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Abstract

The nature of tacitly collusive behaviour often makes coordination
unstable, and this may result in periods of breakdown, during which
consumers benefit from reduced prices. This is allowed for by adding
demand uncertainty to the Compte et al. (2002) model of tacit collu-
sion amongst asymmetric firms. Breakdowns occur when a firm cannot
exclude the possibility of a deviation by a rival. It is then possible that
an outcome with collusive behaviour, subject to long/frequent break
downs, can improve consumer welfare compared to an alternative with
sustained unilateral conduct. This is illustrated by re-examining the
Nestle/Perrier merger analyzed by Compte et al., but now also tak-
ing into account the potential for welfare losses arising from unilateral
behaviour.
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1 Introduction

There are two main theories of harm under which competition authorities

intervene in a horizontal merger investigation: unilateral and coordinated ef-

fects. Unilateral effects arise from an individual incentive for the merged en-

tity to raise prices post-merger whereas coordinated effects arise if the merger

results in an increased likelihood of tacit collusion (see Ivaldi et al. (2003a)

and (2003b)). Recent theoretical advances have significantly increased our

understanding of the circumstances under which coordinated effects are likely

to occur. Previously, most attention had been on the role of firm numbers.

A reduction in the number of (symmetric) players can be shown to increase

the likelihood of tacit collusion1. This suggests any merger will enhance the

possibility of collusive behaviour to some extent. However, recently Compte

et al. (2002) and Kühn (2004) for example, have highlighted the crucial role

of symmetry between firms, with the clear consensus that increased asym-

metries reduce the likelihood of collusion.

Since symmetric outcomes are most conducive to tacit collusion whereas

asymmetric outcomes may result in a market leader with a dominant posi-

tion, there is a potential important trade-off between the two (see also Motta

et al. 2003). Acknowledging this, Röller and Mano (2006, p.22) neverthe-

less suggest that a merger which disrupts coordination but enhances single

dominance (unilateral effects) may be pro-competitive since:

“...it is preferable that any coordination is by only a subset of
firms (i.e. the merging parties) rather than all firms (tacitly).”

This view is consistent with the collusive behaviour described in models

with demand certainty, such as Compte et al. (2002). Here, deviations from

collusive behaviour are perfectly observable and a punishment mechanism is

required to prevent such deviations; however, as long as firms are sufficiently

patient no deviation will occur in equilibrium and the monopoly price can

be sustained.

Assessing the likelihood of collusive behaviour in this way means that

1See for example Ivaldi et al. (2003a).
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comparisons between a potentially collusive outcome and an outcome where

unilateral behaviour is expected involve contrasting the likelihood that firms

are sufficiently patient with an expected price resulting from unilateral be-

haviour. This would appear to be an extremely difficult comparison to make.

Furthermore, we believe that such models of collusive behaviour fail to take

into account the likely nature of tacit collusion. Tacit collusion is substan-

tially different from hard-core cartels which (at least on the evidence of de-

tected cartels) typically involve sophisticated organisational structures with

frequent communication and, complex monitoring and enforcement mecha-

nisms2. As Harrington (2006, p.2) argues:

“...hard-core cartels meet frequently and regularly. Firms are
then continually running the risk of discovery and they presum-
ably do so because these meetings generate more profitable out-
comes than tacit collusion.’

In contrast, tacit collusion is often likely to be less stable i.e. subject

to periods of breakdown and/or result in lower prices than are achievable

through explicit collusion. Therefore, in this paper we allow for the pos-

sibility of breakdowns in a model of tacit collusion by introducing demand

uncertainty to the Compte et al. model (2002) described in more detail be-

low. This follows the literature initiated by Green and Porter (1984) where

unobserved demand fluctuations are used as a means to introduce a lack of

transparency. Once the market is not fully transparent deviations are no

longer perfectly observable. As was first shown by Green and Porter (1984)

in a Cournot setting, once demand uncertainty is introduced, collusion can

breakdown. Tirole (1988) illustrates the Green and Porter mechanism in a

simpler Bertrand price competition setting with two symmetric firms, ho-

mogeneous products and no capacity constraints3. In such models collusion

breaks down because firms cannot always distinguish between a rival devi-

ation and low industry demand. Sufficiently long ‘punishment’ periods are

required when industry demand appears low in order to deter deviations from

collusive behaviour. Without these ‘punishment’ periods deviations would

2See for example Harrington (2006).
3See also Ivaldi et al. (2003a).
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be profitable because the resulting reduced sales for the non-deviating firms

are consistent with low industry demand and would go unpunished.

Once breakdowns are taken into account, it is no longer always true that

an outcome subject to tacit collusion results in lower consumer welfare than

an alternative with unilateral behaviour. It is then possible to make mean-

ingful comparisons between such alternative outcomes. In section 5, this is

illustrated by re-examining the Nestle/Perrier merger analyzed by Compte

et al. (2002). This case demonstrates the benefits adopting a more realistic

view of tacit collusion can have merger decisions.

The approach adopted in this paper also has implications for the merger

simulation methodology which attempts to estimate the predicted price effect

of a merger. Previously this literature has been confined to assessing uni-

lateral effects (see for example Werden and Froeb (1994) and Nevo (2000))

but recent attempts (discussed in section 6) have been made to also consider

the possibility of collusive behaviour. We demonstrate that once demand un-

certainty is introduced, direct comparisons between outcomes can be made,

crucially including comparisons between outcomes where different theories of

harm (i.e. unilateral or collusive behaviour) are expected.

The remainder of the paper proceeds as follows: firstly, some initial back-

ground on the Nestle/Perrier merger and the Compte et al. (2002) findings

help motivate the rest of the paper. Sections 2-4 then provide a detailed de-

scription of the model, here breakdowns in collusive behaviour are assumed

to occur when a firm cannot exclude the possibility of a deviation by a ri-

val. Section 4.2 provides some general results on the circumstances under

which this implies collusion will breakdown and the frequency with which

this can be expected to occur. Breakdowns are shown to be most likely to

occur when it is possible that the smallest firm has deviated. Section 5 then

applies the model to the Nestle/Perrier merger. Here it is first shown that,

as expected, absent remedies collusive behaviour is unlikely to occur post-

merger, but nevertheless a significant unilateral effect occurs. The resulting

consumer welfare is then compared with alternative remedy outcomes where

collusive behaviour is expected to occur. Crucially, the comparisons depend

upon the extent to which demand fluctuations reduce transparency and make
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collusion subject to breakdowns.

The Nestle/Perrier merger

The 1992 Nestle/Perrier merger was the first EC merger decision in which a

remedy was imposed in order to ‘prevent’ coordinated effects. The proposed

merger would have created a merged entity with a market share of over

50% and the nearest rival’s share below 25%4. It is clear from the case

report that, without any commitments offered by the merging parties, the

merger would have been blocked on single dominance grounds5. In order

to encourage early clearance, the parties offered a divestment (henceforth

Remedy 1). This involved the sale of Perrier’s Volvic brand and capacity to

BSN, the main rival to Nestle and Perrier. However, the Commission argued

that such a divestment would be conducive to tacit collusion and therefore

would be blocked on the grounds of collective dominance (i.e. coordinated

effects). In response, the parties agreed to also divest additional brands

and capacity to a 3rd party6 (henceforth Remedy 2). Table 1 describes the

resulting capacity levels (ki) for the main players in the industry7 under the

four alternative outcomes.

4M.190 Nestle/Perrier (1992), para 133.
5M.190 Nestle/Perrier (1992), para 132.
6i.e. to a firm other than BSN.
7In addition to these main players a fringe of small, dispersed local suppliers are ignored

by Compte et al. (2002, p.18) as, in its merger decision, the EC did not regard these fringe
players as a substantial competitive force.
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Table 1: Nestle/Perrier merger capacity distributions

Pre Post Remedy 1 Remedy 2

(Actual (Post merger (Parties (Accepted

pre merger) absent proposed remedy)

remedies) remedy)

ki ki ki ki

Nestle 1800

Perrier 13700

Nestle/Perrier 15500 9800 6800

BSN 1800 1800 7500 7500

New Player 3000

Total 17300 17300 17300 17300

δ∗(Compte et al., 2002) 0.59 0.75 0.5 0.61

Static NE average prices 0.53 0.88 0 0

All capacity levels are measured in million litres and the total market

size was estimated to be 5250 million litres8. Compte et al. (2002) model

Bertrand-Edgeworth competition with asymmetric capacities as a repeated

game. The likelihood of collusion is measured by solving for the common

critical discount factor (δ∗) above which collusion is sustainable i.e. as long

as firms are sufficiently patient. The penultimate row of Table 1 reports this

critical discount factors for the four outcomes. This demonstrates that the

outcome most conducive to collusion would be Remedy 1 (the merger plus

only the transfer to BSN). Since both firms have capacity in excess of the

market demand, this outcome results in a perfectly symmetric duopoly9. The

outcome least conducive to collusion is the merger without remedy (Post).

Here the merged entity has sufficient capacity to tempt deviations from the

8Compte et al. (2002) p.18, based upon sales figures reported in the EC merger decision.
9Because both firms can supply the entire market demand in the Compte et al. model

they share the market equally at the collusive price and, in addition, can steal the entire
market demand by deviating.
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collusive agreement, whilst BSN’s punishment capability is limited by its low

capacity. Thus, Compte et al. argue that the accepted remedy placed too

much emphasis on creating a third main player and too little attention to the

role of symmetry in enhancing the likelihood of collusion. Despite reducing

the likelihood of collusion compared to the parties’ initial proposal (Remedy

1), the accepted remedy (Remedy 2) makes collusion more likely than would

follow the initial merger absent any remedy.

In the current paper it is argued that assessing the merger solely in terms

of the potential for collusion only captures part of the story. In particular,

a move from the pre- to the post-merger outcome may reduce the likelihood

of collusion, but still result in a considerable unilateral effect. To illustrate,

the final row of Table 1 reports calculations of the average prices that would

result from non-coordinated behaviour in each of the four possible outcomes

assuming for the moment a fixed level of demand10. This clearly demonstrates

that, while the post-merger outcome may be preferable in terms of a reduced

risk of collusion, it may nevertheless result in consumer harm due to non-

coordinated behaviour. In this case the rejected early remedy offer by the

parties, increasing the number of possible outcomes, highlights this conflict

between theories of harm particularly starkly. However, as suggested above,

this is illustrative of a far more general trade-off between unilateral and

coordinated effects.

2 Model

2.1 Notation and assumptions

The modeling assumptions made are similar to those used by Compte et al.

(2002), with the additional introduction of demand uncertainty. In each pe-

riod demand is perfectly inelastic and made up of M̃ infinitesimal buyers with

a reservation price equal to 1. M̃ is the realisation of demand in any period,

with M̃ independently drawn and uniformly distributed between M − u and

M + u (where M > u > 0). There are n firms (n ≥ 2) producing a homo-

10See Appendix A.3 for the derivation of these prices.
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geneous product with constant marginal costs (c), where c is normalized to

zero. Each firm has a production capacity of k̂i and without loss of generality

denote k̂n ≥ k̂n−1 ≥ . . . ≥ k̂1. Since max{M̃} = M + u clearly any firm’s

capacity above M + u is redundant. Therefore, henceforth we simply denote

ki = min{k̂i,M + u}. K will be used to denote total industry capacity i.e.∑
i ki ≡ K and K−j is the total capacity of j’s rivals i.e.

∑
i 6=j ki ≡ K−j.

2.2 Demand rationing and sales

Each period total demand (M̃) is rationed11 such that:

• Amongst a group of firms setting equal prices (and p ≤ 1) consumers

are assumed to divide themselves in proportion to a firm’s share of the

aggregate group capacity12. So, for example when all firms set the same

price firm i’s share of demand is ki/K.

• Consumers are assumed to visit the lowest priced firm(s) in the market

first, only if this group of firm(s) cannot supply the entire demand

realisation (M̃) due to capacity constraints do the higher priced firms

receive positive demand13.

The sales of firm i for a given capacity arrangement will be denoted as Si.

Following the demand rationing scheme the sales of firm i can be derived as

follows:

11Since demand is perfectly inelastic and all consumers have the same reservation price
the distinction between proportional and surplus maximizing rationing rules (see for ex-
ample Vives, 1999, pp. 124-6) does not apply in this case.

12In Compte et al., with demand fixed at M , a firm’s relevant capacity is defined as
the min{ki,M}. At equal prices demand is then assumed to be rationed in proportion to
these capacities, and this is shown to be an optimal allocation under collusive behaviour.
Introducing demand uncertainty means that this definition of relevant capacity will often
depend upon the precise realisation of demand. Therefore, here instead, we use each firm’s
share of total capacity (where a firm’s individual capacity is at most the maximum demand
realisation: M + u (see section 2.1)).

13This means that consumers are fully informed of the cheapest supplier whilst, as
discussed in section 4.1, firms are unaware of their rivals’ pricing decisions. This can be
justified by allowing secret offers to be made to consumers below a posted price (see also
footnote 19, p. 13).
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When i sets the lowest price in the market

As the lowest priced firm, firm i can make expected sales (denoted SLi ) up

to full capacity provided industry demand is sufficiently high i.e. SLi =

min{ki, M̃} (where as explained above ki = min{k̂i,M + u}). Therefore,

taking into account the assumed uniform distribution of demand and denot-

ing the probability density function f(x):

SLi =


ki if ki ≤M − u

∫ ki

M−u xf(x) dx+
∫M+u

ki
kif(x) dx

= (2ki(M + u)− ki 2 − (M − u)2)/4u if ki > M − u

(1)

When i sets the highest price in the market

As the highest priced firm in the market firm i’s expected sales (denoted SHi )

are positive only if all other firms have sold their full capacity and there is

demand remaining. Therefore SHi = 0 if K−i ≥ M + u and in contrast if

there is demand remaining then SHi = min{(M̃ − K−i), ki}. In this paper

we will focus on cases where overall capacity is such that the total market

demand can always be supplied (i.e. K > M + u)14. Formally in this case

SHi =
∫M+u

Ki
(x − K−i)f(x) dx and therefore since demand is assumed to be

uniformly distributed:

SHi =

{
(M + u−K−i)2/4u if M − u < K−i < M + u

M −K−i if K−i ≤M − u
(2)

As long as K−i < M + u, even as the highest priced firm, firm i′s expected

sales are positive (SHi > 0).

14This is the appropriate case for the Nestle/Perrier merger (see Table 1). In addition,
see Lemma 3 below which shows that, under the collusive scheme considered here, this
is a necessary condition for sustainable collusion. However, SH

i can also be rewritten for
K < M + u by taking into account that for some demand realisations even the highest
priced firm is capacity constrained.
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3 Static Nash Equilibrium

Before proceeding to the model of collusive behaviour in section 4, here the

static Nash equilibrium (NE) is described. Depending upon the specific ca-

pacity distribution this involves either pure or mixed pricing strategies. The

precise conditions are provided in the following lemma:

Lemma 1. A pure strategy NE exists:

a. If K ≤M−u. The only equilibrium of the game involves pricing at the
consumers’ reservation price (pi = 1 ∀i) with firms selling their entire
capacity (πNEi = ki ∀i).

b. If K−n ≥ M + u. The only equilibrium of the game involves marginal
cost pricing (pi = 0 ∀i) and therefore πNEi = 0 ∀i.

For K > M −u and K−n < M +u there is no equilibrium in pure strategies.

Proof: see Appendix A.1

If total capacity is sufficiently low such that the market demand can never

be supplied, then there is no effective competition and firms can always sell

their full capacity at the monopoly price (Lemma 1a). In contrast, if the n−1

smaller firms (i.e. all firms apart from the largest) are together sufficiently

large to always be able to supply the market demand, then competition re-

sults in price equal to marginal cost (Lemma 1b) as in standard homogeneous

product Bertrand competition. This arises because here any subset of the

n − 1 firms can serve the entire market demand, meaning a higher priced

firm makes no sales.15

As shown in detail in Appendix A.2, for the capacity levels described

in Lemma 1 where there is no pure strategy NE, a mixed strategy Nash

equilibrium will be shown to exist16 for a range of parameter values (see

Proposition 1). The equilibrium closely resembles the standard Bertrand

15Hviid (1991) provides conditions for the existence of the pure strategy NE in Lemma
1a) with an elastic demand curve. In addition, the equilibrium in Lemma b) is shown to
not exist in this setting.

16The existence of a mixed strategy Nash equilibrium follows from Dasgupta and Maskin
(1986a, pp.7-17 and 1986b, pp.27-9).
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Edgeworth mixed strategy NE17, with now demand uncertainty introduced,

and the underlying intuition is also very similar. The largest firm’s (firm

n’s) rivals together cannot always supply the entire market demand (K−n <

M + u). Consequently from (2), even if it is the highest priced firm, in

expectation firm n makes positive sales (equal to SHn ). The profits from such

sales are clearly highest by pricing at the consumers’ reservation price. Firm

n will therefore only be willing to undercut its rivals and increase its sales if

this results in profits above this level. This enables us to define the lowest

price firm n will ever charge (pminn ). It is then necessary to consider the

remaining smaller firms’ incentives to price below pminn . In the duopoly case

this is straightforward, firm 1 has no incentive to ever price below pminn − ε
(ε > 0 but small). For n > 2 the mixed strategy NE is in general considerably

more complex. However, if the largest firm’s rivals are guaranteed to sell

their full capacity at pminn − ε (i.e. K−n ≤ M − u ), then again there is no

incentive to price below this level. In the case of n > 2 we will therefore

restrict our attention to cases for which18 K−n ≤M − u (for the application

to the Nestle/Perrier merger in section 5 this does not prove too restrictive).

The above intuition allows us to derive the expected profits which result in

equilibrium (where SLi and SHi are defined in section 2.2):

Proposition 1. For K > M − u and K−n < M + u, if either: n = 2, or
n > 2 and K−n ≤ M − u, there is a mixed strategy Nash equilibrium with
expected profits given by πNEi = (SHn /S

L
n )SLi .

Proof: see Appendix A.2

Finally, the static NE profits given in Proposition 1 can be used to find

the resulting consumer welfare. From the demand function, total welfare

each period is equal to M̃ and made up of CS +
∑n

i=1 πi. Expected demand

each period is M and therefore the expected consumer surplus from the static

Nash equilibrium (CSNE) is: M −
∑n

i=1 π
NE
i .

17See Appendix A.3 and Fonseca and Normann (2008). See also Gal-Or (1984) which
allows for demand uncertainty in a model with symmetric firms.

18In contrast, if K−n > M − u, all firms apart from the largest would have an incentive
to compete below pmin

n in order to gain additional sales.
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4 Collusive equilibrium

4.1 Order of moves

In order to allow for collusive behaviour, Bertrand-Edgeworth price compe-

tition will be modelled as an infinitely repeated game. Firms discount future

periods with a common discount factor (δ), where 0 < δ < 1. In each period

firms simultaneously set prices without knowing the realisation of demand

(M̃). The realisation of demand always remains unknown, however, all firms

know the range of demand fluctuations (u), and that demand is uniformly

distributed over this range. In addition, all individual capacity levels are

common knowledge. In each period firms observe only their own sales. The

pricing decisions and sales made by rival firms remain unobserved through-

out the game. However, as will now be discussed in more detail, firms can

make inferences about rivals’ pricing decisions from their own sales.

4.2 Breakdown in collusion

Section 4.3 will provide conditions which ensure that actual deviations from

collusive behaviour are unprofitable. However, because of the lack of trans-

parency caused by demand uncertainty it may nevertheless appear as though

a deviation has occurred. Therefore, in order to capture the potential insta-

bility of tacit collusion (see section 1) we focus on a specific collusive scheme

by making the following key assumption:

ASSUMPTION: a switch from collusive to non-collusive be-
haviour occurs in the next period if, from observing its own sales,
any firm cannot exclude the possibility that a rival has deviated
from collusive behaviour. If so, all firms then commence punish-
ment behaviour for at least one period, during which they revert
to static Nash equilibrium behaviour.

In order to illustrate how a firm can make inferences about a rival’s be-

haviour from its own sales consider the following simple numeric example:
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Illustrative numerical example of the probability of a breakdown
in collusion:

Assume a duopoly in which each firm’s capacity is k = 24 and demand

fluctuations are such that M − u = 10 and M + u = 30. Under collusive

behaviour the two firms share equally the total demand and therefore make

sales of between 5 and 15. If one firm deviates from the collusive behaviour

the non-deviating firm makes sales of between 0 and 6 depending upon the

realisation of demand. Therefore collusive sales of 6 or less are also consis-

tent with a rival firm having deviated. Thus, despite no deviation actually

occurring, under the collusive scheme sales of 6 or below cause collusion to

breakdown. Collusive sales are 6 or lower when M̃ ≤ 12 and given the

uniform distribution of demand this occurs with probability 0.1.

We can now derive an expression for the probability collusion breaks

down for general demand and capacity levels, and for n ≥ 2. Based on the

assumption described above, we need to consider the likelihood that firm

i’s sales during a period where all firms adopt collusive behaviour are such

that a rival could have deviated. Let Bi be the probability that sales are

sufficiently low for this to be a possibility. Firstly, denote the sales firm

i receives following a rival (j)’s deviation19 as SRDi . Firm i can rule out

the possibility of a rival deviated if its collusive sales (SCi ) are such that:

SCi > maxSRDi where maxSRDi is the maximum possible sales i can receive

following a deviation by j (i.e. SRDi evaluated at M̃ = M +u). Analogously,

it is possible that a rival has deviated if: SCi ≤ maxSRDi and therefore:

Bi = Prob(SCi ≤ maxSRDi ) (3)

We can initially consider two extreme cases for the probability Bi. Lemma

2 provides a sufficient condition for collusion to never breakdown:

19By undercutting the collusive price firm j will sell to either its full capacity or the
market demand (which ever is smaller). Partial deviations can be ruled out by prohibiting
price discrimination and refusal to supply. As buyers are assumed to be fully informed
they can therefore buy from the cheaper firm subject to capacity.
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Lemma 2. Collusion will not breakdown (Bi = 0 ∀i) when each of the firms’
capacity levels covers the maximum market demand i.e M + u ≤ k1.

The intuition behind Lemma 2 is extremely simple, if a firm can supply

the entire market, even when demand is at its highest, any deviation leaves

the non-deviating firms with no sales (maxSRDi = 0). In contrast, in any

collusive period all firms make positive sales20. Therefore, there is no infer-

ence problem and collusion only breaks down following an actual deviation

(which will not occur along the equilibrium path (see section 4.3)). Here,

in effect the capacity constraints are redundant and, as in the Tirole (1988)

model described in the introduction, a positive probability of zero demand

is needed for there to be an inference problem21.

In contrast, Lemma 3 shows that under certain circumstances collusion

will always breakdown22:

Lemma 3. Collusion will always breakdown (Bi = 1 ∀i) if total capacity
does not exceed the maximum market demand (K ≤M + u).

If total capacity is low, even if firm j deviates, the remaining firms can

sell to full capacity in high demand states. These firms can never sell more

than their capacity and therefore any collusive period is also consistent with

demand being high and firm j having deviated. Consequently, following the

collusive scheme, collusion will always breakdown after just a single period.

We can now obtain a general expression for the probability Bi which,

from Lemmas 2 and 3, will result when K > M +u and kj < M +u for some

firm j. During collusive behaviour all firms set an equal price and therefore

from section 2.2: SCi = min{ki, (ki/K)M̃}, which since K > M + u can be

written as SCi = (ki/K)M̃ . Likewise, maxSRDi = (M + u− kj)(ki/K−j) and

20During collusive behaviour all firms set an equal price and therefore from section
2.2: SC

i = min {ki, (ki/K)M̃}. Since industry demand is always positive (M − u > 0)
SC

i > 0 ∀M̃ .
21See Tirole (1988) pp. 262-263.
22To see this first note that when K ≤ M + u, if demand is at its highest all firms can

sell their full capacity despite a rival deviation (maxSRD
i = ki). However, it must be the

case that SC
i ≤ ki and so from (3) Bi = 0.
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therefore (3) can be written as:

Bi = Prob

((
ki
K

)
M̃ ≤ (M + u− kj)

(
ki
K−j

))
(4)

Rearranging (4):

Bi = Prob

(
M̃ ≤ (M + u− kj)

(
K

K−j

))
(5)

Lemma 4. It follows from (5) that:

• Bi > 0 iff M − u < (M + u− kj)(K/K−j)
Therefore Bi = 0 if the size of demand fluctuations are sufficiently low
and rival(s) have capacity sufficiently close to the maximum market
demand.

• The probability firm i receives collusive sales such that it cannot rule out
a deviation by a rival is increasing in the size of demand fluctuations
(∂Bi/∂u > 0).

Lemma 4 strengthens the necessary condition for Bi > 0 established by

Lemma 2. Appendix B.1 then shows that, holding K fixed, the right-hand

side of (5) is decreasing in kj and therefore:

Lemma 5. The level of M̃ below which it is not possible for firm i to exclude
a rival deviation is highest for a possible deviation by its smallest rival.

Intuitively, deviations by larger firms steal more of the total demand, and

sales consistent with this are less likely to arise when all firms adopt collusive

behaviour. As M̃ is assumed to be uniformly distributed between M−u and

M + u from (5):

Proposition 2. The probability firm i receives collusive sales such that it
cannot rule out a deviation by a rival is given by:

Bi =
(M + u− kl)(K/K−l)− (M − u)

2u

Where from Lemma 5: l = min{1, . . . , n} subject to l 6= i.
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It follows from Lemma 5 that for n > 2 Bn = Bn−1 = · · · = B2. In

addition, Appendix B.2 shows that B2 > B1 if k2 is strictly greater than k1,

and therefore:

Proposition 3. When all firms adopt collusive behaviour, it is most likely
that the largest n − 1 firms receive sales consistent with a deviation by the
smallest firm.
Proof: see Appendix B.2

The intuition follows from Lemma 5, it is easier for the smallest firm to

exclude a deviation by a larger rival since any such deviation has a consid-

erable effect on the residual demand and therefore the smallest firms sales.

It is therefore unlikely that the smallest firm’s collusive sales will fall below

this level. In contrast, it is more difficult for the larger firms to exclude the

possibility of a deviation by the smallest firm. As the degree of size inequality

between k1 and k2 falls this difference is reduced.

Proposition 3 implies that there may be circumstances in which all firms

apart from the smallest receive sales suggesting a possible deviation and

therefore switch to punishment behaviour. As outlined in the earlier as-

sumption, it will be assumed if this situation arises that the smallest firm

also immediately switches to punishment behaviour. This is consistent with

the smallest firm inferring that its rivals will switch. Then, because the pun-

ishment phase involves reversion to the static Nash equilibrium the best-reply

for the smallest firm is also to switch to punishment behaviour (see section 6

for more discussion). Therefore henceforth, the probability of a breakdown

occurring during a collusive period will be denoted B∗ where B∗ = max{Bi},
from Proposition 3 we know that B∗ = Bn.

4.3 Length of punishment phase

The previous section specified the probability of breakdowns in collusive be-

haviour as a result of the possibility of deviations occurring. The next step

is to determine the appropriate length for punishment phases to ensure that

actual deviations from collusive behaviour do not occur.
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Following the standard approach23, the expected discounted profit for firm

i from collusive behaviour (V C
i ), taking into account that collusion breaks

down with probability B∗, can be written as:

V C
i = πCi + (1−B∗)(δV C

i ) +B∗(δ + . . .+ δTi)πNEi + (δTi+1V C
i ) (6)

Where πCi is firm i’s profit during collusive periods. If collusion does break-

down a Ti period punishment phase commences during which we assume

firms revert to the static Nash equilibrium behaviour and thus receive πNEi .

Then after Ti periods collusion resumes for at least one period. Rearranging

(6):

V C
i =

πCi +B∗πNEi (δ + . . .+ δTi)

1− (1−B∗)δ −B∗δTi+1
(7)

Collusion is sustainable for firm i if and only if:

V C
i ≥ πDi + (δ + . . .+ δTi)πNEi + δTi+1V C

i (8)

Where πDi represents firm i’s profit from deviating from the collusive agree-

ment. This is then followed by a definite T period punishment phase before

collusion resumes. Rearranging (8):

V C
i ≥

πDi + (δ + . . .+ δTi)πNEi
1− δTi+1

(9)

Substituting in for V C
i from (7) and rearranging:

δTi+1 ≤ δ(1−B∗)(πNEi − πDi ) + πDi − πCi
B∗πDi − πCi + (1−B∗)πNEi

(10)

Ruling out breakdowns in collusion (B∗ = 0) and assuming grim Nash re-

version punishment strategies (Ti = ∞) in (10), gives the standard critical

discount factor for collusion24: δ ≥ (πDi − πCi )/(πDi − πNEi ). In addition,

substituting in for the appropriate profit expressions (with constant demand

equal to M) gives the critical discount factors derived in the Compte et al.

23See for example Ivaldi et al. (2003a).
24See for example Church and Ware (2000) pp. 331-4.
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(2002) model (as given in Table 1).

Returning to the general setting in (10) and noting that log(δ) < 0:

Proposition 4. Firm i will not have an incentive to deviate from collusive
behaviour as long as:

Ti + 1 ≥ log

(
δ(1−B∗)(πNEi − πDi ) + πDi − πCi
B∗πDi − πCi + (1−B∗)πNEi

)
/ log(δ)

For collusion to be sustainable the condition given in Proposition 4 must

hold for all firms. The level of Ti that ensures this is the case will be denoted

T ∗. As shown in Appendix B.3, collusion is sustainable with sufficiently long

punishment periods if the probability of a breakdown is sufficiently low. More

precisely:

Lemma 6. For collusive behaviour to be sustainable B∗ < Bmax
i ∀i, where:

Bmax
i =

πCi − πDi + δ(πDi − πNEi )

δ(πDi − πNEi )

Therefore as long as firms are sufficiently patient (δ → 1) collusion is
sustainable if for all i:

B∗ <
(πCi − πNEi )

(πDi − πNEi )
(11)

Profits

It is then possible to substitute in to the expression in Proposition 4 for

πCi ,πDi and πNEi as functions of the capacity and demand parameters:

• Collusive profits (πCi ): it is optimal25 to set a collusive price pi = 1 ∀i
resulting in πCi = (ki/K)M̃ (since from Lemma 3 K > M + u) and

therefore in expectation:

πCi = (ki/K)M (12)

• Punishment phase profits (πNEi ): the static Nash equilibrium profits de-

25A lower collusive price leaves the relative gains from deviating unchanged but increases
the static NE punishment profits relative to the foregone collusive profits. Collusive be-
haviour is therefore harder to sustain.
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pend upon the specific capacity distribution (see Lemma 1 and Propo-

sition 1).

• Deviation profits (πDi ): If firm i deviates from collusive behaviour it

optimally sets pi = 1 − ε (ε > 0 but small) whilst pj = 1 ∀j 6= i.

Therefore firm i makes profit of approximately:

min{ki, M̃} (13)

Where ki = min{ki,M + u}. This is equal to SLi as given by (1).

4.4 Probability of collusion

From section 4.2, collusive behaviour breaks down if industry demand is

sufficiently low (denote sufficiently low demand as M̃ ≤ M where M is

implicitly defined by Propositions 2 & 3) and this occurs with probability

B∗. We can therefore distinguish between two possible demand levels each

period: ‘high’ if M̃ > M and ‘low’ when M̃ ≤ M . If collusion breaks down

a punishment period of length T ∗ (as specified by Proposition 4) is then

required. It is then possible to derive the probability (denoted Ct) that a

given period of the game (period t) will be collusive, where Ct is a function

of B∗ and T ∗. Whilst the detailed derivation of Ct is confined to Appendix C,

the intuition is relatively straightforward. Firstly, period t will be collusive

as long as the following condition is not satisfied:

Lemma 7. A necessary condition for period t to be a punishment period is
that one of the previous T ∗ periods must have had demand sufficiently low to
trigger a punishment phase.
Proof: see Appendix C.1

To see the intuition behind Lemma 7, assume the most recent period with

low demand was T ∗ + 1 periods ago. This could potentially have triggered

the start of a punishment phase (rather than being part of an ongoing pun-

ishment phase). However, sufficient time has still passed for collusion to have

resumed and continued due to the recent run of high demand.
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Despite the necessary condition in Lemma 7, there are a number of cir-

cumstances under which period t will still be collusive. To illustrate this,

consider punishment phases lasting two periods (T ∗ = 2). From Lemma 7 a

necessary condition for t to be a punishment period is that at least one of

the previous two periods must have had low demand. However, even if this

was the case:

i. a punishment phase may have been triggered in t − 3. This lasts for

two periods after which collusion resumes in period t. Or;

ii. a punishment phase may have been triggered in period t−4 with collu-

sion then resuming in t− 1. This resumption would occur regardless of

low demand in t− 2. If, t− 1 then has high demand, period t will then

also be collusive (despite potentially low demand in t− 2 satisfying the

necessary condition in Lemma 7).

As shown in Appendix C.2, the necessary condition in Lemma 7 and a series

of additional qualifications like those described above, can be used to derive:

Proposition 5. The probability that period t is collusive is given by:

Ct = (1−B∗)T
∗
/

(
(1−B∗) + T ∗B∗(1−B∗)T ∗ −B∗

T ∗−1∑
i=1

(1−B∗)i
)

Proof: see Appendix C.2

From which it follows that ∂Ct/∂B
∗ < 0 and ∂Ct/∂T

∗ < 0. As would

be expected, a given period is more likely to be collusive if the punishment

phase is short and breakdowns are unlikely to occur.

5 Application to the Nestle/Perrier merger

In this section the model will be used to compare the potential Nestle/Perrier

merger outcomes. First, we outline the general approach taken, then analyse

the case, initially considering the unilateral effect of the merger then the

potential for collusive behaviour.
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5.1 Approach

Firstly, the expected market demand (M) and the firms’ common discount

factor (δ) are set at appropriate levels. It is then possible, for a given capacity

distribution and extent of demand fluctuations, using Propositions 2, 3 and

4 to solve for the probability that collusion will breakdown (B∗) and the

length of punishment phase necessary to sustain collusion (T ∗). Proposition

5 can then be used to find the probability that a given period is collusive

(Ct). During collusive periods price is set at the consumers’ reservation price,

resulting in zero consumer surplus. In contrast, punishment periods involve

a switch to the static Nash equilibrium resulting in CSNE (see section 3).

Therefore the overall expected consumer welfare is:

Ct (0) + (1− Ct) (CSNE)

We can identify three distinct possibilities for the expected consumer welfare

according to the likelihood of collusive behaviour:

• Full collusion: from Lemma 4 we know that the probability of break-

down (B∗) is increasing in the size of demand fluctuations and equal

to zero if demand fluctuations are sufficiently small. Assuming firms

are sufficiently patient, if B∗ = 0 the probability of collusion in a given

period is 1 and therefore CS = 0. The level of u below which B∗ = 0

will be denoted u. Therefore for u < u collusion will be referred to as

‘full’ i.e. not subject to breakdowns.

• No collusion: from Lemma 6 we know that collusion is only sustain-

able if B∗ is not too high (B∗ < Bmax
i ∀i). The level of u above which

collusion is unsustainable will be denoted ū. Consequently, for u > ū

Ct = 0 and unilateral behaviour takes place resulting in CS = CSNE.

• Partial collusion: for u < u ≤ ū collusion is subject to breakdowns

(B∗ > 0) but breakdowns are not sufficiently frequent to make collu-

sion entirely unsustainable. Periods of both collusive and punishment

behaviour occur (0 < Ct < 1) with only the latter resulting in positive

consumer welfare.
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It will then be possible to make welfare comparisons between two alterna-

tive scenarios involving either partial or no collusive behaviour. It is not

necessarily the case that the scenario with no collusion will result in higher

consumer welfare. It may be that the partially collusive outcome has a

more competitive static Nash equilibrium and thus higher consumer welfare

apart from during collusive periods. Consequently, if collusion breaks down

sufficiently frequently, overall consumer welfare may in fact also be higher.

Furthermore, since the more competitive static Nash equilibrium results in

harsher punishments this actually helps to facilitate the collusive behaviour.

5.2 Nestle/Perrier merger

Following Compte et al. (2002), we set the expected market demand (M)

at 5250 million litres. The common firm discount rate (δ) is initially set at

0.9. Appendix D shows the effect of varying this assumption with the main

differences discussed at the end of this section. Firstly, the impact of the

merger absent remedies will be analyzed (i.e. Pre to Post). Then, the initial

remedy offered by the parties (Remedy 1) and the eventual accepted remedy

(Remedy 2) will also be considered (see section 1).

Unilateral effect pre- to post-merger

The conditions under which Proposition 1 holds are such that we can solve

for the pre-merger static Nash equilibrium profits (and therefore consumer

welfare) for demand fluctuations26 such that u ≤ 1650. Therefore, within this

range, comparing the pre- and post-merger consumer surplus under unilateral

behaviour leads to27:

Finding 1. For u ≤ 1650 and assuming unilateral behaviour, the consumer
surplus pre-merger (CSPRE = 2496) exceeds the post-merger level (CSPOST =
617).

26Demand fluctuations above this level mean that the n − 1 smaller firms are able to
supply the entire demand for some realisations (K−n ≥ M − u) and therefore the mixed
strategy NE is undefined (see Proposition 1).

27In both cases CS is constant over this range of demand fluctuations because of the
specific capacity distributions.
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This first finding confirms, now with demand uncertainty, the evidence

from the analysis in the introduction, that as a result of the merger absent

any remedy a substantial unilateral effect can be expected. A move from the

pre- to the post-merger capacity distributions increases the minimum price

charged in the mixed strategy equilibrium (pminn ) from 0.31 to 0.66. Next,

we consider the possibility of collusive behaviour, initially for the same two

outcomes and range of demand fluctuations.

Collusive behaviour pre- and post-merger

In order to consider collusive behaviour we can now adopt the approach

described in section 5.1 and solve for the range of demand fluctuations for

which partial collusion occurs. Firstly, Figure 1 outlines the possibility of

collusive behaviour pre-merger. Here, full collusion is sustainable up to u =

433 and then partial collusion until ū = 589.

Figure 1: Collusive behaviour pre-merger
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Once u exceeds u subsequent increases in the size of the demand fluctu-

ations increase the probability that collusion breaks down (Figure 2a). This

increased likelihood of breakdown increases the gains from deviation rela-

tive to future collusive profits and therefore means that longer punishment

phases are required to prevent deviations (Figure 2b). This in turn reduces

the probability that a given period is collusive (Figure 2c) and increases ex-

pected consumer welfare. Absent collusive behaviour consumer surplus pre-

merger equals 2469 (Finding 1), and therefore consumer surplus approaches

this level.
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Figure 2: Key parameters

(a) B∗

(b) T ∗

(c) Ct
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Secondly, similar calculations for the post-merger scenario (absent reme-

dies) show that not only would full collusion be sustainable for a reduced

range of demand fluctuations (up to u = 293) but also partial collusion is

only possible for a very limited range (ū = 313). Figure 3 then compares

the predicted pre-merger consumer welfare (Figure 1) with that post-merger

absent any remedies.

Figure 3: Comparing consumer welfare pre- and post-merger

Figure 3 reveals three distinct regions:

A. CSPRE = CSPOST = 0 since in both cases full collusion is possible

B. CSPRE < CSPOST since full collusion is possible pre- but not post-

merger

C. CSPRE > CSPOST

Leading to the following finding:
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Finding 2. For u > 479 predicted pre-merger consumer welfare is higher
than from unilateral behaviour post-merger, despite the possibility of partial
collusion pre-merger.

A level of demand fluctuations such that u = 479 corresponds to demand

fluctuations up to 9% from the expected demand. Below this will be com-

pared to the equivalent range following the alternative remedies and to the

available evidence on the extent of actual demand fluctuations.

Collusive behaviour following Remedy 1 and 2

So far comparisons have been made between the pre- and post-merger out-

comes, we can now also consider the impact on collusive behaviour of the

two remedies. Figure 4 reproduces Figure 1 for the capacity distributions

resulting from Remedy 1 and 2.

Figure 4: Collusive behaviour Remedy 1 & 2

Here we can see a significant increase in the scope for collusive behaviour,

in particular as a result of Remedy 1 but also from Remedy 2. Full collusion is

now feasible for a much larger range of demand fluctuations, up to u = 1104

under Remedy 2 and even further to u = 3292 following Remedy 1. In
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addition, the scope for partial collusion is enhanced, especially before the

second remedy is imposed. Following Remedy 2, for u ≤ 4550 the static

Nash equilibrium results in marginal cost pricing (i.e. p = 0) and therefore

the maximum possible expected consumer surplus (CS = 5250). Therefore,

as partial collusion becomes less sustainable the resulting consumer surplus

under Remedy 2 approaches this level28.

Comparing the unilateral effect pre- to post-merger with collusive
behaviour post-remedy

As earlier, it is also possible to make comparisons with the post-merger out-

come before the imposition of remedies29.

Figure 5: Comparing the post-merger outcome with Remedy 1 & 2

Figure 5 shows the critical size of demand fluctuations above which con-

sumer surplus exceeds the level expected to result post-merger:

28For Remedy 1 the static Nash equilibrium CS depends upon the size of demand
fluctuations(u). As Figure 4 shows, if demand fluctuations are sufficiently high that no
collusive behaviour occurs, CS then declines with subsequent increases in u.

29Below u = 293, full collusion is possible under all three outcomes.
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Finding 3. Despite the possibility of partial collusion:

• for u > 1153 predicted consumer welfare resulting from Remedy 2 is
higher than from unilateral behaviour post-merger.

• for u > 3469 predicted consumer welfare resulting from Remedy 1 is
higher than from unilateral behaviour post-merger.

Finding 3 therefore shows that, even with partial collusion, it is possible

that the remedies result in higher consumer surplus than expected before-

hand. This is due to the substantial unilateral effect predicted post-merger

(see Finding 1) and is much more likely as a result of Remedy 2 where possible

demand fluctuations 22% from the expected demand are required, compared

to 66% following Remedy 1.

Evidence provided in the EC merger decision suggests that demand fluc-

tuations do occur in this market. For example, exceptionally high demand

growth of 8.5% in 1990 was followed by growth of only 0.9% the following

year. Furthermore, these fluctuations would seem to be unpredictable with

weather conditions being an important determinant30. It is then important

to consider the impact this has on market transparency. The evidence un-

covered by the European Commission suggests that pre-merger transparency

may have been high, especially because of list prices published by the main

players in the industry31. However, rebates offered to suppliers may still

result in some reduction in transparency. In addition, this suggests that

absent this information a lack of transparency may represent an important

impediment to coordination. Importantly, therefore, as part of the accepted

remedies package the European Commission imposed conditions prohibit-

inh such information disclosure32. This demonstrates an important role for

policy in creating the conditions that make breakdowns in tacitly collusive

behaviour more likely.

Despite Finding 3, the eventual accepted remedies (Remedy 2) may still

be criticised for enhancing the possibility of collusion compared to the pre-

merger outcome (contrast Figures 1 & 4). However, as Compte et al. discuss,

30M.190 Nestle/Perrier (1992), para 68.
31M.190 Nestle/Perrier (1992), para 62.
32M.190 Nestle/Perrier (1992), para 136.
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an outright prohibition of the merger may have been difficult. This was the

first application of the EC Merger Regulation to collective dominance and an

appeal by the merging parties would have be likely. Under this constraint,

the above analysis confirms the importance of the second remedy in reducing

the sustainability of tacitly collusive behaviour.

All the results in section 5 have assumed that firms have a relatively

high discount rate (δ) of 0.9. Appendix D shows the effect of varying this

assumption. The most significant effect of a lower δ is a reduction in the range

of demand realisations for which partial collusion is possible. In addition, a

lower δ can (due to an increase in T ∗) also lead to a small increase in the

consumer surplus resulting from partial collusion. Assuming a high value for

δ therefore provides a lower bound on the predicted consumer welfare.

6 Conclusion

This paper has shown that the remedies imposed by the European Commis-

sion in the Nestle/Perrier case can be seen in a more favourable light. We

show that, despite leading to an outcome less conducive to collusion, the

merger absent remedies would be likely to harm consumer welfare due to

a substantial unilateral effect. Even though the remedies may have made

collusion more likely, collusive behaviour might breakdown and result in suf-

ficiently frequent/long price wars to improve consumer welfare compared to

the un-remedied merger.

This consumer welfare trade-off between outcomes has been demonstrated

in a setting which is specific in two respects. Firstly, the case examined high-

lights the conflict between theories of harm particularly starkly because of

the increased number of possible outcomes due to the rejected early remedy

offer by the parties. Secondly, the specific model of Compte et al. (2002),

a model tailored to fit the features of the Nestle/Perrier case, has been ex-

tended. However, as discussed in the introduction, this case is illustrative of

a far more general theoretical trade-off between unilateral and coordinated

effects. In addition, as Davies and Olczak (2008) have demonstrated within

a sample of EC merger decisions this trade-off has important policy implica-
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tions. Furthermore, this trade-off could potentially be assessed using a range

of models which allow for breakdowns in collusive behaviour.

The approach taken in this paper to assessing merger outcomes is also

related to the merger simulation literature. Whilst simulation is now rea-

sonably well established for examining unilateral effects a recently emerging

literature (Davis (2006), Sabbatini (2006) and Hikisch (2008)) aims to ex-

tend it to the context of coordinated effects analysis. The approach taken in

these papers has been, much like here, to construct a model of collusive be-

haviour and consider how the likelihood of collusion behaviour varies under

alternative market structures. However, these previous studies have adopted

models with no demand uncertainty and simulated the impact of a merger on

the critical discount factor required for collusive behaviour. In contrast, in

our approach comparisons between outcomes will also depend upon the level

of transparency, captured in this specific model by the level of demand un-

certainty. Importantly, our approach allows comparisons between outcomes

where different theories of harm (i.e. unilateral or collusive behaviour) are

expected. Arguably, in many cases evidence on the degree of transparency

and extent of demand fluctuations is more quantifiable than attempting to

measure the rate at which firms discount the future.

The analysis of the Nestle/Perrier case has illustrated the effect increased

firm numbers and asymmetries can have on destabilising tacit collusion. The

additional remedy insisted upon by the European Commission has been

shown to reduce the effectiveness of collusion. Here, the presence of an

additional, smaller player reduces transparency and makes breakdowns in

collusion more likely. This is in contrast to the Compte et al. model where

only asymmetries and not directly firm numbers affect the sustainability of

collusion33. This suggests a potential extension to the model. In all of the

cases considered here, it has been assumed that all of the main players in

the industry form the potentially tacitly collusive group. However, since the

smaller firm potentially destabilises collusion, it might be in the two larger

33In their model the critical discount factor depends only on the relative size of the
largest firm compared to total capacity because of the effect this has on punishment
profits.
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firms’ interests to allow the smaller firms to free-ride on their tacitly collusive

behaviour and only punish potential deviations by each other. Despite re-

ducing their own sales, our analysis suggests a potential advantage would be

less frequent breakdowns in collusive behaviour. A second issue, not so far

allowed for in the model, is potential coordination failure i.e. one firm com-

mencing punishment behaviour whilst other rival(s) continue to collude for at

least one additional period. This would appear to make collusive behaviour

harder to sustain. In a similar fashion, alternative assumptions regarding the

cause of a breakdown in collusion could also be considered.

A Static Nash equilibrium

Here, to minimise on notation, Si will be denoted as Si(pi, p−i) where p−i

refers to the vector of prices set by firm i′s n− 1 rivals.

A.1 Proof of Lemma 1 - Existence of a pure strategy

Nash equilibrium

First, it will be useful to establish three important properties of the mixed

strategy NE. Consider a mixed strategy NE in which firm i chooses prices

randomly over the interval [p
i
, p̄i]:

• Property 1: For this to be a mixed strategy NE the expected profit

(πi) of firm i must be constant ∀p : p
i
≤ pi ≤ p̄i. In particular, expected

profit must be the same at both the upper and lower support of firm

i’s pricing distribution i.e. p
i

and p̄i.

• Property 2a: Denote: p̄max ≡ max {p̄i}. When firm i sets pi = p̄max it

must the highest price firm in the market with probability 1. A positive

probability of a tie at this price would require more than one firm to

have probability mass at this price. However, all but one of these firms

can definitely increase their sales34 and therefore profit by reducing its

34K > M − u ensures that this is true in expectation.
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mass point to p̄max− ε (ε > 0 but small), thus removing the probability

of a tie at this price.

• Property 2b: Denote: pmin ≡ min {p
i
} and p

j
= pmin ∀j. When

firm j sets pj = pmin it must either be the lowest price firm in the

market with probability 1 or
∑

j kj ≤ M − u. This is because as long

as
∑

j kj > M −u if there is a positive probability of a tie at pmin then

in expectation it is profitable for firm j to reduce its price to pmin − ε
(ε > 0 but small).

• Property 3: p̄max = 1. To see this, consider p̄max < 1, if firm i

sets pi = p̄max from Property 2a) it is the highest priced firm in the

market with probability 1. From section 2.2 it therefore sells SHi =

max {M̃ −K−i, 0}. As long as M + u > K−n (a requirement for a

mixed strategy NE established in Lemma 1) SHn > 0 with positive

probability. More generally SHi > 0 for a firm i with capacity such that

M + u > K−i. It is therefore profitable for any such firm to increase

p̄max to 1.

Lemma 1 considers potential pure strategy NE, first in can be shown that

in any such equilibrium all firms set an identical price i.e. pi = p ∀i. To see

this, consider an alternative equilibrium in which firms set prices such that:

pi = pX ∀i ∈ X, pj = pY ∀j ∈ Y where pX < pY ≤ 1, and pk > pY ∀k /∈
X, Y . It follows from the demand rationing scheme described in section 2.2

that:

• Sj > 0 ∀j ∈ Y iff Si = ki ∀i ∈ X. In which case firm i has an incentive

to increase its price to pi = pY − ε (for ε > 0). Otherwise;

• Sj = 0 ∀j ∈ Y . In which case, by setting the lowest price Sj > 0

and firm i therefore has an incentive to reduce its price to pX (or is

indifferent if pX = 0).

It is now possible to prove the existence of pure strategy NE for the two

cases stated in Lemma 1:
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a. If K ≤ M − u. The only equilibrium of the game involves

pricing at the consumers’ reservation price (pi = 1 ∀i) with

firms selling their entire capacity (πNE
i = ki ∀i).

Here, ∀pi : 0 ≤ pi ≤ 1 Si(pi, p−i) = ki ∀M̃ . Consequently pi = 1 = pmon

can be sustained as the unique pure strategy NE, resulting in πNEi =

ki ∀i.

In addition, there is no mixed strategy NE. To see this first note that

from Property 3 in a mixed strategy NE p̄i = 1 for at least one firm.

Secondly, Si(pi, p−i) = ki and therefore πi falls ∀p < 1. However, from

Property 1 the expected profit must be the same at all prices in a firms

support.

b. If K−n ≥M + u. The only equilibrium of the game involves

marginal cost pricing (pi = 0 ∀i) and therefore πNE
i = 0 ∀i

Here, K−n ≥ M̃ ∀M̃ and as firm n is the largest firm K−i ≥ M̃ ∀M̃ .

In other words any subgroup of n − 1 firms can, together, supply the

entire market demand for any M̃ . Therefore, pi = 0 and πNEi = 0 ∀i is

a pure strategy NE since Si(pi, 0) = 0 ∀pi > 0.

To see that pi = 0 ∀i is a unique NE pure strategy NE consider

an alternative with p = p̂ ∀i where 0 < p̂ ≤ 1. Here, Si(p̂, p̂) =

min{ki, (ki/k)M̃} = (ki/K)M̃ as K > M̃ ∀M̃ . It then follows that firm

i can profitably undercut p̂ as Si(p̂− ε, p̂) = min {ki, M̃} > Si(p̂, p̂) ∀M̃
(for ε > 0).

In addition, here there is no mixed strategy NE. From Property 3 at

least one firm must set pi = 1 with positive probability. From Property

2a) at this price it will be the highest priced firm in the market with

probability 1 and make πi = 0. Consequently, from Property 1 this

firm must also set pi = 0 with positive probability, again resulting in

πi = 0. However, contrary to Property 1, for some price within the

support such a firm will obtain a positive profit with some probability

and this therefore rules out the existence of a mixed strategy NE.
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In contrast, For K > M − u and K−n < M + u there is no

equilibrium in pure strategies

First we can show that any potential pure strategy NE with pi = p̂ ∀i where

0 < p̂ ≤ 1 is susceptible to a profitable downward deviation. Si(p̂, p̂) =

min {ki, (ki/K)M̃} and Si(p̂− ε, p̂) = min {ki, M̃} (for ε > 0). Therefore for

ε > 0 but small, either:

• Si(p̂− ε, p̂) = Si(p̂, p̂) if ki < (ki/K)M̃ i.e. K < M̃ or;

• Si(p̂− ε, p̂) > Si(p̂, p̂) if K > M̃ .

Since K > M − u the latter occurs with positive probability and therefore

a downward deviation is profitable. Secondly, we can show that a potential

pure strategy NE with pi = 0 and consequently πi = 0 ∀i is susceptible to

a profitable upward deviation. For the largest firm deviating to pn, where

0 < pn ≤ 1, results in Sn(pn, 0) = min{max{(M̃ − K−n), 0}, kn}. Since

K−n < M + u this is positive with positive probability and therefore such a

deviation results in positive expected profits (more generally this will apply

for any firm for which K−i < M + u).

A.2 Proof of Proposition 1 - mixed strategy Nash equi-
librium profits

Whilst a full characterisation of the mixed strategy NE is not required, the

resulting expected profits are needed so that the consumer welfare can be

derived. A first step in solving for the equilibrium profits is to consider the

minimum price each of the firms is prepared to set in order to become the

lowest price seller. From section 2.2:

i. if pi < p−i firm i makes sales of SLi .

ii. if pi > p−i it is then clearly most profitable for firm i to charge a price

equal to the consumers reservation price i.e. pi = 1, resulting in profit

of SHi .

In i), by undercutting all other firms prices firm i clearly gains sales. It is

therefore possible to solve for the lowest price (denoted pmini ) which leaves
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firm i indifferent between these two alternatives:

pmini =
SHi
SLi

(14)

Holding K constant, it can then be shown that ∂pni /∂ki > 0 for all possible

levels of SHi and SLi (see (1) and (2) in section 2.2), i.e.:

pminn ≥ pminn−1 ≥ . . . ≥ pmin1

Intuitively, a larger share of total capacity results in increased sales as both

the highest and lowest price firm, however, crucially the latter effect domi-

nates.

We can now consider the lowest price ever charged in equilibrium (pmin).

It will be useful to refer to any firm other than the largest as firm j i.e. j < n.

Firstly, consider the duopoly case. Since the largest firm (firm 2) will never

set a price below pmin2 , firm j is able to set pj = pmin2 − ε (ε > 0) and make

profit of:

pmin2 SL1 (15)

Secondly, for n > 2 and in the specific case where K−n ≤ M − u, by setting

pj = pminn − ε (ε > 0 but small) firm j is guaranteed profit of35:

pminn kj = pminn SLj (16)

Consequently, both (15) and (16) imply that in the mixed strategy NE firm

j must be guaranteed profits of at least:

pminn SLj (17)

This demonstrates that in equilibrium pmin ≥ pminn . Next, it can be

shown that in fact p
j

= pminn . To see this firstly consider pmin > pminn .

From Property 3 the highest price ever charged (p̄max) is equal to 1 and

from Property 2a) the firm setting this price is the highest priced seller with

35Note that without the restriction that K−n ≤ M − u firm j is not guaranteed to sell
to its full capacity at this price and therefore has an incentive to undercut further.
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probability 1. However, it follows from the definition of pminn that any firm

for which p̄i = 1 would increase its profits by instead setting p = pmin−ε (for

ε > 0 but small) with probability 1. Therefore it is not possible for there to

be a mixed strategy NE with pmin > pminn .

Now, consider p
i

= pminn ∀i. From Property 2b) this guarantees firm j

profits as given by (17). Furthermore, firm n will set36 p̄n = 1 and Prop-

erty 2a) and 2b) ensure that this results in the same profit as when setting

pn = pminn = pmin (i.e. Property 1 is satisfied). Consequently, at p
i

= pminn

Property 2a) guarantees each firm has pi < p−i resulting in profits of pminn SLi .

Therefore using (14) and Property 1:

Proposition 1. For K > M − u and K−n < M + u, if either: n = 2, or
n > 2 and K−n ≤ M − u, there is a mixed strategy Nash equilibrium with
expected profits given by πNEi = (SHn /S

L
n )SLi .

A.3 Average prices in the static Nash equilibrium with
no demand uncertainty (Table 1)

When there is no demand uncertainty37, i.e. each period the realisation of

demand is equal to M , it follows from Proposition 1 that a mixed strategy NE

exists38 if K > M and K−n < M . In this case SLi = ki and SHn = M −K−n.

Therefore from Proposition 1:

πNEi = (M −K−n)
ki
kn

(18)

Fonseca and Normann (2008, p.390) show that by using (18) the average

quantity weighted prices can be derived. Denote qi as the quantity sold by

36It follows from the definition of pmin
i that if kj < kn firm j′s profits in (17) exceed its

profits from setting p̄j = 1 and being the highest priced seller in the market. Consequently,
firm j must randomise over [pmin

n , 1) and firm n has a mass point at pn = 1, thus satisfying
Property 1.

37See Fonseca and Normann (2008) for a complete derivation of the mixed strategy NE
in this case.

38In contrast to the case with demand uncertainty described above, here no restriction
is required when n > 2. There are 2 possibilities: either K−n < M and the smaller firms
can sell their entire capacity by undercutting pmin

n , or K−n ≥M and marginal cost pricing
results (as in Lemma 1b).
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firm i and note that
∑n

i=1 qi = M . The average quantity weighted price (pNE)

is given by
∑n

i=1 piqi/
∑n

i=1 qi which can be rewritten as pNE =
∑n

i=1 π
NE
i /M .

Therefore using (18):

pNE = (M −K−n)
K

Mkn
(19)

Substituting in to (19) for the appropriate capacity levels39 from Table 1

gives the pre- and post-merger static NE average prices as in the final row

of the table. In addition, the intuition for the pure strategy static NE with

p = 0 as a result of Remedy 1 and Remedy 2 follows from Lemma 1(b).

B Breakdown in collusion

B.1 Proof of Lemma 5

From (5):

Bi = Prob

(
M̃ ≤ (M + u− kj)

(
K

K − kj

))
(20)

Differentiating the right-hand side of (20) with respect to kj gives:

∂f/∂kj =
−K(K − kj) + (M + u− kj)K

(K − kj)2
(21)

Simplifying (21) gives: ∂f/∂kj = (M + u−K)/(K − kj)2, which is negative

since from Lemma 3 K > M + u.

B.2 Proof of Proposition 3

From Proposition 2:

B1 =
(M + u− k2)(K/K−2)− (M − u)

2u

Bm =
(M + u− k1)(K/K−1)− (M − u)

2u

39In addition, note that as explained in section 2.1 ki = min
{
k̂i,M

}
and from the

discussion of Table 1 M = 5250.
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Where: 1 < m ≤ n. Therefore Bm > B1 iff :

(M + u− k1)

(
K

K1

)
> (M + u− k2)

(
K

K2

)
(22)

Since K−i = K − ki (22) can be rewritten as:

(M + u− k1)(K − k2) > (M + u− k2)(K − k1) (23)

Multiplying out the brackets and rearranging (23) gives:

(k2 − k1)K > (M + u)(k2 − k1)

Which is true for k2 > k1 since from Lemma 3 K > M + u.

B.3 Proof of Lemma 6

From Proposition 4 collusion is sustainable iff :

Ti + 1 ≥ log

(
δ(1−B∗)(πNEi − πDi ) + πDi − πCi
B∗πDi − πCi + (1−B∗)πNEi

)
/ log(δ) (24)

Since log(δ) < 0, a value of Ti satisfying (24) exists iff :

log

(
δ(1−B∗)(πNEi − πDi ) + πDi − πCi
B∗πDi − πCi + (1−B∗)πNEi

)
< 0

This is turn requires:

0 <
δ(1−B∗)(πNEi − πDi ) + πDi − πCi
B∗πDi − πCi + (1−B∗)πNEi

< 1 (25)

It can then be shown that since πDi > πNEi :

δ(1−B∗)(πNEi − πDi ) + πDi − πCi > B∗πDi − πCi + (1−B∗)πNEi

Consequently, (25) is only satisfied if:

δ(1−B∗)(πDi − πNEi ) + πDi − πCi < 0 (26)
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Rearranging (26) gives Bmax
i as defined in Lemma 6:

Bmax
i =

πCi − πDi + δ(πDi − πNEi )

δ (πDi − πNEi )

C Probability of collusion

C.1 Proof of Lemma 7

As explained in section 4.4, it is possible to distinguish between two possible

states of demand each period: high (H) if M̃ > M and low (L) when M̃ ≤M .

The realisation of demand in period t (M̃t) will be: M̃t = L with probability

B∗ and M̃t = H with probability 1−B∗. Breakdowns in collusive behaviour

occur if demand is low and then a punishment period of length T ∗ (as speci-

fied by Proposition 4) is required. After T ∗ periods, collusion resumes in the

subsequent period and continues as long as demand remains high. There are

therefore two possible outcomes (denoted xt) for any period of the game, it

is either collusive (C) or a punishment period (P ) i.e.: {xt = j : j ∈ C,P}.
In addition, the subscript e will be used to denote the end period of a T ∗

punishment phase. Therefore, xt = Pe implies that xt+1 = C. Lemma 7

provides a necessary condition for period t to be a punishment period:

Lemma 7. A necessary condition for period t to be a punishment period is
that one of the previous T ∗ periods must have had demand sufficiently low to
trigger a punishment phase.

In contrast, assume:

M̃p = H ∀p (27)

where t− T ∗ ≤ p ≤ t− 1.

There are then three possibilities for period t− (T ∗ + 1):

i. Ongoing collusion: xt−(T ∗+1) = C and M̃t−(T ∗+1) = H. Therefore,

xt−T ∗ = C and it follows from (27) that xp = C ∀p where t− T ∗ − 1 ≤
p ≤ t.
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ii. Breakdown in period t − (T ∗ + 1): xt−(T ∗+1) = C and M̃t−(T ∗+1) = L.

However, the T ∗ period punishment phase ends in period t− 1 (xt−1 =

Pe) and consequently xt = C.

iii. Ongoing punishment phase: xt−(T ∗+1) = P . However, at most the

punishment phase continues for another T ∗ − 1 periods. In this case

xt−2 = Pe and therefore xt−1 = C. From (27) M̃t−1 = H and therefore

xt = C. In other cases the ongoing punishment phase continues for a

shorter number of periods, with collusion then resuming and continuing

due to (27).

Consequently, i)-iii) show that (27) is a sufficient condition to ensure that

period t is a collusive period and Lemma 7 follows from this.

C.2 Proof of Proposition 5

From Lemma 7 a necessary condition for period t to be a punishment period

is that at least one of the previous T ∗ periods had low demand. This occurs

with probability:

1− (1−B∗)T ∗ (28)

However, since collusive behaviour resumes for at least one period following

T∗ punishment periods, there are several circumstances which will result in

period t being collusive (xt = C) despite the necessary condition in Lemma

7 being satisfied.

Despite one of the previous T ∗ periods having had low demand xt = C if:

i. A T ∗ period punishment phase ends in period t− 1 i.e. xt−2 =

Pe. This requires xt−(T ∗+1) = C and M̃t−(T ∗+1) = L (i.e. period t− (T ∗
+1) was collusive but had low demand) which occurs with probability:

Ct−(T ∗+1)B
∗ (29)

where Ct−(T ∗+1) denotes the probability that period t − (T ∗ + 1) is

collusive.

41



ii. OR,

• a T ∗ period punishment phase ends in period t− 2 (and

therefore given Lemma 7 T ∗ ≥ 2). This requires xt−(T ∗+2) = C

and M̃t−(T ∗+2) = L which occurs with probability:

Ct−(T ∗+2)B
∗ (30)

• AND demand was high in period t − 1. Bayes rule can

be used to show that the probability M̃t−1 = H given that the

necessary condition in Lemma 7 requires that M̃p = L for some

t− T ∗ ≤ p ≤ t− 1 is:

1−
(

B∗

(1− (1−B∗)T ∗)

)
(31)

Combining (30) and (31), ii) occurs with probability:

(
Ct−(T ∗+2)B

∗)(1−
(

B∗

(1− (1−B∗)T ∗)

))
(32)

iii. OR,

• a T ∗ period punishment phase ends in period t− 3 (and

therefore given Lemma 7 T ∗ ≥ 3) This requires xt−(T ∗+3) = C and

M̃t−(T ∗+3) = L which occurs with probability:

Ct−(T ∗+3)B
∗ (33)

• AND demand was high in periods t− 1 and t− 2. Similar

to ii), Bayes rule can be used to obtain the probability M̃t−1 = H

given that the necessary condition in Lemma 7 holds:

1−
(

(1− (1−B∗)2)

(1− (1−B∗)T ∗)

)
(34)
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Combining (33) and (34), iii) occurs with probability:

(
Ct−(T ∗+3)B

∗)(1−
(

(1− (1−B∗)2)

(1− (1−B∗)T ∗)

))
(35)

..... and so on until:

iv. OR,

• a T ∗ period punishment phase ends in period t − T ∗.

This requires xt−(2T ∗) = C and M̃t−(2T ∗) = L which occurs with

probability:

Ct−(2T ∗)B
∗ (36)

• AND demand was high in periods t− 1 and t− 2,... and

t − (T ∗ − 1). Similar to ii), Bayes rule can be used to obtain

the probability M̃t(T ∗−1) = H given that the necessary condition

in Lemma 7 holds:

1−

((
1− (1−B∗)T ∗−1

)
(1− (1−B∗)T ∗)

)
(37)

Combining (36) and (37), iv) occurs with probability:

(
Ct−(2T ∗)B

∗)(1−

((
1− (1−B∗)T ∗−1

)
(1− (1−B∗)T ∗)

))
(38)

If a T ∗ period punishment phase ends in period t− (T ∗ + 1) then

t−T ∗ will be collusive (xt−T ∗ = C) and therefore the possibility of

reverting to a punishment phase depends upon low demand occur-

ring in subsequent periods i.e. the condition provided in Lemma 7

is sufficient.

Therefore, using (29), (32), (35), (38) and Lemma 7 we can write the
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probability that period t is a punishment period (1− Ct) as:

1− Ct = γ(1− CtB∗ −
(
Ct−(T ∗+2)B

∗) (1− B∗

γ

)
−
(
Ct−(T ∗+3)B

∗)(1− (1−(1−B∗)2)
γ

)
− . . . . . . . . .−

(
Ct−(2T ∗)B

∗)(1− (1−(1−B∗)T∗−1)
γ

)
)

(39)

where γ = 1− (1−B∗)T ∗

Since Ct can be shown to be convergent40, we can rewrite (39) as:

1− Ct = γ(1− CtB∗ − (CtB
∗)
(

1− B∗

γ

)
− (CtB

∗)

(
1− (1−(1−B∗)2)

γ

)
− . . . . . . . . .− (CtB

∗)

(
1− (1−(1−B∗)T∗−1)

γ

)
)

(40)

Rearranging (40) gives:

Ct = (1− γ) /

(
1−B∗ + T ∗B∗(1− γ)−B∗

T ∗−1∑
i=1

(1−B∗)i
)

Finally, substituting in for γ = 1− (1−B∗)T ∗ gives:

Proposition 5. The probability that period t is collusive is given by:

Ct = (1−B∗)T
∗
/

(
(1−B∗) + T ∗B∗(1−B∗)T ∗ −B∗

T ∗−1∑
i=1

(1−B∗)i
)

D The impact of a change in the common

discount rate

Table 2 shows the effect of varying the assumed common discount rate (δ) set

at 0.9 for the results in section 5.2. The size of demand fluctuations (u) such

40This can be shown (proof available on request) for T ∗ = 1, 2, 3 using Schur’s theorem
(see Chiang pp. 601-3) and for higher values of T ∗ by simulation.
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that breakdowns in collusive behaviour are possible (B∗ > 0) depends only

on collusive sales and the maximum sales possible following a rival deviation

(see equation (3) in section 4.2) and therefore is independent of δ. In contrast,

a lower δ increases the short-term gains from deviating and forgoing future

collusive profits. This means that collusion is sustainable only if it is less

likely to breakdown i.e. Bmax falls. Consequently, a lower δ reduces the

range of values for u for which partial collusion occurs(ū falls). As the value

of δ falls and approaches the value obtained by Compte et al. (2002) with no

demand uncertainty and T ∗ = ∞ (see Table 1), no partial collusion occurs

(Bmax = 0). For values of δ below this level, even with no breakdowns, there

is no length of punishment for which collusion is sustainable.
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Table 2: Demand fluctuations for which collusion is sustainable (alternative

discount rates)

Outcome u ū

δ = 0.95

Pre 433 617

Post 293 327

Remedy 1 3292 4676

Remedy 2 1104 1508

δ = 0.9 (as in section 5.2)

Pre 433 589

Post 293 313

Remedy 1 3292 4526

Remedy 2 1104 1439

δ = 0.8

Pre 433 532

Post / 184

Remedy 1 3292 4222

Remedy 2 1104 1298

δ = 0.7

Pre 433 473

Post

Remedy 1 3292 3896

Remedy 2 1104 1154

δ = 0.6

Pre 69 /

Post

Remedy 1 3292 3544

Remedy 2

δ = 0.5

Pre

Post

Remedy 1 0 /

Remedy 2
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Secondly, Figure 6 reproduces Figures 1 and 4, showing the consumer

surplus resulting from collusive behaviour as the size of potential demand

fluctuations increases. Here, the lines continue only up to the value of u for

which collusive behaviour occurs (i.e. up to ū as stated in the final column

of the previous table) and in each case the bold line represents δ = 0.9 as

used in section 5.2. Lower values of δ require longer punishment phases for

collusion to be sustainable and thus increase consumer surplus. Therefore

the lines further to the left41 correspond to increasingly low values of δ.

41Since T ∗ is discrete and we therefore round up to the nearest whole number satisfying
Proposition 4, consumer surplus can be identical for similar values of δ.
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Figure 6: Collusive behaviour (alternative discount rates)

(a) Pre-merger

(b) Remedy 1

(c) Remedy 2
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These three figures suggest that, for a fixed level of u,varying δ changes the

precise level of consumer surplus by a relatively small amount. In contrast,

the more significant effect is on precisely the range of values of u for which

partial collusion is possible. Consequently, assuming a relatively high value

for δ as in section 5.2, allows maximal scope for partial collusion and provides

a lower bound on the predicted consumer surplus.
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