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ABSTRACT 
This paper discusses the first of three studies which collectively 
represent a convergence of two ongoing research agendas: (1) the 
empirically-based comparison of the effects of evaluation 
environment on mobile usability evaluation results; and (2) the 
effect of environment – in this case lobster fishing boats – on 
achievable speech-recognition accuracy.  We describe, in detail, 
our study and outline our results to date based on preliminary 
analysis.  Broadly speaking, the potential for effective use of 
speech for data collection and vessel control looks very promising 
– surprisingly so!  We outline our ongoing analysis and further 
work. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: 
User Interfaces – Evaluation/methodology; Voice I/O. 

General Terms 
Human Factors, Performance, Experimentation, Measurement. 

Keywords 
Speech Input, Evaluation, Field Study. 

1. INTRODUCTION 
As mobile HCI evolves as a discipline, a number of novel 
evaluation approaches are being conceived [e.g., 1, 3]. 
Simultaneously, the benefits of lab evaluations over field 
evaluations are subject to much ongoing debate [e.g., 6, 7].   

It is argued that usability evaluations of mobile applications 
should always be conducted in the field to increase the likelihood 
of a realistic evaluation context (although this is not always the 
case [8, 11]) and thereby secure more meaningful results. Field 
evaluations have, however, some obvious disadvantages such as 
difficulties regarding data collection and limitations of control 
over the experiments [7, 8, 11].   

Conversely, it is argued that lab-based evaluations afford greater 
experimental control and easier data capture (and therefore 
greater data integrity) than field evaluations because it is possible 
to incorporate high quality data collection methods whilst 
ensuring the safety of study participants [8, 11].  Additionally, 
researchers are increasingly generating novel means by which to 
enhance the contextual relevance of lab studies [2, 7, 10].   

Some initial studies have suggested that both field and lab 
evaluations report the same usability problems [5], some claim 
that the two environments test different facets of usability [6], 
while others have demonstrated that lab evaluations can identify 
more usability problems, including context-specific problems, 
than field evaluations [7]. That said, the findings of the latter have 
been subjectively refuted on the grounds of differences in the task 
assignments and data collection techniques used in both 
environments [11].   

Researchers are only beginning to explore the pros and cons of 
lab v. field usability evaluations.  The relative infancy of this 
discipline, and the corresponding debate, means that literature on 
experimental comparisons of field v. lab evaluation methods is 
scarce, with the debate often being a matter of opinion [11]. 

Our overall research agenda has two goals: (1) to compare the 
effect of evaluation environment (based on three different levels 
of abstraction of the same context-of-use), when applied to 
identical task assignments and when utilizing identical data 
collection techniques, on the experimental results obtained during 
a mobile usability study; and (2) to ascertain whether speech-
based input is a viable interaction mechanism for use in a marine 
environment – specifically, a lobster fishing boat. In this paper we 
discuss the first of a trio of studies designed to meet these goals.  
At time of writing, we are actively engaged in the second study  
(a lab study), and are preparing for the third (a pseudo-lab study 
in a wave tank); in this paper, however, we focus on the 
performance and results of the first – a field study.  Section 2 
briefly outlines the usability issues associated with speech-based 
technologies.  Sections 3 and 4 then describe our experimental 
design and discuss our preliminary results, respectively. We 
conclude, in Section 5, with a discussion of further work. 

2. SPEECH INPUT 
Nominated as a key interaction technique for supporting mobile 
users of technology, speech-based input offers a relatively hands-
free means of interaction and, it is argued, has the capacity to 
extend the functionality of mobile technologies across a broader 
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range of usage contexts [14, 15]. Compared with other input 
techniques, speech has been shown to enhance mobile users’ 
cognizance of their physical environment while interacting with 
mobile devices [10].  It is, however, estimated that a 20%-50% 
drop in recognition rates can occur when speech is used in a 
natural field setting as opposed to a controlled environment [12, 
15]. Given that accuracy is a significant determinant of users’ 
perception of speech recognition usability and acceptability [14], 
developing effective speech-based solutions for use in mobile 
contexts – where users are typically subjected to a variety of 
additional stresses, such as variable noise levels, a need to 
multitask, and increased cognitive load [12] – is challenging [14].  

Two main problems contribute to the degradation of speech 
recognition accuracy in mobile contexts: (1) people speak 
differently in noisy conditions; and (2) background noise can 
contaminate the speech signal, with the result that recognition 
accuracy has been shown to steeply decline in even moderate 
noise [12]. In noisy environments, speakers exhibit a reflexive 
response known as the Lombard Effect which results in targeted 
speech modifications [12, 13], such as changes in volume and 
pronunciation (hyperarticulation). Space does not permit us to 
elaborate on ongoing research to improve speech recognition 
accuracy for mobile contexts; we would, however, refer readers to 
[9] for a review of the field.  In the research presented in this 
paper, our focus is to determine the effect of context – 
specifically, that of a lobster boat – on the accuracy obtained 
when using speech-based input. 

3. STUDY DESIGN & PROCESS 
Our field study was designed on the basis of (a) previous 
ethnographic studies of the environment – a lobster fishing boat – 
and (b) the requirement that our experimental tasks and data 
collection mechanisms remain constant across our three 
experimental set-ups. We are focusing on lobster fishing boats 
because: (a) we are working with a client who is developing 
software for use on lobster fishing boats and is seeking empirical 
evidence that speech would be a viable input option; and (b) in 
many senses, a relatively small, diesel-engine fishing vessel in the 
middle of winter in the Atlantic Ocean arguably represents a 
worst case marine scenario for use of speech input! 

To avoid testing speech relative to a specific software application, 
we developed a very simple data input application which allowed 
us to evaluate speech-based input of different data types (see 
Figure 1 (left)). The application was designed to run on a 
Panasonic Toughbook running Windows XP. Informed by earlier 
studies [9, 15], we used IBM’s ViaVoice speaker-independent 
speech recognition engine, adopted a push-to-talk strategy, and 
employed a Shure QSHB3 condenser microphone. 

Figure 1 (left) shows a screen dump of the evaluation application. 
Whenever participants pressed and held the spacebar on the 
toughbook, the mic logo changed to an “on air” logo to reinforce 
the fact that the system was ready to receive input. Participants 
were shown a data item (in terms of what they are to physically 
say) on screen (“Five” in Figure 1) and were required to input that 
item using speech; the results of their input were reflected 
immediately underneath in the input field. Participants were 
required to achieve an accurate entry, upon which the system 
automatically moved them on to the next data entry item. In the 
interests of time (and to mitigate against potentially fuelling high 

user frustration), we restricted participants to three attempts per 
item (the number of available attempts was always shown by a 
counter in the top left corner of the screen); if, on their third 
attempt, participants still failed to achieve a correct entry, the 
system automatically moved onto the next item and the attempts 
counter was reset. Participants were given training on how to use 
speech to enter data prior to commencing the study tasks. They 
were trained in conditions identical in all aspects to those used in 
the study sessions themselves. 

  
Figure 1. Speech input application (left) and distraction 

application (right).  
As can be seen from Figure 2, lobster boat crews are required to 
simultaneously monitor and interact with a plethora of electronic 
devices. To reflect this in our experimental set-up we developed a 
very simple ‘distractions application’ (see Figure 1 (right)): it runs 
simultaneously to the data input application and mimics the need 
to monitor ancillary technology by displaying a sequence of red 
squares, in a preset (pseudo-random) pattern of location, interval, 
and duration, which the study participants are required to 
acknowledge by tapping (via the touchscreen). Although one 
could argue that we could have more realistically achieved the 
same effect by simply introducing the speech-input application to 
the working environment onboard the boats, this would not have 
been replicable in our other study environments; it was also not 
possible from an ethical/safety perspective. Figure 2 (right) shows 
the two toughbooks (one for each system) set up in the cabin of 
one of the boats on which we conducted our field studies. 

  
Figure 2. Cabin of a lobster boat (left) and Toughbooks set up 

in situ (right). 
Participants were first trained (in situ) on the speech-based 
application, then the distractions application, and then were given 
an opportunity to familiarize themselves with using both in 
parallel.  During the experiment, we took a range of measures to 
assess the efficacy of speech: we recorded the length of time 
participants took to complete each of their (79) data entry tasks 
and the details of the data they entered; we recorded details of 
participants’ responses to the ‘distractions’; finally, we asked 
participants to subjectively rate the workload involved with the 
study tasks (using the NASA TLX scales [4]). 

Acknowledging lack of complete control over the environment of 
field studies, we recruited (on a voluntary basis) the assistance of 



lobster fishermen to conduct our field experiments: we had no 
control over the demographics of the crews on the boats, nor were 
we able to control the prevailing weather conditions – we merely 
accompanied crews on (typically scheduled) fishing trips. We 
were able to complete 3 separate trips on lobster fishing boats 
during which we were able to run 8 fishermen in total through the 
experimental session; prevailing weather, whilst not ideal given 
the winter conditions, was relatively consistent and typical of the 
conditions in which the boats normally operate. Fishermen 
participated in our study sessions at times when they were not 
otherwise engaged in mission-critical activities (e.g., en route 
to/from trap lines as opposed to when hauling in/laying the traps). 
Participation took approximately 45 minutes in total per person; 
participants were not compensated for their time. Our participants 
were all males, aged 18-45 years. 

4. RESULTS & DISCUSSION 
In the following discussion, we highlight our preliminary 
findings; additionally, we outline the ongoing analysis in which 
we are actively engaged. 

Engine noises on the fishing boats were in the range 80dB(C) –  
100dB(C) (approx. 70db(A) – 95dB(A) adjusted for human 
hearing).  On the basis of previous research which has shown the 
negative impact of ambient noise on speech-recognition accuracy, 
we anticipated realizing very low accuracy rates in our field 
study.  We adopted a simple measure of accuracy per data input: 
namely ultimate success (a Boolean value of 1 for correct and 0 
for incorrect after exhausting all available tries) divided by the 
number of tries used.  We observed an average accuracy rate of 
94.7% which was much higher than we anticipated.  Given that in 
safety critical systems it would be essential that correct entry was 
achieved on first attempt, we re-assessed our results to look at the 
extent to which participants achieved successful entry on their 
initial attempt: on average, 91.1% of data inputs were correctly 
interpreted first time. This is by no means ideal, but it is 
extremely encouraging. 

As previously mentioned, our data set comprised 79 data items.  
The items were selected on the basis of vocabulary appropriate to 
the lobster fishing industry as well as commands typical for vessel 
navigation. Our data types, therefore, included: dates; digits 
(numbers entered by saying, for example, “One Five” for 15); 
decimals; numbers (numbers entered by saying, for example, 
“Fifteen” for 15); and a series of control commands which we 
subdivided according to function – fishing v. navigation. 
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Figure 3. Average accuracy achieved according to type. 

Figure 3 shows the average accuracy rates that were achieved 
according to our type classification.  An ANOVA test showed that 
accuracy was significantly affected by data type (F5,78=8.74, 
p<0.001). Tukey HSD tests showed that decimals were 

significantly less accurately entered than all other data types; 
there were no other statistically significant differences between 
data types. Interestingly, the command inputs (darker grey bars in 
Figure 3) achieved high levels of recognition accuracy; in the case 
of navigation commands, one particular command (“Aft”) caused 
problems for the majority of participants; with it removed from 
the calculations, the average accuracy rate rises from 95.1% (as 
shown in Figure 3) to 99%.  These results would suggest that 
there is real potential to use speech to issue commands to marine 
systems; in fact, it would appear that commands have the 
accuracy edge on data input. On average, it took participants 
342.9sec to complete all 79 data inputs (an average of 4.3sec per 
item).  Task completion times ranged from a minimum of 
241.4sec (3.1sec per item) to a maximum of 502.5sec (6.4sec per 
item). Whilst the aforementioned data accuracy rates are 
obviously encouraging, it is not so immediately obvious whether 
the time associated with achieving these rates is equally 
encouraging.  Further study would be necessary to draw 
conclusions in this respect. 
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Figure 4. Average accuracy achieved and distractions 

identified across participants. 
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Figure 5. Average workload ratings according to dimension. 

On average, participants successfully reacted to 98.3% of the 
distractions to which they were exposed during their study 
session. As can be seen from Figure 4 – in which average 
accuracy rates are shown alongside the percentage of distractions 
identified by participants – while some participants seemed to 
achieve similar performance on both systems, there is 
considerable disparity between others’ performance across the 
data input and distraction tasks. We are actively engaged in 
detailed analysis in order to model the actual patterns of activity 
and voice nuances underpinning these observations in order to 
determine, if possible, cause and effect – for example: did 
participants make mistakes on speech entry because they were 
physically reacting to a distraction or vice versa?; did participants 
demonstrate a tendency to concentrate more fully on one 
application or the other?; were there specific nuances in 
participants’ speech that impacted their input?; and what is the 
breakdown of error type (e.g., human v. mechanical)? 



Finally, participant responses with respect to subjective 
assessment of workload are encouraging (see Figure 5).  For all 
bar the performance level (see darker grey bar), a lower value is 
preferable (representing lesser perceived workload).  It would 
seem that participants were generally very happy with their 
performance (as well they should be given the accuracy rates 
achieved); they also did not consider the workload excessive 
(average workload across the first 5 dimensions being a mere 5.8). 

The above workload ratings are exemplified in the following 
comment made by one of the participants: "This was quite a bit 
easier than I thought it would be.  It didn't seem to be hard at all.  
Worked Well." – and encouraging reaction. 

5. CONCLUSIONS & FUTURE WORK 
Contrary to expectation, we found that the ambient noise 
prevalent in our field studies had little noticeable impact (relative 
to the anticipated 20%-50% drop) on recognition accuracy.  
Surprised by this, we tightened up our measure of accuracy to 
consider only those items entered correctly on first attempt; this, 
too, returned a higher than expected, and encouraging, accuracy 
rate. Similarly, the accuracy achieved according to data type 
suggests that there is potential scope for vessel control as well as 
data collection using speech.  Speech did not appear to impose 
excessive workload on our participants, even with the combined 
need to monitor and react to the distractions application – an 
encouraging indicator of potential workload in real use. In 
summary, therefore, our preliminary analysis indicates there is 
considerable promise for the effective use of speech in marine 
environments. 
In the previous section, we highlighted a series of questions which 
we are actively investigating.  Pursuing answers to these 
questions will allow us to form a more complete picture of the 
appropriateness of speech in marine environments.  Furthermore, 
we hope to complete our additional evaluation studies in the 
coming months; thereafter, we will be able to engage in analysis 
of the results to determine the effect of evaluation environment. 
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