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Abstract—Inference and optimisation of real-value edge vari-
ables in sparse graphs are studied using the tree based Bethe
approximation optimisation algorithms. Equilibrium stat es of
general energy functions involving a large set ofreal edge-
variables that interact at the network nodes are obtained for
networks in various cases. These include different cost functions,
connectivity values, constraints on the edge bandwidth andthe
case of multiclass optimisation.

I. I NTRODUCTION

The links between statistical physics models and a variety
of inference and optimisation problems have been signifi-
cantly strengthened over the last decade [1]. Two aspects
of these similarities have been exploited. Macroscopically,
using the statistical physics framework, one describes typical
properties of the problem and provides valuable insight into
its generic characteristics. Microscopically, established tech-
niques of statistical physics such as the cavity method and
Bethe approximation have been used for devising efficient
inference algorithms, some of which have been independently
discovered and used in other disciplines [2], [3], [4], [5].These
links have become more transparent with the increasing use of
graphical models and iterative approximation techniques such
as belief propagation (BP) to a variety of probabilistic in-
formation processing problems. By mapping the probabilistic
dependencies between parameters onto edges in graphs, the
problem could be approximately solved (exactly on polytrees)
by iterating a set of message-passing equations which couple
the conditional probabilities on neighbouring nodes [2], [3].

Most studies so far have focused on cases of discrete
variables, while networks of continuous variables were much
less explored. One of the main reasons for this limited activity
is the difficulty in applying message passing approximation
algorithms [2], [3] in this case as the discrete messages
passed between variables becomefunctions of real variables.
Applied message passing for systems of real variables typically
relies on modelling the functions using a reduced number
of parameters [6]. We have recently studied systems with
real variables that can be mapped onto a sparse graph and
suggested an efficient message-passing approximation method
for inference and optimisation, especially in the context of
resource allocation on sparse random systems [7], [8] chosen

as an exemplar of practical relevance.
Traditionally, network resource allocation and routing prob-

lems have been solved byglobal optimisation techniques, such
as linear or quadratic programming [9]. However, with the
increasing network size and/or the evolving configuration of
wireless networks, centralised control becomes increasingly
costly and infeasible.Distributed control in networks consists
of a group of independent controllers which make locally
optimal decisions. Compared with the traditional centralised
approach, this has the advantages of a lower computational
load and communication overhead, and robustness against
network breakdown; BT’sDynamic Alternative Routing was
an early successful example [10]. Also, in computer science,
many algorithmic solutions have been proposed to distribute
computational load between computers connected in a net-
work, but they tend to be more heuristic; some aim to optimise
the benefit to an individual node or task, without considering
the impact it makes to the remainder of the network [11].

The optimisation problems addressed here include the re-
source allocation problem under various cost functions and
connectivity profiles as well as the cases of restricted band-
width and multiclass optimisation. Emphasis will be given to
results obtained in the various cases; details of the analysis and
algorithms derived for the various cases will be only briefly
mentioned and can be found in [8], [12], [13] and [14].

II. T HE BASIC MODEL

We consider the following resource allocation task on a
sparse graph ofN nodes, labelledi = 1, .., N . Each node
i is randomly connected toc other nodes1, and has a capacity
Λi, randomly drawn from a distributionρ(Λi). The objective
is to migrate tasks between nodes such that each node will
be capable of carrying out its tasks. Thecurrent yij ≡ −yji

drawn from nodej to i is aimed at satisfying the constraint
∑

j

Aijyij + Λi ≥ 0 , (1)

1Although we focus here on graphs of fixed connectivity, one can easily
accommodate any connectivity profile within the same framework; the algo-
rithms presented later are completely general.
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where Aij = 1/0 for connected/unconnected node pairsi
and j, respectively. We consider the load balancing task of
minimising the energy function (cost)E =

∑

(ij)Aijφ(yij),
where the summation(ij) runs over all pairs of nodes,
subject to the constraints (1);φ(y) is a general function of
the currenty. For load balancing tasks,φ(y) is typically a
convex function, which will be assumed in our study. The
analysis of the graph is done by introducing the free energy
F = −T lnZy for a temperatureT ≡ β−1, whereZy is the
partition function

Zy =
∏

(ij)

∫

dyij

∏

i

Θ

(

∑

j

Aijyij+Λi

)

exp

[

−β
∑

(ij)

Aijφ(yij)

]

.

The Θ function returns 1 for non-negative arguments and 0
otherwise.

The system can be analysed using various methods such as
the replica method [1], [15] and the Bethe approximation. We
will briefly outline here the tree based Bethe approximation
while full details of the derivation as well as the complete
replica based analysis and the identification of links between
these approaches and BP can be found in [8].

When the connectivityc is low, the probability of finding
a loop of finite length on the graph is low, and the Bethe
approximation well describes the local environment of a node.
In the approximation, a node is connected toc branches in a
tree structure and correlations among the tree branches canbe
neglected. In each branch, nodes are arranged in generations.
A node is connected to an ancestor node andc−1 descendent
nodes of the previous and generations, respectively.

Consider a vertexV (T) of capacityΛV (T), and a currenty
is drawn from the vertex. One can write an expression for
the free energyF (y|T) as a function of the free energies
F (yk|Tk) of its descendants, that branch out from this vertex

F (y|T) = −T ln

{

c−1
∏

k=1

(
∫

dyk

)

Θ

(

c−1
∑

k=1

yk− y +ΛV

)

× exp

[

−β

c−1
∑

k=1

(F (yk|Tk) + φ(yk))

]}

, (2)

whereTk represents the tree terminated at thekth descendent
of the vertex. The free energy can be considered as the sum
of two parts,F (y|T) = NTFav+FV (y|T), whereNT is the
number of nodes in the treeT, Fav is the average free energy
per node, andFV (y|T) is referred to as thevertex free energy2.
Note that when a vertex is added to a tree, there is a change
in the free energy due to the added vertex. Since the number
of nodes increases by 1, the vertex free energy is obtained by
subtracting the free energy change by the average free energy.

2This term is marginalised over all inputs to the current vertex, leavingy
as its sole argument, hence the terminology used.

This allows us to obtain the recursion relation

FV (y|T) = −T ln

{

c−1
∏

k=1

(
∫

dyk

)

Θ

(

c−1
∑

k=1

yk − y + ΛV (T)

)

× exp

[

−β

c−1
∑

k=1

(FV (yk|Tk) + φ(yk))

]}

− Fav, (3)

and the average free energy per node is given by

Fav =−T

〈

ln

{

c
∏

k=1

(
∫

dyk

)

Θ

(

c
∑

k=1

yk + ΛV

)

× exp

[

−β

c
∑

k=1

(FV (yk|Tk) + φ(yk))

]}〉

Λ

, (4)

where ΛV is the capacity of the vertexV fed by c trees
T1, ..,Tc, and〈·〉Λ represents the average over the distribution
ρ(Λ). In the zero temperature limit, Eq. (3) reduces to

FV (y|T) = (5)

min
{yk|

∑

c−1

k=1
yk−y+ΛV (T)≥0}

[

c−1
∑

k=1

(FV (yk|Tk)+φ(yk))

]

−Fav.

The current distribution and the average free energy per link
can be derived by integrating the currenty′ in a link from one
vertex to another, fed by the treesT1 and T2, respectively;
the obtained expressions areP (y) = 〈δ(y − y′)〉⋆ and 〈E〉=
〈φ(y′)〉⋆ where〈•〉⋆ represents
〈
∫

dy′ exp [−β (FV (y′|T1)+FV (−y′|T2)+φ(y′))] (•)
∫

dy′ exp [−β (FV (y′|T1)+FV (−y′|T2)+φ(y′))]

〉

Λ

.

Equations (3) and (5) are at the core of our analysis; they
are being solved iteratively and facilitate the derivationof the
free energy per link, internal energy and current distribution.

We have outlined only the main steps of the derivation
to provide a rough idea for the methods used to obtain the
numerical results presented later on. Slight modificationswill
be applied in the cases of different costs [8] and bandwidth
limited network [12].

III. D ISTRIBUTED ALGORITHMS

The local nature of the recursion relation Eq. (5) points to
the possibility that the network optimisation can be solvedby
message passing approaches, which have been successful in
problems such as error-correcting codes [2] and probabilis-
tic inference [3]. The major advantage of message passing
is its potential to solve a global optimisation problem via
local updates, thereby reducing the computational complex-
ity. For example, the computational complexity of quadratic
programming for the load balancing task typically scales as
N3, whereas capitalising on the network topology underlying
the connectivity of the variables, message passing scales as
N . An even more important advantage, relevant to practical
implementation, is its distributive nature; it does not require
a global optimiser, and is particularly suitable for distributive
control in evolving networks.



However, in contrast to other message passing algorithms
which pass conditional probability estimates ofdiscrete vari-
ables to neighbouring nodes, the messages in the present
context are more complex, since they arefunctions FV (y|T)
of the currenty. We simplify the message to two parameters,
namely, the first and second derivatives of the vertex free
energies. For the quadratic load balancing task, it can be shown
that a self-consistent solution of the recursion relation,Eq. (5),
consists of vertex free energies which are piecewise quadratic
with continuous slopes. This makes the 2-parameter message
a very precise approximation.

Let (Aij , Bij) ≡ (∂FV (yij |Tj)/∂yij, ∂
2FV (yij |Tj)/∂y2

ij)
be the message passed from nodej to i; using Eq.(5), the
recursion relation of the messages become

Aij ← −µij , Bij ← Θ(−µij)





∑

k 6=i

Ajk(φ′′
jk + Bjk)−1





−1

,

(6)
where,

µij = min

[

0,

∑

k 6=iAjk[yjk−(φ′
jk+Ajk)(φ′′

jk +Bjk)−1]+Λj−yij
∑

k 6=iAjk(φ′′
jk +Bjk)−1

]

with φ′
jk andφ′′

jk representing the first and second derivatives
of φ(y) at y = yjk respectively. The forward passing of the
message from nodej to i is followed by a backward message
from nodej to k for updating the currentsyjk according to

yjk ← yjk −
φ′

jk + Ajk + µij

φ′′
jk + Bjk

; (7)

updated nodes are selected randomly and sequentially.
A second type of algorithm we have introduced, termed

price iteration, is based on the optimisation of the cost given a
set of constraints (e.g., non-negative resources

∑

j Aijyij+Λi)
enforced by a set of Lagrange multipliers, for instance, of
the form L =

∑

(ij)Aijy
2
ij/2 +

∑

i µi(
∑

j Aijyij + Λi).
The optimisation task can be transformed to an adjoint op-
timisation problem of the Lagrange multipliers{µi}, also
termedchemical potentials. The extremum condition yields
yij = φ′−1(µj − µi), and using the Kühn-Tucker condition,
µi can be solved in terms ofµj of its neighbours, namely,

µi = min(g−1
i (0), 0); gi(x) =

∑

j

Aijφ
′−1(µj − x) + Λi.

This provides a local iterative optimisation method. We may
interpret this algorithm as aprice iteration scheme, by noting
that the Lagrangian can be written asL =

∑

(ij)AijLij +
constant, where Lij = φ(yij) + (µi − µj)yij . Therefore,
the problem can be decomposed into independent optimisation
subproblems, each for a current on a link.µi is the storage
price at nodei, and each subproblem involves balancing the
transportation cost on the link, and the storage cost at nodei
less that at nodej, yielding the optimal solution. This provides

a pricing scheme for the individual links to optimise, which
simultaneously optimise the global performance [10].

IV. QUADRATIC COST

Arguably the most illuminating example is that of quadratic
cost. The solution of Eq. (5) is obtained numerically. Sincethe
vertex free energy of a node depends on its own capacity and
the disordered configuration of its descendants, we generate
1000 nodes at each iteration of Eq. (5), with capacities
randomly drawn from the distributionρ(Λ), each being fed
by c−1 nodes randomly drawn from the previous iteration.
The free and internal energies and current distribution are
computed numerically from the vertex free-energy distribution.

Convergence -To study the convergence rate of the iter-
ations, we fit the average energy at iteration stept using
〈E(t)−E(∞)〉 ∼ exp(−γt) in the asymptotic regime. As
shown in the inset of Fig. 1(a), the relaxation rateγ increases
with the average capacity. It is interesting to note that a cusp
exists at the average capacity of about 0.45. Below that value,
convergence of the iteration is slow, since the average energy
curve starts to develop a plateau before the final convergence.
On the other hand, the plateau disappears and the convergence
is fast above the cusp. The slowdown of convergence below the
cusp is probably due to the appearance of increasingly large
clusters of nonzero currents on the network, since clustersof
nodes with negative capacities become increasingly extensive,
and need to draw currents from increasingly extensive regions
of nodes with excess capacities to satisfy the demand.

Dependence on the connectivity - We have observed the
scaling laws of the currents [7] (roughly asc−1), and average
energyc2〈φ〉. A more accurate scaling in the high connectivity
limit has been derived in [8] both analytically, in the large
c limit and numerically; it depends on an empirical scaling

factor s =
√

limc→∞ c2〈φ〉
〈φ〉 ≈ 1.02c− 0.43, converging toc in

the high connectivity limit, as shown in Fig. 1(b).

V. OTHER COSTS

Two other representative costs have been studied are:
(a) Theanharmonic cost function is used to model the effects
of costs rising faster than quadraticφ(y) = y2/2 + u |y|

3
/3.

(b) The frictional cost function is used to model the effects
of frictional forces, which add an extra cost per unit current
in a link irrespective of direction. Hence it is also useful in
networks with multiple classes of traffic sharing the same
links. The cost function takes the formφ(y) = y2/2 + v |y|.

Note that these cost functions represent two distinct cases.
The former has well defined first and second derivatives for all
of its arguments. In the latter case, the frictional cost function
does not have a second derivative aty = 0. There is a kink in
the cost function at the point of zero current, thus increasing
the preference for idle links, or equivalently the reluctance to
switch on a link. Results in both cases have been obtained
using the message passing and price iteration algorithms.

Figure 2 shows results obtained for the chemical potentials
distribution for the case of anharmonic and friction costs,
obtained by price iteration. While results for the anharmonic
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Fig. 1. Results for system sizeN =1000 andφ(y) = y2/2. (a) 〈φ〉 obtained
by iterating Eq. (5) as a function oft for 〈Λ〉=0.1, 0.2, 0.4, 0.6, 0.8 (top to
bottom) andc=3. Dashed line: The asymptotic〈E〉 for 〈Λ〉=0.1. Inset:γ
as a function of〈Λ〉. (b) The continuous component of the current distribution
P (sy)/s for 〈Λ〉 = 0.02, 0.5, 1. Lines:c = 3 (solid), 4 (dotted), 5 (dashed),
10 (dot-dashed), highc (long dashed). Inset:P (y=0) as a function of〈Λ〉.
Symbols:c=3 (©), 4 (�), 5 (♦), 10 (△), high c (line).

case are not qualitatively different than for the quadraticcost,
results in the friction cost case show a distinctly different
behaviour - a much lower value between the zero chemical
potential and some negative value, a threshold phenomena that
can be explained by the need for a sufficiently high chemical
potential difference to get over the friction term (Fig. 2(b)).

VI. BANDWIDTH LIMITED SYSTEMS

Another aspect of the problem, which is arguably more
realistic, includes a bandwidth restriction on the network
edges; currents are bounded by a predetermined coefficient
W . For links with small bandwidthW , or nodes with negative
average capacity, there exist nodes which violate the capacity
constraint. In these unsatisfiable cases, it is expedient torelax
the constraints and search for optimal solutions which limit
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Fig. 2. Results forN = 1000, c = 3 and 1000 samples - chemical
potential distributionP (µ) for 〈Λ〉= 0.1, 0.2, 0.3, 0.4, 0.5 (top to bottom).
(a) Anharmonic cost function withu=1; (b) Frictional cost withv=1.

the violations. Hence we consider the cost

E =
1

2

∑

i

Θ



−
∑

j

Aijyij − Λi









∑

j

Aijyij + Λi





2

+
R

2

∑

(ij)

y2
ij . (8)

The first term represents the cost of unsatisfaction while the
second term represents the transportation cost;R serves as
the weight of transportation cost in the global cost. Here we
study the case when the unsatisfaction cost dominates, i.e.R
is small. The message-passing can be derived in a similar
manner to the unlimited bandwidth case [12].

Figure 3(a) shows results for various〈Λ〉 values and fixed
bandwidthW = 1. The average cost increases rapidly when
〈Λ〉 enters the unsatisfiable regime, and the results obtained by
the theory, the message-passing and price iteration algorithms
show excellent agreement. There are three types of links in the
network: idle (|yij |=0), unsaturated (|yij | < W ) and saturated
(|yij | = W ). When 〈Λ〉 enters the unsatisfiable regime, the
fraction of idle links vanishes rapidly, while that of saturated
links increases to a steady level, implying that more resources



are transported in the links in response to the networkwide
demand on resources (Fig. 3(a) inset).

Figure 3(b) shows the simulation results whenW varies.
For large values ofW , the average cost is effectively constant,
since the link bandwidth constraints become irrelevant. Onthe
other hand, whenW decreases, the average cost increases
rapidly, since the links become increasingly ineffective in
allocating resources in the network. The inset shows how the
fraction of saturated links increases whenW decreases. It
is interesting to note that the fraction of idle linksincreases
whenW decreases, contrary to the expectation that more links
are involved in resource provision. This can be explained
in terms of thebottleneck effect as follows; if the links in
the network were unconstrained, nodes with sufficiently large
violations would have drawn currents from distant neighbours,
causing currents to flow through many intermediate nodes.
However, whenW is small, the currents drawn by nodes with
violations from their nearest neighbours may have already
saturated the links, and there is no use to draw currents from
further neighbours. In the limit of vanishingW , the links are
exclusively either idle or saturated. In this limit, a link is idle
only when both nodes at its ends have positiveΛ. Hence the
fraction of idle links isfidle=1−fsat =[P (Λ>0)]2. Since the
transportation cost is negligible in this limit, the contribution
to the average cost only comes from the violated nodes, given
by 〈φ〉/N = 〈Θ(−Λ)Λ2/2〉Λ. The case of bandwidth limited
network optimisation has been further investigated in [13].

VII. M ULTICLASS TRANSMISSION

In the case of multiclass optimisation one considers the
allocation of D classes of resources on the same sparse
network. The capacity of classν at nodei is defined asΛν

i

and the currentsyν
ij satisfy the resource constraints
∑

j

Aijy
ν
ij + Λν

i ≥ 0. (9)

The links are duplex, carrying currents flowing in both direc-
tions. The total current of link (ij) is given by

∑

ν

∣

∣yν
ij

∣

∣. One
aims to optimise the cost function

E =
∑

(ij)

Aijφ({yν
ij}), φ({yν

ij}) =
1

2

(

∑

ν

∣

∣yν
ij

∣

∣

)2

. (10)

A price iteration and message passing algorithms can be
derived in a similar manner for this case [14]. The price
iteration algorithm uses gradient descent with a learning rate
η and takes the form

µν
i = µν

i + η
{

min([gν
i ]−1(0), 0)− µν

i

}

,

using the notation of the quadratic case.
Since the total current

∑

ν |y
ν
ij | in a link should scale as

D, it is convenient to rescale the energy per link〈φ〉 by D2.
As shown in Fig. 4,〈φ〉/D2 decreases with the number of
classes. This shows that the network is able to increase its
efficiency due to the reduced fluctuations of the total currents
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Fig. 3. Results forN =1000, c=3, R = 0.1 and 100 samples. (a)〈E〉/N
as a function of〈Λ〉 for W = 1. Symbols: Bethe approximation (dotted-
line), message-passing (△), price iteration (©). Inset: the fraction of idle,
unsaturated and saturated links as a function of〈Λ〉 for W =1; the vertical
height of each region for a given〈Λ〉 corresponds to the respective fraction.
(b) 〈E〉/N as a function ofW for 〈Λ〉=0. Symbols: Bethe approximation
(dotted-line), message-passing (△), price iteration (©), W → 0 theoretical
limit (•). 〈Λ〉 = −0.2,−0.1, 0 from top to bottom line. Inset: the fraction
of idle, unsaturated and saturated links as a function ofW for 〈Λ〉 = 0.
Symbol:W → 0 theoretical limit of the fraction of idle links (•).

in the links. In the engineering literature, this is known as
statistical multiplexing.

Figure 4 also shows that the fraction of idle links increases
with D, presumably due to friction-like effects resulting from
the interaction between the different classes on the same edges.

VIII. S UMMARY

We have studied the problem of network optimisation in
the case of sparsely connected graphs. The problem has
been investigated using various methods of statistical physics;
in this proceedings we outline the derivation based on the
Bethe approximation and some of the distributed optimisation
methods devised for solving the problem; the presentation is
brief due to lack of space and we refer the reader to the
corresponding papers. We also briefly describe some of the
key results obtained focusing on the resulting internal energy
per node, and current and chemical potential distributionsfor
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the various costs considered. We also reported briefly results
on the bandwidth limited case where edge currents are limited
and the case of multiclass optimisation.

The main contribution to the field of network optimisation
is twofold. Firstly, using methods of statistical mechanics one
can better analyse the properties of typical networks and gain
generic insight on the behaviour of the network. Secondly,
based on this insight one can devise novel optimisation algo-
rithms. One can identify potential contributions also in the area
of labelled data transmission and in the limit of a large number
of different classes; research activities in both directions are
under way.
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