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Abstract — We report on a theoretical study of polarization 

impairments in periodically spun fiber Raman amplifiers. Using 

the Stochastic Generator approach we have derived averaged 

equations to calculate polarization dependent gain and mean-

square gain fluctuations. We show that periodically spun fiber 

can work as a Raman polarizer but it suffers from increased 

polarization dependent gain and gain fluctuations. Unlike this, 

application of a depolarizer can result in suppression of 

polarization dependent gain and gain fluctuations. We 

demonstrate that it is possible to design a new fiber Raman 

polarizer by combining a short standard fiber with properly 

chosen parameters and a long periodically spun fiber. Such a 

polarizer provides almost the same polarization pulling for all 

input signal states of polarization and so has very small 

polarization dependent gain.  

 
Index Terms— Optical fiber amplifiers, Raman scattering. 

 

I. INTRODUCTION 

olarization mode dispersion (PMD) and polarization 

dependent gain (PDG) are among major factors limiting 

the progress in further increase of overall capacity of the next 

generation of optical networks based on distributed fiber 

Raman amplifier (FRA). PMD is caused by varying group 

velocities for the pulses with different states of polarization 

(SOPs) and so leads to pulse broadening [1-3].  Varying signal 

SOPs at the input of fiber Raman amplifier leads to 

uncontrollable output gain variation. Maximum of the gain 

variation is defined as polarization dependent gain (PDG) [4-

8]. Traditional PMD suppression technique is based on 

spinning the fiber periodically and results in PMD suppression 

below 0.04 ps/km
1/2

 [2, 3]. However, this PMD suppression is 

accompanied with a simultaneous increase in the Raman PDG 

[5-8]. The new approach developed by Sergeyev et al. [7, 8] 

have shown that it is possible to simultaneously mitigate both 

PDG and PMD by using a fiber with a particular spin profile 

or, more specifically, a two-section fiber (‘two-section 
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approach’) in which the first section has no spin and the 

second one is periodically spun. A new approach based on 

using anisotropy of Raman amplification (Raman polarizer) to 

repolarize and amplify signal rather than to depolarize it has 

been recently developed by Martinelli et al. [9] , Kozlov et al. 

[10] and Ursinini et al. [11]. In this approach, arbitrary at the 

input, signal SOP with low input power is attracting to the 

pump SOP with high input power (polarization pulling) and so 

is stabilizing [9-11]. In view of the lack of information about 

the gain fluctuation caused by a random birefringence, the 

characterization of different PMD and PDG mitigation 

schemes is incomplete. In this paper, we fill this knowledge 

gap by deriving equations and calculating mean-square gain 

fluctuations for different cases of application of a depolarizer, 

two-section approach and a Raman polarizer. The results show 

that the two-section fiber provides better characteristics as 

compared to other approaches and so can be used in high-

speed fiber optic communication systems for design of 

spatially and spectrally transparent media with an increased 

Raman gain [12, 13].  

II. MODEL OF A SPUN FIBER RAMAN AMPLIFIER 

WITH A RANDOM BIREFRINGENCE 

Evolution of the signal and pump states of polarization 

(vectors ),,(
321

SSS=S and ),,(
321

PPP=P  pointing to 

positions on the Poincaré sphere) is effected by Raman 

amplification and SOPs interaction and so can be found as 

follows:  
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and pump losses, respectively s0(z) is the part of the signal 

amplitude related to pump-signal SOPs interaction. The part of 

the Raman gain ∆G related to polarization evolution due to 

random birefringence and fiber spinning depends on s0 as 

follows [5-8]: 
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If the input pump and signal SOPs are parallel, the Raman gain 

takes the maximum value and if the SOPs are orthogonal then 

Raman gain takes the minimum one [4-8]. The difference in 

the gain (polarization dependent gain, PDG) and mean-square 

gain fluctuations (MSGF) σ can be found as follows [5-8] 
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where <…> means averaging over the birefringence 

fluctuations along the fiber. To calculate s0(L), we use vector 

model of the fiber Raman amplifier for forward pump with 

accounting for fiber spin profile and random birefringence and 

neglecting for pump depletion [5]: 
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Here ss ˆ
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describes the nonlinear SOP 

evolution caused by self- and cross-phase modulation (SPM 

and XPM ): ( )( ),ˆ
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W . Kerr coupling 

constants are γi=2πn2/(λiAeff) (i=s,p), where n2 is the nonlinear 

Kerr coefficient and Aeff is the effective core area of the fiber. 

Due to linear birefringence, unit vectors ŝ
 
and p̂  rotate on the 

Poincaré sphere around the birefringence vector Wi=(2bicosθ, 

2bisinθ,0)
T
  in the same direction, but at different rates bs and 

bp which are birefringence strengths (bi=π/Lbi where Lbi is the 

beat length) at signal λs and pump λp wavelengths. The random 

birefringence in a single mode fiber (SMF) can be represented 

in terms of a fixed modulus model (FMM) where the 

birefringence strength 2bi is fixed and the orientation angle θ is 

driven by a white-noise process [1] 
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where δ(z) is a Dirac delta-function, and σ2 
= 2/Lc (Lc is the 

birefringence correlation length). Here we neglect the fiber 

twist and, therefore, the birefringence vector for the spun fiber 

takes the form of  Wi,s=R3[2A(z)]Wi, where   A(z) is the spin 

profile, and R3(γ) represents rotation in the equatorial plane by 

angle γ  around the z-axis on the Poincaré sphere [7] 
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    We choose the reference frame in the Stokes space in such a 

way that the local birefringence vector is ( )0,0,2
~

, iun
b=

i
W  and 

( ) )0,0,1(0~̂ =p , i.e. oriented along the X-axis on the Poincaré 

sphere. This can be accomplished by a suitable 

transformation ( )
i

WRW )(2
~ 1

3
zA

i
+= − θ , and ( )sRs )(2~ 1

3
zA+= − θ  

and ( )pRp ˆ)(2~̂ 1

3
zA+= − θ , provided the variable 

0
s  and scalar 

product sp ⋅= ˆx  are invariant under the rotation. In addition, 

we consider cases which correspond to the maximum and 

minimum of the Raman gain, viz. ( ) )0,0,1(0~
max

=s  and 

( ) )0,0,1(0~
min

−=s . Applying a procedure of averaging over 

birefringence fluctuations (Stochastic Generator Approach) 

given in Refs. [1] and [4] to Eqs. (4), we construct the system 

of equations from which PDG can be calculated with the help 

of Eqs. (3) 
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    In view of ε3<< ε4, ε5 (rotation of signal SOP with respect 

to pump SOP is much slower than SOPs rotation with respect 

the local birefringence vector 
i

W
~

), we can average over the 
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Using this transformation and averaging over birefringence 

fluctuations and the fast oscillations, we find the following 

equation for 
11

fh   
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If we choose parameters for Raman amplifier as Pin=5W, 

L=10 km, g=2.3 dB W
-1

km
-1

, Lc=110 m, we find that 

115.0
1

<<=LL
c

ε . Thus, we can neglect the first term on the 

right-hand side of equation (9). As a result, we find  
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In addition, this procedure leads to 0~~̂
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21123

→− spspp  and so self- 

and cross-phase modulation (SPM and XPM) can be neglected 

[5-8]. The similar result have been obtained in [9, 11] by 

direct modeling of stochastic equations (4), viz. it was obtained 

that for the pump power Pin < 10 W and PMD parameter 

Dp>0.01 ps/km
1/2

 SPM and XPM has no contribution to 

polarization pulling. Using transformation (8) and averaging 

over the birefringence fluctuations and fast oscillations we find 

the following equations from which MSGF σ can be found 

with the help of Eqs. (3): 
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    To characterize polarization pulling of the signal SOP to the 

pump SOP we introduce polarization pulling metric cosΦ as 

follows:  

 
0

cos sx=Φ .                                 (13) 

It is clear that for polarization pulling cosΦ→1.      

    To calculate spin induced reduction factor (SIRF) for the 

case of spun fiber we use the standard model of PMD [3] 
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LΩ are the mean-square differential 

group delays (DGD) for two orthogonal SOPs in the case of 

long-length spun fiber and the same fiber without  spin, 

respectively [3]. As follows from [3, 7, 8], after averaging over 

fluctuations caused by random birefringence, equations for the 

SIRF take the following form: 
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    In our previous publications, have demonstrated that by 

combining the short-length fiber with the length L1 and without 

spin, and the long periodically spun fiber with the spin profile 

A=A0sin(2πz/p) (A0 and p are spin amplitude and period), one 

can mitigate PDG and PMD simultaneously [7, 8]. Optimal 

parameters Lc, L1, and Dp
(1,un) 

corresponding to the minimum in 

SIRF can be found as follows [8]  
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   To calculate PDG for the case of a depolarizer application, 

we use Lin and Agrawal approach [5], viz. transformation of 

the input pump power P0 as   P0 →DOP⋅P0 , where DOP is a 

degree of polarization at the depolarizer output.  

III. RESULTS AND DISCUSSION  

   We have used parameters typical for a SMF based 

distributed fiber Raman amplifier: L=10 km, αs=0.2 dB/km, 

λp=1460 nm, λs=1550 nm, g=2.3 dB W
-1

km
-1

, and P=5 W. 

First, we have calculated PMD values for the two-section fiber 

with the help of equation (15). In view of Eq. (16), one of the 

parameters Dp
(1,un) 

or Lc can be chosen arbitrary, so we picked 

Dp
(1) 

= 0.1 ps⋅km
-1/2

 and Lc=5 m. Next, we have calculated 

PDG, MSGF, SIRF from equations (3) and averaged equations 

(7), (12) and (15) for the cases of periodically spun one-

section fiber, two-section fiber and application of pump 

depolarizer. The results are shown in Figs. 1 (a - b). The 

results in Table 1 show optimal values of PDG, MSGF which 

have been chosen at the minimum values of SIRF. 
TABLE I 

ONE-SECTION, TWO-SECTION RAMAN POLARIZER AND APPLICATION OF 

DEPOLARIZER (FROM FIG. 1 (A,B)) 

Specifications 
One-section          Two-section 

Raman  polarizer   Raman polarizer 

Application of 

Depolarizer  

  PDG, dB 20                             0.23 4.5 

Min SIRF 0.005                        0.08 0.05 

σmaxG, % 

σminG, %                                                                 

5                              54.5 

        95                             60.7 

3.3 

           7.3 
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   Finally, we calculated SIRF and maximum/minimum PDG 

and σ for a periodically spun fiber in the case of application of 

a depolarizer (DOP = 10%) with the help of Eqs (15)  and 

accounting for changing the  parameter in Eqs. (9) as follows: 

ε1→ε1DOP  (Fig. 1 (a,b)). As follows from [14], temperature 

fluctuations can lead to an increased DOP for the input pump 

wave of 10-15%. In view of this, it can lead to an increased 

PDG value of 4.5 dB and gain fluctuations to 3.3 and 7.3 % 

(thick solid lines in Fig1 (a) and thin and thick solid lines in 

Fig. 1 (b)). 
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Figure 1 Polarization dependent gain PDG, spin induced reduction factor 

SIRF (a) and mean-square gain fluctuations σ (b) as function of a fiber 

spinning amplitude A0. Dotted line and circles: periodically spun one-section 

fiber, dashed line and squares: two-section fiber, solid line: application of 

depolarizer with DOP=10%. Pump input SOP (1,0,0), signal input SOPs (-

1,0,0) (thin lines) and (1,0,0) (thick lines). Parameters: L=10 km, αs=0.2 

dB/km, λp=1460 nm, λs=1550 nm, g=2.3 dB W-1km-1, P=5 W, Dp
(1) = 0.1 

ps⋅km-1/2 Lc=5 m. 

  

    As follows from Fig.1 and Table 1, application of 

periodically spun fiber results in low PMD (SIRF) value. The 

fiber becomes more isotropic and so difference in the gain 

values for cross-polarized signal SOPs have maximum, and 

PDG increases up to 20 dB. In addition, gain fluctuations are 

high for the case of input signal SOP orthogonally polarized to 

the pump SOP. As follows from Fig. 1 (c) (thin lines), such a  

fiber works as a Raman polarizer but it requires higher power 

for pulling signal input SOP cross-polarized to the pump input 

SOP.  

    By using two-section technique it is possible to suppress 

PDG further down to 0.23 dB.  Although this approach suffers 

from high gain fluctuations it is nevertheless very promising 

for further development in the context of application as a 

Raman polarizer. As follows from Fig. 1 (c) (solid lines), two-

section approach provides almost equal polarization pulling 

for cross-polarized input signal SOPs and so results in almost 

equal gain fluctuations and low PDG.   
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Figure 2 Polarization  pulling  metrics cosΦ as a function of distance along 

the fiber z. One section of periodically spun fiber (dotted lines), two-section 

fiber (dotted line). Pump input SOP (1,0,0), signal input SOPs (-1,0,0) (thin 

lines) and (1,0,0) (thick lines). Parameters: L=10 km, αs=0.2 dB/km, 

λp=1460 nm, λs=1550 nm, g=2.3 dB W-1km-1, P=3 W, Dp
(1) = 0.1 ps⋅km-1/2 

Lc=5 m, A0=1.21 rad.  

  

IV. CONCLUSION 

Applying the vector model of a fiber Raman amplifier 

accounting for fiber spin profile and random birefringence, we 

provide comparative analysis of different schemes for 

suppression of polarization dependent gain and polarization 

mode dispersion. We have shown that application of a two-

section approach results in suppression of PDG down to 0.23 

dB and SIRF down to 0.08. The first section is short, it has 

specified parameters (length, PMD, correlation length) and no 

spin. The second section is a long periodically spun fiber. In 

addition, two-section fiber provides almost equal polarization 

pulling for cross-polarized input signal SOPs and so can be 

used as a new type of a fiber optic Raman polarizer.  
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