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An electrostatic model is developed for osmotic flow across a layer consisting of
identical circular cylinders with a fixed surface charge, aligned parallel to each other
so as to form an ordered hexagonal arrangement. The expression of the osmotic
reflection coefficient is derived for spherical solutes with a fixed surface charge
suspended in an electrolyte, based on low-Reynolds-number hydrodynamics and
a continuum, point-charge description of the electric double layers. The repulsive
electrostatic interaction between the surface charges with the same sign on the solute
and the cylinders is shown to increase the exclusion region of solute from the cylinder
surface, which enhances the osmotic flow. Applying the present model to the study of
osmotic flow across the endothelial surface glycocalyx of capillary walls has revealed
that this electrostatic model could account well for the reflection coefficients measured
for charged macromolecules, such as albumin, in the physiological range of charge
density and ion concentration.
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1. Introduction
Osmotic flow is generated between solutions of different concentrations that are

separated by a porous membrane. When only solvent can enter the pores and the
solutes are impermeable, a net volume flux of the solvent, referred to as the osmotic
flow, is realized. If the solutes are only partially excluded from the membrane, then
an osmotic reflection coefficient, σv , must be introduced so as to express the solvent
flux across the leaky membrane. In this case, the thermodynamic principles yield
the following expression for the solvent flux Jv per unit cross-sectional area when
a hydrostatic pressure difference (�p∞) and osmotic pressure difference (�π∞) are
applied across the membrane

Jv = Lp(�p∞ − σv�π∞), (1.1)

where Lp is the hydraulic permeability and ∞ denotes the bulk solution conditions
on both sides of the membrane. The accompanying expression for the solute flux
Js is

Js = ω�π∞ + (1 − σs) c∗Jv, (1.2)
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where ω is the diffusive permeability, σs is the filtration reflection coefficient and c∗

is the average concentration of the solute (Kedem–Katchalsky equation; Kedem &
Katchalsky 1958; Curry 1984; Truskey, Yuan & Katz 2004). The first term on the
right-hand side of (1.1) represents the fluid flux that is proportional to the pressure
difference and the second term represents the osmotic flow. It is to be noted that for
semipermeable membranes, σv = 1 and σv tends to zero as the solute size approaches
zero. If Onsager’s reciprocity postulate is assumed, it can be shown that σs and σv

are equal (Levitt 1975).
In previous studies (Sugihara-Seki 2006; Sugihara-Seki, Akinaga & Itano 2008),

we investigated the transport of solute and solvent across the fibre-matrix layer of
proteoglycans and glycoproteins that is present at the surface of vascular endothelial
cells (Vink & Duling 1996, 2000; Pries, Secomb & Gaehtgens 2000; Weinbaum
et al. 2003; Reitsma et al. 2007; Weinbaum, Tarbell & Damiano 2007). This layer is
referred to as the endothelial surface glycocalyx layer (EGL). By using a simplified
model of the EGL, we analysed the motion of solute and solvent to estimate the
filtration reflection coefficient, σs , as well as the diffusive permeability, ω, for the EGL
based on (1.2). In the simplified model, core proteins in the EGL were assumed to
have a circular cylindrical shape and to be aligned in parallel to form a hexagonal
arrangement, based on recent detailed structural analyses of the EGL (Squire et al.
2001; Weinbaum et al. 2003); see figure 1. We computed the drag force and the
torque exerted on a spherical solute suspended in a fluid flowing between these
periodically aligned cylinders, and the obtained values were used to estimate ω and σs

from thermodynamic and mechanical equilibrium relations. The predicted values of ω

and σs exhibited reasonable agreement with experimental observations (Sugihara-Seki
2006).

Zhang, Curry & Weinbaum (2006) studied osmotic flow through the EGL model
using a method developed by Anderson & Malone (1974) for osmotic flow in
porous membranes. From considerations of classical transport and thermodynamics,
Anderson & Malone (1974) showed that the presence of an exclusion region of
solute near the pore walls produces a radial discontinuity in hydrostatic pressure
and solute concentration, which generates the driving force for the osmotic flow.
Zhang et al. (2006) applied this formulation to the osmotic flow across the EGL
model consisting of hexagonally arranged cylinders. Instead of a rigorous treatment
of the hexagonal geometry of the cylinders, they adopted an approximation in which
the geometry is replaced by an equivalent fluid annulus around each cylinder and
estimated the osmotic reflection coefficient, σv , for the EGL based on (1.1). Despite
the approximate geometry adopted by Zhang et al. (2006), the values obtained for
σv were comparable to the results for σs obtained by Sugihara-Seki (2006), which is
consistent with Onsager’s reciprocal theory.

Since biological molecules are often electrically charged, significant contributions
of electric charge to material transport have been reported for capillaries in
various tissues (Curry 1984). For example, Adamson, Huxley & Curry (1988)
reported that for ribonuclease and α-lactalbumin, which are solutes of similar
size, the permeability of ribonuclease with positive charge was twice that of α-
lactalbumin with negative charge in frog mesenteric capillaries. Vink & Duling (2000)
demonstrated that, for anionic molecules, in addition to size, the electric charge has
a profound effect on the penetration rate into the EGL. Using cultured endothelial
cells, Ueda et al. (2004) showed that the albumin uptake for the endothelial cells
with a neutralized (no charge) EGL was almost twice that of cells with charged
EGL.
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Previously, a simple Donnan-type model was proposed to describe the charge effect
on microvessel permeability (Adamson et al. 1988; Curry, Rutledge & Lenz 1989;
Huxley & Curry 1991; Huxley et al. 1993; Fu, Chen & Chen 2003). From in vivo
measurements of solute-permeability coefficients, Adamson et al. (1988) estimated
the charge density of frog mesenteric capillary to be approximately −10 mEq l−1

by considering the electric partition. Fu et al. (2003) developed an electrodiffusion
model for the EGL and examined the diffusive permeability of positively or negatively
charged macromolecules as a function of charge density in the EGL. Stace & Damiano
(2001) and Damiano & Stace (2002) considered the electrochemical dynamics of
anionic molecular transport within capillaries by modelling the EGL as a continuously
distributed anionic matrix containing fixed-bound negative charges through which a
solution of anionic molecular tracers in blood can diffuse.

In a previous study (Akinaga, Sugihara-Seki & Itano 2008), we examined the
charge effect on the osmotic flow for membranes with circular cylindrical pores
by extending the formulation of osmotic flow developed by Anderson & Malone
(1974). We considered the case in which the surfaces of the solute and the pore walls
are negatively charged, and the solvent is an electrolyte containing small ions. By
using a mean-field theory for the electric field around a solute in a cylindrical pore,
we evaluated the osmotic reflection coefficient, σv , under electrostatic effects. The
repulsive electrostatic interaction between the surface charges was shown to increase
the exclusion region from the pore wall and, consequently, to significantly enhance
the osmotic flow.

In this paper, we apply our electrostatic model for the osmotic flow to the EGL
and examine the effect of surface charges on the osmotic reflection coefficient, σv .
The EGL model in our previous study (Sugihara-Seki 2006) is modified such that
the cylinders and solute have fixed surface charges and the solvent is an electrolyte.
We restrict the analyses to the case of like charges, i.e. repulsive interaction between
surface charges. In this case, the solute is more likely to be excluded from the cylinder
surface due to the repulsive interaction, which may largely affect the values of the
reflection coefficient.

The ions in the electrolyte are assumed to be sufficiently small, so that we adopt
a continuum, point-charge description of the electric double layers. The electrostatic
potential around a solute in the electrolyte is determined by the Debye–Hückel
(DH) equation, which is a linearized form of the Poisson–Boltzmann (PB) equation.
These equations can be derived from the mean-field approximation that ignores
fluctuations in the electrostatic potential, and thus neglects correlations between
ions in the electrolyte. These equations have been subjected to extensive formal and
computational tests, and the validity and limitation of their applicability in various
systems have been investigated (Reiner & Radke 1991). Beyond this limitation,
charge-correlation effects can lead to charge inversion and flocculation in aqueous
solutions containing multivalent counterions (Likos 2001; Levin 2002). In particular,
anomalous behaviours of biopolymers, such as cytoskeleton organization and the
compaction of generic materials in biological systems, may be closely related to these
effects (Levin 2002). However, in this study, we do not include charge correlations
between ions. Polarization effects, e.g. charge-induced dipole interactions, are also
neglected. Furthermore, we include neither electrostatic interactions between solutes
nor their fluid dynamic interactions, considering the dilute limit of zero solute
concentration.

In § 2, we develop an electrostatic model for the osmotic flow across the EGL with
an electric charge and outline the procedures used to obtain the osmotic reflection
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Figure 1. Sketch of the EGL model consisting of hexagonally arranged circular cylinders
of radius rf . The distance between adjacent cylinders is L, and the length of the cylinders
is �. Spherical solutes of radius a are suspended in an electrolyte, which contains small
ions. The surfaces of the solute and the cylinders are electrically charged with densities qs

and qc , respectively. On both sides of the EGL model, there are bulk solutions with solute
concentration cu∞, cd∞ and hydrostatic pressure pu∞, pd∞, respectively.

coefficient. Sections 3 and 4 present the results and discussion, respectively, regarding
the dependence of the osmotic reflection coefficient on the surface charge as well as
the ion concentration of the electrolyte.

2. Formulation and methods
2.1. Endothelial surface glycocalyx layer model

We consider an osmotic flow across a layer consisting of circular cylinders of radius,
rf , that are aligned parallel to each other to form a hexagonal arrangement of length,
L, as shown in figure 1. The cross-section of the geometry is shown in figure 2. The
width of the layer or the axial length of the cylinders, �, is assumed to be large enough
compared to L, so that the end effects on the fluid motion and the electric field can be
neglected. On both sides of the layer, there are two solutions having different solute
concentrations �c∞ = cu∞ − cd∞ and hydrostatic pressures �p∞ = pu∞ − pd∞. The
difference in solute concentrations is equivalent to the difference in osmotic pressure,
�π∞ = πu∞ −πd∞, where πu∞ = cu∞RT and πd∞ = cd∞RT . Here, R is the gas constant
and T is the absolute temperature of the solution that is assumed to be constant.

The solutes are identical rigid spheres of radius a (see figure 1). The surfaces
of the cylinders and the solutes are assumed to have uniformly distributed electric
charges with surface densities of qc and qs , respectively. The solutes are suspended
in an electrolyte. The sizes of the ions in the electrolyte are assumed to be small
when compared to rf and a, so that the ions are regarded as point charges and
the electrolyte is regarded as a continuum. We assume that the suspending fluid is
an incompressible Newtonian fluid with viscosity µ. The solution is assumed to be
sufficiently dilute, so that the interaction between the solutes can be neglected. We
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Figure 2. Cross-section of the hexagonal arrangement of circular cylinders. (a) Unit of the
hexagonal geometry. (b) Typical equivalent triangular region.

also assume that there is no difference in ion concentrations on both sides of the
EGL.

2.2. Expression of the osmotic reflection coefficient σv

We take the x-axis to be along the centreline between two adjacent cylinders, with
the origin at the entrance to the EGL. The y- and z-axes are taken to be in the plane
perpendicular to the cylinder axes, as shown in figures 1 and 2. We denote the fluid
velocity as u = (u, v, w), the pressure as p, the concentration of the solutes as c (or
the osmotic pressure π = cRT ) and the potential for the solute as φ. The potential
φ(x, y, z) is defined relative to the reservoirs on both sides of the EGL, where the
value of the potential is zero. The electric charge density and the electric double layer
potential in the electrolyte are denoted as ρe and ψ , respectively.

For the bulk flow of solution containing solutes and small ions, the Stokes equation
is expressed as follows:

−∇p + µ∇2u − c∇φ − ρe∇ψ = 0, (2.1)

which differs from the expression in Anderson & Malone (1974) by including the
electric body force. Since the cross-section is uniform and the length of the cylinders
is much larger than the typical length in the cross-section, L, we assume that |u| �
|v|, |w|, and u = u(y, z) and φ =φ(y, z). Similarly, since ρe and ψ represent bulk
quantities, we assume that ρe = ρe(y, z) and ψ = ψ(y, z).

Using the half-distance between adjacent cylinders, L/2, we non-dimensionalize
the length, such that x∗ = x/(L/2), y∗ = y/(L/2) and z∗ = z/(L/2). Similarly, we
define a∗ = a/(L/2), r∗

f = rf /(L/2) and �∗ = �/(L/2). We also introduce dimensionless
quantities u∗, p∗ and π∗, using a representative axial velocity V : u∗ = u/V ,
p∗ = p(L/2µV ) and π∗ = π(L/2µV ). The solute potential and the electrostatic
potential are non-dimensionalized as φ∗ = φ/RT and ψ∗ = Fψ/RT , respectively,
where F denotes the Faraday constant.
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Under the above assumptions, we obtain the simplified equation for the axial
velocity in a dimensionless form from (2.1):

−∂p∗

∂x∗ + �2u
∗ = 0, where �2 =

∂2

∂y∗2
+

∂2

∂z∗2
. (2.2)

For the velocity components in the y∗- and z∗-directions, (2.1) yields the following
approximate equations:

∂p∗

∂y∗ + π∗ ∂φ∗

∂y∗ + ρ∗
e

∂ψ∗

∂y∗ = 0,
∂p∗

∂z∗ + π∗ ∂φ∗

∂z∗ + ρ∗
e

∂ψ∗

∂z∗ = 0, (2.3)

where the electric charge ρe is non-dimensionalized appropriately. It is to be noted
that (2.3) represents the mechanical equilibrium in the cross-section, indicating the
generation of pressure gradients in the y∗- and z∗-directions, respectively. If we
further assume thermodynamic equilibrium, we obtain the Boltzmann distribution of
the solutes as follows:

π∗(x∗, y∗, z∗) = π∗
0(x

∗) exp[−(φ∗(y∗, z∗) − φ∗
0)], (2.4)

where φ∗
0 = φ∗(1/

√
3, 0) is the potential at reference point F (see figure 2). The

subscript 0 indicates values at point F. Note that point F is located equidistantly from
three adjacent cylinders.

Substituting (2.4) into (2.3) and integrating the resulting equation yields

p∗(x∗, y∗, z∗) = p∗
0(x

∗) − π∗
0(x

∗){1 − exp[−(φ∗(y∗, z∗) − φ∗
0)]} + g∗(y∗, z∗), (2.5)

where g∗(y∗, z∗) represents the integrated form of the last term on the left-hand
side of (2.3). For a univalent–univalent electrolyte, using the PB equation, we obtain
g∗(y∗, z∗) = β(coshψ∗(y∗, z∗) − cosh ψ∗

0 ), where β = C∞LRT/(µV ) and C∞ represents
the ion concentration in the reservoirs on both sides of the EGL. As shown below,
the term g∗ does not contribute to the osmotic flow, and therefore is not considered
hereinafter.

Equation (2.5) illustrates the coupling between osmotic and hydrostatic pressures,
which generates the driving force for the bulk flow. Then, from (2.2), we obtain

�2u
∗ = p∗′

0 − π∗′
0 + π∗′

0 exp[−(φ∗(y∗, z∗) − φ∗
0)], (2.6)

where the prime represents d/dx∗. Since this equation is linear in u∗, its solution can
be expressed in the form

u∗(y∗, z∗) = −p∗′
0 u∗

1 + π∗′
0 (u∗

1 − u∗
2), (2.7)

where u∗
1(y

∗, z∗) and u∗
2(y

∗, z∗) are the solutions of the following equations:

�2u
∗
1 = −1, �2u

∗
2 = − exp[−(φ∗(y∗, z∗) − φ∗

0)]. (2.8a,b)

We apply the no-slip condition on the surface of the cylinders for u∗
1 and u∗

2. The
second term on the right-hand side of (2.7) represents the osmotic flow that is
proportional to the osmotic pressure gradient π∗′

0 . From (2.8a) and (2.8b), u∗
1 is the

flow due to a constant pressure gradient along the cylinder axis, while u∗
2 is caused by

the solute–wall interaction φ∗(y∗, z∗), which generates variation in the driving force in
the cross-section. With regard to the osmotic flow, u∗

1 – u∗
2, note that the first term, u∗

1,
is the flow in the direction from the dilute to the concentrated side of EGL, whereas
the second term, u∗

2, is the flow in the opposite direction.
For the range of (y∗, z∗) in (2.8), we confine ourselves to region OBDF shown in

figure 2(a), because the hexagonal cross-section can be divided into equal triangular
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regions, such as OCF (see figure 2b). The area of region OBDF is A′ = 1/2
√

3 −
πr∗2

f /12. By integrating (2.7) over region OBDF, we obtain the flux, U ∗, of the solution
as

U ∗ = −p∗′
0 U ∗

1 + π∗′
0 (U ∗

1 − U ∗
2 ), (2.9)

where

U ∗
1 =

1

A′

∫
A′

u∗
1dS, U ∗

2 =
1

A′

∫
A′

u∗
2 dS. (2.10a,b)

Note that U ∗ is the mean velocity averaged over the cross-sectional area A′, and,
according to the continuity condition, its value is constant independent of x∗.
Therefore, by neglecting the end effect, one can integrate (2.9) along the x∗-axis
from the entrance (x∗ = 0) to the exit (x∗ = �∗) to obtain

U ∗ =

(
U ∗

1

�∗

){
(p∗

0(0) − p∗
0(�

∗)) − (π∗
0(0) − π∗

0(�
∗))

(
1 − U ∗

2

U ∗
1

)}
. (2.11)

The Boltzmann and Gibbs–Duhem relations are applied at the cylinder ends to
obtain

p∗
0 (0) − p∗

0

(
�∗) = �p∗

∞ − �π∗
∞
(
1 − e−φ∗

0
)
, (2.12a)

π∗
0 (0) − π∗

0

(
�∗) = �π∗

∞e−φ∗
0 , (2.12b)

where �p∗
∞ and �π∗

∞ are dimensionless pressure difference and osmotic pressure
difference, respectively, in the bulk fluid phases across the EGL (see figure 1). Equation
(2.11) is finally reduced to the dimensionless form of (1.1),

J ∗
v = αU ∗ = α

(
U ∗

1

�∗

){
�p∗

∞ − �π∗
∞

[
1 −

(
U ∗

2

U ∗
1

)
e−φ∗

0

]}
, (2.13)

where α is the void fraction of the EGL: α = A′/A. Here, A is the area of triangular
region OCF in figure 2, which is given in dimensionless form by A = 1/2

√
3. The

corresponding dimensional form is

Jv = Lp (�p∞ − σv�π∞) (2.14)

and

Lp = α
U ∗

1

µ�

(
L

2

)2

, σv = 1 − U ∗
2

U ∗
1

exp(−φ∗
0), (2.15a,b)

where U ∗
1 and U ∗

2 are obtained from (2.8) and (2.10). If the cross-section of the
geometry is circular, rather than hexagonal, (2.8a) indicates that velocity u∗

1 coincides
with a Poiseuille flow driven by a unit pressure gradient. In this case, we obtain
U ∗

1 = 1/8 and Lp = α(D/2)2/8µ�, where D represents the diameter of the circular
cross-section. For the hexagonal cross-section, an analytical solution for (2.8a) was
obtained by Sparrow & Loeffler Jr (1959), as shown in figure 5(a).

Equation (2.8b) does not have analytical solutions. In general, we need to solve
(2.8b) numerically, for given potentials φ∗. If the electric charge is absent, the steric
condition yields φ∗(y∗, z∗) = 0 in region OAEF and φ∗(y∗, z∗) = ∞ in region ABDE in
figure 2. In this case, σv is a function of only geometric parameters. In the presence of
electrostatic effects, σv also depends on the surface charges and the ion concentration
in the electrolyte. We must first evaluate the solute potential energy φ∗ under the
electrostatic interaction.
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2.3. Interaction energy

Since we consider a dilute solution and neglect the mutual interaction between solutes,
we treat a single solute present in the hexagonal cross-section, the centre of which
is located at (y∗, z∗) = (c∗

y, c
∗
z ). From symmetry considerations, the range of (c∗

y, c∗
z )

can be confined to the hatched region of OAEF in figure 2(b). In § 2.3, we show
how to evaluate the solute potential energy φ∗, from the electrostatic interaction
energy between the solute surface charge (density qs) and the cylinder surface charge
(density qc).

According to the mean-field theory, the electrostatic potential Ψ around a solute in
the electrolyte is determined by Poisson’s equation, which is expressed in a dimensional
form as follows:

∇2Ψ = −F

ε

∑
i

ziCi, (2.16)

where Ci represents the concentration of electrolyte species i, zi is its valence and ε is
the solvent dielectric permittivity (Smith & Deen 1980, 1983; Probstein 2003). The ion
concentrations on both sides of the EGL are assumed to be the same, and the bulk
concentration for species i is expressed as C∞i . In the EGL, we assume equilibrium
of ions, so that the Boltzmann distribution is realized:

Ci = C∞i exp

[
−FziΨ

RT

]
. (2.17)

The neutrality condition requires ∑
i

ziC∞i = 0. (2.18)

In this study, for simplicity we consider a univalent–univalent electrolyte of the bulk
ion concentration, C∞.

The electrostatic potential Ψ around a solute, the surface charge densities on the
cylinder, qc, and the solute, qs , and the electrostatic free energy E are expressed
in dimensionless form as Ψ ∗ = FΨ/RT , q∗

c = qcLF/2εRT , q∗
s = qsLF/2εRT and

E∗ = 2E(F/RT )2/εL, respectively. For a univalent–univalent electrolyte, the Debye
length is defined as λD = [εRT/2F 2C∞]1/2. Note that λD ≈ 1 nm for a 0.1 M aqueous
solution at T =310 K. By using the Debye length, we introduce another dimensionless
parameter τ = (L/2)/λD . In terms of these dimensionless quantities, we obtain a
dimensionless form of the PB equation by combining (2.16) and (2.17):

∇2Ψ ∗ = τ 2 sinhΨ ∗. (2.19)

If |Ψ ∗| 	 1, then (2.19) can be approximated as

∇2Ψ ∗ = τ 2Ψ ∗. (2.20)

This approximation is termed the DH approximation, and (2.20) is referred to as the
DH equation, which we adopt in this study.

In general, the dielectric constants of macromolecules and fibres are much smaller
than the dielectric constant of water. Thus, we assume that the dielectric constants
of the cylinders and solutes are negligible compared to ε. In this case, the boundary
conditions for (2.20) become

∂nΨ
∗ = − q∗

c on the cylinder surface, (2.21)

∂nΨ
∗ = − q∗

s on the solute surface, (2.22)
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where ∂n represents the derivative normal to the surface in the electrolyte region.
Smith & Deen (1980) showed that, for porous membranes, the use of either vanishing
dielectric constants or a representative finite value (=0.05 × ε) for a solid material
has little effect on the electrostatic potential in the water-filled pore, except for τ < 2.

By considering the charging process, Verwey & Overbeek (1948) showed that the
electrostatic free energy for a solid surface ∂V at constant charge density q∗ may be
calculated as

E∗ =

∫
∂V

dS

∫ q∗

0

Ψ ∗dq∗. (2.23)

Linearization of the PB equation (DH approximation) ensures that the electrostatic
potential is a linear function of the charge density. Therefore, (2.23) is reduced to

E∗ =
q∗

2

∫
∂V

Ψ ∗(q∗) dS. (2.24)

In this study, it is not straightforward to consider the charging process. However,
Reiner & Radke (1990) showed that, in the DH approximation, the electrostatic free
energy obtained by the variational method coincides with (2.24) for a fixed charge
density. Therefore, in this study, we adopt (2.24) to calculate the electrostatic free
energy.

In terms of the electrostatic energy, E∗, the interaction energy or the excess free
energy, between the solute and the cylinders can be expressed as follows:

φ∗ = E∗
CS − E∗

C − E∗
S , (2.25)

where subscript CS designates the case in which both the cylinder and solute surfaces
are electrically charged, subscript C denotes the case in which only the charged
cylinders are present and subscript S denotes the case in which only the charged solute
is present (Smith & Deen 1980). For given positions of the solute centre (c∗

y, c
∗
z ), we

have computed the electrostatic potential and have estimated the electrostatic energy
for the three cases E∗

CS , E∗
C and E∗

S , so as to obtain the solute potential φ∗(c∗
y, c

∗
z ).

For the parameter values, we set L = 20 nm and rf = 6 nm (i.e. r∗
f = 0.6) (Squire

et al. 2001), and ε = 6.57×10−10 C2 (N · m2)−1, corresponding to aqueous solutions at
T = 310 K. At L = 20 nm, the dimensionless charge density q∗

s = q∗
c = 1 corresponds

to qs = qc = 1.75×10−3 Cm−2. As discussed below, this value is comparable to charge
densities estimated for the EGL and for albumin with a = 3.6 nm and a net charge
of −17. The ion concentrations C∞ = 0.01, 0.02, 0.04, 0.1 and 0.15 M correspond to
τ = 3.32, 4.69, 6.63, 10.49 and 12.84, respectively.

2.4. Numerical procedures

Based on the formulation presented in § 2.3, the value of σv is obtained as a function
of a∗, q∗

c , q∗
s and τ by the following three steps.

(a) Evaluation of Ψ ∗ using (2.20) through (2.22) for given a∗, q∗
c , q∗

s and τ for
various positions of the solute centre.

(b) Evaluation of φ∗ using (2.24) and (2.25).
(c) Evaluation of σv using (2.8), (2.10) and (2.15b).
The details in each step are shown elsewhere (Akinaga et al. 2008). Briefly, in step

(a), (2.20) was solved subject to the boundary conditions (2.21) and (2.22) using a
finite-element spectral method. We also applied the condition of ∂Ψ ∗/∂x∗ = 0 at
the upstream and downstream cross-sections located at ±4 from the solute centre
along the x∗-axis and adopted periodic conditions in the y∗- and z∗-directions.



Effects of electric charge on osmotic flow 183

The computational domain was divided into a number of elements having curved
hexahedral shapes, within which the electrostatic potential was approximated by
interpolation functions composed of Chebyshev polynomials of the eighth degree in
the local coordinates. Special attention was given to the construction of elements
near the boundaries of the cylinder and the solute surface, especially in the case of
small Debye lengths. The numerical integrations in the finite-element scheme were
performed by the Gauss–Legendre formulae of the 16th degree along each local
coordinate axis. The numerical error was assessed by changing the truncation levels
of the interpolation functions, similar to the method used by Akinaga et al. (2008).

In step (b), we also adopted the Gauss–Legendre formulae of the 16th degree in
the numerical integration that appeared in (2.24). In step (c), we solved (2.8) using a
finite-element spectral scheme similar to that in step (a), except for the fact that (2.8)
is two-dimensional.

In the computation of the electrostatic potential, the solute centre (c∗
y, c

∗
z ) should

cover the hatched region OAEF shown in figure 2(b). However, we have analysed only
the cases in which the solute centre is located on lines OG and OA. Since line FG is
equivalent to line FE, and e−φ∗ → 0 along the arc AE due to the steric condition, we
obtained the values along the entire circumference of region OAEF. By using these
values, we interpolated e−φ∗

inside region OAEF, as described in our previous paper
(Sugihara-Seki 2006). When the solute centre is located on line OG, the position can
be expressed as (y∗, z∗) = (c∗

y, 0) with 0 � c∗
y <

√
3 − r∗

f − a∗, and on line OA as
(y∗, z∗) = (0, c∗

z ), with 0 � c∗
z < 1−r∗

f −a∗. The relative error of exp[−(φ∗(y∗, z∗)−φ∗
0)]

due to this interpolation was estimated to be at most a few per cent.
In this study, we limit our analysis to the case of q∗

c , q∗
s � 0. For the case of q∗

c ,
q∗

s � 0, the values of E∗ and φ∗ are the same as those for the case in which −q∗
c , −q∗

s ,
although the sign of Ψ ∗ is changed. Accordingly, the results of σv for q∗

c and q∗
s are

the same as those for the case in which −q∗
c and −q∗

s . We do not consider the case
of q∗

c · q∗
s < 0, i.e. attractive interaction, because the assumption of a dilute solution

used in this study may not be valid near the cylinder surface (Akinaga et al. 2008).

3. Results
As a representative example of our numerical results, a cross-sectional view of the

electrostatic potential Ψ ∗ is shown in figure 3, for the case in which the solute centre
is placed at (y∗, z∗) = (0.4, 0) with a∗ = 0.3, q∗

c = q∗
s = −5.7 (qc = qs = −0.01 C m−2)

and τ = 10.49. Steep gradients of the electrostatic potential are observed near the
cylinder and solute surfaces, and, apart from these boundaries, there are regions of
gentle gradients of the potential. A decrease in τ ( = L/2λD) can be shown to increase
the region of steep gradients of Ψ ∗ near the boundaries, which may be anticipated
because the Debye length represents a characteristic distance of the charge effect from
the surface charge or a characteristic double-layer thickness. Thus, the decrease in τ

(increase in λD) implies an increase in electrostatic interaction between fixed surface
charges.

Figure 4(a) shows the profiles of the Boltzmann factor, exp[−(φ∗(y∗, z∗) − φ∗
0)],

along the y∗- and z∗-axes for a∗ = 0.3, q∗
c = q∗

s = −5.7, and for various values of
τ . In the absence of the surface charge (q∗

c = q∗
s = 0), the steric condition leads to

exp[−(φ∗(y∗, z∗) − φ0)] = 1 for 0 � y∗ <
√

3 − a∗ − r∗
f ≈ 0.832 along the y∗-axis or

0 � z∗ < 1−a∗ −r∗
f =0.1 along the z∗-axis, and exp[−(φ∗(y∗, z∗)−φ0)] = 0 in the other

ranges of y∗ and z∗. These profiles are plotted by thin dotted lines in figure 4(a). From
the definition of φ∗

0 , exp[−(φ∗(y∗, z∗) − φ∗
0)] is unity at (y∗, z∗) = (1/

√
3, 0) or at point
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Figure 3. Cross-sectional view of the contours of the electrostatic potential Ψ ∗ at a plane
containing the solute centre located at (y∗, z∗) = (0.4, 0) with a∗ = 0.3, q∗

c = q∗
s = −5.7 and

τ = 10.49.

F in figure 2. Figure 4(a) indicates that, at this point, the Boltzmann factor reaches
its maximum or the solute potential, φ∗(y∗, z∗), reaches its minimum, which may be
evident from the symmetry considerations. As shown in figure 4(a), the Boltzmann
factor becomes minimum at the origin along the y∗-axis between the origin and point
F. This minimum value, exp[−(φ∗(0, 0) − φ∗

0)], increases with increasing τ up to 1 in
the limit of τ approaching infinity.

In figure 4(b), the curves of exp(−φ∗
0) are plotted for a∗ = 0.1, 0.2 and 0.3 and

q∗
c = q∗

s = −5.7. It is seen that exp(−φ∗
0) decreases or φ∗

0 increases, with decreasing
τ and/or increasing a∗, which results from the enhancement of the electrostatic
interaction between the solute and the cylinders.

Figure 5(a) shows the velocity profiles of u∗
2 along the y∗- and z∗-axes for a∗ = 0.3,

q∗
c = q∗

s = −5.7, and for various values of τ . For comparison, the corresponding curves
in the absence of surface charge (q∗

c = q∗
s = 0) are plotted by thin dotted lines. Further,

the velocity profiles of u∗
1 are represented by thin solid lines, which are coincident with

the solution given by Sparrow & Loeffler Jr (1959). As expected, the velocity profiles
u∗

1 and u∗
2 achieve the maximum at (y∗, z∗) = (1/

√
3, 0) (point F). Equation (2.8b)

indicates that the Boltzmann factor, exp[−(φ∗(y∗, z∗) − φ∗
0)], drives the flow of u∗

2.
As shown in figure 4(a), a decrease in τ diminishes the driving force for u∗

2, which
results in a decrease in u∗

2. This trend implies an increase in the osmotic flow, because
the osmotic flow rate is proportional to U ∗

1 − U ∗
2 exp(−φ∗

0), where U ∗
1 and U ∗

2 are the
flow rates of u∗

1 and u∗
2, respectively (see (2.13)). In other words, an increase in the

electrostatic interaction with decreasing τ enhances the osmotic flow for fixed surface
charges.

In order to better understand the velocity field, the contours of u∗
2 at a plane

perpendicular to the x∗-axis are plotted in figure 5(b) for a∗ = 0.3, q∗
c = q∗

s = −5.7 and
τ = 10.39. The velocity profiles along the y∗- and z∗-axes in figure 5(b) correspond
to the dotted curves in figure 5(a). Figure 5(b) indicates that the velocity contours
around each cylinder are nearly circular, except in the region near point F (cross
symbols in figure 5b).
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Figure 4. (a) Profiles of the Boltzmann factor, exp[−(φ∗(y∗, z∗) − φ∗
0 )], along the y∗- and

z∗-axes for a∗ = 0.3, q∗
c = q∗

s = −5.7 and τ = 3.32, 4.69, 6.63, 10.49 and 12.84. The thin dotted
lines represent the corresponding lines in the absence of the surface charge (q∗

c = q∗
s = 0).

(b) exp(−φ∗
0) as a function of τ at q∗

c = q∗
s = −5.7, where φ∗

0 represents the solute potential
at point F (see figure 2).

The obtained values of the reflection coefficient σv are plotted in figure 6 as a
function of the solute size, a∗, for q∗

s = −5.7 and for three different values of q∗
c

(= −0.51, −5.7 and −15.2) for various values of τ . The values of q∗
c are chosen for

later discussion in § 4. For reference, the reflection coefficient in the absence of the
surface charge (q∗

c = q∗
s = 0) is plotted by a thin dotted line. The corresponding curve,

which was expressed in a simple analytical form by Zhang et al. (2006), is shown
by a thin solid line. These two curves agree closely with each other. Figure 6 shows
that the curve given by the thin dotted line is lower than the other curves, indicating
that the repulsive electrostatic interaction between the solute and cylinder surface
charges increases the reflection coefficient σv . Figure 6 indicates a monotonic increase
in σv with decreasing τ or increasing Debye length for constant a∗. This tendency is
intuitive because an increase in Debye length is qualitatively similar to an increase in
the solute radius. Analogously, an elevation in the surface charge density strengthens
the electrostatic interaction, thereby augmenting σv .

Figure 7(a–c) illustrates the dependence of σv on the surface charge densities, q∗
s

and q∗
c , for a∗ = 0.1, 0.2 and 0.3 at τ = 3.32 and 10.49. These figures indicate that the

electrostatic effect becomes more significant for larger surface charges, as mentioned
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Figure 5. (a) Velocity profiles of u∗
2 along the y∗- and z∗-axes for a∗ = 0.3, q∗

c = q∗
s = −5.7 and

τ = 3.32 (dash-double-dotted lines), 4.69 (dash-dotted lines), 6.63 (dashed lines), 10.49 (dotted
lines) and 12.84 (solid lines). The corresponding curves in the absence of the surface charge
(q∗

c = q∗
s = 0) are plotted by thin dotted lines. The velocity profiles of u∗

1 are plotted by thin
solid lines. (b) Contours of velocity u∗

2 at a plane perpendicular to the x∗-axis for a∗ = 0.3,
q∗

c = q∗
s = −5.7 and τ = 10.49. The points corresponding to point F are indicated by cross

symbols.

above. In addition, it is found that, at τ = 10.49, the σv values increase approximately
linearly with increasing |q∗

c | in the range examined, whereas they steeply increase and
then gradually approach 1 at τ = 3.32. These trends are also observed when |q∗

s |,
instead of |q∗

c |, is increased at constant q∗
c (not shown). Comparison of the variations

of σv with respect to q∗
s (at constant q∗

c ) and with respect to q∗
c (at constant q∗

s ) reveals
that the influences of q∗

s and q∗
c on σv are comparable.

4. Discussion
An electrostatic model was developed to predict the effects of surface charge on the

osmotic reflection coefficient of charged spherical solute across the EGL, based on the
combination of low-Reynolds-number hydrodynamics and a continuum description
of the electric double layers.
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Figure 6. Reflection coefficient σv at q∗
s = −5.7 and q∗

c = −0.51 (dash-dotted lines), −5.7
(dashed lines) and −15.2 (solid lines) for τ = 3.32 (open circle symbols), 6.63 (triangle symbols),
10.49 (square symbols) and 12.84 (plus symbols). For reference, σv for the steric condition
alone is plotted by a thin dotted line. The corresponding curve given in Zhang et al. (2006,
equation 28) is plotted by a thin solid line.

We have tried to determine the parameter values, q∗
c and q∗

s , under physiological
conditions. Using a Donnan-type model for electrostatic partitioning, the charge
density in the microvessel wall of the frog mesentery was estimated by Adamson et al.
(1988) to be approximately −11.4 mEq l−1 and by Curry et al. (1989) to be in the
range from −11 to −28 mEq l−1. Based on the experimental data for frog mesenteric
capillaries and their electrodiffusion model for the EGL, Fu et al. (2003) estimated the
charge density of EGL to be −25 to −35 mEq l−1. By comparing the EGL recovery
time obtained by their mechano-electrochemical model of the EGL with experimental
observation, Damiano & Stace (2002) estimated the charge density of the EGL to
be approximately −1 mEq l−1. If we assume in the present model that all of the
electric charge in the EGL is distributed uniformly on the surface of the cylinders,
then the surface charge density, qc, on the cylinder surface can be expressed in terms
of the volumetric charge density, ρ, as qc =

√
3ρL2/(4πrf ). This assumption leads to

the following: the charge densities of ρ = −1, −11.3 and −30 mEq l−1 in the EGL
correspond to qc = −0.89 × 10−3 Cm−2 (q∗

c = −0.51), −1.00 × 10−2 Cm−2 (q∗
c = −5.7)

and −2.66 × 10−2 Cm−2 (q∗
c = −15.2), respectively, at L =20 nm and rf = 6 nm. In

figure 6, the σv values obtained for these q∗
c are plotted by dash-dotted lines, dashed

lines and solid lines, respectively.
With regard to the charge density on the solute qs , we assumed that all of the electric

charge in the solute is distributed uniformly over the spherical surface. For example,
qs = −1.7 × 10−2 Cm−2 (q∗

s = −9.5) for albumin with a =3.6 nm and net charge = −17
and qs = −3.4 × 10−2 Cm−2 (q∗

s = −19.6) for α-lactalbumin with a = 2.0 nm and net
charge = −11.

By using these charge densities, we compare the values obtained for σv at τ =12.84
(C∞ =0.15 M) with the experimental measurements. The experimental value of σv for
albumin (Stokes radius = 3.6 nm) is typically > 0.9 (Michel & Curry 1999). Figure 6
shows that σv = 0.662 for a∗ = 0.36 (a =3.6 nm) without charge effects (q∗

c = q∗
s = 0),

which is far smaller than the measured values. In the charged case of q∗
s = −5.7

at a∗ =0.36, we obtain σv = 0.690, 0.797 and 0.902 for q∗
c = −0.51 (ρ = −1 mEq l−1),

−5.7 (ρ = −11.3 mEq l−1) and −15.2 (ρ = −30 mEq l−1), respectively. In order to
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Figure 7. Reflection coefficient σv as a function of −q∗
c for various values of q∗

s at (a) a∗ = 0.1,
(b) a∗ = 0.2 and (c) a∗ = 0.3. In each part, the dotted lines represent the case of q∗

s = 0, the
dash-dotted lines represent the case of q∗

s = −1.4, the dashed lines represent the case of
q∗

s = −2.9, the solid lines represent the case of q∗
s = −5.7 and the dash-double-dotted lines

represent the case of q∗
s = −11.4. The thick lines denote the case of τ =10.49 and the thin lines

denote the case of τ =3.32.

achieve a more precise comparison, we computed the case in which q∗
s = −9.5 with

the other parameters unchanged, and the results are summarized in table 1. Although
σv for q∗

c = −0.51 appears low compared to the experimental measurements, the
other two cases, in which q∗

c = −5.7 and −15.2, provide a better prediction of
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a∗ = 0.2
a∗ = 0.36

q∗
s −9.5 0 −5.7 −19.6

q∗
c

0 0.699 0.216 0.219 0.253
−0.51 0.718 0.216 0.225 0.268
−5.7 0.849 0.221 0.278 0.394

−15.2 0.942 0.247 0.364 0.540

Experiments >0.9a 0.21b 0.29†b 0.35c

0.34–0.69d

aSerum albumin (Michel & Curry 1999), bmyoglobin (Michel & Turner 1981),
cα-lactalbumin (Huxley et al. 1987), dα-lactalbumin (Huxley et al. 1993). †q∗

s :
unknown.

Table 1. Reflection coefficient σv at τ = 12.84.

σv for albumin. Another comparison with the experimental measurements may be
possible for myoglobin (Stokes radius = 1.9 nm). The osmotic reflection coefficient,
σv , measured for anionized myoglobin has been reported to be 0.29, whereas σv for
neutral myoglobin has been reported to be 0.21 (Michel & Turner 1981). As shown
in table 1, the predicted values of σv for the uncharged solute (q∗

s = 0) at a∗ = 0.2 are
close to 0.21, regardless of q∗

c . For charged solute with q∗
s = −5.7, the values of σv are

found to increase sufficiently to account for the experimental observation for the cases
in which q∗

c = −5.7 and −15.2, although the charge density of anionized myoglobin is
not known. The following comparison is for α-lactalbumin (Stokes radius = 2.0 nm).
As shown in table 1, the values of σv for q∗

c = −5.7 and −15.2 are comparable to the
measured σv in frog mesenteric capillaries, which is 0.35 (Huxley, Curry & Adamson
1987) and 0.34 � 0.69 (Huxley et al. 1993). In all of the cases considered, the present
analyses performed by taking into account the electrostatic interaction provide a much
better description of σv , as compared to the analyses performed without considering
charge effects. In particular, in the cases of q∗

c = −5.7 or −15.2, i.e. the charge density

ρ ≈ −10 or −30 mEq l−1 in the EGL, the predicted values of σv appear to show good
agreement with the experimental measurements.

This study is based on a continuum description of the electric double layer, in
which ions were assumed to be sufficiently small that the electrolyte can be regarded
as a continuum and the electric field was determined on the basis of the mean-field
theory (Verwey & Overbeek 1948; Probstein 2003). However, the ions are of finite
size, and this deficiency may be corrected, to a certain extent, by considering explicitly
the formation of Stern layers near the surfaces (Probstein 2003). As noted in § 1,
recent studies on charged biomaterials have reported anomalous behaviours caused
by charge correlation effects, which the mean-field theory fails to describe. Although
we cannot deny the possibility that charge correlations may play a role in the solute
behaviour in the EGL, we have presented the current model as the simplest and
most fundamental model to explore charge effects on the osmotic flow across the
EGL.

In general, the osmotic flow across a membrane with charged pores creates
convection of counterions, which generates an electric current along the pore. If
the zero-current condition is imposed, a potential gradient (streaming potential)
must develop such that the total current due to ion migration balances that due to



190 M. Sugihara-Seki, T. Akinaga and T. Itano

convection. Quite recently, Bhalla & Deen (2009) investigated a similar problem to that
investigated by Akinaga et al. (2008), including the streaming potential, and showed
that the streaming potential has little effect on the osmotic reflection coefficients, σv ,
for membranes with circular cylindrical pores. We found that the values they obtained
for σv exhibited excellent agreement with the corresponding values of Akinaga et al.
(2008). Thus, we would not expect the present results to be changed markedly if they
are applied to the cases in which the streaming potential should be included. Bhalla
& Deen (2009) also examined the difference between the solutions of the PB equation
and the DH equation, and concluded that the DH approximation provides σv with
sufficient accuracy, even in the cases of rather high surface charge densities and/or
large Debye lengths. We also confirmed this conclusion for the same geometry, by
comparing the results obtained from the PB equation in Akinaga et al. (2008) and
those obtained from the DH equation. Therefore, in this study, we adopted the DH
approximation. Under this approximation, the analysis is much easier compared to
that for the PB equation, and the electrostatic free energy is well defined. It remains
for future studies to verify the validity of applying the DH equation to the present
problem, especially in the case of high surface charge densities.

The endothelial surface glycocalyx is composed of a wide variety of membrane-
bound macromolecules, including glycoproteins bearing acidic oligosaccharides with
terminal sialic acids and proteoglycans with their associated glycosasminoglycan side
chains. The polyanionic nature of these constituents imparts a net negative charge.
These macromolecules form a network in which soluble molecules, either plasma- or
endothelium-derived, are incorporated. This layer is further extended in plasma by
association with proteins and other plasma components to form an EGL. Excellent
reviews of the compositions and functions of the EGL were recently provided (Pries
et al. 2000; Weinbaum et al. 2003, 2007; Reitsma et al. 2007).

Through a detailed structural analysis using computed autocorrelation functions
and Fourier transforms of electron micrograph images, Squire et al. (2001) indicated
the quasi-periodic structure of the EGL. The EGL is a three-dimensional fibrous
network with focal scattering centres of 10–12 nm in diameter with a characteristic
spacing of 20 nm in both parallel and perpendicular directions to the endothelial
surface. Based on these findings, they proposed an ultrastructural model for the EGL,
where clusters of fibrous strands of 10–12 nm in diameter are projected normally to
the endothelial surface to form a regular lattice with a spacing of 20 nm. This basic
ultrastructural model was simplified to the idealized mathematical model by replacing
the core protein strands with circular cylinders arranged in an ordered hexagonal
fashion (see figure 1), and this idealized model was used to examine various properties
of the EGL, including its permeability (Weinbaum et al. 2003; Sugihara-Seki 2006;
Zhang et al. 2006).

In this study, we adopted this idealized model as an initial attempt to examine the
charge effect on the osmotic flow across the EGL, by assuming that the electric charge
is distributed uniformly on the surfaces of the cylinder and the solute. The charge
distributions were assumed to be fixed, so that their distortions or rearrangements
possibly induced by the electrostatic interaction were not included. We also neglected
detailed structures in the EGL, its flexible property, as well as the effects of adsorbed
plasma proteins (Vink & Duling 1996, 2000; Pries et al. 2000; Stace & Damiano
2001; Damiano & Stace 2002; Weinbaum et al. 2003, 2007; Reitsma et al. 2007).
Additional studies considering these effects are necessary in order to arrive at a more
comprehensive understanding of the charge effect on the osmotic flow across the
EGL.
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5. Conclusions
We have developed an electrostatic model for osmotic flow across a layer consisting

of hexagonally ordered circular cylinders, and the results are applied to the osmotic
reflection coefficients of charged macromolecules across the EGL. Comparison with
previous estimates in the absence of electric effects reveals that our model provides
an improved description of the reflection coefficients and accounts well for the
experimentally obtained values for charged macromolecules, such as serum albumin.

This research has been supported in part by the Grant-in-Aid for Scientific Research
(B) (No. 19360090) from JSPS and the Special Research Fund, Kansai University.
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