatically determine the proper inflation and deflation timing is 

used in the controller. A fail-safe measure is embedded in the controller algorithm to prevent 

accidental override fatal to the patient. A physician will configure the optimum setting for the 

patient before educating the patient how to use the controller for day-to-day usage. 

 

2.6.3 Novel Alternative to Mechanical Heart Assist Device 

 

The chronic intermittent mechanical support (CIMS) system proposed to treat heart failure 

symptoms and alleviate patient’s suffering is novel in these ways: 

 balloon pump activation can be turned on or off 

 ambulatory setting enabling higher quality of life; while offering continuous/intermittent 

myocardial function augmentation 

 the device can be disengaged for better lifestyle management 

 has no interaction with aortic wall thus decreasing inflammatory reaction 

 valveless construction, thus decreasing thromboembolic phenomenon 

 may induce reverse remodelling 

In term of INTERMACS profile, patients suitable for the CIMS device are most likely to be in profile 

4, 5, and 6. 

The similarities and differences between the CIMS and EABP (C-Pulse) device is summarised in 

Table 2-11. 

 

Table 2-11: Differences between the CIMS and EABP (C-Pulse) device 

 CIMS EABP (C-Pulse) 

Type Volume displacement Volume displacement 

Activation method Counterpulsation Counterpulsation 

Implantation site Ascending aorta Ascending aorta 

Implantation method 

Inserted in-series with the 

aorta after a portion of the 

ascending aorta is cut 

Cuff type balloon wrapped 

around the ascending aorta 

Valve Valveless Valveless 
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Risk of inflammation at the 

ascending aorta 
No Possible 

Risk of debris formation No 

Possible (the external 

palpation of the ascending 

aorta may introduce debris 

which might enter any three of 

the arteries at the aortic arch 

causing microemboil at the 

brain) 

Anti-coagulation Maybe No 

Reverse remodelling Possible Possible 

Driver control 

Can be turn on and off, and 

can be disconnected for a 

short time. 

Can be turn on and off, and 

can be disconnected for a 

short time. 

 

The C-Pulse device has undergone acute animal (Davies et al., 2005) and clinical trials (Legget et 

al., 2005, Hayward et al., 2010), while prolonged human trial is still underway (Mitnovetski et al., 

2008). 

 

2.7 Human Mock Circulatory Loop (MCL) 
The human mock circulatory loop used by other researchers is discussed here.  

 

2.7.1 Human Mock Circulatory Loop Review 

 

The human mock circulatory (MCL) is an essential experimental rig with the main purpose to test 

the mechanical response of the VAD to simulated physiological conditions and its effect 

oncirculation; the data gained can be used to refine the design of the device. The result from the 

experimentation can then be submitted to the Food and Drugs Administration (FDA) before 

clinical animal and in vivo human trial permission be granted in the USA (Klepinski, 2006). 

There are various MCL designs: the most basic of which provides steady flow for heart valve test, 

while a MCL for pulsatile flow can be made up of only two-element Windkessel model catering 
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only to systemic circulation, progressing to the advanced ones that simulate systemic and 

pulmonary circulation, with the ability to responds to haemodynamic changes accurately.  Some 

researchers insist on using a MCL that can simulate not only the haemodynamic aspect of human 

circulation (flowrate, resistance, pressure waveform), but the input impedance characteristic of 

human circulation as well.  

In general the MCL needs to be able to (Pantalos et al., 2004, Timms et al., 2005a):  

1. simulate varying physiological condition of the heart from normal resting to severe HF, 

2. adherence to Frank-Starling mechanism i.e. heart output corresponding to blood input 

from venous return, 

3. flexibility to accommodate different kinds of VADs by providing appropriate cannulation 

site. 

 Some other factors are also important (Rosenberg et al., 1981): 

4. analytical model can be developed according to the design of the mock loop as a way to 

establish mock loop’s reliability, 

5. easy operability and handling. 

The early types of MCL, in 1950s, were called pulse duplicator since their main objective was to 

simulate appropriate haemodynamic activity for heart valve prostheses testing. McMillan et al. 

(1952) made a pulse duplicator, later perfected in 1955, to investigate flow past a heart valve. 

(McMillan et al., 1952, McMillan, 1955). Their design inspired another group to come up with a 

mechanical pulse duplicator which used an explanted human heart for heart valve’s flow 

visualisation experiment illustrated in Figure 2-36; they used a linkage system of cam and piston 

enabling various simulation of ventricular pressure waveforms (refer to Figure 2-40) (Davila et al., 

1956). 
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Figure 2-36: Schematic diagram of pulse duplicator with explanted heart for heart valve flow visualisation. A) 
reservoir cum left atrium B) atrial viewing chamber, C) left atrium, D) mitral valve, E) ventricle, F) piston pump, G) 
aortic valve, H) aortic valve viewing chamber, I) aortic tube, J) peripheral resistance simulating chamber, K) 
peripheral resistance manometer, L) site for rotameter (With kind permission from Wolters Kluwer/Lippincott, 
Williams & Wilkins) (Davila et al., 1956) 

 

Heart valve testing was carried out using pulse duplicators/MCLs with varying degrees of 

complexity, from a steady flow circuit to more elaborate and accurate ones (Raftery et al., 1968, 

Duran et al., 1964, Cornhill, 1977, Morsi, 2000, Hildebrand et al., 2004). Cornhill et al. (1977) 

constructed a pulse duplicator system for heart valve testing experiments comprised of three-

elements Windkessel model (proximal resistance, arterial compliance and peripheral resistance), 

and while that is fairly standard, input impaedance analysis was chosen to examine the 

effectiveness of the Oxford aortic-pulmonary heart valve prostheses and the pulse duplicator 

system. The resulting flow and pressure waveforms were physiological except for pressure spike 

‘ringing’ at dicrotic notch which is a known characteristic of mechanical heart valves. The Fourier 

components and input impedance of the resulting waveforms agree to in vivo data to a high 

degree (Cornhill, 1977). One example of recent compact pulse duplicator for heart valve testing 

designed to be in a closed incubator is illustrated in Figure 2-37.   
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Figure 2-37: Schematic diagram for MCL used to test biologically active mechanical heart valve under varying MAP 
and flowrate. I) left atrium, II) left ventricle, III) compliance chamber, IV) variable resistor, a) pressure sensor, b) 
flowmeter c) stepper motor. (With kind permission from Springer) (Hildebrand et al. 2004) 

 

A rather crude MCL simulating both systemic and pulmonary circulation was constructed to test 

early model of TAH, the MCL had two separate water columns distal to respective left and right 

ventricle to simulate afterload (60 mmHg for aorta and 20 mmHg for pulmonary artery). There 

was no compliance chamber to simulate aortic pressure waveform, nor dedicated peripheral 

resistance element, although the author mentioned that the resistance increased with flow (Kolff, 

1959).  

A notable early TAH specific MCL was by Donovan (1975). The MCL consisted of a systemic and 

pulmonary circulation along with a bellows based lever system as a passive flow resistance 

response in the pulmonary arteries and systemic arteries. The TAH used was the Kwan-Gett 

artificial heart, and the result from the MCL was shown to be comparable to in vivo result from a 

calf (Donovan, 1975). Donovan’s MCL design was popular and has been adopted by many other 

researchers for in vitro TAH experiment.  

Rosenberg’s group constructed a MCL for TAH and biventricular assist device (BiVAD) testing since 

1971, and reported the improved version 10 years later. Their MCL consisted of a systemic and 

pulmonary circulation made of a capacitance, resistive and inertance element alongside with a 

reservoir for chamber preload. The initial design process employed analogue computer simulation 

of the MCL system, before subsequent fine tuning was carried out for the MCL setting (Rosenberg 

et al., 1981). A similar looking MCL was constructed by Orime’s group to test Baylor TAH system 
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before proceeding to in vivo test. The results were indicative of a stable TAH system and showed 

good biocompatibility (Orime et al., 1994).  

Flow visualisation inside an anatomically correct LV was carried out using ultrasonic Doppler 

velocimeter capable of bidirectional velocity measurement by Cassot et al. (1985). Another aim 

was to provide a physiologically correct simulator for testing heart valve prostheses. The main 

results were presented in term of Fourier and impaedance analysis, and were shown to be in 

excellent agreement with in vivo data obtained from a canine (Cassot et al., 1985). Other instance 

was using a deformable silicone modelled after a dilated heart on a MCL for better understanding 

of flow dynamics within the left ventricular during cardiac cycle. The study was a preparation for 

LVAD inflow cannula placement experiment in the dilated LV (Gregory et al., 2009) 

 

Figure 2-38: Schematic diagram of MCL by Cassot et al. 1.1) synthesizing generator, 1.2) motor, 1.3) clutch, 1.4) 
tachymeter, 1.5) comparator, 1.6 & 1.8) amplifier, 1.7) mean flow regulator, 1.9) pump, 1.10) reservoir, 3.1) atrium, 
3.2) mitral valve, 3.3) ventricle 3.4) aortic valve, 3.5) compliance, 3.6) resistance, 3.7) reservoir (With kind permission 
from Springer) (Cassot et al., 1985) 

 

Other than testing VADs or TAHs, a MCL can also be used as a teaching tool as illustrated in Figure 

2-39. The MCL was constructed using a syringe as the LV chamber, a custom made mitral and 

aortic valve, a glass cylinder as the atrium and a silicone rubber tube as the aorta. Frank-Starling 

mechanism adherence was achieved by placing an external chamber made of surgical glove finger 
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around the syringe. However, impedance mismatch was reported possibly from silicone aorta 

length (Zannoli et al., 2009). 

 

Figure 2-39: Mock circulatory loop with horizontal and vertical arrangement (With permission from Elsevier) (Zannoli 
et al., 2009) 

 

Liu et al. (2006) constructed a complete systemic and pulmonary circulation MCL for the purpose 

of testing an axial rotary blood pump (RBP). The MCL consist of an arterial compliance, a venous 

compliance and a peripheral resistance element which is a three-element Windkessel model. The 

resulting aortic pressure waveform was in good agreement with physiological pressure waveform. 

(Liu et al., 2006). The MCL was also used by Wu’s group to determine the effectiveness of LVAD 

physiological control system (Wu et al., 2007). 

Seeking to take advantage of both physical hydraulic simulation and numerical simulation, a 

hybrid model of a numerical-physical model was constructed by Ferrari’s group (Ferrari et al., 

1994, Ferrari et al., 2001, Ferrari et al., 2002, Ferrari et al., 2005b, Kozarski et al., 2008). Numerical 

simulation advantages were low cost, flexible and accurate but cannot test physical devices such 

as an IABP or a LVAD, thus the hybrid approach. 

A compact mock circulatory system (600mm × 600mm × 600mm) consisting of both pulmonary 

and systemic circulation suitable for VAD and BiVAD experimentation, with additional structure to 

simulate congenital heart disease as well as other structural failure was constructed in 2005 

(Timms et al., 2005a) and upgraded until its final version in 2011 (Timms et al., 2011). The final 

version was able to simulate various kinds of cardiovascular conditions from normal (resting) to 

both left and right HF, myocardial infarction (MI), structural failure such as atrial/ventricular 
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septal defect and aortic/mitral heart valve regurgitation. The MCL was constructed based on a 

five-element Windkessel i.e. characteristic resistance, arterial compliance, peripheral resistance, 

inertial component and venous compliance element. Frank-Starling mechanism adherence was 

also incorporated in the design of the MCL. Vasculature compliance was simulated using multi-

chamber Windkessel controlled by a solenoid valve across connecting pipes. Up to date, this MCL 

is one of the most advanced versions.  

Clearly there are many requirements that need to be fulfilled in order to construct a 

physiologically correct MCL in term of pressure waveform, flowrate, characteristic/peripheral 

resistance, impaedance matching, structural similarity and response to changing cardiovascular 

condition i.e. Frank-Starling mechanism, baroreceptor response and many others. Factors such as 

cost, construction time, physiological accuracy and response, should be taken into consideration 

before designing and assembling the MCL.  

  

2.7.2 Physiological Parameters for MCL 

 

There are suggestions of what variables are needed to be simulated in experimental study, e.g. 

systemic and pulmonary vascular resistance, arterial compliance, venous compliance, each heart’s 

chamber pressure fluctuations, aortic pressure and flow rates (Pantalos et al., 1998). This 

subchapter discusses variables and parametric values used in MCL cardiovascular simulation. 

 

i) Cardiac output (CO) 

The cardiac output of patients suffering end-stage HF secondary to dilated cardiomyopathy is 

below than that of normal baseline. Most MCLs set CO for HF condition at around 3.0 L/min, with 

Recovering HF condition at about 4.0 L/min. The CO parameter is the most important index to be 

simulated since CO reduction is characteristic of HF. Cardiac output value in MCLs is achieved by 

changing the contractility level of LV chamber (in case the MCL lacks Starling-mechanism), and/or 

by adjusting peripheral resistance element.  

Another way to control the amount of stroke volume (SV), thus CO, is by using a cam-controlled 

piston. Different stroke length ejects different amount of SV and the rotational velocity 

determines the HR value. Figure 2-40 illustrates an example of a piston coupled with a drive 
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linkage system that gave physiological pressure waveform with different stroke volume (Davila et 

al., 1956). 

 

Figure 2-40: The piston pump with cam driven linkage system to push fluid. Different configurations result in 
different SV. A) Pump cylinder, B) piston, C) universal joint, D) piston drive shaft, E) rocker-arm, F) cam. (With kind 
permission from Wolters Kluwer/Lippincott, Williams & Wilkins) (Davila et al., 1956). 

 

ii) Heart Rate  

In MCLs, the HR is controlled according to the mode of pressure activation. For example, a piston 

pump rotational speed can simply be increased or decreased. The ratio between systole and 

diastole is normally chosen to be 40/60, although there are researchers opting for slightly 

different value. Normal physiological value range is around 34/66 to 39/61 (Levick, 2003). Some 

examples of HR value are tabulated in Table 2-12: 

Table 2-12: Values for HR and corresponding ratio of systole and diastole in a cardiac cycle 

Heart Rate Systole/diastole ratio Researcher 

60 (all conditions) 40/60 (Daniel Timms, Mark Hayne, et al. 2005) 

60 (HF) 32/68 (Kolyva, Biglino, et al. 2010) 

72 (all conditions) 
NA 

(S C Koenig, G M Pantalos, et al. 2004; 

Kenneth N Litwak et al. 2005) 
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iii) Stroke Volume (SV) 

The stroke volume (SV) is defined as the amount of blood volume ejected from the left ventricular 

chamber during systole. Rearranging the Eq. 2.1 for SV:  

    
  

  
  2.16  

Ejection fraction (EF) is the ratio between ejected blood volume, SV, and end-diastolic blood 

volume: 

    
  

     
  2.17  

LVVed is the Left Ventricular Volume at end-diastolic period. With normal SV at 80 mL and LVVed 

at 120 mL, the EF is rated at 67%. The normal physiological value of EF is 65% - 70%. Patients 

suffering from HF have a low EF value, sometimes going less than 25%, which is one of the 

indications for LVAD implantation or heart transplantation (refer to Table 2-4). 

iv) Pressure 

The normal range of each heart chamber’s pressure is illustrated in Figure 2-9. The left ventricular 

(LV) pressure is achieved by adjusting contractility of the LV chamber. For a MCL that uses a 

pneumatic system, by adjusting the amplitude for air compressor, LV pressure is easily controlled. 

Other mechanisms include piston pump with fixed stroke volume displacement, or a 

programmable linear actuator capable of generating pre-programmed LV sinusoidal waveform. 

Simulated aortic pressure range in MCL is achieved by appropriate air volume in the compliance 

air chamber15 (for Windkessel type), or by careful spring constant parameter and adjusting proper 

value/point for peripheral resistance. 

For a MCL consists of only systemic circulation, fluid enters the left atrium directly. The left atrial 

pressure is achieved and maintained by the height of the water column as the potential energy 

according to P = ρhg formula16. Some MCLs may simulate atrial kick in diastole by an additional 

pneumatic pump at atrium chambers (Timms et al., 2005a). 

Preload is often defined as the amount of volume or pressure at the end of diastole. That is not 

entirely correct, although most MCL use left atrial (LA) pressure as an indicator. Normal LV end-

diastolic pressure is around 8 mmHg, but for a failing heart, factors such as dilated heart and 

                                                           
15

 Air chamber is also referred to as Windkessel chamber. Windkessel = air chamber in Germany. 
16

 ρ = fluid density, h = water column height, and g = standard gravity constant ( 9.81 m/s
2
)  
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decreased contractility often see the pressure increased to more than 15 mmHg. Timms’ group 

sets the LA pressure at 8 - 10 mmHg (normal) and 18 – 22 mmHg (HF) (Timms et al., 2005a). 

In MCLs, Normal mean arterial pressure (MAP) is set at 95 – 100 mmHg, while for HF, MCL is set 

around 55 – 60 mmHg, and the Recovering HF condition is set at about 80 mmHg. 

v) Resistance 

The systemic vascular resistance (SVR) can be calculated using Eq. 2.8 (CO = MAP/ SVR). Taking 

into account the normal healthy male with MAP = 94 mmHg17 and CO = 5 L/min, the computed 

SVR is about 18.8 mmHg.min/L or 1.13 mmHg.s/mL. Textbook values ranges from 1.0 to 1.2 

mmHg.s/mL (Levick, 2003, Guyton and Hall, 2006). For pulmonary vascular resistance value, it is 

around 0.18 mmHg.s/mL (Levick, 2003).  

For a lumped parameter model, resistance can be simulated at just one point/part in the system. 

A simple screw clamp operated manually can be used to control the degree of peripheral 

resistance, for example the one used by (Duran et al., 1964), although some researchers used a 

more complicated mechanism; e.g. the adjustable tube clamp/tourniquet (Legendre et al., 2008),  

the gate-type valve (Sharp and Dharmalingham, 1999), open cell foam  (Pantalos et al., 2004), 

sintered aluminium oxide  (Cornhill, 1977), automatic bellows and valve (Donovan, 1975) , 

computer controlled proportional control pinch (Timms et al., 2005a, Timms et al., 2005b) 

amongst others. Table 2-13 tabulates SVR values from other studies. 

Table 2-13 : Resistance value reported by various researchers 

Heart condition Resistance value (SVR) 

[mmHg.s/mL ] (dyne.s/cm5) 

Researcher 

Normal 1.08  (1439) (Timms et al., 2005a) 

HF 0.95 (1266) 

Normal 1.00 ( 1335) (Pantalos et al., 2004) 

HF 1.43 (1902) 

HF 1.22 (1624) (Kolyva et al., 2010a) 

Recovering HF 0.98 (1300) (Ferrari et al., 2002) 

Normal 1.86 (2485) (Cornhill, 1977) 

 

 

                                                           
17

 This value is calculated from aortic pressure of 120/80 mmHg.  
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vi) Compliance 

The normal physiological value of the systemic arterial compliance is 2 mL/mmHg (Levick, 2003). 

While the systemic venous compliance is much higher at 24 times more than systemic artery, 

since venous distensibility is eight times greater than the artery, and the amount of blood stored 

in the venous blood vessel is around 64% of blood volume compared to arterial blood volume at 

20% i.e. three times more (Guyton and Hall, 2006). 

With an aortic pressure of 120/80 mmHg (PP = 40 mmHg), and SV = 80 mL, the arterial 

compliance, C, is: 

  
  

  
  
  

  
 

  

        
 
  

  
     

  

    
   

However, if the runaway blood volume is taken into consideration18: 

  
  

  
 
    

  
       

  

    
   

Obviously for different range of pulse pressure and stroke volume the total arterial compliance 

value would be different.  Some compliance values from other studies are tabulated in Table 2-14.  

In most MCLs, arterial compliance is simulated by compressing air in the Windkessel chamber 

during systole, while in diastole, the compressed air expands and the pressure waveform follows 

natural decay similar to physiological ones (Donovan, 1975, Timms et al., 2005a, Liu et al., 2006).  

Other researchers stimulate arterial compliance using rolling diaphragm with spring-loaded piston 

chamber (Rosenberg et al., 1981, Pantalos et al., 1998). The compliance for rolling diaphragm 

chamber is determined by the spring’s constant; in systole the spring is pushed, while in diastole, 

the spring recoils in the same manner as native aorta. Some used both Windkessel chamber and 

spring-loaded compliance chamber (Ferrari et al., 2002). An air chamber comprised with three air 

compartments was used to simulate different levels of compliance (Timms et al., 2010, Timms et 

al., 2011). Table 2-14 tabulates compliance values in MCLs. 

 

 

                                                           
18

 Roughly around 16% of blood drains into peripheral arteries during cardiac cycle, since aorta is not a close 
chamber (Berne et. al., 2004) 
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Table 2-14: Compliance values used for mock circulatory loops by other researchers 

Heart condition Compliance value [mL/mmHg] Researcher 

HF 0.94 (Kolyva et al., 2010a) 

Normal 
1.3 (Pantalos et al., 2004) 

HF 

Recovering HF 1.8 (total arterial) 
(Ferrari et al., 2002) 

80 (systemic venous) 

Normal 1.33 (Knierbein et al., 1992) 

Normal 1.0 (systemic arterial ) 

(Donovan, 1975) 
10 (systemic venous ) 

1 (pulmonary arterial) 

5 (pulmonary venous) 

Normal 1.55 (systemic ) 
(Rosenberg et al., 1981) 

4.84 (pulmonary) 

Normal 2 (aortic ) 

(Timms et al., 2005a) 

22.5 (Systemic venous)) 

2.95 (Pulmonary artery) 

7.1 (pulmonary venous) 

HF 1.2 (aortic ) 

11.5 (Systemic venous)) 

2.95 (Pulmonary artery) 

7.1 (pulmonary venous) 

Normal 2.0 (Systemic arterial) 
(Liu et al., 2006) 

50 ( Systemic venous) 

 

The aorta in the human body is a long blood vessel which is soft and quite elastic, in fact, several 

magnitudes over rubber (Burton, 1954). Some researchers try to simulate that by fabricating a 

thin and soft extendable elastomeric material from rubber or silicone, in a long tube although 

only for one heart condition (Zannoli et al., 2009). To simulate larger arterial compliance range 

accurately, a silicone aorta was attached to the Windkessel chamber (Kolyva et al., 2010a, Cassot 

et al., 1985). Compliance simulation in MCL by employing Windkessel chamber offered the best 

compromise in term of ease of operability and adjustment to changing simulated cardiac 
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condition; the cost will be quite minimal, although normally venous compliance chamber will be 

quite big/tall (Liu et al., 2006).  

2.7.2.1 Air Volume in Windkessel Chamber Calculation 

 

The amount of air inside the chamber determines the arterial compliance and pulse pressure. Any 

MCL using the Windkessel chamber to simulate physiological compliance will have to store 

enough air volume correctly (Liu et al., 2005). An example is given for normal heart condition. By 

assuming that during cardiac cycle air expansion is adiabatic, Boyle’s Law (Eq. 2.17) can be used: 

 

              2.18  

To determine the amount of air needed to achieve normal heart condition at aortic pressure 

(120/80 mmHg) and SV (83 mL): 

            2.19  

Where, 1: diastolic state and 2: systolic state. As such, P1 = 840 mmHg (80 mmHg + 760 mmHg), P2 

= 880 mmHg, V2 = V1 – SV, since the incoming water volume i.e. SV during systole is reducing or 

compressing the amount of air in the chamber. This calculation assumes no runaway fluid into 

peripheral circulation. Solving for V1 (air volume at end diastole): 

               

   
     

     
 
     

  
 

   
      

  
 

                    

As for the arterial compliance: 

   
  

  
  
  

  
       

  

    
   

It was reported that the air volume in the Windkessel chamber was regulated between 1034 mL 

to 2068 mL in order to achieve compliance level between 1.06 mL/mmHg to 2.13 mL/mmHg 

(Knierbein et al., 1992). 
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2.7.3 Left Coronary Artery Simulation in MCL 

 

Left coronary artery (LCA) and its branches supply left side of the heart covering left atrium and 

left ventricle. MCL simulation of coronary perfusion is normally of the left coronary artery, since 

LCA has a far greater significance due LCA network on the left heart side. 

Coronary artery flow is affected from myocardium contraction, as well as the pressure fluctuation 

in the ascending aorta; the magnitude of coronary flow rate depends on aortic pressure as the 

driving force for the coronary perfusion (Geven et al., 2004).  

One of the main problems simulating LCA flowrate on MCL was the value of flow rate reflecting 

human physiology. Most of the data from the literature cannot be used directly since most of the 

in vivo studies use coronary flow reserve as an indicator19 or expressing the coronary flow 

normalized with heart mass. Some of the comparable data in mL/min unit are tabulated in Table 

2-15. 

Table 2-15: Coronary flow value from various sources 

Category  (in vivo/in vitro) 
Coronary artery 

flowrate 
Researcher 

Global coronary flow                           (Human) 225 mL/min (Guyton and Hall, 2006) 

Mean LCA (HF)  

(MCL) 

67 mL/min 

(Koenig et al., 2004)  Mean LCA (Recovering ) 97 mL/min 

Mean LCA (Normal) 104 mL/min 

Mean coronary artery (Normal)            (MCL) 80 mL/min (Geven et al., 2004) 

 

The unique biphasic coronary waveform in Figure 2-17 can be simulated using a silicone or Latex 

collapsible tube, pressurised at the same time as the LV chamber. The pressure exerted onto the 

soft tube can either be from compressed air for the LV sac, or by using liquid directed from the LV 

chamber. The simultaneous compression of the collapsible tube at early systole mimicked 

compression of subepicardial part of the myocardium vascular bed as per the waterfall model 

proposed by Downey and Kirk (Downey and Kirk, 1975). Figure 2-41 illustrates one method to 

simulate early systole compression. 

                                                           
19

 Coronary flow reserve is the ratio between maximal coronary blood flowrate and resting blood flowrate.  
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Figure 2-41: The schematic diagram of the MCL and coronary arteries simulation, coronary tube is compressed as the 
piston increases LV pressure. LV : Left ventricle, L: length, R: resistance, C: Compliance, V: water flow, q: flowrate, ao: 
aorta, ca: coronary artery, cs: coronary sinus, m: myocardium (With kind permission from IOPScience) (Geven et al., 
2004) 

 

2.8 Wave Intensity Analysis 
 

Wave Intensity Analysis (WIA) was originally formulated to solve gas dynamic problem before 

being applied on arterial mechanics (Parker and Jones, 1990),. The WIA approach uses methods of 

characteristics to solve the nonlinear 1D Euler differential equation of an elastic tube; WIA differs 

from that spectral based impaedance analysis, i.e. impaedance analysis using Fourier 

transformation, as WIA is a time-domain analysis enabling a more accurate description and far 

easier interpretation of waves in arteries (Parker, 2009a, Parker, 2009b). Some of the advantages 

of WIA in contrast to  impaedance analysis are the non-assumption of arterial wave linearity, less 

reliance on periodicity, the arterial waves transmitted are summations of smaller waves, and 

since the calculation is done in time domain, this enables quantitative and qualitative assessment 

of arterial waves (Khir and Parker, 2005). Many clinicians preferred WIA since the result can be 

computed on site, and can be understood intuitively (Sugawara et al., 2009).  

Since its introduction, WIA has been used to study arterial waves in the ascending aorta (Khir and 

Parker, 2005), coronary arteries (Davies et al., 2006), changes due to failing heart (Curtis et al., 

2007), and even to explain the mechanism and effect of LVAD to arterial flow and pressure 

(Kolyva et al., 2009).  There are four characteristics waves in WIA as tabulated in Table 2-16. 
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Table 2-16: Four types of waves in wave intensity analysis. The ↑ sign refers to increasing pressure or flow 
acceleration, while ↓ sign refers to decreasing pressure or flow deceleration. 

Type Pressure Flow 

Forward Compression Wave (FCW) ↑ ↑ 

Forward Expansion Wave (FEW) ↓ ↓ 

Backward Compression Wave (BCW) ↑ ↓ 

Backward Expansion Wave (BEW) ↓ ↑ 

 

The actions of IABP counterpulsation can be determined using WIA; one study showed that the 

balloon inflation caused a BCW i.e. increase of the aortic root pressure and retrograde flow 

(towards the heart), while the balloon deflation decreased the ascending aortic pressure and 

increasing forward flow i.e. a BEW (Kolyva et al., 2009).  

 

2.9 Summary 
 

The second chapter aimed to provide the reader with background knowledge about 

cardiovascular physiology, pathological conditions leading to HF, as well as the treatment 

available at present. One of the options available, mechanical assistance for HF treatment was 

discussed at length.  A specific subchapter was provided with mechanical heart assist device 

history and development from early years to present days. Special mention was given to volume 

displacement type left ventricular assist device (LVAD) placed in, on and around aorta. The 

history, usage, deployment, complication, performance index, and mode of activation of the IABP 

were also discussed. Continuing from the first chapter, CIMS indication and contraindication were 

presented. Justifications on the suitability of CIMS modality treatment to failing heart were 

elaborated. A review of MCL for in vitro balloon testing was given. Lastly, wave intensity analysis 

(WIA), an arterial wave mechanics analysis tool was presented briefly.  
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Chapter 3 Methodology 

 

This chapter is dedicated to the methodology used to achieve the objectives stated in the first 

chapter. Several approaches were used to tackle and overcome the technical and analytical 

problems in the course of this study. 

 

3.1 Introduction 

 

Subchapter 3.2 describes the in vitro balloon pump designs. Two designs were drafted. For this 

study, silicone was chosen as the deformable inner lining. The justification of using silicone is 

elaborated later in this subchapter. 

Since this study was based entirely on experimental work, an appropriate experimental rig was 

required. The construction and handling of a human mock circulatory loop (MCL) to simulate the 

systemic and coronary circulation is described in subchapter 3.3.  

The aim of this study was to determine the efficacy of the CIMS balloon pump: 1) to decrease 

cardiac workload by afterload reduction prior to systole, and 2) to increase perfusion to the 

systemic and coronary circulations. Several experimental factors were chosen, and the reasons 

are explained. Factorial design method was used to design the experimental procedure and the 

results were then analysed using the appropriate statistical test. A subchapter dedicated to the 

explanation of these experimental and the analytical procedures is presented. 

A flow visualisation technique was employed to verify the effect of balloon deflation on the aortic 

heart valve opening motion and is described in subchapter 3.5. Some changes to accommodate 

visual inspection in the MCL are explained. The video recording and the analysis technique of the 

premature opening of the aortic heart valve are described.  

At the end of this chapter, a summary is given. 
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3.2 Balloon Pump Construction 

The design and manufacture process of the in vitro CIMS balloon pump prototype is presented. 

 

3.2.1 Prototype Conception 

 

The effect of counterpulsation from a CIMS balloon pump was investigated by implanting an in 

vitro prototype in the MCL. Instead of a soft body balloon pump, a rigid body type was chosen; 

the soft body type balloon pump is not suitable for balloon innate compliance experiment as it 

may confound the result. Two different shapes of rigid body balloon pump prototype were made: 

1) a straight body (SB) balloon pump and, 

2) a compliant body (CB) balloon pump.  

The compliant body (CB) balloon pump has an extra space to allow a deformable membrane to 

expand during ventricular systole, thus increasing balloon pump’s compliance (refer to 3.2.3.2 

Compliant Body).  

 

3.2.2 Silicone Membrane  

 

The Silastic T420 silicone elastomer was selected as the material for the deformable membrane of 

the balloon pump prototype due to its translucent property plus several mechanical properties 

suitable for this study. Once cured, the silicone has a tensile strength of 6.68 MPa and the 

hardness around 40 Shore A, which is categorized as medium level hardness. This means that it 

has the distinctive flexibility and acceptable durability needed for continuous action of inflation 

and deflation within the balloon pump body.  

Further explanation of silicone curing process, mould pouring and Silastic T4 datasheet is 

presented in Appendix A.  
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 Dow Corning, Michigan, USA 
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3.2.3 Prototype Balloon Pump 

 

The balloon pump prototypes were made using rapid prototype machines which gave the finished 

product accuracy within ±0.5mm of the desired dimensions of the 3-dimensional computer aided 

design (CAD) software SolidWorks ™21. The stl format file from the CAD model was used by the 

rapid prototyping machine, to build the product layer by layer. Two machines with different 

technology were used: 1) Fused Deposition Modelling (FDM) technology and 2) stereolitography 

technology. In general, the manufacturing cost was cheaper using the FDM technology; however, 

finishing the balloon pump to make it waterproof and gas impermeable product added to the final 

cost. The stereolitography (SLA) technology on the contrary was much more expensive based on 

the cost of one cm3 of raw material, however, since the material allows for a translucent end 

product, it was much suited for visual inspection and was used to make the CB balloon pump. 

More details of the machines used in this study are given in Appendix D. 

 

3.2.3.1 Straight Body 

 

The design for a rigid body balloon pump was primarily based on nominal dimensions of the 

human ascending aorta; the inner diameter was set at 25 mm while the distance from the aortic 

valve to the brachiochepalic artery was 70 mm. Since the in vivo version will need to be sewn into 

the ascending aorta, the rigid section of the in vitro balloon pump was set at 50mm. When fully 

inflated, the volume displaced was 25 mL; although the volume displacement of a straight body 

CIMS balloon pump was less than an adult IABP designed (range: 30 to 50 mL), it was 

hypothesised to offer comparable or better haemodynamic augmentation. 

A cylindrical silicone membrane was inserted into the balloon pump body, and both ends were 

turned back over cylindrical end. Since the silicone membranes OD was smaller than that of the 

balloon pump, the turned-back silicone membrane was held by itself. PTFE pipe thread tape was 

applied at both ends to prevent water or gas leakage, and to ensure a tight fit between the 

balloon pump body and pipe connector in the experimental rig (Refer to Figure 3-50).   

The physical part of the SB type balloon pump is made according to model drafted as per Figure 3-

42. Figure 3-43 shows the assembled straight body balloon pump with the cylindrical silicone 
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membrane. The balloon pump was rapid prototyped using a FDM (Fused Deposition Modelling)  

process (refer to Appendix D-1).  

 

 

Figure 3-42: Sketch of SB balloon pump design. (a) Front view, (b) isometric view, (c) isometric section view 

 

 

Figure 3-43: The SB balloon pump with silicone membrane enclosed. The balloon pump was manufactured using FDM 
process. PTFE pipe thread tape was used to provide a tighter fit between the balloon pump and pipe connector.  

 

A single port was placed in the middle of the body for Helium gas to flow in and out to inflate and 

deflate the balloon. A 3-cock way luer connector allowed access for either a pressure transducer 

or Helium gas driveline. This design was replicated in the CB balloon pump. 
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3.2.3.2 Compliant Body  

 

The effect of different balloon pump innate compliances on haemodynamics response was 

compared experimentally between a straight body (SB) balloon pump and a compliant body (CB) 

balloon pump. The CB balloon pump was designed with an extra cylindrical space between the 

silicone membrane and the rigid body. The additional volume was approximately 7 mL while the 

thickness of the silicone membrane was 0.5 mm; the combination of additional 7 mL and thin 

silicone membrane, gave an additional compliance effect. 

The CB type balloon pump was made, according to the model drafted in CAD software as 

illustrated in Figure 3-44, by using a rapid prototyping machine of SLA technology. The final 

product, illustrated in Figure 3-45, was translucent thus facilitating visual inspection during 

balloon inflation and deflation. Compliance measurement was carried out according to 

procedures laid out in Appendix D; the balloon pump’s static compliance value was 0.11 

mL/mmHg. 

 

 

Figure 3-44: Sketch of CB balloon pump design. (a) Front view, (b) isometric view, (c) isometric section view. 
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Figure 3-45: Compliant body balloon pump made using a UV-curable photopolymer resin.  

 

The technical drawings for both designs are illustrated in Appendix D-2.  

 

3.2.3.3 Differences between SB and CB 

 

The main difference between both types of balloon pump is obviously the balloon pump 

structure. The extra space of 7 mL allowed the silicone membrane to be pushed back during 

systole, allowing extra bit of water in the ascending aorta part of the MCL. 

The silicone membrane used on the CB type balloon pump was 0.5 mm, thus it was easier for the 

silicone to be expanded during counterpulsation exercise. 

A water column volume and pressure experiment (in Appendix D) confirmed that the CB type 

balloon pump expanded when the water pressure increased. 
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3.3 Human Mock Circulatory Loop (MCL) 

The human mock circulatory loop (MCL) used in this study is explained here. 

 

3.3.1  Introduction 

 

The human mock circulatory loop (MCL) is an experimental rig where human cardiovascular 

physiology was simulated; its assembly is described here. The objectives for the constructed MCL 

were: 

1) to simulate varying degrees of heart conditions from Normal to Heart Failure 

2) to simulate different compliance levels in a heart condition 

3) to provide an experimental rig to investigate the CIMS balloon pump  

4) to provide an end-to-side anastomosis for a VAD through the left ventricle’s apex. 

The MCL used in this study was a continuation of a basic MCL at Nottingham University (Good, 

2006). The basic design of the MCL was retained and upgraded to incorporate better hardware 

and a data acquisition system (DAQ). The original version of the MCL was assembled to simulate 

pulsatile flow out of the left ventricular sack in the left ventricular chamber (refer to Figure 3-48). 

A simple loop connected the outflow and the inflow part of the left ventricular sack. Furthermore, 

tube for the loop was 12 mm in internal diameter.  The final version of the MCL used in this study 

is as shown in Figure 3-46. 

The MCL is a two-element Windkessel model consisting of a compliance chamber (for the arterial 

compliance) and a total peripheral resistance element. While it may not be as advanced as MCLs 

discussed in previous chapter, through combinations of hardware and software configured for the 

MCL, pressure and flowrate waveforms were simulated with good accuracy to physiological 

waveforms.  
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Figure 3-46: Aston University MCL used in this study 

 

3.3.2  MCL Overview 

 

The schematic drawing for the MCL connected to the DAQ system, flowmeter and IABP driver is 

illustrated in Figure 3-47. 

A square wave signal was sent to the 3-way proportional pressure regulator22 . The proportional 

pressure regulator valve was controlled using a piezoelectric element that accurately opens and 

closes the valve according to the signal received, and can reasonably simulate any wave shape 

sent from the DAQ. Any change in the amplitude of the square wave was translated into the 

amount of air pressure allowed into the LV chamber. 
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Figure 3-47: The schematic diagram of the human MCL used to investigate the effect of CIMS balloon pump. 1) LV 
silicone sack 2) LV chamber 3) Aortic valve 4) CIMS balloon pump 5) Flow sensor 6) Air bellow 7) Aortic pressure 
transducer 8) Arterial compliance chamber 9) Resistor 10) Mitral valve 11) Left atrial chamber 12) Flow sensor 13) 
Compliance syringe 14) Left coronary artery pressure transducer 15) Systolic resistor 16) Resistor 17) Balloon pump 
pressure transducer 18) Flow meter 19) Helium gas driveline 20) IABP console 21) Proportional pressure regulator 22) 
DAQ system 23) Personal Computer (PC) 

 

The regulator allowed pressurised air to fill up the LV chamber during systole; and cut off the 

pressurised air inlet on completion of systole. A hole in the bottom of the LV chamber allowed a 

conduit to pass from the LV apex (for purposes of other studies – in to RBP LVAD) and because it 

was oversized it also allowed pressurised air to escape during diastole, and facilitated passive 

filling of the LV sack.  
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Figure 3-48: Left ventricular chamber with left ventricular silicone sack inside it. Notice the connection to PVC tube 
from the apex of the silicone sack. 

Passive filling of the LV sack was further facilitated by the thick wall of the sack (around 2 mm) 

which would naturally re-assume its diastolic shape. The LV sac was designed to hold up 250 mL 

of water, equivalent to almost double the normal physiological value, to simulate the LV volume 

in dilated cardiomyopathy (DCM). 

Figure 3-49 shows the top of the LV silicone sac; the inflow (left atrium) and outflow (aorta) 

conduits house heart valves, while a tube connected to a pressure transducer at mid-ventricle 

height allows for LV pressure measurement.  

 

Figure 3-49: LV silicone sack top part that houses heart valves. Notice a tube is inserted at the middle of the top part 
to measure LV pressure. 

LV contraction increases intraventricular pressure, and once the LV pressure exceeds the aortic 

pressure, the aortic valve opens up. The aortic valve was a 25 mm bileaflet mechanical heart valve 

(MHV)23 . The transparent tube used as the ascending aorta was a PVC tube with ID = 25.4 mm. 
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Two smaller holes for Tygon ® tubes (ID 3.2 mm, OD 4.8mm)24 were located 15 mm distal of the 

aortic valve; one for the left coronary artery (LCA) circulation, the other was connected to a 

pressure transducer to measure pressure just distal to the aortic valve. The tubes were fixed in 

place by employing a waterproof flexible silicone sealant25.  

 

Figure 3-50: Two smaller tubes come off the ascending aorta for the left coronary artery and aortic root pressure 
measurement. The CIMS balloon pump was inserted in-line using two pipe connectors. 

 

In Figure 3-50, the position of the Tygon tubes is shown and CIMS balloon pump was connected 

in-line with the ascending aorta section using two pipe connectors.  

Distal to the CIMS balloon pump was the 25 mm ID aortic flow sensor26 shown in Figure 3-51. The 

flowsensor measured the volumetric fluid movement by utilizing the ultrasonic transit time 

technology. The flowsensor is non-resistive and has a bidirectional flowrate measurement 

capability; which proved to be an important feature that allowed accurate measurement of 

forward and backward flow. 
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Figure 3-51: Flow sensor used to measure aortic flowrate at ascending aorta  

 

Figure 3-52: Aortic compliance chamber. On top of the chamber, are aortic pressure transducer for DAQ hardware 
and IABP console. 

To simulate physiological arterial compliance, an air chamber also known as a Windkessel 

chamber was used as shown in Figure 3-52. The volumetric capacity was approximately 3.1 L, 

sufficient to simulate large ranges of aortic compliance values. A transparent acrylic cylindrical 

body (OD 200 mm x 3 mm) facilitated visual observation. On top of the air chamber, there was a 

port for a handheld bellow to pump additional air inside the air chamber as well as to bleed air to 

the surrounding environment, and a luer connector to which two 3-way stopcock connectors 

were attached. The 3-way stopcock was also used to release air into the surrounding 

environment. At each 3-way stopcock, a pressure transducer was connected. Both pressure 

transducers measured aortic pressure from the air trapped inside the aortic compliance chamber, 

one was dedicated to the DAQ hardware for data display and recording while the other was for 

the IABP console. Inflow water was through ID 25 mm PVC tube while the outflow tube was ID 12 
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mm. The rationale was that flow past the aorta was branching to the peripheral circulation and 

reducing in size.  

A manual flow resistor was placed on the PVC tube between the aortic compliance chamber and 

the left atrial chamber to simulate total peripheral resistance (TPR). By manually changing the 

amount of contraction/stenosis on the PVC tube, the flowrate of the MCL can be adjusted.  

 

Figure 3-53: The left atrial chamber. Notice the pressure driveline for atrial pressure at the bottom side of the 
chamber. It is connected to a pressure transducer not shown in this picture. Manual clamp for LCA circulation is 
placed near to end of tube. 

 

The smaller PVC tube was connected to the left atrial (LA) chamber as shown in Figure 3-53. It was 

made of clear acrylic tube (OD 76 mm x 3mm x 335 mm). The chamber can be filled with 

approximately 1.23 L of water, exerting potential pressure of around 23 mmHg. There was a hole 

for the pressure transducer at the side of the chamber. Left atrial pressure (LAP) is defined as the 

potential pressure on top of the mitral valve for this study; as such, pressure differences between 

the pressure point and mitral valve have to be taken into account when calibrating the LAP.  

The mitral valve between the left atrial chamber and the LV silicone sack was a 25mm tilting disc 

valve type27. The valve was carefully orientated to allow for physiological flow into the LV sac.  
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3.3.3  Left Coronary Artery Circulation 

 

The left coronary artery (LCA) circulation was also made of a two-element Windkessel model 

(coronary compliance and total coronary artery resistance) similar to the systemic circulation and 

was fabricated in 3.2 mm ID Tygon® tube. Most of the elements in the LCA circulation are shown 

in Figure 3-54. The flowrate was measured by an ultrasound flow sensor28. The LCA compliance 

was simulated by a 1 mL syringe, and by trial and error, an air volume of around 0.5 to 0.6 mL was 

found to be appropriate in simulating physiologically accurate LCA flowrate. 

The most important characteristic of LCA flow is the early systolic depression due to myocardium 

compression of the coronary arteries. To simulate early systolic compression, a watertight small 

acrylic box (45 mm x 30 mm x 30 mm) with a deformable thin silicone tube (wall thickness ≈ 0.3 

mm) was inserted in-line of the LCA circulation. The deformable silicone tube inside the box was 

compressed at the same time with the LV silicone sack, thus simulating early systolic compression 

similar to the physiological waveform. This method was similar to those used by Geven and 

Gaillard (Geven et al., 2004, Gaillard et al., 2009)  

 

Figure 3-54: The LCA circulation part of the MCL. The circulation comprised of a two-element Windkessel model 
(compliance and resistance). Flowrate was measured using an ultrasound flowsensor. Early systolic compression was 
simulated by the systolic resistor (housed in the cuboid container) distal to the 3-way stopcock. Between the 3-way 
stopcock and the pressure transducer was the 1 mL syringe that acted as a compliance chamber.  

Overall flow rate through the LCA circuit was controlled by a manual flow resistor (throttle) shown 

in Figure 3-53.  Manual adjustment ensured close resemblance to the physiological waveform 

through setting the minimum flowrate in the waveform close to 0 mL/min.  
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The target value for LCA flowrate is tabulated in Table 3-17. 

Table 3-17: The target value for LCA flowrate 

 Heart Failure Recovering heart Normal heart 

LCA flowrate (mL/min) 64 – 68 78 – 82 90 - 92 

 

3.3.4  DAQ Hardware, Software and Related Measurement Devices 

 

The data Acquisition System (DAQ) is an essential element for any experimental study. A chassis29 

shown in Figure 3-55, able to hold up to 8 different input and output (I/O) cartridges was 

connected to PC by a USB cable. For this study, one analog output cartridge (NI 9201), one analog 

input cartridge (NI 9263) and two strain based cartridges (NI 9237) were installed in the chassis.  

 

Figure 3-55: USB DAQ chassis used as the terminal to transmit and receive data in this study. 

 

The fluid pressure was measured by using a disposable pressure transducer30 which comprises a 

piezo-resistive element to convert pressure on a strain gauge membrane into electrical voltage. 

The data was transmitted to the DAQ hardware by way of an interface cable31 which was then 

connected to a special cable32 for the simultaneous bridge module cartridge for strain based data 
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(NI 9237) in the USB chassis described above. A cable checker was used for rough calibration of 

pressure measurement, and was further fine tuned before starting the MCL for experimentation. 

 

Figure 3-56: TS410 Flowmeter for fluid volumetric measurement. The above flowmeter is for the LCA circulation 
while the one at the bottom is for the peripheral circulation. The LCD displayed mean flowrate value. 

 

Instantaneous flowrates measured at the ascending aorta and left coronary artery were sent to 

the flowmeter33 which converted the signal from the flowsensor into mean and instantaneous 

flowrates. The flowmeters shown in Figure 3-56 were connected to the analog input cartridge at 

the DAQ chassis for simultaneous mean and instantaneous flowrate display and data recording. 

A software for DAQ processing and control was used to manage DAQ process. Labview™ 34 is a 

graphical programming language suited to process simultaneous input and output signal from and 

to the DAQ hardware. For example, a square wave signal was generated in the LabView Virtual 

Instrument (VI), and simultaneously sent to the DAQ hardware’s output cartridge module and to 

the 3-way proportional pressure regulator. A snapshot of the front panel and corresponding 

virtual instrument display is shown in Figure 3-57. 

Signals from the MCL were acquired at 2000 Hz sampling frequency, and were averaged and then 

scaled down to 200 Hz for easy data manipulation. All signals were then subjected to a low-pass 

filter of 7 – 10 Hz to get rid of the excessive noise, especially the Aortic Root Pressure signal; the 
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closing action of the mechanical leaflet produces excessive pressure spikes known as ‘ringing’ as 

can be seen in Figure 3-57 and Figure 3-58. 

 

Figure 3-57: A snapshot of LabView VI used in this study. On to top is front panel which displays real time 
haemodynamic data (pressure and flow rate) and MCL control, while the bottom one is the block diagram panel 
where subroutine is written. 

Labview Front Panel 

Labview Block 

Diagram 
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3.3.5  MCL Parameters 

 

The value of mean arterial pressure (MAP), cardiac output (CO), heart rate (HR), stroke value (SV) 

and aortic compliance for Heart Failure (HF), recovering heart (Recovering) and normal heart 

condition are tabulated in Table 3-18. Those values were chosen by gathering relevant data from 

textbook and literature (Levick, 2003, Guyton and Hall, 2006, Klabunde, 2005, Burton, 1972, 

Timms et al., 2005a). 

Table 3-18: The target haemodynamic parameters for the MCL for three different level of heart condition, 
and further subdivided to three different levels of arterial compliance (high, medium and low). MAP: 
Mean Arterial Pressure, CO: Cardiac output, HR: Heart Rate, SV: Stroke Volume, LAP: Left Atrial Pressure, 
LVP: Left Ventricular Pressure, AoPmax: aortic systolic pressure, AoEDP: aortic end-diastolic pressure. The 
Air Volume referred to air volume in the aortic compliance chamber. The arterial compliance level is 
further divided into three levels: High, Medium and Low. 

Heart 
Condition 

(Heart Failure) (Recovering) (Normal) 

MAP 
(mmHg) 

57 80 95 

CO (L/min) 3 4 5 

HR 
(beats/min) 

60 60 60 

SV (mL) 50 66.7 83.3 

LAP (mmHg) 
16 – 18 12 – 14 8 – 10 

LVP 
80/ 

10 
- - 

100/ 

10 
- - 120/0 - - 

 Arterial 
Compliance 
level 

High Medium Low High Medium Low High Medium Low 

Aortic 
Compliance 
(C) 
(mL/mmHg) 

2.5 1.65 1.25 2.5 1.65 1.25 2.5 1.65 1.25 

Pulse 
Pressure 
(PP) (mmHg) 

20 30.3 40.0 26.7 40.4 53.3 33.3 50.5 66.7 

AoPmax 
(mmHg) 

70.3 77.2 83.7 97.8 106.9 115.6 117.2 128.7 139.4 

AoEDP 
(mmHg) 

50.3 46.9 43.7 71.1 66.5 62.2 83.9 78.2 72.8 

Air Volume 
(L) 

2.1 1.4 1.0 2.1 1.4 1.1 2.2 1.5 1.1 
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The value of LVP at each heart condition is predetermined for C = 2.5 mL/mmHg as a reference for 

other levels of compliance, and might be different depending on the level of AoP for each heart 

condition.  

In subchapter 2.7.2 Physiological Parameters for MCL), the equations to calculate the exact 

amount of air volume in a hermetically sealed chamber, for a given aortic end-diastolic pressure 

(AoEDP), as well as pulse pressure (PP) are given. The corresponding aortic pressure, PP and air 

volume values in Table 3-18 were calculated using those formulae. In practice, it was much easier 

to achieve the desired aortic compliance level by targeting the aortic systolic and diastolic 

pressure. During operation, the air volume (or the water height) inside the aortic compliance 

chamber was controlled by way of the manual bellows pump and the 3-way stopcock, air volume 

influenced the aortic pressure waveform. 

 

3.3.5.1 Aortic Pressure (AoPmax and AoEDP) Calculation Method 

 

Determination of aortic pressure (systolic: AoPmax and diastolic: AoEDP) is given here. 

For aortic compliance, C, defined as the ratio between volumetric changes, SV, and pulse 

pressure, PP, per Eq. 2.15, rewritten as: 

   
  

  
   

Since SV is defined as the result of CO divided by HR (refer Eq. 2.1), substitution of Eq. 2.1 in the 

above Eq. 2.15 yields a compliance value calculated by: 

 
  

  
       

  
  

3.1  

The MAP (Eq. 2.6) is the sum of AoEDP and one third of PP (PP = AoPmax – AoEDP), rearranging 

Eq. 2.6 for AoEDP:  

            
 

 
 

  
       

 
   3.2  

Since the value of CO, HR, MAP and C has been predetermined as above in Table 3-18, AoEDP was 

computed by substituting those values into the above Eq. 3.2, and by substituting the result into 

Eq. 2.5, the value of PP and subsequently the value AoPmax is computed:  
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                   3.3  

Using value of PP, AoPmax is computed.  

                . 3.4  

 

 

3.3.6  Procedure for Starting and Operating the MCL 

 

The procedure for starting the MCL in order to simulate the desired heart condition and arterial 

compliance is explained in this subchapter. Before starting the procedure, all pressure gauges 

were zeroed. The pressure transducers (LV chamber, CIMS balloon pump and left atrial chamber) 

were adjusted to mid-ventricular height (mid LV silicone sac. The other three pressure transducers 

were placed at or near to the point of measurement e.g. the aortic pressure transducer was fixed 

on top of the aortic compliance chamber, the aortic root pressure transducer was fixed to the 

Tygon tube coming off the ascending aorta section, while the LCA pressure transducer was placed 

after the flow sensor in the LCA circuit.  

The steps used to achieve a predetermined heart condition and compliance level were:   

1. The aortic compliance chamber was opened to environment.  

2. The left atrium was filled with distilled water to the mid left atrial chamber height.  

3. The LabView virtual instrument (VI) file for MCL operation was opened and the pressure 

correction constant for the LCA pressure, aortic root pressure and aortic pressure was set 

to correspond to the water height in the LA chamber. However for LV chamber and CIMS 

balloon pump it was maintained without any adjustment. The LAP was measured only 

from the side of the LA chamber, appropriate adjustment was carried out.  

4. Air pressure from the source was set at 2 bar, the square wave amplitude set at 0.8 (for 

HF condition), and the program was executed. 

5. Once the MCL was started, the water level at the aortic compliance chamber increased 

rapidly, and it was adjusted with hand bellows and 3-way stopcock. The appropriate 

height was calculated from air volume in Table 3-18. LAP level was adjusted by adding 

more water if necessary. 

6. The flowrate at the ascending aorta section was checked against value in Table 3-18, and 

the rate was fine tuned by using the flow resistor. 



Chapter 3 Methodology 
 

128 
 

A.Z.M. Khudzari 

7. The range of LVP and AoP was checked. If the maximum targeted point was still not 

achieved, the square wave’s amplitude was increased gradually to increase LV’s 

contractility.  

8. The pressure waveforms of all points were checked for physiological accuracy, especially 

the aortic pressure, aortic root pressure and LCA pressure.  

9. If not, the MCL was stopped by pressing the BEGINNING SHUTDOWN button, and redo 

procedure steps 4 – 8. 

10. If it was necessary to lower the LAP, some of the water in the LV sac was drained by 

opening the gate valve.  

11. For LCA circulation, it was adjusted by tuning the flow resistor for LCA circulation to 

reproduce the accurate physiological waveform. This operation normally require minute 

adjustment, thus a complex operation to balance interacting factors.  

Figure 3-58 shows the LabView VI written to control the MCL as well as displaying pressure 

waveforms, aortic flowrate, LCA flowrate and numerical values of haemodynamic parameters in 

real-time. Data can be easily recorded with a click of a button in the Labview VI front panel. 

Square, sinusoidal and custom (Fourier series) waveforms were used to drive the volumetric 

contraction of the LV sac. As these waves gave very similar outflows from the LV silicone sac, a 

square wave was used throughout the study; the square wave was simpler to generate and 

consumed less processing time compared to the sinusoidal wave. The pressure regulator was not 

sufficiently quick to be able to produce a customized waveform at rates greater than 60 

beats/min. The activation period of square wave was set to 40% for all heart simulated conditions.  
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Figure 3-58: The VI front panel for MCL operation. The top left display is the LCA flowrate, notice the early systolic 
depression, the top right panel is the aortic flowrate waveform, bottom left panel is the unfiltered pressure 
waveform, while the bottom right is the filtered pressure signal. Notice that AoP, LCA pressure and aortic root 
pressure follow the same decay pattern in diastole.  

 

3.3.7  IABP Console 

 

In Figure 3-59, the IABP driver console35 used for the CIMS balloon pump activation for this study 

is shown; the console is a lightweight compact device, designed to be portable in various terrains. 

Figure 3-60 shows the front panel of the IABP console when balloon pump was not activated.  

                                                           
35

 Bard H-8000 TransAct IABP (C. R. Bard Inc., New Jersey, USA). The company no longer manufactures any 
IABP-related equipment. 
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Figure 3-59: The H-8000 Bard IABP console used in this study. 

 

 

Figure 3-60: The front panel of the IABP console while not activated 

The driver also has several panels for options relating to IABP operation e.g. there were two 

options for arterial pressure signal; either from a pressure transducer (XDUCER) or from an 

external pressure monitoring system (EXT MONITOR) acquired using a phono-phono cable 100 

mmHg/V. 

Once the ON button was pressed, Helium gas was transferred between the balloon pump and 

IABP console. The inflation and deflation period was implemented according to the range chosen 

beforehand, although the range can be adjusted manually using knobs at the TIMING panel. The 

value of the augmented aortic pressure was displayed alongside with systolic and diastolic aortic 
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pressure. However during data recording, no adjustment was allowed. Figure 3-61 is an example 

during the IABP console is activated.  

 

Figure 3-61: The IABP console in activation mode. Notice that diastolic pressure is augmented, while on top left LCD 
display, the augmented pressure is displayed in the middle. 

 

3.4 Design of Experiment (DOE) 

 

The experiments conducted were carried out using the factorial design method. That method and 

statistical tools used to analyze the data is presented here. 

  

3.4.1 Data Measurement & Recording 

  

This subchapter involves the data recording procedure, data extraction methods and data 

analysis. Important parameters are explained and justified. The procedure to record 

haemodynamic data before, during and after the augmentation was:  

1. Flow was allowed to stabilise following initialization of the MCL.  

2. Non-assisted circulation data was recorded for around 100 s prior to assist with the CIMS 

being activated.  

3. Assisted circulation data was then recorded for 200 s following activation of the CIMS. 

4. The data was recorded for a further 40 s after the augmentation was ceased. 
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The longer period for assisted circulation period was to allow the flow to stabilise. There were 

also instances where high fluctuations in flowrate and pressure meant that a larger dataset was 

needed to acquire a stable consecutive period of data. It was decided from statistical reasoning 

that 30 s sample period was required, refer to Appendix B.  

The raw data (in .lvm format) was then converted into a Microsoft Excel36 format before 

processing using Matlab’s37 script file to yield several parameters: 

 Maximum and minimum left ventricular pressure (LVPmax & LVPmin) 

 Maximum and minimum aortic pressure (AoPmax & AoPmin) 

 Mean arterial pressure (MAP) 

 Mean left atrial pressure (LAPaverage) 

 Mean left coronary artery pressure (LCAPaverage) 

 Peak Aortic Diastolic Pressure (PADA) 

 Pressure difference between PADA and AoPmax (dP) 

 Cardiac output (CO) 

 Mean left coronary artery (QcorMean) 

 Helium gas pressure (Internal pressure balloon pump-IPBP) 

Peak Aortic Diastolic Pressure (PADA) was the highest aortic pressure recorded during assisted 

circulation in diastole, while dP was the differences between PADA and AoPmax. The graph in 

Figure 3-62 illustrates the pressure and flowrate waveforms for several parameters listed above 

both for non-assisted (non-activated) and assisted circulation (activated) respectively.  

The effect of balloon augmentation to the LCA circulation is illustrated in Figure 3-63. Clearly, 

pressure and flowrate of LCA were augmented during diastole. The magnitude of the diastolic 

augmentation is demonstrated by LCA flowrate shape, where the peak instantaneous flowrate is 

in the region of 200 mL/min, compared to non-assisted circulation at less than 150 mL/min.  

The numerical results are shown in Figure 3-64 and Figure 3-65. All columns were measured data 

except for several columns: MAP (from AoPmax and AoPmin), Rcor (LCA resistance: from 

QcorMean and LCAPMean) and dP (from PADA and AoPmax). 
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 Microsoft Excel 2007, Microsoft Inc., Redmond, Washington, USA 
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 Matlab R2009b, Mathworks Inc., Natick, MA, USA  
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Figure 3-62: Haemodynamic parameters during assisted period. Diastolic augmentation is clearly evident in aortic 
pressure and aortic flowrate waveform. 

 

Figure 3-63: The left coronary artery during non-assisted period. LCA pulsatile flow and pressure were augmented 
during diastole. 
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Figure 3-64: The numerical data of haemodynamics parameters during non-assisted period 

 

 

Figure 3-65: The numerical data of haemodynamic parameters during assisted period 
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At the bottom part of Figure 3-64 and Figure 3-65, are the rows showing statistical data for each 

of the columns i.e. the average (the arithmetic mean of the group), the standard deviation (SD) 

and the standard error (SE). 

 

3.4.2 Statistical Method 

 

The main objective of this study was to determine whether the balloon pump activation has any 

effect on the haemodynamics of the systemic and LCA circulation. To achieve that objective, the 

differences between non-assisted and assisted circulation need to be assessed whether the 

differences were significantly different and not due to random occurrences.  

Statistical analysis offers a reliable and scientific way of quantifying and clearly detects any 

differences between two or more groups. The conclusion drawn using statistical analysis was far 

more reliable as differences between parameters are tested thoroughly.  

Statistics tries to answer a well-put research question in the form of a hypothesis; an example of 

such a well-put question might “does the activation of the balloon pump increased the perfusion 

to the systemic and left coronary circulation?” The research question was then formulated into 

two contradicting hypothesis:  

Null hypothesis (H0):  

There is NO statistically significant difference between the mean of two groups i.e. the 

results indicate that the condition before and after balloon activation is the same. 

Alternative hypothesis (H1):  

There is a statistically significant difference between those two groups i.e. the result 

indicate that the activation of the balloon pump has an effect to the circulation. 

The null hypothesis must always state there was no difference between two groups. Having 

formulated the null and alternative hypothesis for each experimental factor, the next course of 

action was to determine whether the null hypothesis was true or otherwise false by performing 

statistical test. If the null hypothesis is false, the alternative hypothesis is adopted; in the above 

case, the mean difference between two groups was statistically significant.  
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3.4.2.1 The Parametric Data  

 

A type of statistical analysis used in this study is the analysis of variance (ANOVA), a parametric 

test for data that was normally distributed i.e.  the data follows a bell curved distribution plot. 

There are several ways to determine whether data collected is normally distributed; the easiest 

one is to plot a histogram of all the data and if the plotted histogram resembles a bell-shaped 

curve, then the data can be said to follow normal distribution. Another visual method is known as 

the Normal Q-Q plot; if the data points plotted fall away from the straight line, then it is not from 

a normally distributed population. A much more objective and quantitative way to determine the 

data normality are by using either Kolmogorov-Smirnov or Shapiro-Wilk test, or both. Those tests 

compare the data against normally distributed data; if the tests showed p-value less than 0.05, 

the data is not normal. Shapiro-Wilk test is normally used for small sample size data (N ≤ 10). 

Parametric data is the term used for data following normal distribution pattern, and can be 

computed to give distribution parameters such as the average mean, the variance or the standard 

deviation. Data that violate the normality requirement is called a nonparametric data, and such 

data was transformed to rank (i.e. the original data was arranged in a numerical order, from the 

smallest to the highest one); instead of mean average, median (an indicator between two halves 

for a skewed distribution) was calculated. 

 

3.4.2.2 Sample Size Calculation and Power Analysis 

 

The power of a test signifies the sensitivity of the test to detect an effect if present, consequently 

rejecting the null hypothesis. The power of a test is defined to be (1 – β), where β is the 

probability of committing a type II error i.e. rejecting the null hypothesis when it is true. The 

greater the power of the test, the easier it is to detect the effect and to reject the null hypothesis. 

Normally β is set to 0.2 or 0.1 meaning the power of the test is at 80% or 90%38. The magnitude of 

the power of the test is affected by the sample size. The higher the power of the test needs to be, 

the more samples need to be obtained. In this study, β is set to 0.1 i.e. 90 % power.  

A decision has been taken to set the sample size to 30 for both flow conditions; this is due to the 

low variability of CO as exhibited in Figure 3-64 and Figure 3-65, where both SDs were around 

0.02 to 0.04 L/min. Other response outputs variability is assumed to be low as well thus the 90% 
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 The power of a test is defined as percentage of (1 – β) 



Chapter 3 Methodology 
 

137 
 

A.Z.M. Khudzari 

power of the test is enough to sense any differences. Equal sample size is an important factor for 

some of the post-hoc tests employed in this work (Tukey HSD or Nemenyi). Further explanation of 

sample size calculation is provided in Appendix B. 

Factorial design method was employed in this study, and there must be at least two repetitions to 

fulfill analytical requirement. However, to what extent it has to be replicated depends on the 

standard deviation for each experimental factor, as well as the D value i.e. mean difference 

significant to the experiment, as well as the value of α and β. This study adopted normal 

engineering convention where three (3) replications were carried out. 

 

3.4.2.3  Randomisation  

 

One of the important requirements when using factorial design method is the randomisation of 

the order of the experiment and/or the data extracted from the experiment. The order of the 

experiment was randomized using a subroutine in Microsoft Visual Basic to generate random 

number. For example, as tabulated in Table 3-19, the list on the left is the combination between 

inflation (A to C) and deflation timing (G to J) (refer to Figure 3-68). Using random number 

generated for 12 numbers, the order was rearranged as in the right side table: 

Table 3-19: The randomization of list order of the experimental combination 

Before randomisation After randomisation 

i A-G 1 B-I 

ii A-H 2 B-J 

iii A-I 3 C-G 

iv A-J 4 C-J 

v B-G 5 A-J 

vi B-H 6 A-H 

vii B-I 7 A-G 

vii B-J 8 C-I 

ix C-G 9 C-H 

x C-H 10 B-G 

xi C-I 11 B-H 

xii C-J 12 A-I 



Chapter 3 Methodology 
 

138 
 

A.Z.M. Khudzari 

Recall that ANOVA also requires that the data to be randomly chosen. Pressure and flowrate 

waveform data were recorded consecutively on a temporal axis; however, sample data for 

analysis was not taken consecutively but every other time point. This is illustrated in Figure 3-64 

and Figure 3-65, where in column t (for time point), data was for t = 1, 3, 5…59 (non-assisted 

circulation) and t = 110, 112, 114…185 (assisted circulation). In certain cases, where the next data 

was not suitable, consecutive data was taken. 

 

3.4.2.4 Student’s t-test 

 

The simplest form of statistical analysis is the Student t-test or Two-sample t-test. Basically the 

mean between two groups is compared to determine whether or not both came from the same 

population and whether any difference is not due to chance. The decision whether to accept the 

null hypothesis, H0, or the alternative hypothesis, H1, depends on the level of statistical 

significance, α, i.e. critical value defined beforehand. Common convention defines α =0.0539 or 5% 

level of significance. If the corresponding normal distribution value of the test statistic is less than 

the critical value, then the null hypothesis, H0, can be rejected at α level of significance. 

Another way is by calculating the P-value which is the probability value able to demonstrate that 

the null hypothesis can be rejected with confidence. If the P-value computed is less than the 

critical value α predetermined, then the null hypothesis can be rejected at α level of significance, 

and accept the alternative hypothesis. P < 0.05 means that there is 95% or above chance that the 

mean between two groups is statistically significantly different.  

The t-test requirement is that sample data are collected or measured from a normally distributed 

population, most cases show equal variance (although the t-test equations can be modified to 

accommodate unequal variance between groups), and the data is randomly taken. 

 If the normal distribution criterion is severely compromised, nonparametric tests such as Mann-

Whitney U-test or Wilcoxon signed-rank test can be used instead; however, these tests have a 

much lower power compared to parametric test.  

 

                                                           
39

 The critical value of α=0.05 is arbitrarily determined. It could be 0.10 (90% chance) or 0.01 (99% chance). 
In engineering practice and other scientific field, 0.05 is the usual value chosen. However, this also means 
that there is 1 in every 20 chances that there will be a mistake identifying real significance (a false positive) 
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3.4.2.5 Analysis of Variance (ANOVA) 

 

The Student t-test is suitable for cases of one response output (i.e. one dependent variable) with 

one experimental factor (i.e. one independent variable) between two groups. However, the t-test 

is ill-suited to analyse more than two groups. It is not preferable to use Student’s t-test across all 

groups since that will increase Type I errors i.e. rejecting the null hypothesis when it is true. As 

demonstrated by the formula (1 – 0.95n), as the group number (n) increases, the probability of 

incorrectly rejecting the null hypothesis, Ho, also increases. This is called the familywise error. For 

example, to compare the mean between three groups, the error associated will be higher at (1- 

0.953 =) 0.14 i.e. 14% instead of 5% if only two groups are involved, not to mention the complexity 

since the number of experiments also increase. 

Analysis of Variance (ANOVA) circumvents the error rate inflation problem. ANOVA is a tool where 

the differences between experimental factors and the effect on dependant variable(s) are made 

clear while keeping the Type I error from inflating. ANOVA can also detect whether there is any 

interaction between experimental factors. It is not only a tool able to detect inter-group 

differences; it can also detect intra-groups difference. For each experimental factor, there were 

two or more levels; e.g. the heart condition: normal, recovering or heart failure. The experimental 

factor’s effect is called the main effect while the effect between the experimental factors is called 

the interaction. There should be at least two replications for each set of combinations. The 

ANOVA hypotheses for two experimental factors A and B and the interaction are: 

Experimental factor A: 

 H0A: The main effect of experimental factor A is NOT statistically significant. 

 H1A: The main effect of experimental factor A is statistically significant. 

Experimental factor B: 

H0B: The main effect of experimental factor B is NOT statistically significant. 

 H1B: The main effect of experimental factor B is statistically significant. 

Interaction between A and B: 

H0C: There is NO significant interaction between experimental factors A and B. 

 H1C: Experimental factors A and B have significant interaction between them. 
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There are several kinds of ANOVA test. The one-way ANOVA is used to detect significant mean 

difference between three groups or more involving only one experimental factor. The one-way 

ANOVA result will be similar to the Student t-test if there are only two groups in the experimental 

setting. An example of one-way ANOVA is the effect of a drug on three or more patient cohorts.  

A two-way factorial ANOVA examines the effect of two experimental factors (factor A and B) on 

response output; an example is the effect of drug XYZ and physical therapy on treatment of a 

disease. The 2 × 2 factorial ANOVA, which is the easiest ANOVA test to perform, states that factor 

A and factor B have two levels; there are also 2 × 3 (factor A: 2 levels, factor B: 3 levels) or 3 × 3 

(factor A: 3 levels, factor B: 3 levels). A three-way factorial design experiment, (A × B × C) or even 

higher factor ANOVAs, are available; however the result becomes increasingly difficult to 

interpret. 

If the effect of an experimental factor was determined to be significant, and the experimental 

factors had more than two levels (e.g. A1, A2, A3), further testing must be done to ascertain the 

significance of mean difference between each level. Post-hoc tests are a modified t-test able to 

maintain the critical value of Type I error at 5% (or 1%). One example of a parametric type post-

hoc test is the Tukey HSD test, which has a tight control over Type I error rate, although the 

variances of the groups and the sample sizes of both groups must be equal. 

There are several requirements ANOVA has to met, 1) normally distributed data, 2) random 

sampling and 3) equality of variance40. Out of those three requirements, the equality of variance 

must be strictly adhered. In SPPS41, the equality of variance is tested using Levene’s test, and if the 

test showed p < 0.05, homogeneity of variance has been violated. In that case, nonparametric test 

must be used. The comparable nonparametric tests for ANOVA’s are tabulated in Table 3-20. 

Table 3-20: Parametric ANOVA and its corresponding equivalent nonparametric test 

One-way ANOVA ≈ Kruskal-Wallis test 

Two-way ANOVA without replication ≈ Friedmann’s test 

Two-way ANOVA with replication ≈ Scheirer-Ray-Hare (SRH) test 

 

The nonparametric Scheirer-Ray-Hare (SRH) test is an extension of Kruskal-Wallis test for one-way 

ANOVA analogue (Zar, 2010, McDonald, 2009). In brief, the original data is rank-transformed, 

                                                           
40

 Variance is the mean sum of squares (SS) which represents the dispersion of individual data from the 
sample mean.  
41

 PASW Statistics 18, IBM SPSS, IBM Corp., USA 
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changing original data into nonparametric data by assigning each sample value a numerical order. 

After which standard two-way ANOVA is performed on the rank-transformed data. The ANOVA 

result from the rank-transformed data are used to compute a new test-statistic, H, to which p-

value is calculated for each main effect and interaction between main effects. The exact method 

of executing the test is detailed in Appendix B (B-1). Figure 3-66 illustrated the algorithm to 

choose appropriate statistical test in this study. Only if the normality of data and equal variance 

assumptions met, can the standard ANOVA analysis be employed; otherwise SRH test is required. 

The nonparametric SRH test is of lower power compared to two-way ANOVA (i.e. it has a greater 

chance of type II error). However, the assumption of equal variance is of no importance, hence 

the flexibility to analyse nonparametric data. 

Similar to Tukey HSD test, for nonparametric data, the Nemenyi test can be carried out to test 

significance difference amongst levels i.e. within group. The procedure is explained in Appendix B 

(B-2).  
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Figure 3-66: Flow chart representing the algorithm to choose the appropriate statistical analysis for the experimental 
data. (*:Performed using Levene’s test of heomogeneity, **:Performed using Kolmogorov-Smirnov and/or Shapiro-
Wilk test, +: p < 0.05 for experimental factor with level > 2) 
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3.4.2.6 Correlation between dependent variables 

 

In the IABP console, during the balloon activation period, other than aortic systolic and diastolic 

pressure, the peak aortic diastolic pressure (PADA) is also displayed (refer to Figure 3-61). In a 

clinical setting, the augmentation effect of IABP is normally inferred from the magnitude of PADA. 

A CIMS balloon pump implanted in the body is designed to be as simple and unobtrusive as 

possible; although there is a pressure sensor, it has no flowrate sensor, thus no information on 

perfusion levels. The question is whether PADA is the suitable indicator for increased systemic 

and coronary circulation. 

The answer to that question lies in the association between variables. To determine whether the 

association were statistically significant or not, the Pearson’s correlation coefficient, r, was 

calculated, also the coefficient of determination, R2, which described the strength of the 

association. The correlation, r, was calculated by normalizing covariance with standard deviation 

of the variables as Eq. 3.5 (Field, 2009): 

    
     

    
 
               

         
  3.5  

 

In the case of normality violation, the Spearman test, rS, a non-parametric test was used.  Since 

the only interest was whether any correlation relationship existed between variables, two-tailed 

hypothesis was chosen. Statistical software, SPSS, was used to carry out the correlation test.  

 

3.4.2.7 Experimental Factors and Response Outputs 

 

The experimental factors investigated in this study are: 

i) Balloon inflation timing (Inflation) 

ii) Balloon deflation timing (Deflation) 

iii) Helium gas volume (GasVol) 

iv) Balloon pump design (Device Design) 

v) State of arterial compliance (Arterial Compliance) 

vi) Types of aortic heart valve (Aortic HV) 
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The MCL was set at failing heart (HF) condition, which was the fixed experimental factor for all 

experiments. Obviously, experiments where all experimental factors were combined and carried 

out more than once would be difficult, as would the complexity of analysis and interpretation of 

result, since there would be 26 = 64 combination of factors for one replication. If the above 

experimental factors were to be carried out concurrently, with two levels for each factor, two 

replications would mean 128 rounds of experiments. Clearly, a more efficient manner of 

experimentation was needed; factorial design experiment method fulfilled the requirement.  

A factorial design experiment makes the experimental procedure a much easier and more 

effective exercise. A 2 x 2 factorial experiment with two replications only requires 22 × 2 = 8 

rounds of experiments, while three replications requires 22 × 3 = 12 rounds.  There were five 

experiments conducted and the explanation for each experiment is presented below.  

In this study, the response outputs that were of importance are: 

1) cardiac output (CO) 

2) left coronary artery flowrate (QcorMean) 

3) aortic systolic pressure (AoPmax) 

4) aortic end diastolic pressure (AoEDP) 

5) Pressure difference, dP 

The ANOVA/SRH analysis was carried out for the first four response outputs. Pressure difference, 

dP, is defined as per Eq. 3.6, and was used for correlation analysis; Figure 3-67 illustrates the 

relationship: 

      
              

                 
  3.6  

 

The numerator was divided by the average of non-assisted circulation AoPmax to normalize 

pressure differences between AoPmax and PADA with regards to non-assisted AoPmax; this was 

done to eliminate between-group and within-group variability. 
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Figure 3-67: dP is the difference between PADA and AoPmax, normalized with AoPmax.  

 

All four major experiments shared these research questions: 

1) Which combination of experimental factors optimised the response output?  

2) What effects do the experimental factors have on the response output trend? 

 

A) TIMING 

This experiment was to determine the effect of different inflation and deflation timings. Once the 

optimal setting was figured out, it was used as the fixed experimental factor throughout the later 

experiments.  

Figure 3-68 illustrates the inflation and deflation timing point selections on aortic pressure 

waveform. There are three points for inflation timing (A, B, C), while four points for deflation 

point (G, H, I, J). Those points also synchronise to the aortic flowrate cycle which indicates aortic 

valve opening/closing position as tabulated in Table 3-21. 
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Figure 3-68: The targeted inflation and deflation timing point on aortic pressure waveform 

 

Table 3-21: Inflation/Deflation points at aortic pressure waveform and its corresponding place in the cardiac cyle 

Timing Point Note 

Inflation 

A Early inflation, aortic valve still opened but aortic flowrate decreasing 

B Dicrotic notch. Aortic valve closed 

C Late inflation. Aortic valve closed 

Deflation 

G Early deflation.  

H Optimum point 1. Aortic valve begins to open 

I Optimum point 2. Early systole where fluid is ejected into the aorta 

J Late deflation. Aortic valve opened, fluid ejected at full force.  

 

The reason deflation point had one more point selected was due to preliminary testing indicating 

deflation timing had considerable effect on the circulation; as such, more emphasis was given to 

deflation timing.  

Prior to any experiments, the timing knobs were adjusted so that balloon inflation was set at the 

dicrotic notch, as displayed on the IABP console (refer to Figure 3-60) following Figure 3-68, the 

corresponding point on the timing knob was marked as the ‘B’ point. A similar exercise was 

carried out for ‘H’ deflation point and other points (A, B, G, I, J). There are 12 combinations for the 

3 x 4 factorial ANOVA experiment as tabulated in Table 3-22. 
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Table 3-22: The combination of for each of timing's experimental factors and levels 

TIMING 
Deflation 

G H I J 

Inflation 

A A-G A-H A-I A-J 

B B-G B-H B-I B-J 

C C-G C-H C-I C-J 

 

B) Helium Gas Volume (GasVOL) 

The IABP console used in this experiment operated using Helium gas. The effect of different 

volumes of Helium gas in conjunction with different balloon innate compliances was explored in 

this experiment. 

Table 3-23 tabulates the combinations between balloon pump type and Helium gas volume. Two 

levels of balloon innate compliance versus three levels of Helium gas volume were set. The 

balloon innate compliance levels, termed as Device Design, were represented by two kinds of 

balloon pump; the straight body (SB) and the compliant body (CB). The three levels of Helium gas 

volume (20, 25 and 30 mL) were set so that the Helium gas level could be categorised to low, 

optimum and high. 

Table 3-23: The combination of balloon compliance and Helium gas volume 

Helium Gas Volume GasVol 

Device Design 20 mL 25 mL 30 mL 

Straight body (SB) SB & 20 mL SB & 25 mL SB & 30 mL 

Compliant body (CB) CB & 20 mL CB & 25 mL CB & 30 mL 

 

C) COMPLIANCE  

In this 2 × 2 factorial design experiment, the effect between Device Design factor with two levels 

(SB, CB), and Arterial Compliance factor, also with two levels of arterial compliance was explored. 

The arterial compliance levels were set at high compliance (C = 2.5 mL/mmHg) and low 

compliance (C = 1.25 mL/mmHg).  
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The balloon innate compliance was different between the SB (0 mL/mmHg) and CB (0.11 

mL/mmHg), which made balloon pump compliance a dependent variable; however in this study 

both SB and CB were defined as independent factors. 

A table tabulating the interacting experimental factors is shown in Table 3-24: 

Table 3-24: A 2 x 2 factorial design between device design and arterial compliance 

Device Design vs.  

Arterial Compliance 
Device Design 

Arterial Compliance Straight body (SB) Compliant body (CB) 

High (C2.5) SB - C2.5 CB - C2.5  

Low (C1.25) SB - C1.25 CB - C1.25 

 

D) Type of Heart Valve vs. Arterial Compliance vs. Deflation Timing 

The last experiment scheduled for this flow/pressure study was made of three different 

experimental factors:  

1) The types of heart valve (MHV or Bio-Prosthetic),  

2) Arterial Compliance (high or low) and  

3) Deflation timing (early, optimum and late).  

It is in this batch of experiments that the effect of heart valve can be examined critically. The 

combination of those three experimental factors is illustrated in Figure 3-69. The 2 × 3 × 2 cube 

explores all possible combinations of these three experimental factors; there are 12 combinations 

for one replication. 

 

Figure 3-69: The combination of three experimental factors is illustrated by this cube 
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With increased factors, the randomised order combination posed a specific difficulty. The 

changing of parameters in the MCL were still within the same heart valve; however, the action of 

changing two different heart valves in a randomized order might have introduced unnecessary 

systematic bias and high experimental errors into the experiment; so the decision to separate 

between the types of valve (MHV & Bio-Prosthetic heart valve) was taken, and in effect 

conducting two different 2 × 3 factorial experiments. 

Table 3-25 tabulates the combination of Deflation and Arterial Compliance factors for one level of 

heart valve type.  

Table 3-25: 2 x 3 table combination of deflation timing and arterial compliance 

Deflation vs. Arterial 

Compliance 
Deflation  

Arterial compliance Early (B-G) Optimum (B-I) Late (B-J) 

High (C2.5) C2.5 & B-G C2.5 & B-I C2.5 & B-J 

Low (C1.25) C1.25 & B-G C1.25 & B-I C1.25 & B-J 

 

To maintain a tight control on systematic bias and experimental error, the MCL was turned off 

and started again after several combination tests. In statistical terms, this method is called 

‘blocking’. The data were analysed separately; however the conclusion was drawn from both 

experiments. 

All four types of experiments are tabulated in Table 3-26. 

Table 3-26: Experimental factors and associated levels in respective factorial design experiment 

Type of experiment Experimental factor Level 

TIMING 
Inflation  A,B,C 

Deflation G,H,I,J 

Helium Gas Volume (GasVOL) 
GasVol V20, V25, V30 

Device design SB, CB 

COMPLIANCE 
Arterial Compliance C2.5, C1.25 

Device design SB, CB 

HEART 

VALVE 

Heart Valve Type:  

(MHV, BioPHV) 

Deflation G, I, J 

Arterial Compliance C2.5, C1.25 
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3.4.2.8 Data Operation 

 

All data obtained from the experiments was processed using Microsoft Excel 2007 and Matlab ® 

software before being fed into SPSS statistical software for further analysis. 

Depending on the nature of the data (parametric or non-parametric), appropriate statistical tests 

were conducted as illustrated in Figure 3-66. If the data were non-parametric in nature, some of 

the calculations were done using Microsoft Excel 2007 software (Microsoft Inc., Redmond, 

Washington, USA).  

The data fed into the SPSS statistical analysis software was for determining the effect on response 

outputs from multiple experimental factors, and not the difference between before and after 

balloon activation. If the latter was to be evaluated, the Student t-test or one-way ANOVA would 

be sufficient, and from initial experiments, it was found that balloon activation augmented 

haemodynamics characteristics (systemic and coronary perfusion, reduction of AoEDP etc.) 

significantly most of the time. Student t-test results are compiled in APPENDIX F – Student T-test 

Results. Factorial experiment allows for a more thorough understanding on effect from multiple 

factors compared to a single factor analysis.  

The data used for the statistical analysis consisted of the ratio between each sample of the 

assisted flow and the mean of non-assisted flow. This was done to preserve the variability of the 

sample. If the ratio were calculated between mean assisted flow over mean non-assisted flow, 

yielding one value per combination, then only three values per combination (due to three 

repetitions) would be analysed; the result might not reflect the actual effect from the experiment. 

Instead, if each sample in assisted flow is divided by one mean value of non-assisted flow, then 

180 values (90 per combination for 3 repetitions) are yielded. To facilitate easier understanding, 

results are presented in percentage (%) rather than ratio. The ratio and percentage were 

considered continuous data, a prerequisite for parametric tests. 

 

3.4.2.9 Endocardial Viability Ratio 

 

The endocardial viability ratio (EVR) is a suitable performance index for counterpulsation devices; 

diastolic pressure augmentation leads to increased aortic pressure area, and this is included in the 

EVR calculation. Figure 2-30 is an example of DPTI and TTI definition from an in vivo study. Figure 

3-70 illustrates how DPTI and TTI is defined from left ventricular pressure and aortic pressure 
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measured in the MCL. The tension time index (TTI) is the integral of area under the left ventricular 

pressure (LVP) waveform during systole, defined starting from sudden LVP increase until the 

dicrotic notch (the light grey shaded part). The diastolic pressure time index (DPTI), is the integral 

of area between the aortic pressure and the left ventricular pressure, which is the dark grey area 

in Figure 3-70. The EVR value, according to Eq. 1.1, may be calculated for non-assisted and 

assisted circulation. 

 

Figure 3-70: Diastolic augmentation due to balloon activation increases aortic pressure increasing myocardial oxygen 
supply, indicated by diastolic pressure time index (DPTI) shaded in dark grey; while myocardial oxygen demand is 
defined by tension time index (TTI) which is the light grey shaded area under systolic curve of the left ventricular 
pressure. The ratio of myocardial oxygen supply and demand is endocardial viability ratio (EVR).  

 

Only 20 samples from each segment were randomly extracted, since the variances of samples are 

very small. Statistical tests were carried out to determine whether or not the EVR value before 

and after balloon activation was significantly different. A factorial analysis was carried out to 

discern the effect of different balloon pump designs and arterial compliances on EVR. Depending 

on equality of variance and normality of data distribution, parametric or non-parametric tests 

were used. 

 

Balloon 

augmentation starts 
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3.5 Flow Visualisation 

The flow visualisation experimental method is elaborated here. 

3.5.1 Introduction 

 

Flow visualisation is an essential tool in understanding fluid flow phenomena as well as a suitable 

tool to validate a hypothesis. Figure 3-71 illustrates the relationship between pressure and 

flowrate during balloon activation. The Helium gas pressure inflates and deflates in diastole. At 

end-diastole, pressure inside the balloon decreased suddenly to about -40 mmHg in the balloon 

pump. Consequently, the deflation of the balloon pump near the heart valve caused a sudden 

pressure reduction, and this decreased the resistance against which the left ventricle had to pump 

against; it was hypothesised that this caused the aortic valve to open prematurely. During 

preliminary testing, it was observed that valve would appear to opened slightly longer when the 

balloon pump was activated. 

To ascertain that balloon pump activation prolonged aortic valve leaflet opening time, it was 

necessary to record the valve leaflet motion during cardiac cycles.  

 

Figure 3-71: Pressure and flowrate waveform. The sudden decrease of Helium gas pressure is illustrated by IPBP line 
and coincides with negative flowrate of the aortic section. 
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3.5.2 Flow Visualisation Setup 

 

To observe the valve leaflet motion, a few modifications were made to the MCL. The top part of 

the LV silicone sac, was modified by replacing the original silicone tube with a transparent acrylic 

tube (ID 26 mm) and the aortic MHV was fixed in place using a Loctite silicone sealant, shown in 

Figure 3-72. The mitral valve was still fixed at the original silicone tube housing.  

 

Figure 3-72: The top part of the LV silicone sac with a clear acrylic pipe fixed inside it with a bileaflet aortic MHV. 

 

A different kind of balloon pump housing made of glass was used for flow visualisation 

experiment shown in Figure 3-73. The internal diameter of the glass balloon pump was the same 

as the rapid prototyped balloon pump.  

 

Figure 3-73: Balloon pump housing made of glass 

 

Figure 3-74 and Figure 3-75 show the setup of the camera and red LED at the MCL to record the 

aortic bileaflet valve motion. The digital camera (SP-560UZ, Olympus Inc., Japan) is capable of 
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capturing high quality video (650 x 480 pixels at 30 frames/s). The camera’s automatic white 

balancing was used during the video recording.  

 

Figure 3-74: The setup for flow visualisation of the valve motion. A red LED was placed in front of the acrylic pipe 

Figure 3-75 shows the zoomed in picture of the camera lens. It was set up very near to the acrylic 

pipe and placed at a suitable angle to record the leaflet motion as closely as possible. A red LED 

was placed in front of the acrylic pipe as a marker for video recording sequence. Macro focus 

mode was used. 

 

Figure 3-75: Zoomed in picture of the camera and the MCL rig 
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The video was taken and transferred to the PC for post-analysis process using a free multi-type 

video editor42 shown in Figure 3-76. It was used to slice the original video recording into 

consecutive still pictures. Since the original video was taken at 30 frames/s, the resulting still 

pictures were 30 pictures for each second of video record. The interval between pictures was 

calculated to be 1/30 seconds i.e. 0.033 seconds. A sample of the resulting pictures is lined up as 

demonstrated at Figure 3-77. 

 

Figure 3-76: A snapshot of the Avidemux software used to slice still pictures from a video recording 

The aim of this experiment was to validate the hypothesis that the aortic valve opened longer in 

assisted circulation. Two different videos were taken; a non-assisted circulation and assisted 

circulation, each for 15 seconds. MCL setting was set to heart failure (HF) condition with soft 

arterial compliance at C = 2.5 mL/mmHg. There were two settings for heart rate, 54 and 60 

beats/min. 

     

1 2 3 4 5 

     

6 7 8 9 10 

Figure 3-77: A sample of the consecutive still picture from a video of bileaflet valve motion during assisted circulation 

                                                           
42

 Avidemux ,Version 2.5.4 (r7200), Mean, http://www.avidemux.org 

http://www.avidemux.org/


Chapter 3 Methodology 
 

156 
 

A.Z.M. Khudzari 

To determine the amount of time the valve opens up, visual inspection of each strip of 30 images 

for 10 seconds was done (in the case of 60 beats/min). The number of still images where the valve 

was open was summed. For example, in the above Figure 3-77, the still image from frame number 

four (4) is the first image to be counted. An average from each second of 30 images was 

computed. After confirming the normality of the data distribution, appropriate statistical test was 

performed. 

 

3.6 Summary 
  

This chapter presents the methods used in this study. For the in vitro experiments, the balloon 

pump housing comprised of a rigid body, the manufacturing method has been explained. Silicone 

elastomer was used as the deformable material. 

An experimental rig appropriate to test the in vitro CIMS balloon pump was needed. The human 

mock circulatory loop (MCL) was designed and assembled to simulate correct physiological 

waveforms. Procedures to operate the MCL, IABP console, and data record was presented. 

Raw haemodynamic data recorded needed to be sorted out and analysed. A method to 

accomplish that, and a brief introduction to statistical tests was also presented. The Student’s t-

test and Analysis of Variance (ANOVA), depending on the suitability, were used to determine 

whether the effect of experimental factors to the variables was statistically significant or not. 

Where the data violated the ANOVA test’s fundamental requirement of parametricity, a 

nonparametric test was employed. Description of the nonparametric test was given. The 

experimental factors chosen to determine the CIMS balloon pump haemodynamic characteristics 

was laid out, as well as the response outputs. The order of the experiments was randomised. The 

justification, and method to randomise has been presented. Data from experiments were 

analysed using specialised statistical analysis software, SPSS.  

The effect of balloon activation on flow was investigated using a flow visualization technique in 

the last subchapter. A different MCL setup was required to facilitate video recording.  Avidemux 

(Version 2.5.4 (r7200), Mean, http://www.avidemux.org) was used to divide the video footage 

into digital still images. Visual inspection of images was carried out to count the number of frames 

in which the valve leaflet was open. The mean difference of opened valve period between non-

assisted and assisted circulation was analysed using the Student t-test.  

http://www.avidemux.org/
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Chapter 4 In vitro Balloon Pump Characteristics 
 

This chapter presents and discusses the experimental results of the in vitro CIMS balloon pump 

tests. Characteristics that were thought to be important to the efficacy of CIMS balloon pump 

were the inflation and deflation timing, the volume of Helium gas, the innate compliance of the 

balloon pump, the arterial compliance and the type of heart valve used in conjunction with the 

CIMS balloon pump. Response outputs from each experiment are the cardiac ouput (CO), left 

coronary artery flowrate (QcorMean), aortic systolic pressure (AoPmax), aortic diastolic pressure 

or end-diastolic pressure (AoEDP) and the pressure difference, dP, between peak aortic diastolic 

pressure (PADA) and peak aortic pressure (AoPmax). The correlations between dP with CO and 

QcorMean are presented. 

 

4.1 Introduction 

 

In each subchapter, results of the above response outputs and correlation tests are presented. 

Appropriate statistical analyses were performed according to the algorithm explained in chapter 

3. Depending on the equality of variance of the data between groups and within groups, and the 

normality of data distribution, a parametric two-way ANOVA with replication test or the 

equivalent non-parametric ANOVA (the Scheirer-Ray-Hare (SRH)) test were employed. Suitable 

post-hoc analysis was performed if one of the experimental factors had more than two levels and 

the result was significant from the ANOVA or SRH test. 

One counterpulsation device performance index widely used is the endocardial viability ratio 

(EVR). The EVR value signifies balance between myocardium oxygen supply and demand. A 

subchapter is dedicated for EVR value analysis using COMPLIANCE experiment data.  

At the end of each subchapter, the overall result of experimentation is discussed, including the 

implications to heart failure (HF) treatment, and also how the results affected the future design of 

in vivo CIMS balloon pump. In 4.6 Overall Discussion, the results from all five experiments are 

corroborated and discussed more thoroughly and compared with available HF treatment, 

especially the types utilising positive displacement method (e.g. IABP). The conclusions were then 

drawn from all the results. 
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4.2 Balloon Timing 

 

The effect of different balloon inflation and deflation timing was investigated. There were three 

different levels (A, B, C) for Inflation factor, four levels (G, H, I, J) for Deflation factor making up a 3 

× 4 factorial design experiment. Experimental factors held constant were 1) heart condition in 

heart failure, 2) device design through the use of a straight body balloon pump (SB), 3) arterial 

compliance set at high ,C = 2.5 mL/mmHg (C2.5), 4) Helium gas volume set at 25 mL (V25), and 5) 

the aortic heart valve used was a mechanical heart valve (MHV)43.  

It was intended that the outcome from this experiment should identify the optimum point for 

balloon activation and suggest a trend in support yielded as a function of activation timing when 

the CIMS balloon pump was placed in the ascending aorta. 

 

4.2.1 Result 

 

 As tabulated in Table 3-6, there are 12 combinations of Inflation and Deflation factors, making up 

one run of experiment, which were randomised and repeated three times each. Experimental 

data were analysed for cardiac output (CO), left coronary artery mean flowrate (QcorMean), 

aortic systolic pressure (AoPmax), aortic end-diastolic pressure (AoEDP). Lastly correlations 

between pressure difference in diastole, dP against CO and QcorMean are presented. 

All values are the percentage ratio between assisted and non-assisted flow (refer to 3.4.2.8 Data 

Operation). 

 

4.2.1.1 Cardiac Output (CO) 

 

The aortic flowrate waveforms are illustrated in Figure 4-78 and Figure 4-79; all waveforms are 

normalised against the cardiac output of the non-assisted case. The former illustrates waveform 

when inflation point is fixed at point B, while deflation points are varied. There are distinct 

differences between early and late deflation, waveform (B-G) and (B-J), but not so much 

                                                           
43

 St. Jude Medical (SJM) Standard® Bileaflet Valve, St. Jude Medical, Minnesota, USA 
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difference between waveform (B-H) and (B-I). For non-assisted aortic flowrate waveform shape, 

please refer to Figure 3-59. 

 

Figure 4-78: The pulsatile flowrate with varying deflation points with point B as constant point, normalised against 
non-assisted cardiac output (the ordinate is instantaneous flow/non-assisted C.O.) 

 

 

Figure 4-79: The pulsatile flowrate with varying inflation point with constant deflation point, I, normalised 
normalised against non-assisted cardiac output (the ordinate is instantaneous flow/non-assisted C.O.) 

 

Figure 4-79 illustrates the effect on pulsatile flowrate when balloon pump inflation points were 

varied while deflation point remained constant at point (I). The height of the peak in assisted flow 

increases with later inflation (C-I is greater and later than A-I). 

To quantify the significance of different balloon pump inflation and deflation timing, the cardiac 

output i.e. the mean flowrate is compared between non-assisted and assisted circulation. 
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Subsequent results are all presented in percentage difference between assisted and non-assisted 

circulation. 

The means and standard deviations (SD) of Cardiac Output (CO) for each combination of Inflation 

and Deflation factor is tabulated in the Table 4-27. 

 

 

Table 4-27: Means and standard deviation (in brackets) for CO of Timing experiments  

CO 
Deflation Row 

Mean G H I J 

 
A 6.58 6.39 5.75 5.24 5.99 

Inflation 

 (2.28) (2.13) (2.64) (2.79) 
 

B 6.77 6.17 7.03 4.26 6.06 

 (1.50) (2.05) (2.27) (2.23) 
 

C 3.90 5.33 5.53 3.27 4.51 

   (1.72) (2.06) (1.61) (2.13) 
 

Column Mean 5.75 5.97 6.10 4.26 5.52 

 

The overall effect of balloon timing variations on the mean value of CO was a minimal 5.52% 

inflow augmentation compared to non-assisted flow (range: 3.27% to 7.03%). The mean value for 

both row and column had little difference, with the exception of deflation point J at 4.26%. 

Further statistical analysis was performed to determine whether any of the differences were 

statistically significant.  

According to statistical test flow chart (refer to Figure 3-66), equality of variance must be checked 

first, using Levene’s test, and Table 4-28 shows that the data in this experiment had an unequal 

variance (p < 0.001).  

Table 4-28 : Levene’s test for equality of variance 

Levene's Test of Equality of Error Variances 

Dependent Variable: CO 

F df1 df2 Sig. 

6.215 11 1068 .000 
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Since the homogeneity of variance requirement was not met, the non-parametric SRH test, 

(equivalent to two-way ANOVA with replication) was used. In Table 4-29, the SRH test result is 

tabulated.  

Table 4-29: Non-parametric SRH test result for Timing experiment 

Source p-value 

Inflation 2.89 × 10-21 

Deflation 2 × 10-21 

Inflation × Deflation 1.36 × 10-8 

 

Table 4-29 shows the result of SRH test, tabulating experimental factors at Source column, and 

the p-value. The full SRH test result is tabulated in Appendix C (C-1-1). 

Further post-hoc test was carried out to determine which combination actually yielded a 

significant mean difference.  

Post-Hoc (Inflation) 

The algorithm for non-parametric post-hoc test, the Nemenyi test, is presented in Appendix B (B-

2). A Kruskal Wallis test was carried out for Deflation factor which comprised of three levels for 

CO response output. The Mean Rank result from the Kruskal Wallis test was then used to calculate 

Sum Rank (Mean Rank × N), the level rank order was determined according to highest to lowest 

Sum Rank order as tabulated in Table 4-30. 

Table 4-30: Mean Rank result from the Kruskal Wallis test with additional calculations of Sum Rank and ranking order 
of each level. k: number of levels  

Response Output Inflation N Mean Rank Sum Rank rank 

CO A 360 597.09 214952.4 2 

B 360 614.13 221086.8 1 

C 360 410.28 147700.8 3 

Total 1080 
 

k = 3 

     

SE= 5918.142 
 

The level rank order was then used in Nemenyi test; the results are tabulated in Table 4-31. The 

difference of rank sum between levels was calculated by subtracting the highest rank with the 

lowest (represented by Rb-Ra), and then with the next lowest rank.  The test statistics, q, was 

computed by dividing the difference between rank sum with the SE, and compared with a 
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threshold value: q(α, ν ,k), where α = 0.05, ν = ∞, and k = 3 (Zar, 2010). If q > q(0.05,∞,3) then 

there is enough evidence to reject H0.  

The hypothesis for the test are “H0 : there is no statistical significance in mean difference between 

two groups; and HA :  there is statistical significance in mean difference between two groups ”. 

Table 4-31: The Nemenyi test result for Inflation factor 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

B 
 

C 73386 5918.142 12.4 3.314 Reject H0 YES 

B 
 

A 6134.4 5918.142 1.04 3.314 Accept H0  
A 

 
C 67251.6 5918.142 11.36 3.314 Reject H0 YES 

 

Table 4-31 reports Nemenyi test results; the mean differences in (B vs. C) and (A vs. C) were 

significant but not (A vs. B). This means that for CO augmentation, there were no significant 

differences between point A and B i.e. early inflation and inflation timed at the dicrotic notch 

yielded similar amounts of CO augmentation.  

 

Post-Hoc (Deflation) 

Similar to the Inflation factor section, the Mean Rank result computed using a Kruskal Wallis test 

was used to compute Sum Rank for each level, thereafter rank-order was determined, and 

tabulated in Table 4-32. The null hypothesis is the same as with the Inflation section i.e. H0 : there 

is no statistical significance in mean difference between two groups.  

Table 4-32: Kruskal Wallis test result and the computed Sum Rank. Rank is assigned accordingly. k: number of levels 

Response Output Deflation N Mean Rank Sum Rank rank 

CO G 270 574.28 155055.6 3 

H 270 600.54 162145.8 2 

I 270 605.46 163474.2 1 

J 270 381.72 103064.4 4 

Total 1080   k = 4 

     

SE = 5125.261 

 

Pairwise comparison was carried out for Deflation factor comprised of four levels (G, H, I & J) by 

subtracting sum rank of the highest rank with the lowest one, and then the second lowest and so 

on. Since α = 0.05, ν = ∞, and k = 4, then q(0.05,∞,4) = 3.633. Null hypothesis (that there is no 
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significance difference of CO augmentation with deflation timing) was rejected if the q value for 

each comparison was greater than threshold value of 3.633 ( for q(0.05,∞,4), according to (Zar, 

2010).  The results are presented in Table 4-33.  

 

Table 4-33: The Nemenyi test result for Deflation factor 

 
vs 

 
(Rb-Ra) SE q q(0.05,∞,4) Result significant 

I 
 

H 1328.4 5125.261 0.259187 3.633 Accept H0  
I 

 
G 8418.6 5125.261 1.64257 3.633 Accept H0  

I 
 

J 60409.8 5125.261 11.78668 3.633 Reject H0 YES 

H 
 

G 7090.2 5125.261 1.383383 3.633 Accept H0  
H 

 
J 59081.4 5125.261 11.52749 3.633 Reject H0 YES 

G 
 

J 51991.2 5125.261 10.14411 3.633 Reject H0 YES 

 

Table 4-33 tabulates the result of Nemenyi post-hoc test for Deflation factor. Only comparison 

with point (J) yielded a statistically significant mean difference, i.e. (I vs. J), (H vs. J) and (G vs. J). In 

contrast, the percentage of CO yielded amongst point G, H and I, which correspond to deflation 

earlier than point J (refer to Table 3-18), were statistically similar.  

 

Discussion 

Augmentation of CO when subjected to different inflation and deflation points was quite minimal 

as demonstrated in Table 4-27, where the grand mean of CO was a 5.52% increase compared to 

non-assisted flow. Both experimental factors, Inflation and Deflation, showed significant main 

effect, although for Inflation factor only the mean difference with point C was significant, while 

results from early inflation (point A) and optimum inflation (point B) were deemed to be similar. 

Figure 4-80 illustrates the means of CO percentage difference due to balloon pump activation 

from all combinations of Inflation and Deflation factors. Every combination with inflation point A 

(early) and B (optimum) yielded higher CO augmentation percentage compared to point C (later), 

while the highest output was yielded from combination B-I. Early and optimum (at dicrotic notch) 

inflation were better for CO augmentation than late inflation.  
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Figure 4-80: Means of for all combinations of experimental factors for CO output 

While for Deflation point, mean differences amongst points G, H and I (.e. from early deflation to 

optimum point 2), were found to be similar, this was not so for point J. Since any combination at 

point J yielded lower mean value; later deflation past aortic valve opening is not advisable. 

The best combination of inflation and deflation timing for CO augmentation is B-I. The inflation 

point B corresponding to the dicrotic notch is the same suggested inflation point for IABP. The 

deflation point I, corresponding to just after aortic valve opening, is different. This is discussed 

further in subchapter 4.2.2.  

 

4.2.1.2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

Only important statistical test results are presented hereafter for the sake of clarity and brevity, 

while the supporting results and analysis are presented in Appendix C (C-1). Figure 4-81 and 

Figure 4-82 illustrate the left coronary artery (LCA) flow waveform; the former is with fixed 

inflation timing (point B: dicrotic notch), while the later has a fixed deflation timing (point I). Grey 

shaded areas indicate diastole. When deflation points are varied, the negative peaks vary 

accordingly.  There is clear difference between B-G and B-J, but similar waveform from B-H and B-

I.  
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Figure 4-81: The pulsatile waveform of left coronary artery (LCA) flowrate when inflation point at dicrotic notch is 
fixed while deflation point is varied. Grey areas indicate diastole period (the ordinate is LCA flowrate/non-assisted 

mean LCA flowrate) 

 

 

Figure 4-82: The pulsatile waveform of left coronary artery (LCA) flowrate when inflation point at dicrotic notch is 
varied while deflation point is fixed. Grey areas indicate diastole period (the ordinate is LCA flowrate/non-assisted 

mean LCA flowrate) 

 

Figure 4-82 shows that varying balloon pump inflation timing affects secondary peak in diastole. 

Only balloon inflation at dicrotic notch (B-I) produces secondary peak, while the other two did 
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not. The difference between the mean LCA flowrate of non-assisted and assisted circulation is 

quantified as percentage and used for analysis. 

Table 4-34 reports the means and standard deviations (SD) of flow augmentation on the left 

coronary artery (LCA) for each combination of Inflation and Deflation factors. 

Table 4-34:  Means and SDs (in brackets) for QcorMean of Timing experiment 

QcorMean 
Deflation 

Row Mean G H I J 

Inflation 
 

A 8.78 8.67 9.89 8.54 8.97 

 (2.05) (3.14) (1.67) (1.75) 
 

B 7.98 10.25 12.07 8.38 9.67 

 (1.63) (2.26) (1.97) (1.78) 
 

C 9.21 9.07 9.34 7.48 8.78 

 (0.80) (2.08) (2.87) (1.44) 
 

Column Mean 8.66 9.33 10.43 8.13 9.14 

 

The grand mean of flow augmentation for QcorMean was 9.14% (range: 7.48% to 12.07%). There 

was little difference in inflation (row) and deflation (column) means except for column I.  Further 

statistical analysis was carried out to determine the statistical significance of mean differences 

amongst these combinations. 

Table 4-35: The SRH test result for QcorMean of TIMING experiment 

Source p-value 

Inflation 8.57 × 10-5 

Deflation 9.48 × 10-36 

Inflation×Deflation 3.49 × 10-16 

 

Non-parametric SRH test, equivalent to two-way parametric ANOVA, was used to analyse the 3 × 

4 factorial experiment. The result is tabulated in Table 4-35. Inflation, deflation, and interaction all 

show significant effects (p < 0.001), so the Nemenyi post-hoc test was carried out to discern if any 

levels were significantly different from the others. The results are tabulated in Table 4-34 and 

Table 4-35. 

 

 

 



Chapter 4 In vitro Balloon Pump Characteristics 
 

167 
 

A.Z.M. Khudzari 

Post-Hoc (Inflation) 

 

Table 4-36: The post-hoc test result from Nemenyi test for Inflation point 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

B 
 

C 34308 5918.142 5.79709 3.314 Reject H0 YES 

B 
 

A 27230.4 5918.142 4.601174 3.314 Reject H0 YES 

A 
 

C 7077.6 5918.142 1.195916 3.314 Accept H0  
 

The hypothesis of the post-hoc test is similar as presented in 4.2.1.1 subchapter. Only the mean 

difference in two combinations were significant, (A vs. B) and (B vs. C), but not (A vs. C). This 

suggests that early and late inflation rendered the same amount of QcorMean augmentation. 

Point B (dicrotic notch) yielded a significant mean difference compared to other inflation points.  

 

Post-Hoc (Deflation) 

Table 4-37: The Nemenyi test result for Deflation point 

 
vs 

 
(Rb-Ra) SE q q(0.05,alpha,4) Result significant 

I 
 

J 88338.6 5125.261 17.23592 3.633 Reject H0 YES 

I 
 

G 66654.9 5125.261 13.00517 3.633 Reject H0 YES 

I 
 

H 38909.7 5125.261 7.59175 3.633 Reject H0 YES 

H 
 

J 49428.9 5125.261 9.644172 3.633 Reject H0 YES 

H 
 

G 27745.2 5125.261 5.413422 3.633 Reject H0 YES 

G 
 

J 21683.7 5125.261 4.23075 3.633 Reject H0 YES 

 

It was found that all mean differences amongst the six combinations were significant, i.e. each 

deflation point had unique contribution to QcorMean augmentation with the highest yield by 

point (I) i.e. just after aortic valve opening 
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Figure 4-83: Mean value for all combinations of Timing experiment 

Both experimental factors and the interaction effect were significant. Since the interaction effect 

was reported to be significant, future prediction of optimum inflation point cannot be made 

without consideration of deflation point and vice-versa. However, there is a clear indicator for 

highest yield of QcorMean augmentation (at combination B-I); this result is similar to the previous 

result wherein this combination also yielded the maximum output response for CO. 

 

4.2.1.3 Aortic Systolic Pressure (AoPmax) 

 

The effect of varying inflation and deflation balloon pump is illustrated in Figure 4-84 and Figure 

4-85. Similar to previous subchapter, each figure shows how aortic pressure waveform changes 

when one factor is varied while the other is fixed. Pressures are normalized against the non-

assisted mean arterial pressure (so the ordinal in these graphs is a ratio of the aortic 

pressure/non-assisted MAP). 
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Figure 4-84: Aortic pressure waveform (ratio) when balloon inflation fixed at the dicrotic notch (B) while deflation 
timing is varied. (The ordinate is aortic pressure/non-assisted MAP) 

The effect of early and late deflation is visible in Figure 4-84, but not much difference is evident 

between waveform B-H and B-I. 

 

Figure 4-85: Aortic pressure waveform (ratio) with varying inflation points and fixed deflation point at (I) (The 
ordinate is aortic pressure/non-assisted MAP) 

 

Inflation timing differences affect aortic pressure waveform shapes as illustrated in Figure 4-85; 

later inflation comes is seen in a later peak value in AoP; the value of which rises from A to B and 
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falls again from B to C. No appreciable difference in aortic end-diastolic pressure is evident. From 

these data, the aortic systolic and end-diastolic pressure is measured and used for analysis. 

The means and standard deviations (SD) of aortic systolic pressure (AoPmax) augmentation in 

percentage for each combination of Timing experiment is tabulated in Table 4-38.  

Table 4-38: Means and SDs (in brackets) for AoPmax for each combinations of Timing experiment 

AoPmax Deflation Row 
Mean G H I J 

Inflation 

A 0.18 0.58 -1.28 -1.40 -0.48 

  (2.34) (2.98) (3.11) (3.04)  
B 1.71 0.58 0.91 -2.55 0.16 

  (1.40) (1.92) (2.13) (2.97) 
 

C 0.59 0.44 0.60 -2.78 -0.29 

  (0.81) (2.03) (1.75) (3.05) 
 

Column Mean 0.83 0.53 0.08 -2.24 -0.20 

 

The grand effect of experimental factors Inflation and Deflation on aortic systolic pressure was 

reported to be a minimal -0.2 % decrease. The effect of Inflation factor did not show prominent 

differences as tabulated in the row means (range: -0.48% to +0.16%); the range was marginally 

bigger for Deflation factor (range: -2.24% to +0.83%).  

Table 4-39: The SRH test result for AoPmax for Timing experiment 

Source P-value 

Inflation 2.00×10-6 

Deflation 1.29×10-36 

Inflation × Deflation 1.21×10-11 

 

Table 4-39 reports the non-parametric SRH test. The Inflation, Deflation and interaction factors all 

showed significant main effects (p < 0.001). 

The significance of interaction result from the SRH test prompted further post-hoc testing, using 

the Nemenyi test of Inflation and Deflation factors to determine which level was significantly 

different from others. The results are tabulated in Table 4-40 and Table 4-41. 
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Post-Hoc (Inflation) 

Table 4-40: The Nemenyi test result for Inflation factor 

 
vs 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

B 
 

A 40237.2 5918.142 6.79896 3.314 Reject H0 YES 

B 
 

C 32932.8 5918.142 5.56472 3.314 Reject H0 YES 

C 
 

A 7304.4 5918.142 1.23424 3.314 Accept H0  
 

Only two combinations showed a significant mean difference (A vs. B) and (B vs. C), but not (C vs. 

A). This result suggests that early inflation (point A) and late inflation (point C) yield similar 

response output. 

Post-Hoc (Deflation) 

Table 4-41 : Nemenyi test result for Deflation factor 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞,4) Result significant 

G 
 

J 85041.9 5125.261 16.5927 3.633 Reject H0 YES 

G 
 

I 16426.8 5125.261 3.20507 3.633 Accept H0  
G 

 
H 10864.8 5125.261 2.11985 3.633 Accept H0  

H 
 

J 74177.1 5125.261 14.4728 3.633 Reject H0 YES 

H 
 

I 5562 5125.261 1.08521 3.633 Accept H0  
I 

 
J 68615.1 5125.261 13.3876 3.633 Reject H0 YES 

 

Only three out of six mean difference combinations were significant (p < 0.05). Further inspection 

showed all significance combinations involved pairing with point (J) i.e. (G vs. J), (H vs. J) and (I vs. 

J). This suggests that other than for really late deflation (point J), other deflation timings yielded 

similar mean values. 
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Figure 4-86: Plot of mean value for all combinations of experimental factor of Timing experiment 

 

Figure 4-86 illustrates the mean value for each combination of Inflation and Deflation factor. The 

overall trend shows that as the deflation point was moved from early (G) to later (J), AoPmax 

mean value decreased. 

The interaction factor was shown to be a significant effect on AoPmax mean value for points B 

and C (mid to late inflation) but not on early inflation (point A). 

The effect of IABP on aortic pressure is reduction of both aortic systolic and diastolic pressure, 

which reduces the impedance to aortic flow; however, from CIMS balloon pump activation, the 

overall effect of timing variations to aortic systolic pressure was a minimal reduction. Greater 

reductions were recorded at very late deflation point (J) for all inflation points (A, B and C); but as 

previous results showed that point J yielded minimal CO and QcorMean, thus point J could be 

undesirable. Since optimum yield point (B-I) (CO and QcorMean subchapters) recorded only 0.9% 

increase; this might not pose adverse effect to myocardium wall stress. 
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4.2.1.4 Aortic End-Diastolic Pressure (AoEDP) 

 

The means and standard deviations (SD) of augmentation (as a percentage) for each combination 

of different inflation and deflation timing on Aortic End-Diastolic Pressure is tabulated in Table 4-

42. 

Table 4-42: The means and SDs (in brackets) for each combination of AoEDP from Timing experiment 

AoEDP 
Deflation Row 

Mean G H I J 

Inflation 

A -3.58 -2.53 -2.71 -2.41 -2.81 

  (2.40) (3.73) (4.87) (6.46)  
B -2.76 -3.34 -3.11 -2.24 -2.86 

  (1.70) (2.35) (1.99) (5.62) 
 

C -2.69 -2.85 -3.11 -2.98 -2.91 

 (1.21) (2.29) (2.18) (5.44) 
 

Column Mean -3.01 -2.91 -2.98 -2.54 -2.86 

 

From Table 4-42, both Inflation and Deflation factor’s mean value at Row Mean and Column Mean 

are shown to be quite similar. The variations of inflation and deflation timing on aortic end-

diastolic pressure (AoEDP) yielded a grand mean value of -2.86% (range = -3.58% to -2.24%). 

Combination (A-G) gave the highest reduction at -3.58%. Statistical analysis was then carried out 

to determine significance of mean differences.  

Table 4-43: The SRH test result for AoEDP response output 

Source  P-value 

Inflation 0.282 

Deflation 0.095 

Inflation × Deflation 0.044 

 

In Table 4-43, both Inflation and Deflation factors show no significant main effect (p < 0.05), 

although there was significant interaction between factors, but just barely at p = 0.044.  

Since the main factors (Inflation and Deflation) showed no significance main effect, no further 

post-hoc test was carried out. As reported in Table 4-43, only the interaction between the two 

factors has a statistical significance. The variations of different inflation and deflation timings have 

no significant effect; for example, early inflation reduces aortic end-diastolic pressure as effective 

as late inflation, and late deflation also is effective as early deflation. However, a significant 

interaction suggests that the response output is quite dependent on both experimental factors. 
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 Figure 4-87 illustrates the mean value for all combinations of two experimental factors, Inflation 

and Deflation. The greatest AoEDP reduction is from combination A-G, while combination B-J is 

the least reduced. However, from the statistical analysis, any reduction is statistically similar to 

one another. 

 

  

Figure 4-87: The mean value plot for all combination of experimental factors in TIMING experiment 

 

The reduction of AoEDP is essential for myocardial workload reduction; however, from the results 

of TIMING experiment, it can be suggested that any combination of inflation and deflation point 

will be similar to each other, and will yield minimal afterload reduction. 

 

4.2.1.5 Correlation 

 

Correlation test of (dP vs.  CO) and (dP vs. QcorMean) were carried out. As illustrated in Figure 3-

67, pressure difference, dP, is defined as the percentage of difference between peak aortic 

diastolic augmentation (PADA) and AoPmax, and normalised with average of AoPmax (Eq. 3.5) 

rewritten below.  



Chapter 4 In vitro Balloon Pump Characteristics 
 

175 
 

A.Z.M. Khudzari 

     
              

                 
 

The main objective was to investigate whether the augmented diastolic pressure can be 

associated with increase of CO and QcorMean. Correlation test depends on data normality; for 

normally distributed data, Pearson’s correlation test was used; otherwise, it was Spearman’s 

correlation test. 

dP vs. CO 

Since the original data violated normality assumption, non-parametric correlation test was used.  

There was a significant correlation between the level of diastolic augmentation and CO mean 

value, rS = .171, N = 1080, p < 0.01 (two-tailed). The coefficient of determination, R2, revealed that 

only 2.9% of variation of CO can be attributed to dP (R2 = 0.029). 

dP vs. QcorMean 

The Spearman correlation coefficient was rS = .206, N = 1080, p < 0.01 (two-tailed), showing that 

there was a significant association between dP and QcorMean. However, the effect of that 

association was minimal at 4.2% as demonstrated by coefficient of determination, R2 =0.042.  

Discussion 

The association of (CO vs. dP), and (QcorMean vs. dP) was found to be statistically significant; 

however, the variability attributed to either variables was very small, and thus it can be suggested 

that diastolic pressure augmentation has little effect on blood perfusion to periphery and 

coronary arteries under influence of varying inflation and deflation timing. 

 

4.2.2  Discussion 

 

The effect of different inflation and deflation timing when CIMS balloon pump activated was 

investigated in a 3 × 4 two-way factorial experiment, with one of the objectives was to identify 

combination yielding optimum response output. There were several response outputs analysed.   

The best combination of inflation and deflation timing discovered for both cardiac output (CO) 

and left coronary mean flowrate (QcorMean) was (B-I: dicrotic notch inflation and early systole 

deflation); however, it was different with AoPmax where the best combination was (B – J (late 
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systolic deflation)). Afterload reduction by way of AoEDP reduction in this experiment was found 

to be statistically similar for whichever combination was chosen.  

The B-I combination was chosen for the balloon inflation and deflation points for subsequent 

experiments. The point B which corresponds to dicrotic notch is the suggested inflation point for 

IABP, however, the recommended deflation point is somewhat vague only citing that deflation 

point should be set “ to deflate immediately before aortic valve opening” (Trost and Hillis, 2006). 

For blood flow augmentation (peripheral and coronary), it was found that deflating the balloon 

pump during early systole (point I) was optimal for increasing cardiac output (CO).  

Despite the optimum point chosen, the flow augmentation was not substantial. The overall grand 

mean for CO was a 5.52% with the maximum yield was 7% at combination B-I. LCA perfusion 

augmentation was slightly better; the grand mean was 9.1%, with the maximum yield at 12%, also 

at combination B-I. In term of LCA perfusion, whichever timing chosen, the myocardium blood 

supply would increase, and this in turn should increased the ratio of myocardial oxygen 

supply/demand ratio i.e. endocardial viability ratio (EVR). 

Late balloon inflation suggested that the ‘push’ or momentum imparted to the fluid at the 

ascending aorta in diastole was less compared to when flow still ejected from the LV (point A), or 

aortic valve just closed (point B). One concern that might arise is the effect to LV wall stress from 

early balloon inflation due to impediment to outflow, although augmentation of aortic flow took 

place. The investigation on LV wall stress is reserved for future work. 

It was found that the effect of different inflation/deflation timing to blood perfusion 

augmentation was not prominent, but still undeniably important. This was the same conclusion 

drawn by Niederer and Schilt examining the effect of early inflation and late deflation to stroke 

volume of an IABP (Niederer and Schilt, 1988). 

The minimal reduction of AoPmax as demonstrated by the grand mean value of -0.20%, with 

maximum AoPmax reduction at -2.7%, suggested that inflation and deflation timing were not 

significant factors; there might be other independent factors playing a bigger role for AoPmax 

reduction. 

The effect of different inflation and deflation timing combinations had a slightly bigger effect on 

AoEDP. The grand mean value of AoEDP was recorded to be -2.86%, with the maximum reduction 

at -3.56%. However, no combination was deemed to be significantly different from any other; any 

combination of inflation/deflation point is acceptable, hence optimum point (B – I) of CO and 

QcorMean is also acceptable.  
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In comparison with the clinical animal testing of Zelano et al. (1992)44, the present CIMS in vitro 

results at combination B-I (augmentation percentage: CO = + 7.1 %, QcorMean = +12.1%, and 

AoEDP = -3.1 %), are better than the IABP results (augmentation percentage: CO = +2.9%, 

QcorMean = +12.9%, and AoEDP = +1.2%) ; however the prosthesis they used around the 

ascending aorta with 60 mL displacement volume, reported better results (augmentation 

percentage : CO = 29.6%, QcorMean = 24.4% and AoEDP = -11.5%). The effect of IABP late 

deflation was mentioned stating the probability of aortic impedance increase and consequently 

increasing myocardial oxygen consumption (Zelano et al., 1992), thus reinforcing the decision to 

chose combination B-I.  

The correlation between the ratio of aortic diastolic augmentation, dP, with CO and QcorMean 

has been shown to be minimal. The resulting coefficient of determination, R2, for (dP vs. CO) and 

(dP vs. QcorMean) was 2.9% and 3.2% respectively. The association of dP and blood perfusion 

with TIMING factors is weak, and the optimum point chosen will not be reflected with strong 

diastolic pressure augmentation. 

 

4.3 Helium Gas Volume 

 

In this experiment, the effect of varied Helium gas volume (20 mL, 25 mL and 30 mL) and different 

designs of CIMS balloon pump (SB and CB) was investigated in a 2 × 3 factorial experiment 

comprised of 6 combinations. Experimental factors made constant were 1) heart condition at 

heart failure (HF), 2) arterial compliance set at high (C2.5), 3) inflation/deflation timing set at B-I, 

and 4) aortic heart valve used was mechanical heart valve (MHV). 

It was reasoned that the relationship between different Helium gas volume and balloon pump 

device design can be made clear; and also whether greater gas volume and/or device design 

affect haemodynamic response. 

 

 

 

 

                                                           
44

 The balloon pump used by Zelano et. al. (1992) was similar to configuration C of Figure 2-31. 
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4.3.1 Result 

 

The results of the experiments are presented in the same order as previous subchapter; except 

for important statistical result, others are presented in Appendix C (C-2). 

 

4.3.1.1  Cardiac Output (CO) 

 

Figure 4-88 and Figure 4-89 illustrate the aortic flowrate when the amount of Helium gas is fixed 

and one of the balloon pump design is fixed respectively. All waveforms are normalised against 

mean flowrate of non-assisted flow. Compared to SB type, the CB type balloon pump yields higher 

maximum value in the first and second aortic flowrate waveform.   

 

Figure 4-88: Aortic flowrate when Helium gas is fixed at 25 mL, while balloon pump design is varied. (the ordinate is 
instantaneous flow/non-assisted C.O.) 
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Figure 4-89: Aortic flowrate with SB type balloon pump and varying Helium gas volume (the ordinate is instantaneous 
flow/non-assisted C.O.) 

In Figure 4-89, the effect of different amount of Helium gas volume is presented, where it can be 

seen that greater amount of Helium gas affects the height of secondary peak in diastole. The 

means of aortic flowrate i.e. cardiac output is used to compare between non-assisted and assisted 

circulation. The percentage difference was used for statistical analysis. 

The means and standard deviations (SD) for each combination in the 2 x 3 factorial experiment 

between Helium gas volume (GasVol) and Device Design factors are tabulated in Table 4-44. 

Table 4-44 : Means and SD (in brackets) for each combination for 2 x 3 factorial experiment 

CO  
GasVol 

 Row Mean V20 V25 V30 

Design 

SB 5.27 6.70 5.12 5.70 

  (2.51) (2.29) (2.03)   

CB 8.98 11.52 11.16 10.55 

  (3.67) (4.04) (4.42)   

Column Mean 7.12 9.11 8.14 8.12 

 

The grand mean for the combined effect of Device Design and GasVOL experimental factor was 

8.12% (range: 5.12% to 11.52%). The Device Design factor increases CO augmentation percentage 

for CB type almost twice compared to SB type balloon pump; while the GasVol factor yielded 

similar range with V25 as the highest output. The greatest CO augmentation was from 

combination (CB – V25) with 11.52% increase. Statistical analysis was carried out to determine 

significance of the results. 
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Table 4-45 : SRH test result for CO of Helium 

Source P-value 

DeviceDesign 1.85×10-40 

GasVOL 3.203×10-5 

DeviceDesign × GasVOL 0.062 

 

As tabulated in Table 4-45, both experimental factors reported significant main effect (p < 0.001), 

but not the interaction between factors (p = 0.062). Further post-hoc analysis was carried out for 

GasVol factor that has more than two levels. 

Post-Hoc (GasVOL) 

 
Table 4-46: Post-hoc Nemenyi test result for GasVOL factor 

 
vs 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

V25 
 

V20 13284 2093.3466 6.346 3.314 Reject H0 YES 

V25 
 

V30 8553.6 2093.3466 4.086 3.314 Reject H0 YES 

V30 
 

V20 4730.4 2093.3466 2.260 3.314 Accept H0  
 

As tabulated in Table 4-46, there is a significant mean difference of (V20 vs. V25), and (V25 vs. 

V30). However, there is no significant mean difference of (V20 vs.V30). This suggests that V25 was 

the optimised Helium gas volume further illustrated in Figure 4-90, where V25 yielded higher 

augmentation in both levels of arterial compliance.  
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Figure 4-90 : The means for each combination of 2 x 2 factorial experiment for DeviceDesign and GasVol factors. 

 

The type of the balloon pump was also a significant factor for CO augmentation; the CB type 

balloon pump was better across all levels of the GasVol factor, suggesting the effectiveness of 

extra space in CB design. From this experiment, combination (CB – V25) yielded the highest CO 

augmentation.  

 

4.3.1.2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

The effect on LCA mean flowrate (QcorMean) from two experimental factors, Device Design and 

GasVol is illustrated in Figure 4-91 and Figure 4-92, when one factor is fixed while the other is 

varied. The former figure has a fixed SB type balloon pump with varied Helium gas amount, while 

the latter has a fixed Helium gas volume. 
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Figure 4-91: The effect of balloon pump activation when amount of Helium gas is varied with a fixed balloon pump 
type. Grey areas indicate diastole period (the ordinate is LCA flowrate/non-assisted mean LCA flowrate) 

 

Except for SB-V30 that has no secondary peak after the first peak in diastole, there is no 

considerable difference amongst the shape of waveforms when different Helium gas volume was 

used to inflate and deflate the balloon pump. On the other hand, there is noticeable difference 

between SB and CB type of balloon pump as illustrated in Figure 4-92.  
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Figure 4-92: The effect of balloon inflation when Helium Gas is fixed while different types of balloon pump is used. 
Grey areas indicate diastole 

 

The percentage ratio of mean flowrate value of non-assisted and assisted circulation is used for 

statistical analysis on effectiveness of GasVol and DeviceDesign factor in augmenting QcorMean. 

The means and standard deviations (SD) for each combination in the 2 x 3 factorial experiment 

are tabulated in Table 4-47. 

Table 4-47 : Means and SDs (in brackets) for each combinations of 2 x 3 factorial experiment  

Qcor Mean 
GasVol 

Row Mean V20 V25 V30 

 
Device 
Design 
 
 

SB 5.34 8.59 9.85 7.93 

  (1.76) (2.58) (1.73)   

CB 8.02 11.56 15.60 11.73 

  (2.69) (3.69) (3.80)   

Column Mean 
6.68 10.08 12.73 9.83 

 

The grand mean of augmentation from experimental factors was 9.83% (range: 5.34% to 15.6%). 

With increasing levels in both experimental factors, the QcorMean also increased. To find out 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0.5 1 1.5 2 2.5 

second 

LCA Flowrate - (V25) constant 

SB-V25 

CB-V25 



Chapter 4 In vitro Balloon Pump Characteristics 
 

184 
 

A.Z.M. Khudzari 

whether those differences amount to real difference and not due to chance, statistical analysis 

was performed. 

Table 4-48: SRH test result for 2 x 2 factorial experiments between Device Design and GasVol factors 

Source  P-value 

DeviceDesign 1.196×10-23 

GasVOL 5.165×10-45 

DeviceDesign ×GasVOL 0.086 

 

 As shown in Table 4-48, both experimental factors main effect were significant (p < 0.001); 

however, the interaction between Device Design and GasVol was not significant (p = 0.086).  Since 

GasVol factor showed significant difference, further post-hoc test on GasVol group was performed 

using the Nemenyi test.  

 

Table 4-49 : Post-hoc Nemenyi test for GasVol factor 

  vs 
 

(Rb-Ra) SE q q(0.05,∞,3) Result significant 

V30 
 

V20 41900.4 2093.3466 20.016 3.314 Reject H0 YES 

V30 
 

V25 16084.8 2093.3466 7.684 3.314 Reject H0 YES 

V25 
 

V20 25815.6 2093.3466 12.332 3.314 Reject H0 YES 

 

There was a significant difference amongst all combinations of the GasVol group, as shown in 

Table 4-54; each level was significantly different from each other. 
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Figure 4-93 : The means for combinations in 2 x 3 factorial experiment of DeviceDesign and GasVol factors.  

 

Figure 4-93 illustrates the mean of each combination in this experiment. Contrary to the previous 

CO result in GasVol experiment, LCA flowrate increased in conjunction with the amount of Helium 

gas. The greatest QcorMean augmentation was from combination (CB – V30), and at 15.6% the 

increased percentage was quite high.  

For HF patients, increased blood perfusion to the LCA will increase oxygen supply against high 

demand. There was a probability that greater Helium gas used to inflate/deflate the balloon pump 

also increased the pressure to push additional flow into the left coronary artery circulation. The 

unique design of CB type balloon pump was also a considerable factor. Thus design of balloon 

pump at the ascending aorta in this in vitro study would increase blood perfusion to coronary 

arteries. 

 

4.3.1.3 Aortic Systolic Pressure (AoPmax) 

 

The effect of different type of balloon pump design and Helium gas volume on aortic pressure is 

illustrated in Figure 4-94, which has varied Helium gas volume and fixed balloon pump type. On 
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the contrary, Figure 4-95, illustrates aortic pressure waveform with different type of balloon 

pump and fixed Helium gas amount (25 mL).  

 

Figure 4-94: The aortic waveform with SB type balloon pump fixed and varied Helium gas amount. (The ordinate is 
aortic pressure/non-assisted MAP) 

There was no noticeable difference on aortic pressure waveform with varying Helium gas volume. 

However, CB type balloon pump did influence aortic pressure waveform as illustrated in Figure 4-

94 by  

 

Figure 4-95: The aortic pressure waveform with fixed Helium gas volume and fixed SB type balloon pump. (The 
ordinate is aortic pressure/non-assisted MAP) 
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The aortic systolic pressure (AoPmax) and end-diastolic pressure (AoEDP) were measured. The 

percentage difference of non-assisted and assisted circulation was used for statistical analysis. 

The means and standard deviations (SD) of AoPmax when subjected to two experimental factors 

is tabulated in Table 4-50. 

Table 4-50: The means and for 2 x 3 factorial experiment of DeviceDesign and GasVol factors 

AoPmax 
GasVol 

Row Mean V20 V25 V30 

 
SB 0.53 0.86 -0.68 0.23 

DeviceDesign 
 (2.64) (2.09) (2.02)   

CB 2.41 1.79 0.74 1.65 

   (3.45) (3.78) (4.34)   

Column Mean 
1.47 1.32 0.03 0.94 

 

The overall effect of DeviceDesign and GasVol factors to the aortic systolic pressure (AoPmax) was 

minimal at 0.94% (range: -0.68% to 2.41%). The mean differences in row and column means also 

were minimal. To determine whether those mean differences were significant, and not due to 

chance, statistical analysis was carried out.  

Table 4-51 : SRH test result for 2 x 3 factorial experiment for AoPmax 

Source  P-value 

DeviceDesign 1.037×10-11 

GasVOL 1.126×10-5 

DeviceDesign ×GasVOL 0.31 

 

The SRH test result is tabulated in Table 4-51; there were significant main effect by both 

experimental factors (p < 0.001, but no interaction between them (p = 0.31).   

Since the GasVOL factor showed significant main effect, further post-hoc test was carried out, and 

the result is shown in Table 4-52. 

Table 4-52 : Nemenyi test result  

 
vs 

 
(Rb-Ra) SE q q(0.05, ∞,3) Result significant 

V25 
 

V30 12339 2093.3466 5.894 3.314 Reject H0 YES 

V25 
 

V20 185.4 2093.3466 0.089 3.314 Accept H0   

V20 
 

V30 12153.6 2093.3466 5.806 3.314 Reject H0 YES 
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The pairwise comparison between three levels of GasVol factor showed that only two 

combinations were significant, (V25 vs. V30) and (V20 vs. V30), but not between V20 and V25. The 

differences can be visualised easily when referring to Figure 4-96. 

 

Figure 4-96 : Means for each combination of 2 x 2 factorial experiment  

 

The overall effect of balloon pump activation to AoPmax was small as reported in Table 4-50; the 

statistical analysis proved that both DeviceDesign and GasVol experimental factors were 

significant. The greater the amount of Helium gas used would reduced AoPmax mean value.  Also 

by using SB type balloon pump, the AoPmax mean value could be lower.  

The counterpulsation of a balloon pump should decreased AoPmax value compared to non-

assisted circulation, but there was no evidence to suggest a substantial AoPmax reduction can be 

achieved by DeviceDesign and GasVol factors. In this experiment, the AoPmax increase might not 

be detrimental since the augmentation percentage yielded was small and might not be significant 

clinically.  
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4.3.1.4 Aortic End-Diastolic Pressure (AoEDP) 

 

The means and standard deviations (SD) for each combination of experimental factors, 

DeviceDesign and GasVol, is tabulated in Table 4-53. 

 
Table 4-53 : Means and SDs (in brackets) of each combination for 2 x 3 factorial experiment between DeviceDesign 
and GasVol factors 

AoEDP 
GasVol 

Row Mean V20 V25 V30 

Device
Design 

SB -1.28 -1.86 -4.08 -2.41 

  (2.92) (2.51) (2.49)   

CB -0.06 -1.95 -1.39 -1.13 

 (3.35) (4.03) (6.25)   

Column Mean -0.67 -1.91 -2.74 -1.77 

 

 

The overall effect of DeviceDesign and GasVol factors was a minimal reduction of aortic end-

diastolic pressure (AoEDP) at -1.77% (range: -4.08% to -0.06%). There was a small difference 

between levels of GasVol factor; with greater amount of Helium gas the greater the AoEDP 

reduction became. The DeviceDesign factor yielded AoEDP reduction with SB level reported 

greater reduction. To determine whether the mean differences were significant, statistical tests 

were performed; Table 4-54 tabulates the results. 

 
Table 4-54: SRH test result for 2 x 3 factorial experiment 

Source P-value 

DeviceDesign  2×10-4 

GasVOL 4.82×10-15 

DeviceDesign × GasVOL 0.001 

 

There were significant main effects from both experimental factors (p < 0.001), and the 

interaction between the factors (p = 0.001). Further post-hoc test was carried out for the GasVol 

factor. As tabulated in Table 4-55, all three of the levels were significantly different from each 

other.  
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Table 4-55: Nemenyi test result for GasVol factor’s levels 

 
vs 

 
(Rb-Ra) SE q q(0.05, ∞,3) Result significant 

V20 
 

V30 24028.2 2093.3466 11.478 3.314 Reject H0 YES 

V20 
 

V25 11363.4 2093.3466 5.428 3.314 Reject H0 YES 

V25 
 

V30 12664.8 2093.3466 6.050 3.314 Reject H0 YES 

 
 

From Device Design factor, it was found that the effect of SB was more prominent in reducing 

AoEDP especially the optimum reduction at combination SB – V30, as illustrated in Figure 4-97.  As 

for the GasVol factor, there was a tendency for the AoEDP percentage value to decrease with 

increasing amount of Helium gas used during balloon activation.  

 

Figure 4-97 : Means for each combination for 2 x 3 factorial experiment of DeviceDesign and GasVol factors 

 

The result from this experiment suggested that greater Helium gas volume would yield greater 

pressure reduction and thus afterload faced by the myocardium. Also, the effect of SB type 

balloon pump was also significant for greater afterload reduction. The minimal reduction of 

AoEDP when DeviceDesign and Helium gas volume factors investigated, hinted that there are 

other factors better suited for  AoEDP reduction. 



Chapter 4 In vitro Balloon Pump Characteristics 
 

191 
 

A.Z.M. Khudzari 

4.3.1.5 Correlation  

 

dP vs. CO 

The correlation between CO, QcorMean and the amount of peak aortic diastolic pressure which is 

represented by dP was investigated. The correlation test revealed that CO and dP were 

significantly related, rS =.477, N = 540, p < 0.01, two tails. The coefficient of determination was R2 

= 0.228, meaning that 22.8% of variation in CO can be attributed to dP and vise versa.  

 

dP vs. QcorMean 

The association between dP and QcorMean was significant, rS = .705, N = 540, p < 0.01, two-tails. 

The strength of the association was moderate, R2 = 0.497, which meant 49.7% of QcorMean 

variations can be attributed to dP and vise versa; this can be considered as moderate strength 

association. 

Discussion 

It is clear from these results when Helium gas volume and DeviceDesign factor were combined, 

that the association of (dP vs. QcorMean) was greater compared to association of (dP vs. CO). 

Coronary perfusion was strongly associated with greater difference between PADA and AoPmax 

when more Helium gas was used to pump the balloon pump. This could meana greater force 

during balloon inflation.  

 

4.3.2 Discussion 

 

This round of experiment involved two experimental factors, 1) the DeviceDesign factor (2 levels: 

SB & CB), and 2) the GasVol factor (3 levels 20, 25 & 30 mL) making up a 2 x 3 two-way full 

factorial design experiment.   

For the cardiac output, CO, the effect of both experimental factors yielded significant increase 

compared to non-assisted circulation, with combination CB – V25 yielded the highest mean 

percentage of CO augmentation. There was no interaction between experimental factors, thus, 
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the effect can be discussed separately; the optimum yield was always by V25 level (25 mL of 

Helium gas), and CB type balloon pump increased CO augmentation further.  

The left coronary artery perfusion seemed to benefit from higher volume of Helium gas, where 

QcorMean percentage increased as greater amount of Helium gas volume was used, from 20 mL 

to 30 mL. The CB type balloon pump consistently yielded higher mean value. For patient needing 

higher LCA perfusion, e.g. heart failure secondary to myocardial infarction, a higher volume of 

Helium gas would lead to better coronary perfusion rate. 

The effect of DeviceDesign type and GasVol on grand mean AoPmax was minimal at 0.94%. Since 

the overall effect was small, the clinical implication to heart’s workload is hypothesised to be 

insignificant and could be ignored. The AoEDP reduction was shown to be statistically significant 

for both experimental factors, although the grand mean of AoEDP reduction was again minimal at 

-1.77%. Greater reduction of AoEDP could be achieved with bigger Helium gas capacity; however, 

the SB type balloon pump yielded greater AoEDP reduction compared to CB type. It seems that 

when DeviceDesign and GasVol factors involved, the reduction of aortic pressure leading to 

afterload reduction was very minimal and probably clinically insignificant.  

The effects of compliant body (CB) type balloon pump was more pronounced to the augmentation 

of CO and QcorMean, while the straight body (SB) type, was better in reducing the mean value of 

AoPmax and AoEDP. The GasVol factor affected the response output quite differently. For CO, 

optimum yield was when Helium gas fixed at 25 mL. QcorMean response output increased with 

greater amount of Helium gas used. However, the reverse trend was demonstrated for AoPmax 

and AoEDP; with increasing amount of Helium gas, both variables reported reduction. 

The in vivo CIMS balloon pump, when implanted would have some degree of innate compliance, 

and a finite volumetric capacity. This experiment suggests that with optimised balloon design, 

systemic and coronary perfusion would benefit with an equivalent optimum amount of Helium 

gas. The LCA perfusion was especially affected by greater amount of Helium gas thus would 

increase oxygen supply to myocardium i.e. increased EVR value. Aortic pressure reduction, 

normally associated with IABP activation, was small, and this suggests that other factors could be 

more prominent. 

Lastly, the correlation coefficient of determination, R2, of (dP vs. CO) and (dP vs. QcorMean) was 

22.8% and 49.7% respectively. The effect of DeviceDesign and GasVol factors was moderate for 

association between dP and CO; however (dP vs. QcorMean) association was more substantial. 
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This experiment showed that diastolic pressure augmentation can be associated with increased 

perfusion to both periphery and coronary arteries. 

 

4.4 Compliance 

 

This experiment investigated the effect of 1) Device Design factor (SB & CB), and 2) Arterial 

Compliance factor with high and low arterial compliance level (C2.5 & C1.25) which resulted in a 2 

× 2 full factorial experiment with four combinations (refer Table 3-21) on haemodynamic 

performance of CIMS balloon pump. 

Experimental factors held constant were 1) heart condition at heart failure (HF), 2) balloon timing 

was set at (B-I), 3) Helium gas volume was set at 25 mL (V25), and 3) aortic heart valve used was 

mechanical heart valve (MHV). 

It was hoped that the effect of optimum combination was found, and to detect which factors 

contributed more to flow and pressure augmentation.  

 

4.4.1 Result 

 

The results were presented in similar format as to previous subchapters. Only relevant statistical 

results are presented in main thesis body, the others are presented in Appendix C (C-3). The setup 

of the experimental design of 2 × 2 factorial experiment means that there was no post-hoc test 

carried out since there were only two levels in each factor.  

 

4.4.1.1  Cardiac Output (CO) 

 

The effect of two experimental factors, Device Design and Arterial Compliance on cardiac output 

performance is presented here. Figure 4-98 and Figure 4-99 illustrates the pulsatile aortic flowrate 

with one factor is fixed while the other is varied. In the former, the effect of different arterial 

compliance level is shown, while the latter shows the effect of different type of balloon pump.  
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There was no noticeable difference in the first positive peak in both figures, but in the second 

positive peak due to balloon inflation, the effect of varying levels of each factor can be seen e.g. 

combination CB – C1.25 caused higher maximum value compared to SB – C1.25 in Figure 4-99.  

 

Figure 4-98: The aortic flowrate during balloon inflation with fixed SB type balloon pump with varying arterial 
compliance (the ordinate is instantaneous flow/non-assisted C.O.) 

 

 

Figure 4-99: The aortic flowrate with fixed arterial compliance at C1.25 and varying type of balloon pumps (the 
ordinate is instantaneous flow/non-assisted C.O.) 
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The percentage difference of mean of aortic flowrate i.e. cardiac output between non-assisted 

and assisted circulation was used for statistical analysis.  

The means and standard deviations (SD) of cardiac output (CO) for every combination of Device 

Design factor and Arterial Compliance factor are tabulated in Table 4-56. 

Table 4-56: The means and SD (in brackets) of CO from combination of Arterial Compliance and DeviceDesign factor 

CO 
Device Design Row 

Mean SB CB 

Arterial 
Compliance 

C2.5 7.56 13.40 10.48 

  (2.48) (4.08)   

C1.25 12.67 18.03 15.35 

  (1.83) (2.80)   

Column Mean 10.12 15.71 12.92 

 

The overall grand mean of CO augmentation compared to non-assisted flow, due to the Device 

Design and Arterial Compliance factor, was 12.92% (range: 7.56% to 18.03%). The mean 

difference between level at row and column mean was similar and the highest yield was from 

combination (CB – C1.25). To ascertain that the mean differences were not due to chance, further 

statistical analysis was carried out; Table 4-57 tabulates the outcome of the SRH test result. 

 

Table 4-57: SRH test result for 2 x 2 factorial experiment with Device Design and Arterial Compliance factor 

Source  P-value 

DeviceDesign 8.91×10-31 

ArtCompliance 3.43×10-23 

DeviceDesign× ArtCompliance 0.458 

 

The SRH test result showed both experimental factors had significant main effect on CO’s 

augmentation (p < 0.001); however there was no interaction between them (p = 0.458). 
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Figure 4-100: CO means for the COMPLIANCE experiment 

 

There is a clear difference between mean for both experimental factors as illustrated in Figure 4-

100. There was not enough evidence to suggest that the response output trend would react 

differently than what is illustrated, hence it can be safely suggested that low arterial compliance 

would always yielded higher output, likewise the CB type balloon pump generated greater 

augmentation. The best combination was by combination (CB – C1.25) at 18.03% i.e. low arterial 

combined with CB type balloon pump. 

The implication of this finding to the augmentation of CO is obvious, especially for HF patient with 

stiffer aorta, although unfavourable in most clinical cases, when combined with optimised CIMS 

balloon pump having innate compliance, the systemic perfusion would be augmented favourably.  
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4.4.1.2  Left Coronary Artery Mean Flowrate (QcorMean) 

 

The effect of fixed type of balloon pump (SB) and varied arterial compliance on pulsatile left 

coronary artery flowrate is shown in Figure 4-101. There are differences between both arterial 

compliance levels, especially at the second positive peak in diastole.  

 

Figure 4-101: The pulsatile LCA flowrate with fixed SB balloon pump type and varied arterial compliance. . Grey areas 
indicate diastole period (the ordinate is LCA flowrate/non-assisted mean LCA flowrate) 

 

Combination SB – C1.25 reported higher maximum value compared to SB – C2.5 for the second 

positive peak. Consequently, mean flowrate of SB – C1.25 was greater.  
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Figure 4-102: The pulsatile LCA flowrate with fixed arterial compliance and two different types of balloon pump 

 

Figure 4-102 illustrates the effect of different balloon pump design on LCA pulsatile flowrate when 

arterial compliance is set to low (C1.25). Both waveforms show almost the same shape, although 

the values are different. The mean LCA pulsatile flowrate of non-assisted and assisted circulation 

is used to calculate the percentage difference, and used for statistical analysis. 

The means and SDs for QcorMean response output are shown in Table 4-58.  

Table 4-58 : The means and SDs (in brackets) from combination of Arterial Compliance and Device Design factor 

QcorMean 
Device Design 

Row Mean 
SB CB 

Arterial 
Compliance 

C2.5 12.02 14.92 13.47 

  (2.35) (2.82)   

C1.25 18.35 20.50 19.43 

 (1.31) (3.70)   

Column Mean 15.18 17.71 16.45 

 

The grand mean of LCA augmentation compared to non-assisted flow, due to Device Design and 

Arterial Compliance factors, was 16.45% (range: 12.02% to 20.50%). The highest augmentation on 

LCA perfusion was of (CB – C1.25) combination at 20.5%. The difference at row mean was higher 
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than that of column mean. To determine that the mean differences were not due to chance, 

statistical analysis was carried out, and the result from the SRH technique is tabulated in Table 4-

59. 

Table 4-59: The SRH test result for QcorMean with 2 x 2 factorial experiment 

Source  p-value 

DeviceDesign 1.522×10-6 

ArtCompliance 1.237×10-44 

DeviceDesign × ArtCompliance 0.056 

 

Both experimental factors were found to yield significant main effect (p < 0.001), however the 

interaction between the factors lacked enough evidence to reject the null hypothesis (p = 0.056). 

  

 

Figure 4-103: Left coronary artery flowrate (QcorMean) means for each combination of Device Design and Arterial 
Compliance factor 

 

The mean of QcorMean augmentation due to the CIMS balloon pump activation is illustrated in 

Figure 4-103. The effect of Arterial Compliance factor was evident, as the output from low arterial 

compliance level (C1.25) for both types of balloon pump exceeded the output at higher arterial 
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compliance (C2.5) level. Furthermore, at every level of Arterial Compliance, CB type balloon pump 

exceeded SB type balloon pump outcome. Since there was no interaction between factors, each 

factor was independent; this means the result illustrated in Figure 4-103 are applicable whenever 

there is similar experiment.   

From the results presented, the best combination would be of low arterial compliance (C1.25), 

and CB type balloon pump (CB – C1.25) yielding a 20.5% increase in LCA mean flowrate. This 

combination is similar to previous subchapter for CO (refer to subchapter 4.4.1.1), thus suggesting 

systemic and coronary perfusion is greatly influenced by balloon design, and arterial compliance 

level. This is further discussed in 4.4.2 Discussion section. 

 

4.4.1.3 Aortic Systolic Pressure (AoPmax) 

 

Similar to previous subchapters, Figure 4-104 and Figure 4-105 illustrates the effect of one 

experimental factor when the other is fixed. 

 

Figure 4-104: Aortic pressure waveform with fixed SB type balloon pump and varied arterial compliance (The 
ordinate is aortic pressure/non-assisted MAP) 

 

The effect of different arterial compliance is shown clearly in Figure 4-104; aortic systolic and peak 

aortic diastolic pressure by SB – C1.25 is showing greater range compared to SB – C2.5. While the 
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effect of different type of balloon pump is illustrated in Figure 4-105, there appears to be little 

differencein the waveform shape, although some difference in magnitude may be seen. 

 

 

Figure 4-105: Aortic pressure waveform with fixed arterial waveform and varied balloon pump type 

 

Statistical analysis was used to determine whether or not any effect from the experimental 

factors on aortic systolic and end-diastolic pressure is significant. The means and SDS for AoPmax 

of each combination are tabulated in Table 4-60.  

Table 4-60 : The mean and SD (in brackets) of AoPmax change involving DeviceDesign and Arterial Compliance factor 

AoPmax 
Device Design Row 

Mean SB CB 

Art. 
Compliance 

C2.5 1.32 1.53 1.42 

  (3.13) (4.08)   

C1.25 2.07 2.10 2.08 

 (2.05) (4.83)   

Column Mean 1.69 1.81 1.75 

 

The overall effect of both Arterial Compliance and Device Design factor on AoPmax in assisted 

circulation was a minimal 1.75% increase (range: 1.32% to 2.1%). There was little difference 

between the levels in row and column mean. Statistical analysis was carried out to determine 
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statistical significance of the result. A non-parametric SRH test was used to analyse the 2 x 2 

factorial experimental data; the result is tabulated in Table 4-61. 

 

Table 4-61: SRH table for the AoPmax 

Source  P-value 

DeviceDesign 0.016 

ArtCompliance 0.016 

DeviceDesign ×ArtCompliance 0.322 

 

The result showed in assisted circulation, both Device Design and Arterial Compliance had a 

significant main effect on the QCorMean percentage difference (p < 0.05); however, the 

interaction between those two experimental factors was not significant (p = 0.332). 

 

 

Figure 4-106: Means of each combination of a 2 x 2 factorial experiment 
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Figure 4-106 illustrates the means of each combination for DeviceDesign and Arterial Compliance 

factors.  The CB type consistently yielded higher AoPmax mean value, while in lower arterial 

compliance condition (C1.25) higher AoPmax mean value was yielded.  

However, this result contradicts counterpulsation device such as IABP effect on AoPmax, where it 

should have decreased compared to non-assisted circulation. The consistent and significant 

AoPmax percentage increase across all combinations suggested that the effect of CIMS balloon 

pump at the ascending aorta was unable to decrease aortic systolic pressure. However, the effect 

of slightly increased AoPmax might not be detrimental to the HF patient condition. 

 

4.4.1.4 Aortic End-Diastolic Pressure (AoEDP) 

 

The means and standard deviations (SD) in percentage of aortic end-diastolic pressure (AoEDP) 

are tabulated in Table 4-62. 

Table 4-62: The means and SDs (in brackets) of AoEDP augmentation from Arterial Compliance and DeviceDesign 
factor 

AoEDP 
DeviceDesign 

Row Mean 
SB CB 

Arterial 
Compliance 

C2.5 -2.45 -3.15 -2.80 

  (3.70) (4.80)   

C1.25 -13.24 -16.48 -14.86 

 (4.26) (7.67)   

Column Mean -7.85 -9.81 -8.83 

 

Contrary to the previous result, (4.4.2.3 AoPmax), the overall effect of Device Design and Arterial 

Compliance factor, when CIMS balloon pump was activated, was a reduction of the mean value of 

AoEDP at -8.83% (range: -16.48% to -2.45%). The greatest AoEDP reduction was from the 

combination of (CB – C1.25) at -16.48%. The mean difference for column was small, but row mean 

difference was quite big. To determine whether the differences were significant or due to chance, 

further statistical analysis was performed. 
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Table 4-63 : SRH table for 2 x 2 factorial experiment 

Source  p-value 

DeviceDesign 0.01 

ArtCompliance 3.13×10-45 

DeviceDesign × ArtCompliance 0.308 

 

The non-parametric SRH test was used to analyse the 2 x 2 factorial experiment data, Table 4-63 

tabulates the result. There was a significant main effect for both the Device Design and Arterial 

Compliance factor (p < 0.05). However, the interaction between those experimental factors 

yielded no significance effect (p = 0.308).  

All means for each combination of the two factors reported AoEDP reduction compared to non-

assisted circulation, and illustrated in Figure 4-107. This suggests that under the two experimental 

factors, Device Design and Arterial Compliance, considerable afterload reduction can be achieved 

for all combinations. 

 

Figure 4-107 : The mean for aortic end-diastolic pressure (AoEDP) 

 

Since there was no interaction between the experimental factors, each experimental factor is 

independent; for example, CB type balloon pump always yielded greater AoEDP reduction for 

both arterial compliance levels. Likewise, the low arterial compliance (C1.25) always yielded 

greater AoEDP reduction compared to high arterial compliance, C2.5, regardless of which type of 

the balloon pump used. 
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These findings suggested that for HF patient cohort, the greatest reduction of afterload can be 

achieved by having an optimised balloon pump design, regardless of patient’s vasculature 

compliance. Also, the effect of arterial compliance must not be dismissed, since the difference 

between means of C2.5 and C1.25 was quite substantial as shown in Table 4-62. The best 

combination for AoEDP reduction was CB – C1.25. 

 

4.4.1.5 Correlation 

 

dP vs. CO 

A correlation test revealed that CO and dP were significantly related, rS = .684, N = 360, p < 0.01, 

two-tails. This shows that the higher the dP value, the CO increased as well although no causation 

is implied. The coefficient of determination, R2 = 0.468, meaning 46.8% of variation in CO can be 

attributed to dP and vice versa.  

 

dP vs. QcorMean 

The association between dP and LCA perfusion was also significant rS = .557, N = 360, p < 0.01, 

two-tails, and the coefficient of determination, R2 = .31. There was 31% of variation of dP that was 

associated with QcorMean. 

Discussion 

Arterial Compliance and Device Design experimental factors were instrumental for the high 

degree of correlation, and association of dP against cardiac output, and left coronary artery 

perfusion. The increase of periphery and coronary perfusion is strongly associated with diastolic 

pressure augmentation with Device Design and Arterial Compliance factor 

 

4.4.2 Discussion 

 

A 2 x 2 two-way factorial experiment of Device Design (2 levels) and Arterial Compliance factors (3 

levels) was carried out. With other experimental factors fixed (Timing: B-I, GasVol: 25 mL, Heart 
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valve: MHV), these experimental factors were deemed highly important since haemodynamics 

response from this experiment shown to be better compared to previous ones.  

This experiment suggested that there were clear evidences that the Device Design and Arterial 

Compliance factor improved periphery and LCA perfusion, where both response outputs yield 

greatest output at combination (CB – C1.25). This combination also yielded greatest AoEDP 

reduction.  In contrast, systolic aortic pressure, AoPmax, increased slightly with the highest means 

at 2.1 % for (CB – C1.25) combination. The implication of this finding for HF patient is at best 

hypothetical, but the slight increase of the systolic aortic pressure might not be detrimental to the 

patient, since there would be far greater augmentation from combined effect of significant AoEDP 

reduction, and increased periphery and LCA blood perfusion. 

These findings suggest that CIMS balloon pump at the ascending aorta would benefit greatly with 

optimised balloon pump design in all vasculature conditions or low arterial condition with any 

type of the CIMS balloon pump. These findings are compared with existing data in the literature; 

Table 4-64 tabulates the cardiac output result.   

Table 4-64: Comparison of CO augmentation between several published report 

 
Compliance range 

[mL/mmHg] 
CO augmentation 

(%) 
CO (L/min) 

(non-assisted) 

Present study 1.25 & 2.5 7.6 - 18 3 

Papaioannou et al. (2002) 1.05 to 2.62 1 – 7 2.6 

Schampaert et al. (2011) 0.9 20 2.4 

Ferrari et. al (2005) 2 17 3.4 

 

The effect of varied balloon pump design and arterial compliance, each with more than one level, 

resulted in CIMS balloon pump yielded a greater CO augmentation compared to Papaioannou’s 

group, but comparable with the results from Schampaert et al. (2011), and Ferrari et al. (2005).  

One group published that left coronary artery mean flowrate (LCA) perfusion increased by almost 

15% using an IABP in a MCL with a fairly low arterial compliance (C = 0.9 mL/mmHg) (Schampaert 

et al., 2011); the CIMS balloon pump yielded an increase of 20% for QcorMean with (CB – C1.25) 

combination. For in vitro setting, the effect of CIMS balloon pump at the ascending aorta on 

periphery and LCA perfusion seemed to be comparable to IABP, and in some cases, was better.   
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The findings of AoPmax and AoEDP are compared with published in vitro experiments using IABP 

device tabulated in Table 4-65 and Table 4-66.  

 

Table 4-65: Comparison of AoPmax of several IABP studies with CIMS balloon pump 

 
Compliance range 

[mL/mmHg] 
AoPmax 

augmentation (%) 

Present study  
(using CB’s result) 

2.5 1.53  (≈ 1 mmHg) 

1.25 2.1 (≈ 1.8 mmHg) 

Papaioannou et al. (2002) 
2.62 (≈ -10 mmHg) 

1.05 (≈ -20 mmHg) 

Ferrari et al. (2005) 2 -7.2 

 

Table 4-66: Comparison of AoEDP augmentation between IABP studies with CIMS balloon pump 

 
Compliance range 

[mL/mmHg] 
AoEDP augmentation 

(%) 

Present study 
 (Using CB result) 

2.5 -3.2  (≈ -1.6 mmHg) 

1.25 - 16.5  (≈ -7 mmHg) 

Papaioannou et al. (2002) 
2.62 (≈ -10 mmHg) 

1.05 (≈ -20 mmHg) 

Schampaert et al. (2011) 0.91 - 16 (≈ - 4 mmHg) 

Ferrari et. al (2005) 2 -7.6 

 

Instead of reduction, AoPmax increased when the CIMS balloon pump activated, and this was very 

different compared to results tabulated in Table 4-65. However, the pressure increase was very 

small and might not be clinically significant. The reduction of AoEDP due to the CIMS balloon 

pump activation was comparable to most of the published results in Table 4-66. In both present 

and Papaioannou’s study, even though the magnitude was quite different, it was shown that with 

decreasing arterial compliance, reduction of AoEDP become greater.  

The association of dP with CO, and dP with QcorMean, showed a considerable strength at R2 = 

46.8% and 31%. Despite less than 50%, the correlation of (dP vs. CO) and (dP vs. QcorMean) when 

arterial compliance and balloon design factor were investigated suggests a very favourable 

association, and thus could be used for patient status indicator. 
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4.5 Heart Valve 

 

The effect of different type of aortic heart valve was investigated using two separate factorial 

experiments differed only on the type of aortic valve either the mechanical (MHV) or 

bioprosthetic heart valve (BioPHV) (refer to Table 3-9) installed in the MCL. Experimental factors 

were the Deflation Point (G, I & J) and Arterial Compliance (C2.5 & C1.5) factor making a 2 × 3 

factorial experiment, resulting in 6 combinations. Fixed experimental factors were 1) Inflation 

timing set at dicrotic notch, 2) Helium gas volume was 25 mL and 3) straight body (SB) type 

balloon pump.  

By separating between originally intended one 2 × 3 × 2 to two 2 × 3 factorial experiments, the 

factorial experiments were easier to do, while still maintaining accuracy of the response outputs. 

It was hoped that the effect of the CIMS balloon pump counterpulsation with different aortic 

heart valve can shed light on haemodynamic performance differences. 

 

4.5.1 Mechanical Heart Valve (MHV) 

 

In this subchapter, the results of haemodynamic performance due to Deflation Point and Arterial 

Compliance factors while using mechanical heart valve (MHV) are presented. Three series of 2 × 3 

factorial experiments were carried out and the measured data was analysed. 

 

4.5.1.1 Cardiac Output (CO) 

 

Figure 4-108 illustrates the pulsatile aortic flowrate with fixed balloon deflation timing (BI) and 

varied arterial compliance (C2.5 & C1.25). No prominent difference can be detected except for a 

higher magnitude in systole by flowrate BI – C1.25. Mean flowrate (i.e. cardiac output), before 

and after balloon activation, is used to calculate percentage difference, and used for statistical 

analysis.  
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Figure 4-108 : The aortic flowrate of MHV experiment with fixed deflation timing and varied arterial compliance (the 
ordinate is instantaneous flow/non-assisted C.O.) 

 

 Table 4-67 tabulates the mean value and standard deviations (SD) for all combinations of Arterial 

Compliance and Deflation Point factor with mechanical heart valve (MHV) installed in the MCL. 

Table 4-67: Mean values and SDs (in brackets) for MHV experiment 

CO 
Deflation Point 

Row Mean 
BG BI BJ 

Arterial  
Compliance 

C2.5 6.30 6.23 5.34 5.96 

  (1.18) (0.80) (2.95)   

C1.25 9.69 11.28 10.13 10.37 

 (1.10) (1.09) (1.67)   

Column Mean 7.99 8.76 7.74 8.16 

 

The grand mean value of CO augmentation was a considerable 8.16% (range: 5.34% to 11.28%), 

with the highest output by combination (BI – C1.25). There mean differences in column mean is 

low, but there is an increase of nearly two fold at row mean. To determine whether the mean 

differences between groups were significant or not, statistical test was carried out. 
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Table 4-68: SRH test result for MHV experiement 

Source  P-value 

ArtCompliance 1.275×10-77 

DeflationPoint 0.003 

ArtCompliance×DeflationPoint 0.008 

 

Table 4-68 reports the SRH result for the two-way factorial experiment. Both experimental factors 

showed significant main effect (p < 0.05), and the interaction between the factors was also 

significant (p < 0.05). Further post-hoc test was carried out to determine significance of mean 

differences in Deflation Point factor. Table 4-69 tabulates the post-hoc Nemenyi test result. 

Table 4-69: Nemenyi test result for Deflation Point factor 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞ ,3) Result Significant 

BI 
 

BJ 9019.8 2093.3466 4.309 3.314 Reject H0 YES 

BI 
 

BG 8346.6 2093.3466 3.987 3.314 Reject H0 YES 

BG 
 

BJ 673.2 2093.3466 0.322 3.314 Accept H0  
 

The mean differences of (BI vs. BJ), and (BI vs. BG) were significant, but not of (BG vs. BJ).This 

suggests that point BI was the most prominent compared to the other two points. 

 

Figure 4-109 : Mean value for all combinations of experimental factors 
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Figure 4-109 illustrates the CO’s mean value for all combinations of both experimental factors. 

The output by low arterial compliance level, C1.25, surpassed mean value from C2.5 results for 

every level in Deflation Point factor; while the output of point BI is higher than the other two 

points especially when in low arterial compliance. This finding supports combination (C1.25 – BI) 

selection as the optimum yield point.  

This section finding reinforces previous subchapters finding that the effect of arterial compliance 

on CO augmentation was significant. The augmentation of systemic perfusion when MHV was 

implanted yield better result in low arterial compliance compared to high arterial compliance. 

Also, the similar finding of combination B-I yielding greatest output also reinforces the findings in 

TIMING experiment, where optimum balloon inflation and deflation timing is combination B-I. 

4.5.1.2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

The effect of fixed deflation point and different arterial compliance on pulsatile LCA flowrate is 

illustrated in Figure 4-110. The combination BI – C1.25 waveform is quite different in magnitude 

compared to BI – C2.5 at every positive peak. To determine whether this also translates to 

meaningful differences between all six combinations, statistical analysis was carried out. 

 

Figure 4-110: The effect of different arterial compliance while the deflation timing is fixed. . Grey areas indicate 
diastole period (the ordinate is LCA flowrate/non-assisted mean LCA flowrate) 
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The means and SDs for all combinations of two experimental factors on QcorMean, are tabulated 

in Table 4-70. 

Table 4-70: Means and SDs of QcorMean augmentation 

QcorMean 
Deflation Point 

Row Mean 
BG BI BJ 

Arterial  
Compliance 

C2.5 9.37 11.82 9.37 10.19 

  (0.70) (0.71) (1.96)   

C1.25 16.37 19.29 16.98 17.55 

 (1.17) (0.97) (2.64)   

Column Mean 
12.87 15.56 13.18 13.87 

 

The grand mean value due the treatment of two experimental factors on QcorMean in assisted 

flow was a reasonable augmentation of 13.87% (range = 9.37% to 19.29%). The mean differences 

at both row and column mean are apparent; statistical test was carried out to determine the 

significance of the results. 

 

Table 4-71: SRH test result for QcorMean in the 2 x 3 two-way factorial MHV experiment  

Source  P-value 

ArtCompliance 1.117×10-87 

DeflationPoint 4.56×10-15 

ArtCompliance × DeflationPoint 0.395 

 

Table 4-71 tabulates the non-parametric SRH test result; both experimental factors showed 

significant main effect (p < 0.001), but not the interaction between them (p = 0.395).  

Since the Deflation Point factor was shown to exhibit significant main effect, further post-hoc test 

was carried out to determine which mean difference was significant. 

Table 4-72: Nemenyi test result for Deflation timing factor 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

BI 
 

BG 22368.6 2093.3466 10.686 3.314 Reject H0 YES 

BI 
 

BJ 18855 2093.3466 9.007 3.314 Reject H0 YES 

BJ 
 

BG 3513.6 2093.3466 1.678 3.314 Accept H0  
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From Nemenyi test result in Table 4-72, only the mean difference of (BI vs. BG), and (BI vs. BJ) 

were found to be significant, but not (BG vs. BJ); this suggests that point (B-I) was the pivotal level 

as clearly illustrated in Figure 4-111. 

 

Figure 4-111: Plot of mean value for all combination of Arterial Compliance and Deflation Point factors 

The effect of two experimental factors, Arterial Compliance (low and high) and Deflation Point 

(early, safe and late) on the mean value of QcorMean percentage increase was quite substantial.  

The highest output was from combination (BI – C1.25). This follows cardiac output (CO) result in 

previous subchapter (4.5.1.2), where highest yield was also by combination (BI – C1.25). The CIMS 

balloon deflation set just when the aortic valve was opening i.e. deflation point (I) combined with 

dicrotic notch inflation (point B) strongly give credence to TIMING experiment finding (subchapter 

4.2).  

Heart failure patients implanted with MHV due to possible causes such as valve incompetence, 

and/or heart valve disease, may benefit from the implantation of CIMS balloon pump as the 

coronary perfusion would show a significant augmentation from these two experimental factors, 

especially patients with low arterial compliance. 
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4.5.1.3 Aortic Systolic Pressure (AoPmax) 

 

The effect of fixed (deflation timing) and varied (arterial compliance) factor is illustrated in Figure 

4-112. Lower compliance level (C1.25) proves to yield larger pressure range compared to high 

compliance level.  

 

Figure 4-112: Aortic pressure waveform when deflation timing is fixed and arterial compliance is varied (The ordinate 
is aortic pressure/non-assisted MAP) 

 

Table 4-73 tabulates the means and standard deviations of AoPmax augmentation percentage for 

all combinations of Arterial Compliance and Deflation Point factor. 

Table 4-73: AoPmax means and SDs for Arterial Compliance  Deflation Point factors 

AoPmax 
Deflation Point 

Row Mean 
BG BI BJ 

Arterial  
Compliance 

C2.5 1.10 1.19 -0.92 0.46 

  (1.54) (1.00) (3.23)   

C1.25 2.19 2.84 0.65 1.89 

 (1.16) (1.28) (2.52)   

Column Mean 1.64 2.01 -0.13 1.17 
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The grand mean value is a minimal 1.17 % (range = -0.92 % to 2.84 %), and while there are 

obvious differences in row and column mean, they were small; to ascertain that the differences 

were significant, statistical test was carried out. 

 

Table 4-74: SRH test result of 2 x 3 two-way factorial experiment 

Source P-value 

ArtCompliance 5.44×10-18 

DeflationPoint 5.7×10-11 

ArtCompliance × DeflationPoint 0.027 

 

The non-parametric SRH test, an equivalent of two-way ANOVA with replication was used. Table 

4-74 reports that both experimental factors, and the interaction were all statistically significant (p 

< 0.05). Post-hoc test was carried out for Deflation Point factor to determine which level 

contributed to the statistical significance. 

 
Table 4-75: Nemenyi test result for the Deflation Point factor 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

BI 
 

BJ 19740.6 2093.3466 9.430 3.314 Reject H0 YES 

BI 
 

BG 5644.8 2093.3466 2.697 3.314 Accept H0  

BG 
 

BJ 14095.8 2093.3466 6.734 3.314 Reject H0 YES 

 

Table 4-75 reports statistically significant mean differences were of (BI vs. BJ) and (BG vs. BJ), but 

not between mean of (BG vs. BI). This suggests that point BJ was different from the other two as 

illustrated in Figure 4-113. 

The supposed reduction of AoPmax was also not achieved from this round of experiment. Both 

experimental factors, Arterial Compliance and Deflation Point, failed to reduce the mean value of 

AoPmax except for one combination (C2.5 – BJ); even the grand mean value of AoPmax increased 

albeit a small percentage (1.17%).  
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Figure 4-113: Mean value for all combinations of Arterial Compliance and Deflation Point factors 

 

In term of AoPmax reduction, the high arterial compliance (C2.5) yielded better result compared 

to C1.25. This result contradicted the findings of previous subchapters (e.g. 4.5.1.2), where 

combination (C1.25 – BI) was the greatest output. 

As discussed in previous subchapters, although from this finding, the augmentation effect of CIMS 

balloon pump on AoPmax reduction contradicted the effect of IABP, the magnitude was small 

enough to be considered as inconsequential to the workload of the heart. The myocardium 

workload is more affected by the reduction of afterload from reduction of AoEDP. 

 

4.5.1.4 Aortic End-Diastolic Pressure (AoEDP) 

 

The results of AoEDP due to activation of CIMS balloon pump are tabulated in Table 4-76.  
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Table 4-76: Means and SDs of AoEDP for all combinations of experimental factors 

AoEDP 
Deflation Point 

Row Mean 
BG BI BJ 

Arterial  
Compliance 

C2.5 -2.02 -3.44 -2.88 -2.78 

  (1.66) (1.13) (4.55)   

C1.25 -11.13 -13.34 -13.83 -12.77 

 (1.81) (1.89) (3.98)   

Column Mean -6.57 -8.39 -8.36 -7.77 

 

Due to Arterial Compliance and Deflation Point factors, the grand mean of AoEDP reduction was a 

reasonable reduction at -7.77% (range = -13.83% to -2.02%). The mean difference at row mean is 

considerably bigger compared to that of column mean. Statistical test was used to determine 

whether the mean difference between levels and factors were significant or due to chance only. 

Table 4-77: SRH test result for AoEDP response output 

Source  P-value 

ArtCompliance 4.157×10-86 

DeflationPoint 1.869×10-5 

ArtCompliance ×  DeflationPoint 0.598 

 

The non-parametric SRH test, equivalent to two-way ANOVA with replication, was used and the 

result is tabulated in Table 4-77. Both experimental factors show significant main effect (p < 

0.001) but not the interaction between them (p = 0.598). Further post-hoc test was done on 

Deflation Point factor to determine which mean difference was significant. The Nemenyi test was 

used and Table 4-78 tabulates the results. 

Table 4-78: Nemenyi test result for Deflation Point factor 

  vs   (Rb-Ra) SE q q(0.05,∞,3) Result significant 

BG 
 

BJ 12088.8 2093.3466 5.775 3.314 Reject H0 YES 

BG 
 

BI 11838.6 2093.3466 5.655 3.314 Reject H0 YES 

BI 
 

BJ 250.2 2093.3466 0.120 3.314 Accept H0  
 

The mean differences of (BG vs. BJ) and (BG vs. BI) were significant, while there was no 

significance difference between (BI vs. BJ), suggesting output from point (B-I) and (B-J) can be 
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considered similar; but the mean difference with point B-G was significantly different. Figure 4-

114 illustrates the mean value of each combination.  

 

Figure 4-114: AoEDP mean value for all combination of two experimental factors 

 

The reduction of aortic end-diastolic pressure (AoEDP) is essential to lessen myocardium 

workload. The combination of Arterial Compliance and Deflation Point factor which made up the 

2 x 3 factorial experiment, using MHV in the MCL, reported considerable effect yielding AoEDP 

reduction to -13 %.    

The effect of Arterial Compliance factor was significant in reducing AoEDP, with low arterial 

compliance yielded better result compared to high arterial compliance level. Since most of HF 

patient are from older generation with low arterial compliance, secondary to stiff vasculature, this 

finding suggested that CIMS balloon pump augmentation effect can be maximised. 

The effect of Deflation Point factor was also significant with the deflation timing set after the 

aortic valve was opening contributed statistically different than early deflation. Although the 

greatest reduction of AoEDP was from combination (BJ – C1.25), since (B-I vs. B-J) was found to be 

statistically similar, the optimum output could be (BI – C1.25), which is the same optimum 

combination for periphery and coronary perfusion result previously reported. 
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4.5.1.5 Correlation  

 

dP vs. CO  

There was a definite significant positive association between dP and CO under Arterial 

Compliance and Deflation Point factor when MHV was used in the MCL, rS =.253, N = 540, p < 

0.01, two-tails. Increase of dP, the diastolic pressure augmentation indicator, was shown to be 

associated with increase in peripheral circulation; however, the magnitude of association was 

small, since the coefficient of determination was R2 = 0.064. This means that only 6.4 % of 

variation in CO can be attributed to dP. From this experiment, it is suggested that the increased 

diastolic pressure have weak association with increased peripheral blood perfusion. 

 

dP vs. QcorMean 

Correlation test was carried out and there was a significant positive correlation between dP and 

the amount of augmentation to left coronary artery circulation, rS = .447, N = 540, p < .001, two-

tails. The magnitude of the association was considerably moderate, since correlation of 

determination, R2 = 0.199, i.e. ≈ 20% of QcorMean variation can be attributed to dP and vice 

versa. Compared to the above result, there was quite a strong indication of association between 

augmented diastolic pressure with LCA perfusion.  

Discussion 

The correlation between dP vs. CO and dP vs. QcorMean were both significant, however the 

degree of association between variables was small. These results suggested that there are other 

experimental factors better associated with peak aortic diastolic pressure, periphery and coronary 

perfusion. 
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4.5.2 Bioprosthetic Heart Valve (BioPHV) 

 

Experimental results as previous subchapter, affected by Arterial Compliance and Deflation Point 

factors, using bioprosthetic valve (BioPHV) in the MCL are presented hereinafter.  

 

4.5.2.1 Cardiac Output (CO) 

 

The effect of fixed deflation point and different arterial compliance of two pulsatile aortic 

flowrate is illustrated in Figure 4-115. Only minor differences in magnitude between waveforms 

were detected; generally combination BI – C1.25 recorded higher peak in systole. Mean of the 

aortic flowrate is used for statistical analysis. 

 

Figure 4-115: Aortic flowrate with fixed deflation point and varied arterial compliance levels (the ordinate is 
instantaneous flow/non-assisted C.O.) 

 

The means and standard deviations (SD) of cardiac output (CO) for all combinations of Arterial 

Compliance and Deflation Point factors are tabulated in Table 4-79.  
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Table 4-79: CO mean values and SD (in brackets) for all combinations of Arterial Compliance and Deflation Point 

CO 
Deflation Point 

Row Mean 
BG BI BJ 

Arterial 
Compliance 

C2.5 5.58 4.20 3.35 4.38 

  (2.11) (1.97) (1.68)   

C1.25 8.49 6.31 5.77 6.86 

  (2.08) (1.61) (1.69)   

Column Mean 7.04 5.26 4.56 5.62 

The grand mean value due to CIMS balloon pump activation under the two experimental factors 

on CO augmentation percentage was minimal at 5.62% (range: 4.20% to 8.49%). The mean 

differences between levels in both row and column mean are not far apart. Appropriate statistical 

test was carried out to ascertain the significance of mean differences. 

Table 4-80: The ANOVA test result 

Source  P-value 

ArtCompliance 0 

DeflationPoint 0 

ArtCompliance × DeflationPoint 0.124 

 

Contrary to previous results, the data for cardiac output had equal variance, and adhered to 

normality assumption. Thus ANOVA test was used. The two-way 2 × 3 ANOVA result computed 

using SPSS software is tabulated in Table 4-80, and shows that both experimental factors, Arterial 

Compliance and Deflation Point had significant main effect (p < 0.001); however the interaction 

between the factors was not significant (p = 0.124). Post-hoc test was carried out on Deflation 

Point factor to ascertain which level contributed to the significance of the factor.  

Table 4-81 : Post-hoc Tukey HSD test for Deflation Point factor 

 vs  Mean Difference Std. Error Significance (α = 0.05) 

BG  BI 1.7811 .19699 YES 

BG  BJ 2.4778 .19699 YES 

BI  BG -1.7811 .19699 YES 

BI  BJ .6967 .19699 YES 

BJ  BG -2.4778 .19699 YES 

BJ  BI -.6967 .19699 YES 
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Table 4-81 tabulates the simplified Tukey HSD post-hoc test result where all three levels in 

Deflation Point factor showed significant differences between each other at significant level of α = 

0.05. Figure 4-116 illustrates the mean value of combinations to facilitate understanding. 

 

Figure 4-116: CO mean value for all combination with BioPHV 

 

Later balloon deflation decreased cardiac output (CO) mean value with significant difference 

amongst deflation points, and that difference enhanced by arterial compliance in the MCL; low 

arterial compliance (C1.25) yielded higher response output compared to high compliance level 

(C2.5). The greatest CO yield was from combination (BG – C1.25) at almost 8.5% of augmentation, 

as a comparison the MHV result of combination (BI – C1.25) was at 11%.  

When BioPHV was used in the MCL, the grand mean was 5.62% (range: 3.35% to 8.49%). The 

range overlapped with the MHV result above (4.5.1.1 Cardiac Output (CO)). By timing the CIMS 

balloon pump deflation prior to systole, instead of deflating the balloon pump at early systole, 

haemodynamic response would be better for the BioPHV implanted patients.  
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4.5.2.2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

The effect of varied arterial compliance with fixed deflation timing is not prominent except for 

minor differences between two LCA flowrate waveforms as illustrated in Figure 4-117.  

 

Figure 4-117: The effect of varied arterial compliance with fixed deflation point on LCA waveforms. Grey areas 
indicate diastole period (the ordinate is LCA flowrate/non-assisted mean LCA flowrate) 

 

The mean flowrate was calculated for both non-assisted and assisted circulation and the 

percentage difference is used for statistical analysis. The augmentation effect on LCA blood 

perfusion is tabulated in Table 4-82. The mean values and standard deviations (SD) are from 

combinations of Arterial Compliance and Deflation Point factors. 

Table 4-82: Mean values and SDs (in brackets) of QcorMean for all combinations of Arterial Compliance and Deflation 
Point factors 

QcorMean 
Deflation Point 

Row Mean 
BG BI BJ 

Art. 
Compliance 

C2.5 7.79 4.33 3.52 5.21 

  (1.31) (1.21) (1.32)   

C1.25 13.00 10.04 8.56 10.54 

 (0.82) (1.34 (0.91)   

Column Mean 10.39 7.19 6.04 7.87 
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The grand mean value of the augmented QcorMean was 7.87% (range = 3.52% to 13%). There was 

a two-fold increase at row mean, as well as gradual reduction as the deflation point were shifted 

later in the cardiac cycle in column mean. Statistical analysis was used to determine whether 

those mean differences were statistically significant or not. 

Table 4-83: SRH test result for QcorMean data 

Source P-value 

ArtCompliance 6.322×10-74 

DeflationPoint 2.507×10-30 

ArtCompliance × DeflationPoint 0.278 

 

Table 4-83 tabulates the SRH test result; there was significant main effect for both experimental 

factors (p < 0.001), but not the interaction between them (p = 0.278). Since Deflation Point factor 

yield significant main effect, further post-hoc test was carried out to determine significance of 

mean differences between levels.  

Table 4-84: Nemenyi test result for Deflation Point factor 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

BG 
 

BJ 33697.8 2093.3466 16.098 3.314 Reject H0 YES 

BG 
 

BI 23511.6 2093.3466 11.232 3.314 Reject H0 YES 

BI 
 

BJ 10186.2 2093.3466 4.866 3.314 Reject H0 YES 

 

Table 4-84 tabulates the post-hoc Nemenyi test result, and all three levels were significantly 

different from each other (p < 0.05); Figure 4-118 illustrating mean value for each combination 

facilitates visual understanding.  
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Figure 4-118: Mean vale for all combinations of experimental factors 

 

The low arterial compliance condition yielded higher QcorMean mean value compared to the high 

compliance condition across all Deflation Point levels; and the decreasing trend from early to later 

deflation point was similar for both C1.25 and C2.5 level. Greatest yield was from combination 

(C12.5 – BG) at 13%. These trends are similar to the CO response output reported above (4.5.1.1).  

These findings suggest patient with bio-prosthetic heart valve implanted with the CIMS balloon 

pump would receive optimal support if the balloon pump deflates before the aortic valve opens 

and possibly greater if the patient has low arterial compliance vasculature. 

 

4.5.2.3 Aortic Systolic Pressure (AoPmax) 

 

The effect of varied arterial compliance levels and fixed deflation point on aortic pressure is 

illustrated in Figure 4-119.  
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Figure 4-119: The aortic pressure with effect of two different levels of arterial compliance and fixed deflation point 
(The ordinate is aortic pressure/non-assisted MAP) 

 

The range of aortic pressure is larger by the low arterial compliance waveform compared to the 

other one. The systolic and end-diastolic pressure is used for statistical analysis. The means and 

standard deviations for AoPmax augmentation due to the Arterial Compliance and Deflation Point 

factors are tabulated in Table 4-85. 

Table 4-85 : AoPmax means and SD (in brackets) for all combinations  

AoPmax 

Deflation Point Row 
Mean BG BI BJ 

Art. 
Compliance 

C2.5 0.83 -2.39 -4.53 -2.03 

  (1.87) (2.70) (2.12)   

C1.25 1.37 -2.86 -4.24 -1.91 

 (1.46) (2.46) (2.03)   

Column Mean 
1.10 -2.62 -4.39 -1.97 

 

The grand mean of the aortic systolic pressure (AoPmax) augmentation effect from the two 

experimental factors was a small reduction at -1.97 % (range = -4.53 % to 1.37 %). Column and 

row means are all minimal except for column BJ. Statistical analysis was performed to determine 

whether mean differences were statistically significant or occurred due to chance. 
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Table 4-86: SRH test result for the 2 x 3 factorial experiment 

Source P-value 

ArtCompliance 0.695 

DeflationPoint 1.5×10-64 

ArtCompliance ×DeflationPoint 0.247 

 

The non-parametric SRH test, equivalent to two-way ANOVA with replication, was used to analyse 

the 2 x 3 factorial experiment data; Table 4-86 reports that only Deflation Point factor was found 

to yield significant main effect (p < 0.001). Since the Deflation Point factor showed significant 

main effect, further post-hoc test was carried out to determine which mean difference between 

levels was significant. 

Table 4-87: Nemenyi test result for Deflation Point factor 

 
vs 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

BG 
 

BJ 49644 2093.3466 23.715 3.314 Reject H0 YES 

BG 
 

BI 33964.2 2093.3466 16.225 3.314 Reject H0 YES 

BI 
 

BJ 15679.8 2093.3466 7.490 3.314 Reject H0 YES 

 

The Nemenyi test result tabulated in Table 4-87 shows all levels were significantly different from 

each other. Figure 4-120 illustrates the mean values of combinations in this experiment. 

 

Figure 4-120: Plot of mean values for all combinations of two experimental factors 
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Figure 4-120 illustrates the mean values of AoPmax, and the obvious trend is dramatic reduction 

of AoPmax’s mean value for both levels of Arterial Compliance as the deflation point shifted to 

the right i.e. later in the cardiac cycle. The decreasing output trend was similar to previous results, 

but differs by the fact that using bioprosthetic aortic valve, aortic systolic pressure is not affected 

by arterial compliance factor.  

Patient implanted with bio-prosthetic heart valve and the CIMS balloon pump might not benefit 

from AoPmax reduction as demonstrated from this experiment, although deflation point past 

systole (point J) somehow decreased AoPmax, but only minimal at around -4 %. At point B-I 

(optimum point from most experiments) it was revealed that AoPmax was reduced to around -

2.6%, a very minimal reduction that may or may not have clinical significance. 

  

4.5.2.4 Aortic End-Diastolic Pressure (AoEDP) 

 

The mean values and SD for AoEDP due to influence from two experimental factors are presented 

in Table 4-88.  

Table 4-88: AoEDP mean values and SDs (in brackets) for all combinations from two experimental factors 

AoEDP 
Deflation Point Row 

Mean BG BI BJ 

Art. 
Compliance 

C2.5 -2.93 -3.96 -4.09 -3.66 

  (1.67) (3.76) (4.48)   

C1.25 -14.30 -16.38 -9.36 -13.35 

 (3.17) (3.25) (7.63)   

Column Mean -8.61 -10.17 -6.73 -8.50 

 

The reduction of aortic end-diastolic pressure (AoEDP) by two different experimental factors, 

Arterial Compliance and Deflation Point yielded a favourable grand mean value of -8.50 % (range : 

-16.38 % to -2.93 %). The highest yield output was from combination (BI – C1.25) at -16.4%. 

Statistical analysis was performed to ascertain whether the mean differences were significant or 

occurred due to chance. 
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Table 4-89: Non-parametric SRH test result for 2 x 3 two way factorial experiment 

Source P-value 

ArtCompliance 2.034×10-61 

DeflationPoint 01×10-4 

ArtCompliance × DeflationPoint 1.233×10-7 

 

As tabulated in Table 4-89, both experimental factors show significant main effect, and also the 

interaction between them (p < 0.001). Post-hoc test was performed on Deflation Point factor to 

ascertain which mean difference amongst levels was significant. 

Table 4-90: The Nemenyi test result for Deflation Point factor 

 
vs. 

 
(Rb-Ra) SE q q(0.05,∞,3) Result significant 

BJ 
 

BI 12569.4 2093.3466 6.004 3.314 Reject H0 YES 

BJ 
 

BG 4851 2093.3466 2.317 3.314 Accept H0  
BG 

 
BI 7718.4 2093.3466 3.687 3.314 Reject H0 YES 

 

The post-hoc Nemenyi test for Deflation Point factor in Table 4-90 shows that only the mean 

differences of (BJ vs. BI) and (BG vs. BI) was significant at 5% level, suggesting response output at 

point BG and BJ was similar,  with point BI is the prominent output. 
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Figure 4-121: The mean value for all combinations of experimental factors 

The reduction of aortic end-diastolic pressure (AoEDP), when influenced by the Arterial 

Compliance and Deflation Point factor, was a grand mean of -8.50 %. There was a significant mean 

difference of almost 10 mmHg between the levels of Arterial Compliance, as reported in Table 4-

88. Low arterial compliance yielded greater AoEDP reduction, thus reducing the amount of 

resistance the heart has to overcome during systole. The effect of deflation timing was significant, 

but the effect was more pronounced when at low compliance rather than at high compliance 

level. From Figure 4-121, highest reduction was at point (BI) when compliance level is C1.25, while 

at high arterial compliance, (C2.5), mean differences were not significant.  

From these results, it was suggested that afterload reduction is highly probable with bioprosthetic 

heart valve especially if the patient’s vasculature is stiff and if the optimum inflation/deflation 

timing was chosen. Both MHV and BioPHV, in term of AoEDP reduction magnitude, can be 

suggested to be comparable since greatest AoEDP reduction was from combination (C1.25 – BI). 
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4.5.2.5 Correlation  

 

The association of pressure difference (dP) between peak aortic diastolic pressure (PADA) and 

aortic systolic pressure (AoPmax), with peripheral and LCA perfusion was investigated using 

correlation test. The results are presented below. 

dP vs. Cardiac Output 

There was a significant positive correlation between dP and CO, r = .179, N = 540, p < .001, two 

tails; however, the magnitude of the association was small as demonstrated by the coefficient of 

determination, R2 = 0.032, meaning that only 3.2% of CO data variations were caused by dP and 

vice versa. The association between these two factors is significant but it was small.  

dP vs. QcorMean 

There was a positive association between dP and augmentation of blood perfusion to the LCA, rS = 

.177, N = 540, p < .001, two tails. However, only a small amount of variation of QcorMean mean 

value was attributed to dP since R2 = 0.031, meaning the variations between the dependent 

variables was only a minimal 3.1 %. 

 

Discussion 

There were significant associations of (dP and CO), and (dP and QcorMean). However, the degrees 

of association between the response outputs were low at less than 5%. Diastolic pressure 

augmentation involving these experimental factors may not indicate increased CO and QcorMean. 

 

4.5.3 Discussion 

 

The original intention was to compare two different types of heart valve’s effect on the MCL 

circulation when deflation timing and arterial compliance levels were varied i.e. a three-way 

factorial experiment (heart valve type vs. deflation timing vs. arterial compliance). However, since 

there could be a possibility of increased experimental error due to randomised heart valve swap; 

a decision was taken, to avoid excessive experimental or handling error from creeping into the 

data recorded, by splitting the three-way factorial design experiment into two (2) two-way 
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factorial experiments instead; one for the mechanical heart valve (MHV), and the other for 

bioprosthetic heart valve (BioPHV). 

Each of the two-way factorial design experiment comprised of two experimental factors, the 

Arterial Compliance (C2.5 & C1.25), and Deflation Point (G, I & J) factors. The discussion hereafter 

compares the response output from both heart valves. Table 4-91 tabulates summary of the 

grand mean values, its range of response outputs, maximum output combinations and its values 

from both types of heart valve. 

 

Table 4-91: Grand mean and range (in brackets), maximum output value and corresponding combination of each 
response output for both heart valve types 

Response 
Output  

MHV BIOPHV 

CO 

grand mean 8.16% 5.62% 

range [5.34% to 11.28%] [3.35% to 8.49%] 

best combination 
maximum value 

(BI – C1.25) 
11.3% 

(BG – C1.25) 
8.5% 

QcorMean 

grand mean 13.87% 7.87% 

range [9.37% to 19.29%] [3.52% to 13%] 

best combination 
maximum value 

(BI – C1.25) 
19.3% 

(BG – C1.25) 
13% 

AoPmax 

grand mean 1.17% -1.97% 

range [-0.92% to 2.84%] [-4.53% to 1.37%] 

best combination 
maximum value 

(BJ  – C2.5) 
- 1% 

(BJ – C2.5) 
-4.5% 

AoEDP 

grand mean -7.77% -8.50% 

range [-13.83% to -2.02%] [-16.38% to -2.93%] 

best combination 
maximum value 

(BI – C1.25) 
-13.3% 

(BI – C1.25) 
-16.4% 

 

Cardiac Output  

Heart failure (HF) patients suffer diminished cardiac output (CO) from a normal range of 5 – 6 

L/min, to around 3.0 – 4.0 L/min. The MCL simulated HF level perfusion at CO = 3.0 L/min, and 

activation of CIMS balloon pump augmented the systemic circulation shown in Table 4-91.  

The grand mean value yielded by both types of heart valve was different although there were 

some overlaps in the range. The magnitude difference of the maximum yield from both aortic 

heart valves was small ; in both instances, maximum yield was from low arterial compliance 
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condition, only differed at either just after aortic valve opened (BI), or before aortic valve opened 

(BG).  

The amount of peripheral blood perfusion augmentation by the CIMS balloon pump was small; 

the greatest output from either type was an improvement of approximately 10%. It can be 

suggested that the effect of aortic heart valve type on CO yield output was not prominent, and a 

surgeon contemplating the CIMS balloon implantation could do so without concern over aortic 

heart valve selection, since flow augmentation was affected more by other factors such as 

vasculature condition and/or balloon pump design (refer to subchapter 4.4). 

Left coronary artery (LCA) mean flowrate  

The augmentation of myocardial flow is one of the priorities for CIMS balloon pump activation, 

since that increases oxygen supply to the heart. LCA flow augmentation was reported for both 

types of heart valve, although the grand mean value yielded by the MHV was higher as tabulated 

in Table 4-91; even the range exhibited by MHV is higher compared to BioPHV.  

A similar trend detected from QcorMean result of MHV and BioPHV experiments was the 

combination that yielded the greatest QcorMean output which also yielded optimum CO 

augmentation. For MHV, the combination was (BI– C1.25); while for BioPHV, the optimum 

combination was (BG – C1.25). LCA flow was augmented far more optimum in low arterial 

compliance condition, while the deflation timing that was optimum for both response outputs 

(CO and QcorMean) was before aortic heart valve leaflet opened completely (point BJ).  

There was a considerable QcorMean augmentation from both heart valves type, although MHV 

yielded greater output compared to BioPHV. It can be suggested that the differences from 

structural construct of heart valve proximal to the LCA circulation might have caused the 

differences. Regardless, the favourable increase of QcorMean can be considered a positive aspect 

in increasing myocardium oxygen supply.  

 

Aortic Systolic Pressure 

In Table 4-91, the reduction of AoPmax was better executed by BioPHV compared to MHV, which 

was indicated by AoPmax’s grand mean value. Almost all AoPmax mean value from BioPHV 

experiment recorded reduction compared to non-assisted circulation with the greatest AoPmax 
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reduction was combination (BJ – C2.5). As for MHV, only one combination yielded pressure 

reduction (BJ – C2.5).  

Later deflation point was prominent in both MHV and BioPHV for aortic systolic pressure 

reduction while arterial compliance had no significant effect for BioPHV. Although the reduction 

of AoPmax was recorded, the percentage of reduction due to varied arterial compliance and 

balloon deflation points either by BioPHV, and especially MHV was small; as such most probably 

no adverse effect on the myocardium workload. 

 

Aortic End-Diastolic Pressure  

The reduction of aortic end-diastolic pressure (AoEDP) is important since the reduced aortic 

pressure prior to systole is hypothesised to reduce myocardium afterload.  

There were similar trends between MHV and BioPHV. The arterial compliance was significant in 

both experiments, and mean difference between levels were also quite large. Both types yielded 

greatest AoEDP reduction when the arterial compliance was set to low. The average percentages 

of AoEDP reductions from C1.25 level were -12.77% and -13.35% for MHV and BioPHV 

respectively. These values are close to each other, although no statistical comparison was done.  

With regards to the Deflation Point factor, the trend was different.  When the MCL was fitted with 

MHV, later deflation timing reduced AoEDP mean value considerably, with point (BI) and (BJ) 

statistically similar. However, in MCL fitted with a BioPHV, the maximum reduction occurred only 

at point (BI). These bring the same combination for AoEDP reduction for both heart valve types at 

(BI – C1.25). 

With manipulation of three experimental factors (heart valve, arterial compliance & deflation 

timing), AoEDP reduction was shown to be significant. It can be suggested that afterload would be 

reduced as well, thus would lead to myocardium workload reduction; especially if the patient has 

a low compliance vasculature, and optimum timing was chosen regardless of the type of aortic 

heart valve chosen.  
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Correlation 

Table 4-92 summarises the correlation test result. The coefficient of correlation, r or rS, and 

coefficient of determination, R2, are tabulated for each heart valve type.  

Table 4-92: Summary of MHV and BioPHV's correlation test result. Magnitude of variation between variables are 
shown in brackets 

Correlation Summary MHV BioPHV 

dP vs. CO 
r 0.253 0.179 

R2 0.064 (6.4%) 0.032 (3.2%) 

dP vs. QcorMean 
r 0.447 0.177 

R2 0.199 (≈20%) 0.031 (3.1%) 

 

There was minimal association between diastolic pressure augmentation dP with CO, and dP with 

QcorMean, except the association of dP with QcorMean when MHV was implanted in the MCL at 

a moderate 20%. That result might be attributed to the structural rigidity of the MHV’s metallic 

bileaflet and the confounding effect of CIMS balloon pump being near to the MHV. 

The low association of dP with flowrate variables tabulated in Table 4-92 suggested that under 

experimental factors of deflation timing, arterial compliance and heart valve types, the diastolic 

augmentation would not indicate clearly increased periphery and coronary perfusion.  

 

Overall Finding 

Gathering all the findings, it can be suggested that types of artificial heart valve, either a 

mechanical or bio-prosthetic, is not a contraindication of the CIMS balloon pump. Bio-prosthetic 

heart valve is implanted mostly in older population, although no significant difference in survival 

compared to MHV was reported (Asimakopoulos et al., 1997). Bio-prosthetic heart valve 

durability was less than MHV but there was no need for an anti-coagulation medication such as 

Warfarin, and this might be favoured with CIMS balloon pump implantation, where balloon 

inflation and deflation occluded the aorta. 
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4.6 Overall Discussion 

 

The objective of these experiments was to investigate the haemodynamic performance due to the 

CIMS balloon pump activation, and the optimum combination for response output. Since the 

CIMS balloon pump has no precedent, a comparison is made with existing results from IABP or 

similar counterpulsation device available in the literature. 

Table 4-93 tabulates the list of experiments carried out and the experimental factors involved. 

The factorial experimental method was used in this study, thus two experimental factors were 

combined (cross-hatched cells), while the others were fixed (non-shaded cells). 

 

Table 4-93: The experimental factors used in these experiments. For each column, the varied factors are cross-hatch 
cells, while fixed factors are non-shaded cells. GasVol: Helium gas volume, Art.Comp: arterial compliance. 

Types of experiment TIMING GasVOL COMPLIANCE MHV BioPHV 

Experimental 
Factor 

Inflation A,B,C B B B B 

Deflation G,H,I,J I I G,I,J G,I,J 

GasVOL V25 V20,V25,V30 V25 V25 V25 

Device 
Design 

SB SB,CB SB,CB SB SB 

Arterial 
Compliance 

C2.5 C2.5 C1.25,C2.5 C1.25,C2.5 C1.25,C2.5 

 

Table 4-94 tabulates the grand mean value and ranges for all experiments in this chapter. The 

best in term of increase or reduction grand mean cell in a row is the red cell, the blue cell is the 

least useful, while the green cell is for the middle ones. 
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Table 4-94: Grand mean values and ranges for every experiment carried out. (red cell: best output, green: middle, 
blue: least best output) 

 
Overall Finding 

TIMING GasVol COMPLIANCE MHV BioPHV 

CO 
Grand 
Mean 

5.52% 8.12% 12.92% 8.16% 5.62% 

  
range 

(3.90% to 
7.07%) 

(5.12% to 
11.52%) 

(7.56% to 
18.03%) 

(5.34% to 
11.28%) 

(4.2% to 
8.49%) 

QcorMean 
Grand 
Mean 

9.14% 9.83% 16.45% 13.87% 7.87% 

  
range 

(7.48% to 
10.43%) 

(5.34% to 
15.6%) 

(12.02% to 
20.5%) 

(9.37% to 
19.29%) 

(3.52% to 
13%) 

AoPmax 
Grand 
Mean 

-0.20% 0.94% 1.75% 1.17% -1.97% 

  
range 

(-2.28% to 
-1.7%) 

(-0.68% to 
2.41%) 

(1.32% to 
2.1%) 

-0.92 % to 
2.84 % 

-4.53 % to 
1.37 % 

AoEDP 
Grand 
Mean 

-2.86% -1.77% -8.83% -7.77% -8.50% 

  
range 

(-3.58% to 
-2.24%) 

(-4.08% to -
0.06%) 

(-16.5% to -
2.5%) 

(-13.8% to -
2.02%) 

(-16.38% to 
-2.93%) 

Discussion on each response output from those five experiments is presented. 

 

4.6.1 Cardiac Output (CO) 

 

Table 4-94 tabulates the grand mean values vary from just over 5 % up to almost 13 %. The 

highest grand mean value (12.9 %) was reported from the COMPLIANCE experiment, conducted 

with Device Design and Arterial Compliance factors while the lowest was from the TIMING 

experiment. The highest mean value was also from the COMPLIANCE experiment at 18% 

(combination of CB – C1.25), and the lowest mean value was from the TIMING experiment at 3.9 

% (combination of C – G). 

From the TIMING experiment, in term of CO yield result, the optimum timing for balloon inflation 

was at dicrotic notch (point B), and deflation timing was best when the balloon was deflated 

when systole just starting (point I). The optimised timing (B-I) was chosen as the fixed 

experimental factor for other experiments. The low yield from the TIMING experiment suggested 

that other factors than deflation/inflation timing was much more influential for CO augmentation.  

The CO augmentation can be suggested to be minimal across all conducted experiments except 

COMPLIANCE experiment that yielded highest response output when arterial compliance and 

balloon pump design level was varied. Much research has been conducted associating the 
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beneficial effect of stiff vasculature for counterpulsation based LVAD especially the IABP 

(Papaioannou et al., 2002, Papaioannou et al., 2004). The encouraging result from the 

COMPLIANCE experiment suggested that CIMS balloon pump would also be the same, and it can 

also be suggested that device design has a considerable effect on flow augmentation. The GasVOL 

experiment showed that varied balloon pump design and Helium gas volume level also yielded 

favourable output,thus supporting the effect of balloon pump design. 

It is interesting to note that the greatest output were from the optimum combination of low 

arterial compliance and CB type body balloon pump. The low arterial compliance augmented the 

blood pressure by way of increased pressure wave amplification and thus blood perfusion. The 

design of the CB type balloon pump, which had an extra space and thin silicone membrane 

allowing some degree of innate compliance might have increased the amount of water pushed 

out in diastole, and thus increasing systemic perfusion. Similar counterpulsation device such as 

the para-aortic counterpulsation device (PACD) seems to increase the amount of blood stored in 

the ascending aorta before pushing it out at diastole and works well irrespective of arterial 

compliance level and volumetric capacity of the device (Nanas et al., 1997, Charitos et al., 1998, 

Terrovitis et al., 2003). 

 

4.6.2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

From Table 4-94, the highest grand mean value of QcorMean augmentation was yielded by 

COMPLIANCE experiment followed by MHV, TIMING and GASVOL experiment. The BIOPHV 

experiment reported the lowest yield in term of grand mean value. The highest mean value was 

20.5 % (combination C1.25 – CB), from COMPLIANCE experiment, which is similar to the CO 

pattern discussed above. The combination of low arterial compliance and CB type balloon pump 

resulted in a far greater augmentation to the LCA perfusion compared to any other experimental 

factors. 

Another experimental factor optimising QcorMean augmentation was the type of aortic heart 

valve. The MHV experiment, combination of arterial compliance, deflation point, and mechanical 

heart valve factor, yielded a reasonable result where the highest output was 19.29% (combination 

of C1.25 – BI), quite similar to COMPLIANCE’s experiment output. It should be pointed out that, 

except for BIOPHV experiment, all other experiments were conducted with MHV as the fixed 
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experimental factor. Hence, it can be argued that mechanical heart valve would not be a 

contraindication for CIMS device. 

For HF patient, augmentation of blood perfusions to the coronary arteries increases myocardium 

oxygen supply, also increases the ratio between myocardium oxygen supply and demand  i.e. EVR 

value, allowing myocardium to function better, especially for patients suffering ischaemic heart 

failure (Williams et al., 1982). The increased myocardium blood perfusion coupled with decreased 

end-diastolic pressure (discussed below) would lead to increased cardiac function of the heart as 

a whole. 

A LVAD wrapped around the ascending aorta, the EABP (C-Pulse™; Sunshine Heart Inc., Sydney, 

Australia), may provide an objective comparison. The total coronary artery flow increased by 11 % 

(1: 1 ratio) both from EABP and IABP activation at the ascending and descending aorta 

respectively (Davies et al., 2005), while the CIMS balloon pump, augmenting left coronary artery, 

reported augmentation range across all experiments at 3.5 % to 21%. The comparison between 

these studies suggests that CIMS balloon pump may perform better with an improved balloon 

pump design.  

If the percentage augmentation of LCA flowrate is expressed in mL, then the highest yield was 

0.23 mL/beat (20% of 67 mL/min), a small increase; however, since the amount of displaced blood 

volume to coronary arteries due to IABP activation in vitro is also small at 3.8% = ≈1.5 mL/beat 

(Kolyva et al., 2010b), with future improved CIMS balloon design, coronary arteries perfusion 

should improve as well. 

 

4.6.3 Aortic Systolic Pressure (AoPmax) 

 

The activation of counterpulsation device such as the IABP is supposed to reduce both aortic 

systolic pressure (AoPmax) and end-diastolic pressure (AoEDP) (Quall, 1993b), as demonstrated 

by several studies (Kolyva et al., 2009, Niederer and Schilt, 1988, Ferrari et al., 2005a). 

In the present study, the grand mean values for all experiments conducted were found to be small 

(range: -4.53 % to 2.84 %). The highest reduction for AoPmax was from BioPHV experiment 

followed by TIMING experiment. On the contrary, the other three experiments reported a 

minimal AoPmax increase. 
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The BioPHV experiment reported highest grand mean reduction of AoPmax, and also the highest 

reduction was -4.53 % from BioPHV’s combination (BJ – C2.5), although it was statistically similar 

to (BJ – C1.25) combination. 

One study using a cuff wrapped around the ascending aorta reported no significant differences of 

assisted AoPmax compared to non-assisted circulation (Furman et al., 1970). Another clinical 

study also showed no discernible mean differences between non-assisted and assisted circulation 

when using extra aortic balloon pump (EABP) at 1:1 ratio, although at 1:2 ratio there might be 

statistical significance (Legget et al., 2005). The result from Legget’s study is reproduced in Table 

4-95.  

Table 4-95 : Aortic systolic pressure reproduced from Legget et. al (2005). Values listed are mean (standard error) 

 
Baseline 
(n = 6) 

1 : 1 
(n = 6) 

1 : 2 
(n = 5) 

Systolic blood pressure [mmHg] 112 (5.4) 112 (7.0) 103 (11.9) 

 

From Table 4-95, no discernible difference was measured for AoPmax value at 1:1 ratio, thus 

result from present study is comparable and might not be detrimental, also it can be suggested 

that since the changes were minimal, the effect from the CIMS balloon pump on AoPmax might 

pose no clinical significance. 

 

4.6.4 Aortic End-Diastolic Pressure (AoEDP) 

 

Afterload reduction from decreased AoEDP is an important objective of CIMS balloon pump. 

During diastole, the LV wall undergoes isovolumetric contraction; the amount of myocardial 

tension build up in diastole depends on two factors, 1) arterial pressure and 2) ventricular radius, 

expressed by the Laplace equation. The reduction of arterial pressure just before LV contraction 

render less myocardial tension and thus the amount of myocardium work lessens. Also, reduced 

myocardial tension would decrease the tension time index (TTI) value.  

The result tabulated in Table 4-94 showed that CIMS balloon pump invariably reduced the AoEDP 

across all tested experimental factors. The grand mean value has a wide range; the greatest 

reduction was -8.83% from COMPLIANCE experiment up to -1.77% from GasVol experiment. The 
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greatest mean value from all experiments was -16.48%, from COMPLIANCE experiment 

(combination C1.25 – CB), followed by BIOPHV experiment at -16.38% (combination C1.25 – BI). 

The COMPLIANCE and BIOPHV experiments shared an identical experimental factor which was the 

Arterial Compliance factor at C1.25 level. Thus, from these experiments it is suggested that 

afterload reduction can be achieved if arterial compliance of the patient is low. 

There have been studies reporting the reduction of AoEDP with improved LV function, and with 

the combined effect of reduced AoEDP and increased LCA perfusion, myocardium workload can 

be lessened, which should be reflected by increased EVR value (presented in subchapter 4.6.7), by 

way of reduced TTI value. The IABP was shown to alleviate angina in patients due to decreased 

myocardial oxygen consumption from decreased afterload (Williams et al., 1982). A short term in 

vivo study onto 6 patients using C-Pulse LVAD reported that the myocardium wall stress was 

reduced by 31% when end-diastolic aortic pressure was reduced by only -3.3% (Legget et al., 

2005), and when C-Pulse LVAD was implanted chronically into a patient, a moderate 

haemodynamic improvement with almost 55% of cardiac output increase compared to pre-

implantation was recorded. The patient improved from  NYHA Class IV to III at 6 months indicating 

myocardium recovery (Mitnovetski et al., 2008). Present study showed the CIMS balloon pump 

managed to decrease AoEDP favourably in in vitro setting. 

 

4.6.5 Correlation 

 

The correlations between dP and blood perfusion to peripheral and LCA circulation were 

investigated to determine whether there was any association between them. The pressure 

difference, dP, is the ratio between diastolic aortic pressure increase against aortic systolic 

pressure, AoPmax. Since AoPmax was shown to change very minimal after CIMS balloon pump 

augmentation, dP can be assumed to represent peak aortic diastolic pressure (PADA) as well. In 

Table 4-96, the results of correlation coefficient, r and coefficient of determination, R2, are 

tabulated.  
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Table 4-96: The correlation coefficient and coefficient of determination results (red cell: best output, green: middle, 
blue: least best output) 

Variable Correlation Timing Gas Vol Compliance MHV BioPHV 

dP vs. CO r 0.171 0.447 0.684 0.253 0.179 

  R2 2.9% 22.8% 46.8% 6.4% 3.2% 

dP vs. QcorMean r 0.206 0.705 0.557 0.447 0.177 

  R2 4.2% 49.7% 33.3% 20% 3.1% 

(All r reported p < 0.01, two tails) 

 

All association between the dependent variables were shown to be statistically significant (p < 

0.01, two-tails). The coefficient of determination, R2, allows for comparison between cells in the 

above table as it quantifies the strength of the particular association between variables.  

There were minimal variations of between dP and CO from TIMING, MHV and BioPHV 

experiments. However, COMPLIANCE and GASVOL experiment showed quite a considerable 

magnitude of variation. Those experiments shared a common Device Design factor. The CB design 

was able to push more fluid in diastole, and this might have increased the amount of diastolic 

flowrate, thus increasing association between PADA and CO. 

It was a slightly different story between dP and QcorMean. There were considerable variation 

between dP and QcorMean from GASVOL, COMPLIANCE and MHV experiments, but minimal from 

other experiments. The common experimental factors were Device Design and Arterial 

Compliance factors as tabulated in Table 4-93. Judging from the results in Table 4-96, the 

association was highest when balloon pump design factor was coupled with a greater amount of 

Helium gas.  

The original intention was to find out whether pressure difference between AoPmax and diastolic 

aortic pressure augmentation (PADA), dP, can be used as an indicator of increased periphery and 

coronary perfusion. Correlation test was used; the results obtained in the form of r and R2 showed 

interesting outcomes. The association of increased aortic diastolic pressure with perfusions 

(periphery and coronary) were only strong if certain factors involved. Those were arterial 

compliance, device design, and Helium gas volume. Other experimental factors such as variation 

of inflation and deflation timing, and types of aortic heart valve have a minor effect on the 

association. Thus, for a physician or device operator, dependence on peak aortic diastolic 

augmentation (PADA) pressure to indicate increased perfusion may not be enough, rather other 
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physical indicator of the patient should be taken into account to determine the effectiveness of 

the CIMS balloon pump counterpulsation. 

 

4.6.6 The Effect of Experimental Factors 

 

There are various studies investigating biological and mechanical factors affecting the 

performance of counterpulsation device especially the IABP and others e.g. EABP such as arterial 

compliance, heart rate, blood pressure, position of the device, balloon volume and balloon 

inflation/deflation timing; the most prominent factors suggested are the arterial compliance 

(Papaioannou et al., 2002, Papaioannou and Stefanadis, 2005).  

The present study also investigated the effect of arterial compliance, balloon pump 

inflation/deflation timing, types of heart valve, amount of Helium gas used, and adding balloon 

pump design as a possible factor. The experiments were conducted using factorial design method 

to allow a better understanding on multifactor interaction. From the results, it can be suggested 

with high probability that arterial compliance is a prominent factor, and if coupled with other 

experimental factor such as balloon device design, a very favourable haemodynamic 

augmentation can be achieved.  

On its own, balloon pump inflation and deflation timing has a moderate effect on response 

output; also the amount of Helium gas volume was shown to be an important factor for LCA 

augmentation, especially when coupled with Device Design factor.  

The mechanism of how counterpulsation induce flow and pressure augmentation is rarely 

discussed, only the effect and clinical relevance to blood perfusion and myocardium workload. An 

attempt using wave intensity analysis (WIA) managed to explain the mechanism of IABP 

counterpulsation by attributing Backward Compression Wave to balloon inflation, and Backward 

Expansion Wave to balloon deflation (Kolyva et al., 2009). Although Kolyva et al.  in vivo study did 

not discuss the effect of arterial compliance to WIA, its influence would surely be substantial. The 

WIA method would also be useful to determine qualitatively the CIMS balloon pump design 

effect. 
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Device Design Factor, SB vs. CB 

Device Design factor which comprised of a straight body and a compliant body type balloon pump 

is a novel idea which has never been tested in counterpulsation setting. The CB type balloon 

pump was shown to excel in haemodynamics augmentation compared to SB type.  

The effect of CB type balloon pump on haemodynamic augmentation is demonstrated in several 

experiments presented in this chapter. The design of the CB type that employed thin silicone 

membrane and an extra cylindrical space gave extra static compliance, although small at 0.11 

mL/mmHg (refer to Appendix D-2), has managed to yield greater output compared to SB type 

balloon pump. 

However, it must be noted that the experiments conducted were not designed to specifically 

identify the reason for improvement by the CB type compared to the SB type balloon pump. Some 

explanation that could be offered is the extra space surrounding the silicone membrane; the extra 

space afforded in the CB type balloon pump could facilitate faster silicone membrane expansion 

and deflation by the Helium gas. However, there is no scientific evidence to support this 

hypothesis. Another confounding factor is the thin silicone membrane; it allows expansion during 

systole to accommodate more fluid, this might have been the factor augmenting pressure and 

flowrate of systemic and coronary circulation. The silicone membrane thickness was 0.5 mm (SB 

type balloon pump was of 1.0 mm). A thinner silicone membrane would allow for faster inflation 

and deflation. Again, the effect of different thickness of silicone membrane was not investigated. 

These confounding factors make it difficult to specify the true reason of the CB type balloon pump 

effectiveness with respect to the SB alternative, especially in term of aortic pressure reduction 

prior to systole (i.e. afterload). There might be relationships between these factors which can be 

ascertained using regression analysis method. 

Even though static compliance test were conducted (refer to Appendix D), whether that means 

during balloon pump activation the compliance remains as it is, or the static compliance effect is 

nullified can not be answered with certainty.  

 

4.6.7 CIMS Balloon Pump Effect on Endocardial Viability Ratio (EVR) 

 

Since previous subchapters suggest the greatest flow augmentation and end-diastolic pressure 

reduction is achieved in the TIMING experiment, EVR values were calculated for the TIMING 
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experiment data only. The effect on myocardial oxygen supply and demand can be quantified by 

the endocardial viability ratio (EVR - a counterpulsation performance index). The effect of balloon 

pump activation on EVR value was investigated.  

Balloon inflation in diastole caused sudden aortic pressure increase, thus augmenting coronary 

and systemic flow. Increase in coronary flow is also indicative of increased myocardial oxygen 

supply. At the end of diastole balloon deflation reduces resistance to blood flow from the left 

ventricle allowing systolic ejection, and this reduces the amount of work which the myocardium 

has to generate equating to reduced oxygen consumption. Figure 4-122 illustrates the effect of 

balloon inflation/deflation on the aortic and left ventricular pressures as measured in the MCL. 

 

Figure 4-122: A sample of TTI and DPTI for four combinations from Device Design (SB or CB) and Arterial Compliance 
factors (1.25 or 2.5) before and after balloon activation. The light grey shade is the tension time index (TTI), while the 
dark grey shade is the diastolic pressure time index (DPTI). TTI decreased a little bit while DPTI increased thus 
increasing EVR value. (LVP: Left Ventricular Pressure, AoP: Aortic Pressure) 

 

An example of differences between TTI and DPTI is tabulated in Table 4.1, while the EVR results 

for each type of balloon design are shown in Table 4-98 and Table 4-99. 
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Table 4-97: The TTI and DPTI value of one experiment (factorial experiment: SB & C2.5) 

Myocardial oxygen supply/demand TTI DPTI EVR 

Non-assisted 

Average 3733.41 5003.03 

1.34 

SD 64.99 119.99 

SE 14.53 26.83 

Ratio 

Assisted 

Average 3676.35 6457.74 

1.76 

SD 87.27 119.99 

SE 19.51 26.83 

Ratio 

Statistical Analysis 
% difference -1.53 29.08 31.1 

Student t-test p < 0.05 p < 0.05 

  

Student t-test was carried out for both TTI and DPTI data; even though DPTI data variance was not 

homogenous, the normality assumption was met. There were significance differences between 

non-assisted and assisted circulation for both TTI and DPTI (p < 0.05); however, the percentage 

change of TTI was small at -1.5%. The change in DPTI value was greater at 29%, thus increasing 

EVR value by 31%. 

Next, the comparison of EVR value between different levels of arterial compliance for both types 

of balloon pump is presented. 

Table 4-98: The endocardial viability ratio (EVR) of SB design for both levels of arterial compliance. The EVR is 
presented as mean ± standard deviation. *Both C2.5 and C1.25 columns were tested using the Mann-Whitney test 

EVR (Straight Body -SB) 
Arterial Compliance 

C2.5 C1.25 

Non-assist 1.28 ± 0.07 1.25 ± 0.09 

Assist 1.70 ± 0.1 2.01 ± 0.11 

Percentage of difference (Ratio) 33 % (1.33) 61% (1.61) 

p-value* p < 0.001 p < 0.001 

 

Table 4-99: The endocardial viability ratio (EVR) of CB design for both levels of arterial compliance. The EVR is 
presented as mean ± standard deviation. *: Both C2.5 and C1.25 columns were tested using the Mann-Whitney test 

EVR (Compliant Body - CB) 
Arterial Compliance 

C2.5 C1.25 

Non-assist 1.19 ± 0.04 1.18 ± 0.04 

Assist 1.71 ± 0.11 2.06 ± 0.17 

Percentage of difference (Ratio) 43 % (1.43) 74.5% (1.74) 

p-value* p < 0.001 p < 0.001 
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There were significant mean differences (p < 0.001) between EVR for non-assist and assisted 

circulations for all combinations. The activation of the CIMS balloon pump had a considerable 

effect increasing the EVR values, thus on (simulated) myocardial oxygen supply and demand. 

Further comparison between both experimental factors (Device Design and Arterial Compliance) 

was carried out using a factorial analysis method. The percentage difference of EVR value 

between non-assisted and assisted circulation was used for analysis purposes using similar 

methods as in previous chapters. Figure 4-123 illustrates the mean of each combination, while 

Table 4-100 tabulates the mean and standard deviation of each combination’s percentage 

difference of EVR value. 

 

Figure 4-123: The means of EVR percentage difference 

There are noticeable differences between combinations, especially between low and high arterial 

compliance. The means and standard deviations for each combination are tabulated in Table 4-

100.  

Table 4-100: The mean and standard deviation in EVR percentage difference before and after balloon activation 

Endocardial Viability 
Ratio (EVR) 

Arterial Compliance 
Row Mean 

C2.5 C1.25 

Device 
Design 

SB 33 ±7.5 61 ± 4.6 46.8 

CB 43 ± 8.5 74 ± 13.3 58.7 

Column mean 38 67.5 50.7 
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With CIMS balloon activation, the EVR percentage yields a grand mean of almost 51% (range: 33% 

to 74%). The row mean for SB and CB design shows a difference of approximately 11%, while 

there is a much greater mean difference between low and high arterial compliance. Yet again, the 

combination of CB – C1.25 yields the greatest percentage of EVR increase. The mean differences 

were tested for significance using the SRH methods described in chapter 3 and employed in 

previous subchapters. 

Table 4-101: The statistical SRH test result for EVR 

Experimental factor p- value 

Device Design 9.1 ×10-6 

Arterial Compliance 4.1 ×10-39 

Device Design × Arterial Compliance p = 0.99 

 

Table 4-101 tabulates the p-value from the SRH test of each experimental factor and the 

interaction between them; in both experimental factors, there is significant difference between 

means (p < 0.001), but not the interaction between them (p = 0.99). 

 

Discussion 

The endocardial viability ratio (EVR) is a suitable performance index for the counterpulsation 

method; it has been shown to be able to estimate the myocardial oxygen supply and demand 

ratio quite accurately (Philips et al., 1975).  The result of the present study is compared with in 

vivo and in vitro studies tabulated in Table 4-102.  

Table 4-102: Endocardial viability ration (EVR) values from present and other counterpulsation device studies.  

Researcher Device EVR (% increase) 

present study 
(C = 1.25 and 2.5 mL/mmHg) 

CIMS balloon pump (in vitro) 33 % to 74 %  

(Cmolik et al., 2001) IABP ( in vivo) 16 % 

(Terrovitis et al., 2003) IABP ( in vivo) 50 % 

PACD ( in vivo) 70 % 

(Utoh et al., 1993) EPAD ( in vivo) 20 % 

(Ferrari et al., 2011) 
(C = 1.8 and 2.5 mL/mmHg) 

IABP ( in vitro) 42 % and 57 %  

(Lu et al., 2011) IABP ( in vivo) 40 % 

PABP (in vivo) 46 % 
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Table 4-102 shows EVR improvement due to CIMS balloon pump activation in the MCL is 

comparable with results published in other studies. The most similar setting is with the in vitro 

study of Ferrari et al. (2011), which had the same arterial compliance condition. In high arterial 

compliance, IABP performed better than CIMS, while the CIMS balloon pump performed better in 

low arterial compliance. 

The results presented here suggest that arterial compliance and device design play significant 

roles independently; where the contribution from column C1.25 and row CB yielded the greatest 

percentage increase in column and row respectively.  Consequently, the combination of CB – 

C1.25, yielded the greatest EVR improvement at 74 %. When compared with results in Table 4-

102, CIMS result is better than IABP (50%), and comparable with a para-aortic counterpulsation 

device (PACD) (70%) of similar volume displacement (30 mL) (Terrovitis et al., 2003). 

The differences between combinations can be further scrutinised by referring to Figure 4-122; 

where the increase in EVR values, as tabulated in Table 4-98 and Table 4-99, is attributed to 

bigger DPTI value in the numerator, while the TTI values decrease a little. Diastolic augmentation 

from CIMS balloon activation has increased the DPTI value which represents myocardial oxygen 

supply. The near constant TTI value can be attributed to the MCL characteristics used in this 

study. Although the MCL is able to simulate haemodynamics characteristics of systemic and left 

coronary artery circulation accurately, the MCL cannot simulate the Frank-Starling mechanism 

accurately, where any changes in the preload and afterload affect the intraventricular pressure 

and ejection fraction. As tabulated in Table 4-97, TTI did decrease in assisted circulation, although 

small (≈ -1 to -2%), due to decreased aortic root pressure pre-systole. The EVR values recorded 

from this study exceeded a value of 1.0 (range: 1.18 to 1.28) i.e. the minimal necessary balance of 

supply versus demand in the myocardium; although the range of EVR values pre-assist published 

in the literature tabulated in Table 4-102 have a range from 0.86 to 1.29. The higher than 1.0 

value may be attributed to the shape of left ventricular pressure waveform generated by the MCL 

used. 

The increased aortic pressure in diastole is an important factor for increased coronary flow (Green 

and Hutton, 1999, Geven et al., 2004). In the COMPLIANCE subchapter (at section 4.4.1.2) the left 

coronary artery mean flowrate increase by a grand mean of 16.5 % (range: 12 to 21 %). Although 

as discussed earlier (2.5.3 Intra Aortic Balloon Pump) increased aortic diastolic pressure from 

balloon pump activation may not be translated to increased coronary flowrate consequently the 

myocardial oxygen supply, EVR can still be considered as a suitable performance index to indicate 

myocardial oxygen supply.  
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The CIMS balloon pump has demonstrated the capability of increasing myocardial oxygen 

supply/demand ratio, and is thus a favourable candidate as a mechanical heart assist device for 

heart failure patients, as indicated in Chapter 2. 

 

4.7 Conclusion 

 

There was an optimised timing for balloon inflation/deflation. The inflation point for the CIMS 

balloon pump at the ascending aorta was similar to IABP i.e. at dicrotic notch, but the deflation 

point was slightly later after aortic valve was opened. This timing combination also proved to be 

significant when combined with other experimental factors. From the results it was concluded 

that the CIMS balloon pump yielded its best haemodynamic response with regards to periphery 

and coronary perfusion as well as afterload reduction when stiff vasculature was set in the MCL, 

and when compliant body type balloon pump was used, for example cardiac output was increased 

to almost 20%, left coronary perfusion mean flowrate too was increased by 20%, while flow 

resistance in the form of aortic end-diastolic pressure was reduced by 16%. Aortic systolic 

pressure changes were minimal from all experiments, hence the small changes in AoPmax was 

hypothesised as clinically insignificant. 

These findings reinforce the known effect of arterial compliance but also add the influence of 

balloon innate compliance to optimise counterpulsation effect at the ascending aorta. 

The trends between MHV and BioPHV were different especially on which deflation point yielding 

optimum augmentation. Perfusion augmentation for MHV was optimised at dicrotic notch for 

inflation and deflates at early systole, while BioPHV differed at earlier deflation point. Overall, the 

performance of MHV was better compared to BioPHV. 

With regards to correlation between diastolic augmentation pressure, dP and CO and QcorMean, 

there were definitely significant correlations in all experiments, but the association was only 

stronger when arterial compliance and balloon pump innate compliance were the prominent 

factors. 

The effect of CIMS balloon activation on myocardial perfusion as indicated by the endocardial 

viablitiy ratio (EVR) was shown to be favourable. Depending on the combination of the 

experimental factors, the EVR value increased by 33% to 74%; where diastolic augmentation 
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contributed more to EVR value increase compared to systolic unloading. Systolic unloading 

decreased by -1% to -2%, while diastolic augmentation increased by 29%.  
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Chapter 5 Haemodynamics of the CIMS Balloon Pump 
 

This chapter presents results from two experiments to determine the effect of balloon deflation 

on the aortic heart valve: a flow visualization experiment, and pressure/flow experiment. 

 

5.1 Flow Visualisation 
 

It was observed that the valve opened somewhat earlier when the CIMS balloon pump was 

activated. It was hypothesised that this was due to an earlier positive pressure gradient across the 

aortic heart valve. To determine whether that observation was correct or not, flow visualisation 

experiments were carried out. 

A simple set up and some modifications on the human mock circulatory loop (MCL) were done to 

enable flow visualisation - as presented in Chapter 3. The intention of the flow visualisation 

experiment was to record the sequence of valve leaflet opening when subjected to balloon 

inflation and deflation activity. The MCL was turned on and set to heart failure (HF) condition with 

these settings: arterial compliance = 2.5 mL/mmHg, balloon inflation/deflation = point (B-I) and 

mechanical aortic heart valve (MHV). The MCL was varied with two heart rates modes: 60 

beats/min and 54 beats/min. The video recording was at 30 fps (frame per seconds). 

 

5.1.1 Valve Opening Time 

 

Figure 5-124 illustrates a square wave, and the measured pressure and pulsatile flowrate 

waveforms. The square wave signal (LVSquareWave) is the signal sent to the pressure regulator 

allowing compressed air into the left ventricular (LV) chamber thus initiating systole. The 

LVSquareWave is also sent to a red LED as an analog signal to illuminate the LED during systole. 

There is a time lag of around 0.3 s between the square wave and the response from pressure and 

flow rate whilst pressure accumulates in the LV chamber; the MCL was built with an air gap in the 

LV chamber allowing compressed air to escape which, in diastole, allowed passive filling but 

which, in systole, required longer time to initiate contraction. 



Chapter 5 Haemodynamics of the CIMS Balloon Pump 
 

253 
 

A.Z.M. Khudzari 

 

 

Figure 5-124: Square wave sent to pressure regulator, and the red LED precedes left ventricular sac contraction and 
fluid outflow from the LV chamber. The red band indicates MCL systole (LV sac contraction), blue band indicates 
square wave activation, while the greenband indicates the time lag between red and blue band. 

 

Table 5-103: List of videos taken (fps: frame per seconds) 

Non-assisted Assisted 

60 beats/min (T = 1 s) , 30 fps 60 beats/min (T = 1 s), 30 fps 

54 beats/min (T = 1.1 s), 30 fps 54 beats/min (T = 1.1 s), 30 fps 

 

As tabulated in Table 5-103, four different video recordings were taken. From each video 

recording, 10 seconds of 60 beats/min video were cut and converted into still images (300 

images) for analysis purpose. For the 54 beats/min video, the cardiac cycle time is 10% longer 

than 60 beats/min (T = 1.1 second), so 330 still images were converted from the video. Examples 

of the still images from 60 beats/min video are given in Figure 5-125 and Figure 5-126 for assisted 

and non-assisted circulation respectively. 
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The low frame rate (30 fps) of the video recording means that there is an error of up to ± 0.033 

seconds in establishing precisely when an event occurred. Since this experiment was conducted to 

identify the possibility of premature valve opening, the error between images is tolerated.  
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Figure 5-125: Filmstrip of one second worth of 60 beats/min video for non-assisted circulation; the cross-hatch panels 
indicate that the red LED is illuminated, while the grey-shaded panels indicate valve leaflet is open. 
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Figure 5-125 illustrates the still images taken of one cardiac cycle of 60 beats/min in non-assisted 

circulation as an example. In panel number 4, the red LED illuminates which continues to panel 

number 18 indicated by the panel cross-hatching. This translates into a period of 0.5 seconds. The 

pressure accumulates in the LV chamber and when LV pressure exceeds aortic pressure, the 

mechanical valve leaflet opens up a few milliseconds later at panel number 13 as indicated by the 

grey-shaded panel, continuing to panel number 21. This means that the period for which the valve 

open was 0.3 seconds. The panels between LED first illuminated (number 4) and valve opening 

(number 13) yielded an additional 0.3 seconds. This is an important indicator of valve opening 

time, since LED illumination time and duration is constant. Any effect of balloon deflation would 

change the duration between LED first illuminated and valve opening. 
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Figure 5-126: Filmstrip of one second worth of 60 beats/min video in assisted circulation. The cross-hatch panels 
indicate that the red LED is illuminated, while the grey-shaded panels indicate that the valve is open. 

 

Figure 5-126 illustrates an example of the valve opening sequence with CIMS balloon pump 

activation and 60 beats/min heart rate. The red LED is illuminated first at panel number 4 until 

panel number 18. Due to the CIMS balloon pump activation, the valve opens earlier at panel 

number 9 and is closed at panel 22; meaning the valve was opened for 13 panels, which translates 

to 0.43 seconds. The duration is longer than in the non-assisted circulation example of Figure 5-

125 at 0.3 seconds.  

All ten seconds worth of images from videos of 60 beats/min and 54 beats/min were manually 

counted. The duration of red LED illuminated, the duration of valve opened, and the time 

difference (∆t) between those durations was computed. The time difference would indicate clear 

evidence of earlier valve opening with activation of the CIMS balloon pump. The results are 

presented in subchapter 5.2.2.  

 

5.1.2  Statistical Analysis  

 

Table 5-104 tabulates the results of still picture analysis of 60 beats/min and 54 beats/min video. 

The period of red LED illumination, the time period from red LED illuminated to valve opening 

( ∆t ), and the opening duration of the valve are tabulated. 

Table 5-104: The results of 60 beats/min and 54 beats/min for non-assisted and assisted circulation. ∆t: The time 
duration from LED turned ON until the aortic heart valve open. Unit is in second (s)   

Heart Rate LED On Period ∆t Valve Open Duration 

60 bpm 
Non-assisted 0.50±0 0.30±0 0.30±0.02 

Assisted 0.50±0 0.20±0.04 0.39±0.05 

54 bpm 
Non-assisted 0.54±0.04 0.34±0.02 0.29±0.02 

Assisted 0.57±0.03 0.25±0.02 0.38±0.02 
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Statistical tests were used to discern whether mean differences between assisted and non-

assisted circulation were significant or not. However, there are two assumptions that need to be 

fulfilled: homogeneity of variance, and normality of data distribution. If both were fulfilled (i.e. p-

value > 0.05) a parametric type Student t-test was used, if not a non-parametric type Mann-

Whitney test was used. Although Student t-test may tolerate non-homogenous data distribution 

i.e. unequal variance, non-normality is not tolerated. Table 5-105 tabulates the statistical data and 

results of 60 beats/min and 54 beats/min.  

The hypothesis for these statistical tests is:  

HO = There is NO mean difference between non-assisted and assisted circulation. 

Table 5-105: The statistical results of 60 beats/min and 54 beats/min. All four variables were tested using Mann-
Whitney test. ∆t: Duration of time between red LED illuminated and valve opening. 

Statistical Result 

60 beats/min 54 beats/min 

∆t 
Valve Open 

Duration 
∆t 

Valve Open 

Duration 

Mean difference   

(Assist – Non-assist) 
-0.10 0.09 -0.10 0.09 

Normality 

(Shapiro-

Wilk test) 

Non-assist constant p < 0.05 p < 0.05 p < 0.05 

Assist p = 0.073 p = 0.138 p < 0.05 p < 0.05 

Equality of variance p < 0.05 p < 0.05 p = 0.115 p = 0.869 

p –value p < 0.001 p < 0.001 p < 0.001 p < 0.001 

 

Statistical results show that the activation of the CIMS balloon pump at the ascending aorta 

increases the valve opening period (all p < 0.001), due to the earlier valve opening prior to systole 

as shown by ∆t results (all p < 0.001). Discussion of the implications of this result is presented at 

the end of this chapter. 
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5.2 Pressure Difference across the Aortic Heart Valve  
 

The haemodynamics of balloon inflation and deflation is discussed further in this subchapter. In 

the previous subchapter, balloon deflation prior to systole was shown to cause the valve to open 

earlier. The early valve opening allows for longer valve opening as demonstrated by the statistical 

analysis. 

 

5.2.1 Non-assisted circulation 

 

What occurred during a cardiac cycle in the ascending aorta of the MCL during non-assisted 

circulation is illustrated in Figure 5-127. During systole, i.e. LV sac contraction, once the left 

ventricular pressure (LVP) exceeds the aortic pressure, the heart valve opens. As time passes, LVP 

decreases and once the aortic pressure exceeds LVP, the valve closes (i.e. diastole starts). A small 

volume of downstream fluid flows back into the aortic root area, which closes the valve; the small 

volume of retrograde flow which continues during diastole comprises coronary perfusion and 

leakage flow through the (mechanical) heart valve. 

 

Figure 5-127: Flow in the ascending aorta of the MCL in systole and diastole in non-assisted circulation. There is a 
pressure transducer for aortic root pressure measurement and a flow meter (Qmeter) just distal of the CIMS balloon 
which is not activated in non-assisted flow. 
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The valve closing can also be traced using pressure difference between LVP and aortic root 

pressure (AoRootP), defined as ∆Proot as defined in Eq. 5.1. Pressure difference between LVP and 

aortic pressure (AoP) is defined as ∆Paorta, and expressed in Eq. 5.2. 

                    5.1 

                 5.2 

The aortic root pressure (AoRootP) was measured distal to the aortic heart valve (refer to Figure 

5-127). An example of LVP, AoRootP, AoP, pulsatile flowrate (Qpuls), ∆Paorta, and ∆Proot is 

illustrated in Figure 5-128. Those waveforms were constructed from the average of 30 samples to 

eliminate beat-to-beat variability. 

 

Figure 5-128: Left ventricular pressure (LVP), aortic pressure (AoP), aortic root pressure (AoRootP), pressure 
difference across the aortic heart valve (∆Proot), pressure difference between LVP and AoP (∆Paorta), and aortic 
flowrate (Qpuls). Systole is defined as the LV sac contraction duration. Diastole starts when aortic valve closes, 
indicated by the dicrotic notch. Gray shaded area indicates diastole period. 

 

The positive pressure difference across the heart valve at the aortic root, ∆Proot, caused flow 

from the LV sac in to the aorta of the MCL; once ∆Proot exceeds zero, aortic flow starts. The aortic 

flow continues to peak and decreases during ∆Proot is positive, indicated in Figure 5-128. Once 

the zero threshold is crossed, the aortic valve closes, which can be seen from the sudden aortic 

pressure increase, known as the dicrotic notch. The dicrotic notch exhibited by AoRootP differs to 
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the one by AoP; this is due to the lack of local compliance at the aortic root. The sudden increase 

of AoRootP after the dicrotic notch is due to mechanical ‘ringing’ unique to mechanical heart 

valves. The aortic flow also decreases due to loss of momentum after the dicrotic notch but still 

has forward flow; the aortic flow then changes direction becoming negative flow (backward) 

before stopping (although leakage flow due to mechanical heart valve still occurs (but is very 

small)). 

 

5.2.2 Assisted circulation 

 

Inflation of CIMS balloon pump causes two distinct effects on the regions proximal and to the 

CIMS balloon pump as illustrated in Figure 5-129 (at early diastole). For the distal region, fluid is 

pushed downstream (forward flow), while the aortic root region receives backward flow. On 

deflation, pressure within the lumen of the CIMS device is lower than in the proximal and distal 

regions. The pressure differences cause forward flow (from the aortic root), and backward flow 

(through the aortic flow sensor). The effect of balloon activation is illustrated in Figure 5-130. 

 

 

Figure 5-129: Balloon pump inflation in early diastole caused increased aortic root pressure and LCA perfusion at the 
aortic root, while distal to the CIMS balloon pump, aortic pressure increased and fluid was pushed downstream. In 
end-diastole, due to balloon deflation, pressure within the CIMS balloon pump decreased, thus inducing forward and 
backward flow. 
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Figure 5-130: Pressures, pressure differences, and aortic flowrate of assisted circulation. AoP and AoRootP decreased 
prior to LV sac contraction. 

 

Further discussion on the effect of the CIMS balloon pump activation on aortic root region is 

presented below in 5.2.3. 

 

5.2.2.1 Aortic Root Region – Proximal to the CIMS Balloon Pump 

 

It has been shown in a previous subchapter (5.1 Flow Visualisation) that the CIMS balloon pump 

deflation caused earlier valve opening. The sudden deflation causes decreased pressure distal to 

the aortic heart valve, and proximal to CIMS balloon pump in the ascending aorta of the MCL i.e. 

in the aortic root. Figure 5-131 illustrates pressure waveforms affected by balloon deflation. 
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Figure 5-131: The LVP, aortic root pressure, and ∆Proot in assisted circulation. Grey areas indicate region where 
∆Proot is less than zero. 

 

Figure 5-131 illustrates waveforms of LVP, AoRootP and ∆Proot in assisted circulation. The aortic 

flowrate waveform is not included; the reasons are:  

1) in early-diastole, since the CIMS balloon pump occludes the ascending aortic part of MCL; 

aortic flowrate measured distal of the CIMS balloon pump is not representative of actual 

occurrence at the aortic root region,  

2) in end-diastole, the effect of balloon deflation causes a negative pressure region at the 

CIMS balloon pump. As illustrated in Figure 5-129, backward flow that occurred might be 

bidirectional i.e. towards the CIMS balloon pump from the aortic root and region distal to 

the CIMS balloon pump. 

The deflation prior to systole increases ∆Proot until ∆Proot rises slightly over the zero baseline, 

before ∆Proot decreases drastically due to AoRootP sudden increase. The AoRootP increases 

rapidly after the pre-systole decrease, with values greater than LVP, until it reaches a peak. 

Consequently, the ∆Proot increases exceeding zero. The difference between ∆Proot of non-

assisted and assisted circulation is illustrated in Figure 5-132. 
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Figure 5-132: The ∆Proot of non-assisted and assisted circulation for combination (B-I). Assisted circulation has 
greater magnitudes when ∆Proot is less than zero. 

 

The effect of balloon inflation in diastole was shown to increase ∆Proot compared to non-assisted 

circulation. The effect of different balloon deflation at end-diastole is presented below. 

 

5.2.3 Different Balloon Deflation Timing 

 

The effect of the CIMS balloon deflation prior to systole has been shown to cause earlier valve 

opening. The effect of different balloon deflation timing on ∆Proot is presented here.  

Three sets of data with different balloon deflation timings (B-G, B-I, & B-J) were analysed for non-

assisted and assisted circulation. Combination B-G means that the CIMS balloon was set for early 

deflation, B-I was set at optimum (just after valve was opened), and B-J was a late deflation. Fixed 

experimental factors were high arterial compliance (C2.5), 25 mL of Helium Gas, and SB type 

balloon pump. The results of non-assisted and assisted circulation are illustrated in Figure 5-133 

and Figure 5-134 respectively. The data have been synchronised to eliminate time lag between 

waveforms. 
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Figure 5-133: Flowrates and ∆Proot for varying deflation timing in non-assisted circulation 

 

No prominent difference can be detected from aortic flowrate and ∆Proot waveforms illustrated 

in Figure 5-133. Once ∆Proot exceeds zero, aortic flow starts, and when ∆Proot become less than 

zero, valve closes and aortic flow starts to decline before stopping in diastole. The time ∆Proot 

becomes greater than zero is also similar at around 0.21 seconds. 

 

Figure 5-134: Pressure difference across the aortic heart valve, ∆Proot, for varying deflation timing in non-assisted 
circulation 
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However, the effect of varying deflation timing can be seen clearly in Figure 5-134. Earlier 

deflation (B-G) is the first waveform; it exhibits a peak before decreasing drastically. The next 

waveform is B-I, followed by the B-J waveform. Compared with the other two waveforms, the 

peak of B-J waveforms exceeded zero (around 8 mmHg). In diastole (period after dicrotic notch), 

∆P (B-J) waveform exhibits slightly different shape compared to the other two. 

Combination B-G reaches its initial peak around 0.11 seconds, followed by B-I at 0.17 seconds, 

and finally B-J, at 0.19 seconds, crosses zero baseline before reaching the peak at 0.21 seconds. 

The pressure difference, ∆Proot, becomes negative at a similar time in the cardiac cycle.  

The rapid decrease past first peak for ∆Proot is prominent especially by combination B-G. The 

other two combinations are not as severe as B-G waveform. This difference was contributed by 

higher AoRootP, compared to LVP, when valve was opened too early; possibly due to mechanical 

valve bounce.  

What these observations suggested is that valve opening occurred earlier due to balloon pump 

deflation. The effect of earlier deflation shows ∆Proot reaches a peak, although the rapid 

decrease might point to a conjecture that the heart valve was opened and closed in a rapid 

succession. However, the result from flow visualisation experiment did not support that 

conjecture. Earlier ∆Proot peak means earlier valve opening, and remains open until the end of 

systole. The valve opening time was shown to be longer due to the CIMS balloon pump deflation 

(combination B-I). Thus, valve opening time of combination B-G would be longer than B-I, while 

combination B-J would be shorter and possibly no difference compared to non-assisted 

circulation. More is discussed in subchapter 5.4. 

 

5.3 Net Flow Volume 
 

At the ascending aorta of the MCL, the decreased pressure due to balloon deflation affected 

aortic fluid flow by causing backward flow prior to systole as illustrated in Figure 5-135. The effect 

of diastolic augmentation that pushes fluid downstream (forward flow) is negated by the 

backward flow prior to systole.  
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Figure 5-135: The effect of balloon inflation caused positive spike at aortic flow (forward flow- light grey shade), 
while balloon pump deflation caused negative spike (backward flow- dark grey shade) 

 

The hypothesis was that the increase in cardiac output is essentially the net amount of fluid 

pushed downstream in diastole. As illustrated in Figure 5-135, in non-assisted circulation, 

backward flow (dark grey shaded area) in early-diastole is the sum of mechanical heart valve 

leakage flow, heart valve closing flow, and coronary artery flow. On the contrary, in assisted 

circulation, the amount of backward flow in early-diastole is lesser; however, the backward flow 

area at end-diastole prior to LV contraction increases, due to balloon pump deflation. Due to 

decreased flow resistance at the aortic root, forward flow area in assisted circulation is also 

fractionally greater compared to non-assisted circulation.  

Data from one experiment45 was used to verify the validity of the hypothesis. The fluid volume of 

forward and backward flow of 30 samples (non-assisted & assisted) was calculated by computing 

the integral of shaded areas; the results are tabulated in Table 5-106. Any data point greater than 

zero is considered forward flow, while data points less than zero are considered backward flow.  

 

                                                           
45

 The mock loop was set to HF condition, arterial compliance set at high (C2.5), mechanical heart valve, 
optimum timing (B-I combination), optimum Helium gas volume (25 mL), and SB type balloon pump.  
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Table 5-106: Statistical results of non-assist and assisted circulation. CO: Cardiac Output. *: Kolmogorov-Smirnov test; 
**: Levene’s test.  

Aortic 
Flow 

Stat. 
Forward 

aortic flow 
(L/min) 

Forward 
Volume 

(mL/beats) 

Backward 
aortic Flow 

(L/min) 

Backward 
Volume 

(mL/beats) 

Net 
Forward 
Volume 

(mL/beats) 

CO 
(L/min) 

Non-
assist 

Average  3.50 58.34 -0.46 -7.60 50.74 3.04 

SD 0.18 3.07 0.04 0.60 2.99 0.18 

SE 0.02 0.39 0.00 0.08 0.38 0.02 

Assist 

Average 4.85 80.81 -1.63 -27.22 53.60 3.22 

SD 0.12 1.98 0.10 1.61 2.45 0.15 

SE 0.01 0.25 0.01 0.20 0.31 0.02 

Statistic
al 

Analysis 

Percentage 
difference 

38.5 38.5 258.1 258.1 5.6 5.6 

Normality 
assumption
* 

p > 0.05 p > 0.05 p > 0.05 p > 0.05 p > 0.05 p > 0.05 

Equality of 
variance** 

0.08 0.08 0.01 0.01 0.125 0.125 

Student t-
test 

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

  

The data distribution adhered to normality assumption (p > 0.05), thus Student t-test was 

employed. Although some variables exhibited non-homogenous variance, Student t-test can 

accommodate some deviation of variance.  

Both forward and backward fluid volume showed a significant increase (p < 0.001) after balloon 

inflation. The positive flow SV was increased by 22.47 mL; however, due to balloon deflation, the 

backward flowrate SV also increased by 19.6 mL. The net fluid volume (forward – backward) per 

beat was 2.86 mL (22.47 – 19.6 mL), this is reflected in the increasing cardiac output (CO) of 

assisted circulation significantly by almost 6% (p < 0.001). 

 

5.4  Discussion 
 

It was hypothesised that sudden deflation prior to LV contraction caused early valve opening (as 

observation had suggested).  Flow visualisation and pressure/flow experiments were conducted 

to verify that hypothesis. 
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Flow visualization experiments were conducted to determine whether the valve leaflet opened 

longer when CIMS balloon pump was activated. The statistical analysis reported that the valve 

leaflet opening time increased significantly between assisted and non-assisted circulation. Thus, 

balloon pump deflation prior to valve leaflet opening is suggested to cause early valve opening.  

The pressure difference across the aortic heart valve, ∆Proot, indicates which direction fluid flows. 

Positive ∆Proot means that left ventricular pressure (LVP) is greater than aortic root pressure 

(AoRootP), thus initiating forward flow into the ascending aorta. Negative ∆Proot means that 

AoRootP is greater than LVP; this causes the aortic heart valve to close. In non-assisted 

circulation, the aortic valve opens when ∆Proot is greater than zero due to LV sac contraction. 

However, in assisted circulation, with the CIMS balloon pump activation, sudden deflation prior to 

systole caused aortic root pressure to decrease, rendering a positive pressure gradient; which 

opens the aortic valve early.  

The effect of different deflation timing on ∆Proot was analysed. It was shown that earlier balloon 

deflation caused ∆Proot to become greater than zero momentarily at an earlier time in the 

cardiac cycle compared to non-assisted circulation. This finding corroborated the outcome of flow 

visualisation experiment; that the aortic valve opens earlier in assisted circulation due to the CIMS 

balloon pump deflation.  

After the initial positive peak, ∆Proot decreased rapidly due to increased aortic root pressure, 

which was greater than LVP. It was not until a few milliseconds later that ∆Proot again exceeded 

zero, when LVP became greater than AoRootP, as LV sac contraction occurred. From the flow 

visualisation experiment, it was shown that the aortic valve opens continuously from the initial 

∆Proot peak. However, since there was a 0.033 seconds variance between images, it is probable 

that the negative ∆Proot period after the first positive peak causing the aortic valve to open might 

not have been captured. A high-speed video recorder with at least 1000 fps (0.001 seconds 

interval between images) might be able to capture the valve opening and closing sequence more 

accurately.  

The diastolic augmentation on systemic circulation of MCL increased forward flow, while balloon 

deflation prior to systole drew fluid into the balloon pump region. In this exercise, the net stroke 

volume increased CO by 5.9 %. One intriguing finding of this study was the amount of backward 

flow volume (≈27 mL), which was greater than the amount of balloon pump displacement (≈25 

mL). However, since positive stroke volume in assisted circulation was 81 mL (non-assist: 58 mL), 

the net volume was greater than zero, thus contributed to increased cardiac output percentage.  
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Several in vivo studies report the effect of counterpulsation on aortic flow. An in vivo study 

reported qualitatively the backward flow when an EABP was implanted in pigs (Davies et al., 

2005). Another study comparing the effect of counterpulsation at various places in the aorta also 

reported that backward flow towards coronary arteries occurred when an IABP and several types 

of end-to-side anastomosis type balloon pumps were activated, but again, only qualitative results 

(Furman et al., 1970). The implantation of an extra-aortic counterpulsation device (EACD) on the 

ascending aorta of a sheep showed that deflation of EACD prior to systole induced sudden 

retrograde flow although the retrograde flow was “ eliminated as LV ejection begins” (Zelano et 

al., 1992). 

The sudden reduction of the aortic end-diastolic pressure was attributed as the reason LV work 

decreased as indicated by TTI reduction (Zelano et al., 1992), however, none of the above studies 

quantify the effect of balloon deflation on valve leaflet opening. This study further suggested that 

balloon deflation distal to aortic heart valve will not only decrease aortic end-diastolic pressure, 

but also induce earlier valve opening.  

 

5.5 Conclusion 
 

The flow visualisation experiment, and further analysis on the pressure difference across the 

aortic valve have shown that the CIMS balloon deflation induced earlier valve opening. The CIMS 

balloon deflation at end-diastolic period not only caused earlier valve opening, it also reduced 

aortic end-diastolic pressure, thus decreasing flow resistance in systole. The pressure difference 

across the aortic valve, ∆Proot, momentarily exceeded zero baseline in diastole from sudden 

aortic root pressure reduction due to the CIMS balloon pump deflation. That caused earlier valve 

opening.  

The cardiac output increase in assisted circulation was due to net forward flowrate and backward 

flowrate. The net forward volume per beat was small (≈ 6 %), yet still statistically significant. 
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Chapter 6 Conclusion and Future Works 
The conclusion and suggested future work from this study is presented. 

 

6.1 Conclusion 
 

In the current market there is an opportunity for cheap, affordable chronic cardiac assist devices. 

The CIMS device was conceptualised to fill in that gap, and this study was conceived to test the 

effectiveness of that concept. A pressure/flow factorial experiments and flow visualisation 

experiments were carried out. Statistical analysis was performed and the results are presented in 

Chapter 4 and Chapter 5; from those results, several conclusions can be drawn. 

The CIMS balloon pump activation augmented peripheral and left coronary circulation, as well as 

reduction of the aortic end-diastolic pressure. The systolic aortic pressure changes were small 

across all experiments, so it was hypothesised that the small difference may not be clinically 

detrimental. The changes brought by counterpulsation technique depended on several factors, 

but the most prominent ones was the effect of arterial compliance. In low arterial compliance 

setting, for example, cardiac output was augmented by 15%, while left coronary artery mean 

flowrate was increased by 19%; but when the effect of device innate compliance is added, then 

CO increased to 20% while QcorMean increased to 21% (with CB type balloon pump). Clearly, 

other experimental factor also significantly affects the output. 

Resistance to left ventricular flow output is measured by reduction of aortic end-diastolic 

pressure (AoEDP), caused by balloon deflation prior to LV systole. The greatest mean reduction (≈ 

-9%) was also when arterial compliance factor was coupled with balloon innate compliance factor. 

The reduction of myocardial work due to decreased AoEDP cannot be quantified, since the MCL 

was not equipped with a suitable measurement device. For example, the C-Pulse LVAD managed 

to reduce LV wall stress to -31%, indicating reduced afterload, although AoEDP reduction was a 

mere -3% (Legget et al., 2005), thus the implanted CIMS balloon pump would probably achieve 

the same level, if not better afterload reduction, consequently less myocardial work. 

The measure of increased myocardial perfusion can be expressed using endocardial viability ratio 

(EVR). Activation of the CIMS balloon pump increased the EVR value between 33% and 74% 

(depending on experimental factor combination), indicating that myocardial perfusion would 

improve favourably with the CIMS balloon pump. The systolic unloading decreased by just 1% to 
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2%, while the diastolic augmentation increased by 29%. The myocardial function improvement 

clearly can be achieved by the CIMS balloon pump. 

The effect of balloon pump deflation just before systole caused sudden pressure reduction; and 

since the CIMS balloon pump is placed just after the aortic heart valve, earlier valve opening 

occurred as shown in Chapter 5. A flow visualisation experiment and factorial experiments were 

conducted to detect any effect from balloon pump deflation on the aortic heart valve. The 

prolonged opening time due to the CIMS balloon pump activation was confirmed statistically (p < 

0.001) from flow visualisation experiment. Also, from analysis of ∆Proot, the pressure difference 

across the aortic heart valve, it was shown that ∆Proot momentarily exceeded zero baseline prior 

to systole, thus validating the hypothesis of early valve opening. 

 

6.2 Suggested Future Works 
 

The CIMS balloon pump has demonstrated flow and pressure augmentation under various 

experimental factors. In terms of myocardium workload, an inference of possible workload 

decrease was suggested by the aortic end-diastolic pressure reduction, since the MCL was not 

equipped with suitable instrument and hardware to determine changes in myocardium workload. 

Future modifications on MCL is suggested to incorporate appropriate hardware and/or suitable 

algorithm e.g. the time-varying elastance model (Suga and Sagawa, 1974), or the one-fiber heart 

model (Arts et al., 1991, Cox et al., 2009).  

A comparison between the CIMS balloon pump and the IABP is definitely a good direction for 

future works. Some modifications naturally have to be carried out to allow IABP placement in the 

MCL. Possible research question would be the effect of balloon pump on the aortic heart valve, 

and the influence on flow haemodynamics. Factorial design experiment comparing between types 

of mechanical heart assist device (CIMS vs. IABP), CIMS balloon device design (SB & CB), and 

arterial compliance (high and low) could yield interesting results.  

The question of how exactly did the CIMS balloon pump augmentation affect aortic, coronary 

artery flowrate and intravascular pressure could be answered by using the Wave Intensity 

Analysis (WIA) technique. Several studies could be used as a reference (Feng and Khir, 2007, 

Biglino et al., 2008, Kolyva et al., 2009). 



Chapter 6 Conclusions and Future Works 
 

272 
 

A.Z.M. Khudzari 

The effect of balloon inflation and deflation on the aortic heart valve haemodynamics would be 

an interesting study; since it was shown that ∆Proot due to balloon inflation has increased in 

diastole.  

Another important future work is the exact reason for the observed higher efficacy of the CB type 

balloon pump when compared to the SB type balloon pump. By separating the effect of various 

confounding factors as discussed in section 4.7, using factorial experiment method, the prominent 

factor contributing difference in performance could be determined.  

The next step forward for the CIMS balloon pump is its development into an implantable 

prototype. Further work must be carried out to achieve biomaterial status on the balloon pump 

and the percutaneous driveline; after which a clinical in vivo animal study may be conducted, 

before progressing further to human patient as per regulations laid out by relevant authority (e.g. 

the Food and Drug Administration (FDA) in the USA; while in the Europe, CE mark for approved 

biomedical devices is awarded under Medical Device Directives by the European Commission 

(EC)).     
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APPENDIX 

APPENDIX A – Silicone Making 

A-1 Silicone Curing Process 

 

Silastic T4 silicone elastomer comes in two parts, a base and a catalyst. The base part and the 

catalyst part were mixed thoroughly together with a ratio of 10:1 by volume. However, in the 

process, air bubbles were mixed together as well and needed to be extracted. Air bubbles in the 

final product will decrease the structural strength not to mention jeopardising the gas 

impermeability requirement of the CIMS balloon pump. A degassing chamber capable of 

providing -30 kPa/-1 bar of vacuum was used to extract air bubbles from the silicone mixture. The 

mixture was left for about 10 minutes; the mixture expanded to about three to five times its 

original volume (an appropriate mixing container was selected). Once the 10 minutes degassing 

period was over, the mixture was then checked for any air bubbles. Normally a second air 

degassing procedure was needed for a further 5 - 10 minutes. Once all air bubbles were extracted, 

it could then be poured onto whatever mould was prepared beforehand. The time taken for the 

mixture to cure into a stable and strong silicone elastomer is up to 24 hours, and it was even 

faster if the mix was subjected to heat for an accelerated curing process. 

 

Figure A-136: Degassing chamber capable of vacuum pressure up to -1 bar or -30 mmHg 
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Figure A-137: Silastic T4 base  

 

Figure A-138: Silastic T4 catalyst  

A-2 Silicone Curing Mould 

 

There are two methods to cure the silicone mixture. The first one was by inserting a rod into a 

cylindrical hollow aluminium alloy mould. The gap between the centrically fixed rod and the 

surrounding hollow mould was designed to be 1mm. A silicone based release agent was sprayed 

onto the aluminium mould surfaces prior silicone mix insertion, to facilitate easier silicone peeling 

off later on. The silicone mixture was then poured into the mould slowly to allow the silicone to 

fill up the entire gap. The CAD model of the mould is as per Figure A-139, while the cured 

cylindrical silicone is shown in Figure A-140. 
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Figure A-139: Aluminium mould use to cure silicone mixture into a cylindrical model. The left side is the assembled 

parts, while the right figure is showing the cross section of the mould. Silicone is inserted into gap between middle 

shaft and aluminium cylinder. 

 

The other way was by using a cylindrical rod rotated about its centre axis.  After the silicone 

mixture was ready, it was poured onto the surface of the cylinder; the thickness was manually 

controlled. Initial cured membrane had a fine thin layer. By repeating the same process, the 

desired thickness was achieved. The rotational movement of the aluminum cylinder was powered 

by using a LEGO ™46 robot employing a worm gear mechanism to provide a rotational speed of 

eight rotations per minute (rpm). The rotational speed of the aluminium cylinder cannot be too 

fast as this will prevent the silicone mixture from settling in. However, if the rotation was too 

slow, gravitational pull will affect the silicone mixture, and the membrane thickness would be 

compromised, due to silicone dripping resulting in a non-uniform membrane thickness. A careful 

balance between rotational speed and silicone thickness was achieved after a series of trial and 

error. This method is suitable to achieve a very thin silicone membrane (≈ 0.2 - 0.4 mm) or multi 

diameter silicone membranes depending on the mould selected. For the compliant body balloon 

pump, a thin silicone membrane of ≈ 0.5 mm was cured. 

                                                           
46

 LEGO , Billund, Denmark 
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For the LV silicone sac, the silicone mixture was poured into the mould shown in Figure A-141, 

and the second part of the mould was inserted into the the first part mould.  

 

Figure A-140: A cylindrical silicone membrane used in the in vitro prototype balloon pump 

 

 

Figure A-141: Mould for the LV silicone sack 

 

 

 

 

 



Appendix 
 

289 
 

A.Z.M. Khudzari 

A-3 Silicone Silastic T4 Datasheet 
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APPENDIX B – Statistical Test 
 

B-1 Scheirer-Ray-Hare Test 

 

In the case of ANOVA assumptions cannot be met, the alternative non-parametric test for two-

way ANOVA is Scheirer-Ray-Hare (SRH) test. The procedures are: 

i. assemble the original data into ascending order, and assign ranks to replace the 

original data.  

ii. Perform the standard parametric two-way ANOVA onto the rank-transformed data. 

iii. The new total mean square (MSTOTAL) value for the rank-transformed data is 

calculated by dividing the Corrected Total value by the degrees of freedom (df).  

iv. Compute the test statistics for each experimental factor and their interaction. The 

test statistics is defined by H = SS/MSTOTAL. Note that the SS is the sum of squares 

value obtained from the rank-transformed ANOVA. 

v. The p-value for each factor is computed by using Chi-square distribution using the 

test-statistics calculated in above procedure and the degrees of freedom. 

An example of the SRH test used in this study is tabulated in Table B-109, the experimental factors 

are Design and Helium gas volume, while the response output is the cardiac output (CO). Table B-

107 tabulates the ANOVA results from SPSS program. 

Table B-107: The ANOVA result 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 4.956× 10
6
 5 991197.480 64.818 .000 

Intercept 3.951× 10
7
 1 3.951× 10

7
 2583.818 .000 

Design 4316589.630 1 4316589.630 282.276 .000 

GasVOL 503810.411 2 251905.206 16.473 .000 

Design * GasVOL 135587.359 2 67793.680 4.433 .012 

Error 8165967.600 534 15292.074   
Total 5.263 × 10

7
 540    

Corrected Total 1.312× 10
7
 539    

  

Total mean square value, MSTOTAL was calculated by dividing Corrected Total with df of the same 

row. The calculation was carried out using Microsoft Excel spreadsheet. Table B-108 tabulates the 

result. 

Table B-108: Calculated MSTOTAL 

Corrected total  df MSTOTAL 

1.31 × 10
7 539 24341.4 

The new test-statistics, denoted by H, for each experimental factor, Design and ArtCompliance, 

was calculated by dividing the rank-transformed ANOVA’s sum of square with MSTOTAL. 
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The p-value then was obtained by using the Chi-Square distribution formula CHIDIST provided in 

the Microsoft Excel. The formula calculated the one-tail probability according to the test-statistics, 

H, and df (degree of freedom) value. 

Table B-109 : The SRH test result. SS: Sum of Squares, df: degree of freedoms, H: test-statistics for SRH test 

Source SS df H P-value 

Design 4316589.63 1 177.3355 1.85 × 10
-40 

GasVOL 503810.411 2 20.6977 3.20 × 10
-5 

Design * GasVOL 135587.359 2 5.5702 0.062 

 

B-2 Nemenyi Test 

 

The post-hoc Nemenyi test is similar to Tukey Honest Significant Difference (HSD) test, used on 

non-parametric data. The origin of Nemenyi is an extension of Kruskal-Wallis test, which is for two 

or more groups with non-parametric data distribution.  The post-hoc test can only be carried out 

if p-value of the experimental factor showed a significant difference. 

The procedure/algorithm for Nemenyi test is as follows (Zar, 2010).  

i. Apply non-parametric Kruskal-Wallis test on the groups to compute the mean rank of 

each level. 

ii. The groups then are ranked according to the highest sum of ranks.  

iii. The standard error, SE, then is calculated using Eq. B-1, where n is the number of 

samples, while k is the number of groups. 

      
           

  
 

 

B-1 

iv. Pairwise comparison of the groups is conducted starting with the difference between 

the largest and the smallest rank sums, before proceeding to the next bigger rank 

sums. The test statistic, q, also known as Studentized range, is computed by dividing 

the difference between rank sums with the SE. 

v. The computed q value is compared to the critical value, q (α, ν, k), where α: 

confidence level, set at 5 %, ν = error degree of freedom appropriate to a statistical 

test, and k : number of groups. If the q > q(α, ∞, k), there is enough evidence to reject 

H0, and accept the alternative hypothesis, H1.  

SPSS and Microsoft Excel software was used during the process. 

An example of the Nemenyi test is presented; the data used was from the same dataset as B-1.  
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B-2-1 Example of Nemenyi Test 

 

Table B-110 tabulates the result of Kruskal Wallis test for GasVOL experiment data with three 

levels.  

Table B-110: Kruskal Wallis test result of each level’s Mean Rank value 

 GasVOL N Mean Rank 

CO 

1 

V20 180 237.14 

V25 180 310.94 

V30 180 263.42 

Total 540  

 

The order of the group was determined from sums of rank by multiplying the mean rank with the 

number of samples, N. The standard error, SE, was calculated using equation B-1.  

Table B-111: The result of rank of each level and SE 

Response Output GasVol N Mean Rank Sums of Rank rank 

 

CO 

V20 180 237.14 42685.2 3 

V25 180 310.94 55969.2 1 

V30 180 263.42 47415.6 2 

Total 540   

  

    

k  = 3 

    

SE = 2093.347 

 

Pairwise comparison was then computed. Since critical value α = 0.05, ν = ∞, and k = 3; the 

q(0.05,∞,3) value is 3.314 (Zar, 2010). The comparison was conducted by subtracting the highest 

ranked group (Rb) with the lowest (Ra), and then with the second lowest, and so on. In this 

sample, the first two comparisons detected significant difference between groups involved, thus 

the * sign is tabulated in the Table B-112. 

Table B-112: Nemenyi test result.   

B vs A   vs   (Rb-Ra) SE q q(0.05,∞,3) Result significant 

1 
 

3 V25 
 

V20 13284 2093.35 6.346 3.314 Reject H0 YES 

1 
 

2 V25 
 

V30 8553.6 2093.35 4.086 3.314 Reject H0 YES 

2 
 

3 V30 
 

V20 4730.4 2093.35 2.260 3.314 Accept H0   

 

B-3 Sample Size Calculation 

 

Sample size for an experiment determines the power of the test involved whether the test would 

have enough sensitivity to detect any differences between means etc. In the case of two different 

populations with different standard deviation (SD) values, these equations were used. 
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 B-2 

 

and  

           
  

          

  
  B-3 

 

Where  N1 = sample size from the first population,  

N2 = sample size from the second population, 

σ1 = standard deviation of the first population 

σ2 = standard deviation of the first population 

Uα = Normal distribution number for alpha risk (normally at 0.05 = 1.96) 

Uβ= Normal distribution number for beta risk (normally for 0.10 = 90% power is 1.282) 

δ = important engineering increment that we want to observe, or the minimum change in 

the mean that would be useful/interesting. 

An example of sample size calculation is given: 

Since the main output response of interest is cardiac output (CO), the sample size calculation is as 

follows, where α = 0.05, β = 0.10, δ = 0.3 L/min (10% of 3.0 L/min for HF mode), σ1 = 0.05 L/min, 

σ2 = 0.2 L/min (assumed to be four times the value of σ1). 

For non-assisted flow: 

          
 
 
          

  
 

                
  

              

    
 

        

      

 

Similar calculation for assisted flow yields: 

                
  

             

    
 

        

     

From the results, the amount of sample size between non-assisted and assisted flow is different 

since the standard deviation between groups is unequal; if the intention is to be able to detect at 

least 10% changes of CO of the assisted flow, an overall sample size of 6 is enough.  Higher sample 
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size allows for a better detection range. In Table B-113, sample sizes are shown to change 

according to the sensitivity to detect smaller mean differences: 

Table B-113: Sample size of non-assisted (N1) and assisted flow (N2) according to the flow SD and δ level 

with power of test at 90%, (β = 0.10). 

SD δ N1 N2 

σ1 = 0.05 

σ2 = 0.2 

10 % 2 6 

5 % 6 24 

1 % 146 584 

 

σ1 = 0.02 

σ2 = 0.04 

10 % ≈ 1 20 

5 % ≈ 3 79 

1 % 99 1962 

 

σ1 = σ2 = 0.1 

10 % 3 

5 % 10 

1 % 234 

 

If the SD is equal for both populations, set at SD = 0.3 L/min for CO, while δ is set at 5% (0.15 

L/min), the minimum sample size is 85 for both of groups. Clearly the amount of sample size is 

different according to the nature of the experiment. From preliminary tests, it was found that 

most of the SD was very small (≈ 0.02 L/min) and CO’s mean difference was at least 5% and 

greater. A decision to adopt sample size of 30 for both populations (non-assisted and assisted 

flow) was taken, since it would give good detection range at δ = 5%.  
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APPENDIX C – Statistical Analysis Result 
 

C-1 TIMING 

The statistical results for response outputs of TIMING experiment. 

C-1-1 Cardiac Output 

 

Table C-114: SRH test result for Cardiac Output of TIMING experiment 

Source  SS df MSTOTAL H P-value 

Inflation 9204221.089 2 
 

94.58 2.89×10-21 

Deflation 9227589.533 3 
 

94.82 2.01×10-21 

Inflation  ×  Deflation 4641448.156 6 
 

47.7 1.36×10-21 

Corrected Total 105000000 1079 97312.3262     

 

C-1-1Left Coronary Artery Mean Flowrate 

 

Table C-115: Levene’s test result for data variance’s equality 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: QcorMean 

F df1 df2 Sig. 

21.813 11 1068 .000 

 

Table C-116: SRH test result for LCA flowrate of TIMING experiment 

Source  SS df MSTOTAL H P-value 

Inflation 1822695.117 2 
 

18.73 8.57×10-5 

Deflation 16150000 3 
 

165.96 9.48×10-36 

Inflation × Deflation 8260363.594 6 
 

84.89 3.49×10-16 

Corrected Total 105000000 1079 97312.3262     

 

Table C-117: The rank for Inflation factor 

Response 
Output 

Inflation N Mean Rank SumRank rank 

QcorMean A 360 521.84 187862.4 2 

B 360 597.48 215092.8 1 

C 360 502.18 180784.8 3 

Total 1080   k = 3 

     

SE 5918.142 
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Table C-118: The rank result for Deflation factor 

Response 
Output 

Deflation N Mean Rank 
Sum 
Rank 

rank 

QcorMean G 270 473.17 127755.9 3 

H 270 575.93 155501.1 2 

I 270 720.04 194410.8 1 

J 270 392.86 106072.2 4 

Total 1080   k = 4 

   
  

SE =  5125.261 

 

C-1-2 Aortic Systolic Pressure (AoPmax) 

 

Table C-119: Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoPmax 

F df1 df2 Sig. 

25.200 11 1068 .000 

 

Table C-120: SRH test result for AoPmax of TIMING experiment 

Source  SS df MSTOTAL H P-value 

Inflation 2553684.617 2 
 

26.24 2.00×10-6 

Deflation 16540000 3 
 

169.97 1.29×10-36 

Inflation × Deflation 6112216.82 6 
 

62.81 1.21×10-11 

Corrected Total 105000000 1079 97312.3262     

 

Table C-121 : The rank result for Inflation factor 

Response 
Output 

Inflation 
N Mean Rank SumRank rank 

AoPmax A 360 496.48 178732.8 3 

B 360 608.25 218970 1 

C 360 516.77 186037.2 2 

Total 1080   k = 3 

     

SE 5918.142 
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Table C-122 : The rank result for Deflation factor 

Response 
Output 

Deflation N Mean Rank 
Sum 
Rank 

rank 

AoPmax G 270 644.51 174017.7 1 

H 270 604.27 163152.9 2 

I 270 583.67 157590.9 3 

J 270 329.54 88975.8 4 

Total 1080   k = 4 

   
  

SE =  5125.261 

 

C-1-3 Aortic End-Diastolic Pressure (AoEDP) 

  

Table C-123: SRH test result for AoEDP of TIMING experiment 

Source  SS df MSTOTAL H P-value 

Inflation 246594.839 2 
 

2.53 0.282 

Deflation 613091.63 3 
 

6.30 0.095 

Inflation × Deflation 1258293.198 6 
 

12.93 0.044 

Corrected Total 105000000 1079 97312.3262     

 

Table C-124: The Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoEDP 

F df1 df2 Sig. 

45.705 11 1068 .000 

 

C-1-4 Correlation 

 

Table C-125:  Correlation of coefficient for dP and CO 

Correlations 

 CO dP 

Spearman's rho CO Correlation Coefficient 1.000 .171
**
 

Sig. (2-tailed) . .000 

N 1080 1080 

dP Correlation Coefficient .171
**
 1.000 

Sig. (2-tailed) .000 . 

N 1080 1080 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table C-126: The correlation coefficient result for dP and QcorMean 

Correlations 

 dP QcorMean 

Spearman's rho dP Correlation Coefficient 1.000 .206
**
 

Sig. (1-tailed) . .000 

N 1080 1080 

QcorMean Correlation Coefficient .206
**
 1.000 

Sig. (1-tailed) .000 . 

N 1080 1080 

**. Correlation is significant at the 0.01 level (1-tailed). 

 

C-2 Helium Gas Volume 

 

C-2-1 Cardiac Output 

 

Table C-127: Levene's test for homogeneity of data 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: CO 

F df1 df2 Sig. 

19.402 5 534 .000 

 

Table C-128: SRH test result for CO of Helium gas volume experiment 

Source SS df MSTOTAL H P-value 

Design 4316589.63 1 
 

177.34 1.85×10-40 

GasVOL 503810.411 2 
 

20.8 3.203×10-5 

Design  ×  GasVOL 135587.359 2 
 

5.57 0.062 

Corrected Total 13120000 539 24341.3729     

 

Table C-129 : The ranks result for GasVol factor 

Response 
Output 

GasVol N Mean Rank SumRank rank 

CO V20 180 237.14 42685.2 3 

V25 180 310.94 55969.2 1 

V30 180 263.42 47415.6 2 

Total 540   k = 3 

     

SE =  2093.347 
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C-2-2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

Table C-130: Levene's test for Design & GasVol factors data 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: QcorMean 

F df1 df2 Sig. 

21.541 5 534 .000 

 

 

Table C-131: SRH test result for QcorMean of Helium gas volume experiment 

Source  SS df MSTOTAL H P-value 

Design 2445816.6 1 
 

100.48 1.196×10-23 

GasVOL 4964390.578 2 
 

203.95 5.165×10-45 

Design  ×  GasVOL 119590.178 2 
 

4.91 0.086 

Corrected Total 13120000 539 24341.3729     

 

Table C-132 : The ranks result for GasVol factor 

Response 
Output 

GasVol N Mean Rank SumRank rank 

QcorMean V20 180 145.1 26118 3 

V25 180 288.52 51933.6 2 

V30 180 377.88 68018.4 1 

Total 540   k = 3 

     

SE =  2093.347 

 

C-2-3 Aortic Systolic Pressure (AoPmax) 

 

Table C-133: Levene's test for equality for AoPmax response output 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable:AoPmax 

F df1 df2 Sig. 

21.353 5 534 .000 
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Table C-134: SRH test result for AoPmax 

Source  SS df MSTOTAL H P-value 

Design 1125957.341 1 
 

46.26 1.037×10-11 

GasVOL 554700.044 2 
 

22.79 1.126×10-5 

Design  ×  GasVOL 57065.304 2 
 

2.34 0.31 

Corrected Total 13120000 539 24341.3729     

 

Table C-135 : Kruskal-Wallis test result for the Mean Rank 

Response 
Output 

GasVol N Mean Rank SumRank rank 

AoPmax V20 180 292.66 52678.8 2 

V25 180 293.69 52864.2 1 

V30 180 225.14 40525.2 3 

Total 540   k = 3 

     

SE =  2093.347 

 

C-2-4 Aortic End-Diastolic Pressure (AoEDP) 
Table C-136 : The Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable:AoEDP 

F df1 df2 Sig. 

19.714 5 534 .000 

 

Table C-137: SRH test result for AoEDP 

Source  SS df MSTOTAL H P-value 

Design 332022.407 1 
 

13.64  2×10-4 

GasVOL 1604911.944 2 
 

65.93 4.82×10-15 

Design × GasVOL 334019.07 2 
 

13.72 0.001 

Corrected Total 13120000 539 24341.3729     

 

Table C-138 : The rank of each levels in GasVol factor 

Response 
Output 

GasVol N Mean Rank SumRank rank 

AoEDP V20 180 336.04 60487.2 1 

V25 180 272.91 49123.8 2 

V30 180 202.55 36459 3 

Total 540   k = 3 

     

SE =  2093.347 
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C-2-5 Correlation 

 
Table C-139: Correlation between dP and CO 

Correlations 

 dP CO 

Spearman's rho dP Correlation Coefficient 1.000 .477
**
 

Sig. (2-tailed) . .000 

N 540 540 

CO Correlation Coefficient .477
**
 1.000 

Sig. (2-tailed) .000 . 

N 540 540 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Table C-140: Correlation between dP and QcorMean 

Correlations 

 dP QcorMean 

Spearman's rho dP Correlation Coefficient 1.000 .705
**
 

Sig. (2-tailed) . .000 

N 540 540 

QcorMean Correlation Coefficient .705
**
 1.000 

Sig. (2-tailed) .000 . 

N 540 540 

**. Correlation is significant at the 0.01 level (2-tailed). 
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C-3 COMPLIANCE 

The statistical results for response output of COMPLIANCE experiment are presented. 

C-3-1 Cardiac Output 

 

Table C-141: Levene’s Test  

Levene's Test of Equality of Error Variances 

Dependent Variable: CO 

F df1 df2 Sig. 

20.035 3 356 .000 

 

Table 142: SRH test result for CO of COMPLIANCE experiment 

Source  SS df MSTOTAL H P-value 

Design 1440708.54 1 
 

133.03 8.91×10-31 

ArtCompliance 1065587.21 1 
 

98.39 3.432×10-23 

Design × ArtCompliance 5953.6 1 
 

0.55 0.458 

Corrected Total 3887970 359 10830     

 

C-3-2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

Table C-143 : Levene’s test for homogeneity of variance for the data.  

Levene's Test of Equality of Error Variances
a
 

Dependent Variable:QcorMean 

F df1 df2 Sig. 

34.195 3 356 .000 

 

Table C-144: SRH test result for QcorMean of COMPLIANCE experiment 

Source  SS df MSTOTAL H P-value 

Design 250377.88 1 
 

23.12 1.522×10-6 

ArtCompliance 2127669.38 1 
 

196.46 1.237×10-44 

Design × ArtCompliance 39396.54 1 
 

3.64 0.056 

Corrected Total 3887970 359 10830 
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C-3-3 Aortic Systolic Pressure (AoPmax) 

 

Table C-145 : The Levene's test for homogeneity of data 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoPmax 

F df1 df2 Sig. 

11.113 3 356 .000 

 

 

Table C-146: SRH test result for AoPmax of COMPLIANCE experiment 

Source  SS df MSTOTAL H P-value 

Design 62726.4 1 
 

5.79 0.016 

ArtCompliance 62199.511 1 
 

5.74 0.016 

Design  ×  ArtCompliance 10627.6 1 
 

0.98 0.322 

Corrected Total 3887970 359 10830 
  

 

C-3-4 Aortic End-Diastolic Pressure (AoEDP) 

 

Table C-147 : Levene's test for the homogeneity of data variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoEDP 

F df1 df2 Sig. 

12.034 3 356 .000 

 

Table C-148: The SRH test for AoEDP of COMPLIANCE experiment 

Source  SS df MSTOTAL H P-value 

Design 71121.111 1 
 

6.57 0.01 

ArtCompliance 2157292.844 1 
 

199.2 3.128×10-45 

Design × ArtCompliance 11244.844 1 
 

1.04 0.308 

Corrected Total 3887970 359 10830 
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C-3-5 Correlation 

 

Table C-149 : The data for correlation between CO and dP 

Correlations 

 CO dP 

Spearman's rho CO Correlation Coefficient 1.000 .684
**
 

Sig. (2-tailed) . .000 

N 360 360 

dP Correlation Coefficient .684
**
 1.000 

Sig. (2-tailed) .000 . 

N 360 360 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

 
Table C-150: Correlation result for dP and QcorMean 

Correlations 

 dP QcorMean 

Spearman's rho dP Correlation Coefficient 1.000 .557
**
 

Sig. (2-tailed) . .000 

N 360 360 

QcorMean Correlation Coefficient .557
**
 1.000 

Sig. (2-tailed) .000 . 

N 360 360 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

C-4 Heart Valve 

The results of Heart Valve experiments are divided into two parts, MHV and BioProsthetic. 

 

C-4-1 Mechanical Heart Valve (MHV) 

 

 The statistical results of MHV are presented here. 
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C-4-1-1 Cardiac Output 

 

Table C-151: Levene's test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: CO 

F df1 df2 Sig. 

27.229 5 534 .000 

 

Table C-152: SRH test for CO 

Source  SS df MSTOTAL H P-value 

ArtCompliance 8466024.067 1 
 

347.80 1.275×10-77 

DeflationPoint 280436.411 2 
 

11.52 0.003 

ArtCompliance  × DeflationPoint 236295.811 2 
 

9.71 0.008 

Corrected Total 13120000 539 24341.3729 
  

 

Table C-153: The rank result from for Deflation Point factor 

Response 
Output 

Deflation 
Point 

N Mean Rank SumRank rank 

CO BG 180 256.29 46132.2 2 

BI 180 302.66 54478.8 1 

BJ 180 252.55 45459 3 

Total 540   k = 3 

     

SE =  2093.347 

 

C-4-1-2 Left Coronary Artery Mean Flowrate (QcorMean) 

 

Table C-154: Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: QcorMean 

F df1 df2 Sig. 

59.280 5 534 .000 
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Table C-155: SRH test result for QcorMean 

Source  SS df MSTOTAL H P-value 

ArtCompliance 9590402.4 1 
 

394.0 1.117×10-87 

DeflationPoint 1607569.6 2 
 

66.04 4.56×10-15 

ArtCompliance  ×  DeflationPoint 45233.911 2 
 

1.86 0.395 

Corrected Total 13120000 539 24341.3729 
  

 

Table C-156: Mean Rank result from Kruskal-Wallis test 

Response 
Output 

Deflation 
Point 

N Mean Rank SumRank rank 

QcorMean BG 180 222.57 40062.6 3 

BI 180 346.84 62431.2 1 

BJ 180 242.09 43576.2 2 

Total 540   k = 3 

     

SE =  2093.347 

 

C-4-1-3 Aortic Systolic Pressure (AoPmax) 

 

Table C-157: Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoPmax 

F df1 df2 Sig. 

43.646 5 534 .000 

 

Table C-158: SRH test result for AoPmax 

Source  SS df MSTOTAL H P-value 

ArtCompliance 1818648.6 1 
 

74.71 5.44×10-18 

DeflationPoint 1148335.544 2 
 

47.18 5.7×10-11 

ArtCompliance  × DeflationPoint 176530.9 2 
 

7.25 0.027 

Corrected Total 13120000 539 24341.3729 
  

 
Table C-159: Mean Rank result from Kruskal-Wallis test 

Response 
Output 

Deflation 
Point 

N Mean Rank SumRank rank 

AoPmax BG 180 286.15 51507 2 

BI 180 317.51 57151.8 1 

BJ 180 207.84 37411.2 3 

Total 540   k = 3 

     

SE =  2093.347 
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C-4-1-4 Aortic End-Diastolic Pressure (AoEDP) 

 

Table C-160: Levene's test for homogeneity of data 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoEDP 

F df1 df2 Sig. 

24.307 5 534 .000 

 

Table C-161: SRH test result for AoEDP 

Source  SS df MSTOTAL H P-value 

ArtCompliance 9414768.896 1 
 

386.78 4.157×10-86 

DeflationPoint 530045.911 2 
 

21.78 1.869×10-5 

ArtCompliance × DeflationPoint 25061.97 2 
 

1.03 0.598 

Corrected Total 13120000 539 24341.3729 
  

 

Table C-162: Mean Rank result from Kruskal-Wallis test 

Response 
Output 

Deflation 
Point 

N Mean Rank SumRank rank 

AoEDP BG 180 314.81 56665.8 1 

BI 180 249.04 44827.2 2 

BJ 180 247.65 44577 3 

Total 540   k = 3 

     

SE =  2093.347 

 

C-4-1-5 Correlation 

 

Table C-163: Correlation test result between dP and CO 

Correlations 

 dP CO 

Spearman's rho dP Correlation Coefficient 1.000 .253
**
 

Sig. (2-tailed) . .000 

N 540 540 

CO Correlation Coefficient .253
**
 1.000 

Sig. (2-tailed) .000 . 

N 540 540 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table C-164: Correlation test result between  

Correlations 

 dP QcorMean 

Spearman's rho dP Correlation Coefficient 1.000 .447
**
 

Sig. (2-tailed) . .000 

N 540 540 

QcorMean Correlation Coefficient .447
**
 1.000 

Sig. (2-tailed) .000 . 

N 540 540 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

C-4-2 BioPHV 

The statistical results of bio-prosthetic heart valve are presented here. 

 

C-4-2-1 Cardiac Output 
Table C-165: Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: CO 

F df1 df2 Sig. 

1.543 5 534 .175 

 

Table C-166: The normality result from Kolmogorov-Smirnov and Shapiro-Wilk test 

Kolmogorov-Smirnov 
& Shapiro-Wilk P-
value 

BG BI BJ 

K-S S-W K-S S-W K-S S-W 

C2.5 0.2 0.742 0.2 0.253 0.2 0.138 

C1.25 0.2 0.477 0.2 0.046 0.2 0.175 

(K-S: Kolmogorov-Smirnov, S-W: Shapiro-Wilk)  
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Table C-167: ANOVA result for CO of BioPHV experiment. The result was generated using SPSS program 

Tests of Between-Subjects Effects 

Dependent Variable : CO 

Source Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Corrected Model 1430.501
a
 5 286.100 81.919 .000 

Intercept 17035.642 1 17035.642 4877.796 .000 

ArtCompliance 828.044 1 828.044 237.093 .000 

DeflationPoint 587.847 2 293.923 84.159 .000 

ArtCompliance × DeflationPoint 14.610 2 7.305 2.092 .124 

Error 1864.988 534 3.492   

Total 20331.131 540    

Corrected Total 3295.489 539    

a. R Squared = .434 (Adjusted R Squared = .429) 

 

Table C-168: Post-hoc TukeyHSD test for CO factor that has three levels 

Tukey HSD : Variable = CO 

(I) DeflationPoint (J) DeflationPoint 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

 

BG 

 

BI 1.7811
*
 .19699 .000 1.3181 2.2441 

BJ 2.4778
*
 .19699 .000 2.0149 2.9408 

BI 

 

BG -1.7811
*
 .19699 .000 -2.2441 -1.3181 

BJ .6967
*
 .19699 .001 .2338 1.1597 

BJ 

 

BG -2.4778
*
 .19699 .000 -2.9408 -2.0149 

BI -.6967
*
 .19699 .001 -1.1597 -.2338 

Based on observed means. 

 The error term is Mean Square (Error) = 3.492. 

*. The mean difference is significant at the .05 level. 

 

C-4-2-2 Left Coronary Artery Mean Flowrate (QcorMean) 
Table C-169: Levene’s test of homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable : QcorMean 

F df1 df2 Sig. 

7.951 5 534 .000 
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Table C-170: SRH test result for QcorMean 

Source  SS df MSTOTAL H P-value 

ArtCompliance 8052983.585 1 
 

330.84 6.322×10-74 

DeflationPoint 3318147.344 2 
 

136.32 2.507×10-30 

ArtCompliance × DeflationPoint 62251.181 2 
 

2.56 0.278 

Corrected Total 13120000 539 24341.3729     

 

Table C-171: The rank result of Deflation Point factor 

Response 
Output 

Deflation 
Point 

N Mean Rank SumRank rank 

QcorMean BG 180 376.44 67759.2 1 

BI 180 245.82 44247.6 2 

BJ 180 189.23 34061.4 3 

Total 540   k = 3 

     

SE =  2093.347 

 

C-4-2-3 Aortic Systolic Pressure (AoPmax) 
Table C-172: Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoPmax 

F df1 df2 Sig. 

6.559 5 534 .000 

 

Table C-173: SRH test result for AoPmax 

Source  SS df MSTOTAL H P-value 

ArtCompliance 3734.074 1 
 

0.15 0.695 

DeflationPoint 7154452.3 2 
 

293.92 1.5×10-64 

ArtCompliance × DeflationPoint 67936.604 2 
 

2.79 0.247 

Corrected Total 13120000 539 24341.3729 
  

 

Table C-174: The rank result for each level of Deflation Point 

Response 
Output 

Deflation 
Point 

N Mean Rank SumRank rank 

AoPmax BG 180 425.33 76559.4 1 

BI 180 236.64 42595.2 2 

BJ 180 149.53 26915.4 3 

Total 540   k = 3 

     

SE =  2093.347 
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C-4-2-4 Aortic End-Diastolic Pressure (AoEDP) 

 

Table C-175: The Levene’s test of homogeneity of variance 

Levene's Test of Equality of Error Variances
a
 

Dependent Variable: AoEDP 

F df1 df2 Sig. 

42.794 5 534 .000 

 

Table C-176: SRH test result for AoEDP 

Source  SS df MSTOTAL H P-value 

ArtCompliance 6655560.185 1 
 

273.43 2.034×10-61 

DeflationPoint 446518.633 2 
 

18.34 01×10-4 

ArtCompliance × DeflationPoint 774469.915 2 
 

31.82 1.233×10-7 

Corrected Total 13120000 539 24341.37 
  

 

Table C-177: Mean Rank result from Kruskal-Wallis test 

Response 
Output 

Deflation 
Point 

N Mean Rank SumRank rank 

AoEDP BG 180 275.81 49645.8 2 

BI 180 232.93 41927.4 3 

BJ 180 302.76 54496.8 1 

Total 540   k = 3 

     

SE =  2093.347 

 

C-4-2-5 Correlation 

 

Table C-178: Correlation test result between dP and CO 

Correlations 

 CO dP 

CO Pearson Correlation 1 .179
**
 

Sig. (2-tailed)  .000 

N 540 540 

dP Pearson Correlation .179
**
 1 

Sig. (2-tailed) .000  

N 540 540 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table C-179: Spearman's correlation test result for dP and QcorMean 

Correlations 

 dP QcorMean 

Spearman's rho dP Correlation Coefficient 1.000 .177
**
 

Sig. (2-tailed) . .000 

N 540 540 

QcorMean Correlation Coefficient .177
**
 1.000 

Sig. (2-tailed) .000 . 

N 540 540 

**. Correlation is significant at the 0.01 level (2-tailed). 
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APPENDIX D – Rapid Prototyping Machine 
 

D-1 Types of machines 

 

The rapid prototype machines used to construct the rigid body balloon pump are  

1) Dimension Elite by Stratasys Inc. (MN, USA) (refer to Figure D-142) and 

 2) Viper si2 SLA System by 3D Systems Inc. (SC, USA) (refer to Figure D-143).  

The main difference between those machines lies in the material used to construct the model.  

The Dimension Elite (Stratasys Inc., USA) uses ABSplus which is a production-grade thermoplastic, 

and by heating the material in an extrusion head, thin layers are deposited on a modelling base 

gradually forming the 3D model.  This is what termed as Fused Deposited Molding (FDM) 

technology.  

 

Figure D-142: A rapid prototyping machine (Dimension Elite by Stratasys Inc.) using Fused Deposition Modeling 
(FDM®) technology. 

 

The Viper si2 SLA System machine (3D System Inc., USA) uses an UV-curable photopolymer resin 

(Accura® 60). A laser ray is beamed onto a container filled with the UV-curable photopolymer, and 

that solidifies the photopolymer fluid. The thin layer is formed layer by layer.  

The straight body (SB) balloon pump was made using the rapid prototyping machine FDM. 

Although the FDM material offers a good structural rigidity and strength, its porous body was 
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unsuitable. To ensure no Helium gas escapes to surrounding air during balloon activation the body 

was coated with  several layers of super glue, primer paint and lacquer in that order. The coated 

balloon pump body was stronger, waterproof and gas impermeable. 

 

 

Figure D-143: A rapid prototyping machine (VIPER si2™ SLA® System) to manufacture transparent housing body for 
balloon pump prototype. 
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D-2 Technical Drawing of Balloon Pump Prototype 

The technical drawings of the CIMS balloon pump: standard body (SB) and compliant body (CB) 

are illustrated in Figure D-144 and Figure D-145. 

 

Figure D-144: Technical drawing for SB type balloon pump. OC : Outer Case 
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Figure D-145: Technical drawing for CB type balloon pump 

  



Appendix 
 

317 
 

A.Z.M. Khudzari 

D-3 Compliance Test Procedure 

 

Blood vessel compliance is an important characteristic in arterial haemodynamics. A high 

compliance blood vessel expands more during systole, thus able to store more blood which later 

flows to peripheral arteries in diastole. A compliant blood vessel also keeps the pulse pressure 

moderate.  Balloon pump compliance was measured by looking at the ratio between volumetric 

expansion and changes in pressure. The formula is presented as per Eq. 1.14, rewritten as: 

 

 
  

  

  
  
  

  
   

  

    
  D –1 

 

Three consecutive tests to determine the static compliance of the balloon pump were carried out 

by computing the reciprocal of the ratio between internal pressure increases against additional 

water injected into the balloon pump. The compliant body balloon pump was fixed between two 

aluminum blocks, each with a tap hole for a luer connector as per Figure D-146. A disposable 

pressure transducer47 was connected to the luer connector at one end, while the other end was 

for a syringe. Distilled water was inserted into the centre of the balloon pump approximately 25 

mL. After the pressure in the balloon pump was set to 0 mmHg by using a cable checker, then by 

using a syringe, one mL of water was injected into the rig and the pressure was recorded using 

National Instruments DAQ hardware, NI cDAQ-9172 and NI 9723. A simple Labview ™ program 

was used to display and record the pressure increase.  Three consecutive tests were done. The 

text file of the pressure data was then opened and manipulated using Microsoft Office Excel 

spreadsheet program. The pressure increase was plotted against volumetric increase, and the 

slope was computed. The slope value is the elastance of the balloon pump; the SI unit is 

mmHg/mL. The compliance value can be easily calculated by getting the reciprocal value of the 

elastance:  

   
 

         
 D – 2 

                                                           
47

 Similar model to the one used in the mock circulatory loop 
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Figure D-146: The setting up for compliance testing for the CIMS balloon pump prototype 

 

The static compliance value computed for the Compliant Body type balloon pump was 0.11 

mmHg/mL. 

There was another type of test conducted to determine the compliance of the CIMS balloon pump 

(SB & CB). A tube and a pressure transducer are connected to the balloon pump as illustrated in 

Figure D-147. A fixed amount of water of 20 mL was inserted using syringe for several times. 

Before and after insertion, the water column height and pressure were recorded, and then the 

amount of water raised was calculated. The results for both SB and CB are tabulated in Table D-

180 and Table D-181. 
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Figure D-147: Balloon pump compliance test setting 

 

Table D-180: Pressure of water column and increment of water height for SB type balloon pump 

SB P1 28.3 35.4 42.4 49.4 56.6 

  P2 35.4 42.4 49.4 56.6 63.9 

  ∆P 7.1 7 7 7.2 7.3 

  ∆L 98 98 98 98 98 

 

Table D-181: Pressure of water column and increment of water height for CB type balloon pump 

CB P1 13 20.3 27.1 36 43 49 56 65.5 72 79 

  P2 20.3 27 34 43 50 56 63 72 79 85 

  ∆P 7.3 6.7 6.9 7 7 7 7 6.5 7 6 

  ∆L 98 96.5 96 96 96 96 95 95 94.5 94 

 

In Figure D-148, the water column pressure is plotted against water column height. Compared to 

when SB type balloon pump, the CB type balloon pump exhibited different trend. The amount of 

water inserted is fixed at 20 mL, yet the height increment decreased over the increased pressure. 

This shows that the silicone membrane expanded with increasing pressure, which in this 

experiment, reached up to 85 mmHg. Compared this to the SB type balloon pump which exhibited 

no differences as per expected. This confirms the above experiment that CB type balloon pump 
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has an internal compliance with incorporation of flexible silicone membrane and the CB balloon 

pump design. 

 

 

Figure D-148: Plot of water increment against water column pressure 
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APPENDIX E – Haemodynamics of the CIMS Balloon Pump 
Raw data and statistical results of analysed data are presented here.  

E – 1 Flow Visualisation 

 

60 beats/min 

 

Table E-182: Frame count for Non-Assisted and Assisted at 60 beats/min 

60 bpm 
LED On Period  ∆t 

Valve Open 
Period 

Non-assisted 1 0.50 0.30 0.27 

  2 0.50 0.30 0.30 

  3 0.50 0.30 0.33 

  4 0.50 0.30 0.33 

  5 0.50 0.30 0.30 

  6 0.50 0.30 0.30 

  7 0.50 0.30 0.30 

  8 0.50 0.30 0.30 

  9 0.50 0.30 0.30 

  10 0.50 0.30 0.30 

  Mean  0.50 0.30 0.30 

  SD 0.000 0.000 0.019 

Assisted 1 0.50 0.17 0.43 

  2 0.50 0.23 0.37 

  3 0.50 0.20 0.40 

  4 0.50 0.17 0.43 

  5 0.50 0.27 0.33 

  6 0.50 0.23 0.37 

  7 0.50 0.17 0.40 

  8 0.50 0.17 0.43 

  9 0.50 0.23 0.37 

  10 0.50 0.20 0.37 

  Mean  0.50 0.20 0.39 

  SD 0.000 0.037 0.035 
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Table E-183: Mann-Whitney test result for 60 beats/min experiment 

 HR60_DeltaT HR60_ValveOpeningT 

Mann-Whitney U .000 1.000 

Wilcoxon W 55.000 56.000 

Z -4.065 -3.813 

Asymp. Sig. (2-tailed) .000 .000 

Exact Sig. [2*(1-tailed Sig.)] .000
a
 .000 

 

54 beats/min 
Table E-184: Frame count for 54 beats/min experiment 

  54 bpm 
LED On Period DeltaT 

Valve Open 
Period 

Non-
assisted 1 

0.50 0.33 0.27 

  2 0.50 0.33 0.27 

  3 0.50 0.33 0.30 

  4 0.57 0.33 0.30 

  5 0.57 0.37 0.27 

  6 0.53 0.33 0.30 

  7 0.53 0.33 0.30 

  8 0.53 0.33 0.33 

  9 0.60 0.37 0.30 

  10 0.60 0.37 0.30 

  Mean  0.54 0.34 0.29 

  SD 0.039 0.016 0.021 

Assisted 1 0.57 0.20 0.40 

  2 0.60 0.23 0.40 

  3 0.57 0.27 0.37 

  4 0.57 0.23 0.40 

  5 0.53 0.23 0.40 

  6 0.53 0.27 0.37 

  7 0.57 0.27 0.37 

  8 0.60 0.27 0.40 

  9 0.60 0.27 0.37 

  10 0.53 0.23 0.37 

  Mean  0.57 0.25 0.38 

  SD 0.027 0.023 0.018 
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Table E- 185: Independent t-test for 54 beats/min experiment 

 HR54_DeltaT HR54_ValveOpeningT 

Mann-Whitney U .000 .000 

Wilcoxon W 55.000 55.000 

Z -3.914 -3.897 

Asymp. Sig. (2-tailed) .000 .000 

Exact Sig. [2*(1-tailed Sig.)] .000
a
 .000

a
 

 

APPENDIX F – Student T-test Result 
The Student t-test results of all combinations carried out for this study. The * sign denotes p < 

0.05.  

F-1 TIMING EXPERIMENT 

 

CO DEFLATION 

INFLATION 
G H I J 

1 2 3 1 2 3 1 2 3 1 2 3 

A * * * * * * * * * * * * 

B * * * * * * * * * * * * 

C * * * * * * * * * * * * 

*: p < 0.05 

 

QcorMean DEFLATION 

INFLATION 
G H I J 

1 2 3 1 2 3 1 2 3 1 2 3 

A * * * * * * * * * * * * 

B * * * * * * * * * * * * 

C * * * * * * * * * * * * 

*: p < 0.05 
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AoPmax DEFLATION 

INFLATION 
G H I J 

1 2 3 1 2 3 1 2 3 1 2 3 

A 0.09 0.41 0.39 0.3 0.13 0.08 * * 0.32 * * * 

B * * * * * 0.18 * 0.1 * * * * 

C * 0.15 * * 0.23 0.26 0.12 * * * * * 

*: p < 0.05 

 

AoEDP DEFLATION 

INFLATION 
G H I J 

1 2 3 1 2 3 1 2 3 1 2 3 

A * * * * * * * * 0.27 * * 0.33 

B * * * * * * * * * * 0.24 * 

C * * * * * * * * * * * * 

*: p < 0.05 

F-2 Helium Gas Volume 

 

CO GasVol 

Device Design 
20 mL 25 mL 30 mL 

1 2 3 1 2 3 1 2 3 

Straight Body * * * * * * * * * 

Compliant Body * * * * * * * * * 

*: p < 0.05 

 

QcorMean GasVol 

Device Design 
20 mL 25 mL 30 mL 

1 2 3 1 2 3 1 2 3 

Straight Body * * * * * * * * * 

Compliant Body * * * * * * * * * 

*: p < 0.05 
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AoPmax GasVol 

Device Design 
20 mL 25 mL 30 mL 

1 2 3 1 2 3 1 2 3 

Straight Body 0.32 * 0.32 0.15 * * 0.06 0.12 * 

Compliant Body * * * 0.25 * * 0.14 * 0.09 

*: p < 0.05 

 

AoEDP GasVol 

Device Design 
20 mL 25 mL 30 mL 

1 2 3 1 2 3 1 2 3 

Straight Body * * 0.10 * * * * * * 

Compliant Body * 0.18 0.18 * 0.19 * 0.30 * 0.07 

*: p < 0.05 

F-3 COMPLIANCE 

 

CO Balloon Pump Stiffness 

Arterial 

Compliance 

Straight Body Compliant Body 

1 2 3 1 2 3 

Soft (C2.5) * * * * * * 

Stiff (C1.25) * * * * * * 

*: p < 0.05 

 

QcorMean Balloon Pump Stiffness 

Arterial 

Compliance 

Straight Body Compliant Body 

1 2 3 1 2 3 

Soft (C2.5) * * * * * * 

Stiff (C1.25) * * * * * * 

*: p < 0.05 
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AoPmax Balloon Pump Stiffness 

Arterial 

Compliance 

Straight Body Compliant Body 

1 2 3 1 2 3 

Soft (C2.5) 0.09 * * 0.06 0.11 * 

Stiff (C1.25) * 0.05 * 0.37 0.11 * 

*: p < 0.05 

 

AoEDP Balloon Pump Stiffness 

Arterial 

Compliance 

Straight Body Compliant Body 

1 2 3 1 2 3 

Soft (C2.5) * 0.11 * 0.13 * * 

Stiff (C1.25) * * * * * * 

*: p < 0.05 

F-4 Heart Valve 

 

F-4-1 Mechanical Heart Valve 

 

CO GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) * * * * * * * * * 

Stiff (C1.25) * * * * * * * * * 

*: p < 0.05 

QcorMean GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) * * * * * * * * * 

Stiff (C1.25) * * * * * * * * * 

*: p < 0.05 
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AoPmax GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) 0.22 * * * * * 0.06 * * 

Stiff (C1.25) * * * * * * 0.13 * * 

*: p < 0.05 

 

AoEDP GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) * * * * * * * * * 

Stiff (C1.25) * * * * * * * * * 

*: p < 0.05 

 

F-4-2 BioProsthetic Heart Valve 

 

CO GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) * * * * * * * * * 

Stiff (C1.25) * * * * * * * * * 

*: p < 0.05 

QcorMean GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) * * * * * * * * * 

Stiff (C1.25) * * * * * * * * * 

*: p < 0.05 
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AoPmax GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) 0.31 * * * * * * * * 

Stiff (C1.25) * * * * * * * * * 

*: p < 0.05 

 

AoEDP GasVol 

Device Design 
Early (G) Safe (I) Late (J) 

1 2 3 1 2 3 1 2 3 

Soft (C2.5) * * * * * * * * * 

Stiff (C1.25) * * * * * * * * * 

*: p < 0.05 
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