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A real-time three-dimensional (3D) object sensing and reconstruction scheme is presented that can be applied on
any arbitrary corporeal shape. Operation is demonstrated on several calibrated objects. The system uses curvature
sensors based upon in-line fiber Bragg gratings encapsulated in a low-temperature curing synthetic silicone. New
methods to quantitatively evaluate the performance of a 3D object-sensing scheme are developed and appraised. It is
shown that the sensing scheme yields a volumetric error of 1% to 9%, depending on the object. © 2012 Optical
Society of America
OCIS codes: 060.2370, 060.3735, 120.4820, 110.6880, 280.4788.

One of the main goals driving forward the research and
development of fiber-optic sensing systems is their appli-
cation in the field of structural health monitoring [1,2]
and shape sensing [3,4]. There are several applications
for shape-sensing, such as spatial awareness and control
of robots in hazardous conditions (e.g., deep-water semi-
submersible drilling platform and subsea production
systems) [5,6] or profiling minimally invasive (keyhole)
surgery [7], to name a few.
There are a large number of shape sensing systems that

have fiber Bragg gratings (FBG) as the sensing elements
that monitor the strain experienced by the sensors that
are adhered to the object and use a shape determination
algorithm based upon a strain mapping technique [1,3].
Other sensing systems include fiber-optic loop sensors
based on bend-induced loss; this technique is used in the
commercially available system called ShapeTape [2] with
others based upon distributed sensing, such as intrinsic
Rayleigh backscattering employing optical frequency do-
main reflectometry [8]. Alternative approaches to shape
sensing include employing camera systems using com-
plex, shape-sensing recognition algorithms [9].
The three-dimensional (3D) shape-sensing system de-

monstrated in this Letter is based upon fiber bidirectional
sensing elements that have the ability to distinguish both
positive and negative curvature variation upon a two-
dimensional (2D) plane. The element consists of two
FBGs that are temperature self-compensating due to the
fact that the difference in wavelength is measured and
calibrated to curvature (concave and convex) (see Fig. 1).
The curvature information deduced from all sensing
nodes within the scheme is processed by bespoke algo-
rithms to construct a 3D representation of the object in
question. As we will show, our method offers advantages
in comparison to previously existing approaches, the
most important of which is the real-time 3D shape recon-
struction through tailor-made algorithms. The volumetric
error of the sensing system was found for shapes with
known volumes (i.e., arcs, ellipsoidal cylinders, and
spheres) and ranged from 1% to 9% depending upon the
shape being used. In addition, we present an efficient
and, to the extend of our knowledge, entirely new

approach to the evaluation of the performance of a 3D
object shape sensing system, obtaining a figure-of-merit
that should be a useful tool for researchers to compare
shape reconstruction efficiencies using different mea-
surement approaches.

Our sample sensing scheme possesses 20 sensing loca-
tions within the sensor array, each spatial location con-
sisting of two FBGs spatially arranged one above the
other separated by a small distance, typically ∼0.5 mm
either side of the neutral axis to ensure the sensors re-
spond in opposite fashions to curvature; see Figs. 1
and 2. All the FBGs are inscribed in series along a single
fiber optic line (Fibrecore SM1500) separated by 1 m in
the fiber (due to the limitations of the interrogation
scheme employed). The overall array’s shape was chosen
specifically for the respiratory function monitoring of hu-
mans. The complete sensing array is encapsulated with a
low temperature (90 °C) curing silicone rubber. Also this
silicone rubber reduces the effect of transient ambient
temperature changes on the FBGs, a schematic is shown
in Fig. 1. Each FBG is approximately 7 mm long having a
peak reflectivity of 5% along with a spectral bandwidth,
FWHM, of 70 pm; all have approximately the same peak
wavelength of 1550 nm.

Fig. 1. Schematic of the curvature sensing array.
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These FBGs are specifically designed for the interroga-
tion scheme employed for the sensing array, which is a
based upon time division multiplexing (Moog Insensys
Ltd.) [10]. The interrogator addresses sensors at a fre-
quency of 500 Hz; this sensing array consists of 42 de-
vices and thus the complete array is addressed 12 times
per second.
A calibration of the curvature sensing nodes was first

performed by bending of the silicone where the two FBG
elements are located. A relationship between wavelength
shift in nanometer and curvature experienced by each
sensing node is established with typical average spectral
sensitivities to curvature of Δλ ∕ΔR � 0.80� 0.12 nm
with an overall curvature resolution of 0.125 m−1 deter-
mined by a combination of the minimum detectable
wavelength shift and the inaccuracy in calibration
procedure.
The generation of the shape from the sensing array

formed from the curvature sensors is achieved by using
the following algorithms. The distances between adja-
cent sensing nodes is known, along with the total lengths
of fiber between sensing elements in the array; thus the
arc lengths for each sensing location are known. Consid-
er a single rib, one horizontal arm, which consists of four
sensors; this is divided into four sections with each sec-
tion consisting of N segments, the last section being used
to calculate the angle to the spine of the array to ensure a
continuous line/curve between adjacent sensing sec-
tions, see Fig. 1. By combining all of the curvature values,
coupled with the known spatial dimensions, we are able
to generate the corresponding x, y and z coordinates of
the sensor array. We can then reconstruct the entire sen-
sing array in real-time in 3D space with a positional ac-
curacy determined in the curvature calibration process
that is translated into Euclidean space. With the sensing
array reconstructed in 3D, see Figs. 2 and 3, we are now
able to calculate the volume of the various sections of the
system. The procedure consists of first generating a 2D
mesh across the surface of the ribs, dynamically, by in-
terpolating the points in between the sensor locations,
both vertically and horizontally. Using this data, we are
able to then select a region of interest and perform a 2D
surface integration over the section of the mesh, thus ob-
taining a temporally dependent volume at any location of
the array.
The system is evaluated by using known shapes

and volumes and determining the error in the estimated

volume of the shape. The shapes have been chosen to
evaluate the system with increasing dimensional diffi-
culty; the first shape is a simple curvilinear plane (set
to various constant curvatures) which presents a single
dimensional degree of freedom, second, an elliptical
cylinder where the major and minor axes are varied, is
a second degree of freedom; two-dimensions, and third,
varying diameters of known spheres again increase to
three degrees of freedom, see Fig. 2.

The algorithm reproduces the shape of the object in
contact with the shape sensing array. The volume error
for the algorithm was calculated for the known shapes
and volumes. The estimated volumetric error for the el-
liptic cylinders used was approximately 7.8% and for the
spheres the error ranged from 1% to 9% depending upon
the size.

To further evaluate the performance of the shape-
sensing system, new quantitative approaches are devel-
oped to obtain a figure of merit for any 3D arbitrary
shape. Established methods for pattern recognition, such
as cross correlation (the global shape matching and local
shape matching) [11] and common shape-matching meth-
ods including shape distribution [12], shape context [13],
and curvature scale space [8,14] are generally limited to
2D or do not consider surface quality.

In order to quantitatively analyze any arbitrary 3D ob-
ject, two procedures are devised, first the use of normal-
ized cross-correlation functions for each dimension
�x; y; z�, defined as

f �SSST�x;y;z �
1
n

P
x;y;z�Sx;y;z − hSix;y;z��Tx;y;z − hTix;y;z�

σ�x; y; z�σ�x; y; z� ;

(1)

where SS is the reconstructed shape from the measure-
ment, ST is the known 3D shape to be correlated, Sx;y;z
are the values of the shape in a given dimension �x; y; z�,
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Fig. 2. Schematics of the shapes used to evaluate the shaping
sensing scheme.

Fig. 3. 3D sensing array representation obtained from the
algorithm, all axis units are meters.

Table 1. Cross Correlation For Various
Sphere Radii

Dimension

Sphere Radius (m) X Y Z

0.29 0.9955 0.9572 0.9511
0.315 0.9971 0.9555 0.9792
0.36 0.9986 0.9837 0.9781
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Tx;y;z are the corresponding idealized values, hi repre-
sents the average value in the given dimension and σ
is the standard deviation for a given dimension. Using
this approach yields values between −1 to �1 for each
dimension and the product of the x, y, z components
measure the validity of the reconstructed shape with re-
gard to the reference object. Results are shown in Table 1
and Fig. 4.
The second approach using a normalized vector inner-

product that consist of calculating the product for each
preset n points on the surface of the reconstructed shape
SS and the known idealized shape ST , this procedure is
defined in the following equation:

F�SSST �n � 1
n

X

n

SS · ST

jST j2
.

This second procedure yields a numerical value describ-
ing the quality of the reconstructed shape’s topology
compared to the known topology of the reference object,
for example for a perfect reconstruction, this procedure
would produce one. For values greater or lower than one,
results in an over or under estimation, respectively, of the
physical topology of the reference object see Fig. 5.
Relevant sources of error include imperfections in the
alignment of the FBGs, as well as the assumption that
the arms remain perpendicular to the spine and all wave-
length shifts are due to bending.
Upon inspecting Table 1 we find all the cross-correlation

values are above 0.95, thus indicating good agreement
between the known spheres and the measurements taken
with the sensing scheme. Again this is verified by observing
that the overall cross-correlation values, as seen in Fig. 4,
are in excess of 0.9, and the average inner-product ap-
proach is within 3% of the idealized case (which is 1).
See Fig. 5. Again these results indicate that the sensing

schemes reconstruction is an accurate representation of
the original object to which the array is adhered to.
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Fig. 4. The overall product of cross-correlation of the different
spheres.

Fig. 5. The overall average scalar/dot product between the
idealized shape and the shape reconstructed from the sensing
array for the different spheres.
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