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Abstract 

Biological processes are subject to the influence of numerous factors and their interactions, 

which may be non-linear in nature. In a recombinant protein production experiment, 

understanding the relative importance of these factors, and their influence on the yield and 

quality of the recombinant protein being produced, is an essential part of its optimisation. In 

many cases, implementing a design of experiments (DoE) approach has delivered this 

understanding. This chapter aims to provide the reader with useful pointers in applying a DoE 

strategy to improve the yields of recombinant yeast cultures. 

  

Key words: Design of experiments; process optimisation; process development; process 

characterisation. 

 

1. Implementing a design of experiments approach 

The design of experiments (DoE) approach involves the systematic application of statistics to 

an experimental set-up in order to determine how combinations of a series of input 

parameters or ‘factors’ set at different ‘levels’ (such as culture temperatures of 20 ºC, 25 ºC, 

30 ºC, pH of 5, 6, 7 and dissolved oxygen concentrations of 30%, 40%, 50%) affect an output 

or ‘response’ (such as recombinant protein yield) (1). DoE is therefore an effective way of 

investigating the impact of multiple conditions whilst reducing the overall number of 

experiments, without compromising the quality of the data. Information on the relationship 

between the factors and the response is extracted in the form of an equation: the use of a 

statistically-robust design means that it is not necessary to perform experiments to examine 

all possible combinations of factors and levels in order to obtain the equation. In section 2.5, 

we discuss a recent study exploring three factors set at three levels. The statistical design used  

required only 13 experimental combinations out of a possible 27 to be examined in order to 
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identify the optimal the relationship between the response (in this case, the yield of 

recombinant green fluorescent protein secreted from the yeast, Pichia pastoris) and the 

factors (temperature, pH and dissolved oxygen concentration) (2). 

 

In a typical DoE set-up, the factors to be tested, the number of levels, the number of 

replicates to be performed (e.g. n = 3) and the layout of the experiment are specified in a 

design matrix (see section 2.5 and Note 1). Statistical analysis then fits the response, derived 

by running the specific experimental combinations defined by the matrix, to a model (which 

may be linear or non-linear) and quantitatively determines the effect of each factor on this 

response. The use of replicates means that the amount of error in the model can be 

determined as well as whether, or not, any lack of fit present is statistically significant. DoE 

therefore offers many benefits over more traditional experimental approaches of varying one 

factor at a time (OFAT), which are typically inefficient, expensive and time consuming (3). 

 

DoE was first proposed as an alternative to OFAT by Sir Ronald A. Fisher in 1935 (4), who 

based his approach on the statistical method known as ‘analysis of variance’ (ANOVA). It 

was later used by Genichi Taguchi in the 1950s to improve the quality of manufactured goods 

and is now widely implemented in modern biotechnological applications (5). DoE as a 

general strategy is typically involved in both the early and late stages of industrial bioprocess 

development. More specifically, DoE is seen as being integral to the process of securing 

regulatory approval for products from organisations such as the US Food and Drug 

Administration (see http://www.fda.gov/regulatoryinformation/guidances/ucm128003.htm). 

In the following sections the application of DoE to screening, characterisation and 

optimisation of protein production experiments are introduced, followed by an overview of 

appropriate experimental set-ups. 
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1.1 Screening for key factors 

Screening designs are used to reduce the factors under initial consideration (which could be 

7–12 or more, based on previous experimentation and guidance from the literature (6)) to a 

shortlist of 3–5 that warrant further, more detailed study (2). Typically, fractional factorial 

designs are used at this screening stage where a ‘fraction’ of the experimental runs are 

selected from a full factorial design. This allows for a cheap and rapid investigation but may 

affect the data quality. The compromise between the size of the fraction and the quality of the 

data can be judged by checking the resolution of the design: a design of at least resolution V 

is typically chosen (see Chapter 7 of reference (1) for a further explanation of design 

resolutions). Implicit in this type of design is that information on how the interactions 

between factors affect the response is confounded (i.e. distorted). However, data on the main 

effect of each factor on the response are of sufficient quality to make a judgement about a 

factor’s inclusion or exclusion from subsequent experimentation. Overall, the outcome of a 

screening exercise should be the identification of the factors that warrant further study, as 

well as an understanding of their appropriate experimental ranges. 

  

1.2. Process characterisation  

The primary goal of process characterisation is to identify and quantify the influence of the 

key factors, typically as part of a plan for process improvement. Characterisation confirms 

the identities of the factors influencing the response of a process (e.g. protein yield, 

functional activity or stability) and enables a prediction of the optimal response under a range 

of operating conditions. The investment of time and resources at this stage results in better 

process understanding, improved reproducibility and may reduce delays in costly regulatory 

procedures.  
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1.3. Process optimisation 

Since a recombinant protein production experiment is a multi-phase, multi-component 

process, protein yield, as well as other responses such as stability and activity, can be 

influenced by a wide range of factors including the composition of the culture medium, its 

pH, the culture temperature, the availability of dissolved oxygen in the medium and the 

details of the induction regime (e.g. concentration of inducer as well as the point and duration 

of induction). In the process optimisation stage, the goal is to ‘zoom in’ on a particular 

portion of the design space or, by changing the design used, to model any non-linear 

behaviour observed in the previous stages (e.g. by using the ‘response surface method’; 

section 2.4.3). By using DoE, process optimisation becomes more systematic and informative 

by enabling different levels of each factor and their interactions to be related to the response. 

In an iterative process, data from one round of DoE results in a model that provides the 

information for an improved design in subsequent rounds. Table 1 gives some examples of 

how DoE has been used to improve a range of different bioprocesses, including recombinant 

protein production experiments. 

 

(Insert Table 1 here) 

 

2. Experimental set-up 

Devising and analysing a DoE has been considerably simplified in recent years with the 

advent of a range of specialist software packages including MiniTab® (www.minitab.com), 

Modde® (www.umetrics.com), ECHIP® (www.experimentationbydesign.com/index.php) and 

Design-Expert® (http://www.statease.com/software.html). These packages are well supported 

by their providers (see the websites above for further information). 
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Before starting a DoE, the experimental goals and criteria for success should be clearly 

articulated. A relevant example would be the goal of determining the key factors influencing 

a response such as recombinant protein yield and then to use that information to maximise the 

yield, as measured in mg L-1 (Table 1). Only once these goals and criteria are defined can a 

valid DoE strategy be developed, including a plan of action in the event that the experiments 

do not turn out as expected. The effect of selected factors on a process response is then 

examined at a number of levels, depending on the experimental design chosen. It should be 

noted that the temptation to add a large number of factors or responses just to see how they 

change should be tempered by the fact that this may divert focus from those that are critical 

to meeting the goals of the DoE, and therefore should be avoided. In the following sections, 

the key components in setting up a DoE are considered. 

 

2.1 Factor selection 

Factors are usually variables, which can have defined set-points. They might include pH, 

temperature, dissolved oxygen concentration or the concentration of medium components. 

Input factors may also be an ‘attribute’, e.g. the presence or absence of a medium component 

at a level that does not vary. Other factors, which may or may not be controllable and which 

are referred to as ‘noise factors’, should be considered in the DoE (see Note 2). The presence 

of noise during the experiment can distort the results to the extent that incorrect conclusions 

are drawn. Their effect may therefore be minimised by using ‘blocking’ or ‘randomisation’ in 

the design (see Chapter 2 of reference (1) for further details). ‘Blocking’ mitigates 

‘categorical’ noise, e.g. that introduced by using ‘bioreactor 2’ in some experimental runs 

instead of ‘bioreactor 1’. ‘Randomisation’ mitigates ‘variable’ noise, e.g. day-to-day 

variations in laboratory temperature. 



7 
 

 

2.2 Level selection 

For the simplest designs, known as 2k designs, each of k factors is examined at two different 

levels, coded as -1 (for the low level) and +1 (for the high level) in a design matrix. This type 

of design can also be modified to accommodate many more levels. However, it is important 

to bear in mind that examining certain levels may not be biologically practical. For example a 

growth medium with a very low pH may inhibit the growth of the organism being studied, 

while maintaining very high dissolved oxygen concentrations may not be experimentally 

feasible. Since the difference in response observed experimentally is related to the difference 

in the levels of each factor, an equation can be derived that describes the relative importance 

of each factor on any change to that response. 

 

2.3 Response selection 

It is possible to carry out DoE where the response is an attribute (7) (e.g. the protein produced 

is functional or not), but most commonly the response can be measured on a continuous, 

variable scale. Protein yield, protein activity and culture density fall into this category.  

 

2.4 Experimental design selection 

The choice of experimental design, as discussed in the next section, is dependent on the 

purpose of the DoE (screening, characterisation or optimisation) and the number of factors 

under consideration, as summarised in Table 2.  

 

(Insert Table 2 here) 

 

2.4.1 Factorial designs 
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Full factorial designs (e.g. 2k designs) can be used for screening a small number of factors 

(≤4) in order to identify the most significant ones, but can also be used sequentially to model 

and refine a process. Each factor can have two or more levels and the design generated will 

include all possible combinations of the factors and levels. In contrast, fractional factorials 

are more efficient designs used to screen a large number of factors (≥5) to find the few that 

are significant, but compromise on the quality of the information on the interactions between 

the factors. Consequently, full factorials should be used to estimate the effects of interactions, 

which may be missed in a fractional design.  

 

In cases where a large number of factors is to be studied, whilst minimizing the experimental 

runs, Plackett-Burmann designs (8) may be considered. Alternatively, a D-optimal approach 

may be suitable, as it allows a subset of experimental runs to be selected (9). The D-optimal 

design also allows the inclusion of both quantitative and qualitative (attribute) factors with a 

mixed number of levels. Analysis of factorial designs are typically done using ANOVA (1),  

which lead to a first-degree polynomial equation describing the factors that influence the 

response of interest. However, full factorial designs may also be analysed using regression 

(see section 2.4.3). 

 

2.4.2 Taguchi designs 

Taguchi's orthogonal arrays (1), which were originally created before the widespread use of 

DoE software, are highly fractional designs that can be used to estimate main effects using 

only a few experimental runs. These designs are not only applicable to two level factorial 

experiments, but also can investigate the main effect of a factor with more than two levels. 

Designs are also available to investigate the effects when the factors do not have the same 

number of levels. As with Plackett-Burman designs, these designs require the experimenter to 
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compromise on data describing any interaction effects. Taguchi designs are often focused on 

reducing the sensitivity of a response to noise. A recent example of the use of this type of 

approach is in the improvement of biological assays (10). 

 

2.4.3 Response surface method designs 

Factorial designs are sufficient to determine which factors have an impact on the response of 

interest. Once these have been identified, a more complex design can be implemented to 

generate a second-degree polynomial equation, which can be used to maximise, minimise, or 

achieve a specific response. Regression models are used for analysis of the response, as 

quantifying the relationship between the response and the factors is of the most interest, 

rather than the identification of the important factors: this is known as the response surface 

method (RSM) (11). Once the resultant equation has been validated, the behaviour of a 

process can be predicted, for example in maximising protein yield (Table 1). 

 

In order to analyse response surfaces, special experimental designs are used that help the 

experimenter fit the second order equation to the response in the minimum number of runs. 

Examples of these designs include the Central Composite design (CCD) and the Box-

Behnken design (BBD) (11). CCD is a two level, full or fractional factorial design augmented 

with a number of centre points and other chosen runs (12). BBD is similar in concept to 

Plackett-Burman designs, but with factors at 3 levels. Note that a full factorial design, with all 

factors at three levels, would also provide all required regression parameters. However, this 

type of design is expensive to use, requiring 27 runs compared, for example, with the 13 

required in a BBD and 15 in a CCD (13). One further advantage of BBD in biological 

applications is that it does not contain factor combinations for which all factors are 

simultaneously at their highest or lowest levels, thus avoiding experiments that need to be 
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performed under extreme conditions. However, if an experimenter is interested in the 

responses at the extremes, BBD may not be suitable. 

 

2.5 Data analysis: a case study 

A BBD was used to optimise the yield of recombinant green fluorescent protein (secreted 

from P. pastoris) as a function of the three most commonly-varied process parameters: 

culture temperature (T), pH and the percentage of dissolved oxygen in the culture medium 

(DO) (2). Based on the results of a first optimisation run (see 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717918/#supplementary-material-sec), the 

three factors (T, pH, DO) were each varied at three levels, coded as –1 (lowest value), 0 

(middle value) and +1 (highest value); MiniTab® statistical software (version 15.1.1.0) was 

used to construct the experimental matrix shown in Table 3.  

 

2.5.1 Model building 

The predictive model generated from the outputs of the matrix is described by Equation 1 

and Figure 1.  

 

Equation 1: Yield (ng mL-1 OD595
-1) = (– 21814.9 + (328.6×T) + (5502.1×pH) – (37.8×DO) 

– (325.6×pH2) – (47.9×T×pH) + (6.4×pH×DO)) × γ, where; T = temperature (°C), DO = 

dissolved oxygen (%) and γ = 0.3 and is the conversion factor from RFU to ng of protein 

 

This model was derived in Minitab® (see www.minitab.com for a detailed description of its 

use) by removing insignificant terms from the full model based on their p-values (14). The 

adjusted R2 value (R2
adj) for the regression changed as each term was removed, R2

adj being a 

modification of R2 that adjusts for the number of terms in the model (14). R2
adj values of 
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0.160 (full model), 0.115 (1 term removed), 0.274 (2 terms removed), 0.324 (3 terms 

removed) and 0.292 (4 terms removed) indicated that the model with 3 terms was statistically 

soundest. In Equation 1, the yield was converted to ng mL-1 OD595
-1 from RFU mL-1 OD595

-1 

using an experimentally-derived factor.  

 

Yields improved at lower T and higher pH, although at the temperatures tested, T did not 

have a large effect on yield (Figure 1A), which was highest around pH 7 (Figure 1B). Yields 

also increased with increasing DO (Figure 1C). Figure 1D shows the ε2 results, which 

indicate the influence of each of the factors and their interactions within Equation 1. The 

data support the view that pH is a key factor as the ε2 values for pH, pH2 and the interactions 

of pH with both T and DO are substantial. DO alone is also important, while in contrast the 

effect of T alone makes a relatively small contribution, in agreement with the main effects 

plots (Figure 1). 

 

(Insert Figure 1 here) 

 

2.5.2 Model validation 

The results of the statistical validation of this model by ANOVA are shown in Table 4. A 

recent report suggests that this type of analysis is often missing in published models and that 

good models from the literature have R2 values > 0.75 with values below 0.25 being 

considered poor (15). This suggested that the model was of acceptable quality in line with 

recent DoE studies of protein production in E. coli (15). 

 

(Insert Table 4 here) 
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The model was also validated experimentally by running the factor combinations shown in 

Table 5, which had not been used in the model building process, and comparing the fit of the 

experimental output to the predicted response from the model (Figure 2).  

 

(Insert Table 5 and Figure 2 here) 

 

Nine of the twelve data points were within 40 ng mL-1 OD595
-1 (i.e. within 5–15 %) of the 

predicted value. The three data points outside this range (with T, pH, DO values of 20, 7.5, 

60; 28, 7.5, 90 and 27.5, 6.7, 80), were within 16–25 % of the predicted value, and were not 

correlated in any obvious manner. The experimental conditions leading to the maximum yield 

were predicted to be 21.5°C, pH 7.6, DO 90 % (Figure 3), which was confirmed 

experimentally (2). 

 

(Insert Figure 3 here) 

 

3. Notes 

1. Before starting any experimentation, ensure the reliability of any gauges or 

measurement devices to be used and record any process drifts or changes (such as a 

change of operator) during the experiment. A minimum of three replicates should be 

done per experiment. Where possible, use the same starting materials for all 

experiments. Document all raw output data as well as the averaged data. 

 

2. Noise factors may be categorical (such as noise associated with a change in operator or 

item of equipment) or random (the ambient temperature or humidity). 
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Figure legends 

 

Figure 1: A main effects plot showing the influence of each of the factors (A) T, (B) pH and 

(C) DO on the response (specific yield). Panel D shows the ε2 analysis which indicates the 

influence of each of the factors and their interactions on the model. The value reported for ε2 

is the quotient of the sum of squares for the factor and the total sum of squares (from Table 4) 

expressed as a percentage. 

 

Figure 2:  Demonstration of the predictive capacity of the model. A scatter plot of the 

predicted versus experimental response is shown. Each check point condition was from 

within the model design space, but had not been used to build the model. The fit to the line of 

parity (y=x) is shown with R2 = 0.57. 

 

Figure 3: A response surface contour plot showing how yield per cell changes with each of 

the input factors. T = temperature (°C), pH = pH and DO = dissolved oxygen tension (%). All 

hold values are the “0” mid-point values in the DoE matrix. 
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Table 1: Examples of DoE in bioprocess improvement 

Protein Goal of DoE Statistical method used Reference 

Recombinant erythropoietin (from P. 
pastoris culture) 
 

Maximising protein yield as a function 
of the temperature, pH and dissolved 
oxygen concentration of the culture 
medium 
 

Response surface method (Box-
Behnken) 

Bora, N and Bill, RM, unpublished 

Recombinant green fluorescent 
protein (from P. pastoris culture) 
 

Maximising protein yield as a function 
of the temperature, pH and dissolved 
oxygen concentration of the culture 
medium 
 

Response surface method (Box-
Behnken) 

(2) 

Polyglutamic acid isolated from 
Bacillus subtilis 

Maximizing polyglutamic acid yield as 
a function of the composition of the 
growth medium 
 

Fractional factorial design and 
response surface method 

(16) 

Recombinant Fab’ fragment (from 
Escherichia coli culture) 

Maximising yield as a function of 
agitation rate and dissolved oxygen 
concentration 
 

Full factorial (22) design (17) 

Clavulanic acid from Streptomyces  
clavuligerus 
 

Maximizing clavulanic acid yield by 
optimizing the composition of the 
growth medium 
 

Screening by fractional factorial 
design and optimisation by response 
surface method 

(18) 

Recombinant cystatin C mutant (from 
P. pastoris cultures) 

Maximizing yield and protein 
glycosylation as a function of three 
nitrogen sources 
 

Full factorial (23) design (19) 

Neomycin isolated from 
Streptomyces  marinensis 

Maximizing neomycin yield by 
optimizing the composition of the 
growth medium 

Full factorial design and response 
surface method 

(20) 
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Table 2: An overview of statistical designs and when to use them 

Number of Factors Screening Characterisation Optimisation 

1 Not applicable for 
a single factor 

Linear regression or, in 
cases where there is no 
linear fit, non-linear 
regression 
 

Linear or non-linear 
regression 
 

2–4 Full factorial Full factorial Full factorial (for linear 
response) or response 
surface method (for non-
linear response) 
 

5 or more Fractional 
factorial 

Full factorial on selected 
factors (usually <4) 

Full factorial (for linear 
response) or response 
surface method (for non-
linear response) 
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Table 3: Factors and measurable responses for the model building experiments 
 

INPUTS 

(controlled on-line) 
 

 

MEASURABLE RESPONSES 

(measured offline) 

 

 

T 

(°C)  

 

pH 

 

DO 

(%)  

  

OD595 

 

RFU 

(mL-1) 

 

Specific RFU 

(mL-1 OD595
-1) 

 

Specific 
yield 

(ng mL-1 
OD595

-1) 

 

SD; n=3 

(ng mL-1 
OD595

-1) 

19 6 60  20.3 8651 426.2 127.9 3.2 

19 8 60  0.8 1015 1268.8 380.6 3.9 

19 7 30  13.1 10984 838.5 251.6 1.3 

19 7 90  12.4 9259 746.7 224.0 2.1 

24 6 30  24.4 8061 330.4 99.1 1.6 

24 6 90  16.2 11951 737.7 221.3 5.6 

24 8 30  4.7 1564 332.8 99.8 1.1 

24 8 90  1.3 1954 1503.1 450.9 1.3 

24 7 60  17.6 21382 1214.9 364.5 10.1 

29 7 30  24.8 25392 1023.9 307.2 0.2 

29 8 60  4.4 1413 321.1 96.3 1.5 

29 6 60  21.7 10349 476.9 143.1 0.3 

29 7 90  15.1 17495 1158.6 347.6 3.5 

 

The input factors were temperature (T), pH and % dissolved oxygen (DO). Relative fluorescent units 
(RFU) and the optical density at 595 nm (OD595) were measured in triplicate 48 h post induction. The 
mean values are reported for 1 mL of culture. The standard deviation (SD; n=3) is given for the 
specific yield of the culture, where the conversion factor from RFU to ng was determined by 
generating a standard curve (Adapted from reference (2)). 
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Table 4: Statistical significance of the predictive model by ANOVA 

 

Source Degrees of Freedom Sum of 
Squares 

Mean 
Square 

F statistic p value 

Regression 6 1288405 214734 1.96 0.217 

Linear 3 586988 223083 2.04 0.21 

Square 1 326196 326196 2.98 0.135 

Interaction 2 375221 187610 1.71 0.258 

Residual 6 657203 109534   

Total 12 1945608    

 

The statistical significance of the relationship between the predictors and the response of the model 
was assessed using ANOVA, which employs Fisher’s F-test. The goodness of fit of the model is 66 
%, as determined by the quotient of residual sum of squares/total sum of squares (R2 = 0.66). 
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Table 5: Specification of the input factors for the model validation experiments 

 

T(°C) pH DO(%) 

20 7.5 60 

20 7.7 80 

27 8 50 

28 7.5 90 

28 6 80 

23.6 7.25 60 

27.5 6.7 80 

27.5 6.5 60 

27.5 6.3 60 

21.5 7.6 20 

21.5 7.6 40 

21.5 7.6 60 

 

The input factors were temperature (T), pH and dissolved oxygen (DO) 
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Factor Sum of ε2 p 
  Squares   value 
T 8264 0.42 0.208 
pH 251042 12.9 0.095 
DO 327681 16.84 0.367 
pH2 326196 16.77 0.135 
T×pH 229124 11.77 0.198 
pH×DO 146096 7.51 0.292 

Total 1945608 

Figure 1 
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Optimal conditions 
21.5°C, pH 7.6, DO 90 % 

Figure 3 
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