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Abstract—Inference and optimisation of real-value edge vari- as an exemplar of practical relevance.
ables in sparse graphs are studied using the tree based Bethe Traditionally, network resource allocation and routinglpr

approximation optimisation algorithms. Equilibrium states of 1o have heen solved Igyobal optimisation techniques, such
general energy functions involving a large set ofreal edge- ’

variables that interact at the network nodes are obtained fo S linear or quadratic programming [9]. However, with the
networks in various cases. These include different cost fugions, ~increasing network size and/or the evolving configuratién o
connectivity values, constraints on the edge bandwidth andthe wireless networks, centralised control becomes incrgasin
case of multiclass optimisation. costly and infeasibleDistributed control in networks consists
of a group of independent controllers which make locally
optimal decisions. Compared with the traditional censedi
The links between statistical physics models and a variedpproach, this has the advantages of a lower computational
of inference and optimisation problems have been signifsad and communication overhead, and robustness against
cantly strengthened over the last decade [1]. Two aspegtstwork breakdown; BT'Dynamic Alternative Routing was
of these similarities have been exploited. Macroscopicallan early successful example [10]. Also, in computer scignce
using the statistical physics framework, one describek&p many algorithmic solutions have been proposed to distibut
properties of the problem and provides valuable insight intomputational load between computers connected in a net-
its generic characteristics. Microscopically, estatdshech- work, but they tend to be more heuristic; some aim to optimise
niques of statistical physics such as the cavity method atié benefit to an individual node or task, without considgrin
Bethe approximation have been used for devising efficiethie impact it makes to the remainder of the network [11].
inference algorithms, some of which have been independentl The optimisation problems addressed here include the re-
discovered and used in other disciplines [2], [3], [4], [Bhese source allocation problem under various cost functions and
links have become more transparent with the increasing Useconnectivity profiles as well as the cases of restricted band
graphical models and iterative approximation techniques width and multiclass optimisation. Emphasis will be given t
as belief propagation (BP) to a variety of probabilistic in- results obtained in the various cases; details of the aisaiysl
formation processing problems. By mapping the probatilistaigorithms derived for the various cases will be only briefly

dependencies between parameters onto edges in graphsptbationed and can be found in [8], [12], [13] and [14].
problem could be approximately solved (exactly on pohdjee

by iterating a set of message-passing equations which eoupl Il. THE BASIC MODEL
the conditional probabilities on neighbouring nodes [2], [ ) ) )

Most studies so far have focused on cases of discretee consider the following resource allocation task on a
variables, while networks of continuous variables were mu&Parse graph ofV nodes, labelled = 1,.., N. Each node
less explored. One of the main reasons for this limited gtiv ¢ IS randomly connected tootk_ler.nO(jels and has a capacity
is the difficulty in applying message passing approximatio_/ﬁi’ ran<_jom|y drawn from a distributiop(A;). The objective _
algorithms [2], [3] in this case as the discrete messag'ésto migrate tasks _between nodes such that each node will
passed between variables becofwactions of real variables, P& capable of carrying out its tasks. Toarrent y;; = —y;;
Applied message passing for systems of real variablesdifpic drawn from nodej to ¢ is aimed at satisfying the constraint
relies on modelling the functions using a reduced number
of parameters [6]. We have recently studied systems with ZAijyij +A4i 20, @
real variables that can be mapped onto a sparse graph and /
suggested an efficient message-passing approximatiorotheth

for inference ar!d optimisation, especially in the contekt Qccommodate any connectivity profile within the same fraoréwthe algo-
resource allocation on sparse random systems [7], [8] chosnms presented later are completely general.

I. INTRODUCTION

1Although we focus here on graphs of fixed connectivity, one easily
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where A;; = 1/0 for connected/unconnected node pairs This allows us to obtain the recursion relation
and j, respectively. We consider the load balancing task of 1 1
minimising the energy function (cos§y = 3° ..y Ai;0(yi5),  Fy (y|T) = Tln{H (/ dyk> fe) (Z Uk — Y+ AV(T)>
where the summatior(ij) runs over all pairs of nodes, 1 1

subject to the constraints (1)i(y) is a general function of c—1

the currenty. For load balancing tasksi(y) is typically a X exp l—ﬁz (Fy (yx|Tx) + <Z>(yk))] } -, (3)
convex function, which will be assumed in our study. The k=1

analysis of the graph is done by introducing the free energy the average free energy per node is given by
F = -T2, for a temperaturd” = 3~!, where 2, is the

artition function c ¢
p Fo = —T<1n{H (/ dyk) o <Z Yk + Av)
k=1 k=1
Zy= /dyz-- 9< Aijyi +Ai> exp [5 Aijd(yi )] . -
Y (]‘:J‘E j]‘:‘[ zj: o (zu:) T xexp | =B (Fv (yx|Tk) + ¢(yr)) )
k=1 A
The © function returns 1 for non-negative arguments and \ghere Av is the capacity of the verteX” fed by c trees
otherwise. Ti,.., T, and(-)» represents the average over the distribution
In the zero temperature limit, Eq. (3) reduces to

The system can be analysed using various methods suct’f)g&)'
the replica method [1], [15] and the Bethe approximation. We Fy(y|T) = (5)
will briefly outline here the tree based Bethe approximation

c—1
while full details of the derivation as well as the completepin o1 (v (Y| Tr)+0(yk)) | — Fav-
replica based analysis and the identification of links betwe {rl 224z, vy (20} ;

these approaches and BP can be found in [8]. The current distribution and the average free energy pér lin

When the connectivity: is low, the probability of finding can pe derived by integrating the currefin a link from one

a loop of finite length on the graph is low, and the Bethggriex to another, fed by the tred@s and T», respectively:
approximation well describes the local environment of agodne optained expressions aR{y) = (3(y — y')), and (E) =
In the approximation, a node is connected:tbranches in a ((y')). where(s), represents

tree structure and correlations among the tree branchelsecan
neglected. In each branch, nodes are arranged in genexation/ | @y' exp -6 (Fv (y'|'T1) + Fv (/| T2) +¢(y'))] (o)
A node is connected to an ancestor node andl descendent Jdy' exp 6 (Fv (y'|T1)+Fv (/| T2)+0)] /A

nodes (?f the previous and genera.ttlons, respectively. Equations (3) and (5) are at the core of our analysis; they
_ Consider a verteX'(T) of capacityAy(r), and & curreny 46 peing solved iteratively and facilitate the derivatigrihe
is drawn from the vertex. One can write an expression f@fe energy per link, internal energy and current distidout
the free energyF'(y|T) as a function of the free energies \ye nave outlined only the main steps of the derivation

F(yx|Ty) of its descendants, that branch out from this vertgy provide a rough idea for the methods used to obtain the
numerical results presented later on. Slight modificatiwilis
c—1

. be applied in the cases of different costs [8] and bandwidth
F(yIT)= -Th< [] (/ dyk) o> w—y+Av limited network [12].
k=1 k=1

-1 [1l. DISTRIBUTED ALGORITHMS
exXp 76; (F(yelTe) + &(yr)) | 2) The local nature of the recursion relation Eq. (5) points to

the possibility that the network optimisation can be soltgd
message passing approaches, which have been successful in
roblems such as error-correcting codes [2] and probabilis
Minference [3]. The major advantage of message passing
is its potential to solve a global optimisation problem via
"WMocal updates, thereby reducing the computational complex
ity. For example, the computational complexity of quadrati
Sgramming for the load balancing task typically scales as

whereT), represents the tree terminated at i descendent
of the vertex. The free energy can be considered as the sy
of two parts,F(y|T) = Nt Fa + Fy (y|T), where Nt is the
number of nodes in the tréE, F,, is the average free ene
per node, andy, (y|T) is referred to as theertex free energy?.
Note that when a vertex is added to a tree, there is a chal

in the free energy due to the added vertex. Since the num g’ whereas capitalising on the network topology underlying

of nodes_ increases by 1, the vertex iree energy is obtalnedtng connectivity of the variables, message passing scales a
subtracting the free energy change by the average free}enelg - Ay even more important advantage, relevant to practical

implementation, is its distributive nature; it does notuieq
2This term is marginalised over all inputs to the current esgrieavingy a gIOba! Opt'm's_er’ and is particularly suitable for distriive
as its sole argument, hence the terminology used. control in evolving networks.



However, in contrast to other message passing algorithegricing scheme for the individual links to optimise, which
which pass conditional probability estimatesdi$crete vari- simultaneously optimise the global performance [10].
ables to neighbouring nodes, the messages in the present
context are more complex, since they &actions Fy (y|T) IV. QUADRATIC COST
of the currenty. We simplify the message to two parameters, Arguably the most illuminating example is that of quadratic
namely, the first and second derivatives of the vertex fr&@st. The solution of Eq. (5) is obtained numerically. Sitiee
energies. For the quadratic load balancing task, it can bersh vertex free energy of a node depends on its own capacity and
that a self-consistent solution of the recursion relatiea, (5), the disordered configuration of its descendants, we gemerat
consists of vertex free energies which are piecewise qtiadrd 000 nodes at each iteration of Eqg. (5), with capacities

with continuous slopes. This makes the 2-parameter mess&giedomly drawn from the distributiop(A), each being fed
a very precise approximation. by ¢—1 nodes randomly drawn from the previous iteration.
Let (A, Bij) = (3Fv(yij|Tj)/3yij,32Fv(yij|Tj)/3yfj) The free and internal energies and current distribution are
be the message passed from ngde ¢; using Eq.(5), the computed numerically from the vertex free-energy distidou
recursion relation of the messages become Convergence -To study the convergence rate of the iter-
ations, we fit the average energy at iteration stepsing
(E(t) — E(0)) ~ exp(—~t) in the asymptotic regime. As
Aij — —pij,  Bij — O(—pi) | > Aw(@f +Bix)™"| . shown in the inset of Fig. 1(a), the relaxation raténcreases
k#i with the average capacity. It is interesting to note that gpcu
(6) exists at the average capacity of about 0.45. Below thatyalu
convergence of the iteration is slow, since the averageggner
curve starts to develop a plateau before the final conveegenc
pij = min |0, On the other hand, the plateau disappears and the convergenc
is fast above the cusp. The slowdown of convergence below the
D kzaAgk Wik — (& + Aje) (9], +Bjk) ~']+A;—vij|  cusp is probably due to the appearance of increasingly large
> et Ajie (0 + Bj) 7! clusters of nonzero currents on the network, since clusters
nodes with negative capacities become increasingly exgsns
with ¢7, and¢’, representing the first and second derivativegnd need to draw currents from increasingly extensive regio
of ¢(y) aty = y]k respectively. The forward passing of theyf nodes with excess capacities to satisfy the demand.
message from nodgto i is followed by a backward message Dependence on the connectivity - We have observed the
from nodej to k for updating the currentg;;, according to  scaling laws of the currents [7] (roughly as'), and average
¢}k + Aj + i gngrgyc2<¢). A more acc_urate scaling in thg high _connectivity
; (7) limit has been derived in [8] both analytically, in the large
¢ limit and numerically; it depends on an empirical scaling
updated nodes are selected randomly and sequentially.  factor s = , /iRe—oe ¢%(d) 1 020 — 0.43, converging toc in
A second type of algorithm we have introduced, termegle high connectivity limit, as shown in Fig. 1(b).
priceiteration, is based on the optimisation of the cost given a
set of constraints (e.g., non-negative resoupcgsA;yi;+A;) V. OTHER COSTS
enforced by a set of Lagrange multipliers, for instance, of Two other representative costs have been studied are:
the form L = Z (i) )Awyw/2 + >, uz(z Ai;yi; + A;). (a) Theanharmonic cost function is used to model the effects
The optimisation task can be transformed to an adjoint opf costs rising faster than quadrati¢y) = 32/2 + u |y|* /3.
timisation problem of the Lagrange multipliefg:;}, also (b) Thefrictional cost function is used to model the effects
termed chemical potentials. The extremum condition yields of frictional forces, which add an extra cost per unit cutren
yij = ¢~ *(n; — i), and using the Kihn-Tucker condition,in a link irrespective of direction. Hence it is also useful i
1; can be solved in terms ij of its neighbours, namely, networks with multiple classes of traffic sharing the same
S links. The cost function takes the fora(y) = y2/2 + v |y|.
pi = min(g;”'(0), 0); ZAW O 1y — @) + i Note that these cost functions rep?e(sént twé distin|ct| cases
The former has well defined first and second derivatives for al
This provides a local iterative optlmlsatlon method. We magf its arguments. In the latter case, the frictional costfiam
interpret this algorithm as price iteration scheme, by noting does not have a second derivativeyat 0. There is a kink in
that the Lagrangian can be written as= Z(m Ai;Li;; + the cost function at the point of zero current, thus incregsi
constant, where L;; = ¢(y;;) + (u: — 15)ys5. Therefore, the preference for idle links, or equivalently the reluciaro
the problem can be decomposed into independent optimisatgwitch on a link. Results in both cases have been obtained
subproblems, each for a current on a link. is the storage using the message passing and price iteration algorithms.
price at nodei, and each subproblem involves balancing the Figure 2 shows results obtained for the chemical potentials
transportation cost on the link, and the storage cost at moddistribution for the case of anharmonic and friction costs,
less that at nodg, yielding the optimal solution. This providesobtained by price iteration. While results for the anharion
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Fig. 1. Results for system siZé = 1000 and¢(y) = y2/2. (@) (¢) obtained Fig. 2.  Results forN = 1000, ¢ = 3 and 1000 samples - chemical
by iterating Eq. (5) as a function affor (A)=0.1, 0.2, 0.4, 0.6, 0.8 (top to potential distributionP(x) for (A) =0.1,0.2,0.3,0.4,0.5 (top to bottom).
bottom) andc= 3. Dashed line: The asymptotid®@) for (A)=0.1. Inset:+  (a) Anharmonic cost function witlh=1; (b) Frictional cost withv=1.
as a function of A). (b) The continuous component of the current distribution
P(sy)/s for (A) = 0.02,0.5,1. Lines: ¢ = 3 (solid), 4 (dotted), 5 (dashed),
10 (dot-dashed), high (long dashed). Inset®(y=0) as a function of(A). i ; ;
Symbolsiesd (). 4 0. 5 (0. 10 (A). highe (ine). the violations. Hence we consider the cost
2

1
E = 529 = Ay = M| | DD Aijyis + A
case are not qualitatively different than for the quadretist, i j j

results in the friction cost case show a distinctly diffaren R )
behaviour - a much lower value between the zero chemical T 5 Zyz‘j : (8)
potential and some negative value, a threshold phenomana th (i9)

can be explained by the need for a sufficiently high chemicgl,q first term represents the cost of unsatisfaction whie th
potential difference to get over the friction term (Fig. (b second term represents the transportation clsserves as
the weight of transportation cost in the global cost. Here we
study the case when the unsatisfaction cost dominatesRi.e.
is small. The message-passing can be derived in a similar
VI. BANDWIDTH LIMITED SYSTEMS manner to the unlimited bandwidth case [12].
Figure 3(a) shows results for variog4) values and fixed
bandwidthiW = 1. The average cost increases rapidly when
Another aspect of the problem, which is arguably morg\) enters the unsatisfiable regime, and the results obtained by
realistic, includes a bandwidth restriction on the networtke theory, the message-passing and price iteration tgusi
edges; currents are bounded by a predetermined coefficisindw excellent agreement. There are three types of linksein t
W. For links with small bandwidtf’, or nodes with negative network: idle (y;;|=0), unsaturated ¢;;| < W) and saturated
average capacity, there exist nodes which violate the d@gpad|y;;| = W). When (A) enters the unsatisfiable regime, the
constraint. In these unsatisfiable cases, it is expedieriax fraction of idle links vanishes rapidly, while that of sated
the constraints and search for optimal solutions whichtlimiinks increases to a steady level, implying that more resesir
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are transported in the links in response to the networkwide 0.6
demand on resources (Fig. 3(a) inset). N
Figure 3(b) shows the simulation results whBn varies.
For large values ofV, the average cost is effectively constant,
since the link bandwidth constraints become irrelevanttt@n
other hand, wherl¥/ decreases, the average cost increases
rapidly, since the links become increasingly ineffective i ‘ ‘
allocating resources in the network. The inset shows how the oz | N s o®
fraction of saturated links increases whé decreases. It ' ‘A
is interesting to note that the fraction of idle link¥reases
whenW decreases, contrary to the expectation that more links »
are involved in resource provision. This can be explained 0 ‘ BNy N
in terms of thebottleneck effect as follows; if the links in -1 -05 0 0.5
the network were unconstrained, nodes with sufficientlydar </
violations would have drawn currents from distant neigtrspu
causing currents to flow through many intermediate nodes. 0.4
However, when¥ is small, the currents drawn by nodes with
violations from their nearest neighbours may have already
saturated the links, and there is no use to draw currents from 03@:
further neighbours. In the limit of vanishing’, the links are 0.25 .
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exclusively either idle or saturated. In this limit, a linkidle z L n

only when both nodes at its ends have positiveHence the UCJ 02 = o ‘

fraction of idle links is figie = 1— fsat = [P(A >0)]2. Since the 0.15 | 0 o

transportation cost is negligible in this limit, the cobtrtion o1 |l

to the average cost only comes from the violated nodes, given ' _'%

by (¢)/N = (©(—A)A%/2),. The case of bandwidth limited 0.05 ¢ TR % %

network optimisation has been further investigated in [13] 0 ‘ ‘ ., =
0 0.2 0.4 0.6 0.8 1

VII. M ULTICLASS TRANSMISSION w

In the case of multiclass optimisation one considers tt@l 3. Results otV = 1000, ¢=3, R — 0.1 and 100 samples. (4)2)/N
allocation of D classes of resources on the same sparg€a function of(A) for W = 1. Symbols: Bethe approximation (dotted-
network. The capacity of class at node: is defined as\? line), message-passing\j, price iteration (). Inset: the fraction of idle,

v ; ; unsaturated and saturated links as a functiod/gf for W =1; the vertical
and the Currentg” satisfy the resource constraints height of each region for a givef\) corresponds to the respective fraction.

(b) (E)/N as a function ofi¥ for (A) =0. Symbols: Bethe approximation
Z Aijyi; + A > 0. (9) (dotted-line), message-passing) price iteration ), W — 0 theoretical
J limit (o). (A) = —0.2,—0.1,0 from top to bottom line. Inset: the fraction
of idle, unsaturated and saturated links as a functioritoffor (A) = 0.
The links are duplex, carrying currents flowing in both direcSymbol: W — 0 theoretical limit of the fraction of idle linkse{.

tions. The total current of linkif) is given byY", |y¥|. One
aims to optimise the cost function in the links. In the engineering literature, this is known as
2 statistical multiplexing.
1 Figure 4 also shows that the fraction of idle links increases
E=Y Ai;o({y%}), Y1) = - vI] . (o) ™9 1€ Tract :
% s9Quigh) - olwih) 2 <zy: |y”‘> (10) with D, presumably due to friction-like effects resulting from

the interaction between the different classes on the sagesed
A price iteration and message passing algorithms can be

derived in a similar manner for this case [14]. The price VIIl. SUMMARY
iteration algorithm uses gradient descent with a learnatg r

and takes the form We have studied the problem of network optimisation in
n

the case of sparsely connected graphs. The problem has

W=+ {min([gf]*l(o), 0) — Mi’} : _been_ mvestlgatgd using various method; of_statlstlca.tlpby
in this proceedings we outline the derivation based on the
using the notation of the quadratic case. Bethe approximation and some of the distributed optinosati

Since the total curren}_,, |y;;| in a link should scale as methods devised for solving the problem; the presentation i
D, it is convenient to rescale the energy per ligh by D2. brief due to lack of space and we refer the reader to the
As shown in Fig. 4,(¢)/D? decreases with the number ofcorresponding papers. We also briefly describe some of the
classes. This shows that the network is able to increase k&y results obtained focusing on the resulting internakgne
efficiency due to the reduced fluctuations of the total cusrerper node, and current and chemical potential distributfons
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Fig. 4. (a) The dependence of the asymptdii)/D? on (A) for given
values ofD. (b) The dependence of the fraction of zero class currentAgn
for given values ofD. Symbols: D=1 (O), 3 @), 5 (0), 10 (1), 15 (V).
ParametersiN = 1000, ¢ = 3. Ranges of other parameters: from= 1, 500
steps and 1000 samples &t= 1 to n = 0.7, 5000 steps and 200 samples
atD = 15.

the various costs considered. We also reported briefly teesul
on the bandwidth limited case where edge currents are limite
and the case of multiclass optimisation.

The main contribution to the field of network optimisation
is twofold. Firstly, using methods of statistical mechanime
can better analyse the properties of typical networks atm ga
generic insight on the behaviour of the network. Secondly,
based on this insight one can devise novel optimisation-algo
rithms. One can identify potential contributions also ie trea
of labelled data transmission and in the limit of a large namb
of different classes; research activities in both direwtiare
under way.
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