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Abstract The problem of learning by examples in ultrametric committee machines (UCMs) is studied
within the framework of statistical mechanics. Using the replica formalism we calculate the average
generalization error in UCMs with L hidden layers and for a large enough number of units. In most
of the regimes studied we find that the generalization error, as a function of the number of examples
presented, develops a discontinuous drop at a critical value of the load parameter. We also find that
when L > 1 a number of teacher networks with the same number of hidden layers and different overlaps
induce learning processes with the same critical points.

Keywords Multilayer-Networks, Learning-by-Examples

1 Introduction

From a theoretical perspective, neural networks are the archetype of disordered systems whose study
has motivated researchers to develop new statistical mechanics techniques. Being idealizations used to
model some aspects of the brain’s behavior, they represent a new approach to the problem of compu-
tation, based on a paralleled processing of information. As a consequence, neural networks research is
multidisciplinary; models inspired in biologic observations have been used to better understand emer-
gent phenomena [1], pattern recognition and task reproduction [2], associative memory capacity [3]
and neural developing [4]; several aspect of the learning process have been investigated by using recur-
rent [5] and spiking networks [6]; applications using neural networks have been recently developed for
credit assignment [7] and Bayesian inference [8]. These research has also played a complementary role
to studies in vivo [9–11]. The work described here is motivated by the need to better understand the
learning by examples process in artificial networks to help the development of more efficient automatic
systems.

One of the most well-studied and better understood feed-forward networks is the perceptron [12–14]
which, because of its simplicity, has very limited computational capabilities. Ultrametric Committee
Machines (UCMs), as presented in [15], represent one step forward in architectural complexity and, as
a consequence, they are potentially better suited for real world applications. UCMs are fully connected
committee machines with K units in the first of its L hidden layers, a tree like structure linking hidden-
to-hidden layers and non-zero synaptic overlaps at the hidden-to-input level only. These overlaps,
i.e. the inner products between synaptic vectors belonging to different units, form an ordered set
{

ζ̃j , j = 1, 2, . . . , L
}

, where ζ̃j ≫ ζ̃i for all j > i. The overlap’s subindex indicates the number of

layers we have to go forward to find the common root to both units thus indicating the ultrametric
distance between them (see figure 1). Although more sophisticated than the perceptron, some of the
UCM’s computational properties can be analytically obtained. Indeed, we show in this article that
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by the application of the replica trick, it is possible to study the learning by examples process when,
considering students and teachers of the same architecture, the number of examples presented to the
student is proportional to the number of units in one of the L hidden layers of the teacher. This scaling
emerges naturally from the expression of the free energy of the system (see below).

Most of the studies found in the literature, in the area of learning process in networks, consider
only the case where the teacher’s synaptic overlaps are set to zero. Recently, [15], we found that there
is a clear relationship between the magnitude of these overlaps and how difficult is to reproduce the
teacher’s classification. In this respect our results give support to the definition of network complexity
presented in [17]. Understanding the link between task difficulty and network complexity is fundamental
for the development of tools for practical applications.

A more complete description of UCM’s is presented as follows. UCMs are fully connected committee
machines with L hidden layers organized in such a way that the number of units in the L-th layer
(last hidden) is KL, each one of them linked to KL−1 units in the (L − 1)-th layer through unit
weights. This tree-like structure is repeated until reaching the first hidden layer, thus the total number
of units populating the ℓ-th hidden layer is KLKL−1 . . . Kℓ. The KL . . .K1 = K units in the first
hidden layer are connected to the inputs through synaptic vectors wk1

∈ R
N whose overlap matrix

[Ω]k1,k′

1
≡ wT

k1
wk′

1
/N satisfies the following relationship:

[Ω]k1,k′

1
= δk1,k′

1

(

1 − ζ̃1

)

+ . . . + δkL,k′

L

(

ζ̃L−1 − ζ̃L

)

+ ζ̃L, (1)

where wT is the transpose of the vector w, the indexes kℓ ≡ [kL, kL−1, . . . , kℓ] run over all hidden units

of the ℓ-th layer, δkℓk
′

ℓ
≡∏L

m=ℓ δkmk′

m
and δij = 1 if and only if i = j and 0 otherwise and the overlaps

ζ̃j satisfy the relationship:

ζ̃ℓ =
ζℓ

∏ℓ
j=1 Kj

, (2)

where the ζj are independent on the size of the system. The matrix of overlaps Ω is ultrametric [18],
hence UCMs. All the units that compose the network are binary, and process their inputs according

to the following rules: the output unit σW(S) ≡ sgn
(

∑KL

kL=1 σkL
(S)/

√
KL

)

, the ℓ-th hidden layer unit

σkℓ
(S) ≡ sgn

(

∑Kℓ−1

kℓ−1=1 σ[kℓ−1](S)/
√

Kℓ−1

)

and the first hidden layer unit σk1
(S) ≡ sgn

(

wT

k1
S/

√
N
)

,

where W =
{

wk1
∈ R

N andwT

k1
wk1

= N
}

is the set of synaptic vectors associated to the first hidden

layer’s units and S ∈ {1,−1}N
. In figure 1 we present an UCM with L = 3 hidden layers and K3,

K2K3 and K1K2K3 = K units in each layer.
We present as follows an investigation on the learning by examples process in UCMs, which is

based upon [19–21] and generalizes the results found in [22]. In section 2 we present the problem in the
language of statistical mechanics, in section 3 we present our results for the general case and a study on
the particular cases where L = 1 and 2. Section 4 synthesizes our conclusions and final considerations.

2 Replica symmetric analysis

Given a set of examples SP =
{(

ξµ, σW0(ξµ)
)}P

µ=1
, where the patterns ξµ ∈ {1,−1}N

have been

classified by an UCM teacher W
0 with labels σW0(ξµ) ∈ {1,−1} , we can define the Hamiltonian of the

student W by HN (W;SP ) ≡∑P
µ=1 Θ(−σW0 (ξµ)σW(ξµ)), where σW(ξµ) ∈ {1,−1} is the classification

given by the student to the µ-th pattern and Θ(x > 0) = 1 and 0 otherwise. We are interested on
computing the system’s statistical properties at zero temperature in the thermodynamic limit (N ↑ ∞),
and in the large network regime (1 ≪ K < ∞), through the calculation of the partition function:

ZN (SP ) =

∫

dρ(W)
P
∏

µ=1

Θ(σW0 (ξµ)σW(ξµ)), (3)

where dρ(W) is a measure of the synaptic vectors compatible with the UCM character of the student.
ZN (SP ) can be interpreted as the fraction of vectors in R

NK satisfying the constraints imposed by the
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Fig. 1 Typical feed-forward network architecture studied in this article. This committee has L = 3 hidden
layers with synaptic overlaps in the hidden-to-input layer. All the synaptic weights linking hidden-to-hidden
and hidden-to-output units are set to one. Observe that the highlighted synaptic vector w2,2,1 corresponds to
the unit with index k1 = [2, 2, 1], i.e. the unit linked to the output through the path 2, 2, 1. The network is
composed by K3, K2K3 and K1K2K3 units in each layer and the boxes illustrate the meaning of the numbers
K1, K2 and K3.

Θ function. The zero temperature free energy of the system is defined as fN (SP ) ≡ − 1
NK lnZN (SP ),

which is of order one and self averaging in the N ↑ ∞ limit. Thus, we have that the statistical properties
of the system are conveyed by the quenched average of the free energy, that can be computed by the
replica trick:

f = − lim
N→∞

1

NK
lim
n→0

〈

〈Zn
N (SP )〉

W0

〉

ξ
− 1

n
. (4)

Assuming that the number of patterns P presented to the student scales with the size of the synaptic
vectors as P = αN , where α is the load parameter, the quenched average of the replicated system can
be expressed as:

〈〈Zn
N (SP )〉

W0〉ξ =

∫ n
∏

a=0

dρ(Wa) exp
(

αNG
(n)
E,N ({W

a})
)

,

where the pattern distribution P(ξµ) =
∏N

j=1 P(ξj,µ) = 2−N is independent of µ and

G
(n)
E,N ({W

a}) ≡ − ln

〈

n
∏

a=1

Θ(σW0 (ξ)σWa(ξ))

〉

ξ

.

By means of delta functions we can introduce the parameters Nqa,b
k1,m1

≡ waT

k1
wb

m1
for all 0 < a < b ≤ n,

Nta
k1,m1

≡ waT

k1
wa

m1
for all k1 6= m1 and Nra

k1,m1
≡ waT

k1
w0

m1
, and considering that the student and

teacher committees satisfy N = waT

k1
wa

k1
for all 0 < a ≤ n and N [Ω]k1,m1

= w0T

k1
w0

m1
, where Ω is as

defined in (1), we can express the zero temperature, replicated partition function as:

〈〈Zn
N(SP )〉

W0〉ξ =

∫

∏

k1m1

(

∏

a<b

dqa,b
k1,m1

dq̂a,b
k1,m1

2π/N

∏

a

dra
k1,m1

dr̂a
k1,m1

2π/N

)

∫

∏

a

(

∏

k1<m1

dta
k1,m1

dt̂a
k1,m1

2π/N

∏

k1

dκ̂a
k1

4π

)

exp

[

−αNG
(n)
E,N (P) − 1

2
NG

(n)
S,N(P; P̂)

]

,
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where P ≡ {ta
k1,m1

} ∪ {ra
k1,m1

} ∪ {qa,b
k1,m1

} and P̂ ≡ {κ̂a
k1
} ∪ {r̂a

k1,m1
} ∪ {t̂a

k1,m1
} ∪ {q̂a,b

k1,m1
} and:

NG
(n)
S,N(P; P̂) ≡ −2 ln

〈

exp





∑

(a,b)

∑

(k1,m1)

q̂a,b
k1,m1

(

Nqa,b
k1,m1

− waT

k1
wb

m1

)

+

+
∑

a

∑

(k1,m1)

t̂a
k1,m1

(

Nta
k1,m1

− waT

k1
wa

m1

)

+

+
∑

a

∑

k1

(

∑

m1

r̂a
k1,m1

(

Nra
k1,m1

− w0T

k1
wa

m1

)

+
1

2
κ̂a
k1

(

N − waT

k1
wa

k1

)

)]〉

Wn+1

.

The solution of the saddle point equation on the variables in P̂ can be expressed in terms of the
variables in P and, by considering the replica symmetric ansatz and the UCM character of the student,
we can express these parameters as:

tak1,m1
≡ δk1m1

(

1 − t̃1
)

+ δk2m2

(

t̃1 − t̃2
)

+ . . . + δkLmL

(

t̃L−1 − t̃L
)

+ t̃L

qa,b
k1,m1

≡ δk1m1
(1 − q̃1) + δk2m2

(q̃1 − q̃2) + . . . + δkLmL
(q̃L−1 − q̃L) + q̃L

ra
k1,m1

= δk1m1
(1 − r̃1) + δk2m2

(r̃1 − r̃2) + . . . + δkLmL
(r̃L−1 − r̃L) + r̃L,

where q̃j , r̃j and t̃j obey the scaling law (2). We find that:

G
(n)
E,N (P) ≃ −2n

∫

Dz H
(
√

RL

1 − RL
z

)

lnH
(
√

QL

1 − QL
z

)

+ O(n2, N−1),

where:

Qℓ ≡ γℓ−1

γℓ

[

2

π
arcsin (Qℓ−1) +

(

2

π

)ℓ
qℓ

γℓ−1

]

Rℓ ≡
ρℓ−1

ρℓ

[

2

π
arcsin

(
√

γℓ−2

γℓ−1

ρℓ−1

ρℓ−2
Rℓ−1

)

+

(

2

π

)ℓ
rℓ√

γℓ−1ρℓ−1

]

,

with Q0 ≡ q0, R0 ≡ r0, γℓ ≡ 1 +
∑ℓ

j=1

(

2
π

)j
tj and ρℓ ≡ 1 +

∑ℓ
j=1

(

2
π

)j
ζj , for all ℓ = 0, . . . , L. We

have also use the definitions Dz ≡ dz e−z2/2/
√

2π and H(z) ≡
∫

∞

z
Dx.

Assuming that the number of units per layer in the committees respect the relations K1 . . .Kℓ−1K
2
ℓ >

K for all ℓ = 1, . . . , L, which simply indicates that the closer to the input the more densely populated
the layer, the dominant contribution to the configurational term can be expressed as:

G
(n)
S,N (P) ≃ nK

[

g0(P) +
1

K1
g1(P) +

1

K1K2
g2(P) + . . . +

1

K
gL(P)

]

,

where

g0(P) ≡ ln(1 − q0) +
q0 − r2

0

1 − q0

gℓ(P) ≡ ln

(

1 − q0 +
∑ℓ

j=1(tj − qj)

1 − q0 +
∑ℓ−1

j=1(tj − qj)

)

+

∑ℓ
j=0 qj −

(

∑ℓ
j=0 rj

)2

1 +
∑ℓ

j=1 ζj

1 − q0 +
∑ℓ

j=1(tj − qj)
−

∑ℓ−1
j=0 qj −

(

∑ℓ−1
j=0 rj

)2

1 +
∑ℓ−1

j=1 ζj

1 − q0 +
∑ℓ−1

j=1(tj − qj)
+

+

















∑ℓ−1
j=0 qj −

(

∑ℓ−1
j=0 rj

)2

1 +
∑ℓ−1

j=1 ζj

1 − q0 +
∑ℓ−1

j=1(tj − qj)
− 1

















tℓ − qℓ

1 − q0 +
∑ℓ−1

j=1(tj − qj)
−

qℓ +
ζℓ

1 +
∑ℓ−1

j=1 ζj

(

∑ℓ−1
j=0 rj

)2

1 +
∑ℓ−1

j=1 ζj

− 2rℓ

∑ℓ−1
j=0 rj

1 +
∑ℓ−1

j=1 ζj

1 − q0 +
∑ℓ−1

j=1(tj − qj)
.
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According to (4) and assuming that we can interchange the limits in N and n, we have that:

f(α, P) = −2
α

K

∫

Dz H
(
√

RL

1 − RL
z

)

lnH
(
√

QL

1 − QL
z

)

− (5)

−1

2

[

g0(P) +
1

K1
g1(P) +

1

K1K2
g2(P) + . . . +

1

K
gL(P)

]

,

is the free energy of the system.
The generalization error is defined by

εG(P) ≡ 〈〈Θ (−σW0(S)σW(S))〉
W0〉

S
=

1

π
arccos

(
√

γL−1

γL

ρL

ρL−1
RL

)

,

which is computed in a similar way as the average sensitivity [15] and should be evaluated in the
parameters obtained from the optimization of (5).

3 Results

It is clear from the structure of (5) that there are different regimes corresponding to values of the load
parameter α proportional to the number of units in a given layer, i.e. α ∼ O(1), O(KL), O(KLKL−1),
. . . , O(K) respectively. If α ∼ O(1) the optimization of the first L leading terms in the free energy
produces qℓ = rℓ = 0 for 0 ≤ ℓ < L and tℓ = 0 for 0 < ℓ < L. The optimal values of the remaining
parameters are obtained by solving the set of equations:

0 =
∂

∂η

[

−2α

∫

Dz H
(
√

RL

1 − RL
z

)

lnH
(
√

QL

1 − QL
z

)

− 1

2
gL(qL, rL, tL)

]

, (6)

where η = qL, rL and tL. In the particular case where ζℓ = 0 for all 0 < ℓ < L we can propose
tL = ζL and rL = qL leaving only one equation (in qL) to be solved. This particularly symmetric
case is characterized by the equation RL = QL and, although descriptively simpler, presents the same
qualitative behavior as the case with all non-zero overlaps. By defining the integral

I(x) ≡ 1

2π

1√
1 − x2

∫

Dz H−1

(√

x

1 + x
z

)

, (7)

the saddle point equation in qL is:

0 = α

(

2

π

)L I(QL)

1 +
(

2
π

)L
ζL

− 1

2

qL

(1 + ζL)(1 + ζL − qL)
, (8)

where QL =
(

2
π

)L
[

1 +
(

2
π

)L
ζL

]

−1

qL. For large values of α the generalization error asymptotically

approaches the value:

εG(α) ≃ 1

π
arccos(Q

(∞)
L ) +





∫

Dz H−1





√

√

√

√

Q
(∞)
L

1 + Q
(∞)
L

z









−1

1

α
+ O(α−2), (9)

where

Q
(∞)
L ≡

(

2

π

)L
1 + ζL

1 +
(

2
π

)L
ζL

, (10)

which implies that total generalization can not be achieved for finite values of ζL.
Let us consider the case where the load parameter is proportional to the number of units in the ℓ-th

hidden layer, i.e. α = α̂KLKL−1 . . .Kℓ+1 with 0 < ℓ < L and α̂ independent on K1, . . . , KL. In this
regime we found that the optimization of the first ℓ terms of the free energy is achieved by qj = rj = 0
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for all 0 ≤ j < ℓ and tj = 0 for all 0 < j < ℓ. The optimization of the term of O(K−1
1 . . . K−1

ℓ ) is
achieved through

0 =
∂

∂η

[

−2α̂

∫

Dz H
(
√

RL

1 − RL
z

)

lnH
(
√

QL

1 − QL
z

)

− 1

2
gℓ(P)

]

, (11)

where η = qℓ, rℓ, tℓ and tℓ−1, in the cases where ℓ > 0. The optimization of the remaining terms (order
K−1

1 . . . K−1
ℓ+1 and higher) produces the relationships

0 = 1 +
m
∑

j=ℓ

(tj − qj) and 0 =



1 +
m
∑

j=ℓ

tj







1 +
m
∑

j=1

ζj



−





m
∑

j=ℓ

rj





2

,

for all ℓ < m ≤ L. This system of equations gets a simpler form for a teacher with overlaps ζj = 0 for
all 0 < j < ℓ. In this case we can chose tj = ζj for all 0 < j ≤ L, rj = qj for all 0 ≤ j ≤ L and qj = ζj

for all ℓ + 2 ≤ j ≤ L and the set of equations gets reduced to the relationship qℓ+1 = 1 + ζℓ + ζℓ+1 − qℓ

and the equation:

0 = α̂

(

2

π

)L L−1
∏

j=ℓ+1

1
√

1 − Q2
j

[

1
√

1 − Q2
ℓ

− 1

]

I(QL)

1 +
∑L

j=ℓ

(

2
π

)j
ζj

− 1

2

qℓ

(1 + ζℓ)(1 + ζℓ − qℓ)
. (12)

The learning processes induced by these teachers are characterized by the equation QL = RL. Although
apparently simpler, these processes present a behavior qualitative similar to the processes induced by
teachers with a full set of non-zero overlaps.

Observe that (12) always admits the solution qℓ = 0, which is the global minimum of the free
energy for small values of α̂. In this phase there is no specialization of the units and all the overlaps
associated to the ℓ-th layer are zero. For values of the load parameter α̂ > α̂s the free energy develops
a second minimum at q⋆

ℓ > 0. This minimum becomes global for α̂ > α̂c > α̂s. For large values of α̂
the asymptotic expression for the generalization error matches (9) with:

Q
(∞)
ℓ ≡

(

2

π

)ℓ
1 + ζℓ

1 +
(

2
π

)ℓ
ζℓ

(13)

Q
(∞)
m ≡

1 +
∑m−1

j=ℓ

(

2
π

)j
ζj

1 +
∑m

j=ℓ

(

2
π

)j
ζj

[

2

π
arcsin(Q

(∞)
m−1) +

(

2

π

)m
ζm

1 +
∑m−1

j=ℓ

(

2
π

)j
ζj

]

, (14)

where ℓ < m ≤ L. In this way the generalization error asymptotically converges to a non-zero value if
and only if ℓ > 0 and ζj < ∞ for all j = 1, . . . , L.

To illustrate our results let us consider a network with one hidden layer (L = 1). If α ∼ O(1) we
have that the learning process presents only a perceptron-like phase where its asymptotic generalization
error is given by (9) and (10) and no transition is observed. If ζ1 is zero we recover the result obtained
in [22]. Large values of the overlap ζ1 indicate that the hidden units of the teacher work almost like

K identical perceptrons. Only in this case Q
(∞)
1 becomes close to one and the generalization error

approaches zero asymptotically.
When α = α̂K the free energy has the form:

f(q; α̂) = −2α̂

∫

Dz H
(
√

Q1

1 − Q1
z

)

lnH
(
√

Q1

1 − Q1
z

)

− 1

2
[ln(1 − q) + q] ,

where Q1 = 2
π (1 + 2

π ζ1)
−1[arcsin(q) + 1 + ζ1 − q], that is precisely the expression found in [22] when

ζ1 = 0. The free energy has a minimum at q = 0 for all values of α̂ and develops a second minimum
0 < q⋆ < 1 at α̂ > α̂s. This minimum becomes global at α̂ > α̂c > α̂s. α̂c can be obtained by solving
the equations (12) simultaneously with f0(0, α̂c) = f0(qc; α̂c) where qc = q⋆(α̂c). In the region where
the minimum q = 0 is the dominant (small α̂), the generalization error is a constant. For α̂ > α̂c the
generalization error decays asymptotically to zero. The larger the parameter ζ1 the larger α̂c and the
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Fig. 2 Critical parameters α̂s, α̂c and εc as functions of the overlap ζ1. In the left panel we observe the load
parameters as a function of the teacher’s overlap. The asymptotic behavior of both quantities is proportional
to
√

ζ1. In the left panel we observe the asymptotic decay to zero of the generalization error at the transition
α̂c.

lower the generalization error at the critical point εc ≡ εG(α̂c). Thus, for large values of the overlap ζ1

we recover the perceptron like behavior where full generalization is achieved at very low values of α̂.
For large values of the overlap ζ1 we have that the critical parameter obeys the following equation:

0 = 2λc

√

1 + qc

1 − qc

1 +
√

1 − q2
c

qc

(

λc −
√

π

2
− 1

)

− ln(1 − qc) − qc, (15)

where λc ≡ π
2 − 1 + qc − arcsin(qc). The numerical solution of (15) is qc ≃ 0.931 which implies that

α̂c ≃ 5.94
√

ζ1 and the value of the generalization error at the criticality is εc ≃ 0.248/
√

ζ1. Graphs of
the critical parameters α̂s, α̂c and εc as functions of ζ1, are presented in figure 2. The regression of
these curves α̂c vs. ζ1 and εc vs. ζ1 confirm within a 1% the results presented above.

Thus, for L = 1 we have that the larger the overlap ζ1 the larger the volume of information must be
presented to the network to enter the learning (decreasing generalization error) phase. Although the
generalization error in the data acquisition phase (q = 0) gets smaller, this tradeoff relationship suggests
that, if the overlap is large enough, maybe a perceptron that saturates to a non-zero generalization
error and a O(N) training set is more economical than a L = 1 UCM with a large overlap and a
O(KN) training set.

For L > 1 we have a new and interesting result regarding multilayer feed-forward networks. By
proceeding in similar way as in the example before we can study the behavior of the critical parameters
as functions of the teacher overlaps ζ1, . . . , ζL. As we do so, we can find different values of the teacher’s
overlaps that induce equivalent learning processes, i.e. produce the same critical parameters. This
result, for L = 2 is presented in figure 3.

To illustrate the behavior of the student network with respect to the large overlap limit, we consider
the case of a UCM learning from a teacher with L = 2. We assume the symmetric regime, thus if
α ∼ O(1) we suppose that ζ1 = 0. The saddle point equation (8) can be written as:

0 = α Q
(∞)
2 I(Q2) −

1

2

Q2

Q
(∞)
2 − Q2

, (16)

where Q
(∞)
2 is as presented in (13). Equation (16) is precisely the saddle point equation of the percep-

tron when Q
(∞)
2 ↑ 1, which is the limit value reached when ζ2 ↑ ∞. Observe that total generalization

is achievable at this limit for large values of α. In a very similar way, when α = α̂K2, we can write the
saddle point equation as

0 = α̂
2

π

[

1
√

1 − Q2
1

− 1

]

Q
(∞)
1 I(Q

(eff)
2 ) − 1

2

Q1

Q
(∞)
1 − Q1

+ O(ϕ), (17)
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Fig. 3 Critical value of α̂c against ζ1 and ζ2. The lines are drawn at constant α̂ and thus represent sets of
points whose coordinates describe different teachers with identical α̂c.

where ϕ ≡ ( 2
π )2(1 + 2

π ζ1)
−1ζ2 and Q

(eff)
2 ≡ 2

π

[

arcsin(Q1) + Q
(∞)
1 − Q1

]

. Equation (17) is equivalent

to the saddle point equation of a system with L = 1 in the limit Q
(∞)
1 ↑ 1 and ϕ ↓ 0. Such a behavior

is achieved for large values of the overlap ζ1. Again, for the large overlap limit and for large values of
α̂, total generalization is asymptotically obtained.

4 Conclusions

UCMs are feed-forward, binary neural networks that can be considered as the perceptron’s next level
of architectural complexity. They have only recently been study for the first time and, although they
theoretically present more capabilities than the perceptron, they have not been used in real world
applications yet.

Probably the most appealing feature UCMs have is the direct relationship between network com-
plexity (as a function of the UCM’s overlaps) and task difficulty. If a task difficulty can be assessed by
measuring its sensitivity (as presented in [15] and [17]), then a suitable UCM may be constructed to
cope with it. It is natural to continue this research by exploring the learning process in UCMs.

In this article we presented a study of the learning-by-examples process in UCMs. Our results were
obtained by the application of statistical mechanics techniques, more precisely, by the application of
the replica trick, with the imposition of replica symmetric ansatz. Our analysis is based on the study
of regimes characterized by the number of examples presented to the student. The regimes of interest
are those where the load parameter α is proportional to the number of units in the ℓ-th hidden layer of
the teacher. To simplify this analysis we considered teachers with the first ℓ− 1 overlaps equal to zero.
Although apparently less complex, such systems present a qualitatively identical critical behavior to
systems with a full set of non-vanishing teacher overlaps.

Our first result, equation (8), is the saddle point equation correspondent to the regime where α is of
order 1. This equation admits only one solution, which is the only minimum of the free energy, for all
values of α. Thus, this regime is characterized by a lack of transitions and a decay of the generalization
error to a non-vanishing value.

The first regime that admits a phase transition occurs when the load parameter is proportional to
the number of hidden units in the more external (closest to the output) hidden layer. This first order
transition is from a symmetric phase with zero inter-replica overlap and constant value of the general-
ization error (data acquisition phase), to a specialized phase, with a non-zero inter-replica overlap and
decaying (and non-negligible) generalization error (generalization phase). This behavior is repeated
for regimes where α is proportional to the number of units in a given hidden layer, but the first. If
α ∼ O(K) then after the transition the generalization error asymptotically vanishes when α̂ ↑ ∞. In
all the cases where the transition is observed, the drop in the generalization error is discontinuous.
We also observed that teachers with large overlaps effectively appear to their students as less architec-
turally complex UCMs. This result appeals to the consideration of the tradeoff between architectural
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complexity and network performance. It is probably due to this tradeoff that more economical (and
simpler) networks could effectively perform equally good as a more complex (and training demanding)
network.

Finally, we found that if L > 1 we can find many teachers with different synaptic overlaps and
identical critical parameters. This indicates that, although representing different Boolean functions and
implementing different classification tasks, these teachers induce the same learning process in student
networks. This motivates a classification of teachers in equivalence classes that may simplify the study
of Boolean functions so implemented.
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