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Abstract

This thesis presents an investigation, of synchronisatiwhcausality, motivated by problems in computa-
tional neuroscience. The thesis addresses both thedmrtidgractical signal processing issues regarding
the estimation of interdependence from a set of multivariitta generated by a complex underlying dy-
namical system.

This topic is driven by a series of problems in neurosciemtéch represents the principal background
motive behind the material in this work. The underlying systis the human brain and the generative
process of the data is based on modern electromagneticimaging methods . In this thesis, the underly-
ing functional of the brain mechanisms are derived from #eent mathematical formalism of dynamical
systems in complex networks. This is justified principallytbe grounds of the complex hierarchical and
multiscale nature of the brain and it offers new methods af\asis to model its emergent phenomena. A
fundamental approach to study the neural activity is tostigate the connectivity pattern developed by the
brain’s complex network. Three types of connectivity ar@amant to study: 1) anatomical connectivity
refering to the physical links forming the topology of thaior network; 2) effective connectivity concern-
ing with the way the neural elements communicate with ealslraising the brain’s anatomical structure,
through phenomena of synchronisation and informatiorstean3) functional connectivity, presenting an
epistemic concept which alludes to the interdependeneedeet data measured from the brain network.

The main contribution of this thesis is to present, apply disgtuss novel algorithms of functional
connectivities, which are designed to extract differemc#iic aspects of interaction between the underly-
ing generators of the data. Firstly, a univariate statistideveloped to allow for indirect assessment of
synchronisation in the local network from a single time agri This approach is useful in inferring the
coupling as in a local cortical area as observed by a singsurement electrode. Secondly, different ex-
isting methods of phase synchronisation are considered tine perspective of experimental data analysis
and inference of coupling from observed data. These methmsdesigned to address the estimation of
medium to long range connectivity and their differencespamicularly relevant in the context of volume
conduction, that is known to produce spurious detectioredahectivity. Finally, an asymmetric temporal
metric is introduced in order to detect the direction of tbaming between different regions of the brain.
The method developed in this thesis is based on a machirmarigagxtensions of the well known concept
of Granger causality.

The thesis discussion is developed alongside examplesntfiesyc and experimental real data. The
synthetic data are simulations of complex dynamical systeith the intention to mimic the behaviour of
simple cortical neural assemblies. They are helpful tottestechniques developed in this thesis. The real
datasets are provided to illustrate the problem of braimectivity in the case of important neurological
disorders such as Epilepsy and Parkinson’s disease. THedsebf functional connectivity in this thesis
are applied to intracranial EEG recordings in order to extf@atures, which characterize underlying spa-
tiotemporal dynamics before during and after an epilepizige and predict seizure location and onset
prior to conventional electrographic signs. The methogdyplis also applied to a MEG dataset containing
healthy, Parkinson’s and dementia subjects with the scbdestinguishing patterns of pathological from

physiological connectivity.
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Introduction

This thesis addresses the general probleraxtfacting spatio-temporal information of interdependen
within an underlying system from a set of its observatiortsis estimation task has become an important
part of the general field of multivariate data analysis whagplications are widespread in many mod-
ern social, engineering and scientific fields. While the rnéthdeveloped in this work can be generally
used in many of the previous fields, this thesis focuses, iiticodar, to questions posed in neuroimaging:
the underlying system is the human brain in which neuralvétgtis measured with the help of the latest
electromagnetic (EM) imaging techniques [7; 106; 64]: eéfeencephalography (EEG) and magnetoen-
cephalography (MEG)

In the neuroimaging field, the most recent imaging techriekogre able to sample the underlying brain

substrate with greater spatio-temporal precision andracgy7]. This higher level of detail, unscrambled
by these new measurement approaches, have offered a newfhgewe of the underlying structures of the
brain: complexity and its properties such as self-organisatiatgmation and emergent phenomdia;
22; 84; 29]. At this level of description, in fact, the compleature of the brain has been shown to be
due to the mutual interaction of many weakly coupled neurbkgstems which are linked together into a
complicated hierarchical structure. Analysis of connafstiinterdependence and interrelationship between
and within complex systems such as the brain is thus fundeerunderstand its internal mechanism of
functioning [114].

As emphasized in this thesis, two fundamental types ofdiefeendence, connectivity patterns or emer-

gent phenomena, which occur among inner elements of thelearbpin system, are important to study:

12



Chapter 1 INTRODUCTION

CausalityandSynchronisatiomelationships. The former is related to a phenomenon ofin&tion transfer
between different part of the brain (drive-response reteiips). The latter, instead, describes the system’s
ability to correlate their internal mechanisms on time anslibelieved to be the main form of neural coding
of brain information [44; 45; 46; 59].

1.0.1 Content of the thesis

Motivated by the previous general considerations, thefghg main topics are specifically considered in

this thesis:

Feature extraction of functional connectivity. The investigation of brain connectivity in this thesis, i.e
synchronisation and causality phenomena, is based onlpetirhe series provided by EM tech-
niques. We call this situation model-free scenariavhich emphasizes that one does not have any
other structural information about the brain apart fromdabservable data. This lack of knowledge
of the underlying brain model dynamics is a typical case imrainaging since a detailed model is
too complex. Only dynamics at the microscopic level are gt tanderstood while the general be-
haviour of the brain at the global level is yet to be discodertn practice, the processing of EM

signals belongs in this project to an exploratory type ofysis

Following the the recent framework alfynamical systems in complex netwofk86; 5; 147] as
reported in this introduction, this thesis specificallyadisses and implements exploratory analysis
techniques of functional brain connectivity. Functionahoectivity refers to the generic concept of
estimating the inner synchronisation and causality bragnpmena, which is instead called effective
connectivity, from the set of EM data [43; 92]. In practid¢enctional connectivity is the interde-
pendence between the EM observable time series whileieffecinnectivity is the more important

relationships between the neural sources

The following functional connectivity problems are pauiarly discussed in this work:

e A novel method tassess synchronisation at the local leivethe neural complex network using

a single channel EM recording is analysed in Chapteétr8ropy-MDL complexity index.

e A novelmeasure of causalityetween two distinct points of the brain using a Radial BEsisc-
tion (RBF) network [96; 10] is implemented in ChapterAnalogues-RBF Granger causality

metric.

e Two existing measures of bivariate synchronisation aresiciened: the Mean Phase Coherence
(MPC) [116] index and the Phase Lag Index (PLI) [135], as falieed in the Appendix A.
They are employed in this thesis to provide a measure of sgnidation in the data analysis
and to bring about experimentally an important issue in fional connectivity: the problem of
volume conduction [106; 108; 107; 135] in Chapter 2.

These three previous aspects belong to a general frameWwarteadependence analysis, which are
important for the estimation of different features of thelerlying neural network connectivity: local

interactions, medium to short range interactions, diogeti interactions.

13



Chapter 1 INTRODUCTION

Examples of data analysis.Some specific neurophysiological datasets are presengmvo possible ap-
plications where these feature extraction methods canledmnd their strength. The specific data

used in this thesis are

¢ MEG data relative to Parkinson diseas€he data consists of labelled EM time series coming
from three types of population: Control, Parkinson’s antkiP@on’s Dementia subjects which
are recorded during the resting state [14]. This pathol@gtieen recently linked to the degen-
eration of the anatomical effective connectivity of theibrffar affected patients with respect to
normal healthy subjects [14; 134]. For this reason, thesgata considered as a good example
for the material of this thesis. The purpose of the analykthis dataset is twofold: firstly, it
helpsto provide a tool which is able to find differences in the pattef functional connectiv-
ity between the population of patients and understand itsczll significance This tool can
be useful for the automatic procedure of screening as welhdsrstanding the deficiencies of
the disease. Secondly, this dataset is useful to bring aheysroblem of volume conduction
which affects the computation of functional connectivity the case of scalp electromagnetic

techniques such as MEG.

e EEG examples of epileptic activitypuring epilepsy there is a transition from a pathological
but idle state to a massive synchronisation of the braieeitegional or global [73]. The
methods in this thesis can help to study this phenomenonnahd where an epileptic seizure
starts and how it spreads, i.e. causality, and synchromizedthe time. In practiceghe main
aim is to study the spatiotemporal occurrence of a seizbBstimation of the state of the func-
tional connectivity with these methods, if relevant, po®s useful information for further sig-
nal processing stages such as seizure detection, lo@atisatd prediction. Two intracranial
EEG recordings have been extendedly used during the asalfyfie methods proposed by the
framework of analysis in this thesis. An extra small scalgcEatasets was employed during

the initial stages of this work.

Itis notin the main goal of this project to provide new knodde and novel insights in order to solve
these disorders. These datasets have been employed todestdiscuss the methodological part of

the thesis. Therefore, they can be considered as pilotegtdioi future more complete investigations.

Following the previous topic description, this thesis isoeptually divided in three parts: Chapter 1
and Chapter 2 present the introduction and background omtterials, methods and modelling
strategies of the brain. Chapter 3 and Chapter 4 discussiie datails novel methods of electromag-
netic interdependence signal processing. Chapter 5 anpt€t@ carry out the specific analysis of
a the pathological datasets. The descriptions of thesasetatare presented in Chapter 2. In Chap-
ter 3 and Chapter 4, during the theoretical part of the thegithetic datasets constructed to explore

nonlinear dynamics in complex networks are used to suppertalidity of the methods developed.

14



Chapter 1 INTRODUCTION

1.1 Modelling Framework: Dynamical systems in complex netw orks

Neuroscience is a field interested in the study of the braimauws system and its direct role to important
human functions such as cognition, emotions, intelligerdee brain is one the most cited and exciting
examples of complex systems since it is the central praegssiit of the human organism. Its functioning
is probably one of the greatest unsolved problems which baserned generations of thinkers in many
scientific fields. The challenges of the understanding oftitaén is encoded in the following foremost

guestion which the modern field of neuroscience is attergpgtiranswer [61; 122]:

Problem 1. Binding Problem: How the unity of conscious perception is brought about leydistributed

activities of the central nervous system

In other terms, how the dynamics of single elements of theptexnneural network integrates their
behaviour with each other to bring about decision, acti@ngc@ption or similar higher cognitive concepts.
The latter capacities are seriously compromised in negrcdéddisorders such as Epilepsy and Parkinson'’s.
Therefore, the other side of the binding problemhsw and why does the failure of neural integration

produce these pathologies?

1.1.1 Brain state space model

The solution of the binding problem has been addressed ifatihé¢hree decades using the developments
of the theory of dynamical systems applied to the brain [E2]lowing this part of the literature, the most
general neuroscience problem studied in this work can bedstaathematically as follows: an unknown un-
derlying system, i.e. the whole human brain or part of it,iserved using a measurement approach which
samples regularly its internal state and generates a s&tatf@magnetic data. The following geneState

Spaceepresentation is used in this thesis to model the brain-j&es.x

. dﬁ_?): f(X(t),6x,u(t)) +&, (1.1)
X(t): h(X(t))‘f’ﬂa

wherex(t) € R™is a continuous vector variable which represents the obtiens at then electromag-
netic sensors level arXi(t) € R" is the state of the latemtneural sources level at tintex is also referred
as the sensor space whifethe source space. Each of theomponents oK(t) represents some defined
physiological quantities of the neocortex, i.e. the pathefbrain where these neural sources are situated.
For instanceX(t) can be associated with the biochemical state of each neatha magnitude af is of
the order of 18! [22]. In practice, as discussed in ChapteX2t) can be better defined as the descriptor
of an ensemble of neurons calledviacrocolumn[105; 18]. The latter are considered as the fundamental
computational units of the brain with numberthat may vary between #@o 3 x 10°[105].

The termst andn are generic random variables which are usually includediénstate space repre-

sentation to model internal sources of randomness andnaxtdisturbances, respectively. They can be
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Chapter 1 INTRODUCTION

generally considered as identically distributed, addjtzero mean Gaussian random variables which thus
can be decoupled frofit-) andh(-).

The functionf(-) : R" — R" is the vector field oflow of the differential equation in Eq. 1.1(-) which
is unknown with current knowledge, is a generic functionetthinodels the physiological behaviour and
histological connectivity of the brain system [18) is the set otontrol parametersvhich are constant (or
slowly changing compared to the time scale of the obsemal}iand in general may define the topology and
the biochemical properties of the brain as explained latéhnis thesisu(t) is an optional argument which
represents a set of external input functions. In practieeprain is an open system an(t) is designed to
model the external somatosensory stimuli provided by toeptve fields neurons. This term is dropped
during the development of this thesis since we are diretitighydng stimuli-related experiments.

The functionh(-) : R" — R™ models the technical characteristic of the electromagrtethniques
which are expected to measure some of the inner features afttierlying brain. While the single neuron
cannot yet be observed in vivo using these technologiesijfgplerain modules, aggregates of populations
of neurons may be accessible. The recent improvement of tieebniques such as EEG, MEG but also
functional imaging such as fMRI [42], have in fact openedahalysis of the human brain to an increasing
level of accuracy both in the spatial and in the temporal donfdevertheless, the functid(-) still mixes
the true latenX which makesx only a macro aggregate signal. The current inability to krexactly the
underlying structure of the brain and the impossibility teasure perfectly each of its single factors drives
the analysis into an ill-posed inverse problem. A uniquetsoh cannot be found that relatego X. The
description oth(-) is left for further explanation in Chapter 2 where the EM teiques used in this thesis
are reviewed.

The EM data available for analysigt) can be considered in the format of a finite vector valued mul-
tivariate time seriegx; L, = {X1,X2,X3,---x. }. The latter is sampled from(t) at discrete intervalss
betweerty = 0 andt,. = Lts. In this perspective, in order to facilitate the discussibieq 1.1, the discreti-
sation of the signals may also apply to the vector ffélfl In this casef(-) : R" — R" is known as aviap

which updates at discrete intervalghe state of the braiﬁxi}}zl.

1.1.2 Modelling brain dynamics

What is the nature of the functidft)? The brain is a composite organ since it is a conglomeratianibf
lions of neurons functioning in unison as better describeskction 2.1. Itis established that single neurons
do not act independently to each other but instead they ameembed into populations with a hierarchical
and modular scale of coupling [18]. Anatomical studies inne@hysiology have in fact shown different
levels of this structure: at the microscopic level localireodules made by dense aggregations of neurons
are responsible for the processing of specific basic feaf{dB2] such as sensorimotor stimuli. At a meso-
scopic level, other more specialized and specific modutasifstance the macrocolumns) composed by
the cooperation of the previous subsystems have been eas@rexchange information by using a sparser
form of connectivity. At the macro and global level, furtliggher structures account for the regulation of

cognitive activities and finally, human consciousness.[61]
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This brain hierarchical structure gives a few importaniéations in order to understand the brain and
directions to model its description functié@). In particular, the latter micro-meso-macro descriptivels
are both reason and cause of the nonlinearity, complexiytiza principle of segregation and integration
of the brain as emphasized in the specialized literaturg][18calized brain modules, at some points of the
hierarchical scale, coordinate their internal functignianabling the formation of a global self-organized
pattern but without allowing their own dynamics to be commpiged. In other words, these modules can
continue to be responsible for more specialized tasks égatjon), while still be part of the functioning
of the whole brain process (integration): brain modulesqar@si-independent elements which are weakly
coupled with each other.

These findings and theories have led the research commartitgilast three decades to exploit new
methods and areas from the fields of nonlinear analysis ieraodoffer better modelling tools as well as to
allow the study of its EM signals. Two approaches, in paléicineed to be mentioned here as subjects of
investigation in this thesisNonlinear dynamics and deterministic chaogl the recent theory dfynamical

systems in complex netwoi& 5; 136].

The first area of research is based on the geometrical frarkefdynamical systems where the brain
(or a specific part under investigation), is simplified by duetionist approach which uses a mean field or
lumped models to simulate the dynamics of a large populatdmeural elements [98]. These models are
deterministic, nonlinear, dissipative and interestingaapts such as attractors, bifurcation phenomena and
chaos have been used to study brain signals employed simoaidalle of the 1980’s [135].

The concept of an attractor, important using this deterstimframework, is often reported during the
development of the thesis: whén= 0 (determinism), the staté(t) is considered as a multidimensional
point belonging to the phase spaXe If f(-) is Lipschitz continuous a unique solutidrit) to the initial
value problem can be found. The curyé&) defines a trajectory in the state space which starts from an
initial condition pointX (t = 0) £ X, to the attractor of the differential equation. The lattedédined as the

setA of state space points invariant undéy, i.e. f(A) C A, such that there is laasin of attractiorB(A)

B(A) = {X|(Xo) C A}, (12)

with w(Xp) thew-limit sets off(-) defined as

w(Xo) = [ cl (U {f! (xo)}> . (1.3)

T>0 ©>T

whereft(-) is the evolution operator df-) after timet, T > 0 is a generic large time instant acld-) is
the operation of closure of a set.
In practice, at each hierarchical scale of the brain newebork, the integration of quasi-independent

modules reduces the degree of freedom of the global braireggtef (-): the state space trajectoryfgf) is
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unlikely to span the full space, i.&", but settle down to a lower dimensional subspace due to thetief
degree of freedom of the system, i.e. the attractor. Depgrmh which part of the brain hierarchy is under
study, different types of modef$-) and consequently attractors with distinct topologicalemies can be
obtained: for instanckxed point attractors, limit cycles or strange attractoFsxed point attractors are the
simplest invariant limit sets and are typically found indar and stable systems. This is probably not the
case in the brain which is considered having a nonlineanbetia At the microscopic level, for instance,
the behaviour of single neurons may be formulated using Kiodiguxley, Morris-Lecar, Hindmarsh-Rose
or other realistic neuronal models [74] which in generatllgalimit cycle type of attractors. At an higher
hierarchical scale, the coupling of populations of thesalinear simpler models may result in more com-
plicated topological structures such as strange attrgoidrich are limit sets that can be found in the basin
of attraction of chaotic dynamical systems. Simulatioris and experimental findings have shown, the
occurrence of these sets at the level of small populationswfons [36; 86]. More importantly, these results
have boosted the interest and excitement in the 1990’s fogwhaos and dynamical systems theoretical

tools to study brain dynamics also at the global hierardhéva!.

However, no conclusive evidence of chaos has been found ai¢ldium-large brain level during the last
decade and, recently, several early discoveries have bigieized and re-evaluated [134]: Surrogate testing
has shown that misinterpretation of methods from chaosyhem occur if the system behind the data is
not chaotic [82]; Lower deterministic chaos is likely to acin particular situations such as during epileptic
seizures but not during normal brain functioning [98]; leglbhaotic phenomena such as intermittency and
itinerancy [82], that can occur during normal brain rhythare not yet well understood and are difficult to
be discerned from randomness.

For these reasons, the focus of recent literature has dHiben the study of lumped deterministic
chaotic systems to the more realistic study of nonlinearadtions. From a mathematical perspective, this
new area of nonlinear time series analysis research is lmastte theory of complex dynamical networks
and it offers a new modelling framework to stufly) and the mechanisms in the brain.

Within this framework, the modelling of the brain is decorspd into aggregates of quasi-independent
and communicating dynamical systems which better des@sb@omplex hierarchical structur&Veakly
Coupled Dynamical Systems (WCDE)6]. These new tools may embody aggregate nonlinear aamtich
lumped models and they allow the study of nonstationanghststic and high dimensional phenomena
which are more likely to be found in the brain. Importantly tbis thesis, the understanding of the brain
system and its data analysis is performed through the estimaf its internal connectivities. As discussed
in the following sections, the notion of connectivity candssociated with different aspects of a complex
dynamical system network and thus to the brain organisfibh Anatomical, Effective and Functional
Connectivity[43] respectively, are terms which have been discusseceimé¢uiroscience literature in order
to discern this particular dichotomy [92; 37]. The formeottypes of connectivities are intrinsic properties
of the underlying complex dynamical system while the laittstead, is a data-dependent concept.

The thesis main contribution is to discuss some methods eotdlgns of functional connectivity anal-

ysis whose results can be use to understand the underlyjewieé or anatomical connectivities.
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1.1.3 Connectivity in complex networks
Anatomical Connectivity

Anatomical connectivity is given by the structural phys$laozks which form the concrete pathways and the
topology for exchanging information between elements efayistem [132]. It denotes what materials and
pieces the systedi is built from and how they are assembled.

In mathematical terms [Shnatomical connectivity can be abstractly represented byaah G(V,E)
whereV is a collection of vertices or nodes aRds a set of edges. From a neurophysiological perspective,
E represents brain fibres such as axons or synapse which ameettiam which joins the node¥/ refers
to elements of the brain such as single neurons or clustggsprlations of neurons depending on which
hierarchical scale of the brain one wishes to consider dsrtplained in Section 2.1.

The graphg can be also expressed in matrix form by an adjacency matrigich has entries;; = 1
if a direct link exists fromj to i and O otherwise. I&;j € R, i.e. the values;j can assume any real values,
then g is known as a weighted graph. The latter type of graph, fagaimse can contain further information
about the underlying topology, i.e. distances between siode

Anatomical connectivity is not the direct subject of thedntigation in this thesis. Its estimation usually
requires data and procedures which are not consideredsimtrk. For instance, Diffusion Tensor Imaging
(DTI) [9] is a recent magnetic resonance method that canalisime internal physical interconnection
between neurons by tracking the diffusion of water in tharbfidrous structure. While not available in
this thesis, knowing the brain anatomical connectivitynportant because its topological information may

give plausible constraints on the dynamical (and globatlynown) part of the model in Eq. 1.1 [92].

Effective Connectivity

Effective connectivity is defined as the influence that oneralesystem exerts over another either at a
synaptic or a population level [43]. In practice, it deseslhow the internal model of the system commu-
nicates, functions and exchanges information instead wfihs hard wired by the system’s anatomical
connectivity.

From a mathematical point of view, the notion of effectivencectivity is better associated with the
decomposition of(-) in Eq. 1.1 over the complex anatomical structure&ofThis decomposition link§()

to the family of weakly coupled dynamical systems. In thissils we consider the following formalism

ax () | o
7dt(t) =1 (X(J)(t),ij) +GCij %fu (X(I)(t)vxu)(t)’efij) +& (1.4)

where we consider a partition of the state= (Xy, Xo, . .. ,Xn)T given by

s X(MYT (1.5)

with

LM, (1.6)
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andJ = [jl, j25-- 0, jkj} is called the partitioning vector &1, such that the conditiogi"" ki=nM<n
is satisfied.

In practice, the partition functioR associates each subsyst&# to each nodg of the anatomical
graphg. The functiond(-) are the dynamical descriptions of each of the nodes, i.emibaels of the
brain modules at some points of its hierarchical structiitee f;; (-) are the functions which establish the
coupling between brain modules. This coupling is furthgutated by the parameteEg which in the case
of Eqg. 1.4 is an entry of the coupling mati& Cj; can be considered a function of the previous adjacency
matrix, i.e.Cij = ajja;j for some weighting terms;;. The couplingCj; is thus dependent on the existence
of the correspondent edgg in the topology ofG.

Eq. 1.4 is a special case of the family of WCDS but can be fuigle@eralized for nonlinear and time
dependent coupling and for discrete spatiotemporal systéime latter are known in the literature@su-

pled Map Lattices (CML]80].

WCDS are important tools for modelling and analysing therbsince they are the contact point be-
tween structural (anatomical) and dynamical (effective)pgrties of the underlying neural system. In
Chapters 3 and 4 we are interested to simulate medium-laege tlynamics as seen from EM measure-
ments. Some WCDS models are thus considered in order to ¢hedchkalidity of the methods developed.
Although, no medium-large brain model is currently avdigaéind these synthetic examples are only an
oversimplification of the underlying complex dynamics ytiséll offer several advantages to simulate some
characteristics of a simple brain behaviour as explain&hapters 3 and 4. More importantly, as described
next, within the framework of WCDS it is possible to addresmsifally the definition of synchronisation and

causality as the emergence relationships between elewighis network.

1.1.4 Emergent network phenomena
Synchronisation

Synchronisation is a complex dynamical relationship oéetff’e connectivity. In the colloquial English,

synchronisation means correlated in time behaviour betwééerent processes [21], to occur at the same
time or happen at the same time [69]. In practice, a more geaviathematical definition depends on the
nature of this relationship and what is actually measunedadt, while generally related for historical rea-

sons to the interdependence of phases between harmoriliatoss;j in the last decades new different types
of synchronisation have been formalized [12]: identicalcyronisation, lag synchronisation, generalized
synchronisation, chaos synchronisation. The inclusioa lafger ontology of methods have blurred a pre-

cise concept of synchronisation and have proven to be aaabgb a unified and precise definition.

From a complex network perspective, synchronisation imddfas a complex dynamical process that
results in an adjustment of rhythms of oscillating objeate do their weak interactions [116]. Given
the previous decomposition in Eq. 1.4, synchronisationiislationship of time correlation between the
subsystem¥ (Y due to the weak couplinG. More specifically, following the the unified synchronisai

scheme in [21] we have that
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Definition 1. Given a WCDSZ as in Eq. 1.4 which is decomposed in two subsystafrend9” we say
X and9” are synchronized on the trajectapit) of the globalZ with initial conditionZg = [Xo, Y], with

respect to the propertigs; andg,, if there is a time independent mappi®g-) such as

|©(ax,97)|| =0, 1.7)

wheregy andg, are defined as properties of the syst@,) is a generic function employed to com-
pare the two properties anjd|| is any norm function. In the previous definition, we have ideied two
subsystemg andy” of the global WCDS replacing the previous notation in Eq, ile4 X)) andX @), Both
O(-) andgy andg, define the particular type of synchronisation. For instaggemay be a property of
phase, frequency of oscillations, amplitudes, state ofylstem. We refer to [21; 12] for a more complete
technical account of this unification scheme, a few exampiasynchronisation and further details. Most
importantly for the purpose of this thesis, Eq. 1.7 definesstadce metric between two elements of the
WCDS. This concept of distance is later similarly re-pragbat the sensor level when we discuss func-

tional connectivity using as the phase of the signals astaldaipropertygy andg, .

Moreover, from a classical dynamical system perspectistead, synchronisation can be also related
to the concept of &ynchronisation ManifoldlL16; 12; 18]. This geometrical entity can be defined as the
points in the phase space where Eq. 1.7 is satisfied. In peasthen some of the inner variables of the
systemX become synchronized , the system loses some of its degréesdbm and the trajectory(t)
lies in a sub-manifold of the whole phase space: the synitathon manifold is thus a special type of at-
tractor as described in Section 1.1.2. In the nonlinear ohjosfield the basin of attraction and the stability
of the synchronisation manifold is a topic of active reskatu this thesis, as discussed in the next section,
this estimation of the dimension of this manifold is the najmredient for the theoretical developmentin
Chapter 3.

Causality

Defining, estimating and reasoning with the concept of déydaas proven to be a formidable problem
which has brought about several centuries of debate fromlaspiphical and more recently scientific and
statistical perspective. For space reasons and not to tegeddn any of these lengthy debates, we refer
to [112] for a comprehensive scientifc account to the togiding Clive Granger in [57]:Causality is a
concept whose definition people know what they do not likéebuknow what they do lik& his statement

from an expertin the field emphasizes the vagueness of theepband thus the difficulty in dealing with it.

From an effective connectivity point of view and thus rigously, following the same reasoning of [40]
and taking advantage of the dynamical system model in Eqcaukality can be better defined as a problem
of inverse system identification: Taking the first order #inapproximation of(-) and let the state point

Xo € R"andf(-) be differentiable ax we have
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f(X) = f(Xo) +Ix, (X — Xo) +0(|X — Xo[?), (1.8)

where the matrixXx, is the Jacobian of the vector fiel@l) at Xo which is given by

[of
Ixg = [G—XJXO. (1.9)

The differential elements idx,, i.e. vij = g% represent theausal linksor the effective causal con-
]

straint betweerX; andX; at Xq. In practice, the coefficient; is responsible for the variation of the effect
onXj, i.e. %, given the causg;. In the same manner, using the paradigm of WCDS in Eq. 1.4, iti
easy to see after a derivation that = Gj;. Therefore, estimating causality in a complex linear nekwo

is equivalent to estimate the coupling mat@xand in the more general case the entries of the Jacdbian

along the trajectory of the underlying dynamical system.

In a model free scenario, the system of differential equatf¢) is not known a priori and from the
data{x;}-_, alone the value ofi; andJ;j cannot uniquely be retrieved. In this thesis, thereforéffarent
perspective is considered in order to estimate informdtam in the brain from a functional connectivity
point of view: Granger causality. This approach, we canergria weaker form of causality, nevertheless

it allows algorithmic implementation and thus computapili

1.2 Methods: functional connectivity

Functional connectivity is defined as temporal correlatietween measurable spatially remote neurophys-
iological events which deviates from statistical indepamzk [43; 132]. In other words, functional connec-
tivity is specified as a generic pattern of interdependeinaedan be extracted from the time sereg - ;.

It has a major role in the recent neuroscience literaturesnaghasized in [62], where the fundamental

problem faced by modern non-invasive techniques such agMEG can be stated as

Problem 2. [Observational problem] Can we observe collective neuronal activities from maapgcag-

gregate signals?

Collective activities stand for patterns of effective ceantivity emerging between neural elements which
regulates the functioning of the brain. What can neuroimggchniques tell us about the brain distributed

circuitry? [47]

As a mathematical problem, given an underlying complex dyinal network,can we observe the in-
trinsic dynamical mechanisms of this network from its ohabie{xi}iL:l? Being the latter, the only source
of information available in a model-free scenario, functibconnectivity is thus the only computable form
of interdependence and is the main aim of this thesis: noeehine learning and signal processing tech-
niques are tested in the following chapters against syicthat real datasets in order to discuss Problem 2.
What do the time serief; }1_; tell us about the emergent phenomena of the underlying eandyinamical

system? The next few topics describe some solutions to artee/@revious questions.
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1.2.1 Assessing local synchronisation using univariate st atistics

Univariate statistics have been successfully applied doeal years to analyse neurophysiological data.
Strictly speaking, these methods cannot be consideredas aftfunctional connectivity analysis since
they are based on single time series. However, in this thesiconsider a single channel statistic because

of the following reasons:

e |t estimates a local measure of synchronisation, i.e. abievarea which is produced by the single

electromagnetic time serids;}- ;.

e Multivariate functional measures produce complex pai@frinterdependence which explode com-
binatorically with the number of time series. A single sens@asure is simple and its outcome is

easy to visualize .

We study this statistic in Chapter 3, based on an informati@arion which looks at the dimension, at
the shape and at the complexity of the local synchronisatianifold. As described previously, when the
underlying system is synchronized, it reduces its degréeeetiom and the trajectory in state space lies in
a lower dimensional manifold than in the case of no synclzeshstate. We do not have direct information
about this manifold since it is latent. However firstly, doetieoretical results in dynamical systems theory,
it is possible to reconstruct an equivalent versioaf the synchronisation manifold. Secondly, it is possible
to extract fromX an estimate of dimension, shape and complexity of the arigivanifold. These quantities
are invariants oK andX.

Therefore, we consider an information theoretic methocttvinises this insight in order to assess syn-
chronisation from a single time serieSpectral Singular EntropyThis method was previously discussed
in [146; 97; 49]. In this thesis this method is further impedy discussed from a point of view of complex

network as in [62] and subsequentally applied to the patiicéd electromagnetic datasets.

1.2.2 Multivariate statistics

In geometrical terms, we can consider each of the obsertaideseriesx = {x;}-_; as a point in a mul-
tidimensionalm data space. Functional connectivity is explored by conmgutine statistical relationship
between these points defining a distance metficy), with y = {y; iL:1 a second signal from a different

electrode, which needs to be estimated from the data.

Functional Synchronisation

Synchronisation in functional terms is a possible melgg, -) in the space of the observable time series
which can be generally designed following the definition @ E.7. In this equation, however, we need to

take into account two important points:

e gy is the underlying property being measured which needs taibstisuted in Eq. 1.7 bg(x), the

property measured at the sensor level [21], which may irectbd contribution of noise.

e the presence of the random tergnandn suggests that Eq. 1.7 needs to be formulated in a proba-

bilistic fashion.
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An important question comes naturally at this point: Whaiparty ofg needs to be employed to extract
the synchronisation metric of functional connectivityrfréhe EM signals? There is no unique answer for
this question. Several comparison studies in synthetiadith models) and physiological datasets in the
recent literature have taken into account different me{i8@; 121] showing similar results. These metrics
include for instance, linear correlation, coherence imgdiency domain, mutual information, phase syn-
chronisation, state space synchronisation, event synidation ( [114] for a comprehensive review). The
main message is that a pragmatic choice should be takendirngao the quality and the type of data and
different metrics need to be employed [87]: for a completgl@atory study over a particular datasets,

many methods should be employed and compared [22].

It is not this thesis’ purpose to further compare differertinods and perform a complete exploratory
analysis of the epilepsy and the Parkinson’s datasetsaéail Instead, the contribution of this thesis to
debate is to consider two typologies of synchronisationsuess based on phase relationships: the Mean
Phase Coherence (MPC) [116; 87; 114] and the Phase Lag IRUEX(136].

The MPC index is one of the typical techniques in order toaettsynchronisation in real data and it is
specifically described in Appendix A. This index is computsthg the Hilbert transform which is one of
the possible approaches which retrieves phase inform@ombroadband signals. Phase interdependence
has been intensely used with success to study synchramsatoscillatory systems such as the brain. The
MPC is thus used alongside the univariate measure of synigdatton and the causality algorithm to support
the extraction of features of functional connectivity i #pilepsy data in Chapter 6.

The PLI has been recently defined in order to cope with thelpnobf the EM observation functidm(-)
in scalp EEG/MEG, and specifically volume conduction anésaceference electrodes which are known as
well asthe problem of common sourdds85]. The observation function, in fadt(-) mixes the true sources
of brain activity and typically produces highly correlateifl signals as better explained in Chapter 2. For
this reason spurious synchronisation between sensors ppgaawhen phase relationships are computed
using the standard MPC index invalidating the analysiss & typical problem with scalp EEG and MEG
techniques where the EM sensors are not placed close todhedartex. The PLI developed to cope with

this problem is specifically discussed in Chapter 6.

Functional Causality

As described previously, in mathematical terms, the esgiimaf causality is a problem of inverse system
identification. This estimation process requires strongrpnformation about the structure of the underly-
ing system we do not have: in a model-free scenario, the vhisiertime serie§x;}L_; are typically the
only sources of knowledge. In this model-free scenario,litbeature suggests that hints of causal rela-
tionships need to resort to the principle of temporal preceé [92]:if activity in area A occurs prior to
activity in area B, then activity in A "might" cause activityB. "Might" is emphasized since the condition

is necessary but not sufficient for causality (spurious alityd112]).

Given two univariate time series= {x }-_; andy = {y;}-_,, the previous statement indicate that to seek
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a causal relationship it is necessary to look at their tempmyupled asymmetries. Therefore, a possible
solution is to employ an asymmetric distance measuredie.y) # d(y,x) which can explore the asym-
metry in time as well. In this respect, different asymmetigtance metrics such as mutual information,
state space synchronisation, synchronisation likelinwemk been designed in the literature. However, as
shown in [120], asymmetry in the metric can be due to diffeesrin the degree of freedom of the systems
underlying the time series rather than a genuine relatiprshcausality. A similar argument is taken in
[128] as a criticism to mutual information as a measure obaéty.

A different approach, suggested by Granger [56], considgrkusible definition of causality which

follows the principle of temporal preference:

Definition 2. [Granger Causality] Given two observable univariate time serkes {x }-_, andy = {yi}}- ;
from un underlying WCDSY, if the k-step ahead predictor of using the past observablesfandy
together increases the predictability likelihood over edictor using only, than we can say thatandy

are causally related.

In practice, with this definition, causality asymmetries asted using predictability across time. From

a more general point of view, we can express the same conceairobabilistic way:

If P(Xisk|X .Y ) # P(Xitk[%) theny causex (2.10)

wherex;” = {xs}‘&,1 andy; = {ys}‘kl are the time series point prior of the tim@ast)x;  is thek-step

ahead predictor. Eqg. 1.10 is defined in [128] asrfeasure of deviance from the Markov property

In Chapter 4, we propose a novel metric of directional fuor@i interaction which is driven by the
concept of Granger causality and is implemented to estithatenetric in Eq. 1.10. A nonlinear mutual
prediction algorithm in state space which has roots in theehtz method of analogues is considered. The
latter is the simplest predictor which belongs to the farnilyjearest neighbour methods. A novel version
of this predictor is studied here to account firstly to keepdimplicity and computational advantage of the
Lorenz approach. Secondly, to implement an adaptive tgdendf regression in machine learning given
by a radial basis function neural network (RBF) in order teige a data-driven approach to causality. The
prediction error, as considered in Granger’s work, is aulsaéasure of dynamical interdependence which

can be employed to estimate directionality of the couplsgall as its strength in neurophysiological data.

Functional Network Analysis

The previous two sections discussed the problem of measinieractions using two conceptual distance
metrics (one symmetric and the other one temporal assychbetween elements in the space of the ob-
servable data, i.e. time series,. In practice, these mesguovide useful statistics in order to addréss
problem of functional interdependence between two poiftiseobrain at medium to large range connec-

tivity. Local connectivity is addressed instead by looking at thgle channel measure.

The outcome of computing these metric in all the sensor sigaz@attern of global interaction which

may be expressed in matrix form (similarity matrix) or by @agh. An important and recent body of the
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complex network research applied to neuroscience is theréfivolved with the analysis, the processing
and the significance of this global connectivity. The lattecomes more intricate the more nodes the
measurament system has and, for this reason, severalissaiom graph, spectral and clustering theory
have been employed to provide some summarising informatiout the underlying complex mechanism
[136; 6].

In particular, the interest of the neuroscience communitysing these statistics have been boosted by
several recent studies which has related anatomical,tefeand functional connectivity t&mall-World
types of network [8; 133]. In mathematical terms, this kirfdnetwork has the well known property
of sparse connectivity, locally highly clustered areas and feng ranges connectiorf4¢44]. In prac-
tice, "small-worldness", firstly, fits the hierarchicalstture described by the integration and segregation
paradigm of the brain. Secondly, this hypothesis is supldoly experimental anatomical findings, sim-
ulations of synthetic biological networks and by studiegusfctional connectivity analysis (for a review
see [136]).

The study of the global pattern of interaction is not parthef thain core of this thesis: the principal
subject of the discussion is centered on the problem of theanstudying the global pattern will involve
a series of more detailed discussions and mathematical vddth would enlarge the body of this thesis.

Further specific links to functional network analysis will iscussed during the conclusion chapters.

1.3 Overview of the thesis

The brain is a complex and complicated brain organ formed hgtaork of neurons with a multiscale
architecture which recent theories in computational netiemce have considered studying with the frame-
work of dynamical system in complex networks. Within theseadries, it is possible to describe emergent
phenomena such as synchronisation and causality betweeontieal elements as the processes respon-
sible for the functioning of the brain. As described in Figdr.1, these relationships are called effective
connectivities while the topology of the brain network ifereed to as anatomical connectivity. The main
aim of this thesis is to extract these underlying quantitigigag novel methods of functional connectivity,
i.e. the interdependence patterns of the electromagrigtials generated from the brain complex system.

The thesis is divided into the following chapters:

e Chapter 1is providing the context for this thesis introduction.

e Chapter 2 introduces further conceptual background of recent relesesearch in neuroscience. In
particular: we discuss some more details about the phygidbreasons of using complex networks
and WCDS in this thesis. Secondly, we consider the observatart of the state space model in
Equation 1.1: electromagnetic techniques are optimabkttmmeasure dynamical processes in the
brain as well as functional connectivity. These techniquayg be affected by the problem of volume
conduction which is further explained in this chapter. Agibke solution to this problemis the Phase

Lag Index (PLI), a novel approach of functional connecyivappeared recently in the literature.
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Figure 1.1: Schematic representation of the analysis proslin this thesis. The underlying anatomical
and effective connectivities are estimate at the electgmmaic sensor level by their functional counter-
parts. This thesis consider some problems for single ciagnehronisation, bivariate synchronisation and
bivariate causality.

Finally, we also presents the description of the physi@algilatasets which are analysed to test the

methods introduced in this thesis.

e Chapter 3 has the main aim of discussing how to characterize the degrieeal synchronisation

underlying a single electromagnetic channel. We developvalrmethod of analysis extending pre-

vious solutions which are discussed in this chapter. Thestbads will be tested successfully against

a synthetic WCDS we specifically constructed for this puepdkhis example aims to simulate one

of the simplest possible networks which mimics fundamefietiures of a cortical neural assembly.

e Chapter 4 explains the new perspective we introduced to measuretidinet interaction in neu-
rophysiological systems based on Granger causality. Woex@ novel and computational effi-

cient machine learning method for causality discovery:Ahalogues-RBF Granger causality. This

method is tested, as in the previous chapter, using exeynpyathetic datasets. These simulations

will show the efficiency of the method proposed and explameadletails of the algorithm.

e Chapter 5 shows the analysis of local synchronisation in the MEG amchdinanial EEG datasets.
The results will be seen to support our approach of singlammblacomplexity measures as method to

detect anomalous brain activity.
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e Chapter 6 displays the experimental findings for the analysis of naatiate functional connectivity
in the pathological datasets. The results firstly furth@psut the Analogues-RBF Granger causality
approach in the case of real patients datasets. SeconidlHapter discusses an important open

issues the problem of volume conduction during the anabfdisnctional synchronisation.

e Chapter 7 concludes the thesis summarizing the main advances arwhtirdj directions and poten-

tial applications to be considered in the future.
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Neuroscience background

materials

In the previous chapter the motivations, the theoreticahffations and the methods of investigation of
this thesis were introduced using the framework of dynahdoaplex networks. The main aim of this
chapter is to describe further background materials ofttigsis: the neocortex and its modular structure
is discussed in Section 2.1 as the support for the theoraticdels reviewed in the introduction; electro-
magnetic measurement techniques are the optimal meansastarformation about the underlying brain
activity and its functional connectivity as described irctgan 2.2; pathological datasets are presented in
Section 2.3 as examples to support the methods of this pianjelctheir possible future and more complete

applications.

2.1 Neocortex modular architecture

The human brain can be divided in different functional andtamical parts (Figure 2.1). In [106] for
instance, three main organs are consideredbthmstemthecerebellunand thecerebrum The brainstem

is the lower part of the brain and it is the structure directiynected to the spinal cord. The cerebellum
is believed to be the centre of integration of sensory inftiam and motor control. The cerebrum or
forebrainis the largest part of the human brain and is divided in twocsinequal hemispheres separated
by the longitudinal fissure. The outer part of the cerebruriéscerebral cortex aneocortexwhich is

a folded layered sheet of grey tissue on top of white mattachvhomprises 80 percent of the human

brain overall. It has an area of roughly 1600 to 400G @nd a thickness of 2 to 5 mm [106]. The white
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matter, is mostly composed of axons which are fibres that theevpurpose to connect different parts of the
neocortex at middle and long ranges(ito 15cm). The neocortex contains about¥®euronswhich are
interconnected by 210'synapse$22]. More importantlythe neocortex is the most relevant part of the

brain in this thesidor two reasons:

e It is thought that cognitive functions in humans are geregtam this area as well as pathological

activity such as epilepsy and Parkinsons’ [19].

e The cortex is believed to produce most of the electric pa@éwhich can be detected by electromag-

netic techniques [106].

In fact, both brainstem and cerebellum contain deeper sswed are not the object of investigation in
this thesis. Therefore, this thesis investigation focumethe modelling and the analysis of connectivity of

the neocortex.

Neocortical structures

From a top-to-bottom description, the neocortex is pariiid in hemispheres, divided in four lobes by the
Rolandic and Sylvian fissures, i.e. Occipital, Parietamjperal and Frontal lobes [85], which are further
split in regions (Broadman regions [105]). While these ar@ad specific brain function are in general not
related, itis possible to associate some gross functidjs®r instance, the occipital lobes contain the part
of the neocortex which process visual information. Thisnsatablished fact which is further considered,
for instance, during the analysis of the MEG dataset whéferdnce between patients using occipital brain
signals can be detected by the methods developed in this.thes

From a bottom-to-top description, an important featurehef anatomy of the neocortex is that it has
shown to be organized as a neural network with a complex sealé and modular architecture [17; 106],
supporting the use of models such as complex networks and $\&3lescribed in Chapter 1.

At the microscopic anatomical level the neuron is considiéne minimal discrete element of the brain
and its biochemical state can be considered as one of thesnfrthe vectoX(t). This theory is well
known as the "neuron hypothesis" and it is now universaltepted [85]. The basic modules, however,
which are the effective units of operation of the neocortex@njectured to be given by assemblies of
neurons called cortical structuresiticrocolumnsand macrocolumng102; 79; 105; 18]. Microcolumns,
which contains 86- 100 neurons, can be found at a scale of@Dumand are considered as the irreducibly
smallest unit of the neocortex [105]. Macrocolumns, indtezn be found the scale of20- 3mmand
are assemblies of 2Go 10° neurons interconnected by ¥0synapses [105; 18]. They are regarded as
the fundamental unit for the brain organisation and fumcfit8]. Metaphorically, macrocolumns can be
thought of as fundamental subcircuits of the whole netwdikexmicrocolumns, instead, can be associated
to their irreducible inner components (resistors of thedegcuits for instance) [105].

Macrocolumns form the so called mesoscopic level of deSoriand are important from a modelling

perspective in this thesis [18] [105]:

e Inside cortical structures, the neurons form an intensaectivity network which can be described

by a mean field or all-to-all sort of topology. Outside, irmgtethe connectivity has shown to be more
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Figure 2.1: Important parts of the brain organisation. Tdleft corner shows the profile of the human
head, as explained in the text. The highly folded human gartatains the sources of the brain activity.
Macrocolumns are the fundamental unit of computation tleeadical neural network and responsible for

the electrical brain activity. They can be further decongabm more basic atomic components (micro-
columns).

sparse, with a sequential step decay consistent with thieabcolumns physical extension.

e Dynamical correlation between neural activity inside tobumns have been shown to be stronger

than outside.

e For the previous two points, neurons belonging to thesenasiges are more likely to be collectively

excited by the same stimuli (shown in the visual cortex fetamce).

Therefore, while neurons can be considered as the atomisivadf the neocortical graply, macro-
columns can be specified as the network’s minimal functinondksV. If one is interested to model medium
to large brain dynamics, as in the case of this th@s&grocolumns can be better taken as the minimal latent
graph variable of the neocortical netwarkJsing macrocolumns as modelling blocks have been used for
instance in [106]. As discussed in the introduction, theatyits of these nodés may be represented by
the partitions function§(-) which define the biochemical state of the macrocolumns. dditerature , the
fi(-) are often modelled by nonlinear functions due to the cogpdirassemblies of neurons which can give
rise to complex and eventually chaotic behaviour(for inséaas discussed in [18]).

In the next chapters, for these reasons, the simulations@D®/with nonlinear and chaotic units in
order to model macrocolumns aggregate that can be takerppsrsdior studying medium to large brain

dynamics. The main aim of these models, while they canndistieally be taken as valid brain models,
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they can still mimic some aspect of the brain dynamics. Morgdrtantly, they are used in support of the

feature extraction techniques developed in this thesis.

2.2 Electromagnetic techniques

2.2.1 Brainimaging

The process of measurement of the sources of the braintgaivd their interaction is addressed in this
thesis using electromagnetic techniques [22; 106]. Thisljaof methods has the property to achieve a
greater level of temporal precision in measuring brain aigavhich is also the reason why EM methods
are optimal tools for the investigation of the dynamicalp®uies. This is often compared with techniques

of structural and functional imaging because they havedrigpatial resolution.

Functional/Structural imaging

Briefly, this category of techniques provides directly atifectly a tomographicimage of the brain anatomy
and its physiological activity. Structural imaging refécstechniques such as Computed Tomography
Scan (CAT) or Magnetic Resonance Imaging (MRI) which exttstatic images that can describe only
the anatomical property of the brain. Functional imagingteéad, refers to approaches such as Positron
Emission Tomography (PET) and Functional Magnetic Rescaémaging (fMRI) [42] which are able to
detect also dynamic changes of brain activity.

Nevertheless, while the strength of fMRI is the high spatlolution, it offers a poor temporal reso-
lution which is due to the slow dynamics of the haemodynartaod response [42] they estimate. This
metabolic activity has in fact a latency of approximately{Zls Moreover, the coupling of the neural ac-
tivity and the haemodynamic blood response is not well ustded yet (?). For this reason, they are not
considered the best tools to investigate dynamical infmddency even if recent works have addressed this

problem with advanced time series analysis techniquesasidiynamical causal models [40].

EEG/MEG

lonic currents which flow inside the neurons have been shonpraduce a measurable electromagnetic
field [64]. Electroencephalography (EEG) [106] and Mageatephalography (MEG) [64] are the two

most important ways to measure neural activity from thiglfiel

EEG analysis was launched in 1929 when H.Berger measurdighelectrical brain activity of neu-
ral mechanisms inside a living organism [7]. EEG measurest#turonal activity of the brain captured
by the electric potential between pairs of electrodes platieectly on the scalp. It is the most common
among the imaging techniques since it is a cheap technoloedya this reason is widely used as a tool
of clinical investigation. MEG is a relatively recent methof imaging since it was introduced in the late
1960’'s by Zimmerman who invented the SQUID device [64]. SRBuperconducting QUantum Interfer-
ence Device) are sensitive magnetometers which measuneafeetic flux coming from the brain. These

magnetometers are placed outside the scalp since the nafigldtemerges from the skull without much
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dispersion. This magnetic field, however, is extremely weakfanthis reason highly sensitive to external

noise comparing to EEG. In order to detect the brain signals, MEG recordings have to be measured in a
shielded room and the magnetometers are placed in a large cone containing liquid helium. The adoption of
this technology makes the MEG device more expensive than EEG which is the main reason for its restricted

use.

EEG and MEG are complementary techniques since the electric and magnetic field are related by
Maxwell's equation [106]. As described in Fig. 2.2, MEG and EEG are sensitive to EM activities pro-
duced by different neural sources. These neural sources can be considered to be given by macrocolumns
which tessellate the neocortex as discussed previously. EEG measures the activity of radial neural sources
which are typically found in the sulcus. MEG instead is more influenced by components that are tangential
to the surface which are found in the gyri. For this reason, these techniques are supposed to observe distinct
types of neural activity and the morphological structure of the EM signals may be different.

A particular advantage of MEG compared to EEG is that the latter is sensitive to current dispersion
over the skull whose effect is known as volume conduction [64]. As described in the following subsection,
MEG is sensitive only to primary currents which are generated directly from the ionic flows coming from
the neurons. For this reason, MEG has an higher spatial resolution (3mm) compare to EEG (1cm) because
in the latter, the signal is smoothed out by scalp conductivity effects. This property has allowed MEG to be

used, together with techniques of inverse identification, for problems of source localisation [7].

Aston University

Nustration removed for copyright restrictions

Figure 2.2: Profile of part of brain with the MEG and EEG scalprdings. The MEG is more sensitive
to correlated dipole in the sulcus(cfil) while the EEG is more sensitive to dipoles that are placed in the gyri
(bdeghjkm)(picture taken from [106]).
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IEEG

EEG/MEG have superior performances in terms of temporapagwith respect to the previous func-
tional imaging techniques. The electromagnetic field issaead with temporal resolution of tens of mil-
liseconds which is considered enough to capture the fastdfagions of the brainx 100Hz[7]. However,

as discussed, the measurement sensors of the previougjieehare positioned outside the brain and so can
only capture a macro aggregate of the real neuronal actinitithey are sensitive to any further interference
such as external noise and volume conduction. EEG/MEG dezimon-invasive imaging methods which
for this reason have boosted clinical and academical relsedihe neuronal brain tissues are not directly
contacted using these technologies and in theory a neucalaxperiment can be applied as many times
as necessary. This is especially important with studiegafthy normal subjects which for ethical reasons
they cannot undergo any submissive surgical operation.

Alternative measurement technologies are placed dirgtdigle the cerebral cortex in order to study the
finer spatiotemporal description of the brain at the neurenal. Typical electromagnetic techniques in this
class are called intracranial EEGEEG), comprising Electrocorticograph¥eCoG), subdural EEG $D-
EEG), Stereotaxic depth electrodes [106][22]. They are tegpies usually applied either to animals, i.e.
monkeys and rats, for research purposes or to humans setbjeathronic neurological diseases for clinical
motives such as epilepsy. For the latter, normal extraalémiaging methods are not always sufficient to
extract, with the required precision, either the locatiothe reason of such deficiency and the only hope is
to surgically implant internal probes. This is the situatior some of the datasets in this thesis which were
recorded using iEEG prior to a surgical operation in ordértow the position of the epiloptogenic region.
Therefore, it is possible to take advantage of this techaigreviously recorded for pure clinical purposes,

in order:

e To get access to artefact free brain signal.
e To come closer to the level of the effective connectivityhe heocortex.

e To know more about the pathology and provide tools to dedd iiit

2.2.2 Electromagnetic observational paradigm

The basis of the electromagnetic activity of the brain is theeelectrochemical reactions inside the neu-
ron [64; 106]. It is not possible to measure the single neactvity for living patients due to the limitation

in the spatial accuracy of today’s equipment. However, §heelsronized firing of a large population of
neurons, i.e. macrocolumns, gives rise to an average fieilchvelan be monitored by electromagnetic tech-
niques, EEG and MEG as discussed before. The relationshigbe macro aggregate neural sources and
the magnetic field and the electric potentidl retrieved from the EM recording sensors is completely
described by the well known Maxwell's partial differenteuations [106]. Since the range of frequencies
adopted for the analysis of the brain activity is below 10Q¢#&tlular activity may contain frequencies below

1KHz [64]) the EM signals can be considered in Qeasi-Stationarityegime [7}As in . For this reason,

1As in [64], the assumption of quasi-stationarity is valid 26e/o < 1. For the brain tissue,= 10Pgp ando = 0.3Q " tm L. For
f = 100Hz we have thatfz/o =2-10° < 1
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the magnetic and electric field are decoupled, they can bevetl independently. A general formulation
of mapping the neural activity to the EM is given by the noaéinobservation function in Equation 1.1 and

can be rewritten by:

x(r) =h(r,3°(t")) +n, (2.1)

whereJP(r’) is the primary current flow at the spatial locatidnx(r) is either the magnetic fielB or
the electric potentiaV measured at the sensors level with spatial coordinatedn is an additive random
noise factor which affect the measurements.

The solution of the Equation (2.1) as a function of the curdemsityd”(r’) is calledthe Forward Model
and it is analytically computable only in a few special cadess generally a function of two parameters:
the model of the sources of the neural activity and the gegmoéthe head. In the particular case of dipolar
sources)P(r') = gd(r’' — rq) whereq is the amplitude of the dipole centredrgtandd(-) is the Dirac delta
function. Furthermore, in the case where the head modehisrggal, it is possible to obtain the following

approximation of Equation (2.1):

X(r) =h(r,rq,@)q" +n, (2.2)

whereq = (01,02, ,qn) iS the vector ofn neural source amplitudes amd-) is a nonlinear func-
tion of the dipole positiomg and orientatior®. If one considers that the dipoles have fixed orientation,

Equation 2.1 becomes linear and it can be rewritten as [64]:

x(r) = /L(r,r’)Jp(r’)dv, (2.3)

whereZ(r,r') is called the lead field which represents some construchiarecteristics of the EEG/MEG
sensors and the volume of neural tissue where the dipoles are situatepaiticular, Equation 2.1 can be

also approximated and rewritten in matrix form as:

X(t) = HX(t)+n, (2.4)

whereX(t) is now the vector of the general dynamical system of the brAift) thus represents the
amplitude of the neural activity af elements in the brain, i.&X = . The important message, here, is that
x is a linear function o in first approximation and thus possible nonlinear dynarimasbservations are

due to phenomena inside the brain.

2.2.3 The problem of volume conduction

While the linear Equation 2.4 is only a coarse simplificatidriMaxwell’'s laws, it is enough to show the
problem of volume conduction which typically influences Edgliniques. In practice, the matiikcan be
seen as gpatial filter. A single observable time serigsis dependent on a weighted combination of the
underlying neighbouring sources as depicted in Figure [2.particular, the signal of a single source can

propagate its effects to different neighbour electrodes: measure of synchronisation computed between
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these neighbour electrodes would be correlated by the poesef this common mode and spurious func-

tional connectivity may ariseThis effect is particularly remarked on in few studies, whige mention,

based on coherence as measure of interaction where it isiegueally discussed [108][107].
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Figure 2.3: Schematic representation of the problem ofraeleonduction. Electromagnetic waves from
single sources can propagate their effects to neighboetegrodes. They are responsible for spurious
correlations between these electrodes.

The volume conduction has been known for many years [108Jekier, only recently has it become a

serious problem when analysis of functional connectiviigdme the key paradigm for brain understanding.

The estimated connectivity pattern may be in fact due toisparcorrelation at the scalp level and not given

by the genuine interaction between sources. In practitgeptbblem may influence the ability of functional

connectivity to estimate the real effective connectivity.

As described in [135] there are two classes of methodolagiescan currently resort to cope with the

estimation of functional connectivity in the case of volucoaduction:

e The first one consists @xtracting functional connectivity at the source le\a algorithm of source
reconstruction is firstly needed to solve the inverse proljig; Secondly, interdependence between
these sources can be computed [63]. As described in [135]agproach however suffers from the
ill-pose nature of the inverse problem: No unique choicéhefgource model can and the procedure

of source reconstruction can influence the interdependesitern [63].

The other alternative is tapply a measure of interaction directly on the signals assemevel which

is not influenced by the problem of volume conductiethods such as the partial coherence [108;
107] and the imaginary part of coherence [104] were shownet@ftective against this spurious
effects. Another possible method of the same family thableas recently proposed is the Phase Lag
Index (PLI) [135]. The main idea behind the PLI is that comraigmals due to the volume conduction
would propagate at the same instant on two different eldotes. This phenomenon would correlate
at zero lag the signals in these two channels. Therefore pBhélized zero lag correlation (and
thus synchronisation) searching for asymmetry in meaguaymchronisation. Further mathematical

details for the PLI are left in Appendix A where the standareldvi Phase Coherence is also treated.

The problem of volume conduction is further discussed is thésis experimentally during the analysis

of functional phase synchronisation on real patients dateemain an open issue. It is not in the main
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aim to solve this problem but it is important to remark on k#stence during any functional connectivity
analysis of EM data. While there has been a recent explogistudies of EM brain data using functional
connectivity complex network techniques, their findingsahéo be reported back to this important prob-
lem: To what extent the propagation of EM signals influences fanat connectivity in estimating the true

effective connectivity of the brain?

To conclude this section, it is important to mention, that timivariate functional connectivity analysis
described in Chapter 3 is possible only because of a volumdumtion effect. In fact, multiple local
sources propagate their electromagnetic effects to thytesatectromagnetic channel above their locations.
Therefore, the algorithm in Chapter 3 takes advantage irsdiyp®way the problem of volume conduction

detected from a single time series when these multiple Emaices become mutually synchronised.

2.3 Materials: Pathological brain datasets

While the most challenging question in neuroscience ctsisunderstanding the mechanisms of the
normal and healthy brain, the datasets provided here cempritypology of problems which are often
encountered during clinical research. They are examplesithiological brain activity which are taken in
this thesis firstly to support the validity of the studied huts and secondly to demonstrate their possible
clinical use. In this respect, the main aim is to produce ditgtige analysis of each pathological case.
We are not in the position to make any general quantitatiaménation as for instance in the case of
epilepsy one dataset is not sufficient. The material of thésis can be thus considered as exemplary or
pilot studies. Further and more detailed analysis are refed@ complete and deeper investigation of each

single disorder.

2.3.1 Intracranial EEG datasets

Epilepsy

Epilepsy is a disorder of the central nervous system of tlanbwhich is caused by a sudden burst of
excess electrical activity that interferes with the normeirral activity and causes mental and physical
dysfunction. It is an important disease since about 1% to 8%eworld population are affected while
10% can experience at least one seizure during their lieefl29]. Generally, epilepsy can affect at any
age but it has been reported that it develops more oftenglohitdhood and in the elderly [73]. A formal
definition of this disease can be found in [38] (another seofaefinition can be found in [35]) by defining

the meaning of the following concepts:

e An epileptic seizurés a transient occurrence of signs and/or symptoms due toratah excessive or

synchronous neuronal activity of the brain.

e Epilepsyis a disorder of the brain characterized by an enduring ppedition to generate epileptic
seizure and by the neurobiotic, cognitive, psychological social consequences of this condition.

The definition of epilepsy requires the occurrence of attlleas epileptic seizure.
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A seizure is a clear demarcation in time with a start and aHif88]. It produces a clinical manifes-
tation giving rise to signs and symptoms. Most importantlythe goal of this thesis a seizure is caused
by an abnormal enhanced synchrony of neurons. In an epilbgin, in fact, a massive widespread syn-
chronous activity takes place [95]. The exact mechanismhof &vseizure occurs and how, at the present
time, remains unknown [73]. Dynamical theories of the bitzawe thus been proposed to understand the
cause of this disorder which have led to the interests ofineat time series analysis and chaos modelling
techniques in the last three decades [134][100].

Using the framework of dynamical systems, in [94][95] théhaus have given two possible scenarios
in which a seizure can occur. In the first one the differeritials of the underlying network provides
two basins of attraction compatible withterictal andictal states. The interictal state is characterized
by a brain activity which seems normal. The ictal state iteiad represented by the occurrence of the
seizure. The latter one is typically represented by a lowedisional manifold which represents the higher
level of synchronisation (few degrees of freedom in the aksystem). In the former, i.e. interictal state,
this manifold instead is highly complex. While in healthybgcts the trajectory remains stable around
the interictal attractor, an abrupt change takes place ithe seizure from one to the other in epilepsy
patients. The second scenario assumes that the attractolyisne. However, some changes can occur
in the set of control parameters which govern the neuraksystThe attractor gradually changes and it
deforms its shape from interictal to ictal in epilepsy paitse

The transition interictal to ictal can be exogenous, endoge or due to random noise [94]. In the
first case some external stimuli cause the seizure to bestieégg This common type of epilepsy is called
reflexiveand it can be addressed in an experimental analysis (fariostusing photic stimulation[77] as
described later). In the endogenous case, the route tgspifeay be due to a gradual change in the under-
lying brain control parameters. Identification and tragkaf these parameters may be important to detect
pathological changes prior to the seizure. In the last caselom fluctuation of the phase space trajectory
can initiate the switch between basins of attraction andoaa transition would occur. The route to the

occurrence of a seizure, in this case, may be impossibletézide

From a complex network perspective, epilepsy is assumee tabsed by abnormal discharge in the so
calledburster neuron$100]. These neurons initiate the seizure when they entingiin neighbours to reach
a critical mass of pathological firing patterns. The proedssntrainment can be driven by a pathological
synchronisation, a loss of inhibition or due to the lowerafighe threshold of excitation of the neurons. In

any case, this causes, the widespread pathological gipbehsonisation which characterizes epilepsy.

Dataset description

We obtained relevant data on patients from the Birminghanid@mns Hospital on intracranial epileptic
events to submit to the data analysis stage. Two subjectssyinhptomatic focal epilepsy were studied.

While the hospital database contained clinical recordeeéal other patients, these two subjects were the
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only ones selected after manually screening their EEGsaidalirecordings of other patients were available
but not suitable for the analysis in this thesis since thaiadvas of poor quality, i.e. it contained high level
of noise, it had not sufficently long time series or it conéainoo many external artifacts. The recording of
this data was intended and it was sufficient for clinical oessbut not suitable for furhter signal processing.
The diagnosis of focal epilepsy was made according to thesifieation scheme published by the Com-
mission on Classification and Terminology of the Internagid_eague Against Epilepsy in 2001 [35]. The
two patients had a previous detailed neurologic examinatial prolonged video-EEG (electroencephalog-
raphy) monitoring with scalp electrodes placed accordmthe International 10-20 system. Moreover,
high-resolution magnetic resonance imaging (MRI) wasgreréd with a Siemens 1.5 Tesla SP system
(Siemens, Erlangen, Germany) using a standardized epif@psocol that included high-resolution T1-
weighted volume acquisition, T2-weighted, and fluid ateged inversion recovery (FLAIR) sequences.
Subdural electrodes (SDEs) were implanted thereafterdnwlo patients to confirm the scalp EEG and
MRI data about the epileptic focus before proceeding to thgisal operation. Both patients underwent
surgery after the recording. The resection comprised the lacalized using the information obtain by the

EEG recording and the neuroradiological data and the owtceas good.

The first subject was 15 years old at the time of the recordtingm the age of 8 she presented stereo-
typed seizures pattern consistent with an onset in the sm®asory area quickly spreading to the motor
cortex with clinical features involving the supplementargtor cortex and secondary generalisation. At
the time of the evaluation the patient was treated with Gadxepine and Levitiracetam without a good
control of the seizures. The EEG pattern was characterigeshlinterictal slow-wave activity with super-
imposed sharp transient in the parietal regions and duteepsy almost continuous spikes , polispikes
and spike and slow wave. The neuroradiological finding sliocavBNET (acronym in the literature of the
dysembryoplastic neuroepitelial tumor) in the left cergeietal area. The EEG was recorded using grid
contacts over the left centre-parietal area (A01-40) wikgarate strip of 4 in the medial area (B01-04). In
this study we consider the A contacts only. Electrode arr@y # A08 was placed in the anterior-posterior
direction with contact AO1 being more posterior and late@dntacts A07, A15, A23, A31 were mapped
to correspond to primary sensory cortex. The contact AO3nweasonsidered since it was not recording
properly. Therefore, 39 iEEG electrodes were left for thalysis.

During the recording, the patient presented several @irsieizures associated to a spread of activity on
the full grid contacts. The dataset used in this thesis égonitane clear event which was selected because
long interictal and ictal periods were available and thealg have no artefacts. The dataset is referred to
Intracranial EEG dataset Aln Figure 2.4, part of the recording submitted to the analissshown. An
expert confirmed the presence of early bursts of spike andHgthmic discharges in the contacts about

A17-A20. The presence of a global epileptic event is cledidplayed.
The second subject was 12 years old at the time of the regprBiem the age of 6 he presented clinical

episodes characterized by subjective somatosensory symfthumbness down the right arm followed by

shaking of the ipsilateral arm) followed by generalized¢ecionic seizures. The patient was treated with
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Figure 2.4: Snapshot of the intracranial EEG dataset A wher@d of apparently interictal activity is
followed by an ictal one which is spread all across the grid.

carbamazepine with a partial improvement of the seizurestia@ addition of Levitiracetam allowed an

attenuation of the clonic component of the seizures but kermeecame seizure free. Thee EEG pattern

was characterized by rhythmic theta and sharp activity eléfit parietal region. The neuroradiological

findings showed the presence of a cortical dysplasia jusefos to the post-central gyrus of the left

parietal lobe. The EEG was recorded using a 32-channel sabghid placed directly over the left parietal

lesion. Contacts 8, 16, 24 and 32 were along the medial asptw grid and contacts 1, 9, 17 and 25 were

along the lateral aspect.

During the recording the patient presented numerous ssizassociated with the clinical signs previ-

ously described. These seizures were associated withgedibursts of spike and fast rhythmic discharges

mostly localized on contact 20, 21, 28, 29. A snapshot of drikese activities is shown in Figure 2.5. In

total 33 epileptic bursts were counted in the recording ictemed. The dataset is referred tolagacra-

nial EEG dataset Blnterestingly, from a signal processing point of view an@ontrast with the previous

patient, these events suddenly occur and do not propagdtallyl to all the grid.

Data analysis

The main purpose of analysing these IEEG datasets is to sgltlre problem of characterizing the spa-

tiotemporal evolution of an epileptic seizure. In this restp the data processing is performed using a slid-

ing windows methodology which extracts over the time measof functional connectivity. The different

stages of the framework of analysis of this thesis are ingmbtiecause:



Chapter 2

NEUROSCIENCE BACKGROUND MATERIALS

Figure 2.5: Snapshot of the intracranial EEG dataset B. tmescontacts there is evidence of pathological
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epileptic activity.

e the single channel measure of synchronisation providedirtstestage of analysis. It is designed

e The multivariate synchronisation measure is intended &b apnormality at medium and large con-

e Adirectional dynamical interdependence measure deteetotal spread of pathological synchroni-

to spot abnormal synchrony beneath each electrode and fngdasition where the seizure starts

(positions of the burster neurons).

nectivity range. It further establishes the state of thé@agical process measuring the strength of

the coupling among electrodes.

sation to the global scale looking at changes of the infoiondtow between electrodes.

2.3.2 MEG Parkinson'’s related Dementia study

Parkinson’s and Parkinson’s related dementia diseasesanglex neurological disorders which are known
to cause several behavioural dysfunction and quality efitifpairment [14; 16; 15; 139; 138]. Parkinson’s
affects ten million people worldwide while dementia hasrbgigown to develop from the latter with a rate of
60% [15]. Parkinson’s patients show subtle executive dysfons, tremor at rest, poverty of movement and

postural instability. Dementia patients have further dtigmimpairments which affect memory, attention

and cognition [14].

Similar to other neurological disorders such as Alzheimdisease (AD), the underlying mechanisms

of these disturbances and their differences are far fromgoeiucidated [134]. In terms of pathological

41



Chapter 2 NEUROSCIENCE BACKGROUND MATERIALS

mechanisms, it has been shown (references in [138]) thee tisorders are generally related to progressive
degeneration of different neural structures of the braiasidns were observed in the cortex which may
indicate serious damage in the anatomical connectivitjhefgathological brain. These lesions, in the
context of Parkinson’s, have shown to be more advanced witpeaific signature for dementia patients
compared to normal Parkinson’s. We refer to [14] for a moritkl explanation of clinical causes and
recent findings from a neurophysiological perspective.

Importantly for the purpose of this thesis, the evidencenatamical damage, including AD, are in fact
compatible witHoss of dynamical complexitf the brain activities and pattern fafnctional disconnectivity
between different areas [134]. For this reason, differerdies look for patterns of functional connectivity

to identify abnormal neural activities.

Dataset description

Three groups of subjects participated in this study. The dats collected and previously reported in [14]
which are provided here for completeness. In [14] a full lededescription and further particular analysis
can be found. The groups have the following composition: &&nBntia (8", 59, 74.38+ 4.9 years), 13
Parkinson’s without dementiadg 79, 7169+ 5.1 years) and 13 healthy, elderly controt(85¢, 7169+
5.9 years). It was reported in [14] that there are no significhfiérences in age or gender distribution
between the groups as assessed by univariate analysidaica{ANOVA).

All of the patients had undergone a series of physical, degical and cognitive examinations. Parkin-
son’s patients fulfilled the criteria of "Parkinsonism" ngithe United Kingdom Parkinson’s Disease So-
ciety Brain Bank (UK-PDSBB) clinical diagnostic criteri@ementia fulfilled the DSM-1V criteria from
the American Psychiatric Association for dementia. Cdathad no evidence of neurological or psychi-
atric disease in their clinical history and they had no difitig with cognitive functions in their everyday
life. Cognitive abilities were assessed using the Mini M¢Btate Examination (MMSE) [39] and the
CAMCOG [123]. Dementia patients had MMSE scores of 24 or (es$ of 30), whereas Parkinson’s and
control participants scored 28 or above. Using the CAMCO&édhwere significant differences (ANOVA)
between dementia subjects(31 12) and the other groups while no significant difference leetwParkin-
son’s (960+ 5) and controls(9% + 4). Further exclusion criteria for the subject groups arertredical
treatment of the patients can be found in [14].

The study protocol was approved by the medical ethical catemof the Amsterdam University Med-

ical Centrer and all subjects gave written informed consent

MEG data were acquired using a 151-channel whole-head ME@sy(CTF Systems Inc., Port Co-
quitlam, BC, Canada) in a magnetically shielded room (Vattachmelze GmbH, Hanau, Germany). MEG
recordings were acquired in the morning and all patientddessh asked to not take their medication before
coming to the experiment. The registration in these comastis generally defined as OFF-state.

The MEG was recorded in eyes close resting state conditioreges open resting state condition. The

MEG data was recorded at 35Mz band passed at-0125Hz. A 39 order software gradient was applied
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Chapter 2 NEUROSCIENCE BACKGROUND MATERIALS

to the data [143]. The data selected for this thesis studgsarehich are long artefact free and furthermore

DC corrected from an external investigatbr=£ 1562 time samples).

T

LF - (16) RF - (15)
LC - (15) RC - (15)
LT - (21) RT - (15)
LP - (9) RP - (9)
LO - (8) RO - (10)

Figure 2.6: Regions of the brain as labelled by the channelfahle (L=left, R=right, O=occipital,
C=central, F=frontal, P=parietal, T=temporal). The numibside the brackets indicates the number of
each channels available for each scalp area.

From the previous study [14], out of the the total 151 chasyribe datasets are reduced to 141 channels
in order to take into account faulty and noisy channels infmmmto all patients. The selected channels can
be divided in regions of interest which are depicted in Feg2u6. The middle line region (channels labelled
with a"Z") were considered during the global investigatiom are not belonging to any local area and thus
not shown in the partition of .

For each patient and for both eyes closed and eyes open icoisdit series of trials were undertaken.
From the datasets we have, it is noticed that the numbetrads &re unevenly distributed across patients due
to the removal of possible artefacts. For each group theaglddtaset has 342 trials for the controls, 329
for the Parkinson’s patients and 322 for the dementia piatiarone of the 2 eyes conditions. In total, the
dataset size used during the following study is given by:(322+ 329+ 342) x 141 time series of length
1562 samples.

Data analysis

Differently to the previous iIEEG datasets, where the fuomal connectivity analysis investigates the dy-
namics of a seizure, for this MEG dataset the purpose of trestigation is to extract structural differences

among the group of subjects. The data processing is an eslated type:

e The single channel technique, as in the case of the previpilepsy datasets is important for an
exploratory type of analysis because is a local measure @ilc and it does not suffer of the

problem of interpretation of bivariate similarity matrix.
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e The multivariate synchronisation measure is intended is dataset, to show how scalp measure-
ments such as MEG are affected by common sources problemsoandpurious synchronisation

may ocCcur.

e The analysis of this dataset is not intended for the caysafialysis. Firstly, there are no physio-
logical reasons to consider such an investigation. In tise cd epilepsy, a measure of directional
interdependence is specifically intended to spot the sprgad the pathological activity due to the
occurrence of a seizure. Currently, there are not hypothebech support difference of information
flow between group’s of subjects with this paradigm and diesaSecondly, it is not clear what is the
effect of volume conduction on a causality investigatiohe TGranger causality metric in Chapter 4

does not take into account this problem.

2.3.3 Photic EEG dataset

During the initial stage of this project, a scalp EEG dataset considered as recorded in a previous study
from the Birmingham Children Hospital. This dataset is aaregle from a photic epilepsy patient.

Photosensitive epilepsy (PSE) [78] is a common type of ppilehat appears in a significant proportion
(110%) of the epileptic population. It is a common stimulagticed epilepsy that can be triggered by ev-
eryday life devices such as television or videogames cessdhe underlying mechanism is still unknown
as for the rest of the epilepsy family. In a clinical setting PSE is generated in the patient by using an in-
termittent photic stimulation such as complex video pater intermittent flash stimulation. These stimuli
are usually controlled by changing the frequency of thegtig

In this thesis, the dataset available is a noninvasive &fa(p recording from a subset of 19 electrodes of
the standard 10/20 system. In Figure 2.7, for instance, #topaf the recording, which shows an abnormal
EEG activity, is displayed. In this figure is also presentddeitional channel that registers the external
Intermittent Photic Stimulation (IPS). This channel is ongant because when epilepsy is triggered by the
appropriate frequency the pathological activity is cheaisible in the EEG trace.

The data analysis of this dataset is discussed in Chaptep&rasf the causality investigation reported
in [24]. As in the case of the MEG, volume conduction may inflcee multivariate connectivity and the
effect on the causality estimation is not clear and left taufe study. More importantly, while the results
of causality can be succesfully interpreted showing thalitglof the causality algorithm, the reason to
pursue this type of analysis does not seem to help the stuthysoparticular kind of pathology. Previous

works have rather focused on of synchronisation analy8is [7

2.4 Summary

The objective of this chapter was to present further relewsatical background details in order to complete
the introductory part of this thesis.

In particular, it was discussed that the neocortex is théqroof the brain which contains the sources
of neural activity observable using electromagnetic tépies. This activity can be modelled by approx-

imating the hierarchical and multiscale anatomical aettitre of the neocortex as a complex dynamical
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Figure 2.7: Portion of an EEG recording that shows Photdasem&pilepsy. The first channel contains the
stimuli.

network at its mesoscopic level of description. Macrocatsrare the nodes of this network as well as the
fundamental computational blocks in the brain.

Electromagnetic techniques produce highly sampled naultite time series which are shown to be
tools to infer dynamical processes in this network. In thiagter, it was discussed that these time series
can be approximated by a linear mixing function of the ampkt of the nonlinear activity in the neocortex.
For this reason, the estimation of functional connectiaityhe sensor level is biased towards the volume
conduction problems.

This chapter introduced the description of a few patholalgi@tasets related to epilepsy and Parkin-
son’s diseases. They are common neurological disordersevthe effective connectivity of the brain is
seriously compromised. They are examples of MEG and EEGigabs. They therefore offer a possible

representative illustration of the use of the methods apea in this thesis and later analysed.



Single channel assessment of
local synchronisation in neural

systems

In the introduction, in analogy to the typical brain mappimgerse problem, an additional important ques-
tion was addressed: Can collective properties (systemdiependence) of the neural system be retrieved

by the macro aggregate signals from EEG/MEG?.

The main goal of this chapter is to address the previous ipmeathen the macro aggregate signal is
a single time series localized to a particular brain regiarset of complexity feature extraction methods
are proposed and compared based on a state space recamstppiroach using singular spectrum analy-
sis. These techniques are checked in this chapter agaiimstimgon study of a synthetic weakly coupled
dynamical system. It serves the purpose to model the plieudimamics of a local neural network. Ap-

plication and further discussions of these methods to fdeatremagnetic data are left to Chapter 5 and

Chapter 6.

This part of the thesis is based on the work discussed in [62his chapter further analysis is proposed

to extend this work.
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Chapter 3 SINGLE CHANNEL ASSESSMENT OF LOCAL SYNCHRONISATION IN NEURAL SYSTEMS

3.1 Introduction

As discussed in Chapter 2, synchronisation patterns ar¢odine biochemical and topological properties
of the neuronal networks in the neocortex which constragdblution of its dynamics to evolve in a
lower dimensional subspace than its potential degreesetibm (number of neocortical elements). This
invariant orbit in state space is coincident with the natiofiattractor and synchronisation manifold. The
dimensionality of this subspace and its geometry (compjeriay play an important role in order to assess
different degrees of coupling of the underlying neural reetv From the measurements side, methods exist
to reliably localize brain activity using non-invasive nsegements and extract time series of high signal-
to-noise ratio (SNR) comparable with invasive measurem@a]. For this reason, the dimensionality and
the complexity of the underlying system subspace can besgbwhich helps to inform two fundamental
questions in this thesis: the functional role of synchratigs and desynchronisation phenomena at the
local level and the discrimination of patients subjectedearological pathologies.

Different univariate time series analysis methods, as esiggl in the literature, can be employed to
extract discriminatory statistics. Linear methods base@uatocorrelation function, power spectrum and
autoregressive modelling have been successfully appieddth normal and pathological brain activities
([106] and reference therein). However, in the last two desanonlinear statistics started to gain more
interest and more applications [134; 114]. The use of thesthads is justified by the intrinsic nonlinear
nature of the brain as presented in Chapter 2. Techniquésasuthe largest Lyapunov exponents (L1),
correlation dimension (D2) [82] and various entropic basedsures [81] have been exploited to investigate
complexity of nonlinear EM time series. In particular, soofithese methods have been originally designed
to analyse low dimensional chaotic models before beingiegpb brain research as well [134].

However, while the nonlinear analysis of the electromaigrségnals was largely explored in the last 20
years, the hypothesis of a low dimensional attractor toarhe brain dynamics did not provide enough
evidence to support chaotic behaviour [134]. Firstly, s@tmeng grounds have been found only at the
neuronal level but failed at larger scale [36; 86]. Secondtya macroscopic scale, due to the intrinsic
presence of a noise term, randomness can be confused wéthmdeitstic chaotic behaviour. In [82], for
instance, the authors warn of the use of chaotic tools whemitiderlying system is not chaotic. Thirdly,
the electromagnetic observations may mix the basic neigahls and destroy our capability to identify
true low dimensional chaos [62].

On the basis of the previous argument, a methodology it isidened here that firstly accepts the
presence of nonlinear brain dynamics, without assumingxiigtence of chaos in the data. A complexity
measure based on entropy is designed to fulfill this purpdseondly, an automatic data driven procedure
is proposed which results in a simple algorithm. Thirdlys timethod rejects observational sources of noise
at the sensor level which may limit the ability to discerntiilshanges in the underlying synchronisation
process.

The following three steps which are graphically shown inifgg3.1 presents the structure of this chapter

idea:

State Space Reconstructiorwhich provides a preprocessing procedure to the time s¢xigg_; to re-

trieve the hidden space which describes the nonlinear dgaiamics. This approach is based on the
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Chapter 3 SINGLE CHANNEL ASSESSMENT OF LOCAL SYNCHRONISATION IN NEURAL SYSTEMS

geometrical framework of the delay embeddings and Takéesrem.

Manifold learning which is designed to fulfil two roles: to tune the choice of thethod of delay em-
beddings. Secondly, to explore the reconstructed spaadifyilag its geometry. In this thesis, this
stage is implemented using Singular Spectrum Analysis |$8#ch provides the singular spectrum

{oi}N | as its output.

Feature extraction in order to asses univariate synchronisation statistiedhas the singular spectrum.
Two families of methods, i.e. dimensionality and complgXitave been proposed in the literature to
examine the reconstructed manifold. The combination ofwteare considered to extract the local

synchronisation and to reject observational noise.

Feature extraction

___isynchronization
Xi State Space —> Manifold ?} Dimension y 1zatl

—»| Reconstruction H—Learning—> Complexity measure

Figure 3.1: Conceptual structure of the algorithm preskimehis chapter based on state space reconstruc-
tion.

3.2 Synthetic example

3.2.1 Description

This chapter uses a synthetic model which emulates the lgedsehaviour of the underlying neuronal
assemblies in the cortex as described by the weakly coupledndical system paradigm in Chapter 1
and Chapter 2. The main aim of this model istést that proposed single channel measures can recover
different degrees of collective behaviourhe model chosen for this purpose is a chain of coupled non-
identical Rossler Oscillators, as described in Figure 3hitkwfits our basic requirement: it is a WCDS
which previous studies in the literature [109; 61] have shipwovides clustering of synchronisation among
its elements for a specific range of control parameters.

The mathematical formulation of this lattice is describgdhe following coupled differential equations:

Vi = wX+ayi+e(Yit1—2yi+Yic1), (3.1)
z = b+zx—c),

wherex;, yi, z fori=1,--- )nare the 8state variables of the individual Réssler systarh,c are parameters
of the lattice which define the topology of each oscillatarare the natural frequencies of each oscillators

ande is the coupling strength between neighbouring systemsnuih#er of oscillators is given By = 50.

48



Chapter 3 SINGLE CHANNEL ASSESSMENT OF LOCAL SYNCHRONISATION IN NEURAL SYSTEMS

This synthetic example mimics a plausible pattern fornmagimong cortical networks as suggested in
Chapter 2. From this perspective, it is important to empteatiat while the Rossler system itself cannot
be taken as a precise model of the biological nature of thenlyidg neural network, it can still offer
an abstract representation of the neocortical dynamids [B2this simulationa = 0.15b = 0.4,c= 8.3
are fixed during the simulation following the numerical intigation of the lattice in [109]. This choice
of parameters has been shown to produce at the level of thedRbssler system a dynamic which can
be approximated by a nonlinear phase coherent oscillatbroyinatural frequency. Complex oscillatory
behaviour of populations of neurons have been shown to bedafuental ingredient of the brain rhythms.
Thus, the individual Rossler can then be taken as a simpleseptation for the microscopic level of a
typical neural assembly. In practice, they offer a modehefinesoscopic nodes of the neocortex, i.e. the

macrocolumns.

Single Réssler oscillator

Sensor, Space

N~
~
\ ~
AN ~ 200 O X

~
AN ~

Electrode Z <« — —¢
I
|
|
|

|+1
> O«»@H@* >O
Rossler Lattice
Source Space
Figure 3.2: Lattice of coupled non-identical Rossler Qatirs as a model for local (mesoscopic) neocor-
tical dynamics. The single Rossler system is describediegthariables;, yi, z which trajectory is drawn

by its classical attractor shape. The virtual electroddwags a weighted sum of the variabjeplus an
additive random terrj.

At the global level, the Rossler network is regulated thiotwo parameterss andd. Theg accounts
for the strength of a nearest neighbours diffusive type ofptiag, i.e. (yi+1 — 2yi +Vyi_1). The firsti=1
and the last = 50 oscillators are coupled to remove the boundary effecke flirther collective ternd
introduces a set of frequencies mismatch between the thdiVunits of the network. The Rossler system

in this synthetic example is studied using a linear distidsuof the natural frequencies as follow

W =w;+0(i—1), (3.2)

wherew, = 1lrad/sis the characteristic frequency of the first elenientl of the lattice. The parameters
€ andd are designed to simulate the concept of functional intémratnd segregation which is at the basis
of the complexity behaviour of the brain dynamics as intigtliin Chapter 2. The coupling strength
€ contributes to merge the dynamics of each single oscillatdte the frequency mismatch tends to

keep them apart. This property is indeed a common featureetikly coupled dynamical systems which
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emphasizes the interest they received in the last few yean®tel brain rhythms.
The macroscopic aggrega®t) at the mean field level is designated as the superpositidredignal

of each Rdssler. This quantity is measured by the electroptapelectrodes and is given as follows

0 = £ 5 (0 +() 33)

whereg(t) is a source of additive white noise which simulates the commedernal disturbance of
EEG/MEG sensors. The choice of the variajlés considered to form the aggregate signal because this
coordinate has been shown [1] to better capture the degféegdom of the underlying system. The single

Rossler system is thus more observable fgptinan fromx; or z.

3.2.2 Simulation

Following the numerical analysis of this chain [62; 109k frequency mismatch is fixed &t= 0.009 dur-

ing the simulation. The coupling strength is varied vtk 4,2.5,1.1,0.6,0.4 in order to obtain a pattern
of respectively 23,5,6,7 clusters. These values have been set manually since a ammirariability of

€ destroys the structure. The parameters chosen duringrthdadion are summarized in Table 3.1. The
numerical integration is performed in Matlab using the Rexgitta Ode45 routine. The simulation was
computed from 0 to 5 x 10%s using a step of @s. HowevelO(t) is subsampled at 1s to prevent consec-
utive time points of the mean field becoming too correlated. d&scribed in the following section, this
procedure is necessary to avoid the window of analysis beaptoo large. Therefore, the total number of
points available for the simulation is® 10*. The first 5000 points which may contain the initial transien
effects are discarded (the burn-in samples). The dataaéeitiuring the investigation thus contains 20000
time points. An observational noise componéig added to the data which is sampled from a zero mean

Gaussian distribution with standard deviation equal tdb¥testandard deviation @(t).

Rdssler simulation
Fixed Parameters Detuning | Coupling | No. Clusters

eE=4 2

a=0.15
e=25 3
e=11 5

b=04 5=0.009
€=0.6 6
e=04 7

c=83
e=0 No Cluster

Table 3.1: Simulation values of the Rossler system parasiatel correspondent number of cluster found
in the lattice.

In Figure 3.3, the numerical analysis of the Rdssler systepresented after settiregg= 2.5. In this
figure it is possible to notice the emergence of 3 macro alsigtesynchronisation. This is shown by its
similarity matrix computed using a measure of bivariategghsynchronisation between all the possible

combination of Rdssler systems: the Mean Phase Cohererne€)Ms shown in the Appendix A. The
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Phase synchronization Y

Frequency distribution in the lattice
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Figure 3.3: Simulation of 3 clusters of synchronisationha Rossler lattice witls = 2.5 andd = 0.009.
The analysis is based on 20000 time samples without thetefféwe transient. The measure of mean phase
coherence (MPC) shows that the 3 clusters are locally cdupléhe top left figure. In the top right figure
three frequency plateaus are found in the system and plagieithst the uncoupled case. The bottom right
graphs represent the mean field of the system using the Bgua8. The coupled case and the uncoupled
case are plotted against each other which shows differenamplitudes due to the mean field coupling.
In the bottom right picture it is shown the frequency corgenftthe mean field. 3 main peaks are clearly
visible due to the clustering of frequencies of the undadyietwork.

similarity matrix reveals that the synchronisation happbkatween nearest neighbour elements as shown
by the interdependency pattern along the main diagonak Whs expected by the initial topology of the
lattice. In Figure 3.3(b), 3 plateaus of frequency lockimg astimated from each oscillator and they are
plotted against the uncoupled scenario, £¢e= 0. As in the plot of the phases, this plot shows frequency
specificity at local level. In the bottom figures, the plotsiué aggregate signals are presented. The left
figure, shows the comparison between the mean field due ttechg and the one given by uncoupling.
The right figure shows the frequency content of the simulategled system.

In Figure 3.4 a similar plot to Figure 3.3 with= 2.5 shows the emergence of 7 clusters of synchroni-

sation using a coupling valie= 0.4.
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Figure 3.4: Simulation of 7 clusters of synchronisationhia Rdssler system with= 2.5 andd = 0.009.
The plots shows similar properties than the one in Figurev®igh is referred to for an explanation.

3.2.3 Discussion

From the bottom plots in Figure 3.3 and Figure 3.4, it is dassto notice two important points: the
power of the signal increases with the coupling and threesamdn main peaks are clearly emergent in the
frequency spectrum. Therefore, both characteristics edaken as measures to discriminate the underlying
synchronisation. However, the simulated system desciieed is only the best case scenario for these
measures.

Clustering in frequencies can be taken as a measure of@agendlence only in this particular case which
is difficult to find in real signals. As discussed in [62], thésRler system with the previous setting consists
of phase-coherent oscillators which normally presentspshhase-locking at different frequencies [117].
Real cortical models are consistent with non-phase-coleseillators, instead [62]. Therefore, it is possi-
ble that a more complex profile of the frequency spectrumegtlctromagnetic recordings emerges which
is normally the case in real data.

In the power case, as shown in [61] in simulation, the poweckronisation relationship may be more
complicated due to the underlying coupling and to the olzem function. Global power decrease has
been shown during the increase of the coupling for diffecoices of the parameters in Equation 3.1 [61].

It is possible that the increase of the power happened id$tespecific frequency bands. Thus, it may be
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possible that there is no direct mapping between global poweease and synchronisation. Nevertheless,
it is a general conviction that power and synchronisatienganerally proportional at the mean field level
and several works have considered power as a measure ofr@p(Ifil15] and reference therein). We are
not aware if the latter point has been rigorously proven.

A measure based on dimensionality and complexity, insiesatesigned here to capture linearity, mea-
sured by spectral methods, as well as nonlinear coupling-ph@ase-coherent oscillators can, in fact, give
rise to phenomena of generalized synchronisation [124§.tiidjectories of the system are thus attracted to
the synchronisation manifold, the dimensionality of whichn be estimated by the methods proposed in
this thesis. Therefore, while with this simulation lineaetimods based on power and frequency spectrum
can be employed to characterize synchronisation,it is@epehat methods using state space reconstruc-

tion are more generally applicable.

3.3 State Space Reconstruction

The WCDS Rossler system in Equation 3.1 and Equation 3.3 &ticplar type of state space model as
described in Equation 1.1. It is proposed again using theesastation:

RO~ s xw. o +&
dt (3.4)
x(t)=  h(X(t))+n.

The general purpose of a state space reconstruction appcoasists in extracting information from
an underlying dynamical system using its observable sacgi®{x;}-_;. It is thus designed to solve an
inverse problem of system identification in a model-freesci®.

The main step and the core of SSR consists in building a réemed spacX which is equivalent to
X such that some of the propertiesXfare in common and can be estimated usingrhe mathematical
significance is associated with the existence of a funatién which relatesx to X, i.e. X = ®(X). In
particular, it is convenient that this transformation ftioc is anEmbeddingwhich means tha®(-) is
locally differentiable and so is its inverse. If this condlit is satisfied, it guarantees that it is possible to
extract some property of the original space dynamics usithg the reconstructed spaces. These features
are known in the literature agometrical invariantsf the function®(-) [82]. The dimension of the space
X is an invariant and thus motivates the use of these toolfiéogoal of this thesis [82].

The problem of connecting the dynamics of the original stpi@ce with its observations is addressed
in this thesis using a particular instance of thethod of delay embeddiripr a general review see [82]).

It is the most common approach of state space reconstruictionder to choose observables points to
build the space&. In [111] it was shown numerically that given a scalar timeese{x }- ,, it is possible
to reconstruct an equivalent multidimensional state spddés original attractor. A simple procedure

considers a set of vectors as follow

Vi = (X Xit Ty -+ Xip (M—1)1) (3.5)
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ORIGINAL SPACE

OBSERVATION SETS

RECONSTRUCTED SPACE
Figure 3.5: Sketch of the state space reconstruction.

whereM is known in the literature as tBenbedding dimensicendt is theTime delay For continuous
systems with sampling time;, the time delay is defined as= pts with p € N. The composition of the
time series segmen{s; } | is iterated alondx }-_;. This set of vectors can be combined in the following

trajectory matrix

Vi Vigr o VitK
Vitt Vitor 0 Vig(k+1
V= _ o ey (3.6)
VirM—Dt VieMt 0 VigK(M-1)t

whereK = L — (M — 1)t is the number of delay vectors M. The trajectory matri®/ represents the
discretisation of reconstructed spatas seen by its scalar observations. The relationship of/alguice
betweerX andX usingV was demonstrated in the last few decades,in the contextafrdical systems by
Takens [140] who show that for a generic choice of delay coatd, a system attractor with dimensions
can be embedded ®?°+1. In this condition there exists a functid(-) between these two spaces which is
a diffeomorphism. In [125], another important result extedithe previous result for dimensibrwhich is
fractal. As stated in the introductory part of this chaptes,hypothesis of low-dimensional chaos explaining
the brain has been revealed as too simple [134] and theré&fakens’ result is enough for the purpose of
reconstruction of a general dynamical system.

By construction, the method of delays is developed usinggeichannel time series which is consistent
with the task of this chapter. However, it is important to éragize that the success of the method of delay

is subject to an observability condition [93; 1]: the singhannel time serie§x }-_; needs to sample all
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the degrees of freedom of the underlying brain dynamicss phoperty is specified in Takens’ theorem
by the term "generic choice of the delay coordinates" [125]practice, many time series contain several
difficulties which may destroy this assumption such as fipitecision of the data and noise. The above
theorems do not take into account these factors becausatbeynly existence proofs [113]. Therefore,
the assumption that the underlying neural activity is obeele from the electromagnetic sensor chosen
needs to be confirmed. As stated in Section 3.2, the vanjabde the Rossler system, is consistent with the

previous assumption.

3.4 Manifold learning

The stage of manifold learning consists of the parametaisaf the state spacé. This operation involves
the choice of the tripleissg= (M, T,L) which is also known as the proceduretofing the embedding
Takens’ theorem guarantees a lower bound on the attract@rdiion but it does not give any indication
how to choose this bound. More importantly, as discussedqusly, the theorem is only an existence
proof. Since the development of Takens’ theorem, the mamadithe state space reconstruction research
has been focused on finding suitable methods. As discusd&d3h there is still not a universal answer
to the best choice of parameters and most of the methodsméiguristic approaches and advices. In this

work the SSA approach to space reconstruction is considmealse:

e Itis a simple approach of tuning the embedding in presenceabdidata.

e Itis a particular case of delay embedding which has beenishowe optimal for short a noisy time

series.

e It provides information about the decomposition of the gpfac the feature extraction stage.

SSA is initially based on setting the time defey- 1. The trajectory matri¥/, in this case, is built by

choosing consecutive time points from the data:

\7k = (Xi,Xi+1,.--,Xi+(M,l))- (37)

Interestingly, with SSA, the dimensidv becomes the only parameter to be varied which initially
reduces the degrees of freedom of the tuning procedure. ésrsin [53; 89], the SSA approach and the
traditional method of delays are equivalent because treyedaited by the produ¢M — 1)t which defines
theWindow Lengtity, of the embedding[20], i.ety, = (M — 1)T =. This means that the two methods are
equivalent for constant values 6f [89] according to [89]. However, in order to keep constaetphoduct
(M — 1)1, the lengthM using SSA needs to be very long which make the delay vectgtgyhcorrelated and
thus the reconstructed spaXeedundanti! >> 2D+ 1). In practice, SSA is thus consists of the follwoing

stages:

e Embedding the time series as described in Equation 3.7. stajsinvolves, as discussed, the only

tuning of the parametaty, = M and the length of the segment
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e Factor the reconstructed spa¢evith singular value decomposition (SVD), and search forldfneer
dimensional subspaéé This procedure involves estimating the effective dimensiofX which is

a characteristic considered in the next feature extractiage.

Window length

The window lengtht, is equal to the dimension of embeddikgwhent = 1. In [88], the author shows
that the right choice fory is to set it as the mean orbital periag if the system is continuous. This
quantity represents the distance between two successits 8f a neighbour in state space. If the time
series is oscillatory, as in the electromagnetic degaigpresents also the distance between two main peaks
of the main oscillation. A visual inspection of the trace tenhelpful to extract this measure if the main
oscillation is clear enough to be captured. This measurtassisby the authors in [88] is a straightforward
and easy solution if used with real data. As described in, @€ previous condition or, can be derived

in the frequency domain using the SSA approach in order taiolthe following lower bound

M > fs

- )
1:Low

wherefs = 1/1s is the sampling frequency arfdow is the lowest frequency of interest. In the previous

=1 (3.8)

)

Rossler system it is possible to use this method using tlogiénecy content of the signal.

Segment length

In the dynamical systems literature the parametéor equivalentlyk) has a secondary importance with
respect taVl andt because studies on synthetic chaotic data consider datesking as 0points K >>
M) [82]. However, for real data and in the SSA literature shione series are often evaluated and this

parameter influences the choice of the embedding. The fwitpadvice are considered:

e Afirst condition is given by the relationships with the windtengthty,. It is meaningless to takey
longer than half the length of the time serlg84]. This assumption in fact ensures that the matrix
V is full rank. It is interesting to notice that increasing titae series length would automatically

increase the bound on the choicergf

e Another important requirement is set by the oscillatoryuratof the electromagnetic signal. As
discussed above an optimal choice for the window lengthviergbyty = 1. The sliding window,
thus, needs to contain at least one oscillation to imposeagsumption. In practice, it is important to
assume thdt contains more oscillations of interest. The ratjg/L has to be as large as possible in

order to assure an higher degree of statistical confideriie [5

e The analysis of the brain is intrinsically non-stationarg, epileptic activity. Takind too large
would cause different dynamics to be averaged and impdeatires or changing points can be lost.
It is difficult in this case to have a golden standard methoajttimizeK and it is useful to proceed

with a trial and error paradigm.
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Singular value decomposition

In order to study the reconstructed spatethe trajectory matrix/ which results from Equation 3.6 is
decomposed using singular value decomposition.
1

WV =uszT (3.9)

whereX = diag(o1,---,0m) is the diagonal matriM x M of the singular values;. Z is the matrix
M x K of the eigenvectors or right singular vectotd.is the matrixK x M of left singular vectors. The
SVD transformation describes the space spanned by the elinigackctors irV. It can be shown th& are
the eigenvectors of the estimated covariance m&trdndU are the eigenvectors of the estimated structure

matrix C defined as

1

Cy = WVVT (3.10)
Cv = %VTV (3.11)

The singular values; are the square roots of the eigenvalues of i¢andCy . As discussed for in-
stance in [28; 20], the SVD approach to find the eigenstreaifithe embedding space is less sensitive and
more robust to noise than the traditional covariance mapproach. For this reason, SVD is considered in

the rest of the thesis.

The set of singular values; gives the variances of the reconstructed spdoghen embedded in a
euclidean box of dimensiav. This structure can be inspected graphically usingtree Plat This graph
is represented by plotting the singular valued/oh decreasing order of magnitude; > a2 > --- > 0).
Alternatively, the eigenvalues? or logo? can be used to build the scree plot in the same manner [75].

An example of a singular spectrum is shown in Figure 3.6 aracting an appropriate trajectory
matrix from one of the real datasets available (IEEG datagdt is possible to notice two distinct parts of
this graph which is characteristic of this kind of plot: affjpart which is specified by a progressive drop of
the singular values magnitude and a second part in whichessin®o; are similar in value and the graph
flattens out.

At the limit of infinite data [ — ), in the case of the time series is a stationary random psceed
if the model of the noise is additive, the mat®, has the Toeplitz fornp(|i — j|ts) wherep(-) is the
autocorrelation function of the process anfl= 1,---,M. In this situation, it is possible to factorise the

trajectory matrix as follows

L
VK

where the decompositiofUs, 2s, Zs} and{Un, Zn,Z } defines theSignal subspacand theNoise sub-

v=[us U, | is ZO |z z, }T (3.12)
n

spacerespectively. In particula¥s = diag(o1,--- ,0m+) andZ, = diag(owm+, -,0m) Where the indeM* is

reffered here as the Signal-to-Noise (SNR) cut-off point.
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Singular Spectrum Description
18 T T

1.6 h

Signal Subspace
12} / |

0.8+ R
0.6 Elbow -
Noise Subspace
0.4+ R
0.2+ R
O Il Il
0 50 100 150

Embedding Dimension

Figure 3.6: Example of the singular spectrum taken from B3 dataset A. For this plot an embedding
dimensionM = 150 andrt = 1 is considered (read the following section for a discusatoout this choice).
The two parts of the plot, i.e. signal subspace and noisepsighsare shown. The Signal-to-Noise cut off
point can be distinguished by the characteristic "elbovelpghof the singular spectrum

The problem of estimating the valueMf* is discussed and reviewed in the following section of featur
extraction. Here, it is important to emphasize that cormmuthe SNR cut-off poinM* is equivalent to
find an effective time lag* = 1w/M*. Therefore, while reducing the degree of freedom in the ahof
embedding parameters to oy, the method of SSA introduces into the problem of tuning theect
embedding the value of the SNR cut-off poMt. Although the SSA and method of delays, i.e. tuning
M andt, have been shown to be equivalent, in [89] the author corsltitht SSA has better performance
for short and noisy time series respectively. This opin®shared in the standard literature of SSA (for
instance [52; 54]). For this reason, SSA seems to fit beteesthdy of electromagnetic signals because
firstly they are intrinsically affected by noise and they tzams artefacts. Secondly, their analysis needs

typically to handle finite size length time series.

In Figure 3.7, the normalized singular spectrum relativthtodifferent clustering regimes in the case
of the Réssler system is shown. The analysis is performedgake last. = 1500 points of the simulation
and using an embedding dimensiontaf= 200 as discussed previously. The choicd.a$ considered
to simulate the typical amount of time points used duringahalysis of real electromagnetic data. The
sampling rate is around; = 256Hz and the segment length is 4-6 seconds. From theseiplotssible
to notice a qualitative and mild difference in structuretod singular values which the feature extraction

approaches in the next section intend to give a quantitasitimation of these differences.
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Figure 3.7: Plots of the singular spectrum for differenstéuing scenarios of the Rdssler system. In these
figures is possible to notice a small qualitative visualetiéice in the elbow point of these spectra. The
elbow point is moving forward to a larger value if the numbécloster in the Rdssler system increases.

Therefore, the following feature extraction stage is desifjto compute a statistic which expressed this
difference and thus identify the underlying change of theteay synchronisation.
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3.5 Feature extraction

In Section 3.3, it was discussed that under generic comdiiias possible to build an equivalent state space
X of the underlying brain dynamical systen SSA is used to composé together with a suitable SVD
decomposition of this space. In Section 3.4, a qualitatigpéction of the singular spectrum of the toy
model discriminates different underlying synchronisatiegimes. Therefore, in this sectiome consider
the task of extracting features in order to help to charaiethis difference in synchronisation regimes,
guantitatively

Two families of approaches reported in the literature maygdresidered: firstly, a set of methods ad-
dressing directly the problem of finding the dimension cffipoint M* where the singular spectrum levels
which divide the signal to the noise subspace; secondlynéyfaf information theoretical methods based
on the distribution of the singular spectrum is employed [P¥6; 49]. The following sections investigate

them both.

3.5.1 Dimension approach

The Signal/Noise cut off (S/N) is an important parameterchitis generally related to the problem of di-
mensionality reduction in data analysis [11]. It is commordéal with highM dimensional datasets for
which elements exist close to a much smallerdimensional manifoldNI* << M). Principal component
analysis (PCA) [28; 75] is one the most common techniqueshnvéearches favi* directions in the space
spanned by th# dimensional data that contribute the most to its varian€hse.projection of the original
data to theM* dimensional subspace its maximized. While this transfeionaeduces dimensionality of
the data, it retains most of the information: the distande/ben the original and the projected data is mini-
mal. In practice, the problem of the cut-off point in thissfeeis a particular case of PCA since it considers

the covariance structure of ti, trajectory matrix.

Visual inspection of the scree plot is the simplest methdihtbthe cut off [75]. One needs to look for
the elbow as in Figure 3.6: the demarcation point betweesitreal/noise subspace. However, firstly the
demarcation point using visual inspection can be a subgotieasure especially in the case where there is
a smooth transition between signal and noise subspacasn@gcan automatic algorithm [148] is required
which is needed when the dataset is big, as in the case of tii@ddEa, or when a moving windows analysis
is performed, as for the iEEG in Chapter 5. We refer to [75]da@omplete survey of the most common

recent techniques. Some of the possible methods consithetteid work are:

Percentage RatioOne of the most straightforward solution is to decide a padhreshold based on the
total energy of the singular spectrum. For this purposeigdction a different normalisation scheme

than Equation 3.24 is considered which is given by

N Oj

From the properties of the singular spectrum, triviiigaxa; }M ; = 1. Given the following:
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01+02+ -+ Omx
01+02+ -+ 0um

where the threshold quantity, is a value between 0 and 1. In particular, a common thresisold i
chosen between. Dto 0.99 depending on the structure of the signal [75]. Giygrthe value oM*

is chosen in order to satisfy the above inequality.

Gradient Cut-Off In [62], we used a simple alternative method which aims sjpadly to find the elbow
of the singular spectrum. This approach looks for the diffiee between sequential valuesapf
in order to estimate the poifd* where the singular spectrum starts to level off. In parécuthe

statistic is given by

0n71 - Gn S Gmaxyg, (315)

whereomaxis the maximum difference of the gradient across the specandyy is the predetermined
threshold for this method. If the normalisation scheme indpn 3.13 is used, themnax= 1. In
[62], yg is set to 5% obmax In order to avoid problems with eventual flat plateaux bging to the
signal subspace, the search for the cut off is backwardst serts from the least significant singular

values.

Surrogate Data This method is based on the production of an appropriategate dataset based on the
null distributiona?. For instance, a Monte Carlo scheme can be consideredladtestimation of the
noise processing [52]. The point where theexceeds 95% of the distributimf is retained as the
estimate oM*. Alternatively, without a model of the noise, it is possibberesample the data using

the method of bootstrapping [149].

The previous techniques have some drawbacks considegnglijective of this thesis. The first two
approaches contain a subjective threshold to be set whittussdependent on the signals analysed. The
third family of approaches would require a computationtdmsive procedure of surrogates. Moreover, the
last procedure would be advantageous if the noise of the hi#aown a priori. The noise level if not
accessible from the data available and its estimation woe&t to be addressed during the experiments.
This would require a parametrisation of the noise model.[52]

In [62], we already developed the second method in the ligthwve referred to. In this thesis, the main
approach which automates the process of estimatidvi“af based on information theory. This approach
is model free and is derived from the problem of model ordesctien in regression analysis. Given some
data, one needs to find the model that gives the best germi@iproperty. The order of the free parameters
needs to satisfy a trade off between the fit the model canmobta its effective complexity [10]. Informa-
tion criteria (IC) have been used for this purpose in ordgreoalize the bias of the maximum likelihood
of the data adding an extra penalisation term. Considenhiaggrminology used for space reconstruction a
general IC is given by

IC(M*) =log P(v1,Vz,...|@)+C(M) (3.16)
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whereP(v1,vy,...|O) is the family of probability distributions parameterisegl the maximum like-
lihood estimated of ©. C(M*) is a function of the adjustable free parameters of the mottel[28],
for instance, two choices @(M*) are considered which account for two well known informatiotices

Akaike’s Information Criterig AIC) and Maximum Description LengtfMDL).

AIC(M*) = —2log (P(v1,Vz,...|0)) +2M*, (3.17)

and

MDL(M*) = —log (P(vl,vz,...|é))+%log M*. (3.18)

Since the main goal of this thesis is not to compare the @iffechoices of the penalty function, the
method based on MDL is adopted a priori. In this context, asudised in [28], a closed form BIDL(M*)

can be found only ifv; }K ; are considered i.i.d Gaussian distributed random varable

MDL(M*) = —K(M* —M)log W(N) + %(ZM —M*)log M*, (3.19)
where

~ ~ ~ 1
(Om+ +10M+42. .. O MW7
i (Ome 41+ 0w y2+ ... +0m)

Y(M*) =

(3.20)

Where{éi}i"il is the normalized spectrum as defined in Equation 3.13. Tésept method has been
used in the problem of Blind Source Separation (BSS) to egérthe number of underlying sources. While
it has been shown to be a suboptimal estimate due to the pre@aussian approximation [28], it has also
demonstrated good performance in retrieving the degrefesedfom of the underlying system. However, as
discussed in [28], if thé¢Gi }M . of the noise subspace are close to zero the formula can preseerical
problems. Therefore, in the following analysis, a regskion term added to the normalized singular

spectrum is introduced,

G = G +A, for i=1,--- M. (3.22)

whereA is set in this thesis to assume a value simulating an idedor@amoise term which is added
to the original signal. Practicallyy adds an extra parameter to the method for which a furtheiigtiuis
needed to be tuned. In the following analysis, the impaattofthe automatic computation of the cut off is

considered.

Analysis

The first part of the analysis intends to verify that the measudentify the correct number of clusters
during different values of the Rdssler system coupling. fiean fieldO(t) is computed firstly as described
in Section 3.2 with a mild amount of noi€e(5% of the standard deviation of the signal). The analysis
considers a segment of length= 1500 which results in the plots in Figure 3.7. Figure 3.8 shole
behaviour of thevi* with different parameters of the numerical regularisalioA qualitative inspection of

Figure 3.7 suggests that the regularisation term is negesseae there are a large portion of the singular
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values close to zero which can lead to an instability of thelMilgjorithm. The analysis dil* is shown as a
function of the window length,, from 0 to 150. A second Figure 3.9, shows more closely theopaidince
of the MDL algorithm: Figure 3.7 is reproduced including thedue of the cut off poinM* at 1y, = 150,

superimposed.
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Figure 3.8: The plots shows the value of the cutMffas a function of the window length, for different
clustering regimes and for different value of the paramet&nly in the case (c), with the value df= 0.05,

the clustering regimes can be distinguished between eaehn when the value afy, = 90, i.e. no overlap
between the number of singular values estimated. In the oises the discrimination is not possible since
the number of singular values overlap. This figures showslémendency of the MDL algorithm on the
parametel. See the text for further explanation.

In Figure 3.8(a), we start by consideriig= 0. Firstly, from this parameter choice, the different clus-
tering regimes (apart from theo Clustersand the 2Clusterg cannot be distinguished. Secondly, from a
qualitative inspection of Figure 3.9, this valued$eems not to correctly estimate the elbow of the singular
spectrum. A better result seems to be achieved using a soratkeno value oA = 0.005: in Figure 3.9
this value ofA produces a cut-off point close to the elbow of the singulacspim while slightly overesti-
mating it. In Figure 3.8(b), however, this setting stilll§aio discriminate between the clustering regimes.
With A = 0.05, as shown in Figure 3.8(c), the MDL algorithm seems to be tmbdistinguish the different
synchronisation regimes whety = 90. After the latter value of the window lengthl* converges to an
horizontal estimate. From an inspection of Figure 3.9, meee this choice of regularisation is consistent
in most of the figures with the big drop in the singular spettr&inally, Figure 3.8(d) considers the case of
A = 1 which is shown to be too high and tends to further penaligevétiue ofM*. In particular Figure 3.9

does not result in a correct discrimination of the undedysginchronisation.
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Figure 3.9: Plots of the singular spectrum for differenstuing scenarios superimposed with the cut-off
values as a function of the parameteiThese plots show the cut-offs computed in Figure 3.8 in #se ©f
Tw = 150. See the text for further explanation.

It is interesting to mention that for low values of the windemgth ¢ < 30), the algorithm in all the
A cases presents some numerical instability probably dueetsrmall values of the singular spectrum. In
this range of the window length, neither values\ageem to be able to regularize the solution sufficiently
since no discrimination of clustering regimes is possilihepractice, this is not a problem because values
of Ty < 30 are unlikely to be a valid embedding.

To summarize, while the MDL algorithm aims for the automatid the signal-to-noise cut off point,

in practice it requires the tuning of a small parameter tdeaxeha good discriminatory performance in the
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case the signal subspace is low dimensional.

3.5.2 Complexity approach

In previous studies, the concept of complexity of the systerderlying the observable data linked the
singular spectrum to the analysis of electromagnetic $gi®a; 146]. Consistent with the discussion in
this thesis, in [97], the authors considered the distrdyuéind the shape of the singular values, and not only
the cut-off point, in the reconstructed space as possilita @formation in order to estimate the degree of
complexity of the underlying neural system. In this thesi® solutions based on information theory were

designed to look for a simple description of disorder of tletribution of the singular spectrum:

Singular Spectral Entropy Entropy is a well known information theory concept which m&@s the de-
gree of disorder of a system [31]. Given a probability fuoctp(x) sampled from this system,

Shannon’s entropy is given as follow

H(x) = —Ellog(p()] = — | p(¥log(p(x))dx (3:22)

The main point considered in this section is to use the nozedlsingular spectruniéi}M, as
pseudo probability distributionin fact, the distributions of the singular values in thectpem shows
the directions in the embedding spaces where the SVD findahance which explain the data the
most. From the inspection of Figure 3.7 the singular valeads to be more distributed around the
first part of the plot when the system is more synchronizedthie system is less complex. Consistent
with [97], a measure of entropy is employed to evaluate tlakipess of the singular spectrum. The

measure o€, can be thus given by

M
Ce=— Z Gilog(Gi), (3.23)
i=
The spectrun{G; }M; is normalized as:
N Oj .
0j=——, for i=1---,M. 3.24
=S (3.24)

Singular Spectral Fisher Information An alternative concept in information theory is given by Higher

information which is defined as follows

2
Ci(0) =E l(al%ep(e)) ] , (3.25)

whereP(0) is the likelihood function associated to the the param@té() is the information oB
associated to a sample BF observation which is averaged by the expectation opeEtbr Using

the discretisation of the@ domain it is possible to show that

M ) — P(6:))2
Cf(e):i; (P(6I+I1:’)(6i)|:)(el)) ' (3.20)
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If one consider$(6;) = o; the expression in Equation 3.26 can be used for the norndadingular
spectrum{G;}M, as for the case of th€z. TheCs, as shown in Equation 3.26, gives a method
to investigate the differential properties of the singudpectrum. TheC, instead is an integrative
method as defined by the sum in Equation 3.23. For this reéssmxpected thafs can detect finer

changes of the spectrum than e

In this thesis, the case of the spectral singular entropyismonsidered, based on previous results [146;
49] where a qualitative difference between the two methodsBG and MEG data was performed and our
investigation in the next section. In [49], these measum®wsed to discriminate patterns of EEG relative
to patients subjected to different mental tasks. In [1468lgsis of MEG signals showed that complexity
is able to characterize an experiment based on a visual igaradn all these previous investigations,
bothC, andC; were shown to provide the same qualitative information altee underlying complexity.
However, these works have also shown some drawbacks in skeofthe Fisher index in the case of noisy
signals. In practice, the computation of the derivativeBguation 3.26 has shown to be sensitive to noise
making therefor€ poorly suited to real signals. This problem was address@tBhwhere computation
of these derivatives based on spline interpolation waspmed. Nevertheless, the author, found still better

performance fo€, thanCs in his experimental investigation of an EEG case of study

Analysis

In Figure 3.10 the analysis @& is shown as a function of the window lengthy. In Figure 3.8 to check the
previous investigations about the Fisher indeéx|s plotted as well. These pictures are produced with the
same parameters as befokeat 5% of the standard deviation of the signal &nd 1500. In Figure 3.10, a
dashed line is added to the plot which shows the bound of g ¢htical maximum entropy. Give{nﬁi}i“il

and using the normalisation scheme in 3.24, the upper bou@glie given by

M1 1
{Ce}max= *_Z\ vl |09(m) =logM. (3.27)

The value{C¢}max is met when the singular spectrum is flat, i.65; i'\il = ﬁ This specific case
occurs when the reconstructed space has the same variaoss alt directions. At the limit of infinite data
(L — oo) the case of Ce}maxis the result of an embedding of white noiseMndimension. With the same
arguments{Cs } min = O since the gradient of a flat singular spectrum is zero.

The first most important point to notice is that for a relaMegh embedding both measures can capture
the different degrees of synchronisation using the meaa @¢). The opposite behaviour of ti& and
Ct metrics is also noticed, i.e. for high complexity and low ayronisation the entropy increases while
the Fisher index decreases. However,@heseems to perform less well than the entropy index when the
system synchronisation increases (sighal more complexten@ cluster€s partially overlap the 7 cluster
case). Furthermore, thi& during the tuning of,, is more noisy thaCe.

As in the case of Figure 3.8, in the clustering regimes, BathndCs level off to an horizontal estimate
beforet,, = 150 when the underlying system has clustered. This resatinsistent with the convergent

property of the reconstructed space as described in [20jag@ttractor of the system after a determinate
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value ofty is correctly embedded as described by Takens’ theoremhéudimensions would make no
difference for the signal subspace. The singular spectmuintlaus any statistic based on it, suchGas
andCs, would be stationary after the signal is correctly embeddiegbractice, this property is interesting
because it can use, as a further tuning option, the windogtter,: when the complexity indeces become
stationary the space is correctly embedded. This conveegeroperty of the singular spectrum is used in
[146] to find the optimal choice afy during an MEG case of study.

In Figure 3.10, in the case of no clusters, GeandC; do not seem to level off. The arguable reason
for this situation is given by the fact that the observabimal tends to become more Gaussian when it is
made by an higher number of complex components i.e. singleupied Rossler oscillators (large number
law) . In practice, when the signal contains random terms bighly complex (in the Rossler example both
situations are present since of the tegjrthe singular spectrum possesses an higher number of rmonzer
singular values that do not vanish for a low dimensional eddb®y operation. In the extreme case, when
the signal is Gaussian random noise, the procedure of ermgeiddjiven by the expression in Equation 3.27
in which Ce correspond to the curve Max-SSE in Figure 3.10. In the cagetof7 clusters, the amount
of noise injected into the signal, i.e. 5%, is not enough tdarmine the low dimensional nature of the
macroaggregate which therefore presents a horizont plast@mate. Since the random compon&iig
present in the macroaggregate signal, also these curvesekcactly level off if one takes a closer look.

For this last reason, a method of tuning based on the conveegaf C. may not be work for brain
signals. It is in fact reasonable to expect the synchrordmgiglity in the underlying neural network is not

as simple as in the case drawn by this Réssler lattice.

Therefore, to summarize, the findings of this simulationgass thaC. andC; can both be taken as
discriminatory statistics of the underlying synchronisattate. However, the slightly worse performance
of theCs and difficulty with the computation of the derivatives wetigimore our choice to use, thanCs

for real data. This is consistent with the previous works1dd; 49].

3.5.3 Entrop y-MDL approach
Noise analysis

The previous methods of complexity and dimensionality &le & discriminate different underlying syn-
chronisation regimes for relatively noiseless signglat(the 5% level). In this section, it is investigated
and discussed the effect of the observational ngisa the quality of these estimations. As abdyvis
considered to be sampled from a source of white noiseg i (0, og). The og is progressively varied
during this analysis as the percentage of the standardtievaf the original noiseless signal. As reported
in the literature [20], the addition of the white noi&énto the mean field(t) results in an increase of the
noise floor of the singular spectrum.

The value of the noise injected into the signal is consideetdieen 0 and the maximum peak value of
the signal itself (100%. This range is not directly relatedhe real amount of noise found in EM signals
but is to provide an argument for the stability of the synthekamples. Realistically, in general, the

percentage of noise into the signal is complex and may depetlde type of brain activity, the frequency
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Figure 3.10: Plots of th€. andCs with varying embedding dimension and for different clustgregimes.
The plots shows that without any regularisation paraméiteS; statistic is able to discriminate the under-
lying synchronisation of the Rossler system for increasaidge of the window length. F@s, the plots are
noisier and there are problems for discriminating 7 to 6telss

band of interest, the source of the noise and the measursteehniques adopted, i.e EEG/MEG/IEEG (for
discussions, references and more details in [126; 72])mdbbrain activity have signals that can go from

few pV for some auditory and visual event-related potentialstlEénd rise up to 50/ for spontaneous-
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rithms [126]. The noise can be generated within the humayw,lfspontaneous activity, muscular artifact...)
or from the environment (electrode contact, measuremeptifien, AC power...). In [126], the noise from
the amplifier of a scalp EEG has been observed to re@¢tpdt only for frequencies above the 100Hz. The
noise from electrode contact in same cases can regéh did can thus create some problems for weaker
signal [72] since the noise can be stronger of the signdf.itdée refer to the previous references for further
details.

Figure 3.11 shows the results for tBgandM* over the segment df = 1500 with a window length of
Tw = 150. The analysis is reproduced 100 times with differentdasifrom the distribution of in order
to provide error barsCe is affected by this increment as shown in Figure 3.11. Bothsuees detect an
increase of the complexity of the underlying system whick @xpected by the intrinsic nature of the white
noiseg. In terms of discrimination, when the level of noise is kna@gcan still intercept the difference
between synchronisation regimes. The presence of noigsesvieo, reduces this differenc®* becomes
stable for a large range of noise levels whesa 0.05 is set to provide the correct amount of regularisation.
In the other cases, when< 0.05 theM* changes with varying while for A > 0.05 the MDL is over

penalized as for the noiseless case.
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Figure 3.11: The&c, andM* indexes usingy = 150 as a function of the variance of a Gaussian additive
noise source, superimposed t®(t) in the x axes. The error bars indicates the standard deviation of
an ensemble of simulations for each clustering regimes. fibfuees shows that the entropy ind€x is
dependent on the amount of noise introduced as its valuesaige for increasing noise. ThE found with

the MDL algorithm is however independent on the noise if ightrchoice ofA is considered, i.e. case (c).
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Index Combination

In order to fully use the advantages of both dimensionality eomplexity methods, finally their combina-
tion is considered: firstly, the cut off point is used to eliatie part of the noise subspace and secondly, the
complexity measure is applied over the signal subspaces résults in a complexity inde.M(A) based
on entropy, wher@ as before is the regularisation parameter of the MDL. Thenritia is to use the sta-
bility to noise of the MDL with the quantitative characteti®n of the complexity of the previous entropy
index. In [146], the entropy was computed after cutting tinglar spectrum at a subjective dimension.
CeM(A) can perform the same task automatically.

In Figure 3.12, the study of this new measure is repeatedifferent values of the observational noise
and for different values of the regularisation term. As shawFigure 3.12, the new measu€eM(A) is
stable for the all ranges of noise level added to the systemreNmnportantly, the figures show that the
index is not sensitive to the choice »f In fact, for the range previously studied df 0.5 the plots in
Figure 3.12 do not differentiate and they provide the sarjeetien to noise ad = 0. In practice, when the
choice ofA > 0.5, the MDL algorithm removes too many singular values and/gtiee ofC-M (A ) does not

discriminate different clustering regimes.

Different sources of noise

Another experiment considered applies a source of colowedom noise to the mean field observations.

In this case a simple autoregressive AR(1) noise model is®rag:

Ear(t) = a&ar(t — 1) + &o, (3.28)

wheregy is the previous white noise source. In Figure 3.13 the resark shown for two different
choices ofo = {0.3,0.7} and for two different choices af = {0,0.05}. In practice, the plots show that the
source of coloured observational noise may influence theammplexity indexCen. This is particularly
shown with the higher level af = 0.7 while a mild influence is observed for= 0.3. The parametex
seems to correct this disturbance. However, includiirgo the algorithm would result as before in a tuning
empirical procedure. In this thesis, the effect of colousbdervational noise is not considered further but
instead, while emphasizing its existence is left for futtgsearch. During the practical investigation with
real datasets, the assumption of random Gaussian noise (hdd aeviation from this condition) in the

measurement system is usually considered acceptable litetfagure.

3.5.4 Discussion

There is an interesting consideration to be made concethegse of a metric independent from the level
of the noise. We discussed in Section 3.2.3 that an increfatbe @ower of the observable signal can be
taken as a measure of the rise of the underlying system symislation. As explained, this point needs to
be further elucidated since the power-synchronisatiatimiship in a complex neural system may not be
so simple.

Changes in the power of the aggregate signal will result ilnarease of the Signal-to-Noise ratio if
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Figure 3.12: The spectral entropy index in combination wviita MDL algorithm as a function of the
Gaussian noise souréemn thex axis forty, = 150. The plots show th&ey is insensitive to the noise since
for varying amount of noise th@m results constant and can discriminate the synchronisatigimes of
the underlying system.. More important@sy is independent from the regularisation paramatédrthe
latter is sufficiently small. For a larger value ®in (d), there is not discrimination between the clustering
regimes.

the variance of the observational noise is stationary dutirs variation. In practice, changes in power can
affect the noise level and thus the measure of synchroaisasi shown in Figure 3.11 if ti& and theM*
without regularisation are employed. Using a metric whimdependent of SNR variations, such as the
CeM, dischares this possibility: variations or differencesizen the values of the single channel statistic is
a genuine measure of the underlying synchronisation. Asudged in Section 3.5.3, this point is true only
if the model of the observational noise is Gaussian. Witlhad random sources tkgy was shown to
be influenced by SNR variations. Currently, during the daia\sis, the assumption of the whiteness of

the observational noise is taken. Therefore, as futuresptae following points are left open:

e The nature of the power-synchronisation relationship a¢ede clarified from experimental and/or

simulated data.

e A measure of single channel synchronisation, in order tadapooblems with complex power-

synchronisation relationships, needs to be independearty$ource of observational noise.
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Figure 3.13: The plots show the performanc€gf with a source of additive AR(1) coloured noise. For a
small level ofa in the plots (a) and (c), i.e. more Gaussi@gv can still be considered insensitive to noise
and independent of the regularisation parametéthe values 0€qy are in fact constant. With a source of
strong coloured noise, i.e. case (b) and @)y is not independent anymore to the variance of the noise but
Cem varies with it. Therefore a source of non Gaussian noise eatray the independence of tBgy.

3.6 Summary

In this chapter a synthetic model of a lattice of Rdssler [Bdors was considered which serves as an
example of local neural assemblies in the cortex. This misdektified by the weakly coupled dynamical
system paradigm as described in the previous chapters. @heahjective of this model is to test some
univariate statistics which are designed to measure theeds@f synchronisation of the underlying Réssler
system from a single channel EM signal.

Within this aim, a few possible techniques based on stateespgconstruction and singular spectrum
analysis were investigated: An empirical measure whichpaes the complexity of the underlying local
system based on an information theoretical principle; Aistta which extracts the degree of freedom and
the dimensionality of the underlying system looking at tigmal-to-noise cut off point.

During the analysis of the Réssler system it was found thattdmbination of complexity and dimen-
sionality can be used to provide a suitable method to pertberdiscrimination of different regimes of
neural local synchronisation in the Rdssler lattice. Mesgpthis statistic rejects the problem of SNR vari-

ations for white and mild coloured sources of observatiowée. The experimental relevance of the new

72



Chapter 3 SINGLE CHANNEL ASSESSMENT OF LOCAL SYNCHRONISATION IN NEURAL SYSTEMS

measur&ey is further investigated in Chapter 5 on real data.
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Analogues-RBF Granger

causality metric

The main aim of this chapter is to discuss the problem of @giefy a metric of functional connectivity
in order to estimate directional dynamical interactionisTiechnique is based on the concept of Granger
causality and is implemented by a nonlinear prediction itigm in state space which is derived by the
original Lorentz method of analogues. In this chapter a hexiension of this method is investigated using

a neural radial basis function network.

After a general introduction and references in Sectionthelalgorithm and its theoretical description is
presented in Section 4.2. Some numerical simulations usiidjrectional coupled systems are performed
to test the algorithm in Section 4.3. The experimental uskfimaings of the techniques presented here are

left for further consideration in Chapter 6 during the as#@\of intracranial EEG data.

This part of the thesis is based on integration of the workudis in [25] and [24].

4.1 Introduction

As presented in the introduction, causality is a type ofti@feship of effective connectivity which can be
defined by the coupling parameters of the underlying model éntries of the Jacobian metric in Equa-
tion 1.9 of the WCDS). In a model free scenario, i.e. usingotheervable data only, these quantities cannot

be uniquely estimated because they are solutions of aws$iég inverse problem. Granger (collection of
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his paper in [58]) proposed a weaker definition of causaitynfa-facie causalitf57]), as enunciated in
Definition 2, in data space based on a principle of predititabi his approach results into a practical sta-
tistical method for causality estimation which can leadaagneral formalism, to the followindeviation

to Markov property128]:

If P(Xik|Xi .Y ) # P(Xik|%), theny causex. (4.1)

As discussed in [128; 68] within the previous expressiomsadity can be understood asflaw of
informationamong processes underlying the two time sexiesdy. Therefore, the Equation 4.1 defines
a time asymmetric metride(x,y) and this chapter methodology, as a main aim, attempts teeasldne
estimation ofd.(X,y) from data.

The Granger paradigm has been employed in many data anddys&ins including for instance, econo-
metrics and finance [130; 70; 50; 110], climatology [142] aackntly neuroscience [92; 55; 114; 34]. Us-
ing a linear stochastic system, a totally admissible athoric choice implemented initially by Granger [56]
uses the conditional variance of the prediction error: énms in Equation 4.1 becomesx.|x,y; ) and
o(Xi1k|% ). Since for a linear system the autocorrelation and Foupiectsum are related by the Wiener-
Khinchin theorem, the literature has produced severalémphtation of causality measures based on co-
herence [56].

With the increasing interest on dynamical systems and cexity) in the last decade, several works
have considered the problem of extending the causalityiecnietiorder to address nonlinear phenomena.
Two main classes of approaches have been used to tackleobiem. A first important class of methods
is based on nonlinear predictor modelling [26; 4; 41]. Thesthods are natural extensions of the ARMA
classical approach to Granger causality. They are reldiardture in this thesis because the Analogues-
RBF method developed in this chapter belongs to the same afaschniquesMaximum likelihood esti-
mation Secondly, from a different perspective, other populatoés for nonlinear Granger causality have
employed nonparametric estimation (for a general revief@®}). These techniques are based on estima-
tors of correlation integrals, nonparametric probabiitstributions and entropy. In practice, they address
the estimation of Equation 4.1 from &mformation theoreticapoint of view. While have been considered
for neurophysiology analysis [27], these methods theynafégjuired a high number of data points in order

to obtain a statistical significant estimate of the inforioaflow.

Granger maximum likelihood estimation

Different approaches have been proposed to measure theaiitgdgn Equation 4.1. The method proposed
by Granger, and considered in this thesis, can be regardedhagzimum likelihood type of estimator of the

Markov property The two sides of Eq. 4.1 are modelled by the following regi@sequations:

Kik=Fs(q iwy) 8¢ ik = Fum (X Y; i Way) + 6y, (4.2)

where the function&s(-) andFy (-) implement respectively theingle predictorand themutual pre-
dictor andx;; is the k-step ahead predictor wfat timei. Theey andeyy are error terms i.i.d. random

processes which are assumed to be additiseandwyy are the free parameters of these models which a
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learning strategy based on maximum likelihood minimigatieeds to estimate. The Granger algorithm for

the estimation of Equation 4.1 is divided into the followit@nceptual stages:

e Divide the observable dataandy into a training set and a test set.
e Learn the regression models in Eq. 4.2 from the trainingsdita

e Compute an estimate of the prediction erregsahnde in the test set, i.eout-of-sample prediction

errors.

e Check the expression in Eq. 4.1 usinGeanger statistic G&,, &) based on the previous prediction
errors. The Granger statistic, in practice, is the caysdigtance metric which needs to be computed:

de(x,y) = G(&.8q)*"

e Assess the statistical significance of Eq. 4.1.

The last step of the previous stages, strictly speakings doebelong to the definition of the directional
metric but it is a common practice during the data analysastofor the statistical significance of its value.

Itis thus an optional step which is considered in this thasiag a bootstrapping technique.

4.2 Analogues-RBF Granger causality

This section explores a novel method in order to estimatenthigic of dynamical interdependendg -, -)
based on the maximum likelihood Granger methodology. Tthediure shows that there are many possible

solutions to address this problem. The approach of thissliemotivated by the following points:

e On the basis of the previous chapters a nonlinear metricdsgsary to detect directionality in a

nonlinear complex system such as the brain.

° IES(-) andFy, (-) are considered belonging to the family of nearest neighbmathods in state space.
They are local predictor techniques which have been shovire teery powerful and simple alter-
natives to global techniques for forecasting dynamicatesys[82; 145]. The simplest approach

included in this class is known as the Lorentz method of anads.

e A machine learning extension of the previous class of metiedonsidered in order to provide a
data-driven approach to model nearest neighbours dynafmiimilar technique has been previously
used in the context of time series forecasting [66], i.e. efloty IES(~). In this chapter, therefore, this

previous work is studied and embodied in the directionarsiépendence metrit(-, ).

Given the previous motivations, the following subsectiorisoduce the proposed novel metdg (-, -)

as discussed by the procedure in Section 4.1.

2
1G,_x =In | 3¢ ) as furhter discussed in Section 4.204.anda?, are the variance of the RMS out-of-sample single and mutual
Y cﬁy Xy

error, i.e.€x andey.
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4.2.1 Training and test sets

Given a single time series let us consider the database of examplgs It is needed in order to learn
the single regression modeng(-) in Eq. 4.2, generalizing the underlying generator of thedetich are
sampled according to the state space modelin Eg. 1.1 andutenfye out-of-sample prediction error which
is later used for the causality metdg(-,-). Before this operation, the is assumed to have been a priori
normalized to zero mean and unit standard deviation.

Firstly, the training database for thestep ahead predictor is given by,

Dy = {(Xi+kvxr)}i'\£1a (4.3)

whereN" is the number of training examples insi@dg. Secondly the test set is given by

Dy = { Xk X s (4.4)

whereN is the total number of examples of 8 given by joiningD; and D;. In practice, as a
common procedure in signal processing, the predictiopis a weighted sum of the previous past points
X, orx;t (input). D provides the examples which are used to learn the funét'gm. Dy provides the
examples to estimate the prediction erear ~

There is no need to include the whole pastor futurex,"” as input tolis(-) but only a selected set of
past points needs to be employed. Using a preprocessing istsgd on state space reconstruction this set
of points forx;” is given by)zi, the embedding vectors at each time pairntherefore, the databagg can

be transformed to be

Dy = { Xk, Xi) 1. (4.5)

As discussed in the previous chapter, approaches such asethed of delay vectors or SSA can be
employed to buildX accordingly. In order to avoid some problems with the catieh of the data, the
normalisation of the embeddingwith zero mean and unit standard deviation is further penéat before
the learning stage [90]. The same procedure, as discusgbdsisection, can be applied to the training

datasetDy given the time serieg.

4.2.2 Single predictor

As described in the regression analysis literature, thezereany possible solutions in order to build a
forecasting modelfzs(~) for a single time series. In the field of nonlinear time seeralysis, a popular
regression approach based on state space reconstrudivandy theLorentz's method of Analoguf&?]
which is a simple nearest neighbour technique used for giiedi Let us consider, as a first step, the
following prediction rule in the spac#: In a first order approximation, close trajectories of thigioal
state space ak at timei will stay close at + At for for the continous variablét sufficiently small, i.e.
At < Tp with T, the characteristic time scale of the underlying model. Tisdition results in a strong

correlation betweelX; andX;, a;. Using this assumption, we consider the set of nearest beigh U, of
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Xj, employing a general distance metricXn(euclidean for instance), such As € U if |Xi *Xj| <e

The Lorentz’s predictor is then given by,

1
|U€|XJEUg

where X;_ and >~<J+k are thek-step ahead predictors in the original spaceXpfand X;. kis a an

Xi ik = > Xjpk= ij+k7 (4.6)

integer number and need to satisfy the previous first orderogmation, i.e.kts =~ At with 15 the time
series sampling time. In Equation 4.6 and in the followingcdBssion, it is considered, for simplicity of
notation thattl containsg nearest neighbours. Singeis the hidden original space, the approximation in
Equation 4.6 needs to be translated into the observablestmies domaix whereFs(-) is constructed to

generalize the underlying generator of the data. Thergfore

Kivk = — Z Xj+ks (4.7)

which is explained by a two step procedure usibg firstly, at timei there is a search iff the set of
¢-nearest neighboub%j S ‘Elg of Xj such aﬁ)A(i *)A(j} < e. Secondly, a lookup procedure in the database
Dy for the correspondent entry, ¢ of the nearest neighbours embedding vecera's accomplished. Itis
important to underline that the the previous first approxiamain Equation 4.6 holds in Equation 4.7 due
to the diffeomorphic conditions induced by Takens’ theorenich relatesx to X.

A possible extension for the predictor in Equation 4.7 iswtwrporate a weighted sum depending on the
manifold shape into a neighbourhood of the time paiffthis means that the previous formulation includes
a smoothing term which weights each neighbour relative¢aiistance from the centiq. It follows that

c ~ ~
ii+k == Z CD(XHXJ 7WX>Xj+k7 (48)
=1

where the kernel functiom()A(i,X,Avvxj) is imposed to satisfy the summation constraint

Fal

(X, Xj,wy) =1, (4.9)
1

i
with wy the free coefficients which parametrise the previous kewieth need to be estimated ac-

cordingly. The Equation 4.8 is known in the literature as Medaraya-Watson regression estimator
(NWRE) [65]. If we choose the simplest kernel function as astant, i.e.®(X;,X;) = 1/ if X; is one

of the nearest neighbours Xf otherwisew(X;, X ) = 0, the approach is equivalent to Equation 4.7. In the
literature, this simplest case with uniform kernel can berred to as the-nearest neighbour estimafie0]

or thezero-th orderpredictor [127]. As described in [60], the use of variousieds can result in different
types of predictor such as the kernel estimate and theipadi estimate.

In this thesis, as suggested by the approach taken in [66jakeean intermediate approach to Equa-
tion 4.6 and Equation 4.8. In fact, instead of the keméf(i,f(j ,Wy) in Equation 4.8, which is a function
with support in the embedding space, it is here consideredlesnel function with support on the time
series domain, i.e®(x;,Xj,Wy). This original approach can be better represented andiegpldy the

neural network forward structure of the predickgy(-) as described in Figure. 4.1.
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Figure 4.1: The Radial basis function network model whiclarisextension of the Lorentz’s method of
Analogues. The variables define the embedding vector space wijlg is thek-th step ahead predictor.

In practice, after the nearest neighbours search is peefbimthe embedding spase the correspond-
ing ¢ pointsxjk in 7y are input to a neural network which will generate, as outthe, predictor point
Xi+k- In [66], a feed forward single layer artificial neural netkwavith sigmoidal activation function is
used. In this work, a Radial Basis Function (RBF) Neural Net[96] is preferred with a mathematical

representation generalizing Equation 4.6 and Equatioagf8llows

R
Kijk = ;W @ (Y) 4 wo, (4.10)
r=

whereW andwyg are the linear output layer weights; (-) are the basis functions wiR< N. The input
space of the RBF is the vectyr= {ka}?:l of corresponding projections of the nearest neighbou¥ of

In this thesis a classical local Gaussian basis functiosesl though this is not crucial:

2
‘Dr(X):eXlO(—i”X_Llrl ) (4.11)

202
with meany, and standard deviatiasy .
The Analogues-RBF approach just described is a semiparianaatiation ofmemory-basedhethods

in the pattern recognition literature [11]. Computatidpamemory-based methods such as the Lorenz
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analogues are fast in training, since they require onlydinj the database of examplzﬁ, but slow in pre-
diction since they need to seek neighbours at eachiti@ring the training, the Analogues-RBF version
is computationally slower than the Lorenz method sincequiees the learning of the RBF network. This
step, however, has the advantage of offering a better appadion of the shape of the local neighbourhood.
In order to increase the performance of the algorithm fagdatatabases during the neighbour search, it is
advisable to develop the structure of the datatﬁsasing K-D trees [30]. The latter solution can compute
the neighbours problem i@(Klog K) time comparing to an unstructured solution which requidésk?)

time if the pairwise distance ¢ embeddingl dimensional vectors is computed.

Thailer Correction

By construction, the embedding is biased towards the proloEtemporal correlations [82; 141]: Con-
secutive time delay vectors are close in the embedding dpacause they may include the same time
series points and not because of the true geometrical desain state space. To prevent this bias, the
search for nearest neighbours does not take into accouattbedding vectori‘j belonging to a window
W = 2 x tw(Thailer window around the present timg141]. Apart from increasing prediction capabil-
ities, this Thailer correction is a typical processing stagthe nonlinear time series literature during the
computation of geometrical invariants [82], i.e. corrigatdimension, but also used for algorithms of state

space synchronisation, i.e. synchronisation likelihdii].

4.2.3 Mutual Predictor

The second part of the Granger causality algorithm considerdelling the conditional distribution of
the right hand side of Equation 4.1. The main problem to afdie this section is how to integrate the
information from bothx andy to build a suitable mutual predictéiy (+) for eitherx ory.

In the context of state space reconstruction, this questimnbe more generally related to the issue of
building a multivariate embedding [82]. While the problefruaivariate embedding has been intensively
studied in the literature, little has been done to extend & fully multivariate method [113]. In theory,
the embedding theorems do not put any limitation on the dgioerality of the measurement vectors. The
spaceX can be reconstructed using different time series and even éfifferent types of measurements
(even using the haemodynamic blood signal from fMRI, fotanse) if one can be assured that they are
independently sampled from the underlying brain netwogq.[Some methods of distributed embedding
have been proposed for dynamical systems [13; 48; 23] amtisisd for EM data [91] but still, to our
knowledge, they have been poorly applied in practice.

In this thesis, a mutual predictor is considered which avaligt implicit construction of multivariate
embeddings by using a variant of the Analogues-RBF neurtslark forward structure of the previous
single predictor. The conceptual framework of this mettodhiown in Figure 4.2. At each time point
the set of neighbour%; of X; and¥ of Y; are computed and the corresponding time series entrigk in
andﬁ)y of these neighbours are employed as inputs'dbable’ RBF neural networkThe forward neural
network structure that follows, is applied to forecast thgpat of the RBF based on the sebry. This can

be expressed by

80



Chapter 4 ANALOGUES-RBF GRANGER CAUSALITY METRIC

R
Rk =y W®r (Y1) +Wo (4.12)
r=1

whereYy = [{ka}?X:l, {ka}sz:l] is the set of nearest neighbours projection as describadumé-4.2.
In this thesis, to reduce the degree of freedom of the methddglanalysis the choice @k = ¢, =2x ¢
has been considered.

In practice, this type of mutual predictor re-utilises tleenputational information about the neighbours
of the previous stage and leaves the RBF machine to learretiterutual forecasting rule. The results sec-
tion shows, using some synthetic examples, that this methnde successfully employed for the causal

metric designed in this thesis.

Delay Vectors Analogues RBF
Xj+k

O O----0]

O

O

—> Xi+k

Figure 4.2: The mutual predictor model used in this thesie RBF learns the prediction &f;k given the
analogues collected in theandy, separately.

During this project, some other possible solutions were &d&en into consideration. (Investigated
in [25], initially without the Analogues-RBF interface babt further developed here). Figure 4.3 shows
the schematic representations of these cases. A seconddnetthich is referred to here as theint space
approachaddresses directly the problem of the multivariate embregldy constructing a new spaﬁeand

a new database of exampt®g, (the same foryy) defined as:
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Dy = { ik Zi) hiey = { (6 [X3, Vi) 1y (4.13)

In practice, the embedding vectdr is formed from the concatenation of the two vectirsand Y
at each tima. The latter is a solution which has often been employed fdtivawiate state space recon-
struction [82]. With respect to the previous method, howgtés technique is computationally slower and
statistically less reliable. In fact, it needs an additisearch procedure: firstly, seek for the neighbours
vectorsZ,—) of the presenZ;; secondly, the corresponding entries?qfin the databaséy, i.e. Xj .k, are
considered as the input of the RBF neural network with outpyt Another issue with this method is due
to the fact thaZ is an higher dimensional space thémr Y: more points are required to offer a statistical

significant model due to the curse of dimensionality.

A third method, named thslutual neighbour approachwhile addressing the problem of directional
functional connectivity based on predictability, does swictly belong to the class of Granger causality
techniques and its usage is left for future projects. Thithioed was initially proposed in [127] to detect
dynamical interdependence and it is related to the condegrreeralized synchronisation [124]: Firstly, it
considers the embedding veciyrat time pointi and searches for the corresponding counterfairt the
partner space; Secondly, the nearest neighbbpui Y, are gathered; Thirdly, the mutual set of neighbours
back in the originaK space corresponding to tNespace neighboufé,— are considered to build the mutual
Analogues-RBF predictor. The operation 'afutual back-projectionfrom space to space is a typical

procedure of state space synchronisation techniques¥§tarice Synchronisation Likelihood [137]).

4.2.4 Interdependence Granger metric

The final step of the algorithm consists of building the dil@tal functional distance metrit;(x,y) based
on the deviation from Markov property in Equation 4.1. By ggesing the test databag¥ as built in
Section 4.2.1 using the previous single and mutual predictbe following root mean square (RMS) out-

of-sample error measure is computed as:

1 N
&= o Y (X —Kik)2 (4.14)
N+ i; i+k

In the same way the correspondenting mutual RMS is given by:

1 N
&y = F_Z\(ﬁikfxmk)z- (4.15)
=
Given the previous two error terms the following directibmeetric of Granger causality can be com-

puted:

0—2

Xy
whereo? and 0§y are the variance of the RMS out-of-sample single and mutuat eespectively. In

practice, if the information from the time serigénfluences< the denominator in eq (4.16) will be smaller
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Figure 4.3: Graphical comparison between two other passdbpbroaches considered in this thesis. a)
represents the joint space approach while b) the mutuahbeig's approach.
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than the numerator ar@,_.x will increase. If there is no influence the numerator and denator will be
equal and the measu@will be zero as the variance ratio is transformed by the lidigar. In an equivalent
way, it is possible to define the mutual influerg_.y. Equation 4.16 has been used in other studies [55]

and it was originally discussed in [51] for linear stochastistems.

Significance assessment of causality

Itis a practical and important step of the analysis to askhifersignificance of the computed causality index
in Equation 4.16. A significant value indicates the exiseeotcausal connectivity. Since the underlying
distribution of the signals and the Granger metric is notvkmoa nonparametric approach based on the
method of surrogate data better fits the purpose of thisshatier than employing results from asymptotic
distribution theory. The use of asymptotic theory for Grancpusality has been reported for instance in [51]
for the linear causality (F-test) as well as in [67] for theisality based on correlation integrals.

The method of surrogates, instead, is based on the pringifdeotstrapping [149]: new sets of data
x* andy* are resampled from the originalandy in order to destroy any causal dependence between the
two. In this way, the statistiGy_.x (or Gx_y) can be tested against the ndj distributionG;_,, (or G;_,,)

computed based ot andy* and checked for its significance using an hypothesis tefitamgework.

Circular window

Original

Bootstrapped

Figure 4.4: The circular block boostrapping method to poedihe surrogate data.

The most simple bootstrapping method consists of randomlfflsng the data points ix andy. How-
ever, this method is restricted to stationary and i.i.d.adatd it is poorly suited to time series. Instead,
in order to preserve the temporal structure of the data, &addbased on the concept of timoving block
bootstrappings better considered for the goal of this chapter [149]. lacfice, from a given time series
X, a set of segments of lengthh randomly chosen ix are concatenated to form the new time sexies
The chosen segments of data are allowed to overlap with ehaeh and their time points can be taken in
a circular way as schematically shown in Figure 4.4. Thetaitocedural step is known as circular block
bootstrapping, a possible variant of the original movingckltechnique, which is applied by wrapping the
beginning ofx with its end.

The lengthLs needs to be chosen to preserve as much as possible the depestiacture of the data but

not so large that the number of concatenated blocks becansertall [149]. It is a crucial parameter which
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has been the subject of intense empirical and theoretiodysNevertheless, available results have offered
little guidance in its selection and applicability to reakal [149]. In this thesis, following previous studies
concerning Granger causality [32; 27], it has been decidathplement the technique of trstationary
bootstrap[118] for tuningLs. In practice, this method is a further variant of the movimgl &ircular
block bootstrapping wheres is not fixed but is instead taken as a random variable drawndsoanetric

probability distribution:

Plls=m)=(1-p)™?tp, for m=1.-, (4.17)

wherep is considered to be small (following [32], in this thegis= 0.05). Within this approacHh,s is
computed several times during the bootstrapping from tegipus geometrical distribution until the time
seriesx* reaches the same length of the origiral

As investigated and suggested in [32], the method of bagiping is better performed in only one of
the two signals. Applying this technique to both signalsleen shown to introduce bias to the rejection of
the null hypothesis. In particular, since the causal médrasymmetric, the signal to resample is based on
the causality statement one wants to tess considered for bootstrapping if testi@g_.y. In practice, the
signal to be bootstrapped is thmasterof the causal relationship and not thlave This modus operandi
has been shown to increase the power of the hypothesisgeatid useful on neurophysiological data [27].

The probability that the previous indic€&—.y andGy_.x are significant is measured by the correspond-
ing P-values computed from the bootstrap null GrangeriligionsG;_,, andGj_,, using a t-test. A

reasonable threshold for the significance of the P-valusstim this thesis t0.05.

Differential Granger Index

If both Gx_y andGy_.x are significant against the surrogate test, feedback gesenay take place be-
tweenx andy. In this thesis, we are not interested in feedback processeshe strength of the separate
causal relationshipS,_x andGy_y. Instead, an eventual difference between the valu&s,.of andGy_.y

provides a test for directionality of the overall couplingieh is thedifferential Granger measure

Another possible index found in the literature is proposgd4j, where for bidirectional coupling

andcy = 02 — g2

. T S
D— is used withc; = 0f — O Y Pylxy

C1+C2 XXy

4.2.5 Optimisation

The causal metridc(-,-) is not parameter free: It contains a set of parameters wheeld o be a priori
imposed beforehand or learned from the data. They are thedufitig parameters discussed in the previous
chapter, i.e. the dimensioM, the delayt and the length of the time seriés and the RBF network
parameters, i.e the number of neighbours, the weightand the the number and the specifications of
the basis function®; (-). In this work, a two stag€ross-Validation-Proceduréypical for a maximum

likelihood estimation scheme, is considered in order t@tilme choice of the causal metric and extract its
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value: some parameters are firstly learned using the tgsei?; by a function minimisation algorithm;
Secondly, since the final purpose of building the predictonat forecasting, the rest of the parameters
can be chosen in order to minimize the out-of-sample priedicrrors in the available test sét;. The
function minimisation algorithm is thus repeated for diffet choices of these latter parameters until the
out-of-sample prediction errors is minimised.

If the predictor is used for forecasting as usually desigtiesitest sef)} is not available but it is strictly
to be considered as unseen data, i.e data that the builccipedeed to forecast. In practice, in this case
when only the training dataset is available a third set @edion set) is extracted from the training data in
order to tune the choice of the parameters (different metleadsts to extract validation set and we refer

to [10] for further details).

Radial Basis Function minimisation

The optimisation of the RBF network involves the choice @& weights\;, the number of basis functions
R, their centre locationg, and the variances? employing a function minimisation algorithm using the
training dataset. The numbBrof basis function, which indicates the complexity of the rawmetwork,
usually needs to be specified before this procedure of méaitioin. The latter is an empirical argument
which is significantly smaller than the size of the traininguaple [65] and can be addressed by cross-
validation using the test set. For the other parameters astages RBF learning process based on an

optimisation algorithm described in Netlab [103] is corsih:

e The first part of the algorithm consists of an unsupervisadi@g procedure based on the Expectation-
Maximisation algorithm [10] in order to train the hidden éayof the RBF (estimate centre locations
U and the variances?). The centres are chosen by randomised start initial K-selrstering [10]

and the variances determined by the maximum distance betiheeentres as indicated in NetLab.

¢ In the second part, the layer of the weigfis are calculated via a linear least square computation
based on the result of th, (-).

Embedding as a modelling problem

In the previous chapter, the choice of the embedding pammsetere discussed using a method based on
SSA. As described, the latter technique employs a two stsii@ation algorithm which computes firstly
the dimension of the embedding and secondly the delay parameteA similar modus operandi is found

in other classical and popularly used approaches of tuhimginbedding [82]. As a reference, alternatively,
it is possible to tune the embedding parameters using sagtation (for a detailed explanation in [76]):
The couple dimension-delagnf, 1)) are chosen, within a single step, in order to minimize thteaftsample
prediction error in the test set. As discussed in the litemgtan advantage of this method is that there is no
need to consider separatéllyandt but their values can be found simultaneously. This methed aemodel

of the data on top of the embedding such as our Analogues-RBfoach which computes the prediction
error and find the optimal choice ofr(, T)). It is not clear which is the best approach of embedding, as
discussed in [113] but with the availability of the predictee consider using a cross validation technique

to seek for the best{,1).

86



Chapter 4 ANALOGUES-RBF GRANGER CAUSALITY METRIC

Nearest neighbours

The choice of the numbegof the nearest neighbours follows the cross validation gdace. The neigh-
bourhood needs to be small enough in order to satisfy thialimésumption of the Lorenz analogues. In
practice, using the RBF has the advantage that this assamptay be relaxed since during the learning
stage points that are too far away may be penalized. In tisis, éais important to avoid to overfitting the

data and a cross validation stage is necessary.

4.3 Simulations

As for the case of single channel analysis, simulated exesrgrke investigated next, to check the efficiency
of this chapter’s directional metric. The Rdssler lattifthe previous chapter is not taken here as a suitable
example because it does not contain any nontrivial direatilow between its elements (its diffusive form
of coupling is symmetric). Instead, in this chapter, thdighof the causality metric to estimate direction-
ality in data is tested against dedicated WCDS formed by twadyelements as shown in Figure 4.5. This

choice is consistent with the following considerations:

e Asin the previous chapter, these synthetic examples aeasigned to provide a precise representa-
tion of the underlying neural system but they mimic possilagical columns interactions to test the

previous causality algorithms.

e These coupled dynamical systems are taken from previousswirthe literature where they were
considered already as possible toy models for testing talggaithms used in a second time to detect

directional interdependence in the brain.

e The aim of this chapter’s discussion is focused on the prololithe causality metric only. Therefore,
the global underlying dynamical system uses two elemeriystorsimulate the interaction between
two points at the sensor level. The problem of functionaioek analysis which requires a global

multi-elements dynamical systems is left for future inigegions.

e The signals at the sensor level are taken directly from theesponding underlying cortical regions.
While the Analogues-RBF metric was initially tested on pdakG, the causality metric in this thesis
is mostly designed to be used during the analysis of iIEEG &kielume conduction phenomena
are considered to be negligible. The problem of volume cotidn and its effects on the functional
directional connectivity is another interesting issue chhneeds to be addressed in future projects

before applying it to scalp EM measurements.

4.3.1 Discrete maps: Coupled Hénon Oscillators
Model

The following mathematical model describes the dynamidsvofHénon mapst and?” unidirectionally
coupled. This model has appeared in several previous workeport properties of algorithms for direc-
tional interactions [127; 87; 120].
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Figure 4.5: Diagram of the structure of the synthetic modsldiscussed in the following sections.

Y X1 = 14—x*+0.3u,

ui+l = Xi7 (4 19)
> Vit = L14—(Cx+(1-Cy)yi+Bv,

Virr = Y,

where, as used in the literature, the param&er 0.3 imposes two identical Hénon system while
B = 0.1 is used for non-identical systems [127]. The param@tdefines the coupling between the two
systems with a range considered in this thesis betweensafuand 1.

The analysis of causality in the Hénon system is performethitwo variablex andy of the global
WCDS while varying the coupling streng@ During the numerical simulations, the first¥oints syn-
thetically generated from initial conditiom{ = 0.9, up = 0.5, yp = 1.5, vo = 1] are discarded (the 'burn in’
sample). The choice of the initial conditions are taken ftomliterature in order to avoid numerical insta-
bility of the basin of attraction. From the rest of the simiga, a realisation of 1500 points is considered
for the analysis of causality. This realisation is morecv@ntaminated by two sources of white noise
andg for x andy, respectively. The noise terms, which account for obsemwat disturbances, are sampled
from a zero mean Gaussian distribution with standard deviaet to the 5% standard deviation of the time
series. The starting point of this short set of points is camly chosen after the the burn in period and the
generation of the noise was repeated several times in avddreck if the causality algorithm is working
for different samples. In the following, the results of oplye of these realisation is displayed. A different
choice has in fact been shown not to change the quantiticeiskgon of the analysis. From the set of 1500
points, a further subdivision of 1000 and 500 points is cd&gd. The first part accounts for the training
set while the second part for the test set.

Figure 4.6 shows as an example, the 2 dimensional state spéwoe driven systeny” and some syn-
chronisation patterns betwe&randy for some values of the coupling with B = 0.3, i.e. two identical
Hénon systems. In the latter figure, it is possible to notieedffect of the coupling in the two underlying
systemsx andy are uncorrelated in the first left figure, partially synchsed in the second one while they
switch to a state of identical or complete synchronisatibemC ~ 0.7 in the rightmost figure. Figure (4.7)

shows an example of 500 points realisation ofythiene series, showing the oscillatory nature of the system.
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Figure 4.6: Hénon map synchronisation pattecmsy for identical systems, i.eB = 0.3. The three stages
show the route to synchronisation for different values efe¢bupling

Examples of tuning the Granger metric

As described in the theoretical part, the Analogues-RBFRimebntains a set of parameters to choose.
While the internal variables of the RBF are optimized by a stages functional minimisation algorithm,
the others need to be either a priori imposed or tuned usimgss-<alidation procedure. In this section, a
few examples are shown of tuning the Granger metric’s istlggarameters applied to the case of noniden-
tical Hénon WCDS.
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Figure 4.7: An example of a realisation of 500 points of thealdey of the identical Hénon WCDS which
shows the oscillatory nature of signal analysed.

Figure 4.8 shows the tuning of the embedding dimension ferctise of the two signalsandy and
for three values of the couplin@. Firstly, it is possible to notice that for all the couplinegimes there is
a minimum of the RMS error in both time series for-3 dimensions. This value is compatible with the
effective embedding dimension for the case of an Hénonsygt@7]. Secondly, the RMS error for time
seriesy is in general higher than the correspondingrThis effect is consistent with the fact that the time

seriesy is more complex than thesincey is causally driven and thus includes the influencg.of

Figure 4.9 shows the tuning of the number of the nearest beigisc. In this case, with respect of the
tuning of embedding dimensions, Figure 4.9 displays the R8rs for the single predictogf) and the
mutual predictorg,x) based on the driven time seriggs an output. Firstly, a difference in these errors, as
depicted in all these plots, shows the detection of a caetationship fromx to y. In fact, ey andeyy are
the components of the Granger ind8y as expressed in Equation 4.16. Secondly, the optimal nuafber
neighbours in both predictors seems to be sett®8. This choice is important for the low coupling regime
C = 0.1 since an increase qf knowing that a weak causal relationships exists betweery, would result
in an erroneous difference in the erroes € g,x). For a high value of the coupling strengih(and for a
higher causal flow), the choice of the number of neighbouesdmt seem to influence the difference in
the RMS error (and the causality detection). In both cemtnal rightmost subplots of Figure 4.9, however,
a minimum of the RMS errors around-810 are compatible with the of the leftmost figure. Therefore,

¢ = 8 is taken as an optimal selection.

To conclude, the number of basis functions for the singletardnutual predictors in the case of the

driven time serieg are shown in Figure 4.10. Similar considerations discufsettie tuning of the number
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Figure 4.8: Tuning of the embedding dimension using cr@dstation based on the prediction errorspf
andey. The time delay is set to= 1 since this choice has been seen to give the minimum RMSqtieuli
errors. The other parameters which are taken constantglilmnanalysis of the embedding dimension are:
the number of neighbours &= 8 in both single and mutual predictors and the number of Basigtions
areRsingle= 6 andRmytual = 12, respectively.
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Figure 4.9: Example of tuning the number of nearest neighpin the case of the single predictaay)

and mutual predictore(y) for the driven time serieg. For this example, the embedding parameters are
considered constant to, = m, = 4 andt = 1 and the number of basis function &gngie = 6 for the single
predictor andR = 12 for the mutual predictor.
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of nearest neighbours may apply to this case. There is aelifte between, andey (visually increasing
with the couplingC) which indicates a causal relationship fronto y. The RMS errors seem not to reach
a minimum yet and the number of basis functions can thus bedased above 20. However, since the
difference betweemry andey (therefore the causal metris,y) is already visible, a suboptimal number of
basis can be tolerated. A lower number of basis functionsemer, helps to improve the computational
performance of the training stage. If a common number has taken constant for all the values@fin
order to emphasize the detection of causality at a lower lomyptrength, the number of basis functions
for the mutual predictor needs to be higher than in the siogée. This is consistent with the difference in
input dimensions between the two types of predictors arglribticeable in the case 6f= 0.1. A choice

of Rsingle = 6 andRmuual = 12 seems to bring about the difference between the RMS esyarsdeyy. For
higher values of coupling, where the causality should enster, botHRsingie aNdRmytual caN be taken with

the same value.
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Figure 4.10: Example of tuning the number of radial basicfioms in the case of the single predictor
(ey) and mutual predictorg(x) for the driven time serieg. For this figure, the embedding parameters are
considered constant 1o, = my, = 4 andt = 1 while the number of neighbours are 8 for both single and
mutual predictors.

In practice, after this cross-validation analysis, theapaaters of the Analogues-RBF metric for the
case of the nonidentical Hénon system are seirfo= my, =4, 1= 1, ¢ = 8, Rsingle = 6 andRmtuai = 12.
The other parameters are left to the optimisation of the RBiRing stage. Similar values are shown to be

consistent with the study of the identical Hénon system.
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Causality metric

Following the tuning of the parameters for the causality ringtrigure 4.11 shows the results of the
Analogues-RBF index with varying couplir@for a particular realisation of 1500 points. Figure 4.11(a)
depicts the case of identical Hénon maps= 0.3) , while in Figure 4.11(b), the same computation is
performed for the case of non-identical oscillatd8s< 0.1). These plots sketch the behaviour of the two
indicesGyy and Gyy, their corresponding surrogates (errorbars) and the salfithe synchronisation be-
tween the time seriesandy using the Mean Phase Coherence index as explained in Appandi

Firstly, as expected from a visual inspection of Figure thé,synchronisation increases with the cou-
pling: In the case of identical Hénon maps the underlyingesysreaches the state of full synchronisation
for C ~ 0.7; In the case of non identical oscillators, the couplingéases but the time serigsandy do
not become completely synchronized. Secondly, in bothszdlse Analogues-RBF algorithm can retrieve
correctly the direction of the flow between the two systemmsfoertain range of the coupling parameger
The values oGy are, in fact, emerging from their set of surrogates.

For the identical Hénon WCDS three regimes for the Grangericnean be established. For a low
value of coupling, botlGy, andGyy cannot be distinguishable from their surrogates and thection of
the information flow is not estimated. For an intermediatersith of couplingGyx becomes significant
and it increases its value correlated with the rise of theclsgamisation. Gyy remains indistinguishable
from its surrogates. Finally when the system becomes fylhclkronized both directional measures are
significant. In this latter situation, as described vispallFigure 4.6, both time seriesandy are identical
and the algorithm fails to find any directionality even if peat. It should be impossible to distinguish any
interaction between the systems in this instance, whiahtistively correct.

In the case of nonidentical Hénon maps, the figure shows samikasty with the behaviour of the
identical one. However, the directionality of the link camdetected for a larger range of coupling than in
the previous case. The two Hénon maps do not became fullyhsynized and while for high synchroni-
sation theGyy become slightly statistically significant, & has a greater value. Using the differential
Granger indexAG the directionality of the link can be successfully estindat€his latter nonidentical case
is likely to happen in real data, as discussed in Chapter Zéagter 3 for the lattice of Rdssler oscillators.
In the Rossler example, in fact, the frequency mismatalas meant to reproduce the effects of segregation

of the neural activity. This phenomenon is considered hgith® mismatch between tigeparameter.

4.3.2 Chaotic dynamical systems: Coupled Lorenz oscillators

A second example considered is a continuous WCDS implerdersiag a coupled Lorenz system. This
example was included in [87] for a study of synchronisatiotriot for causality. This WCDS mathematical

formulation is given as follows:

Xl = 10(X2 — Xl)7
X=< X2 = x1(28—x3) —Xo, (4.20)
X3 = XX — Sxs,
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Analogues RBF Granger Causality — Identical Henon Maps
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Figure 4.11: Estimation of the Analogues-RBF Granger radtn the identical WCDS Hénon system in
a) and the nonidentical system in b). The Analogues-RBF @rametric successfully detects causality in
these systems during a regime of weak coupling. For highegatd synchronisation numerical problems
can arise and the directionality may disappear.

yi = 10(y2—y1),
Y= y2 = y1(28001—y3)—ys, (4.22)
ya = Yyiy2— 3y3+C(xs—Va).
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The numerical integration was performed in Matlab usingRobege-Kutta Ode45 routine using a step
size of 0001s. The sampling interval for the time series was set3e.0As in the previous simulation of
the Hénon WCDS, the first #(oints synthetically generated were discarded as the busarnple. The
initial conditions, for this example, were randomly chos@rte the stability of the system trajectories were
not particularly sensitive to this selection. The time agtiaken for the causality analysis ageandys.

The other two coordinates present some intermittent junoestd the switching between the wings of the
Lorenz attractor. A set of 1500 points, contaminated by Giansnhoise with mean zero and 5% of the time
series standard deviations, is considered (divided in E3®D500 points for training and test set). The
couplingC has range between 0 and 2 following the analysis in [87]. Mdeee there is a mismatch in
the second component of the systef(28.001 instead of 28) which is used to produce two non identical
systems.

As discussed in the previous Hénon example, after the stionjdhe internal parameters of the causal-
ity metric need to be chosen. The details of this proced@aatrdisplayed here since they have been shown
to bring about similar results of the previous example: tmbedding parameters are setp=m, = 4
andt = 2, the number of nearest neighbours are set to 8 for both namassingle predictor, the number
of radial basis function are set to 6 for both the single prtediand 12 for the mutual predictor. Figure 4.12
shows the results of the computation of the Granger metrid@®WCDS Lorenz system. This plot depicts,
in the same fashion as for the previous Hénon examples, ih&tanger indeces and the synchronisation
between the oscillators over the coupling strer@tiThe synchronisation is increasing, as expected by its
type and by the range of coupling, to a state of identical Byoruisation foiIC ~ 1.35 [87]. The Analogues-
RBF indices successfully identify the direction of the allisk for intermediate values of coupling where
the Gyx results are significant whil&yy not. When the coupling reach€s~ 1.35, the oscillators reach the
state of identical synchronisation. While both meas@gsandGyyx are significant after this coupling, the

directionality becomes undetectable and not significant.

4.3.3 Stochastic autoregressive systems

Finally, two synthetic models of autoregressive stochastin chaotic systems are considered. These ex-
ample are taken from [27] (also in [32]) where they were usedassible toy models for an entropy-based
causality investigation. The mathematical formulatiam,the case of a simple linear autoregressive model,
given by:
ag ] % T 0ot (4.22)
yi = 0.6yi-1+Cx-10,

while for the case of a nonlinear autoregressive model witbrarivial causal relationship:

X = 0.7%_1+
NAR =4 24 Cy s (4.23)
Vi = 01+04y >+ e + Wy,

wherewy and wy are sources of dynamical noise with zero mean Gaussiaribdistn and unitary

standard deviation and the coupli@gn both systems is varied between 0 and 1.
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Figure 4.12: Analogues-RBF Granger causality for the cha&@#CDS Lorenz systems. As for the previous
Hénon maps examples this index identifies correctly thectior of the flow of information for a weakly
coupled strength .

The same analysis as in the previous examples is applied ieeeAnalogues-RBF metric is estimated
on 1500 point realisations of andy contaminated by the observational noiseand& (5% of the time
series standard deviations). In Figure 4.14 the resultseotbomputations with varying the coupli@gare
shown. These plots are produced using the following setmfmaters: the embedding parameters are set to
my = my = 3 andt = 1, the number of nearest neighbours are set to 10 for bothatanad single predictor,
the number of radial basis functions are set to 4 for bothitigdes predictor and 8 for the mutual predictor.
The precise details of this choice reflects the same coraides as in the previous case and not further
reported here. It is however interesting to show the behaab the single and mutual prediction errors
ey andeyy as shown in Figure 4.13 in the case of the number of neighbdilvs RMS errors decrease by
increasing the number of neighbours used which is probalédytd the fact that the system is stochastic.
There is no clear minimum. However, the difference in theigaife, andeyx can be detected with a small
number of neighbours used: the choice of 10 neighbours is ag@ good trade-off between obtaining a
good Granger statistic and having good computational padaces.

Figure 4.14 shows that in both models the Analogues-RBFoeate correlated with the corresponding
MPC synchronisation index and the correct direction of #nesality can be found: In the linear AR case, the
increase of the paramet@rresults in an increase of the synchronisation and thus tlue d the Granger
index is above its surrogate; In the nonlinear model, theedse of synchronisation due to coupling is
detected and correlated with the MPC and by the AnaloguesiR@&ric. The latter is significant for all the

values of coupling.
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Figure 4.13: Tuning of the neighbours for the linear AR model

4.4 Summary and discussion

The main goal of this chapter is to develop a measure of dapsainformation transfer between bivariate
time series which can be used to study directional intevastin EM brain data. The outcome of this chap-

ter analysis is a novel causal method which is referred tmasnalogues-RBF Granger metric.

In Section 4.2, the theoretical description of the AnalagR8BF Granger metric is provided. This
metric derives from a general formulation of the concept tdriger causality defined by the inequality in
Equation 4.1. The latter is known as the deviation from Mangmoperty. The novel method developed in
this chapter is a possible maximum likelihood estimatothis tnequality which is based on an extension
of the Lorenz method of Analogues: It is a simple local norapeetric predictor in state space which is in-
terfaced by a RBF neural network. The latter structure isleysal with the intent to provide a data-driven

mechanisms of learning to the Analogues-RBF method.

In Section 4.3 a set of synthetic examples were simulatedderdo test the validity of the Analogues-
RBF Granger metric. These examples were suggested by thialiped literature as possible toy models
in order to investigate directional interaction and theyevemployed in previous studies concerning neu-
rophysiological data analysis. It is important to remar&ttthey are not meant to reproduce a precise
representation of the underlying neural system but theyiogossible cortical columns interactions. The

following main conclusions were drawn from the results @ $mulations.

e The analysis of the data generated by these synthetic erasipbws that the Analogues-RBF method

successful estimated causal relationships in all the eleamghen present. Firstly, this chapter metric
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Figure 4.14: Estimation of the Analogues-RBF Granger raédri the stochastic AR models. In a) is shown
the linear model while in b) the nonlinear model is shown.Als this case the Granger causality metric
detects coupling and directionality of the underlying imh@tion flow.

has shown to be correlated with the behaviour of a measuréadgysynchronisation. This result

demonstrates that the metric detects the correct strerigitte @oupling. Secondly, the asymmetric
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nature of the metric and a test based on surrogate data festeblished that the Analogues-RBF

technique correctly detects the direction of the informmaflow.

e The Analogues-RBF Granger metric detects the causalityardata for a regime of weak coupling:
when the data are highly synchronised the causal metric wigyaable to find the correct direction of
the interdependence. This phenomenon is intuitively cbrrghen the trajectory of the two systems
are the same any directional information is lost. It is thmpaértant to check during the data analysis

the value of synchronisation in order to give significancthtomeasure of causality.

e The causal metric is not parameter free and it thus requir@ptimisation stage to tune its internal
variables. A cross-validation stage is employed duringatieysis of the metric as part of the classic

maximume-likelihood scheme of the Analogues-RBF method.

Therefore, supported by the previous discussion and sijothealysis, the Analogues-RBF Granger

metric is employed for the analysis of real neurophysiatafjpatients data in Chapter 6.
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Univariate Synchronisation in

Anomalous Brain Activity

In these last two chapters, functional connectivity is stigated experimentally using real patient data:
an MEG dataset related to Parkinson’s disorder and theciaingal EEG datasets on the epilepsy disease
are presented. The main aim of this analysis is to provideesmr@thodological examples to support the
approaches of signal processing described previouslizadw gheir practical usages and discuss their prob-
lems on real data. It is not the main purpose of this thesisdwige new results for the understanding of
these disorders nor to provide specific clinical directiohthese pathologies for the subjects whose data
were collected. Therefore, these last chapters shouldisdsred as a pilot study from which further and
more detailed analysis is left for future examinations.

The two datasets presented in this thesis offer, other thaityjpical pathological challenging disorders,
two types of functional connectivity problems. For the ME&aket, the methods of feature extraction need
to address the problem of finding the pathological functi@oanectivity from a structural point of view:
What is the difference between the groups of subjects irstefmetwork analysiswith epilepsy, instead,
the dynamical side of the functional connectivity is expliirHow does the spatiotemporal evolution of the
epileptic activity develop?

This chapter address the problem of local synchronisatarguthe single channel metric developed in
Chapter 3. In Section 5.1, the detail of the data preproegssiconsidered. In Section 5.2 the result of the
MEG and iEEG analysis are reported. Finally, in Section 612 final consideration about this analysis

are drawn.
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5.1 Preprocessing

The data processing for all the material in this chapter #iag to broadband signals to reduce the com-
plexity of the analysis. Different frequency bands, as regabin the literature [106], may be associated
to distinguishing characteristics of the underlying braiachanisms. Future and more specific investiga-
tion in narrowband signals may be needed to consider in metaldhese neurological disorders and to
understand better their pathological origins as perfornkem instance [14] studies bands in the range of
of 0.5 — 4Hz (delta), 4- 8Hz (theta), 8- 10Hz (low alpha), 16- 13Hz (high alpha), 13- 30Hz (beta) and
30— 48Hz (gamma). The choice of working with broadband signals $hown to be sufficient to bring
about the arguments of the thesis and display the practeabiithe previous methods.

Therefore, the data in both datasets is filtered betweBr @8Hz using a digital Butterworth filter
implemented in Matlab. This choice is derived from the loasp and high pass limits of the previous
MEG study in [14]: the low-pass limit at.BHz is chosen to avoid any problem with the DC levels while
components outside the high-pass limit are assumed to bigibégfrom a neurophysiological perspective
to the following investigation. The same applies to theegsly data where the high-pass limit avoids the
problem of including the effect of the power line at 50Hz (@lbpa notch filter needs to be implemented if
alarger band is considered). In the MEG dataset, the pom@mias not present in the available time series
(pre-filtered by an external expert).

The iIEEG was successively under-sampletsat 256Hz fromts = 512Hz. This step is necessary in
order to avoid the embedding windows of SSA becoming exeelydiarge due to the strong correlation of
the time samples. This effect can be deduced from the bouidjiration 3.8: with the same frequency
of interest, the increase of the sampling rate results imarease of the embedding window. The MEG
dataset has a sampling rate of 312Hz which was consideredarrable value and kept during the analysis

(the previous work in [14] analysed the data at this freqygnc

5.2 Data analysis

5.2.1 MEG Data

The complexity indexCeM(A) is computed in each of the time series of the datasets. Thaitead consid-

eration about the tuning of this index and thus the choicb@plarameters of SSA is given as follows:

e The value ofA = 0 is considered. This parameter is not relevant if the olagenval model of the
noise is assumed to be Gaussian distributed as explaineldaipt&€ 3. Changes due to SNR do not

influence theCcM with this hypothesis.
e The segment size in this study is given by the whole time series length, i.&62.point samples.

e As suggested in Chapter 8, can be computed using Equation 3.8. Following this boumatesthe
analysis is performed in broadband, the maximum value ofpimelow length with the minimum
frequency of interest available 1§, = 312/0.5 = 512. This value accounts for all the frequencies

above the low-pass filter limit.BHz. However the choice of this embedding may be too largenahd
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necessary. As discussed in Chapter 3, the larger the winith@wmsore correlated the embedding space

and the less the degree of statistical confidemggl() is. Considering that important phenomena can

happen in the delta band {48Hz), an initial pragmatic choice afy = 150 is taken which accounts

for a frequency of interest roughly in the middle of this baid the end of this section, this initial

choice is further investigated.

Global chan

nels distribution

Figure 5.1 shows the distributions of the complexity measwomputed for each group of patients in all

the channels available: each histogram is therefore base&2?x 141 values ofCqy. The statistics of

these distributions are summarised in Table 5.1. The bligtans are not Gaussian by a visual inspection of

Figure 5.1 and by the values of their kurtosis and skewndsstefore, in Table 5.1 and during this section,

the median of these distributions are considered as rapiorfeable 5.1, since it is less affected by artefact

and outliers and is a better indication of their central earay than the mean.
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Figure 5.1: Distribution of the single channel synchrotitsaindex for different eyes conditions and for all
the MEG sensors. The most relevant point to mention is thp dféhe median value of the complexity of
these distribution consistent with the different type & thisorder.

o Eyes Open Eyes Closed
Statistics
C PD PDD C PD PDD

Mean 3.2108 | 3.0214 | 2.7617 | 3.0676 | 2.9937 | 2.7217

Standard deviation 0.3589 | 0.3902 | 0.3293 | 0.3793 | 0.3199 | 0.3430

Median 3.2532 | 3.1072 | 2.7711 | 3.1601 | 3.0204 | 2.7268

Kurtosis 7.4513 | 7.9904 | 3.9624 | 4.6558 | 6.2176 | 4.0234

Skewness -1.8584| -1.9243| -0.5753| -1.1782| -1.1738| -0.5254

Table 5.1: Summary of some statistics relative to the distion of the complexity measures as shown in
Figure 5.1, in each group of patients and in the case of altréla.

The results obtained by the single channel analysis shaeeesting points of the connectivity of the
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groups at a local level. Firstly, there is a clear drop of tbmplexity index (or an increase of the local
synchronisation as discussed in Chapter 3) between thegiroLhis drop inCey is consistent with the
different kind of disorders (Dementia Parkinson’s< Control) as pointed out in the literature [138]. This
may be the indication that for patients affected by Parkirssand Dementia disorders, the effective con-
nectivity becomes more synchronous and therefore oveatiostary, reducing the cognitive flexibility of
the underlying dynamical process [138].

Secondly, as depicted in Figure 5.2 and Table 5.1, anothee ito mention is the drop of the median
and mean values of the distribution@fy from the eyes open to the eyes closed conditions. The diftere
in the eyes conditions is consistent with the literatureénveitwell known result where differences of EM
signal characteristics between the eyes open/closed leavetbe topic of numerous research studies dating
back to the early EEG recordings. During eyes open, the M&imauli entering the brain, have the effect
of desynchronizing the activity of a complex brain netwoi&ince the alpha band is usually a relevant
componentin the power spectrum of the electromagnetiadh06], it is possible to argue that this effect

may be noticeable in broadband, as well.

All Channels
[ "Jopen
36} I Close |
3.4+ B
=
o 3.2 4
®)
g
5
g 281
2.6}
24}
22 3 -
Control Parkinson Dementia

Figure 5.2: Median values and the'and 75" percentiles (errorbars) @y of the distributions in Fig-
ure 5.1 for different eyes conditions. Notice the differetetween eyes closed and eyes open is more
predominant for the control subjects.

A final remark of this subsection is that the difference betmwthe two eyes conditions seem more evi-
dentin the case of control subjects, after a numerical ictgpeof Table 5.1. This effect can also be noticed
in Figure 5.2 where the median and thé"2&nd 7% percentiles (error bars) @y are displayed. A dif-
ference between eyes closed and eyes open in the case ofithe patients is clearly visible compared to

Parkinson’s and dementia. These results are significamg tisé Wilcoxon rank-sum tesp(< 0.001).

Analysis in different brain areas

Figure 5.3 shows the analysis of single channel synchrborstor different areas of the brain. The areas

are partitioned as in Figure 2.6. Figure 5.3 plots the mediahthe 25 and 73" percentiles statistics of
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the distribution ofCgy in each of the areas in the same manner as Figure 5.2. Theviiogjorable 5.2
summarizes the median of these distributions and indidghtevalues that are not significant using the

Wilcoxon rank-sum test

Task Eyes Open Eyes Closed

Areas | C PD PDD C PD PDD
LT 3.1813| 3.0102| 2.6960 | 3.0762 | 2.9138 | 2.6467
LF 3.1715| 3.1457| 2.7543%| 3.1301 | 3.1646 | 2.7273%
LC 3.3244| 3.2185| 2.8302 | 3.2921 | 3.1608 | 2.7823
LP | 3.2954| 3.0863| 2.6809 | 3.1191 | 2.8901 | 2.6397
LO 3.2323| 3.0430| 2.7377 | 3.0251 | 2.8098 | 2.6697
RT 3.2127| 3.0086| 2.7110 | 3.1106 | 2.9228 | 2.6603
RF 3.2211| 3.1684| 2.8479t1| 3.192% | 3.2024 | 2.8499t
RC 3.3251| 3.1955| 2.8785 | 3.2973 | 3.1563 | 2.8609
RP 3.2948| 3.0553| 2.7139 | 3.1132 | 2.8707 | 2.6680
RO 3.2525| 3.0135| 2.7433 | 2.9925 | 2.8131 | 2.7137

Table 5.2: Comparison of the median for the distributionahplexity measures in each group of patients
in the case of the selected areas. Some results are notcaguifising the Wilcoxon rank-sum testnot
significant between control and Parkinson’s subjects wigselosed; T not significant between eyes closed
and eyes open for dementia patients; f not significative éetveyes closed and eyes open for dementia
patients.

These results show a clear decrease ofdig (Dementia< Parkinson’s< Control) for the regions at
the back of the head. In the frontal lobe this phenomenontism@vident as shown in Figure 5.3 where
the complexity is higher in Parkinson’s than control sutgedn this area, moreover, the complexity of
eyes closed for Parkinson’s is in general slightly highantin the eyes open. Since the frontal lobe is
not situated above the location of the visual cortex (Otaipind Parietal areas) the difference between the
eyes conditions are probably not physiologically significdn fact, Figure 5.3 shows that the channels on
the back of the head have a stronger difference between Bgesi@and eyes open, i.e. they are sensitive to

the visual stimuli.

Loss of reactivity

Interestingly, as mentioned previously for the global arenlistribution, the control subjects show a bigger
difference between eyes closed and open for the sensorg &tk of the head in Figure 5.3. In this
latter figure, this difference is also displayed by the Ras&in’s patients. This phenomenon is consistent
with some results in the literature (discussed in [14]) vehéementia patients do not have a substantial
difference between eyes open/close conditions. In [14,pbwer in thea band was not decreased for
dementia patients between the two eyes conditions, in asinto the other two groups. These particular
results were interpreted adoss of dynamical brain reactivityvhich is a phenomenon that can also link to
patients suffering Alzheimer’s disease.

Figure 5.4 shows explicitly the plots of the distributioris3gM for different group and eyes conditions
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Figure 5.3: Mean value of the distributions@fy in different regions of the MEG sensor space. (R)ight
and (L)eft hemisphere. (T)emporal, (F)rontal, (C)entf@)arietal and (O)ccipital lobes. Th errorbars are
the 28" and 7% percentiles of th€ew.

in the case of the parietal and the occipital areas. In tloisip, it is possible to see clearly that there is not
much visible difference in the distribution of dementiaipats which may suggest the occurrence of the

loss in reactivity phenomena.

Window length revisited

In Figure 5.5, the analysis of the ind€gM is performed as a function of the window length in order to
check the correctness of its initial value, itg. = 150. Figure 5.5 shows the median of the distributions as
in Figure 5.1 as a function of the window length in the caseyebeclosed only (for the eyes open the same
conclusion were found).

Firstly, it is possible to notice that the distances and timesdiscrimination between groups remain
stable for increasing values of the window length, i.e. fa@ values ofty, = 40. In practice, this means
that the discrimination between groups is not sensitivafufficiently high value ofy,. T can actually be
reduced without compromising much the discrimination polé increasing the computational speed by
reducing the size of the trajectory matrix. Secondly, thevesido not level-off to an horizontal asymptote.
As discussed in Chapter 3 this indicates that the MEG sigrmaitain either random components and/or are
formed from an aggregate of many complex subsignals. Bathatgins are possible here: MEG channels
are affected by external noise and the electromagnetiose@ase placed at the scalp level and thus are

sensitive to the brain activity coming from a large neurgioa.
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Figure 5.4: Distributions o€q\ in the case of the frontal and occipital lobes. A loss of dyitalfrbrain
reactivity for the dementia patients is shown as displaygtthé no difference in eyes open/close paradigms.
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Figure 5.5: The median of the complexity of the gloBaM as a function of the window length,. The
discrimination between subjects is not sensitive to vatii¢ise window length sufficiently big, i.8y = 40.

5.2.2 Intracranial EEG dataset A

The analysis of this epileptic dataset starts by investigahe complexity indexCem(A) using a moving

window approach. The following initial points are consieldr
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e As before, the regularisation parameter is sét te 0 since the assumption of the gaussianity of the

observational noise is considered.

e Unlike the previous dataset, the iIEEG recording needs toelgenented into overlapping quasi-
stationary segments in order the study the dynamics of tizeirgeover time. The length of the
segment size is a difficult parameter to choose since theratia straightforward procedure to infer
it from the data. A pragmatic choice needs to be taken. Asudsed in Section 3.4, from a data
analysis perspective, it is necessary to choose a tradetvfieen computing resources, temporal res-
olution and statistical significance. From a neurophysgjmal perspective, time scales of 1sec have
been considered as the minimum quasi-stationary segmehtaio state [83]. In [33] this extreme
choice was used but only together with a multi trial procedofr averaging in order to be able to
gain sufficient temporal resolution and statistical sigifice that is not the situation in the datasets
used in this thesis since a unique event is considered. fhneralifferent values of. between 2s
and 6s were tried. As discussed in [146; 49] and from our prdsiavestigation, the choice af
influences the smoothness of the complexity index and thEtapiige results achieved in this section
are shown not to be particularly affected by this choice. gt L = 3s (750 time samples) with a
step size between subsequent segments set to 64 time sasnghesen for the sliding windows in

the following experiments.

e Ty can be computed using the bound in Eqg. 3.8. Since the anaylsisadbandr,, = 120 is con-
sidered consistent with the centre of the lowest band ofésteof 2Hz (delta) as in the previous
section. As shown for a bigger dataset in the previous ME®yaisathe choice of this parameter is

not particularly sensitive to the feature extraction calgads of the indexCep in broadband.

e Prior to the analysis, the data is further pre-processetjusiHamming window to each segment.
This operation avoids fringe effects at the edge of the wividand helps to give more importance at

the centre of each segment during a sliding window analyt<i6]|

In Figure 5.6, a complete view of the analysisGafy is shown over alN; = 39 channels. As explained
in chapter 2 a channel was left out of the analysis due to thdegbality of the signal (channel 3 which is
not displayed). In the upper graph the valu€gf; for each channel is plotted using a colour scale against
time. The first important detail which can be seen is the tianaf theCey values in some channels before
the moment indicated by an expert as the start of some nbteehanges in the iEEG trace @0sbefore).
Most importantly these channels are consistent with tha atgere the focal point is supposedly situated
(expert decision), i.e. parietal lobe. In the second, thind fourth rows of Figure 5.6 theé., the power
and time series of the channel 18 in the parietal lobe arésoloT his particular channel has shown the most

interesting variation of th€ey index before the occurrence of the seizure among all the iG>
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In the second plot, the drop of the spectral entropy befaes#izure may indicate a reduction of com-
plexity and a possible increase of synchronisation whidhdgcative of epileptic activity. This variation,
from a visual inspection seems not to correlate with the p@féhe signal which remains constant before
the seizure starts. Firstly, this point is important siitdadicates the complexity carries a different piece
of information than the simple poweifThis fact will be emphasized during the following investign.
Secondly, since power ari@y are not correlated, it is possible to argue that this dropestd a genuine
change of the underlying synchronisation and is not aftebteSNR variations.

During the seizure, after the expert noticed the patholaghe iEEG trace, there is an increase (over-
shooting) of theCem, a subsequent decrease and finally an increase of the catpéthe signal. The
overshooting of the SSE is visible only on the few channelhéparietal lobe which may be a charac-
teristic feature of this patient seizure. No particularlergtion is offered by this behaviour which needs
further investigations. In the same channels, a fastevergas noticed from the ictal to the interictal level
of complexity than is visible in the other channels. Thispdr@enon may be associated to the resetting of
the state of the brain after the epileptic event. The fadttthia faster recovery is situated in the location
where the complexity first dropped, gives the confirmatiat this particular area may have been involved

in the epileptic event.

Other channels in the grid are considered in Figure 5.7 faymaparison. The drop of complexity in
some channels has a time delay with respect to the channelii8. reduction occurs after the expert
noticed a change in the iEEG trace but before the power ofigimakincreases due to the ictal brain state.
During the ictal period the complexity becomes low all oves grid which may indicate an increase of
synchronisation.

Figure 5.8 shows the mean of tligy and the power across the grid channels. The first interesting
detail in these plots is the clear segmentation of the diffezones of interest of the seizure captured by the
complexity measure. It is possible to notice a pre-seizerég in the first 50s of the IEEG trace where
the complexity is stable. The second part of the seizurasstdirer 50s which is followed by an overall
drop of the complexity. In the third part of the trace the céewrjty rises again. This phenomenon of
synchronisation-desynchronisation is consistent wightyipical spatiotemporal properties of seizure [134].
The second remarkable detail in these plots consists inubktative difference between the power of the
signal and the complexity indices. This indicates and sugpbe difference in the information content
captured by the power with respect to the complexity. In,fdw power changes its baseline behaviour

following the epileptic electromagnetic discharge onleathe expert noticed the iIEEG changes.

Grid display

We consider the problem of visualizing this index on the dddetter define the spatial extent of the
seizure. During the analysis of this particular dataset, fitst plot in Figure 5.6 is normalized against a
baseline period. Figure 5.8 shows 50s of interictal preeseiperiod which can be used as a baseline. The
baseline captures a time period where the brain activity thé€ory normal, not pathological and without

any significant variations of the indices. In practice, ineguileptic patient, the EM trace should never be

109



Index

Chapter 5

UNIVARIATE SYNCHRONISATION IN ANOMALOUS BRAIN ACTIVITY

28

2.6

24

22

1.8

16

1.4
0

Channel 18 (Parietal lobe)

35
3l
x 25F
[}
o
£ 2
©
[§)
15F
1t
05 . . . . | . . . . .
20 40 60 80 100 120 140 160 180 200
Time (s)
Channel 1 (Left Frontal lobe)
2sF T T T T . T T
3WWW
x 25F
[}
°
£ 2t
©
[§)
15t
1k
05 . . . . | . . . . .
20 40 60 80 100 120 140 160 180 200
Time (s)
Channel 29 (Left Frontal lobe)
a5 . . . - . . .
3
x 25
[}
°
£ 2t
©
[§)
15F
1k

o
o

| . . . . .
100 120 140 160 180 200
Time (s)

L L L L
20 40 60 80

Channel 23 (Parietal Lobe)

| . . .
100 120 140 160
Time (s)

Channel 15 (Rigth Temporal Lobe)

L L L L
20 40 60 80

L L
180 200

25r
21
15r

| . . .
100 120 140 160
Time (s)

Channel 38 (Left Temporal Lobe)

L L L L
20 40 60 80

L L
180 200

SWWWW«M
25F

| . . .
100 120 140 160
Time (s)

L L L L
20 40 60 80

L L
180 200

Figure 5.7: This figure shows a snapshoCgfs computed in some channels of the IEEG grid. The plots
consider the first part of the seizure (beginning 800 segsheiithe red line indicates the moment where
the expert notices a change on the EM trace. It is possibletioendifferent time scales of the drop@ém

in other parts of the grid compared to the channel 18.
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Figure 5.8: Average across channels of the ind@ggin the left and the signal power in the right. The
red line indicates the moment in the trace where the expédasvisually some changes in the time series.
This plot emphasizes the temporal segmentation of the ieizuhree sections: interictal, ictal, postictal.
It emphasizes also the different information content ofgbeer with respect to the complexity.
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considered not pathological and a sensible choice of Imesaéeds to be found during the interictal period
prior to the seizure. In this experiment, the chosen baséisupported by the segmentation of the trace in
Figure 5.8. Therefore, in order to compare the variatiorhefindices among different channels, the data
is normalized against this period. The main goal is to be théamphasize the channels where the activity
starts to manifest before the others (changing-point propband the variation of the index is more evident.

The followingZ-score statistiés applied to each channel

7 Cem—fc (5.1)
Oc

wherelic anddc are the estimated mean and standard deviation of the coityaledex Ce computed
in each channel over the baseline period. Figure 5.9 showsetbult of this normalisation procedure
where a Gaussian spatial filter is further applied to smdaghetdges between channel values for a better
visualisation.
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Figure 5.9: Normalized plot of th€em uSing a Z-score statistic with selected snapshots of the agri
different times. The source of the pathological activitglsarly emphasized in the top middle of the grid
by the rectangular square. The cross indicates the posifitire channel not used in the analysis since the
signal was too noisy.

From Figure 5.9, it is possible to observe how the Z-scorenadisation and the choice of the parameter
A offers a clearer view of the points of interest of the comitietxace. In the second row of the same figure,
snapshots of the spatial value of the Z-score on the iEEGagadshown. Figure 5.9 shows the localized
changes of activity for the channels in the parietal loberaliee focus is situated. In this plot, &on top
of the channelis inserted in the grid which has not been apdlgue to the poor signal quality and it is not

part of the channel numbering.
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Figure 5.10: Plot of the normalized power similar to Figur@.5The power embodies a different view on
the dynamic of the seizure and it does not show clearly thagihg points as well as the complexity index.

To conclude this section the normalized plot of the powehms in Figure 5.10. As from its time
series, the power seems to contain different informati@m @y\. It is difficult to visually deduce any

useful characteristic from both the top plot and its coroesfent grid plots.

5.2.3 Intracranial EEG dataset B

The analysis of local synchronisation for this intracr&iBG dataset is performed following the same
initial consideration of the previous example: the comjtjexdex Cem(A) is considered withh = 0 and

is computed over the time using a sliding overlapping winamntainingL = 750 points with 64 points
interspaced. The result of this analysis is shown in Figuté.9n the first colourplot, th€gy is displayed

for all the channels over time in the same manner as in thaquewvataset. From a visual inspection it
is possible to notice that some of the channels have a coiptenerally lower than the rest (red spot in
the colourplot) with some quick spiky events (blue colodrhis characteristic is shown more clearly, for
instance, in the plots d@ey and in the signal power of the channel 29. The latter is oné®fthannels
for which the complexity metric contains few noticeableksisiemerging from its mean level. These spikes
can be correlated in time with the occurrence of all the sabnipbrmal EEG segments present in the whole
dataset. For instance, one of these segments is clearlpykshin Figure 2.5. They are clinically identified
as occurences of epileptic activity. While similar spikes present in the power signal after a visual

inspection, these are not clearly distinguishable as icdise of the complexity index.
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Figure 5.11: Plot of singular spectrum entropy for the dzit&s The first plot shows the image of the overall behavio@f index over the time during the epileptic iEEG trace
Some channels have generally lower complexity (red spotisivith some instantaneous peaks of complexity (blue cdldarthe second plot is shown ti@&y for the channel
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Figure 5.11 shows that at the onsets of these short seiznessomplexity increases. This phenomenon
is counter intuitive since the intrinsic synchronisatidmougld increase during a seizures, i.€ev goes
down. This characteristic is further investigated usirggRossler lattice within a sliding windows analysis
in order to find a possible explanation. Figure 5.12 showsehalt of the investigation in the case of two
different situations. The red plots refer to the case whemind a sliding windows analysis there is an
abrupt transition between two regimes: one with 5 clustees {.1) and one with 3 clusterg & 2.5).
The Rdssler lattice is simulated by producing a time serfés000 time points with 2500 taken from the
simulated 5 clusters followed by 2500 from the 3 clusterssédbational noise is added to the system as in
Chapter 3, i.e. 5% of the standard deviation of the macraagge signaD(t). As shown in the diagram
in Figure 5.12(b) the sliding windows can be either contdiimethe zone of regime A or regime B, or can
overlap both regions. The red plots, instead, refers to dugtdatransition which is imposed during the
simulation: thee is nonstationary and varies betweef fo 25 in order to produce a time series with the
same length as for the blue case, i.e. 5000 time points, ihtaxgradual varying synchronisation regime.

Both red and blue plots are considered also for two situatiba= 512 and. = 1024 time points.
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Figure 5.12: The right plot shows the graphical set up of aufation of a synthetic time series produced
by a Rdssler lattice having two regimes of synchronisatidisliding window analysis is performed over
this simulation. In the left figure the results show that arupbtransition can create a spurious peak (see
in the text for more explanation).

Figure 5.12(a) shows that the sudden switch between the ywvardical regimes produces a peak in
the complexity indexCepm While the smooth transition does nothis peak is in fact a spurious outcome
from the algorithm When the sliding windows contain the sudden transitioa siignal analysed contains
two different regimes and thus ti@ algorithm captures a signal which is therefore more complex
nonstationary. Only when the sliding window passes ovetrtiresition point does th€.\ correctly account
for the 3 clusters complexity. The length of the peak depamdthe width of sliding window. The red
dashed line shows that the peak can in fact be reduced ingptsinlengthL to lower values. At the
same time, a lower value has the drawback to prodigge more dependent on the noise, as shown in

Figure 5.12(a). In the case of the blue plots in Figure 51 A@peaks are present but instead a smoother
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transition between the two regimes is noticed. Since thiesys chaotic, a smooth curve as a function of
the coupling parameter could not be found in the latter cdsehjustifies the up and down trend of the
simulated complexity index. Therefore, referring backhte épileptic dataset B, it is possible to argue that
the behaviour of the complexity ind€%) is consistent with the the morphology of this particulareygf
seizure, i.e. an abrupt transition between the ictal anthtikeictal state as in the red plot of Figure 5.12(a).
The dataset A, instead, seems to be more consistent wittdaar@ansition from the poorly synchronized
interictal to the fully synchronize ictal state.

Following the previous considerations, and since manyuse&zare present in the iEEG recording,
this dataset is analyzed by taking an average of the singlengii metric around the occurrence of every
epileptic event across all the channels. In this way, theagebehaviour of the interictal-ictal (region

1-region 2) transition is emphasized. Therefore the falhaysteps are taken into account:

e The time instants of the peaks@{y, for the case of the channel 29, i.e. the channel where thespeak

are more distinct, is automatically found.

e A window time of +45s is considered around each of these instants in the iagsrdSince the
occurrence of these seizure are not regular in time, thisevebrresponds to the minimum half time

interval between two seizures in our dataset.

e The result of these windows is averaged over all the peakesdfoin channel.

The result of this analysis is shown in Figure 5.13. This #gdisplays the three stages of the analysis
for the epileptic event which matches the simulation in Fégb12. The sudden transition between interictal
and ictal produces a spurious peak dividing the time befackadter the seizure. The width of the peak
interval is approximately 6 10s. This value accounts roughly to the time of the slidingdeivs passing
over the transition with, i.e. 3s, plus the effect of the agémg.

In Figure 5.13 another two important characteristics neeldet mentioned: before the seizure a few
channels have a characteristic lower complexity than therstin the grid, i.e. electrodes 24,29 and 28.
Secondly, after the seizure, it is possible to notice a gdmeduction of most of the channels with respect
to the moment before, i.e. the interictal state. This redactwhich has a minimum value just after the
spurious peak vanished (around 55s in the time scale in &gi3), has a clear increasing trend thereafter.
This phenomenon may indicate the tendency of the systemstt s state to the preseizure value as
discussed in the previous dataset A for the channels artenfdtus.

Figure 5.14 shows the power computed around the averageséizthe same fashion as Figure 5.13.
While there is a clear change of power during the transitromfinterictal to ictal as indicated by a few
distinguishable peaks (the maximim is on the channel 2@)viues before and after seem not to carry
distinguishable detail as in Figure 5.13. As repeated miamyst during this chapte€ep seems to contain

a different (and useful) piece of information to the power.
In order to better visualize the location of the epileptaniition interictal-ictal, the indeQey is pro-
jected to the respective place in the grid. The plo€gi is not normalized as did in the previous section.

Firstly, there is no need to emphasize the changing poimtd®at interictal and ictal (this point is already
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Figure 5.13: Average of the complexity index around eacthef33 seizures of the dataset. The spurious
peak divides the interictal (region 1) to the ictal (regigrstate. During the interictal stage a few channels
have a clear lower complexity than the others in the grid.iythe ictal period and after the spurious peak
vanishes, globally, many channels of the grid have lowergierity than during the interictal phase.
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Figure 5.14: Average of the power around each of the 33 ssznfrthe dataset. The transition interictal-
ictal is visible in this plot. During the interictal no chagla can be discriminated from the others as in the
complexity plot in Figure 5.13.

given by the spurious peak). Secondly, normalizing theein Figure 5.13 would result in losing the
absolute value and thus the difference in complexity vakferte and after the seizure. Figure 5.15 shows
snapshots of the value €&y in the grid for some time instants selected in Figure 5.13thénfirst few
images, during regime 1, there are two spots with lower cerifyl relative to channels 28-29 and 24.
Importantly, the region around 20-21 and 28-29 as desciiibé&hapter 2 is considered by experts to be
responsible for the seizure. Channel 24, while close to piilefic region of interest, has not been consid-
ered by experts and may be due to this particular recordingh&r investigation is needed at this point of

the analysis for this channel. During the transition, itésgible to notice that the spurious peak(red spot)
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seems to develop in the region close to channels 28-29,0-212This peak is produced by the algorithm
and not by a genuine increase of complexity: unfortunatetyay hide some of the interesting dynamics
of theCem. The final images show the reset of the complexity of the drlds phenomenon is localized in

particular, in all regions on the bottom right of the grid.€llast image, having a similar pattern to the first

one suggests that the pathological activity due to the seiglgoing to terminate.
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Figure 5.15: Grid of the dataset B during selected time imstrom Figure 5.13. Two areas of low com-
plexity are visible in channels 28-29 and 24. During thews®izhe appearence of the spurious peak around
channels 20-21 is visible. After the transition event tlatesof the grid resets to the interictal state.

Finally, Figure 5.16 shows the power computed around theageeseizure projected on the grid in the
same fashion as Figure 5.15. A clear spot is distinguishiatifee snapshot in Figure 5.15(g) on the grid in

the channel 20 when the seizure initiates.
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Figure 5.16: Grid of the dataset B during selected time iristacom Figure 5.14. The peak in power which
can be correlated with the location of the spurious peakeCtM plot is clearly visible in (g).

5.3 Summary

The focus of this chapter has been on the analysis of locahsgnisation of the MEG and iIEEG datasets
using the single channel technique developed in Chapten@data processing results have shown to bring
about interesting findings in order to explain the undedyfimnctional connectivity of these neurological

disorders.

In the MEG dataset, from a data mining perspective, theresigi@ificative difference in functional
connectivity among the three groups of subjects. The uisitesynchronisation statistic has shown to be

straightforward to use and its tuning not particularly sgresto different choices of its parameters (the
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window lengthty). In particular, the channels at the back of the head (o@dipnd parietal areas) have
shown to be more responsive to this difference using thedigraeyes open/closed. A future successful
applications of data screening should be focused on thesmenels. In terms of brain understanding, the
single channel analysis has shown that there is a decredlse obmplexity (increase of synchronisation)
at a local level for dementia and Parkinson’s patients vaipect to the healty controls. These findings can

be correlated to previous research studies in the litezabhased on signal power analysis.

In both IEEG datasets, tl&\ index was able to detect early epileptic events and theations which
are compatible with the region responsible for the abnobraih activity as suggested by an expert and by
prior neurological analysis. These events could be traskedessfully over the time by the single channel
metric, displaying spatiotemporal characteristics tgpaf the epilepsy disorder. The only problem men-
tioned during the analysis of the dataset B is due to the sutidasition between interictal-ictal regimes
which may result in spurious peaks of complexity. While fiviesblem needs to be sorted in future theoret-
ical developments, the methodology of analysis describeHis chapter was able, nevertheless, to detect

interesting features of the dynamics of the epilepsy in du®sd dataset.

To conclude, the single channel mefttigy, after proving its strength over a synthetic dataset, hassh
to produce useful experimental results in this chapters @pproach can be therefore used in following and
more detailed analysis of neuroscientific problems. In #vd ohapter, the investigation of these datasets is

applied to the multivariate functional connectivity arsgy
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Bivariate Functional
Connectivity in Anomalous

Brain Activity

This chapter concludes the experimental part of this thekisessing and discussing problems of functional
connectivity applied to the EM datasets for medium to lag@esinteractions. In particular, the following

two topics are considered here:

e The main purpose of Section 6.1 is to provide a demonstratidghe multivariate functional con-
nectivity in the case of the epilepsy data and experimgngalpport the Analogues-RBF Granger

causality metric described in Chapter 4.

e As a preliminary data analysis, Section 6.2 presents sorperiemental analysis addressed to the
problem of volume conduction which typically affects etechagnetic techniques. This part of the
thesis is briefly considered as an open problem and for futwestigations. The analysis is per-

formed on the MEG dataset.

As remarked in the previous chapter, the clinical examimatif the pathological datasets in this part
of the thesis is qualitative. It is not the main purpose o thiesis to supply new knowledge for the under-

standing of these disorders but rather to provide methafiicdbexamples for the analytical tools developed.
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6.1 Multivariate functional connectivity analysis

Figure 6.1 reports the scheme of this thesis experimentalatzalysis framework. The focus of this the-
sis has been the three early stages of exploratory analfyEs signals. After successfully investigating
the coupling of the underlying brain network at a local leiethe previous chapter, the framework in
Figure 6.1 is completed by two stages of multivariate cotimiég analysis. These stages are designed to
extract medium to long range neural interaction: a blocktfier estimation of synchronisation (temporal

symmetric relationship) followed by one for causality (fgoral asymmetric relationship).

Connectivity Feature Extraction

Raw EM Data

¢ Chapter 3

Preprocessing MPC

|
|
: Complex Network I
: Statistics |
|

Data Mining - Discriminatory Analysis - Decision Making

Figure 6.1: Conceptual structure of the data analysis pobforesented in this thesis. The shaded blocks
describes the topics discussed in this thesis in Chapted Thapter 4. Further stages are considered as

possible future developments (see text).

The stages of single channel synchronisation and caussalityation are shaded (red) in Figure 6.1 in
order to underline the theoretical part of this thesis asntepl in Chapter 3 and Chapter 4. Computing the
synchronisation between electrodes, using the MPC indescftbed in Appendix A), is the intermediate
stage of the framework in Figure 6.1. This stage is includethis thesis analysis for the following two

reasons:

e Firstly, a measure of phase synchronisation such as the M&@g symmetric and without many

internal parameters to tune, can be considered as a redsahalce for an early exploratory inves-

tigation of the connectivity in the brain.

e As shown during the simulation of the Analogues-RBF Gramgethod in Chapter 4, it is impor-
tant to check beforehand if the level of synchronisationsdoat become too high in order to avoid

spurious estimations of directional interaction.

In Figure 6.1, the scheme is completed by successive pestgsmg stages which are considered part
of a future, more detailed and deeper investigation of ttte.d&he last part of the diagram may involve

data mining, discriminatory and decision making analysigclv are driven by the synchronisation and
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causality features extracted in this thesis. As discusselde previous chapter, for instance for the MEG
data, the single channel measure can be used as a posstate fieabuild a classifier to discriminate pa-
tients from different groups; For the epilepsy data a metbasked on this thesis’ feature extraction can
be used for prediction of the occurrence of a seizure. Up W tids task, which is also one of the most
important goal in epilepsy, has not been resolved yet [1Bfpr to this part, an intermediate stage of data
processing may also be considered between the extractitie dfinctional connectivity features and their
following analysis. Especially in the case of multivarifd@ctional connectivity, it may be important to
find further features which help to explain the complicatattgrn of multivariate functional connectivity.
Since a multivariate synchronisation and causality aigjy®duce an estimate of the underlying complex
neural network connectivity, several graph and spectrahaus [6], i.e. shortest path length or clustering
coefficient, have served the purpose to provide summargatgstics to characterised this global patterns.
These methods have become popular in the recent neurosditemature [136], and they may be employed

in future applications of this thesis material.

The experimental analysis in this chapter is applied to fhikeptic datasets only. Currently, no rea-
son was found to perform an analysis of causality in the ME@g#d. It is difficult by the state of the
art of the literature to give an interpretation of the the flofinformation in the brain during the resting
state for Parkinson’s and dementia pathologies. While ie&sonable to think that during the course of
Parkinson’s pathology not only the strength but also the Bbsommunications between areas of the brain
may be compromised, this particular study is left for futimeestigation. The MEG data, in this chapter,
are considered only in Section 6.2 in the context of volumedcation effects in multivariate functional
connectivity. Instead, in the epilepsy datasets, it is ipts$o assume that during the seizure the spread
of synchronised activity is propagating from the focus. Thesality algorithm developed in Chapter 4
is intended to estimate this dynamical effect and can dmutiito characterize the location of the focus.
Epilepsy is therefore the ideal case of study for the franmkviro Figure 6.1: Single channel synchroni-
sation deals with finding the early detection and the locatibthe focus; Causality and synchronisation
measures detect the long range dynamics, the propagatibtharextension of the epileptic seizure over

time in a broader region.

6.1.1 Intracranial dataset A
MPC

The extraction of the phase synchronisation is evaluatedyukse MPC index over the time series as pre-
viously investigated by the single channel metric. Thamfthese signals are preprocessed from the raw
EEG signals as described in Section 5.1. The MPC is compusiad a moving window with. = 3s which

is consistent with the length adopted in the previous chiafiach moving window has finite size, edge
effects due to computation of the Hilbert transform whichymat be negligible in this specific case [101].
However, in order to avoid this problem, the Hilbert tramgfds not applied to each single sliding window

but is instead computed along the entire trace. For thioreadge effects are restricted to the first few
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samples of the global trace not compromising the analystsamost interesting part of the recordings (the

central part).

Figure 6.2, shows significant analysis of synchronisatfpiiad to the current intracranial dataset. The
outcome of this analysis is a similarity matfix(t) which contains all theN; x N (N = 39) pairwise
synchronisation coefficients;j (t) over the timet. The first two plots of Figure 6.2 are just re-drawn here
from the single channel analysis for comparison only: tldglCen analysis, th€ey and the signal power
for the 18 channel case. The third plot represents a glolbalsgnisation statistic: the mean value of the

synchronisation similarity matrix taken as:

1 N Ne

Mpe = S i;i;dij- (6.1)

In practice,mpc is a possible summarizing statistic as mentioned in Figuteshich has the same

role of complex network analysis measure used in the liteedtL 36]: it indicates the state of the intricate
pattern of the matribD(t) with a single statistic which is otherwise difficult to inpeet. In Figure 6.2(b),
for instance, some of these patterns are shown as snap$Hts .o

The plots in Figure 6.2 show several interesting correfetioetween the synchronisation mean index,
the epileptic event and the previoGsy and signal power values. Firstly, theipc, while simple as a
statistic, shows that the global level of synchronisatiarirty and after the epileptic event is on average
higher than the baseline ( 50s). As discussed, this is a wellvk characteristic during the occurrence of a
generalized seizure which is displayed also by the behawitthe complexity indexCem. Secondly, peaks
in Figure 6.2, are occasionally emerging from this meanl letsich emphasizes moments of the grid with a
higher level of global synchronisations. The occurrencinefpeaks start just before the expert notices the
seizure on the trace but they appear a few seconds afterdpeoficomplexity in channel 18. These peaks
increase their amplitudes up to the seizure (maximum at twed peakd) and they decrease thereafter
compatible with the interictal-ictal-postictal traneiti. The maximum i is consistent with the maximum
of the power.

A visual inspection of the adjacency matrix during thesekpeasa reported in the bottom part of Fig-
ure 6.2(a). InB, C andD, just before the transition period to the ictal event, wdaa cluster of high
synchronisation including the edges connecting channél® 1. These channels are discussed in the
univariate synchronisation metric as possible candidatethe location of the focus. They are correlated
with changes in th€y trace prior to the clinical seizure, as described in Figu @he fact that they
can be visually clustered, is a further reason to consiggirégion as a possible starting point of the neural
anomaly. During the highest pe#&k of the seizure, all the channels become synchronized slgothim

maximum synchronisation point.

Analogues-RBF Granger Causality

The computation of the causality in the IEEG grid for thisadat A employs the sliding window approach
as considered in the previous MPC case. However, in ordesdoce the higher computational load with

respect to the MPC due to the complexity of the Analogues-BBBrithm, the extraction of the Granger
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Figure 6.2: Analysis of synchronisation for the Intracedrdataset A. The first two plots report, as in
previous figures, the behaviour of t8gy in the whole grid and in the channel 18 together with its power
The third plot shows the averaggpc across channels of the affinity synchronisation maifrix). The
bottom images display the state of the affinity matrix in jgaitar time moments as labelled in thgpc
plot.
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index is considered here in a subset of all the possible auatibns of bivariate time series: the analysis was
performed between nearest neighbour channels. This chaisshown to be sufficient for the purpose of
this section, i.e. to demostrate that the algorithm colyédentifies the propagation of the seizure outside
its focus, as explained later.

Each moving window it = 3s long, which is chosen to be compatible with the previou€MRd the
Cem analysis. Following the Analogues-RBF algorithm, eachdein needs to be divided in two sets: The
first 2s is set to be the training set which is used to learn Be Rodel while the rest (1s) is considered as
the test set which calculates the prediction errors and mgstrtantly computes the Granger index. This
subdivision is chosen on a subjective basis. It is, nevirsisea common subdivision in the field of neural

network, i.e. training set 70% and test set 30% of the tott Ha0].

As discussed in Chapter 4, while the Analogues-RBF methalssgned with the intention to learn
causality relationships automatically from the data, a parameters still need to be tuned manually: the
number of neighbours, the number of basis functions andrniteedding dimensions. However, the tuning
of the Analogues-RBF algorithm is a hard task to accomplisting the analysis, since the iEEG dataset
contains a great number of bivariate time series as well asga humber of sliding window to inspect. It
is impractical to check the optimal value of these paransatareach sliding windows with an automatic
procedure as performed in Chapter 4. Nevertheless, fallpitie Chapter 4 analysis on the synthetic data,

the following considerations can relax the experimentatpdure of tuning the causality measure:

e In the case of the embedding dimension, as mentioned ind®ett?.5, two types of procedure can
be employed: either the cross-validation using the owasfiple prediction error of the Analogues-
RBF or, alternatively, using the cut-off point of the singukpectrum using the MDL algorithm.
While from different philosophies, both of them are strégegn machine learning for model selec-
tion, i.e the dimension of the embedding. In particular, itifermation from the MDL is already
available when computing the ind€gy which seems to be a reasonable solution to consider for this
experimental analysis instead of the more lengthy crofidataon procedure. Therefore during the
computation of the causality between bivariate time settes embedding dimension in both time
series is set as the maximum of their singular spectrum ffufbis latter condition is necessary in

order to ensure that both reconstructed attractors woulthfided.

e During the simulation in Chapter 4, it was shown that in thespnce of an underlying strong causal
link, the increasing of the number of neighbours as well asthmber of RBF centres would result
in an increase in the difference between single and mutwligtion errors. While this fact has
shown not to be true for a weak causal link (for example in Fégu5), in the following analysis the
number of neighbours is set to 20 and the number of RBF ceistses to 15. Slightly varying these
two parameters around these two figures has not changedlliheifg interpretation of the results.
Therefore, with this choice of parameters, strong causéklcan be correctly retried while weak

links are going to be penalised and not found.

After computing the Granger index, in each sliding windoweaaf 100 surrogates are calculated via

the bootstrapping approach as described in Chapter 4. fbner¢he causal link between two sensors is
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signed as significant if and only if the threshold level of Bx@alues during bootstrapping is above a cer-
tain threshold (set to the @6 significance level). Moreover, another condition for significance of the
links is given by the MPC as precomputed in the previousgecthe synchronisation does not have to ex-
ceed the value of .8 in order to avoid spurious causality. In the case that bo#ttions between any two

channels are tested significant for causality, then thegreathe two is considered as the correct direction.
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Figure 6.3: Causality directions in the IEEG A grid for théfferent periods of the recording as segmented
by theCey index. An increase in the number of estimated causalitysliskifound during the ictal period
(B andC)) compared to the interictad(). Visually, during B), the links seem to be going out of the region
which includes channel 18, where the focus is supposed tdtusgted. The cross indicates the missing
channel.

Figure 6.3 presents the main result of the computation ofGhenger index. This figure is divided
into three temporal sections of the overall seizure in otdayive an informative display of this dataset’s
analysis: the causal links are computed during the threéesstd the epileptic activity as segmented by
using the single channel analysis (Interictal-Ictal-Raat). In each of these areas a link is shown in the
correspondent place in the grid if at least 30% of the slidigdows in the corresponding period is
significant. This threshold percentage was found manualbyrder to be able to sufficiently populate the
plots and to show the possible points of interests, i.e. #iseal links from the focal.

The results show, firstly, that there is an increase of cdirded during the ictal and postictal phases
of the seizureB andC) as opposed to the interictal state)( More importantly in the ictal case there are,
by visual inspection, few links which are propagating oeifrthe area around channel 18. This finding
seems to support positively the intuition of the resultiestd in the previous analysis. In the case of the
postictal period, while Figure 6.3 shows an increase of thesal activity with respect to the interictal one,
it fails to show a coherent pattern towards or out of the fasfithe epilepsy. This may be explained by the

fact that the higher state of disorder of the grid after thekpaf the synchronisation may interfere with the
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estimation of the genuine causality.

It is important to remark that while a subjective threshadot a good idea because can either em-
phasise spurios causal connections or hide important timesghoice was necessary in order to visualize
directional information using an arrow-like graph suchragigure 6.3. With this type of visualisation, in
fact, the emergence of a complicated and interlaced patfdinks may soon become a problem because
of the esponential growth of the number of the edges preseheigraph. Ideally, the data analyst should
be equiped with a sliding toolbar to tune interactivelly theesholding parameter in order to allow the
emergence of interesting patterns (during the selectiahethresholding, we virtually use this type of
procedure). In this thesis, for this type of visualizatiordan the case of the iIEEG data, the use of this
manual procedure of tuning is justified by the results oletdjine. the emergence of a directional flow from
the focal. However, in general, when the pattern of caudataations become difficult to visualize and
interpret, a totally different approach is needed which radsess as well the issue of subjectivity of the
map thresholding (a different visualization tool may no¢éd@ny thresholding). Further methods, possibly

using complex network statistics, are under investigadioth are left for future analysis.

To summarize this section: the previous MPC analysis seemsrifirm the previous single channel
analysis, providing moreover further particulars (sud@eaks of epileptic activity) to help to describe
the spatiotemporal dynamics of the seizure. The AnalodRE&S-Granger causality analysis seems to find
evidence of the propagation of the epileptic activity frdra focus (around channel 18). These tools can be

used as features for the analysis of this type of seizure.

6.1.2 Intracranial dataset B
MPC

The same analysis of synchronisation described for theselafais conducted for this IEEG dataset B. The
MPC is computed across 32 channels available and the comdisy matriceD(t) are defined over the
timet. The results of this analysis are reported in Figure 6.4(dhé same fashion as Figure 6.2(a): the
synchronisation mean index;pc, theCepy global trace and th€g and the power signal in channel 29 are
shown.

As displayed by Figure 6.4(a), this plot reports a pattersyoichronisation which seems more complex
than the previous dataset A. The overall plougbc seems not to be regularly associated with the occur-
rence of each of the 33 seizures which can be visually caeehaith the peak of th€y in channel 29.
Instead, the plot ofiypc can be visually divided in two parts: in the first one, untilOD%, the mean level
of synchronisation in the grid seems to oscillate around/éiiee of Q3; In the second part, big peaks of
global synchronisation are distributed unevenly above amievel visually lower than.@. From a careful
investigation of these dynamics we notice two particulantsorelative to the occurrence of these peaks in
pmpc. Itis difficult to explain the reason of this behaviour in MR@ich may be restricted to this particular
recording and to this specific patient. However, as for tlewipus dataset the important point to make here
is that the previous synchronisation findings cannot beostsed using only the univariate statisGgy.

In practice, this fact further emphasizes the importanagswboth measures, i.e. univariate and bivariate
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Figure 6.4: Analysis of synchronisation for the IEEG datdseT he first two plots report, as in Figure 6.2,
the behaviour of th€g\ in the whole grid and in channel 18 together with its power tnedaverag@mpc
across channels. A more complex dynamics of the phase symishtion is shown in this figure. The
bottom plot displays the temporal distance between ejilepents. When the distance become longer the
plot of wvpc presents few peaks of complete synchronisation of the ghd particular regime starts when

a sudden peak power as shown in the second plot appears inatl2®n From that instantypc oscillates
and the waiting time between epileptic events increases.
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Figure 6.5: Average of the MPC index;pc for two different parts of the grid. In the bottom right part
(red) of the grid shows a clearer synchronisation change tife occurrence of the epileptic event.

synchronisation statistics, to extract features for stuglithe spatiotemporal evolution of epileptic seizures.
Some interesting points of the figure which are under ingastin are: firstly a peak in the signal power,
noticeable before the start of peaks of synchronisatiortlivimay be the sign of some transition of the
underlying dynamical process. Secondly, as shown in Figuéb) the time occurrence of the epileptic

events after this transition seems to be less stable.

As illustrated in the single channel analysis of the iEEGadat B, we further consider averaging the
behaviour ofD(t) around each of the short seizures in the recordings. Thegeés performed as before,
considering the interictal-ictal transition (region Igien 2) as marked by each peak of the ind&y in
channel 29. In Figure 6.5, the results of this computati@ensimown. Following the suggestion of the
previous single channel analysis, we decided to divide thkig two groups of channels and compute the
Mvpc in each of them.It is possible to notice that the upper sitlee(bhannels) is weakly affected by local
synchronisation while the lower side (red channels) ineltige area where the epileptic activity starts and
is located. In Figure 6.5 the plots shows that the blue chiarivave a general lower synchronisation than
the red ones and the transition does not change qualitatteedverageupc. The red plot, instead, shows

an increase of the multivariate synchronisation activitg tb the spreading of the activity in the local area.

Analogues-RBF Granger Causality

The same computation of causality described for the dafasetonsidered for this iIEEG dataset B using
the same sliding windows analysis: Each of the 3s slidinglavs is divided in 2s of training set and 1s of
test set; The Analogues-RBF Granger algorithm is tuned cafliy such that the number of neighbours is
20 and the number of basis functions is 15; The embeddingriiioes is set as the maximum of the cut-off
between each bivariate time series; The Granger index ipuoted for the subset of bivariate time series

where channels are nearest neighbours. Once the Grangertiad been extracted, 100 surrogate indices
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are resampled using bootstrapping in order to validatedbelts.
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Figure 6.6: Causality directions in the iIEEG A grid beforel after the 33 occurrences of epileptic activity.
The segmentation follows the analysis as discussed in &@%: From the figure it is possible to notice an
increase of causality between the high and the low synckation regions as well as the increase between
interictal and ictal state. No preferred causality directivas found during the analysis.

Figure 6.6 shows the estimation of the causality linkagevfordifferent states of the grid. These states
represent the two average regimes before and after theA8egiof the whole recording as described from
the segmentation previously shown in Figure 6.5. From aalisispection of the resulting causal flow, it
is possible to notice that there is a weak increase in the euwitdirectional links in the red region of the
grid (higher synchronisation) compared to the blue one.n&ngase can also be noticed in between the two
states: the number of causality links after the seizureghdri than before the seizure. This latter finding
seems to be compatible with the previous IEEG dataset A wtherdifference between interictal and ictal
state is given by an increase in the number of causal links.

Nevertheless, for this dataset, it was not possible to lgledentify a preferred direction or a source
of causality from a visual inspection. Firstly, this resmlight be justified by the specific type of seizure
which fails to propagate on the whole grid as compared to teeipus dataset. Similarly, it is possible
that the causality algorithm cannot estimate the transitietween the interictal to ictal state because this
pathological event is too quick to be appreciated. For te@son, using causality, it is not possible to
identify through the Analogues-RBF algorithm, channel 8&gossible source of the epileptic activity. A

longer iIEEG and further analysis is needed to verify thisipoi

6.1.3 Photic epilepsy dataset

The photic epileptic dataset was investigated in the edagesof this project as a possible example for
testing causality algorithms. In this dataset, it is in fpossible to define a priori the moment and the
location of the seizure onset. The seizure occurrence igedign the recording by the instants after the
photic simulation is turned on ( this is true only if the freqey of the lamp correctly triggers the seizure).

Secondly, the onset of the epileptic activity should beigfipiocated in the visual cortex where the neural
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system is excited by the photic stimulation. From the visumatex, the seizure should propagate over the
whole EEG scalp since the epilepsy of this dataset is of argésed type. The Analogues-RBF analysis
should estimate this latter causal phenomenon and, momrierly, should also be helpful to confirm the

efficiency of this algorithm.

In the recording of this epileptic dataset there are 3 oerwes of the type represented in Figure 2.7,
i.e. having the seizure triggered by the photic stimulatidth the exact same frequency. The 5s before the
stimuli and the successive 5s during the stimuli are takextl id occurrences for the analysis. The analysis
is performed over these 3 occurrences considering both #@ &hd the Analogues-RBF algorithms. This
investigation employs the same methodology as developtetiprevious two iIEEG datasets, i.e. a sliding
windows analysis which is tuned with the same parameterth®MPC and the Granger causality algo-
rithm. While the EM signals are considered at the scalp Jalelr electrophysical origins are the same as
for the intracranial data. At the moment, while a differentight be possible, it is not clear how to take a

different methodological and parametrical choice.

The main results of the exploratory analysis of this dataseshown in Figure 6.7. The first plot con-
siders the analysis of synchronisation (average in alktbzurrences), using the mean MPC index across
all channels, i.e. theypc. The findings confirm an increase of synchronization durfreggfresence of
the stimuli as expected by the seizure activation. Secohadyplots of the scalp EEG causal network are
shown. These plots are computed in the 5 second partitimréahd during the stimuli. The first thing to
notice is the increase in the number of causal links estidhdtieing the stimuli as evidence of the initiation
of the seizure. Secondly, in the rightmost plot, it is polesib visually observe the back-to-front direction
of the propagation of the 'causal wave’ due to the seizuregdisation. Again, this fact can be taken as
evidence that the causal algorithm correctly captures ttiem@menon of seizure propagation, as stated in

the beginning of this section.

While obtaining encouraging results in the analysis of taiter dataset, the focus of the thesis was
mainly directed towards the epileptic IEEG cases. Therattiers a more interesting and useful set of
problems than the former. In the IEEG datasets, the projwagat the seizure, as estimated by a causality
algorithm, is a feature which can be taken as further supjporthe location of the epileptic focus. In
the photic dataset the back to front propagation, since a known effect, does not have any specific
contribution to this case of study. It is only used here toc&hile correctness of the Analogues-RBF
algorithm.

A second reason is due to the fact that the study of the causddiorithm, as explained in Chapter 4
did not take into account effects of volume conduction. MWedl known that volume conduction strongly
effects EEG [106]. Nevertheless, since the previous restibw evidence of the back to front propaga-
tion of the seizure even at scalp level, this may further divdethe correct estimation capabilities of the
Analogues-RBF causality algorithm. This experimentatiseovas also added to this chapter to emphasise

the latter fact.
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Figure 6.7: Analysis of the photic epileptic dataset. Intihygmost figure, the analysis of synchronisation
as computed using thaypc index. As expected the level of synchronisation during titerictal state is
lower than after the interictal state. In the bottom figutes pattern of causality shows the back-to-front
propagation of the seizure.

6.2 Preliminary investigation of the problem of volume conduction

As discussed in Chapter 2, while the analysis of connegtigiing methods from complex systems/networks
theory is an established and expanding research topic irmseence, the understanding and the interpre-
tation of the multivariate pattern of interaction from EM aserements may be intrinsically biased towards
the problem of volume conduction. In this respect, one ofdinections which has been planned for fu-
ture investigation is based on evaluating the influence afrae conduction on the analysis of functional
connectivity. In this last part of the thesis, for this reassome preliminary analysis on the MEG dataset
relevant for this future research is discussed.

In particular, with the assumption that this type of datafiecied by volume conduction, the PLI have

been designed to provide a possible solution to this probfieing the true connectivities which are cou-
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pled at non-zero phase lag whose interactions are condideree mainly biased to volume conduction
phenomena [135]. Since the PLI, as described in the Appehdix a modified type of phase synchroni-
sation, its application can be directly compared to theipteyMPC index. As stressed in the Conclusion

chapter, further tools of source reconstruction would s&etein the future to address this problem.

6.2.1 MEG dataset
MPC

The extraction of the phase synchronisation in the sensawesjs firstly evaluated using the MPC index
as was the case of the epilepsy data in Section 6.1. Thissisddyperformed over the MEG time series
already preprocessed as described in Section 5.1 durirgiitgke channel analysis.

For each time series of the dataset, the Hilbert transforoomsputed on the broadband signals{0
48Hz). Since each time series contains only 1562 pointg eflgcts due to this transformation to the phase
domain are not negligible. Therefore, in contrast with gpiiic datasets, prior to the Hilbert transform in
order to avoid these edge effects, it has been suggeste®1h fd: firstly, taper each time series using
a cosine half wave (Hamming window); secondly, after thebéfit transform 10% (150 samples) of the
instantaneous phase values should be discarded on eaclridethe phase time series, the MPC can be
computed as explained in Appendix A.

The phase synchronisation is computed for each singlematiel for each single trial produces the real
and symmetric similarity matriB. Therefore, since the recording from each subject is peréorover 141
MEG channels, 14'(31417 1)/2 = 9870 values per each trial are available. This number a¢sdanthe
number of unique edges between each pair of channels ab84EG sensor space (the upper or lower
triangular part oD). In practice, after this operation for each group of paea number of 322 9870
values for each eyes condition is computed. As previoudgudised, the interest of this thesis is not to
make any assumption on a particular patient. Thereforerdardo reduce the dimensionality of the data,
for each channel of the MEG an average (simple arithmeticjnisaaken across trials: for each group of

patients a set of 9870 values of synchronisation for each eyedition is computed.

In Figure 6.8, a summary view of the analysis of the MEG dasassing the MPC index is shown. Fig-
ure 6.8 displays the case of the eyes closed only, since t®eaen condition shows the same qualitative
plot. Figure 6.8(a) presents a scatter plot with 9870 poeésh point is defined by the mean value of the
MPC index averaged across trials, as discussed beforasadgiaé channel-to-channel physical distances.
In practice, it is possible to consider each colour of thetecglot as the distributiop(MPC, Distance
of an average patient in the three groups. In the Figure®(88(c),6.8(d), the plots of Figure 6.8(a) are
separated in the corresponding group of patients for arbeétaalisation. Figure 6.8 shows clearly the
dependence of the phase synchronisation as a function digtence. In practice, channels that are close
to each other (lower distances) are strongly synchronizeitevehannels far apart, are weakly synchro-
nized. This pattern of synchronisation may be a genuinegrtpwf the brain network: closer areas are
likely to be more synchronized. Nevertheless, as repont§t8; 107; 106], a similar pattern of functional

connectivity may be a product of spurious synchronisatiarthese articles, simulations of realistic brain
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Figure 6.8: Plots that shows the analysis of MEG datasetthtoeyes closed condition using the MPC

index. The scatterplots show a strong dependence betwstamce and synchronisation which may be
caused by volume conduction effects as noticed in (b),(@Xah The histograms in (f), (g) and (h) display

the increase of medium and long range synchronisation éP#rkinson’s patients compared with the other
groups.

models made by uncorrelated elements have shown that tpe siid&igure 6.8 can be produced by vol-
ume conduction only. Figures 6.8(e),6.8(f),6.8(g) shoevdrstribution of the value of the MPC for short,

medium and long range connectivity. The subdivisions madesabjective and are not connected to any
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particular topological reason. Nevertheless, the purpbseese plots is to show qualitatively the pattern
of synchronisation at different connectivity ranges. Framinspection of these plots, it is shown that at
medium and long range the synchronisation of the Parkisssmigher than the Control and Dementia

groups.

PLI and discussion

The treatment of the data for the PLI follows the same prdtotanalysis as described by the MPC: firstly,
the Hilbert transform is computed in all the time series segt®available; secondly the PLI is calculated on
the resultant phase series as specified in Appendix A; firthkdyaveraging of the PLI is performed across
trials for each channel. Figure 6.9 shows the result of thimputation in a similar fashion of Figure 6.8.

Some points of interest visible from these plots are impatia mention for future investigations:

e Firstly, in Figure 6.9(a) the scatterplots for each groupudfjects do not display the typical decaying
behaviour due to volume conduction as in Figure 6.8(a)ehltsthe scatter plots are independent of
the channel distancesThis fact may be the result of the penalisation of volumedtmtion effects

by the PLI.

e Secondly, it is possible to notice by a visual inspectiort tha application of the PLprovides a
better discriminative power between the group of subjelitdact, the scatter plot of the dementia
patients at all lengths have an average higher value of thedthparing to Parkinson’s and Control.
The same observation is noticed between Parkinson’s antt@duit with less visible difference.
It is not currently clear why this effect take place. It is pide that the PLI, by emphasising true

interactions, helps to uncover this pattern of connegtivitich is however present in the data.

e Thirdly and more interestingly, it is important to displayrigures 6.9(e),6.9(f),6.9(g) the qualitative
separation of the scatter plot in terms of histograms. TreetBubjective length scales are presented
as previously shown in Figure 6.8. In these plots it is pdedib see that the difference between
groups computed with the PLI is more substantial than wighNPC. More importantly, at medium
and long range connectivity the synchronisation of the deiagatients have average higher values
than normal Parkinson’s in contrast with the qualitativeutes achieved with the previous MPC

analysis.

The last result in particular is interesting in relation tore experimental findings which have been
recently published in [16]. In this latter work, the synchisation analysis of a study on Parkinson’s and
dementia patients performed using Synchronisation Lileeld (SL) [135] have shown in some frequency
bands that the level of SL is DementiaParkinson’s for medium to long range connectivities. Wiiile
analysis in this thesis using the MPC is technically différgince it is applied to the broadband case, the
conclusions are compatible with the work in [16]. This résd discussed in [16] was not expected by
previous results in the literature (see references in [id]jhis particular disease but it is reminiscent of
patients affected by Alzheimer disease. Therefore, fromRiLI-MPC analysis of the MEG datasets an

open question for future investigation emerges: Is theepatbf functional connectivity computed in the
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Figure 6.9: Plots showing the performance of the PLI in theGuiataset. Firstly, the PLI is independent
of the channel distance. Secondly, the PLI offers a betwarinination between groups of patients and
it gives a different result to the MPC for medium to long ramg@nectivity. A noticeable feature of the
figures (a),(b),(c),(d) is the vertical grouping of some td points towards the beginning of the X axis.
This phenomena is the simple effect of the geometrical nigtdetween the electrodotes and is not result
of some particular characteristic of the data: The first gristformed by the nearest neighbours channels
while the other groups clustered at progressive distances.
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medium to long range distance using MPC (and maybe SL) dueltmne conduction effects?

6.3 Summary

The purpose of this chapter was to discuss experimentalgitialysis of multivariate functional connectiv-

ity in real patient data. The chapter was divided in two parts

In the first part, the investigation of bivariate synchratiisn and causality was considered on the
epilepsy data in order to extract the spatiotemporal ei@miudf seizures present within. Importantly, the
analysis of causality confirmed for the iIEEG dataset A andbtiagic epileptic dataset the evidence of the
propagation of the seizure from the area containing thetilmtaf the focus. This result may help to con-
firm the validity of the Analogues-RBF Granger method for #malysis of epileptic data which is stated
as the main objective of this chapter. While in the iIEEG dettsthe same results cannot be found, this
latter result may be explained by the fact that the seizusmsdocalised in a smaller region which does not
propagate further in all the grid. In this case, both singlermel and multivariate synchronisation measures

seem to be more informative than causality for the discowétliis seizure dynamics.

The second part presented a preliminary investigation @fpttoblem of volume conduction and the
effects it may cause on the multivariate pattern of fun@l@onnectivity and some discussions. The PLI
was recently proposed as a possible solution to this probkehhere investigated in the collected datasets.
The applications of the PLI and the comparison against thfyais of the MPC have shown, in the particular
case of the MEG dataset, several differences. These laalts are considered in the future development

of this thesis as material of further research addressétketproblem of volume conduction in EM signals.
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Conclusion

7.1 General overview

In this thesis, the general problem of estimating synclsation and causality phenomena from the data
of an underlying latent complex system has been investigdteparticular, this thesis focussed on appli-
cations in the field of computational neuroscience. Nowghal processing techniques were developed to
extract brain functional connectivity from a set of eleatiagnetic time series. The current trends of the rel-
evant research for this problem have been reviewed and semeeasults have been derived and discussed
which have not previously been reported in the specialigethture. As stated in the Introduction, this

thesis is divided in three conceptual parts:

Modelling : The recent modelling framework of the brain using the pmadof dynamical systems in

complex networks and Weakly Coupled Dynamical Systems (\W)CD

Methods : Novel functional connectivity techniques of analysis @fhhelp to discover the effective con-
nectivity in the brain have been implemented: a new singé@okl synchronisation measure and a

novel Granger causality metric were investigated.

Experiments : These techniques have been tested in the analysis of twarfamt brain pathologies, i.e.

Epilepsy and Parkinson’s disorders, and their functionalysis was further discussed.
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7.1.1 Dynamical systems in complex network applied to neuroscience

The framework of dynamical systems in complex networks,escdbed in Chapter 1 and Chapter 2, is
the most recent development in terms of modelling and daddysis to study brain mechanisms. Firstly,
it is a mathematical approach which extends the lumped digzisystem models based on chaos theory
frequently used during the last three decades of brain aisalgecondly, it better supports the complicated
hierarchical structure of the brain and the hypothesisg@fegation and integration of its activities. Thirdly,
it addresses the understanding of the functioning of thalinaterm of interdependence, emergence and

self-organised phenomena, i.e. effective connectivity.

From amodelling perspective Chapter 2 discussed the specific class of problems coesidierthis
thesis based on representing the dynamics of the neocdriesxraesoscopic level of description. While
neurons are the elementary components of the neocortexg abésoscopic scale, macrocolumns are the
most important elements (nodes) of the anatomical conngabf the brain complex network. In fact, they
are believed to be the fundamental processing units of thie bnd they are considered the smallest finest
neural structures perceived using electromagnetic tgalesi While modelling large scale neocortical dy-
namics is not possible with today’s knowledge, in this theg have considered a few synthetic examples
which mimic the behaviour of these cortical networks: In Qtlea3 a chain of coupled non-identical Rossler
Oscillators was employed while in Chapter 4 a series of liaea nonlinear bivariate WCDS were used.
They cannot be regarded as realistic models of the neocdttexever, they still approximate some aspects
of the brain activity which are useful in this thesis to tdgbaithms for interdependence analysis. Similar
arguments and synthetic models have been used frequertthe inpomputational neuroscience literature

which validates our research approach.

From amethodological perspectivethis framework drives the main aim of this thesis which addes
the problem of estimating the functional connectivity of tomplex brain network, i.e. the pattern of in-
terdependencies of the observable electromagnetic sigimgparticular, it was discussed that the method-
ology of analysis is of an exploratory type: structural imf@tion of the brain was not available and the
EM signals are the only accessible knowledge, i.e modeldoemario. For this reason, three classes of
interdependence methods were mentioned in this projesisths fundamental types of relationships useful

for the understanding of the connectivity of brain patteand for their interpretation:
e a univariate measure of synchronisation in a single channel
e a symmetric metric of synchronisation in multichannels,
e a multivariate directional metric of causality or inforrimat in multichannels.

These aspects of functional connectivity are meant to capliferent emergent phenomena of the un-
derlying brain dynamics. In this thesis, specifically, aelaevelopment of single channel synchronisation
and a new metric of information flow were studied as reponte@hapter 3 and Chapter 4, respectively.
Two symmetric measures of phase synchronisation, i.e. ts@MPhase Coherence and Phase Lag Index

were employed during the data analysis and discussed édlente problem of volume conduction as a
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preliminary data analysis.

From anexperimental perspective real patient datasets from two important neurologicabidiers
were presented in order to discuss problems of functionahectivity and to test the usefulness of the
methods developed. As reported in the thesis, these dat®setonsidered here only as possible examples
rather than novel cases of study: the methodological path@fthesis has priority with respect to the

experimental side which however is considered for futugdiegtions.

e Epilepsy is the most common neurological disorder whichuis th abnormal synchronisation of the
underlying neural network. Two datasets have been cotleftten a hospital database previously
recorded by subdural EEG grids implanted in the neocortéwofpatients and used for clinical ex-
aminations. They are examples of focal epilepsy which mélaaisthe pathological activity starts
from a single location in the brain. Another dataset from tigpa affected by focal epilepsy was
considered in the first part of the project and used during#usality investigation. While structural
deficits of the anatomical connectivity is a possible cadskis pathology, these datasets are consid-
ered in this thesis from a dynamic perspective: to study platistemporal feature extraction of the

spread of the seizures.

e A MEG dataset of Parkinson’s and Parkinson’s related deimeras considered because it is an ex-
ample of a pathology where structural deficiencies of thestgithg cortical network are responsible
for the malfunctioning of the brain. These faults are balkto be visible at the sensor level where

functional connectivity techniques can be of valid use.

7.1.2 Assessing local synchronisation using single EM channel

A univariate statistic was proposed in Chapter 4 with themaain of estimating synchronisation on a local
region of the brain network, the activity of which is captitey a single electrode. The principal idea of
this algorithm is based on the dimensionality estimatiothefmanifold of the underlying neural dynam-
ics. The dimensionality of this manifold is related to theydee of freedom and the synchronisation of
the underlying system. Few possible existing techniques baen considered which have been combined
to offer a novel automatic measure of the complex@yy. Complexity and synchronisation are inversely

proportional concepts. Simulation and experimental te$i#ve confirmed the validity of this new measure.

In Chapter 4, the simulation study of a lattice of 50 Rosséeiltators was considered in order to mimic
the behaviour of a local neocortical structure. Tag successfully discriminates different synchronisation
regimes simulated by this synthetic example. Secondly,itiex rejects the presence of noise corrupting
the observed signals. As discussed in the final part of Chdptia this way,Cepm is not affected by the

problem of variation of the SNR in the case of Gaussian olasiemnal noise.

Experimentally, this single channel metric in Chapter 5 wested against the iEEG and the MEG

datasets. In epilepsy, this measure of synchronisatiomp®itant to spot local anomalies which can be
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used to find, for instance, the location of the focus. The mgwiindows analysis of the IEEG datasets
has provided encouraging results in this direction. Thétfiege (Datasets A) is compatible with a gradual
transition from the interictal to the ictal statésy can detect subtle changes of the state of a few electrodes
prior to the clinical seizure. It tracks the increasing dyomisation on the route to the ictal state and the
subsequent desynchronisation in the post-ictal stage atiohg with the findings in the literature. The
second IEEG (Dataset B) is a long recording containing méwytsepileptic episodes. With a moving
window analysis we could not find any clear changes prior és¢hevents. This seems to be congruous
with a type of epilepsy having an abrupt shift between ictafito ictal state. Therefore, we applied a
different method of processing to this iEEG, based on theaairg ofCe\ across each single seizure. This
procedure has increased the contrast between the perioctlzafd after the pathological events. With this
type of epilepsy we noticed th&\ displayed spurious peaks during the transition interfictal which
was shown to be a problem for tl&gy algorithm. This phenomenon, while emphasising the momeént o
the seizure, did not provide the correct identification @& tomplexity value during the transition. Despite
this, Cem shows some channels having lower complexity consistetft thi location of the seizure of the
patient and it shows how the complexity changes over thedyrithg and after the seizure.

In the Parkinson’s exampl€gy detected some underlying structural mechanisms of theirizan's
pathology consistent with the literature [14; 139; 138].pburticular, this measure demonstrated a clear
differentiation between the three groups of subjects aadrn eyes open and eyes close conditions in
some part of the brain (occipital and parietal). These figsliare compatible with some recent results in

the literature [14; 139; 138].

7.1.3 Functional synchronisation

As a third topic in order of importance in this thesis, in Cteay® the analysis of phase synchronisation was
computed on the MEG and the iEEG datasets. While the focusithiesis is primarily given by novel
single channel and casuality arguments, the main reasangider this analysis is given by the following

motivations:

e Phase synchronisation is a metric of time correlation betwaultivariate time series which, in con-
trast to the univariate measure, is useful to compute tleagth of the coupling at medium to large
range distances. In practice, in this thesis, both singteraaltivariate synchronisation algorithms
provided the complete view of the functional interactiorite# underlying brain substrate. This was
shown in the iIEEG datasets where, for instance, phase symishtion seemed to provide further

confirmation about the location of the focus and the extensfats range of action.

e As shown during the simulations in Chapter 4, a high valueynthkronisation can produce spurious
estimation of the true directionality in the data. For tléason, in a general framework of functional
connectivity, estimating synchronisation should alwagecpde an analysis of directionality in order

to test the strength of the coupling in the data and avoie fedsisality discovery.

¢ In Chapter 6 phase synchronisation was discussed as anggoertogether with the problem of vol-
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ume conduction which may affect the analysis of multivarfainctional connectivity applied to EM
signals. The PLI, a measure of phase synchronisation whachproposed in the literature to be less
biased to volume conduction, was applied to the MEG datdsagside the traditional MPC. The
analysis of synchronisation in the particular case of ME@ di@s shown different patterns of func-
tional connectivity if the analysis was performed using tte PLI or the MPC. Since connectivity
analysis is currently the main direction of research in ptdeobtain information about the brain,

how much would volume conduction influence this analysis?

7.1.4 Analogues-RBF Granger causality

Chapter 4 proposed a novel technique in order to detect lilguisanultivariate data: the Analogues-RBF
Granger causality metric. The Analogues-RBF techniqueaget on a machine learning extension of a
simple predictor in state space known as the Lorenz methdahalogues. It is a possible maximum like-
lihood estimator of the deviation from Markov property whiis a general nonlinear formulation of the
concept of Granger causality. As for the previous singlenaemethods, during the thesis, synthetic and

real patients datasets were provided to support the wabdithis novel technique.

In Chapter 4, together with the theoretical background of tlausality method, a series of synthetic
examples have been proposed to test performance and vehiéyiour. These simulations were considered
in this thesis because they have already appeared in theutatigmal neuroscience literature as possi-
ble toy models to check the validity of causality algorithmBhe analysis of causality shows that the
Analogues-RBF method successfully estimated the streofgtiie simulated coupling in these examples
and its synthetic directionality. Moreover, Chapter 4 digsed the problem of tuning the Granger metric
since it is not parameter free. An approach of cross-vatidatias considered and investigated using the

previous simulated examples.

In Chapter 6 the analysis of causality using the AnaloguBB-Branger causality metric was performed
on real EEG physiological datasets. The MEG dataset wasakentinto consideration for this analysis
since a causality investigation was not particularly iesting from the disorder perspective.

In the case of the photic epilepsy dataset, the analysisusadidy showed firstly an increase of direc-
tional activity between the period with photic stimulatitiran the period without it. Secondly and more
importantly, the results displayed that the direction &fflow goes from the occipital to the frontal part of
the brain. This is intuitively correct since it is argualiiat the input of the photic stimulation produces the
occurrence of the seizure in the visual cortex before géiserg over all the brain region.

In the case of IEEG dataset A there is an increase of causalitiyectivity during the transition from the
interictal to ictal state. From a qualitative analysis @ tlirection of the flow, it is shown that the epileptic
focus previously found by the complexiGnm measure, was the source of the causal propagation of the
pathological activity in the whole intracranial region. i3ffiact is intuitively correct. During the ictal to
interictal, while some possible significant causality 8nkere found, the flow did not appear to point back

to the focus. It is arguable that after the seizure the regicubject to a state of disorder which therefore
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does not show any preferable causality directions whil@dryo get back to the normal interictal activity.

In the most difficult case of the IEEG dataset B, while theres w&a increase of significant causality
links in the region which contained the focus, no clear dioglity was found in the estimated flow.
This dataset contains short ictal periods and it is possitdethe algorithm of causality cannot find any
identifiable directional interactions. While further irstigation is needed, these results displayed that the
single channel synchronisation was shown to be more udednl the multivariate ones in this epileptic

dataset in order to infer the underlying connectivity in tagion.

7.2 Discussions and future developments

The framework of dynamical systems in complex networks isc@nt and still largely unexplored area of
research which has the enormous potential to bring newipahend theoretical insights to the understand-
ing of brain mechanisms. This recent sub-field of appliechertatics is a natural evolution of the last three
decades of brain signal processing using dynamical sysaacheonlinear time series analysis. Despite sev-
eral breakthroughs that have been achieved using these toahy intriguing questions remain open. In
this thesis, a few problems were successfully addresseddiag the early processing stage of a complex
network framework. Due to the limited time other issues wefeunanswered for future investigations.

Starting from the conclusion of this project, in the follmgi a few potential directions are proposed.

Volume conduction and inverse problem functional connectivity

As emphasized during the thesis, one of the major open guesti this thesis left for future investigation
is given by the effect of the volume conduction on the analgsimultivariate functional connectivity. This
thesis, in fact, discussed methods of functional conniggtitom the signals{x; }-_; at the sensor space
which are intrinsically influenced by this problem. In Seot6.2, a few preliminary results were discussed
using a modified metric of phase synchronisation, the PLé [Bitter had reported different results in the

analysis of the MEG data.

The PLI as well as techniques such the imaginary part of themmce are methods which perform
analysis directly on the sensor level signfs}-_; penalising components which are due to volume con-
duction effects. Another possible direction, debated @literature, is based on computing the functional
connectivity in the source space instead of the sensor sgacgtly, a method of source localisation is
needed to solve the EM inverse problem which extracts theigosnd the activity of the neural sources
from {x}L_;, i.e. {}" ;. Secondly, the functional connectivity betwegm}? , can be estimated with
the methods discussed in this thesis. In practice, in thal jpl@tocol of analysis described in Figure 6.1
a source localisation algorithm is included during the poepssing block while the rest of the diagram
remains unaltered.

If the reconstructed sources are reliable, the connegtaritong{q}_, reflects the true communica-
tions between the real brain sources. However, as a cnitifi85], from a model free scenario functional

connectivity at the source level is biased towards thedBgu nature of the inverse problem (number of
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channels« number of sources). It seems necessary, in order to inctieaseliability of the analysis, that

a successful estimation of connectivity in source spaceldhme performed together with extra structural
information about the location of the brain activity. Datesibn methods between electromagnetic and
structural imaging techniques (MRI and fMRI) have been ndlganvestigated in the literature [7]. The
solution of the latter problem can thus provide further cliens for studying connectivity in the brain with
electromagnetic techniques. In the datasets used in #éssttthe lack of any structural information about

their origin was an obstacle for any preliminary analysithis direction.

Functional network analysis

This thesis contains some of the early stages of a multieaaiaalysis of the brain, i.e. bivariate synchro-
nization and causality, which are useful in order to un@erdtmedium to long range connectivities. This
piece of information has the advantage of retrieving theramication between different functional areas
of the brain as request by modern neuroscientific studiegll&channel measures such as the one presented
in this thesis, being local features are incapable of obitgithis type of information.

However, despite this theoretical advantage, multivarmaeasures are bias towards a more difficult
analysis: reasoning with its complicated patterns of maitate functional connectivity remains a big
problem. For instance, visualizing in a clear informativermer both synchronization and causality con-
nectivities is not as direct as using a single channel matridictated by the exponential explosion of the
number of links with the increase of the number of electrodes

Thus, while from the actual state of research a single cHamradysis seems to be considered more
straightforward for clinical and research purposes, mailiate techniques need to be further developed to
take advantage of its information. One of the reasons todiire the framework of complex networks is the
recent interest in statistical tools of investigation lihsa graph and spectral matrix theory [6] which goes
in the direction of solving the previous problems. Thesémégues would enter, as depicted in Figure 6.1,
in the next step of analysis than the material discussedstritibsis. Several of this tools have been applied
and are becoming popular for brain connectivity studie®]1Therefore, during future investigations of
specific neuroscientific problems, these statistics coaldraployed in order to extract useful information
about the underlying state of the brain to reason with theptimated patterns of multivariate functional

connectivity.

Metrics validation

Another important issue of this thesis current and futureettgoment is the validation of the methods
proposed. In practice: how can we be certain that the findibtgined during the analysis are neuropysio-
logical significant?

The main approach, taken during the processing of the EEG/M&his work, was to cross-validate
our results with the help of an external expert or using addetasets. The iEEGs were considered from
a database of possible epilepsy datasets were the seiasiiom, duration and type could be identified
by an expert and by previous clinical records. In the casehofip epilepsy, the data were presented with

ON-OFF stimuli in order to trigger the seizure and presegrttemrecordings. For the MEG the subject
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were divided in groups: correct identification of a patiemup can be used as a positive argument in
favor of this thesis metrics. This approach is thus qualgabut it is helpful to establish if the methods
extracts meaningful neuropysiological results, i.e. eogily significant findings. Therefore, if the results
are consistent with the expert opinion than the methods eduarther utilize.

A more quantitative approach, which is important to considensists on checking if the results of syn-
chronization and causality are statistically significaet, supported by a statistical test and/or a confidence
interval. In the case of bivariate causality and synchration the standard test discussed in the literature
based on surrogate analysis was presented in Section K.i8.40t clear from the literature at the moment
how a surrogate test can be extended to the the global netWwbik issue may better be addressed during
the future investigation of functional network statistissdefined in the previous subsection and depends on
the particular global metric adopted. Similarly, for thegle channel metric this thesis does not developed
a statistical test for the analysis of epilepsy but stillegbnly on the external expertize to check if the drop
of complexity is somehow related to the seizure. It is noackow to designed a surrogate test since the
statistical property of this measure needs to be fully ustded. In the case of Parkinson, the amount of
trials in the datasets are enough in order to use a Wilcoxuksam test.

In general, a the quantitative approach requires eitheroa goderstanding of the underlying system
(provided by a model) or by having lots of data cross-vatiddty an expertin order to build up an empirical
statistics. Considering the complexity of the underlyimgib system and the technological limitation of
the measuring process the former is currently difficult toiewe. The latter form of validation is thus the

most viable solution for future development of this thesis.

Practical applications

Despite the fact that the previous chapters contain bothadetogical and experimental analysis, this the-
sis focused mainly on the demonstration of the applicatilitnovel algorithms of functional connectivity.
The epilepsy and Parkinson’s datasets were consideredsatbfmmethodological examples rather than
cases of study used to build new knowledge about these @isortihe methodological experience acquired
during this project is a step forward for the long term andiredtdirection of our research, i.e. consider a
more detailed and driven investigation of these two patjiem

Epilepsy is still a major open problem in neuroscience despiany years of research have been spent
on this topic and several tools have been developed (se¢ fldi08 recent review on the state of epilepsy
research with major focus on seizure forecasting). The teng plan and the open dream of the research
is seizure prediction. The methods in this thesis may be faetthis purpose if the metrics studied will
be confirm as significant predictive features. It is necgssanrder to learn some basic understanding of
this disorder and the methods we developed, to collect mateetan the one provided in this thesis. More
data is needed as discussed previously to learn the statiséhavior of this thesis metrics. However, while
intracranial recordings are an outstanding source of tiaitatypology of recordings are difficult to collect.
For research for the Parkinson’s disorder the size of thasgatcollected should not be a problem since
several studies have already been published and thus theyhased the quality standards required by the

international community.
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It is important to underline that for practical applicatidhe single channel synchronization seems a
more mature tool for the investigation of real datasets. éil@w, the problem of statistical validation,
especially for single trial event like the epilepsy dataseted to be addressed. The more ambitious use
of the bivariate metrics presented in this study is slowedrdby some the issues we have discussed:
computational load can be intensive, the results are difficunterpret, the problem of volume conduction
can produce spurious results. These arguments are moenéefad the causality measure than the bivariate
synchronization. At the moment, after experiencing witis thesis material, it is difficult to propose a
causality metric for practical applications. Causalityalysis other than being computational slower than
synchronization are currently validate only empiricalfylboking a the graph of directional connectivities.
In our opinion a causality method cannot be used rigorowlyhe moment, in clinical or accadamic

research.

7.3 Final consideration

To conclude, this thesis has discussed some novel mettgidslof exploratory data analysis for the pro-
cessing of connectivity between multivariate time seriegtified by the framework of complex systems.
We believed that in neuroscience, these methods are usdfntitthe dynamics of the communication be-
tween brain areas as measured by EM recording techniquéactirboth simulation of synthetic models

and experimental data analysis on real patients recordiags shown some positive results that confirm
the validity of these methods. For future perspective, wesicter to furter develop these methods for both
clinical and accademic application. Finally, the roadmapfiture improvement and application of these

methods was briefly considered by addressing the volumeumtiot problem.
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Phase Synchronisation

Phase synchronisation is a symmetric metric in the spadenefderies, which seeks dynamical relation-
ships between the properties of the signals cailegise As a particular instance of Definition 1 in the in-
troduction, two signalg(t) andy(t) are phase synchronised if the following phase locking dood[116]

applies

Onm(t) = [nex(t) —may(t)] <e, (A1)

whereg(t) and@,(t) are the instantaneous phasex@f andy(t). € is usually a small term. Equa-
tion A.1is a particular case of Definition 1 in the Introdocti

Equation A.1is the general expression which describesatbe af then : msynchronisation regime [116].
During the thesis, only the case of 1: 1, simply denotegl(&} is considered since it is the most common
choice in neurophysiology applications [114]. In order i@leit the relationship in Equation A.1, the

following methodological procedure is usually employed:

¢ Estimate the instantaneous phagg$) andg(t) of the two signals using the Hilbert transform.

e Compute a statistic which checks if the difference of phas@gs bound as described by the expres-

sion in Equation. A.1.

As a possible extra step, it is common to employ an hypothesisg framework as discussed for the

Granger causality metric, in order to validate the previgtasistics (see [2] for a review).
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A.l Instantaneous phase

Following the literature [114; 87], the computation of tinstantaneous phagg(t) of the signak(t) (the
same procedure appliesy(t)) can be performed in two ways: either using the Hilbert tfams or by the
Wavelet transform. In this thesis, only the former is usedampute the the instantaneous phase.

The Wavelet transform technique is based on the followimyactution

00

Wi (t) = [m Wt )x(t' —t)dt’ = Ag(t)ed ™, (A.2)

and the instantaneous phase can be computed by

(t) = arctar%, (A.3)

whereW(-) is thewavelet kernefunction which define the previous convolution. The follagiMorlet

wavelet is often considered:

_ bf
li(t)ziel(%Le -~ (A.4)
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wherewy ando; are two parameters, i.e. the center frequency and the bdtidwihich define the
shape of the kernel function.

The Hilbert transform is computed through the analyticghal ofx(t) given by:

Hy(t) = X(t) + X(t) = Ax(t) g™V (A.5)

wherext) is the Hilbert transform of the signalt) given by the following

e )
X(t) = ZPV. [m =t (A.6)

with P.V. indicating the Cauchy principal value. Using Equation At5sipossible to compute the

instantaneous phase by
o(t) = arctanig—:;. (A.7)

Both Hilbert and Wavelet transforms have been the subjeceéc#nt investigation which have been
shown to produce similar results. The main difference tai the filtering abilities of the two techniques:
The Wavelet kernel provides a natural bandpass filter arthmétequency of interesty while the Hilbert
transform has a unit gain acrossthe power spectrum. Theilansform is thus considered a broadband
technique to recover the instantaneous phase. For thisrmedgere has been an ongoing debate on the
significance associated to the outcome of the instantangivase computed with the Hilbert transform.
Our decision is based on the fact that it is most commonly aseldmore importantly it has the advantage
of not being dependent on the choice of the particular kdumedtion.

The practical computation of the Hilbert transform is tygig associated in the literature with an ap-

proach based on the Fourier transform. This algorithm isrglwy the following formula:
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K(t) = —iFT YFT[x(t)]sign(w)], (A.8)

where FT and FT! stand for the Fourier and inverse Fourier transform. In fizac as reported

from [114], the Hilbert transform algorithm which codes firevious Equation A.8 is given by

e Compute the FFT of the input sequerog}]_; and store the result in a vectfk;}|! ;,

e Create a vectofh;}{ ; such as

1 for i=1,(n/2)+1,
hi=<¢ 2 for i=23,..,(n/2), (A.9)
0 for i=(n/2)+2,..,n

e Compute the pairwise produgt= h;j%;,

e Calculate the inverse FFT ¢f }i! ; and return the first n elements of the resuilt.

A.2 Mean Phase Coherence

Using the expression in Equation A.1, itis possible to chitle instantaneous phase difference is bounded
which confirms that the signals are mutually synchronizemlvéler, due to the randomness in real data, the
investigation ofp(t) may suffer from different problems: Firstl(t) may present sudden phase slipsaf 2
For this problem, instead d@f(t), it is better to use the wrapped ph&geé) = ¢(t) mod(2m) which accounts
for these jumps. Secondl§t) is no longer a deterministic quantity but instead it can bes@tered as
a random periodic variable with suppdrtt, 1. In this probabilistic case, the boundeness condition in
Eq. A.1 has to be replaced by a quantitative statistical oreas

Different methods have been proposed to check this projisety [114] for a review). In this thesis
we consider the approach based on directional statisticsdiized by the Mean Phase Coherence index
(MPC). The latter is also known in the literature as the Phamxking Value (PLV).§(t) is modelled by a
Von Mises distribution which is the equivalent of a Gaussiatribution for a random variable with periodic
support [99]. In practice, the MPC index measures the stheoitthe phase synchronisation as defined by
the peakedness of tiggt) distribution. The MPC index is thus given by

1 N
MPC= |5 S bt (A.10)
=1

From the above value, it is possible to see tM&C is bounded between 0 and 1. By definition [99],

theMPC = 1—CV whereCV is denoted as theircular varianceof the §(t) distribution.
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A.3 Phase Lag Index

The phase lag index is a further metric of phase synchraarsethich is designed to take care of phenom-
ena of volume conduction and active reference electro®s.[As for the previous MPC index, the PLI is

derived by the instantaneous phase distribudiin. The PLI is defined as follow:

N
PLI = | 5 siartp(v)| (A.11)
j=

wheresign(x) = x/|x] is the sign operator defined as,

-1 x<0,
signx)=¢ 0 x=0, (A.12)
1 x>0

Within the formulation in Equation A.11, the PLI can takewes between 0 and 1 as in the case of the
MPC. However, by construction, the PLI is an index which isigeed to be more sensitive by the asymme-
try of the phase distribution. In practice, the basic idelaife the PLI index is that a single strong source
propagates its effects at the same time to different eléetalt is thus more likely that this source produces
signals coupled at a zero phase synchronisation sincdéist®bn the scalp are practically instantaneous.
The PLI penalizes phenomena of this type, emphasizing piifiseences at non zero lags, i.e. from not
instantaneous coherent sources.

As discussed in [135], it is possible that some meaningfekactions might be still the product of zero
lag phase synchronisation, i.e. two sources far apart cetelplsynchronised at scalp level. The author
explains, justifying the use of the PLI, that the danger efgbssible loss of this piece of information is less
important than the misinterpretation of the synchronisagiattern caused by volume conduction. From the
preliminary results in Chapter 6 this may be the case: spqudfitern in the data may be hidden by volume
conduction.

As reported in [135], the PLI has shown to be able to deal witibjems of volume conduction in the
case of simulated data (coupled of oscillators dynamicsiiesys) as well as for experiments with EEG
and MEG data. These results were compared with interdeperdeols of analysis such as the previous
MPC index and the imaginary part of the coherence [104]. attell measure was previously developed,
to solve the volume conduction problem from scalp level ENasugements in the same fashion as for the
PLI. For both indexes, the PLI has shown to be more effectiga these latter two methods to estimate the
underlying synchronisation from sensor level data hiddemddume conduction. For this reason the PLI is

considered here for the exploratory analysis of MEG datahapfer 6.
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