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Contrast sensitivity improves with the area of a sine-wave grating, but why? Here we assess this phenomenon against
contemporary models involving spatial summation, probability summation, uncertainty, and stochastic noise. Using a two-
interval forced-choice procedure we measured contrast sensitivity for circular patches of sine-wave gratings with various
diameters that were blocked or interleaved across trials to produce low and high extrinsic uncertainty, respectively.
Summation curves were steep initially, becoming shallower thereafter. For the smaller stimuli, sensitivity was slightly worse
for the interleaved design than for the blocked design. Neither area nor blocking affected the slope of the psychometric
function. We derived model predictions for noisy mechanisms and extrinsic uncertainty that was either low or high. The
contrast transducer was either linear (c1.0) or nonlinear (c2.0), and pooling was either linear or a MAX operation. There was
either no intrinsic uncertainty, or it was fixed or proportional to stimulus size. Of these 10 canonical models, only the
nonlinear transducer with linear pooling (the noisy energy model) described the main forms of the data for both experimental
designs. We also show how a cross-correlator can be modified to fit our results and provide a contemporary presentation of
the relation between summation and the slope of the psychometric function.
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Introduction

Contrast sensitivity improves with the area of a sine-
wave grating. For gratings presented in the center of
the visual field, the summation function has a
characteristic bowed shape (pressing in towards the
origin) when plotted on double log coordinates of
threshold versus area (Robson & Graham, 1981; Tootle
& Berkley, 1983; Garcı́a-Pérez, 1988; Rovamo, Lunti-
nen, & Nasanen, 1993; Rovamo, Mustonen, &
Nasanen, 1994; Foley, Varadharajan, Koh, & Farias,
2007; Meese & Summers, 2007). It is thought that the
initial improvement over small areas owes to spatial
filtering (e.g., Meese & Summers, 2007; see supple-
mentary material in Meese, 2010) and that the
asymptotic effect at much greater stimulus diameters
owes to retinal inhomogeneity (Howell & Hess, 1978;
Robson & Graham, 1981; Foley et al., 2007; Meese &
Summers, 2007). The intermediate region has a log-log
slope of approximately�1/4 (Meese, Hess, & Williams,
2005; Meese & Summers, 2007) and for this reason is
sometimes called fourth-root summation (Bonneh &
Sagi, 1999). However, its interpretation is controver-
sial, as we describe below.

Probability summation and Minkowski
summation

One interpretation of fourth-root summation is in
terms of probability summation between multiple inde-
pendentmechanisms, each responding todifferent regions
of the stimulus.According tooneapproach, if the contrast
transducer is linear and followed by a high threshold and
there are negligible false-positive responses, then proba-
bility summation predicts a (log-log) summation slope
equal to�1/b, where b is the Weibull slope parameter of
the psychometric function (Quick, 1974; Watson, 1979;
Robson&Graham, 1981). In thismodel,bdependson the
distribution of internal additive noise placed before the
threshold (Sachs, Nachmias, & Robson, 1971; Quick,
1974; Tyler & Chen, 2000; Mortensen, 2002), which is
sometimes assumed to beWeibull (Quick, 1974; Graham,
1989). Predictions for probability summation can be
derived by setting c¼b in a generalization of Minkowski
summation over m detecting mechanisms as follows:

respoverall ¼
X
i¼1:m
ðjrijc

0

Þ
" #1=c

ð1Þ

where, for the conventional implementation, c0¼ c. This
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gives the desired summation slope of�1/b (Quick, 1974).
Empirical estimates of the slope of the psychometric
function (b) at detection threshold are b ’ c0 ’ 4 in area
summation studies, consistent with the (high-threshold)
probability summationmodel (Robson &Graham, 1981;
Meese & Williams, 2000) and the fourth-root empirical
description (Meese et al., 2005). Some studies have also
foundb ’ c0 for summationof superimposed components
that differ in orientation and/or spatial frequency (Sachs
et al., 1971;Meese&Williams, 2000), thoughother studies
have found marked differences between b and c0 for
related stimulus arrangements (Meinhardt, 2000; Mana-
hilov&Simpson, 2001). The reason for thesedifferences is
not clear.

Minkowski summation has been used widely in
contrast detection studies where it has enjoyed much
success, though it is important to realize that its
equivalence to probability summation (Quick, 1974) is
rooted in high-threshold theory. Note that high-thresh-
old theory is also the basis for any approach that treats
psychometric functions as ‘‘probability of detecting
functions’’ and then combines the probabilities from
multiple ‘‘detectors’’ using conventional statistical pro-
cedures (e.g., Graham, Robson, & Nachmias, 1978). By
implication, or otherwise, this approach assumes that
visual detectors can enter a state that indicates they have
correctly detected the stimulus—and that is high
threshold-theory, of course. Unfortunately though,
high-threshold theory has been roundly rejected. For
example, contrast detection thresholds depend on guess-
rate even after correction for guessing, which is
inconsistent with the theory’s predictions (Green &
Swets, 1966; Nachmias, 1981). Nevertheless, the demise
of the theoretical underpinning for Minkowski summa-
tion as an implementation of probability summation
(where c ¼ c0 ¼ b) has not deterred investigators from
using it as a method of combining mechanism outputs,
and several defenses of this position have been made
(Wilson, 1980; Nachmias, 1981; Meinhardt, 2000; Tyler
& Chen, 2000; Mortensen, 2002). Indeed, models of
early spatial vision tend to remain rooted in the idea that
an array of independent filter-elements is followed by a
nonlinear pooling strategy and a decision variable
(Wilson & Bergen, 1979; Rohaly, Ahumada, & Watson,
1997; Tyler & Chen, 2000; Párraga, Troscianko, &
Tolhurst, 2005). As already mentioned, this is usually
interpreted as probability summation and implemented
using Minkowski summation with exponents c0 ¼ c ’ 3
or 4. Nonetheless, there is no direct evidence to support
the probability summation interpretation, merely the
consistency between psychophysical summation data
and model predictions (see also the discussion in Robson
& Graham, 1981, and Mortensen, 1988). Therefore, we
refer to the association between probability summation
and area summation of contrast as the first dogma of
spatial vision (Meese & Baker, 2011).1

Signal combination and Minkowski
summation

Graham (1989) and others have emphasized an
alternative interpretation of Minkowski summation in
terms of ‘‘deterministic nonlinear pooling.’’ Thus, the
pooling strategy in multiple filter models might be
reinterpreted as neuronal convergence (Graham, 1989)
or, as we prefer to say, ‘‘signal combination.’’ It is rarely
presented that way though (but seeWatson & Ahumada,
2005), presumably because the indiscriminate arrange-
ment of inputs with which it is often associated seems an
unlikely neuronal wiring scheme. However, recent
psychophysical work involving area summation of
narrow-band stimuli has edged towards this deterministic
interpretation (Graham & Sutter, 1998; Meese et al.,
2005; Foley et al., 2007; Meese & Summers, 2007, 2009;
see also Laming, 1988; Manahilov & Simpson, 1999;
Meinhardt, 2000). Specifically, Meese and Summers
(2007) suggested that several processes are involved in
area summation of grating contrast as follows: retinal
inhomogeneity, spatial filtering, contrast transduction
(’Ci

p) at each location (i), the addition of independent
(Gaussian) additive noise (Gi) at each location, linear
spatial summation across filter-elements, and finally a
decision variable. Note that some authors (e.g., Graham,
1989) describe such arrangements as involving nonlinear
summation because each signal line is subject to a
nonlinear transformation of signal contrast before
summing. Typically, however, we prefer the term linear
summation with respect to this situation, by reference to
the linearity of the pooling process. This distinguishes it
from the nonlinearMAX operator, which is often treated
as the ‘‘minimal combination rule’’ (Tyler & Chen, 2000)
and is involved in contemporary treatments of probabil-
ity summation (Pelli, 1985) (see the section on the MAX
operator). In previous work we have referred to the
preceding model arrangement (Meese & Summers, 2007)
as the transducer and noise combination model or more
simply, the combination model (Meese, 2010). Here, we
introduce the term noisy energy model to describe the
same arrangement (though not necessarily including
retinal inhomogeneity and filtering).

The noisy energy model involves a cascade of two
different processes, each of which produces too much
summation when operating in isolation (though see
Meese & Hess, 2007; Manahilov, Simpson, & McCul-
loch, 2001), but when combined produce the desired
fourth-root effect. For example, a square-law contrast
transducer (p ¼ 2) followed by summation and late
additive noise predicts that detection thresholds decline
with a (log-log) slope of �1/2 when plotted against
stimulus area. This is essentially the contrast energy
model (Rashbass, 1970; Manahilov & Simpson, 1999)
with late noise. Similarly, when the noise is placed early
(before summation) and the transducer is linear (p¼ 1),
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we have the ideal summation model (Campbell &
Green, 1965; Tyler & Chen, 2000), where area
summation of signal and noise also causes thresholds
to decline with a (log-log) slope of�1/2. This is because
the total signal strength is proportional to area and the
total noise is proportional to the square-root of area
(the noise variances add and the standard deviation is
equal to the square-root of their sum). Thus, the signal
to noise ratio increases in proportion to area/=(area)
and the reciprocal of this gives the relation for contrast
sensitivity: a power law with an exponent of �1/2. In
both cases then, the effect of area on contrast sensitivity
at a fixed criterion level of performance can be
described using Minkowski summation with c0 ¼ 2
(quadratic summation). But when these two effects are
cascaded, as in the noisy energy model—where noise
comes after contrast transduction but before summa-
tion—then the model predicts a fourth-root summation
rule, effectively c0 ¼ 4 (Wilson, 1980; Meese &
Summers, 2007, 2009; Meese, 2010).

Thus, although very different in architecture, the
probability summation model and the noisy energy
model each make a fourth-root prediction for area
summation of contrast.

The slope of the psychometric function and
Minkowski summation

Twomajor benefits of usingMinkowski summation to
combine the outputs of visual mechanisms are its
flexibility and computational simplicity. However, we
advise that it be used with caution, as we now explain.
Meese and Summers (2009) assumed that early sensory
noise was additive and used stimuli designed to
encourage spatial pooling over a fixed retinal extent.
The aim was to hold the internal noise level constant at
the decision variable while allowing contrast area to be
manipulated within this window. If successful, this would
allow a clean empirical measure of the (nonlinear)
transducer without the potentially confounding effects
from variably pooled internal noise.Meese and Summers
(2009) devised a specific test of a generalized version of
Minkowski summationwhere they set c0¼pc in Equation
1 (see alsoManahilov & Simpson, 1999). With this model
arrangement, p controls the slope of the psychometric
function and pc controls the level of summation. They
found the best model predictions with c¼ 1 and 2 � p �
3. When p ¼ 2, this is equivalent to the noisy energy
model. Meese and Summers (2009) showed that the
conventional use of Minkowski summation in their
model (c ’ 3 or 4 and p¼ 1) completely failed to predict
the slope of the psychometric function. Thus, while
Minkowski summation might offer a pragmatic solution
to the problem of combining the outputs of multiple
mechanisms, if the model is to make successful predic-

tions for a range of performance levels (i.e., respoverall is
not a constant in Equation 1) (Bird, Henning, &
Wichmann, 2002; Meese, Georgeson, & Baker, 2006;
Garcı́a-Pérez & Alcalá-Quintana, 2007) then the gener-
alized version of Minkowski summation (Equation 1,
where c0 ¼ pc) should be used, at the very least.

The MAX operator and probability summation

From the discussion above it is clear that (a) models
of probability summation associated with high-thresh-
old theory are inadequate, (b) the conventional use of
Minkowski summation as an explicit image processing
stage is flawed if models are required to make
predictions at more than one performance level (i.e.,
different levels of percent correct or d0), and (c) a model
involving linear summation of contrast following
nonlinear contrast transduction (the noisy energy
model) is consistent with area summation results.
However, we must also consider the contemporary
formulation of probability summation, which involves
the observer taking the MAX over multiple (noisy)
mechanisms (Pelli, 1985; Tyler & Chen, 2000). For
several situations this model also predicts fourth-root
summation slopes (c0 ¼ c ’ 4; Tyler & Chen, 2000),
consistent with area summation data.

In psychophysical experiments, the MAX operator is
usually treated as an operation performed by the
decision maker, placing it late in the information-
processing stream (Pelli, 1985). However, the MAX
operator is also a valuable method for computing
various image invariances (Riesenhuber & Poggio,
1999), suggesting that there might be sensory (cellular)
implementations of the MAX operator arranged
throughout the object recognition system (Riesenhuber
& Poggio, 2002; Cadieu et al., 2007). On the other
hand, the alternating layers of MAX and linear
summing operations rising up the hierarchy in these
models (Serre, Woilf, Bileschi, Riesenhuber, & Poggio,
2007; Cadieu, Kouh, Pasupathy, Conner, Riesenhuber,
& Poggio, 2009) and evidence for both types of
summation in areas 17 and 18 of cat (Finn & Ferster,
2007) bring into question any expectation that area
summation experiments should reveal the MAX oper-
ation in visual psychophysics.

Observer uncertainty and the motivation for
the present study

Observer uncertainty is used to describe the situation
where theMAX operation is applied to a greater number
of noisy signal lines than actually contain the target. The
level of uncertainty is often summarized as the ratio of
irrelevant to relevant mechanisms (U). Uncertainty is an
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inherent part of theoretical analyses involving summation
and the MAX operator and can affect both the predicted
levels of summation and the slope of the psychometric
function (Pelli, 1985; Tyler & Chen, 2000; Neri, 2010).

In most previous models of contrast detection, area
summation is controlled by the severity of the nonlinear
transducer (p) when pooling is linear (Meese &
Summers, 2007) or the level of uncertainty (U) when
pooling is a MAX operation (Tyler & Chen, 2000).
Thus, most previous studies have not been able to
distinguish between these two operations because a
single parameter can be adjusted to produce similar
contrast summation behavior by each of them. We
overcame this problem here by including two further
factors to help constrain the models. First, we
performed the experiment using both interleaved and
blocked designs for the various conditions of stimulus
area. These designs have different implications for the
level of extrinsic uncertainty and consequently the
behavior of the models (as we describe later). Second,
along with measures of contrast sensitivity, we also
analyzed the slope of the psychometric function, which
depends on both uncertainty and the form of the
contrast transducer (Pelli, 1985; Tyler & Chen, 2000).
We then derived signatures for each of our 10 canonical
model configurations (2 transducers · 2 pooling rules
· 2.5 forms of intrinsic uncertainty) for each of our
experimental designs (blocked and interleaved). (Note
that the factor of 2.5 derives from the use of three
forms of uncertainty for one pooling rule but only two
for the other.) A comparison of our analyses and data
revealed a single model configuration that produced the
correct qualitative relationships between stimulus area
and both (a) sensitivity and (b) the slope of the
psychometric function for the stimuli used here. The
successful model involves a nonlinear contrast trans-
ducer followed by additive noise and linear pooling
(i.e., the noisy energy model). We then (a) found that
successful quantitative predictions could be achieved
when retinal attenuation and spatial filtering were
included in the model and (b) showed how a
conventional cross-correlator can be modified to
achieve similar results. Our analyses do not support
any of the probability summation (MAX) models.

Methods

Equipment

Stimuli were displayed from the framestore of a
Cambridge Research Systems (CRS, UK) ViSaGe
stimulus generator operating in pseudo 15-bit mode
and were controlled by a PC. The monitor was a
NokiaMultigraph 445X (Nokia, Finland) with mean

luminance of 76 cd/m2 and a frame rate of 120 Hz.
Look up tables were used to perform gamma correction
to ensure linearity over the full range of stimulus
contrasts. Observers sat in a dark room at a viewing
distance of 74 cm with their head in a chin and headrest
and viewed the stimuli binocularly.

Stimuli

Stimuli were always horizontal sine-wave gratings in
sine-phase with the center of the display. The spatial
frequency was 2.5 c/deg and the stimulus duration was
100 ms. The gratings were modulated by a circular
raised cosine function with a central plateau, the
diameter of which was the nominal diameter of the
stimulus (1–32 cycles). The blurred part of the
modulator extended beyond the central plateau and
was always 2 pixels wide (12.5 arcmin). All stimuli were
sampled with 12 pixels per cycle. Thus, the smallest
stimulus had a full diameter of 16 pixels (12 for the
central plateau, plus 2 on each side for the blurred
boundary) and a diameter at the half height of the
envelope of 14 pixels. The largest stimulus had a full
diameter of 388 pixels and a diameter at half height of
386 pixels (see Appendix E for stimulus equations).

Fixation marks were displayed throughout the
experiment and arranged in one of two ways. For the
‘‘fixed quad’’ marks, a set of four dark square points
(12.5 arcmin wide) were displayed at the corners of a
virtual square whose virtual contours just surrounded
the largest stimulus in the experiment (i.e., the side of
the virtual square was equal to the diameter of the
largest stimulus). For the ‘‘variable quad’’ marks, the
arrangement was similar, but the virtual square was
matched to the diameter of each grating. The first
arrangement was used in both the blocked design and
the interleaved design, whereas the second arrangement
was used only in the blocked design. In other words,
the blocked design was run twice, with different
configurations of fixation marks, whereas the inter-
leaved design was run only once. We avoided using a
central fixation point as this can interfere with the
detection of small stimuli (Meese & Hess, 2007;
Summers & Meese, 2009).

Grating contrast is expressed as Michelson contrast
in % [i.e., c¼ 100(Lmax� Lmin)/(LmaxþLmin)] or in dB
re 1% [ ¼ 20.log10(c)], where L is luminance.

Procedure

Test contrast was selected randomly from seven
stimulus levels. The levels were separated by 2.5 dB and
centered at approximately each observer’s threshold.
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There were 140 trials in total (20 trials per stimulus
level).

A temporal two-interval forced-choice (2IFC) tech-
nique was used, where the stimulus was displayed with
a contrast of 0% in one interval (the null interval), and
at the contrast selected by the staircase in the other
interval (the target interval). The onset of each 100-ms
interval was indicated by an auditory tone and the
duration between the two intervals was 400 ms. The
observer’s task was to select the target interval using
one of two buttons to indicate his or her response.
Correctness of response was provided by auditory
feedback, and the computer selected the order of the
intervals randomly. For each experimental run, data
from the test-stages (above), thresholds (81.6% correct
in the absence of lapsing), and the slopes of the
psychometric function (b) were estimated by fitting a
Weibull function using the psignifit routine (Wichmann
& Hill, 2001) where the lapse rate parameter (k) was a
free parameter but constrained such that 0 � k � 0.05.

The experiment was performed in three different
ways. In an interleaved design, fixed quad fixation was
used (see above), and the stimulus size was selected
randomly on a trial-by-trial basis. In a blocked design,
a sequence of trials was performed to allow an estimate
of threshold to be made for a particular size before a
subsequent stimulus size was tested. This design was
run using the fixed quad fixation and variable quad
fixation methods above. In the blocked designs, the
order of stimulus size was selected randomly. All
stimulus sizes were tested for all three experimental
conditions before beginning fresh random sequences.
This was done six times to produce estimates of
psychometric functions based on 840 trials each.

Observers

The two authors (TSM & RJS) and a postgraduate
student (MS) served as observers. The two authors
were highly practiced with the task and the conditions.
The third observer was naı̈ve to the purposes of the
experiment but was experienced with psychophysical
procedures. All observers wore their normal optical
correction.

Results, Part I: A theoretical
study and toy models

It is well known that the shape of the contrast
transducer and the level of uncertainty (the proportion
of irrelevant mechanisms monitored) can affect levels
of summation and the slope of the psychometric
function (Pelli, 1985; Tyler & Chen, 2000). Here we

extend this work by using Monte Carlo simulations to
provide a systematic study of linear and nonlinear
(accelerating) contrast transducers with linear or MAX
pooling. (Note that our terminology permits the
summation process to be linear even if the input to
that process has passed through a nonlinear transduc-
er.) Most importantly, we also consider the effects in
the context of intrinsic and extrinsic uncertainty. This is
controlled by either a free parameter (intrinsic uncer-
tainty, which determines whether the model observer
monitors irrelevant noisy channels) or the experimental
design (extrinsic uncertainty). Although the analysis
below owes much to earlier work by Pelli (1985) and
Tyler and Chen (2000), it is the first exposition with
sufficient breadth to be able to address the question of
the form of summation in our detection experiment.
This analysis also forms the basis of Appendix A,
where we provide a contemporary account of the
relation between the slope of the psychometric function
and summation. This supersedes earlier accounts in
terms of the Minkowski metric that were based on
high-threshold theory (Quick, 1974; Robson & Gra-
ham, 1981).

In this section we report toy models in the absence of
spatial filtering and retinal inhomogeneity2 to provide a
direct illustration of the effects with which we are
concerned. Although both of these factors will be
important for a quantitative account of our results (we
consider these details when we develop the model in
Part IV), there are several qualitative aspects of the
models with which they do not interfere (e.g., the
ordinal relation of the functions and whether there are
design or area effects). These will be the focus of our
attention in Part III, following the modeling here.
Furthermore, at this stage we are not concerned with
the luminance modulation of our stimulus over space
and the modulation of responses that this would
produce across linear mechanisms (see also Tyler &
Chen, 2000). Although this will be picked up in Part IV
and Appendix C, these details are largely irrelevant to
the empirical study here where the number of sine-wave
stimulus cycles was the independent variable. Thus, in
the study here, the processing details for each stimulus
cycle are of little importance—what matters is the rules
that control pooling across multiple cycles.

Canonical summation models

We assumed an array of m ¼ 1,024 mechanisms
where the number of mechanisms stimulated (s) was
equal to the square of the diameter of the stimulus in
cycles. Our smallest and largest stimuli excited 1 and
1,024 mechanisms, respectively. A proportional scaling
of these figures changed the quantitative details of some
of the summation functions (e.g., see Tyler & Chen,
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2000, p. 3133; Appendix C), but not their general form
or our conclusions. We performed the simulations for t
¼ 6 stimulus sizes sequenced in powers of 2 (i.e., 1, 2, 4,
8, 16, and 32).

If a mechanism was stimulated, then the level of
excitation (r) was given by the stimulus contrast (c),
otherwise it was zero. Every mechanism (i) was subject
to contrast transduction followed by independent
additive Gaussian noise. The contrast transducer was
either linear:

fðriÞ ¼ ri þ Gi; ð2Þ

or nonlinear:

fðriÞ ¼ r
p
i þ Gi; ð3Þ

where an accelerating transducer exponent of p ¼ 2.0
was used to conform to the energy model. (For
convenience, we sometimes refer to the linear trans-
ducer as having p ¼ 1.) The parameter G was zero
mean, unit variance, Gaussian noise.

In the blocked designs (Figure 1, right) we assumed
there was no extrinsic stimulus uncertainty. In the real
experiments, when variable quad fixation was used
there was a continuous cue to stimulus size from the

Figure 1. Schematic illustration of the canonical models of spatial summation tested in this paper. Columns are for interleaved and blocked

experimental designs. The contrast transducer (not shown) was either linear (p¼ 1) or nonlinear (p¼ 2) giving two times the five different

model configurations depicted. The models used in the simulations contained many more mechanisms than those shown here. The eagle-

eyed reader might be perturbed that the schemes in (c) and (e) are identical, yet the corresponding red model curves in Figure 2 (c) and

(e) are slightly different. This is because of the different number of irrelevant mechanisms involved in the two sets of simulations.
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fixation marks throughout, so this was reasonable. In
the fixed quad design observers were soon able to judge
the size of the condition from their successful trials, but
it is possible that there was some residual extrinsic
uncertainty associated with this condition. In sum, for
our simulated blocked designs and in the absence of
intrinsic uncertainty, the model observer monitored
only the set of mechanisms that was excited by the
stimulus.

For the interleaved experimental design (Figure 1,
left) the observer could not know which mechanism or
set of mechanisms were the most appropriate to
monitor on each trial. Thus, although details vary
across models (see below) every mechanism in the
model contributed to the model observer’s decision. In
general, this observer was extrinsically uncertain.

A major distinction between two classes of model is
whether pooling over first-stage (basic) contrast mech-
anisms is linear (R) (sometimes referred to as signal
combination) (Figure 1, bottom two rows) or proba-
bilistic, according to a MAX operator (sometimes
referred to as probability summation or signal selec-
tion) (Figure 1, top three rows). We consider both of
these here. Note that when the first-stage pooling was
linear (orange ellipses in Figure 1) the outputs of the
various mechanisms were normalized to have the same
expected variance. This was important when there was
uncertainty about which linear pooling mechanism was
most appropriate (e.g., the interleaved design) and
second-stage MAX pooling was used to choose
between them (see Figure 1).

In further simulations we also included MAX
pooling over additional noisy mechanisms to model
intrinsic uncertainty. For ‘‘fixed’’ intrinsic uncertainty,
the observer always monitored an additional fixed set

of irrelevant mechanisms regardless of the details of the
experimental design or the stimulus condition (Figures
1c, d, i, and j). In the simulations the number of
irrelevant mechanisms was set to n ¼ 1,024. For
‘‘proportional’’ intrinsic uncertainty, the observer
monitored additional mechanisms that were a fixed
multiple of what would otherwise be monitored. For
example, this could happen in a blocked area summa-
tion experiment if the observer was certain about
position and area in each condition, but always
uncertain about spatial frequency and orientation. In
this case, as the number of relevant mechanisms
increases with area, the number of irrelevant mecha-
nisms also increases in direct proportion. In the main
simulations we used a factor of 100. Proportional
intrinsic uncertainty was implemented (and relevant)
only for MAX pooling of the first-stage mechanisms.

Appropriate combination of the various situations
above gave a total of 10 canonical models for each of
our two experimental designs (Figure 1). We provide
mathematical descriptions of each of these situations,
where the two or three forms of intrinsic uncertainty
(none, fixed and proportional) are described within
each subsection (Table 1 provides easy reference to
parameters).

In general, we say that the level of uncertainty (U) is
the ratio of the number of mechanisms that are equally
excited by the stimulus to the number of mechanisms
that are monitored. Thus, when there is no uncertainty,
U ¼ 1. For completeness, we give explicit expressions
for the levels of extrinsic (Uext), intrinsic (Uint), and
total (Utot) uncertainty below and summarize these in
Table 2. These offer some insight into model behaviors
since it is well known that for a linear transducer, the
effects of uncertainty on the psychometric function are

Model Parameter Explanation

r Mechanism response to stimulus contrast (before noise or nonlinearity)

G Zero mean, unit variance, additive Gaussian noise (stochastic)

p Exponent of nonlinear transducer (typically, p ¼ 2.0, or p ¼ 1.0 for the linear transducer)

m Number of basic contrast detecting mechanisms that are relevant to the task on at least some

of the trials (m ¼ 1,024)

n Number of irrelevant noisy mechanisms

s Number of basic contrast detecting mechanisms excited by the stimulus. This also indicates

the relative areas of the stimuli.

t Number of different stimulus sizes (t ¼ 6)

i Index into the array of m þ n basic contrast detecting mechanisms

k Number of linear pooling mechanisms (typically, k ¼ 6)

j Index into the array of k linear pooling mechanisms

s̆j Number of basic contrast detecting mechanisms summed by the jth linear pooling mechanism

rj Standard deviation of the response of the jth linear pooling mechanism

resp Decision variable

respj and resp0 Intermediate stages in calculating the decision variable.

Table 1. Summary of parameters used in the models. Numbers in parentheses indicate parameter values used in the main simulations,

where appropriate.
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approximately proportional to log(Utot) (Green &
Swets, 1966; Pelli, 1985).3 However, these expressions
were not used in generating our model predictions,
which relied on Monte Carlo simulations and did not
require explicit formulations for uncertainty.

MAX, interleaved (3 models · 2 transducers)

The model response for the interleaved design with
MAX pooling was given by:

resp ¼ MAX
i¼1:mþn

fðriÞ½ �; ð4Þ

where m is the number of mechanisms stimulated by the
largest stimulus and n is the number of additional
irrelevant mechanisms that control intrinsic uncertain-
ty. In the main simulations, m ¼ 1,024 (Figure 1a).
Intrinsic uncertainty was set according to n¼ 0 (none),
n¼ 1,024 (fixed), or n ¼ 99m (proportional). For these
models, Uext ¼ m/s, Uint ¼ n þ 1 and Utot ¼ (m þ n)/s,
where s is the number of mechanisms excited by each
stimulus. Note that in this instance, the fixed (n¼1,024)
and proportional (n¼99m) intrinsic uncertainty models
have the same form (m was a constant); they differed
only in the overall level of uncertainty (Figures 1c and
e).

MAX, blocked (3 models · 2 transducers)

The model response for the blocked design with
MAX pooling was given by:

resp ¼MAX
i¼1:sþn

fðriÞ½ �; ð5Þ

where s is the number of mechanisms excited by the
stimulus in the block (Figure 1b). The parameter n
controlled intrinsic uncertainty as follows: n¼ 0 (none),
n ¼ 1,024 (fixed), or n ¼ 99s (proportional). For these
models, Uext ¼ 1, Uint ¼ (n þ s)/s and Utot ¼ (n þ s)/s.
Note that here, the level of total uncertainty (Utot) did

not vary with the size of the stimulus (s) when intrinsic
uncertainty was proportional to s. On the other hand,
Utot decreased with s when intrinsic uncertainty was
fixed. This means that these two models of intrinsic
uncertainty (Figures 1d and f) have distinct forms for
the blocked design.

P
, interleaved (2 models · 2 transducers)

For the linear pooling we assumed a set of pooling
mechanisms for k different pool sizes, evenly spaced in
a logarithmic sequence. For the main simulations here,
k¼ 6, and the pooling mechanisms were matched to the
t ¼ 6 stimulus sizes. However, this was not critical: we
found that setting k ¼ 11 by adding intermediate
pooling mechanisms between the t ¼ 6 stimulus sizes
had a negligible effect on model behavior.

The number of mechanisms pooled by the jth pooling
mechanism is given by s̆i. The response of each of these j
¼ 1:k linear pooling mechanisms was given by

respj ¼
X
i¼1:s̆j

fðriÞ½ �: ð6Þ

In the interleaved design the observer could not
know the size of the stimulus (s) on each trial, and so a
MAX operator was used to select the most responsive
of the k linear pooling mechanisms.4 However, the
expected level of response will increase with j in the
absence of stimulation because of the linear pooling of
noise. To combat this bias, the response of each linear
pooling mechanism was normalized by the expected
standard deviation (rj):

resp0 ¼MAX
j¼1:k

respj
rj

� �
; ð7Þ

where rj ¼
ffiffiffi
s̆j

p
(Tyler & Chen, 2000). When there was

no intrinsic uncertainty (i.e., n¼ 0); resp¼ resp0 (Figure
1g). Otherwise, we had

resp ¼ MAX
i¼mþ1:mþn

resp0; fðriÞ½ �; ð8Þ

where n ¼ 1,024 for fixed intrinsic uncertainty (Figure
1i).

Unfortunately, there was a general problem here in
deriving an expression for extrinsic uncertainty. This
was because each linear pooling mechanism received a
graded level of total excitation, depending on the area
of the stimulus. This meant that uncertainty could not
be expressed simply as the ratio of mechanisms equally
excited to those monitored (as we have defined it).
Nevertheless, we observed that the distribution of
signal-to-noise ratios within the set of linear pooling
mechanisms was fairly (though not quite) constant with
stimulus area. Therefore, we assumed an equivalent

Pooling method and

experimental

design

Extrinsic

uncertainty

Uext

Intrinsic

uncertainty

Uint

Total

uncertainty

Utot

MAX, interleaved m/s n þ 1 (m þ n)/s

MAX, blocked 1 (n þ s)/s (n þ s)/s

R, interleaved K n þ 1 K þ n

R, blocked 1 n þ 1 n þ 1

Table 2. Summary of uncertainty for two different pooling

methods and two different experimental designs. The model

parameters (m, n, and s) are summarized in Table 1. The

parameter K is an unknown constant, .1. These expressions

were not an explicit part of the computational models, which used

stochastic noise and Monte Carlo simulations.
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extrinsic uncertainty approximated by the unknown
constant K, where K . 1. Thus, for the models here we
had Uext ’ K, Uint¼nþ1, and Utot ’ Kþn. Recall that
the contents of Table 2, including this approximation,
were not part of our formal analysis, which used Monte
Carlo simulations (see Monte Carlo simulations sec-
tion).

P
, blocked (2 models · 2 transducers)

For linear summation in the blocked design, the
model observer knew the size of the stimulus (s). In the
main simulations there was always a pooling mecha-
nism j, where s̆j ¼ s, so we had:

resp0 ¼
X
i¼1:s

fðriÞ½ �: ð9Þ

As in the interleaved design, when there was no
intrinsic uncertainty (i.e., n ¼ 0), resp ¼ resp0, which is
the ideal observer (Figure 1h). Otherwise:

resp ¼ MAX
i¼mþ1:mþn

resp0ffiffi
s
p ; fðriÞ

� �
; ð10Þ

where n ¼ 1,024 for fixed intrinsic uncertainty (Figure
1j). For the models here, Uext¼ 1, Uint¼ nþ 1, and Utot

¼ n þ 1.

Monte Carlo simulations

To derive model behaviors, a simulated method of
constant stimuli was used with contrasts spaced in 2-dB
steps. In a single simulated trial, Gaussian noise was
drawn independently for each mechanism in each 2IFC
interval. The stimulus was presented in just one interval
and the simulated observer used each of the model
equations to calculate a response for each interval. On
each trial the simulated observer selected the interval
containing the largest response and the trial was
marked as correct if it contained the target. Five
thousand trials were simulated at each contrast level
and a threshold (a; 81.6% correct) and slope of the
psychometric function (b) were estimated by fitting a
Weibull function to the simulated data. The guess rate
for the psychometric function was set to 50%,
appropriate for 2IFC, giving:

ŴðcÞ ¼ 0:5þ 0:5 1� exp �ðc=aÞb
h in o

: ð11Þ

Confidence limits (95%) for these stochastic models
were calculated using a bootstrap technique. These are
denoted by the pale regions around the model curves in
the figures, where large enough to be seen.

An alternative approach would have been to derive
analytic expressions for each of our models. In some

cases (e.g., the linear pooling models with no uncer-
tainty) this is very straightforward (e.g., Meese &
Summers, 2007; Appendix D), but in others, less so.
For example, when the summation rule is the MAX
operator, the problem remains tractable but becomes
more complicated (e.g., see Tyler & Chen, 2000).
Therefore, in the interests of simplicity and transpar-
ency (of exposition), we chose to use Monte Carlo
simulations throughout.

Toy model behaviors

Figures 1 and 2 show toy model detection thresholds
for probability summation (the MAX operator) and
linear summation, respectively. They are functions of
the number of stimulated mechanisms (s, equivalent to
stimulus area) for the linear and nonlinear transducers

Figure 2. Summation slopes (i.e., contrast thresholds as functions

of area) for MAX pooling, two transducer exponents (different

columns) and three different forms of intrinsic uncertainty.

Extrinsic uncertainty was set by the experimental design, which

was either blocked (black curve) or interleaved (red curve). The

dotted lines have slopes of �1/4 and �1/2 for comparison. Note

the double log axes.
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(left and right columns). Within each panel, the pair of
curves is for the interleaved (red) and blocked (black)
designs. The intrinsic uncertainty is, from top to
bottom: none, fixed, and proportional (proportional
is for the MAX operator only). The dotted lines show
summation slopes of�1/4 (fourth-root summation) and
�1/2 (quadratic summation) for comparison.

Contrast sensitivity and summation

Here we describe some of the key effects on contrast
sensitivity in the models and provide intuitive explana-
tions where appropriate. Readers who are not interest-
ed in these details could skip to Part II of the results
without loss of continuity.

For the linear transducer and the MAX operator
with no intrinsic uncertainty (Figure 2a), the summa-
tion curves (for blocked and interleaved designs) each
have a slope close to �1/4 for the initial part of the
function, though they deviate from this as the number
of mechanisms stimulated increases (see Tyler & Chen,
2000 for discussion). For most stimulus sizes, perfor-
mance is much better for the blocked design than the
interleaved design, owing to the absence of extrinsic
uncertainty in the blocked design. The main effect of
adding fixed intrinsic uncertainty (Figure 2c) is to
reduce the distance between these two functions.
Although there is drop in model performance for both
designs, this is most substantial for the blocked design,
which brings the two functions closer together. In
essence, intrinsic uncertainty makes a substantial
contribution to the expression for total uncertainty
(see Table 2), thereby reducing the impact of extrinsic
uncertainty in the interleaved design. When the
intrinsic uncertainty is proportional to the number of
mechanisms otherwise monitored (Figure 2e), some
separation remains between the functions for blocked
and interleaved designs, but sensitivity is reduced quite
markedly for the larger stimulus sizes. This results in
rather shallow summation slopes.

For linear summation (Figure 3a) and the blocked
design (black curve) the model sits on the quadratic
summation slope, confirming the well-known result
that for the ideal observer, the signal to noise ratio
improves with the square-root of the number of
mechanisms stimulated. Overall performance for the
interleaved design is slightly worse than for the blocked
design owing to the extrinsic uncertainty over the size
of the pooling mechanism (Equations 6 and 7). Note
that the extrinsic uncertainty only reduces overall
sensitivity, but does not change the form of the
function. This is because the summation slope reveals
the operation within the linear pooling mechanisms,
and the level of uncertainty does not affect this. Not
surprisingly, adding intrinsic uncertainty to the blocked

design (Figure 3c) has a similar effect: it decreases
overall sensitivity, but does not change the summation
slope (compare Figures 3a and c).

For all five model-configurations (different rows in
Figures 2 and 3), the effect of replacing the linear
transducer with an accelerating transducer (right
columns) is to decrease the gradient of the summation
slope (e.g., see Meese [2010] for an explanation). It also
decreases the size of the design effect, if it were present.
This is because a nonlinear transducer acts in a very
similar (though not identical) way to uncertainty (Pelli,
1985), and therefore dilutes the extrinsic uncertainty
inherent in the interleaved design.

The slope of the psychometric function

The slopes of the psychometric functions for MAX
and linear pooling are shown in Figures 4 and 5,
respectively. For the linear transducer, MAX pooling,
no intrinsic uncertainty (Figure 4a), and the interleaved
design (red curve), the psychometric slope decreases
with area, confirming the analysis of Tyler and Chen
(2000). For the blocked design, the psychometric slope
remains at b ’ 1.3 (equivalent to a d0 psychometric
slope of unity) across the entire stimulus range. This is
to be expected from a linear transducer when there is
no stimulus uncertainty (b ’ 1.3 is the signature of a
linear system). The effect of introducing intrinsic
uncertainty (Figure 4c) is to increase the slope of the
psychometric function (e.g., Pelli, 1985). This has the

Figure 3. Similar to Figure 2 but for pooling by linear summation

and only two forms of intrinsic uncertainty (different rows).
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greatest effect for the small stimulus sizes where the
addition of irrelevant noisy mechanisms most seriously
compromises the overall signal to noise ratio. This has
a large effect in the blocked design (where previously
there was no uncertainty), but little effect in the
interleaved design, where the log of total uncertainty
(the crucial measure) is increased only marginally by
the extra mechanisms. The consequence is that the
psychometric slopes for the two designs are fairly
similar. When the intrinsic uncertainty is proportional
to the number of mechanisms otherwise monitored
(Figure 4e) the design effect and its interaction with
stimulus size remains intact and the psychometric
slopes are steeper overall (typically, b . 3).

When both pooling and the transducer are linear
(Figure 5a) and the design is blocked, the psychometric
slope is b ’ 1.3 because there is no uncertainty. It is
slightly steeper in the interleaved design because of the

low level of extrinsic uncertainty over the size of the
pooling mechanism (Equation 6).

The main effect of replacing the linear transducer
with an accelerating transducer (different columns) is to
make all of the psychometric functions steeper, for both
linear and MAX pooling (Figures 4 and 5). This is
because nonlinear contrast transduction and uncertain-
ty have similar effects on the slope of the psychometric
function and their effects combine (i.e., the slopes in the
right hand columns of Figures 4 and 5 are shifted
vertically from those in the left-hand columns). Thus,
the relation between the slopes expected for the two
different designs is unaffected by the choice of
transducer.

Results, Part II: An empirical
study

Area summation for sine-wave gratings:
Summation slopes

The results of the psychophysical experiment are
shown in Figure 6 averaged across the three observers.
The summation functions (Figure 6a) have a familiar
bowed form (Robson & Graham, 1981; Rovamo et al.,
1993; Foley et al., 2007; Meese & Summers, 2007)
where performance improves quite steeply at first, but
subsequently more gently. For all three observers there

Figure 4. Slope of the psychometric function as a function of the

number of mechanisms stimulated (e.g., stimulus size) for MAX

pooling, two transducer exponents (different columns), and three

different forms of intrinsic uncertainty. Extrinsic uncertainty was

set by the experimental design, which was either blocked (black

curve) or interleaved (red curve). Note the double log axes.

Figure 5. Similar to Figure 4 but for pooling by linear summation

and only two forms of intrinsic uncertainty (different rows).
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were significant effects of experimental design (inter-
leaved, fixed quad blocked, variable quad blocked) and
stimulus area. For TSM there was also a significant
interaction between these two factors. For MS this
interaction approached but did not reach significance
(see Table 3 for statistical details).

On average, performance in the blocked variable
quad-fixation design (filled squares and continuous
black curve) was better (’3 dB) than in the interleaved
fixed quad design (open circles and continuous red
curve) at the smaller stimulus sizes. For the large
stimulus sizes, the differences were a little smaller. The
results for the blocked fixed quad-fixation design (open
squares and dashed black curve) tended to be
intermediate to the other two.

Meese et al. (2005) also compared the detection
thresholds for blocked and interleaved designs, but for
a narrower range of stimulus sizes and for a spatial
frequency of 1 c/deg. A very small effect was found
(though overlooked) in that study (’0.6 dB) for two
out of three observers, and was in the same direction as
that found here. In that study, the effect might have
been less evident because (a) the range of stimulus sizes
was less and (b) the central fixation point used in that
study did not provide a cue to stimulus size, as the
variable quad did here. These factors would decrease
the design effect because (a) extrinsic uncertainty would
be less and (b) there would be a diluting effect of higher
intrinsic uncertainty. Consistent with this hypothesis,
the design effect here was smaller for fixed quad
fixation than variable quad fixation (compare the open
and closed black squares in Figure 6a).

Foley et al. (2007) also compared detection thresh-
olds across blocked and interleaved designs but found
no systematic effect for the average of their two
observers. We wondered whether this was because the
design effects are less easily revealed when only two
different stimulus sizes are used, as in the Foley et al.
study (one stimulus was 16 times larger than the other).
For example, with that arrangement, it is possible that
the observer monitors only the outputs of two
different-sized pooling mechanisms (a small one and a
large one) in which case, the extrinsic uncertainty might
have been low, and/or hidden by intrinsic uncertainty,
common to each design. To test this general idea we ran
our model with spatial filtering and retinal inhomoge-
neity installed (see Part IV) and for just two different

Figure 6. Results from the area summation experiment averaged

across three observers. (a) Normalized thresholds as functions of

stimulus area for each of three experimental designs (see

legend). The average absolute threshold for the interleaved

condition was 8.1 dB (re 1%). The dotted lines have slopes of

�1/4 and �1/2 for comparison. (b) Slopes of the psychometric

functions as functions of stimulus area for the same three

experimental designs. Note that the x-axis here and in later

figures refers to the integer number of cycles across the central

plateau of the stimulus. Error bars show 61 SE across observers.

FP: fixation points.

df MS RJS TSM

Source Error F ratio p F ratio p F ratio p

Design 2 10 6.109 0.018* 59.101 ,0.001* 13.304 0.002*

Area 5 25 350.541 ,0.001* 494.070 ,0.001* 333.792 ,0.001*

Interaction 25 50 3.222 0.077 0.561 0.838 2.465 0.017*

Table 3. Two-factor ANOVA for the threshold results for each observer. Asterisks indicate significant effects.
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sized pooling mechanisms (matched to stimulus diam-
eters of 1 and 16 cycles, as in the Foley et al.
experiment). With this arrangement (and no intrinsic
uncertainty), the model predicted a design effect of�0.8
dB for blocked relative to interleaved. This is the size of
the effect found for one of the Foley et al. observers
(VHN ¼�0.83 dB) but in the wrong direction for the
other (JMF ¼ 0.25 dB). However, owing to the small
size of these effects it is difficult to reach a firm
conclusion.

Area summation for sine-wave gratings:
Slopes of the psychometric functions

The slopes of the psychometric functions are shown
in Figure 6b. The geometric means of the slopes were b
¼ 3.67, b¼ 3.51, and b¼ 3.72 for the blocked variable,
blocked fixed, and interleaved designs, respectively. By
eye, there was no systematic variation of psychometric
slope with stimulus size or experimental design in the
average plot (Figure 6b). However, two-way ANOVA
revealed a significant effect of stimulus size for RJS and
TSM (see Table 4). Inspection of the data suggested
that this was due to upward trends over the first parts
of the functions in the interleaved condition and the
blocked fixed fixation point condition for RJS and
TSM, respectively. However, one-way ANOVA on
each of the data sets from each design condition (i.e.,
nine analyses on three functions for each of three
observers) found no significant effects. More impor-
tantly, however, we found no evidence for the decrease
in the slope of the psychometric function with stimulus
area that was predicted by several of the MAX models
(see Figure 4).

Results, Part III: Qualitative
comparisons between toy
models and data

Of the two blocked designs, the one most likely to
reduce intrinsic uncertainty, and thereby reveal a design
effect of extrinsic uncertainty, was the variable quad
design. This was because the fixation marks provided a

consistent cue to stimulus size. Therefore, we compared
the results from this and the interleaved design (the
solid black and red curves in Figure 6) with the various
model predictions described earlier (Table 5). Specifi-
cally, we were looking for models that produced design
and area effects on contrast sensitivity, but no effects
on the slope of the psychometric function (b), which
should be around 3 or 4. Further simulations (e.g., see
Part IV) confirmed that spatial filtering and retinal
inhomogeneity had little effect on the slopes of the
psychometric functions but caused the summation
functions to bow in a similar way to the experimental
data. For simplicity, our toy models did not include
these processes and so they are not expected to predict
the bowing of the summation slopes. Therefore, we
overlook mismatches in the third data column of Table
5 for now. For similar reasons, we do not consider
whether the models produce an interaction between
area and design on the summation slopes. However, all
other gross qualitative mismatches between model and
data lead to model rejection and are represented by an
X in Table 5. Following this procedure all but one of
the models was rejected by our data, though several
entries are worthy of further consideration.

Near(ish) misses

In Figure 2a the predicted design effect for MAX
pooling was much larger than that found in the
experiment. The size of the effect can be reduced in
the model by decreasing the level of extrinsic uncer-
tainty, which is achieved by reducing the number of
mechanisms that are involved in the detection process
(i.e., decreasing m). However, the utter failure of this
model to predict the slope of the psychometric function
(Figure 4a) cannot be remedied.

Another way to decrease the design effect on the
summation curves in the MAX pooling model is to add
a fixed level of intrinsic uncertainty (Figure 2c), but this
also predicts that the psychometric slope should
decrease with stimulus area for both designs (Figure
4c), which is inconsistent with the results (Figure 6b).
This problem can be overcome in the model by
increasing the level of intrinsic uncertainty further
(i.e., increasing n). However, this further decreases the
design effect on contrast sensitivity (Figure 2c), which

df MS RJS TSM

Source Error F ratio p F ratio p F ratio p

Design 2 10 1.522 0.265 1.303 0.314 0.959 0.416

Area 5 25 0.497 0.775 3.259 0.021* 2.989 0.030*

Interaction 25 50 1.029 0.433 0.812 0.619 0.492 0.888

Table 4. Two-factor ANOVA for the slopes of the psychometric functions for each observer. Asterisks indicate significant effects.
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was significant for all three observers in the experiment.
The design effect can be reintroduced by allowing the
number of irrelevant mechanisms to vary with stimulus
size (i.e., involving proportional uncertainty, Figure
2e). This also has the benefit of increasing the slope of
the psychometric function in the blocked design (Figure
4e) to something close to those in the human data
(Figure 6b), but a design effect remains for the
psychometric slope (Figure 4e) and is inconsistent with
the results. Although rejected, this model is arguably
the most successful of the MAX models (on a
qualitative basis) and we revisit it again in Part IV
along with the more conventional fixed uncertainty
MAX model.

The linear transducer with linear summation and
intrinsic uncertainty (Figures 3c and 5c) is rejected by
its failure to predict the design effect for contrast
sensitivity (Figure 6a), but might otherwise be
considered a near miss. We also revisit this model in
Part IV.

Another way to change the behavior of the MAX
models is to weight the contribution of signal and noise
according to the expected retinal inhomogeneity
(Figure B1 in Appendix B). However, as we show in

Appendix C (also look forward to Figure 7i), this
predicts little or no improvement in contrast sensitivity
beyond a stimulus diameter of four cycles, making that
idea unpromising.

A successful toy model

The only model not rejected by a qualitative
assessment of its behavior against our data was the
noisy energy model (a nonlinear transducer followed by
linear summation of signal and noise). The predicted
levels of summation are broadly consistent with our
experimental results: summation slopes are gentle, and
there is a small effect of design in the correct direction
(Figure 3b). Furthermore, the model predicts that there
is no effect of area on the slope of the psychometric
function for either condition and that 2.6 , b , 3.4
(Figure 5c). This is all broadly consistent with the
experimental results, though the empirical psychometric
slopes are arguably a little high (average b ¼ 3.6). This
might be due to low levels of intrinsic uncertainty in the
experiment that were not a part of this model. Instead,
or as well as, it might be due to the small overestimation

Contrast sensitivity Slope of the psychometric function

RejectArea effect Design effect Sum. slope Area effect Design effect Interleaved ;b Blocked ;b

Human result Yes Yes Mid No No 3 � 4 3 � 4 —

MAX, LT Yes Yes Mid Yes Yes 3.8 � 1.3 1.3 Yes

No IU X X X X 4X

MAX, LT Yes Barely Mid Yes Barely 4 � 1.5 3.8 � 1.5 Yes

Fixed IU X X X 3X

MAX, LT Yes Yes Low Small Small .4 ;3 Yes

Proportional IU X X X 3X

R, LT Yes Yes High No Small 1.7 1.3 Yes

No IU X X 2X

R, LT Yes No High No No 3.8 3.8 Yes

Fixed IU X 1X

MAX, NT Yes Yes Low Yes Yes 8 � 2.6 2.6 Yes

No IU X X X 3X

MAX, NT Yes No Low Yes Barely 8 � 3.0 8 � 3 Yes

Fixed IU X X X X 4X

MAX, NT Barely Barely Very low Yes Yes 10 � 7 ;6 or 7 Yes

Proportional IU X X X X 4X

R, NT Yes Yes Mid No Small 3.4 2.6 No

No IU

R, NT Yes No Mid No No 7 7 Yes

Fixed IU X X X 3X

Table 5. Summary of experimental results (bold) and model behaviors. The effects of spatial filtering and retinal inhomogeneity are

excluded here, but considered later. As these factors affect the details of summation slopes, the third column here does not contribute to

model rejection. All other qualitative mismatches between model and data are indicated by an X and lead to rejection. The number of Xs is

tallied in the last column. IU: intrinsic uncertainty; LT: linear transducer; NT: nonlinear transducer.
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of the slope of the psychometric functions that is an
inherent consequence of undersampling in typical
psychophysical methods such as those used here
(Wichmann & Hill, 2001; Wallis et al., in press).

Another minor failing is that the model predicts that
the slope of the psychometric function should be
slightly steeper for the interleaved design than the
blocked design. However, the predicted difference is
small compared to the variability in the experimental
estimates of slope (Figure 6b), and is unlikely to be
revealed by psychophysical experiments. We consider
this model further in Part IV.

Results, Part IV: Quantitative
model predictions and fits

Adding a front end to the models

The model predictions in Figures 2 through 4 do not
include the effects of spatial filtering and retinal
inhomogeneity. These are well-established properties
of the visual system and have a marked effect on area
summation (though little effect on the slope of the
psychometric function). We introduce these effects here
and implement them in several of the model variants
from the previous section.

The images used in the experiment were sampled with
a resolution of 12 pixels per grating cycle (though this
was not critical) and multiplied by the so-called ‘‘witch’s
hat’’ attenuation surface shown in Figure B1 of
Appendix B to simulate the effects of retinal inhomo-
geneity. This surface was derived from the mean
parameters in Baldwin et al. (manuscript submitted for
publication) and comprises different sensitivity losses for

Figure 7. Predictions (a and b) and fits (c through j) of five models

(different rows) to the average thresholds and psychometric

slopes (different columns) replotted from Figure 6. The mean

thresholds for models and data in the interleaved condition were

normalized to 0 dB. The noisy energy model in (a and b) had no

free parameters but produced the best predictions. The other four

models each had a single free parameter, which was the level of

uncertainty. RMS error (RMSe in decibels) was calculated in the

conventional way (see Meese et al., 2007). For the slopes, this

involved taking the log of the slope and multiplying by 20. This

was somewhat arbitrary, but not critical for our conclusions. The

 
RMSe combined across the two columns provided a single figure

of merit for each of the four models (values in right hand column).

In (c through j) we started with our best estimate of a suitable level

of uncertainty and adjusted it in each direction in factors of two to

find minima of the RMSe of the fits. For (c and d), n¼1,200. For (e

and f), n ¼ 720,000. For (g and h), n ¼ 36m for the interleaved

condition (where m ¼ 117,032) and n ¼ 36s for the blocked

condition. For (i and j) n ¼ 9m and 9s for the interleaved and

blocked conditions, respectively. In all of the simulations, s¼ 156

for the smallest stimulus and increased roughly in proportion to

the square of the number of cycles. Deviations from this derive

from the fact that each circular stimulus had an integer number of

cycles but that added to this was a narrow boundary of lower

contrast pixels (see Methods). The model calculations were

performed across the region of the stimulus for which the

envelope was greater than or equal to its half-height. This detail

was not critical (see Appendix B).
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the vertical and horizontal meridians in both the center
and periphery. The attenuated image was then filtered by
a cosine-phase Cartesian separable log-Gabor filter
(Meese, 2010) with spatial frequency bandwidth of 1.6
octaves and orientation bandwidth of 6258 (bandwidths
at half-height). The filter was matched to the spatial
frequency and orientation of the target grating and its
output was full-wave rectified, scaled to the range 0 to 1
(where unity was the maximum possible response) and
multiplied by stimulus contrast (c). This front end of the
model was used with several of the model variants
described above.

Pooling was performed over the full width at half-
height of the stimulus. This was done for simplicity and
because we had no particular hypothesis about the
strategy that would have been used by our observers
(though see the next section). However, as we show in
Appendix B, our model predictions were not critically
dependent on this somewhat arbitrary decision.

Model predictions were normalized to the average
thresholds in the interleaved designs and are shown in
Figure 7 along with the experimental results replotted
from Figure 6. By eye it is clear that the noisy energy
model (Figure 7a and b) is the only one that provides
an adequate account of the results. The predictions
(curves; no free parameters) for the summation slopes
(Figure 7a) are good, and those for the slopes of the
psychometric functions (Figure 7b) are fair. The slight
mismatches for the slopes are presumably due to the
factors discussed in the previous section.

For completeness, we also considered the ‘‘best’’
runners-up identified in the qualitative analysis above.
To do this, model fitting was performed where intrinsic
uncertainty was a free parameter (see caption of Figure
7 for details of the fitting). When the transducer was
fixed and summation was linear it was possible to get
good fits against the slopes of the psychometric
functions (Figure 7d) by setting a high level of intrinsic
uncertainty. However, this model failed utterly with the
summation slopes (Figure 7c), which are essentially
independent of uncertainty.

High levels of intrinsic uncertainty are usually
associated with the MAX summation rule (e.g., Pelli,
1985), and so we attempted fitting with either fixed or
proportional uncertainty as the free parameter. Our
MAX models were able to achieve bowed summation
functions (Figure 6e and g), owing largely to the
attenuation surface. However, there was too little or
too much separation between the blocked and inter-
leaved designs for the fixed and proportional uncer-
tainty models, respectively. Furthermore, each of these
MAX variants failed badly to describe the pattern of
psychometric slopes (Figure 7f and h).

Note that the models in the second, third, and fourth
rows of Figure 7 fail for exactly the reasons outlined in
the qualitative analysis of Part III.

In Figure 7g, model performance in the blocked
condition actually declined with an increase in stimulus
area (i.e., there is an upturn to the black curve). This is
because sensitivity in the periphery was so weak that
the influence of the extra noise was the greater factor.
Whether a suboptimal human MAXing observer
should be expected to also perform in this suboptimal
way is not clear. However, to provide the benefit of the
doubt we reran the model with the noisy mechanisms
weighted by a template constructed from the expected
stimulus following spatial filtering and the witch’s hat
attenuation surface from Figure B1 in Appendix B.
This weighting was also applied to the multiple ‘‘layers’’
of irrelevant noisy mechanisms. This down-weighted
the more peripheral mechanisms, relevant and irrele-
vant alike. For the interleaved design, the template was
that for the largest stimulus. The results are shown in
Figure 7i and j. This strategy remedied the ‘‘upturn’’
problem described above but did nothing to improve
the overall fit of the model. As we commented in the
section Near(ish) misses, this weighting strategy (in
conjunction with the MAX operator) is in stark
contradiction to the human results since it predicts
little or no benefit from stimulus area beyond a
diameter of four stimulus cycles.

Finally, as noted by Tyler and Chen (2000, p. 3133)
the absolute number of first-stage mechanisms involved
can be important for the MAX operator. For example,
in Figure 2a, the black curve for the blocked condition
is not linear on double log scales, but concave,
indicating that the size of benefit from doubling (say)
the number of mechanisms that detect the signal will
depend on the number of mechanisms involved in the
first place (the benefit is greater for small numbers, over
the initial range at least). In other words, knowledge of
U alone is insufficient for the modeler; the number of
mechanisms excited by the stimulus (s) must also be
estimated. In Appendix C we develop the MAX model
through several iterations of detail, and report on the
effects of the absolute number of mechanisms. We are
led to conclude that this consideration is unlikely to
improve the fortune of the MAX model.

Overall then, the detailed quantitative modeling of
this section (and Appendix C) confirms the preliminary
qualitative analysis of the previous section: the noisy
energy model performs well and there is little sign that
the MAX model might be salvaged.

How to get template-matching to work

A class of model that is of interest to many
researchers is the template-matching model. In this
model, the observer multiplies the stimulus with (some
variant of) a template of the expected stimulus (e.g.,
Burgess & Ghandeharian, 1984). These models have a
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long history and have received recent attention through
the use of classification images (e.g., Tjan & Nandy,
2006; Neri, 2010; Murray, 2011). Our own noisy energy
model is a form of simple template model in which the
templates are matched to the area of the stimulus but
are lacking detail about the luminance modulation
across space. Of course, this is largely irrelevant to the
study here because the area summation functions

depend on the way signal information is combined
across multiple image cycles, not the processing within
each cycle. Nevertheless, it is instructive to see how the
ideal template-matching model (a cross-correlator)
must be modified to fit our basic area summation
results. The analysis in this section provides further
support for our general conclusions and demonstrates
the shortcomings of the cross-correlator. For simplic-
ity, we consider only the results from the blocked
experimental design, but the general approach could be
extended to the interleaved design in exactly the same
way as for our noisy energy model.

For clarity of exposition, models and data were
normalized to the smallest stimulus. To keep the
exposition simple, we ran the models using Monte
Carlo simulations (as before), but analytic forms of the
template models are easily derived. They produce
predictions that are indistinguishable from those shown
here (see Appendix D for the analytic version of our
best version of the template model [green curve in
Figure 8b]).

Cross-correlating observers know the signal exactly.
We also assume that they know the details of the
retinal attenuation surface (Appendix B). From this
they construct a perfect template of the luminance
modulation of the signal following retinal attenuation.
Thus, the template is the product of the signal and the
attenuation surface. This is used to compute a
weighted sum of the signal and internal noise in each
2IFC interval, and the cross-correlating observer
chooses the interval with the greatest response. The
performance of this model is shown by the blue curve
in Figure 8a. The benefit of stimulus size is lost to the
real observers much more rapidly than it is to the
cross-correlator. When our spatial filters were added
to the model (green curve in Figure 8a) the mismatch
between model and data became even worse. Similar-
ly, when the transducer in the noisy energy model was
linear (p ¼ 1) this model also failed badly (black curve
in Figure 8a). To try to remedy this problem we set
the transducer to a square-law (p ¼ 2) and also built
the square law transduction into the template. This
caused the model to underestimate the levels of
summation in the human data (blue curve, Figure
8b). However, when our spatial filters were returned
to the model and their effects were built into the
expected template,5 the predicted levels of summation
became very much like the noisy energy model (green
and black curves in Figure 8b). The increase in
summation slope arises because the spatial filtering
blurs the stimulus around its boundary, thereby
reducing its energy. Because this effect is most severe
for the smallest stimulus (where the boundary to area
ratio is highest) this increases the initial part of the
summation slope. A related factor is that the footprint
of the filter-element (its receptive field) is larger than

Figure 8. Development of a template-matching model. Data are

for the blocked condition and replotted from Figure 6. Models and

data are normalized to the smallest (left most) stimulus. (a) When

the transducer was linear the summation functions were too steep

for each of the three model variants. (b) When the transducer was

a square-law, the template model (blue) was too shallow when the

spatial filtering was omitted. With the spatial filtering in place, the

template-matching model (green; RMS error¼ 0.67 dB) behaved

in a very similar way to the noisy energy model (black; RMS error

¼0.84 dB). Note that the black curve in (b) is replotted from that in

Figure 7a. The dotted lines have slopes of �1/4 and �1/2 for

comparison. The yellow curves are for energy metrics described

in the main text.
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the smallest stimulus. This means that the observer
benefits from linear summation within that filter-
element with the initial increase in stimulus area. This
explanation applies to the template-matching model,
the noisy energy model, and the MAX models in
Figure 7 (see Appendix C and Meese [2010] for
further comment).

Note that the template-matching model (green
curve) performed very slightly better than the noisy
energy model (black curve) (see figure caption for
details). Presumably this is because the ideal template
benefits from using very low weights for the insensitive
parafoveal stimulus region, thereby attenuating the
damaging effects of internal noise where the signal is
weak. When the models are run on yet larger stimuli
(not shown), the noisy energy model (black curve)
curves back upwards, as negligible signal is added at the
cost of recruiting further noise. This suboptimal
strategy does not happen with the template-matching
model (green curve), which asymptotes with larger
stimuli (not shown).

Although we do not wish to claim that the visual
system employs a detailed detection strategy as
sophisticated as the template-matching model devel-
oped here, the use of a matched template (i.e.,
adjustable summation weights) provides the modeler
with a convenient and parameter-free means by which
to determine the summation region, avoiding our
somewhat arbitrary decision to sum over the stimulus
defined by the half-height of its envelope (though see
Figure B2 in Appendix B for a defense of this).

The successful versions of the noisy energy model
and the template-matching model in Figure 8b are
similar models in many respects and owe their success
to the properties that they share. In fact, if the template
in the template-matching model were based on the
envelope instead of the luminance profile, and if the
noisy energy model were modified slightly to use that
form of weighted summation, then the two models
become identical (and still predict the experimental
results [not shown]).

The dashed yellow curve in Figure 8b is the
prediction for a contrast energy metric. It shows the
expected improvement in sensitivity on the assumption
that stimulus energy is constant at detection threshold
(see appendix E of Meese [2010] for implementation
details). It is very similar to the fiducial contour of�1/2
(lower black dotted line), differing slightly due to the
narrow (2 pixel) blurred skirt added to the surround of
our stimuli. The solid yellow curve is the same energy
metric but with the attenuating effects of retinal
sensitivity taken into account (i.e., the stimulus was
multiplied by the attenuation surface in Figure B1 in
Appendix B). This prediction is clearly bettered by each
of the filter-models (black and green curves), though it

does predict the variation in sensitivity fairly well over
the first three stimuli.

Discussion

Main findings

We measured thresholds and the slopes of the
psychometric functions using interleaved and blocked
experimental designs for centrally placed circular
patches of grating with six different diameters. We
confirmed the well-known finding that the improve-
ment in sensitivity with area decelerates with area. But
we found sensitivity was slightly higher for the blocked
experimental design, particularly for the small stimuli.
Furthermore, we found no evidence for a systematic
effect of experimental design on the slopes of the
psychometric function nor any evidence for a decrease
in the slope of the psychometric function with stimulus
area, which were fairly constant in the region of b¼3 to
4. We developed 10 canonical models of the summation
process involving linear and nonlinear transducers,
various forms of uncertainty, and linear sum and MAX
pooling operations. Of these, only the noisy energy
model made the correct qualitative predictions. When
this was extended to include spatial filtering and retinal
inhomogeneity, it produced fairly good quantitative
predictions of our results. We found no variant of the
MAX model (a contemporary implementation of
probability summation) that was able to account for
all of the results. A cross-correlator (matched template)
model also produced good predictions, but only when it
included the same key features as the final version of
the noisy energy model: retinal inhomogeneity, spatial
filtering, square-law contrast transduction, and inte-
gration of signal and noise over stimulus area. In short,
the template is not a substitute for spatial filtering but
comes after it.

Some of our conclusions share similarities with those
in a recent study by Neri (2010). In that work, the task
was detect a single vertical bright bar target placed in a
background of distractor bars of random intensity.
Neri (2010) did not manipulate target area but did
manipulate uncertainty by cuing the potential target
region to various spatial extents. He concluded that
detection did not involve a MAX operation over space
but linear spatial summation following approximately
square-law transduction.

Summation above threshold

The long-range summation process that we propose
would be suitable for representing image structures that
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extend beyond the footprint of a single receptive field.
However, the responses of these integrators would need
to be kept in check above threshold by a suitable
hierarchy of contrast gain control if they are to also
carry a code for luminance contrast (Meese &
Summers, 2007). These ideas were explored, tested,
and confirmed by Meese and Baker (2011).

Why the probability summation model fails

Our aim was to investigate whether area summation
of contrast derives from linear spatial integration
(possibly following nonlinear contrast transduction)
or spatial probability summation (implemented by a
MAX operator following noise). Our approach was to
bring an additional constraint to the traditional area
summation experiment by manipulating extrinsic un-
certainty. The finding that sensitivity was higher for the
blocked design than the interleaved design implies that
we were successful in achieving this. In other words,
whatever the unknown level of the intrinsic uncertainty,
it was sufficiently low for the experimental manipula-
tion of extrinsic uncertainty to contribute to total
uncertainty. This meant that for the MAX operator,
the level of total uncertainty always decreased with
stimulus size for the interleaved design and that
predicted that the slope of the psychometric function
should become shallower with area. That prediction
was not consistent with our experimental results. Some
of these problems for the MAX operator were
overcome by including the variation in retinal sensitiv-
ity in a weighting template (see Figure 7i and j).
However, this wrongly predicted that sensitivity should
improve only over the first three stimulus sizes.

If area summation of contrast is linear why
has the probability summation model ruled
for so long?

A striking conclusion from the study here is that
summation of contrast over area is linear. This might
be counterintuitive, since summation slopes (in model
and data) do not look linear (i.e., they do not have a
slope of�1)—even when the effects of retinal inhomo-
geneity are removed (e.g., see Figure 2). This is because
the combined effects of square-law contrast transduc-
tion and noise integration produce a fourth-root
summation rule (Meese, 2010). This rule is broadly
consistent with the levels of summation found in
previous studies (e.g., Robson & Graham, 1981) and
also the back-pocket (i.e., casual) model of probability
summation (e.g., Rohaly et al., 1997; Meese et al.,
2005). However, the analysis here (Appendix A; see
also Tyler & Chen, 2000) shows that the predictions for

probability summation are not as simple as the back-
pocket model assumes—they depend on several factors
including the details of uncertainty and the transducer
exponent. Thus, our contention is that the tendency for
empirical summation functions to approximate a
fourth-root rule has led to them being misinterpreted
in terms of probability summation, even though well-
formulated models show that probability summation
does not necessarily produce a fourth-root rule—see
Figure 2. The headline here is that when a signal
detection formulation of the probability summation
model (involving the MAX rule) is put up against
stringent tests involving the manipulation of uncertain-
ty (blocked versus interleaved experimental design) and
the measurement of the slope of the psychometric
function, it fails, in this study, miserably.

The stimulus energy metric: Another
deception?

It is sometimes claimed that basic energy metrics
perform quite well, particularly over smaller stimulus
ranges (e.g., Watson & Ahumada, 2005), and the
analyses here (yellow curves in Figure 8b) appear to
support that. However, using contrast modulated
‘‘Battenberg’’ patterns, Meese (2010) showed that in
fact, the stimulus energy metric is a very poor predictor
of contrast sensitivity. For example, when local orienta-
tion was modulated, keeping the stimulus energy fixed,
sensitivity varied over a range of about 4 dB. The energy
metric failed badly in that study because it makes no
allowance for spatial summation within filter-elements
over short distances. So why has it done so well for the
smaller stimuli here? When the filters are removed from
our successful models, the initial slope is shallow—
approximately a fourth-root slope owing to the cascade
of square-law transduction and integration of noise (e.g.,
the blue curve in Figure 8b). However, when the filters
are returned, the slope is steepened owing to the effects of
linear summation within the filter-elements (compare the
blue and green curves in Figure 8b) and the result
happens to be close to a quadratic summation rule (slope
¼�1/2). Thus, our contention is that just as the combined
effects of transduction and noise can masquerade as
probability summation over larger distances, when these
processes are combined with short-range linear summa-
tion within filters, they can masquerade as a stimulus
energy metric over shorter distances. The filter-based
models that we propose predict both of these deceptions.

Uncertainty and the nonlinear transducer

Previous studies have found that spatial uncertainty
affects the slope of the psychometric function in
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contrast detection (Shani & Sagi, 2005) and contrast
discrimination experiments for multiple target patches
(Meese, Hess, & Williams, 2001; Nachmias, 2002) and
that phase uncertainty affects the dipper region for
stereo discrimination thresholds (Georgeson, Yates, &
Schofield, 2008), all broadly consistent with theory
(Pelli, 1985). However, this is the first study to show
that extrinsic uncertainty (controlled by experimental
design) can affect detection thresholds for stimulus
patches of various sizes. Uncertainty is clearly an
important part of modeling contrast detection, and
there has been a long-standing debate about whether
early visual nonlinearities (e.g., Nachmias and Sans-
bury, 1974) should be attributed to substantial levels of
uncertainty (Pelli, 1985) or a nonlinear transducer
(Legge & Foley, 1980). We have not been able to find a
model variant involving a linear transducer and high
levels of uncertainty that can account for the results
here, so our study contributes to this debate, coming
down in favor of a nonlinear (square-law) transducer.
This is consistent with the requirements of a contrast
energy computation (e.g., Watson, Barlow, & Robson,
1983; Manahilov et al., 2001; Meese, 2010). Meese and
Summers (2009) arrived at a similar position, conclud-
ing that the levels of intrinsic uncertainty are modest
for the contrast detection of patches of sine-wave
grating (e.g., Uint ’ 3).

Limitations

Although we have considered a wider range of
models of area summation than has ever been done
previously, our approach is not without its limitations.
It might be criticized for constraining our various
models by our choices of fixed parameters. It was
necessary to do this to reduce the complexity of the
modeling process to a manageable level. Furthermore,
we tried to salvage the failing models by adjusting some
of the parameter values (see previous sections and
Appendix C). This was to no avail, but we do
acknowledge that it might be possible to model our
results with a model refinement that has not been
considered here. For example, one possibility is that the
MAX operator uses a weighting template that has a
different form from the retinal sensitivity surface.
Another possibility is that linear summation operates
over a limited range, with the strategy switching outside
that range. In fact, we acknowledge that the work here
does not lead us to claim that summation must be
linear over the entire stimulus region. Other recent
work suggests that the upper limit might be somewhat
less than our maximum stimulus size here (Baker &
Meese, 2011). It is also possible that uncertainty
involves some combination of fixed and proportional

factors. No doubt, there are also other possibilities that
we have not thought of.

Another limitation of our work is that we have
restricted our analysis to the case of additive noise. It is
possible that the visual system contains a component of
multiplicative noise (Tolhurst, Movshon, & Thompson,
1981) and this has implications for models of proba-
bility summation (Tyler & Chen, 2000). However, the
link between the neurophysiology and the threshold
psychophysics is not well established in this regard, and
what relevant psychophysical work there is does not
help to decide (Georgeson & Meese, 2006). Therefore,
we chose to leave this matter at rest until a firmer
position can be established, particularly since the
neurophysiological evidence (Gur, Beylin, & Snodd-
erly, 1997) is not as clear cut as often supposed (see
Georgeson & Meese [2006] for discussion).

Finally, our exposition of the noisy energy model
(and the matched-template model) involves a discrete
set of pooling mechanisms (i.e., templates). However,
we cannot conclude at this stage whether these
mechanisms are hard-wired, or whether the observer
constructs them as needed to match the various
targets.

Conclusions

There is a long-standing belief in the psychophysical
literature that spatial integration of image contrast
stops at the level of spatial filtering, typical of that
found in simple cells in primary visual cortex. On this
view, physiological summation of contrast (signal
combination) extends over a couple of stimulus cycles,
at best. The psychophysical work here, and elsewhere
(Kersten, 1984; Mayer & Tyler, 1986; Manahilov et al.,
2001; Foley et al., 2007; Meese & Hess, 2007; Meese &
Summers, 2009; Meese, 2010; To, Baddeley, Troscian-
ko, & Tolhurst, 2010; Meese & Baker, 2011) suggests
that signal combination is spatially more extensive than
this.

Our work also favors the nonlinear transducer model
(Legge & Foley, 1980) over the uncertainty model
(Pelli, 1985), though low levels of intrinsic uncertainty
are not ruled out (e.g., Meese & Summers, 2009).

Our results are also well predicted (no free param-
eters) by a matched template model, but only when the
template follows first-order spatial filtering and square-
law contrast transduction and the template is subject to
the spatial integration of internal noise in addition to
the signal.

Finally, our theoretical analysis (Appendix A) shows
that, in general, it is not appropriate to use Minkowski
summation as an approximation to probability sum-
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mation where the Minkowski exponent is set according
to the slope of the psychometric function.
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Footnotes

1 The second dogma of spatial vision pertains to
suprathreshold summation (Meese & Summers, 2007;
Meese & Baker, 2011) and is not relevant here.

2 In this paper we use the term ‘retinal inhomoge-
neity’ quite loosely. We mean it to imply the variation
of contrast sensitivity across the retina regardless of
whether the origins of that variation are sub-cortical or
cortical.

3 From Pelli (1985), Weibull b increases very nearly
linearly over five orders of magnitude of log U. The
threshold function is slightly more compressive over a
similar range. However, the log of threshold is
markedly compressive when plotted against the log of
U. In other words, once uncertainty is very high,
enormous amounts of extra uncertainty are required
for it to influence log sensitivity appreciably.

4 The ideal strategy is to search for the maximum
difference of each of the six normalized pooling
mechanisms across the 2IFC interval. However, it
seems unlikely that the observer would retain all of the
necessary information from the first interval, and so we
opted for applying the MAX operator across the six
normalized responses within each interval. For the
conditions considered here these two strategies pro-
duced negligible differences (not shown).

5 We built the effects of filtering and nonlinear
transduction into the expected template because for an
observer with this front-end, that is the ideal strategy.
However, further simulations in which the template
was that of the stimulus without filtering and trans-
duction showed that this detail was not important for
achieving the good model prediction shown here.
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Appendix A. Probability
summation and the slope of the
psychometric function

Here we show the relation between the slope of the
psychometric function (the Weibull parameter b) and
the Minkowski exponent, c, needed to produce the level
of summation predicted by each of our model variants.
The analysis here involves assessing the level of
summation that is predicted when the number of
equally sensitive mechanisms is doubled at various
points along each of the model functions, where
Minkowski summation is given by:

respoverall ¼
X
i

ðjrijcÞ
" #1=c

: ðA1Þ

To approximate our simulations with continuous
functions, we began by fitting each summation curve in
Figure 2 with a cubic equation, thresh(x)¼Ax3þBx2þ
CxþD (in decibels), and each of the curves describing
the slope of the psychometric function in Figure 4 with
a quadratic equation, psychSlope(x)¼Ex2þFxþG. In
each case, x ¼ log2(i) where i is the number of equally
excited mechanisms.
The Minkowski exponent (c in Equation A1) was

estimated from the summation curves for integer
increments of x as follows:

cðxÞ ¼ 1

log2 10
threshðxÞ�threshðxþ1Þ

20½ �
n o� � :

For each c(x), the associated value of b was given by

bðxÞ ¼ psychSlopeðxÞ þ psychSlopeðxþ 1Þ½ �=2:
For the MAX models and the levels of uncertainty

considered here, Figure A1 shows how the Minkowski
exponent should be set to achieve the appropriate levels
of model summation for a given estimate of the slope of
the psychometric function (b). In the classical analysis
of probability summation, the slope of the psychomet-
ric function is treated as an estimate of the Minkowski
exponent (Quick, 1974; Robson & Graham, 1981). In
this view, c¼ b, as indicated by the diagonal dotted lines
in Figure A1. Our analysis shows that this equivalence is
never actually met. If intended as an approximation to
probability summation, then the Minkowski exponent
(c) should always be set higher than the slope of the

Figure A1. Relation between the slope of the psychometric

function (b) and the Minkowski exponent (c) needed to produce

the levels of summation predicted by several variants of the

probability summation model when implemented by MAX pooling.

Different columns are for different transducer exponents (p¼ 1 or

2) and different rows are for the different forms of intrinsic

uncertainty used in our canonical models (see right hand labels).

Figure A2. Similar to Figure A1 but for pooling by linear

summation.
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psychometric function (b). In some cases the difference is
marginal, but in others it is substantial. But choosing an
appropriate value is likely to be difficult. In some cases
the functions are almost vertical (e.g., see the black
curves in panels a, b, e, and f) meaning that very small
changes in the estimate of the slope of the psychometric
function lead to large changes in the Minkowski
exponent. Furthermore, the functions are different for
the blocked and interleaved designs because of the
different effects of uncertainty. More troublesome still,
the relationship between c and b depends on the nature
of the intrinsic uncertainty, a parameter over which the
experimenter has little or no control.
For completeness, Figure A2 shows the results of the

analysis applied to the four variants of linear pooling
that we considered. Note that the Minkowski exponent
is given directly by 2p. For the blocked condition, the
slope of the psychometric function is given by ;1.3p in
the absence of uncertainty. For the interleaved condi-
tion, it is a little higher. In all cases, uncertainty increases
the slope of the psychometric function but leaves the
Minkowski exponent untouched.

Appendix B. The front end of the
detection models in Part IV

Images were sampled with a resolution of 12 pixels per
carrier cycle (though this was not critical) and

multiplied by the attenuation surface shown in Figure
B1, to simulate the effects of retinal inhomogeneity.
This surface was derived from the mean parameters in
Baldwin et al. (manuscript submitted for publication)
and comprises different rates of sensitivity loss for the
vertical and horizontal meridians. The decline in
sensitivity with eccentricity is also greater over approx-
imately the first eight cycles than it is subsequently. The
attenuated image was then filtered by a cosine phase
Cartesian separable log-Gabor filter (Meese, 2010) with
spatial frequency bandwidth of 1.6 octaves and
orientation bandwidth of 6258 (bandwidths at half-
height; see inset on Figure 2). (The use of a cosine phase
filter was not critical, sine filters or the quadrature pair
produced very similar results.) The filters were matched
to the spatial frequency and orientation of the carrier
grating and their outputs were full-wave rectified and
scaled to the range 0 to 1 (where unity was the
maximum possible response). Each pixel was then
treated as ri in the relevant equation from the section
on the toy models in the main body of the report. The
signal region was defined by the half-height of its
envelope (i.e., it has a diameter of (12 · cycles þ 2)
pixels, where cycles is the number of carrier cycles in
the plateau region of the full stimulus). For the stimuli
used here, this was a convenient if arbitrary solution to
the problem of defining the summation region.
However, Figure B2 shows that the model predictions
are not critically dependent on this parameter. For
example, other reasonable choices such as summing

Figure B1. The ‘‘witch’s hat’’ attenuation surface used in the modeling in Part IV and replotted from Baker and Meese (2011). The surface

was derived by Baldwin et al. (manuscript submitted for publication) who measured sensitivity to 4 c/deg patches of grating over the

central retina (a diameter of 98). Each grating patch was surrounded by a low contrast circular ring to lessen potential effects of

uncertainty. (a) Log sensitivity was a bilinear function of eccentricity. The functions for the left and right horizontal hemi-meridians were the

same, but slightly different from each of the functions for the superior and inferior vertical meridians (see Baldwin et al. [manuscript

submitted for publication] for equations and matlab code using the ‘‘average’’ parameter values in their table 4). For the largest stimuli

used in the experiments here (a radius of 16 cycles), model sensitivity declined by about 12 dB (about a factor of 0.25) from the center to

the edge of the stimulus. (b) A gray-level image of the attenuation surface.
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over only the central plateau (green dashed curve) or
the entire stimulus (green dotted curve) produce
negligible changes to the predictions.
Additional pixels containing no signal were included

to simulate the effects of uncertainty where appropri-
ate.
We considered only a single filter (with multiple

filter-elements, or receptive fields) in the modeling here
(i.e., one tuned to a single orientation and spatial
frequency). Where stimulus energy is lost to this filter
(e.g., the smallest stimulus; see the section How to get
template-matching to work in the main body of the
report) one might expect that it would be picked up by
other filters in the human brain, not included in the
model. However, including the responses of such filters
in the template will not fully compensate the loss
because (a) extra noise will also be recruited from each
extra filter-element and (b) when the transducer is
nonlinear (p . 1), the impact of stimulus energy is
diminished when it is spread across multiple filter-
elements. For simplicity, we chose to not include
additional filters here.
We did not try to optimize the fits by allowing the

transducer exponent p to be a free parameter. However,
the effects of varying this parameter are shown in
Figure B3. Clearly, p ¼ 2 (black curve) is close to
optimal, though the upturn to the right of the
functions, readily seen where p . 2, could be remedied
if the signal and noise were weighted by the retinal
attenuation surface (Figure B1) before summation (see

the section How to get template-matching to work in the
main body of the report).

Appendix C. Variants of the MAX
model

Here we develop the MAX model for interleaved and
blocked experimental designs to illustrate the impact (or
lack of it) that various model details have on its behavior.
The predictions for thresholds and slopes of the
psychometric functions are shown in Figure C1.
In the first row (Figure C1a and b) we begin with a

variant that is very similar to the toy model from Figure
2a. The only difference is that in the original toy models
the smallest stimulus excited just a single mechanism
whereas here, the number of mechanisms was (somewhat
arbitrarily) set by the number of pixels in the stimulus
over the full width at half height of its envelope. For the
smallest stimulus, this was 156 mechanisms. As antici-
pated from the results in Figure 2a (see also Tyler & Chen
[2000] and our comments in the section Adding a front
end to the models in the main body of the current report),
this had the mere effect of slightly reducing the predicted
level of summation from that seen in the earlier toy
model (i.e., the black curve has a slightly shallower slope
in Figure C1a than it does in Figure 2a). In other
simulations (not shown) we set the number of mecha-
nisms to four for the smallest stimulus, consistent with a
sampling regimen of two samples per cycle as requested
by a reviewer. This produced a summation slope
intermediate to the other two but had little other

Figure B2. Effects of template diameter on the predictions for the

noisy energy model for the blocked experimental design (curves

are normalized to their means). The black curve is for summation

across the full-width at half-height (FWHH) of the stimulus and

was used in the main body of the report. The other curves are for

where the diameter was extended or reduced by 2 or 4 pixels, as

shown in the legend.

Figure B3. Effects of the exponent p (nonlinear transducer) on the

predictions for the noisy energy model for the blocked experi-

mental design (curves are normalized to their means).
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influence.
In the second row (Figure C1c and d) we added in the

luminance modulation of the stimulus (used in the
experiment) and full-wave rectified it. This had very little
effect on the predictions. In the third row (Figure C1e
and f) we weighted the mechanism responses with a
template matched to the stimulus. This had very little
effect on the predictions. In the fourth row, we added the
witch’s hat attenuation surface (Figure B1) to the front
end of the model. This had very little effect on the general
form of the predictions, but it did cause an upturn in the
threshold predictions for the blocked design (black
curve) towards the right. This effect was abolished when
we added the effects of the witch’s hat to the weighting
template in the fifth row (Figure C1i and j). This also
diminished the design effects considerably (the difference
between the red and black curves) and essentially
abolished the effects of stimulus size beyond a diameter
of four stimulus cycles. Part of the reason for these
changes is that the down-weighting of the numerous
insensitive peripheral mechanisms effectively reduced the
level of uncertainty in the interleaved design (red curves).
In the sixth row (Figure C1k and l) we added spatial
filtering (see Appendix B) to both the stimulus and the
template. This made the initial part of the summation
slopes steeper (owing to linear summation within the
filter-elements; see also Meese [2010]) for both designs
(Figure C1k) but had little or no effect on the slopes of
the psychometric functions (Figure C1l).

Appendix D. Analytic expression
for the template-matching model

Here we provide analytic expressions for two
slightly different versions of the template-matching
model for the blocked experimental design. Here and
in previous work we have applied the witch’s hat

 
Figure C1. Predictions for thresholds (left column) and slopes of

the psychometric function (right column) through several stages of

development of the MAX model. Red and black curves are for

interleaved and blocked designs, respectively. The contrast

transducer was linear. Panel headings: flat: the stimulus and/or

template was uniform. stim: the stimulus and/or template was a

full-wave rectified sine-wave grating modulated by the raised

cosine window function used in the experiment (i.e., with a blurred

region two pixels wide). wh: the stimulus and/or template were

multiplied by the witch’s hat attenuation surface in Figure B1. filt:

the stimulus and template were subject to the spatial filtering

described in Appendix B. See text for further details.
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(Figure B1) to our stimuli before filtering, mainly for
reasons of technical convenience. However, applying
the witch’s hat after filtering produces almost
identical results (for the type of stimuli used here)
and permits an analytic expression that can be
discussed with greater insight. We present that
version first (stimulus � filter � witch’s hat �
transduction), then the version equivalent to the
stochastic model used in Figure 8b (stimulus �
witch’s hat � filter � transduction).
For convenience, we collapse the two-dimensional

stimulus space into a single dimension with index i
and length (number of first-stage mechanisms) s. We
refer to the filtered stimulus as stim, the witch’s hat
as witch, and stimulus contrast as c. The signal to
noise ratio (SNR) in the target interval is given by:

SNR ¼
c2
X
i¼1:s

ðwitch4i stim4
i ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1:s

ðwitch4i stim4
i Þ

r : ðD1Þ

The c term is squared because of the square-law
nonlinear transduction. The witchi and stimi terms on
the numerator are squared once by the nonlinear
transduction, then again because the expected signal
is multiplied by an exact template of itself (i.e., the
template is also subject to filtering, transduction, and
the witch’s hat). These terms are then summed
linearly, as for a cross-correlator. Note that for the
stimuli used here, the witch term is responsible for
the concave bowing of the summation function (e.g.,
Figure 8b), whereas the stim term has no effect on
the form of the summation function other than it
carries the effects of spatial filtering, discussed in the
section How to get template-matching to work in the
main body of the report.
The witchi and stimi terms are squared once on the

denominator because the template is subject to
square-law transduction and is used to weight the
noise terms at each location i. These squared terms
are standard deviations and must be squared again
to give the local variances, which are summed, and
the square root delivers the standard deviation of the
overall noise term. Thus, the SNR is the ratio of the
weighted linear sum of the signals squared (owing to
nonlinear transduction) and the weighted linear sum
of the noise sources.
Note that if the witch’s hat were a flat uniform surface,

and the modulation transfer function of the filter were
flat, then the summation slope would be fourth root (�1/
4) on log-log axes, determined entirely by the c2 term and
the square root influence of the accumulated noise. The

fourth-power terms in Equation D1 are irrelevant to its
fourth-root summation behavior!
For the model in Figure 8b, the witch’s hat was

applied to the stimulus before filtering. In this case, the
analytic expression becomes

SNR ¼
c2
X
i¼1:s

ðtemplate4i ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1:s

ðtemplate4i Þ
r ; ðD2Þ

where template is the stimulus following attenuation by
the witch’s hat and spatial filtering.

Appendix E: Stimulus equation

The equation for the stimuli used in the experiments
here was as follows:

stimxy ¼ L0 þ L0winxy c:sin 2pðy� 256:5Þ=cycpix½ �f g;
ðE1Þ

where x,y (1 � x,y � 512) are indices into a two-
dimensional (512 · 512) pixel array, L0 is mean
luminance, c is the Michelson contrast of the carrier
(and stimulus), cycpix is the number of pixels per cycle
(¼12), and winxy is an envelope function, defined as
follows:

IF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 256:5Þ2 þ ðy� 256:5Þ2
h ir

� platpixTHENwinxy ¼ 1 ðE2Þ

ELSEIF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 256:5Þ2 þ ðy� 256:5Þ2
h ir

.ðplatpixþ skirtpixÞTHENwinxy ¼ 0

ELSEwinxy

¼
�
sin

�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 256:5Þ2 þ ðy� 256:5Þ2
h ir�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðplatpixÞ2 þ ðplatpixÞ2
h ir 	


skirtpix

�
þ 1

�

2

where platpix is the width of the central plateau of the
envelope and was equal to cycpix times the number of
nominal stimulus cycles (i.e., times the x-axis in the
data figures) and skirtpix is the width of the blur skirt
around the plateau and was equal to 2.
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