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Abstract 

We present an assessment of the practical value of existing traditional and non-standard measures 

for discriminating healthy people from people with Parkinson‟s disease (PD) by detecting dysphonia. We 

introduce a new measure of dysphonia, Pitch Period Entropy (PPE), which is robust to many 

uncontrollable confounding effects including noisy acoustic environments and normal, healthy variations 

in voice frequency. We collected sustained phonations from 31 people, 23 with PD. We then selected 10 

highly uncorrelated measures, and an exhaustive search of all possible combinations of these measures 

finds four that in combination lead to overall correct classification performance of 91.4%, using a kernel 

support vector machine. In conclusion, we find that non-standard methods in combination with traditional 

harmonics-to-noise ratios are best able to separate healthy from PD subjects. The selected non-standard 

methods are robust to many uncontrollable variations in acoustic environment and individual subjects, 

and are thus well-suited to telemonitoring applications. 

Index Terms: Acoustic measures, nervous system, speech analysis, telemedicine. 

I. Introduction 

Neurological disorders, including Parkinson‟s disease (PD), Alzheimer‟s and epilepsy, affect 

profoundly the lives of patients and their families. Parkinson‟s disease affects over one million people in 

North America alone [1]. Moreover, an aging population means this number is expected to rise as studies 
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suggest rapidly increasing prevalence rates after the age of 60 [2]. In addition to increased social isolation, 

the financial burden of PD is significant and is estimated to rise in the future [3]. Currently there is no 

cure, although medication is available offering significant alleviation of symptoms, especially at the early 

stages of the disease [4]. Most people with Parkinson’s disease (PWP) will therefore be substantially 

dependent on clinical intervention. 

For many PWP, the requisite physical visits to the clinic for monitoring and treatment are 

difficult. Widening access to the Internet and improved telecommunication systems bandwidth offers the 

possibility of remote monitoring of patients (telemedicine [5]), with substantial opportunities for lowering 

the inconvenience and cost of physical visits. However, in order to exploit these opportunities, there is the 

need for reliable clinical monitoring tools. 

Research has shown that approximately 90% of PWP exhibit some form of vocal impairment [6, 

7]. Vocal impairment may also be one of the earliest indicators for the onset of the illness [8], and the 

measurement of voice is noninvasive and simple to administer. Thus, voice measurement to detect and 

track the progression of symptoms of PD has drawn significant attention  [9, 10]. 

PWP typically display a constellation of vocal symptoms that include impairment in the normal 

production of vocal sounds (dysphonia), and problems with the normal articulation of speech (dysarthria) 

– see [11] and references therein for a comprehensive description of these symptoms. Dysphonic 

symptoms typically include reduced loudness, breathiness, roughness, decreased energy in the higher 

parts of the harmonic spectrum, and exaggerated vocal tremor. 

There are many vocal tests that have been devised to assess the extent of these symptoms. These 

include sustained phonations [12, 13], where the patient is instructed to produce a single vowel and hold 

the pitch of this as constant as possible, for as long as possible, and running speech tests [13] where 

patients are instructed to speak a standard sentence constructed to contain a representative sample of 

linguistic units. Several of these tests may need to be administered for a full assessment of vocal 

impairment, but any symptom is sufficient for detecting the severity of PD. Although running speech 

might be considered a more realistic test of impairment in actual everyday usage, simple sustained 
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phonation tests are able to elicit dysphonic symptoms, and tests of the effectiveness of measurements for 

detecting dysphonia are best conducted without the confounding effects of articulatory or linguistic 

components of running speech. In this study therefore we will concentrate on sustained phonation tests. 

There have been extensive studies of speech measurement for general voice disorders [14-20] and 

PD in particular [10, 21]. Speech sounds produced during standard speech tests are recorded using a 

microphone, and the recorded speech signals are subsequently analyzed using measurement methods 

(implemented in software algorithms) designed to detect certain properties of these signals.  

The main traditional measurement methods include F0 (the fundamental frequency or pitch of 

vocal oscillation), absolute sound pressure level (indicating the relative loudness of speech), jitter (the 

extent of variation in speech F0 from vocal cycle to vocal cycle), shimmer (the extent of variation in 

speech amplitude from cycle to cycle), and noise-to-harmonics ratios (the amplitude of noise relative to 

tonal components in the speech) [12]. Studies have shown variations in all these measurements for PWP 

by comparison to healthy controls [22], indicating that these could be useful measures in assessing the 

extent of dysphonia. 

More recently, a variety of novel measurement methods have been devised to assess dysphonic 

symptoms, in particular, those based on nonlinear dynamical systems theory [23, 24]. These 

measurements are motivated by extensive modelling studies [25] and evidence [26] that vocal production 

is a highly nonlinear dynamical system, and that changes caused by impairments to the vocal organs, 

muscles and nerves will affect the dynamics of the whole system. As a result, these changes can be 

detected by nonlinear time series analysis tools [23], such as correlation dimension and methods for 

characterizing pseudoperiodic time series [27, 28]. Similarly, randomness and noise are inherent to vocal 

production [16]; as a result, tools such as recurrence period density entropy (RPDE) and detrended 

fluctuation analysis (DFA) have been applied to speech signals, showing the ability to detect general 

voice disorders [16]. 

Nonetheless, practical, remote assessment of dysphonia requires high reliability and this is 

impeded by several confounding issues. Sound recording and measurement methods will differ in 
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robustness to uncontrolled variation in the acoustic environment of the clinic and home, and to the 

physical condition and characteristics of the subject. In order to gain as much reliability as possible, 

measurement methods should be chosen that are as robust as possible to such uncontrolled (and in many 

cases, uncontrollable) variations. For example, absolute sound pressure level measurement requires costly 

calibration equipment and the requisite precision is often difficult to obtain. This limits the reliability of 

this measure in telemedicine applications. Similarly, although PD-related dysphonia is associated with 

reduced absolute speech F0, this is confounded by unrelated effects such as individual preferences or 

subject gender [21]. 

Although there are a large number of traditional and novel measurement methods for the 

assessment of voice disorders, and the character of PD-specific dysphonia is fairly well established, there 

are no methods for efficiently characterizing such dysphonia in the presence of known confounding 

factors such as subject gender and highly variable acoustic environments. For this reason we introduce a 

new measure of dysphonia that we dub pitch period entropy (PPE), a robust measure sensitive to 

observed changes in speech specific to PD. 

Statistically significant relationships have been shown to exist between the extent of dysphonia in 

PD and measurement methods [10]. Nonetheless, in remote monitoring conditions, we can expect much 

more variation in these measurements than the controlled conditions under which these studies were 

conducted. Given the need for high reliability in telemedicine applications therefore, we must assess the 

practical relevance of the variation in measurements with severity of dysphonia in PD. Statistical 

significance alone is not sufficient, as this does not give a complete picture of the extent to which any one 

measurement or set of measurements is useful in determining the extent of PD-related dysphonia [29]. 

Methods from statistical learning theory, such as linear discriminant analysis (LDA) and support 

vector machines (SVM) [30] are preferred here because they can directly measure the extent to which 

PWP can be discriminated from healthy controls on the basis of measures of dysphonia, addressing the 

problem of classifying subjects as healthy or PD. 
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With such classification methods it is also possible to combine measures to create more effective 

discrimination in practice. Measures from each subject are placed together in a (multidimensional) feature 

vector which forms the input to the classification method [30]. The method finds a decision boundary in 

the feature space formed by these vectors, so that the class of each subject (healthy or PD) can be 

predicted on the basis of subsequent voice measures. The rate of correct classification can be used to 

assess which measures contain the most useful information to best separate healthy from PWP in remote 

monitoring applications. This also allows us to assess the value of traditional with novel nonlinear and/or 

stochastic methods of dysphonia measurement for PD [31]. 

Nonetheless, given the very large number of measures of dysphonia, it is computationally 

infeasible to test all possible combinations. Furthermore, theoretical considerations show that as the 

feature set size increases, reliable classification is impaired by the diminished coverage of the feature 

space with measures from a fixed number of subjects [30]. Some form of feature selection must therefore 

be practiced [32] to reduce the set of measures down to a minimal size that contains the optimal amount 

of information for effective classification. 

Unfortunately, nothing short of a full, exhaustive (but intractable) search is guaranteed to produce 

the optimal feature set [32]. As a compromise, in this study we first apply a pre-selection filter that 

removes redundant measures, followed by an exhaustive search, testing all possible combinations of the 

filtered measures with an SVM classifier. 

The paper is organized as follows: The speech data used in this study is described in Section II, 

and the various methods of speech measurement, pre-processing, pre-selection and classification are 

presented in Section III. In Section IV we present the results of our findings in comparing the various 

techniques. Section V discusses the interpretation of these findings and provides conclusions and 

relevance of the results for future telemedicine applications. 



 6 

II. Data 

The data for this study consists of 195 sustained vowel phonations from 31 male and female 

subjects, of which 23 were diagnosed with PD. The time since diagnoses ranged from 0 to 28 years, and 

the ages of the subjects ranged from 46 to 85 years (mean 65.8, standard deviation 9.8). Averages of six 

phonations were recorded from each subject, ranging from one to 36 seconds in length. See Table I for 

subject details. Figure 1 shows plots of two of these speech signals. 

The phonations were recorded in an IAC sound-treated booth using a head-mounted microphone 

(AKG C420) positioned at 8 cm from the lips. The microphone was calibrated as described in [33] using a 

Class 1 sound level meter (B&K 2238) placed 30 cm from the speaker. The voice signals were recorded 

directly to computer using CSL 4300B hardware (Kay Elemetrics), sampled at 44.1 kHz, with 16 bit 

resolution. Although amplitude normalization affects the calibration of the samples, the study is focused 

on measures insensitive to changes in absolute speech pressure level. Thus, to ensure robustness of the 

algorithms, all samples were digitally normalized in amplitude prior to calculation of the measures. 

III. Methods 

As discussed in the introduction, the methodology of this study can be broken down into three 

stages: (a) the calculation of features, (b) the pre-processing and pre-selection of features, and (c) the 

application of a classification technique to all possible subsets of features for the discrimination of healthy 

from disordered subjects, selecting the subset that produces the best classification performance. 

Feature Calculation Stage 

The feature calculation stage involves the application of a representative selection of traditional 

and non-standard measurement methods to all the speech signals. Each method produces a single number 

for each of the 195 signals. See Table II for a list of the measures used as features in this study. 
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Calculation of Traditional Measures 

Calculation of the traditional measures was performed using the software Praat [34]. To facilitate 

comparison with other studies, where possible, traditional measures were chosen that coincide with an 

equivalent measure computed by the Kay Pentax Multi-Dimensional Voice Program (MDVP) [35]. These 

measures are prefixed “MDVP”. 

The traditional measures are based on the application of the short-time autocorrelation to 

successive segments of the signal, with peak-picking to determine the frequency of vibration of the vocal 

folds (F0 or pitch period), and location in time of the beginning of each cycle of vibration of the vocal 

folds (pitch marks) [36]. 

The jitter and period perturbation measures are derived from the sequence of frequencies for each 

vocal cycle, by taking successive absolute differences between frequencies of each cycle and averaging 

over a varying number of cycles, optionally normalizing by the overall average. The shimmer and 

amplitude perturbation measures are derived from the sequence of maximum extent of the amplitude of 

the signal within each vocal cycle. The average difference of this sequence is taken as a measure of the 

deviation between cycle amplitudes. The noise-to-harmonics (and harmonics-to-noise) ratios are derived 

from the signal-to-noise estimates from the autocorrelation of each cycle. See [35-37] for more details of 

the calculation of these traditional measures. 

In order to increase the power of these algorithms in separating healthy from PWP, we discard the 

second half of each voice signal in calculating these measures. This is because the end of the phonation is 

dominated by spurious dysphonia caused mainly by lack of lung pressure. Many PWP exhibit similar 

dysphonia which otherwise would be conflated with dysphonia caused by natural lack of lung pressure. 

Although other studies have found statistical relationships between absolute values of F0 and PD-

related dysphonia, we do not use this as a measure because it is adversely affected by gender and 

individual differences. Similarly, although it is observed that lower absolute sound pressure levels 

(amplitudes) are associated with PD-related dysphonia, for practical reasons we do not use this as a 

measure because the precision calibration required to obtain reliable estimates of this quantity are difficult 
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to achieve in remote monitoring situations. Thus, here we are deliberately restricted to relative (or 

perturbative) measures of pitch period and amplitude, since they are more robust to uncontrollable 

environmental and individual variations. 

Calculation of Non-Standard Measures 

The correlation dimension (D2) is calculated by first time-delay embedding the signal to recreate 

the phase space of the nonlinear dynamical system that is proposed to generate the speech signal [23]. In 

this reconstructed phase space, a geometrically self-similar (fractal) object indicates complex dynamics, 

which are implicated in dysphonia [38]. We use the TISEAN implementation [39]. 

The recurrence period density entropy (RPDE) quantifies the extent to which dynamics in the 

reconstructed phase space after time delay embedding can be considered as strictly periodic, that is, 

repeating exactly [16]. A recurrent signal returns to the same point in the phase space after a certain 

length of time, called the recurrence period T. It has been shown that the deviation from periodicity 

evaluated by the entropy H of the distribution of these recurrence periods P(T) is a good indicator of 

general voice disorders, as general voice pathologies lead to impairment in the ability to sustain regular 

vibration of the vocal folds [16]. Dividing through by the entropy of the uniform distribution normalizes 

the RPDE values (Hnorm) to the range [0, 1]. 

Finally, detrended fluctuation analysis (DFA) is a measure of the extent of the stochastic self-

similarity of the noise in the speech signal. The noise in speech is mostly generated by turbulent airflow 

through the vocal folds [40]. Such turbulent processes are characterised by a statistical scaling exponent α 

on a range of physical scales, which manifests in measured aspects of the dynamics including acoustic 

pressure fields. In some voice disorders, incomplete vocal fold closure leads to changes in this turbulent 

“breath” noise, and the characteristics of the self-similarity of the noise in the speech signal is therefore an 

indicator of dysphonia [16]. It is found that for general voice disorders, the scaling exponent is larger for 

dysphonic than healthy subjects [15, 16]. The DFA algorithm calculates the extent of amplitude variation 

F(L) of the speech signal over a range of time scales L, and the self-similarity of the speech signal is 
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quantified by the slope α of a straight line on a log-log plot of L versus F(L). A simple nonlinear 

transformation then normalizes these slope values (αnorm) to the range [0, 1] [16]. 

A New Measure of PD Dysphonia: Pitch Period Entropy (PPE) 

All healthy voices exhibit natural pitch (F0) variation characterised by smooth vibrato and 

microtremor [41], and this is detected in traditional jitter measures, for example. However, one common 

dysphonic PD symptom is impaired control of stationary voice pitch (F0) during sustained phonation 

[21]. Thus, with traditional measures it is difficult to separate natural, healthy pitch variations from 

dysphonic variations due to PD. 

Similarly, the extent of this natural variation is related to the average voice pitch of the subject; 

speakers with naturally high-pitched voices will have much larger vibrato and microtremor than those 

with lower-pitched voices, when these variations are measured on an absolute frequency (Hertz) scale. 

Therefore, measurements of abnormal speech pitch variation need to take into account these two 

important effects: healthy, smooth vibrato and microtremor, and the logarithmic nature of speech pitch in 

speech production (and perception). 

These observations suggest that a more relevant scale on which to assess abnormal variations in 

speech pitch is the perceptually-relevant, logarithmic (tonal) scale, rather than the absolute frequency 

scale [42]. It also suggests that in order to better capture pitch period variation due to PD-related 

dysphonia independent of these natural variations, smooth variations should be removed prior to 

measuring the extent of such variations. 

To implement these two insights algorithmically, we first obtain the pitch sequence of the 

phonation and convert to the logarithmic semitone scale, p(t), where p is the semitone pitch at time t. We 

next analyze the roughness of variations in this sequence over and above any healthy, smooth variations, 

by first removing linear temporal correlations in this semitone sequence with a standard linear whitening 

filter (coefficients of which are estimated using linear prediction by the covariance method [43]), to 

produce the relative semitone variation sequence r(t). This filtering effectively flattens the spectrum of the 
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semitone time series, and removes the effect of the mean semitone (which depends on the individual 

preferences and gender). Subsequently, we construct a discrete probability distribution of occurrence of 

relative semitone variations, P(r). Finally, we calculate the entropy of this probability distribution [44] 

which then characterizes the extent of (non-Gaussian) fluctuations in the sequence of relative semitone 

pitch period variations. 

An increase in this entropy measure reflects better the variations over and above natural healthy 

variations in pitch observed in healthy speech production. 

Feature Preparation and Classification Stage 

Practical exploitation of the information in the measures calculated above requires us to construct 

feature vectors from these measures, which can then be subsequently used to discriminate healthy from 

PWP. SVM classification performance is greatly enhanced by pre-processing of the values of each 

measure with an appropriate rescaling [30]. Here we scale each measure such that, over all signals, the 

measure occupies the numerical range [-1, 1]. 

Also in this stage, we wish to filter the number of measures down to a manageable size, such that 

a full search of all possible combinations can be conducted [32] in order to determine the optimal set for 

classification. We note that many of the measures will be highly correlated with other measures. This is 

because they will be measuring very similar aspects of the speech signal; for example, Jitter(%) and 

Jitter(Abs) (see Table I) are derived from pitch period sequences and measure the average absolute 

temporal differences in these periods. Because of this correlation, only one of this pair of measures will 

contribute useful information for the classification stage, and the other should be removed. 

We therefore systematically search through all pairs of features. Of those that are highly 

correlated (with a correlation coefficient of greater than 0.95), we remove one of the pair. 

We then construct feature vectors with each possible combination of subsets of pre-processed, 

filtered measures. To each combination, we apply SVM classification. This is a direct measure of the 

practical separability of the classes. 
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Prior visual inspection of the layout and clustering of pairs of measures indicate that the optimal 

decision boundaries separating healthy from PWP may not be simple lines or hyperplanes. Because of 

this, we use the kernel-SVM formulation, with Gaussian radial basis kernel functions [30]. These are 

flexible kernels that allow smooth, curved decision boundaries. For each combination of features, the 

classification performance is assessed in terms of the overall number of subjects correctly classified as 

healthy or PD, the number of PWP correctly classified (the true positive rate), and the number of healthy 

subjects correctly classified (the true negative rate). Validation of the results to obtain an estimate of out-

of-sample performance and confidence intervals is assessed using bootstrap resampling with 50 replicates 

[30]. The choice of optimal SVM penalty value and kernel bandwidth is determined by exhaustive search 

over a range of values. 

The bootstrap classification produces a set of classification performance results for each bootstrap 

replicate. In order to determine the best performing subset of features, we compare the sets of overall 

classification results using the two-sided Wilcoxon rank-sum test against the null hypothesis of equal 

medians, at a significance probability of 0.05. 

IV. Results 

Feature Calculation 

There is considerable variation in the distribution of values of the measures. Most of the 

traditional jitter and shimmer measures produce values close to zero, whereas the novel, non-standard 

measures and harmonics-to-noise ratios are more evenly spread over a wider range of values. 

Figure 2 shows the results of calculating the RPDE and DFA values for some selected speech 

signals. As can be seen, for healthy subjects the recurrence period density P(T) shows a single peak near 

the time T at which the voice signal tends to repeat itself. For many PWP however, the recurrence periods 

are spread over a wide range of values, which indicates that the vocal folds are not oscillating at regular 

intervals. This is likely caused by impairment of the stable positioning of the intrinsic laryngeal muscles 
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(those that directly move the vocal folds), or extrinsic laryngeal muscles (connecting the larynx and other 

structures), or by weakness in the production of stable airflow from the lungs. 

For many healthy subjects, the energy in the airflow of the lungs is well imparted to the 

movement of the vocal folds to generate clear sustained phonations. Thus, the speech signal will be 

smoother, and this is shown in the smaller DFA scaling exponent. However, many PWP are unable to 

maintain stable vocal fold vibration and much more of the airflow energy will be transferred to turbulent 

acoustic noise generation mechanisms. Hence the speech signal will be rougher, and this can be seen in an 

increase in the DFA scaling exponent. 

Regarding the PPE measure, in Figure 3, we can see that healthy semitone pitch sequences tend to 

be quite stable with signs of small, regular, smooth vibrato and microtremor. After removing this healthy 

variation with the whitening filter, the distribution of residuals shows a strong peak at zero. The entropy 

of this distribution is correspondingly small. For PWP however, the semitone pitch sequence shows 

considerable irregular variation; the whitened sequence is extremely rough and the distribution of 

residuals is spread over a wide range of values. This is picked up by the large entropy value. 

Feature Preparation and Classification 

After pre-processing by range scaling, Figure 4 shows distributions estimated using the Gaussian 

kernel density method, for a representative selection of the measures. 

The jitter and shimmer measure values are all very close to zero, with some rare examples of 

exceptionally high values. The other measures are more evenly spread over the full range of values. The 

non-standard measures show more distinction between the mode of the values for healthy controls and 

PWP, whereas the modes of the harmonics-to-noise ratio values are not as well separated. 

Figure 5 shows that some of the measures are very highly correlated and collinear, particularly 

the jitter and shimmer measures, whereas other measures are well spread relative to each other. This is 

particularly the case for the non-standard measures, or when comparing traditional with non-standard 

measures. The correlation filtering removes the following features: MDVP:Jitter(%), MDVP:RAP, 
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MDVP:PPQ, MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3 and Shimmer:APQ5 leaving 10 of 

the original measures (see Table II for a list of retained measures). 

The subsequent filtering of features leaves 10 of the measures, and there are 1023 possible 

subsets of all these measures. It is therefore feasible to test all the combinations exhaustively. Table III 

details the resulting classification performance, with 95% confidence intervals, for some representative 

selected subsets of the measures retained after filtering. As can be seen, the combination of HNR, RPDE, 

DFA and PPE obtains best overall classification performance, followed by the combination of all 10 

filtered measures. When taken separately, PPE produces the best performance. 

Figure 6 shows the results of SVM classification applied to selected pairs of the four measures 

HNR, RPDE, DFA and PPE. The boundaries are somewhat complex with some significant curvature. As 

can be seen, when PPE is included, the healthy and PD classes become better separated, and this is born 

out in the overall classification performance where the PPE measure contributes significantly towards a 

big improvement in the effectiveness of the classification. 

V. Discussion 

Our main finding is that non-standard measures significantly outperform the traditional measures 

in separating healthy controls from PWP, in terms of overall correct classification performance. We also 

find that traditional noise-to-harmonics methods contain some useful information that increases the 

performance somewhat. Furthermore, incorporating knowledge of and adjusting for the effect of natural 

pitch period variations leads to the design of a new measure, PPE, gaining significant performance 

increase. 

Considering the total number of signals is 195, 75.4% of the signals are from PWP; we can 

therefore consider this as a “null” rate. Any combination of measures that cannot achieve significantly 

better than this rate is not practically useful. When taken separately, of the traditional measures, only the 

retained jitter measure is able to achieve a rate much above this. By contrast, the PPE measure alone is 
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comfortably above the null rate. We also find that the PPE measure appears in all the best performing 

subsets. 

Another important observation is that simply increasing the combination subset size does not 

automatically lead to increasing overall classification performance. For the size of the data, the optimum 

number of measures is about four, above which or below which the classification performance is 

compromised. 

Of the non-standard measures, we find that D2 is the least reliable. This is largely because many 

of the speech signals are noisy and this spuriously increases the measured correlation dimension. This is 

an essential limitation of the usefulness of the algorithm for noisy signals [23, 45]. On this point also, it is 

well known that the traditional measures can only be applied to those cases where the signal is highly 

repetitive [46]. Non-standard measures, other than D2, do not suffer from this limitation. 

We believe the results caution against the use of traditional measures of dysphonia for 

telemonitoring applications. The careful design and combination of novel, non-standard measures, that 

are robust to variations in certain environmental conditions and to natural variations in individual voices, 

can lead to effective and reliable methods with which to discriminate healthy controls from PWP for 

remote monitoring applications. 

An important note is that our results are based on broadband, uncompressed audio signals, and we 

assume that future Internet bandwidth is sufficient that voice compression will not generally be required. 

Future research could further test these findings by applying these measures to voice signals recorded in 

acoustic environments more typical of practical telemonitoring applications. 
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Table of Figures 

Figure 1: Two selected examples of speech signals: (a) healthy, (b) subject with PD. The 

horizontal axis is time in seconds, the vertical axis is signal amplitude (no units). 

Figure 2: Recurrence period density entropy (RPDE) and detrended fluctuation analysis (DFA) 

results for healthy subjects (left panels) and for subjects with Parkinson‟s (right panels); (a-b) recurrence 

period density P(T) for recurrence times T,  (c-d) log-log plot of scaling window sizes L against 

fluctuation amplitudes F(L). See main text for more detailed descriptions. 

Figure 3: Details of pitch period entropy (PPE) calculation: (a-b) pitch period p(t) in semitones 

relative to note C3 on the musical scale, (c-d) residual of pitch period r(t) after spectral whitening filter, 

(e-f) probability densities P(r) of residual pitch period r. PPE value is the entropy of this probability 

density). Left panels are for a healthy subject, right panel is for a person with Parkinson‟s. 

Figure 4: Probability densities of some selected features after pre-processing by range 

normalization, in preparation for SVM classification (see Table II for a list of these features). The vertical 

axes are the probability densities P(x) of the normalized feature values x, estimated using the kernel 

density method with Gaussian kernel function. The dashed lines are for healthy subjects, the solid lines 

for Parkinson‟s subjects. 

Figure 5: Plots of pairs of features after pre-processing by range normalization, showing 

examples of high correlation (a) and low correlation (b). One of each pair of highly correlated features is 

removed prior to classification. 

Figure 6: SVM classification boundaries for some selected pairs of features after pre-processing 

by range normalization (see Table II for a list of these features). The „x‟ marks are for healthy subjects, 

the round marks for Parkinson‟s subjects. The light grey shaded areas are the regions in which subjects 

are predicted to have Parkinson‟s. 
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Table 1: List of subjects with sex, age, Parkinson’s stage and number of years since diagnosis. 

Subject code Sex Age Stage (H&Y) Years since diagnosis 

S01 M 78 3.0 0 

S34 F 79 2.5 ¼ 

S44 M 67 1.5 1 

S20 M 70 3.0 1 

S24 M 73 2.5 1 

S26 F 53 2.0 1½ 

S08 F 48 2.0 2 

S39 M 64 2.0 2 

S33 M 68 2.0 3 

S32 M 50 1.0 4 

S02 M 60 2.0 4 

S22 M 60 1.5 4½ 

S37 M 76 1.0 5 

S21 F 81 1.5 5 

S04 M 70 2.5 5½ 

S19 M 73 1.0 7 

S35 F 85 4.0 7 

S05 F 72 3.0 8 

S18 M 61 2.5 11 

S16 M 62 2.5 14 

S27 M 72 2.5 15 

S25 M 74 3.0 23 

S06 F 63 2.5 28 

S10 (healthy) F 46 n/a n/a 

S07 (healthy) F 48 n/a n/a 

S13 (healthy) M 61 n/a n/a 

S43 (healthy) M 62 n/a n/a 

S17 (healthy) F 64 n/a n/a 

S42 (healthy) F 66 n/a n/a 

S50 (healthy) F 66 n/a n/a 

S49 (healthy) M 69 n/a n/a 

Note: Entries labeled “n/a” for healthy subjects for which Parkinson‟s stage and years since diagnosis is 

not applicable. “H&Y” refers to the Hoehn and Yahr PD stage, where higher values indicate greater level 
of disability [47].
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Table 2: List of measurement methods applied to acoustic signals recorded from each subject. 

Feature Retained after 
filtering? 

Description 

MDVP:Jitter(%) No Kay Pentax MDVP jitter as a percentage  [37] 

MDVP:Jitter(Abs) Yes Kay Pentax MDVP absolute jitter in microseconds [37] 

MDVP:RAP No Kay Pentax MDVP Relative Amplitude Perturbation [37] 

MDVP:PPQ No Kay Pentax MDVP five-point Period Perturbation Quotient 

[37] 

Jitter:DDP Yes Average absolute difference of differences between cycles, 
divided by the average period [37] 

MDVP:Shimmer No Kay Pentax MDVP local shimmer [37] 

MDVP:Shimmer(dB) No Kay Pentax MDVP local shimmer in decibels [37] 

Shimmer:APQ3 No Three point Amplitude Perturbation Quotient [37] 

Shimmer:APQ5 No Five point Amplitude Perturbation Quotient [37] 

MDVP:APQ Yes Kay Pentax MDVP 11-point Amplitude  Perturbation Quotient 
[37] 

Shimmer:DDA Yes Average absolute difference between consecutive differences 

between the amplitudes of consecutive periods [37] 

NHR Yes Noise-to-Harmonics Ratio [37] 

HNR Yes Harmonics-to-Noise Ratio [37] 

RPDE Yes Recurrence Period Density Entropy [16] 

DFA Yes Detrended Fluctuation Analysis [16] 

D2 Yes Correlation dimension [23] 

PPE Yes Pitch period entropy [this paper] 

Note: MDVP stands for (Kay Pentax) Multi-Dimensional Voice Program. See main text for detailed 

descriptions of the algorithms used to calculate these features.
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Table 3: List of SVM classification performance results. 

Feature set (number of measures) Correct overall True positive True negative 

HNR, RPDE, DFA, PPE (4) 91.4±4.4 91.1±4.9 92.3±7.0 

All (10) 90.6±4.1 90.7±4.3 90.4±8.6 

RPDE, DFA, PPE (3) 89.5±3.9 89.6±4.3 89.1±8.6 

DFA, PPE (2) 88.2±3.8 88.2±4.2 88.0±8.1 

PPE (1) 85.6±5.4 85.9±5.5 84.5±10.8 

MDVP:Jitter(Abs) (1) 80.6±9.9 80.7±10.1 80.3±10.9 

RPDE, DFA (2) 79.2±4.2 79.2±4.5 79.0±7.5 

HNR (1) 77.4±2.8 77.6±3.1 76.9±4.1 

MDVP:APQ (1) 76.7±4.1 76.8±4.3 76.2±6.5 

D2 (1) 76.7±1.9 76.9±2.2 76.1±3.1 

DFA (1) 75.9±2.8 76.1±3.1 75.4±4.6 

RPDE (1) 75.7±1.4 75.9±1.7 75.2±3.0 

Jitter:DDP (1) 75.6±2.4 75.7±2.3 75.2±3.6 

NHR (1) 75.4±0.0 75.5±0.0 75.0±0.0 

Shimmer:DDA (1) 75.4±0.0 75.5±0.0 75.0±0.0 

Note: MDVP stands for (Kay Pentax) Multi-Dimensional Voice Program. See main text for detailed 
descriptions of the algorithms used to calculate these features. 
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Figure 1: Two selected examples of speech signals: (a) healthy, (b) subject with PD. The horizontal axis is 

time in seconds, the vertical axis is signal amplitude (no units). 
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Figure 2: Recurrence period density entropy (RPDE) and detrended fluctuation analysis (DFA) results for 

healthy subjects (left panels) and for subjects with Parkinson’s (right panels); (a-b) recurrence period density 

P(T) for recurrence times T,  (c-d) log-log plot of scaling window sizes L against fluctuation amplitudes F(L). 

See main text for more detailed descriptions. 
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Figure 3: Details of pitch period entropy (PPE) calculation: (a-b) pitch period p(t) in semitones relative to 

note C3 on the musical scale, (c-d) residual of pitch period r(t) after spectral whitening filter, (e-f) probability 

densities P(r) of residual pitch period r. PPE value is the entropy of this probability density). Left panels are 

for a healthy subject, right panel is for a person with Parkinson’s. 
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Figure 4: Probability densities of some selected features after pre-processing by range normalization, in 

preparation for SVM classification (see Table II for a list of these features). The vertical axes are the 

probability densities P(x) of the normalized feature values x, estimated using the kernel density method with 

Gaussian kernel function. The dashed lines are for healthy subjects, the solid lines for Parkinson’s subjects. 
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Figure 5: Plots of pairs of features after pre-processing by range normalization, showing examples of high 
correlation (a) and low correlation (b). One of each pair of highly correlated features is removed prior to 

classification. 
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Figure 6: SVM classification boundaries for some selected pairs of features after pre-processing by range 

normalization (see Table II for a list of these features). The ‘x’ marks are for healthy subjects, the round 

marks for Parkinson’s subjects. The light grey shaded areas are the regions in which subjects are predicted to 

have Parkinson’s. 



 25 

References 

[1] A. E. Lang and A. M. Lozano, "Parkinson's disease - First of two parts," New England Journal of 

Medicine, vol. 339, pp. 1044-1053, 1998. 
[2] S. K. Van Den Eeden, C. M. Tanner, A. L. Bernstein, R. D. Fross, A. Leimpeter, D. A. Bloch, 

and L. M. Nelson, "Incidence of Parkinson's disease: Variation by age, gender, and 
Race/Ethnicity," American Journal of Epidemiology, vol. 157, pp. 1015-1022, 2003. 

[3] D. M. Huse, K. Schulman, L. Orsini, J. Castelli-Haley, S. Kennedy, and G. Lenhart, "Burden of 
illness in Parkinson's disease," Movement Disorders, vol. 20, pp. 1449-1454, 2005. 

[4] N. Singh, V. Pillay, and Y. E. Choonara, "Advances in the treatment of Parkinson's disease," 

Progress in Neurobiology, vol. 81, pp. 29-44, 2007. 
[5] C. Ruggiero, R. Sacile, and M. Giacomini, "Home telecare," J Telemed Telecare, vol. 5, pp. 11-7, 

1999. 
[6] A. K. Ho, R. Iansek, C. Marigliani, J. L. Bradshaw, and S. Gates, "Speech impairment in a large 

sample of patients with Parkinson's disease," Behavioural Neurology, vol. 11, pp. 131-137, 1998. 
[7] J. A. Logemann, H. B. Fisher, B. Boshes, and E. R. Blonsky, "Frequency and Co-Occurrence of 

Vocal-Tract Dysfunctions in Speech of a Large Sample of Parkinson Patients," Journal of Speech 
and Hearing Disorders, vol. 43, pp. 47-57, 1978. 

[8] J. R. Duffy, Motor speech disorders : substrates, differential diagnosis, and management, 2nd ed. 
St. Louis, Mo.: Elsevier Mosby, 2005. 

[9] S. Sapir, J. L. Spielman, L. O. Ramig, B. H. Story, and C. Fox, "Effects of Intensive Voice 
Treatment (the Lee Silverman Voice Treatment [LSVT]) on Vowel Articulation in Dysarthric 
Individuals With Idiopathic Parkinson Disease: Acoustic and Perceptual Findings," J Speech 
Lang Hear Res, vol. 50, pp. 899-912, 2007. 

[10] D. A. Rahn, M. Chou, J. J. Jiang, and Y. Zhang, "Phonatory impairment in Parkinson's disease: 

Evidence from nonlinear dynamic analysis and perturbation analysis," Journal of Voice, vol. 21, 
pp. 64-71, 2007. 

[11] K. M. Rosen, R. D. Kent, A. L. Delaney, and J. R. Duffy, "Parametric quantitative acoustic 
analysis of conversation produced by speakers with dysarthria and healthy speakers," J Speech 
Lang Hear Res, vol. 49, pp. 395-411, 2006. 

[12] R. J. Baken and R. F. Orlikoff, Clinical Measurement of Speech and Voice, 2nd ed. San Diego: 
Singular Thomson Learning, 2000. 

[13] P. H. Dejonckere, P. Bradley, P. Clemente, G. Cornut, L. Crevier-Buchman, G. Friedrich, P. Van 
De Heyning, M. Remacle, and V. Woisard, "A basic protocol for functional assessment of voice 
pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating 
new assessment techniques. Guideline elaborated by the Committee on Phoniatrics of the 
European Laryngological Society (ELS)," Eur Arch Otorhinolaryngol, vol. 258, pp. 77-82, 2001. 

[14] J. Alonso, J. de Leon, I. Alonso, and M. Ferrer, "Automatic detection of pathologies in the voice 
by {HOS} based parameters," EURASIP Journal on Applied Signal Processing, vol. 4, pp. 275-
284, 2001. 

[15] M. Little, P. McSharry, I. Moroz, and S. Roberts, "Nonlinear, biophysically-informed speech 
pathology detection," in Proc ICASSP 2006. New York: IEEE Publishers, 2006. 

[16] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. Costello, and I. M. Moroz, "Exploiting 
Nonlinear recurrence and Fractal scaling properties for voice disorder detection," Biomedical 
Engineering Online, vol. 6, pp. -, 2007. 

[17] J. I. Godino-Llorente and P. Gomez-Vilda, "Automatic detection of voice impairments by means 
of short-term cepstral parameters and neural network based detectors," IEEE Transactions on 

Biomedical Engineering, vol. 51, pp. 380-384, 2004. 
[18] S. Hadjitodorov, B. Boyanov, and B. Teston, "Laryngeal pathology detection by means of class-

specific neural maps," IEEE Trans Inf Technol Biomed, vol. 4, pp. 68-73, 2000. 



 26 

[19] B. Boyanov and S. Hadjitodorov, "Acoustic analysis of pathological voices," IEEE Eng Med Biol 
Mag, vol. 16, pp. 74-82, 1997. 

[20] J. H. L. Hansen, L. Gavidia-Ceballos, and J. F. Kaiser, "A nonlinear operator-based speech 
feature analysis method with application to vocal fold pathology assessment," IEEE Transactions 

on Biomedical Engineering, vol. 45, pp. 300-313, 1998. 
[21] L. Cnockaert, J. Schoentgen, P. Auzou, C. Ozsancak, L. Defebvre, and F. Grenez, "Low-

frequency vocal modulations in vowels produced by Parkinsonian subjects," Speech 
Communication, vol. 50, pp. 288-300, 2008. 

[22] P. Zwirner, T. Murry, and G. E. Woodson, "Phonatory Function of Neurologically Impaired 
Patients," Journal of Communication Disorders, vol. 24, pp. 287-300, 1991. 

[23] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, New ed. Cambridge; New York: 
Cambridge University Press, 1999. 

[24] M. A. Little, "Biomechanically Informed Nonlinear Speech Signal Processing," University of 
Oxford, Oxford, D.Phil. Thesis 2007. 

[25] J. J. Jiang and Y. Zhang, "Chaotic vibration induced by turbulent noise in a two-mass model of 
vocal folds," Journal of the Acoustical Society of America, vol. 112, pp. 2127-2133, 2002. 

[26] M. Little, P. McSharry, I. Moroz, and S. Roberts, "Testing the assumptions of linear prediction 
analysis in normal vowels," Journal of the Acoustical Society of America, vol. 119, pp. 549-558, 
2006. 

[27] J. Zhang and M. Small, "Complex network from pseudoperiodic time series: Topology versus 
dynamics," Physical Review Letters, vol. 96, pp. -, 2006. 

[28] J. Zhang, X. Luo, and M. Small, "Detecting chaos in pseudoperiodic time series without 
embedding," Physical Review E, vol. 73, pp. -, 2006. 

[29] C. J. Huberty and L. L. Lowman, "Group overlap as a basis for effect size," Educational and 
Psychological Measurement, vol. 60, pp. 543-563, 2000. 

[30] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning : data mining, 

inference, and prediction : with 200 full-color illustrations. New York: Springer, 2001. 
[31] P. E. McSharry, L. A. Smith, and L. Tarassenko, "Prediction of epileptic seizures: are nonlinear 

methods relevant?," Nat Med, vol. 9, pp. 241-2, 2003. 
[32] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of 

Machine Learning Research, vol. 3, pp. 1157-1182, 2003. 
[33] J. Svec, P. Popolo, and I. Titze, "Measurement of vocal doses in speech: experimental procedure 

and signal processing," Logoped Phoniatr Vocol, vol. 28, pp. 181-192, 2003. 
[34] P. Boersma and D. Weenink, "Praat: doing phonetics by computer (Version 4.3.14)," 2005. 

[35] KayPENTAX, "Kay Elemetrics Disordered Voice Database, Model 4337," Kay Elemetrics, 
Lincoln Park, NJ, USA, 1996-2005. 

[36] P. Boersma, "Accurate short-term analysis of the fundamental frequency and the harmonics-to-
noise ratio of a sampled sound," in Proceedings of the Institute of Phonetic Sciences, vol. 17: 
University of Amsterdam, 1993. 

[37] P. Boersma and D. Weenink, "Praat, a system for doing phonetics by computer," Glot 
International vol. 5, pp. 341-345, 2001. 

[38] J. J. Jiang, Y. Zhang, and C. McGilligan, "Chaos in voice, from modeling to measurement," 
Journal of Voice, vol. 20, pp. 2-17, 2006. 

[39] R. Hegger, H. Kantz, and T. Schreiber, "Practical implementation of nonlinear time series 
methods: The TISEAN package," Chaos, vol. 9, pp. 413-435, 1999. 

[40] R. P. Dixit, "On defining aspiration," in Proceedings of the XIIIth International Conference of 
Linguistics. Tokyo, Japan, 1988, pp. 606-610. 

[41] J. Schoentgen and R. Deguchteneere, "Time-Series Analysis of Jitter," Journal of Phonetics, vol. 

23, pp. 189-201, 1995. 
[42] B. C. J. Moore, An introduction to the psychology of hearing, 5th ed. Amsterdam ; Boston: 

Academic Press, 2003. 



 27 

[43] J. G. Proakis and D. G. Manolakis, Digital signal processing: principles, algorithms, and 
applications, 3rd ed. Upper Saddle River, N.J.: Prentice Hall, 1996. 

[44] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed. Hoboken, N.J.: Wiley-
Interscience, 2006. 

[45] Y. Zhang and J. J. Jiang, "Nonlinear dynamic analysis in signal typing of pathological human 
voices," Electronics Letters, vol. 39, pp. 1021-1023, 2003. 

[46] P. N. Carding, I. N. Steen, A. Webb, K. Mackenzie, I. J. Deary, and J. A. Wilson, "The reliability 
and sensitivity to change of acoustic measures of voice quality," Clinical Otolaryngology, vol. 29, 
pp. 538-544, 2004. 

[47] M. M. Hoehn and M. D. Yahr, "Parkinsonism - Onset Progression and Mortality," Neurology, 
vol. 17, pp. 427-&, 1967. 

 

 


