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Advances in Cataract Surgery 

Abstract  

Cataract surgery is a technique described since recorded history, yet it has greatly evolved 

only in the latter half of the last century.  The development of the intraocular lens and 

phacoemulsification as a technique for cataract removal could be considered as the two 

most significant strides that have been made in this surgical field.  This review takes a 

comprehensive look at all aspects of cataract surgery starting from patient selection through 

the process of consent, anaesthesia, biometry, lens power calculation, refractive targeting, 

phacoemulsification, choice of intraocular lens and management of complications such as 

posterior capsular opacification as well as future developments.  As the most common 

ophthalmic surgery and with the expanding range of intraocular lens options, optometrists 

have an important and growing role in managing patients with cataract. 
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Introduction 

The origins of cataract surgery can be traced back to 800 BC when cataracts were treated by a 

method called ‘couching’ whereby the hypermature cataract was dislodged into the posterior 

segment of the eye by blunt force on the eye.  No lens was implanted and the eye was left visually 

aphakic (i.e. no lens in the visual axis).  Apart from a large incision cataract extraction, nothing 

much changed till the middle of the 20th century when intraocular lenses were introduced by Harold 

Ridley.  Ridley observed that segments of Perspex from the crashed windshield of aircrafts in the 

eyes of Second World War RAF pilots were inert.  This observation led him to develop a lens 

design to replicate the structure and function of the crystalline lens before it became cataractous.1 

Interestingly, the material that he used, polymethylmethacrylate (PMMA), is still being used widely 

in lens implants although other biomaterials like acrylic and silicone have taken over in the more 

developed countries.  Advances in lens design are overcoming the risk of posterior capsular 

opacification as well as reproducing attributes of the crystalline lens like asphericity, 

accommodation and ultraviolet (UV) barrier function.   

Surgical manipulation for cataract surgery can also induce changes in the corneal curvature, damage 

endothelial cell count and function as well as have effects on the iridocorneal angle.  Some of these 

collateral effects could have a detrimental effect on the visual outcome.   

Latest technology and instrumentation have made a reduction in the incision size possible, thereby 

leading to a more rapid stabilisation of the wound.  Software refined phacoemulsification energy 

delivery, enhanced fluidics as well as ocular viscoelastics have facilitated safer cataract removal 

with a much reduced endothelial injury.  Biometric technology and software have enabled a very 

high degree of accuracy in the prediction of the final refractive outcome.  Intraocular lens designs 

have risen to the challenge of being able to be implanted through increasingly smaller incision 
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widths.  Additionally, newer intraocular lenses are striving to address issues beyond merely 

refractive status, like accommodation and UV protection.   

Many of the technological innovations are funded and developed by the industry.  A lot of 

information is commercially sensitive, especially those areas which are in development.  Some of 

the very latest advancements in technology are yet to undergo the scrutiny of unbiased, peer-

reviewed research. 

This review has been based on literature accessed from the Medline database, non-peer reviewed 

journals, industry literature, personal communication and personal experience.  The aim is to 

provide the reader with a comprehensive review of the latest advancements in cataract surgery 

highlighting the highest level of evidence obtainable in each individual regard. 

 

Patient selection and managing expectation  

Cataract is a poorly defined concept within ophthalmology especially during the early stages of 

opacification.  If Snellen visual acuity were to be the mainstay of judging the visual disability of the 

patient, many patients would miss out on the benefits of surgery.  Likewise if all the natural 

properties of the crystalline lens are not taken into effect, the outcome could be disappointing.  For 

example a patient could lose almost all accommodation, have reduced unaided acuity due to 

induced astigmatism, lose contrast sensitivity due to spherical aberrations or experience worsening 

of age related macular degeneration due to the loss of the UV barrier function of the natural lens. 

A comprehensive history encompassing the nature of visual disability (e.g. night time, driving, 

interference with specific nature of work or hobbies); prior ocular conditions (including history of 

amblyopia); relevant family ophthalmic history; medical conditions, drug intake and allergies 
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should be sought and recorded.  Current, refraction in both eyes is useful to plan refractive outcome 

post operatively especially with unilateral cataract.   Ocular risk factors for surgery and co-

morbidity should be assessed (see below). Their identification should lead to appropriate 

precautions and or surgical modifications, to minimise the risk of post-operative complications. 

[TABLE] Ocular risk factors for surgery 

 Infection (e.g. severe staphylococcal blepharitis, dacryocystitis) 

 Ocular surface disease (e.g. ocular mucous membrane pemphigoid) 

 Prior ocular surgery (e.g. trabeculectomy, keratoplasty) 

 Corneal opacification (e.g. trachoma, previous keratitis, dystrophies) 

 Decreased endothelial cell count (as in Fuch’s dystrophy) 

 Chronic, recurrent uveitis 

 Keratitis (especially herpes simplex) 

 Glaucoma 

 Fuchs heterochromic uveitis 

 Pseudoexfoliation syndrome 

 Zonular weakness (e.g. Marfan’s syndrome, homocystineuria) 

 Previous angle-closure 

 Previous vitrectomy 

 Previous ocular trauma 

 Posterior polar cataracts (with pre-existing capsular rent) 

 High myopia, nanophthalmos 

 Drugs (e.g. Tamsulosin increases the risk of intra-operative floppy iris2) 
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Informed consent 

Cataract surgery is very successful in the majority of cases.  Topical anaesthesia, day-case surgery, 

shorter operating and recovery times as well as a remarkable improvement in vision have often 

trivialised the risks associated with the procedure.   It should not be overlooked that cataract surgery 

is still regarded as highly complex alongside other major surgical specialities like neurosurgery or 

cardiothoracic. 

 

Data from a multi-centre audit of 55, 567 cataract operations performed across 12 hospitals in the 

UK (conforming to the Cataract National Dataset as defined by the Royal College of 

Ophthalmologists) showed that 99.7% of cataract surgery was performed by phacoemulsification 

(2001-2006). The previous Department of Health sponsored National Cataract Surgery Survey 

performed during 1997-98 showed a much lower rate of phacoemulsifcation.3 The latest audit found 

that in 95.4% of cases, there were no intraoperative complications.  Posterior capsular rupture with 

or without vitreous loss occurred in 1.92% of cases.  Some of the other intraoperative complications 

included simple zonular dialysis in 0.46%, retained lens fragments (dropped nuclei) in 0.18% and 

supra-choroidal haemorrhage in 0.07%.  Other complications included post-operative uveitis 

(3.29%), raised intraocular pressure (IOP) (2.57%), cystoid macular oedema (1.62%) and iris 

prolapse (0.16%) which were noted 31 days (median) following surgery. 4 Posterior capsular 

opacification, bullous keratopathy, retinal detachment and endophthalmitis are other significant, 

sight threatening events that may be observed following cataract surgery.  
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Preoperative assessment  

Refractive targeting 

Cataract surgeons have become victims of their own success with regard to refractive targeting. 

Emmetropia had been an ancillary benefit of lens implantation during cataract surgery when lenses 

were first implanted.  However with other frontiers crossed, the highlight has shifted towards a 

good unaided visual acuity post-operatively.  Patients with high pre-existing ametropia in both eyes 

and bilateral cataracts should be counselled about post-operative anisometropia following first eye 

cataract surgery till the fellow eye cataract surgery is also done, should emmetropia be targeted 

following surgery.  Otherwise, especially if there are asymmetrical cataracts, it would be a good 

idea to aim to reduce ametropia but only sufficient to balance the prescription to a level of 

anisometropia that could be tolerated.   

Biometry  

To accurately predict the optimum intraocular lens power to be implanted, formulae require the 

measurement of the axial length of the eye, corneal power and anterior chamber depth.  When 

ultrasonic echo-impulse techniques are used for biometry, 54% of the error in the predicted 

refraction after implantation of IOL has been attributed to error in axial length measurement, 38% 

due to keratometric errors and the remaining 8% due to errors in estimation of post-operative 

anterior chamber depth (ACD).5  Improving the accuracy of axial eye length determination has been 

postulated to have the greatest impact in improving IOL power prediction.  This is because an axial 

eye length measurement error of 0.5mm for example, is capable of inducing a postoperative 

refractive error of up to 1.4D.6 
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Immersion ultrasound (wherein a transducer is suspended in a fluid coupling medium) is more 

accurate than applanation ultrasound.7  However, ultrasound using A or B scan modality has been 

largely surpassed by partial coherence inferometry (PCI) using a semiconductor diode laser to 

determine axial length and ACD.  This technique is non-contact, making it less skilled to perform 

consistently and is more comfortable for patients.  PCI also ensures no indentation of the cornea 

preventing an underestimation of ACD and axial length.  To obtain a good ultrasound echogram 

with sharp reflection peaks, the ultrasound beam must pass perpendicular to the segmental 

interfaces with the eye namely the cornea, the front and back lens surfaces and from the inner 

limiting membrane of the retina.  The acoustical axial length approximates, but may not correspond 

exactly, to the visual axis.  In contrast, PCI biometry relies on visual fixation to facilitate the 

measurement along the visual axis.  Additionally, the dominant laser reflection originates from the 

retinal pigment epithelium, where the photoreceptors lie rather than the internal limiting 

membrane.8 

Since the advent of the first commercial PCI device in 2001 (IOLMaster, Carl Zeiss Meditec, USA), 

this has become the technique of choice for cataract biometry due to its non-contact nature and its 

high resolution measurement of axial length (about ± 0.02 mm equivalent to 0.05D).9 It has been 

shown to be accurate and reliable, 10, 11 improving the refractive results of cataract surgery.12, 13   By 

2004, the IOLMaster was being used in over a third of hospital eye units in the UK.14  However, 

PCI fails to measure in up to 20% of eyes with dense opacities and macular disease, 11,15,16 although 

this can be reduced to less than 10% with more advanced analysis of the interference waveform.9 

Ultrasound is unable to measure in eyes filled with silicone oil, but PCI can.15,17  Two new devices 

using Optical Low Coherence Reflectometry (OCLR), which is a similar technique to PCI (but with 

the laser replaced by a superluminescent light-emitting diode) have been developed namely LenStar 

LS900 (Haag-Streit, Koeniz, Switzerland) and Allegro Biograph (Wavelight, Erlangen, Germany). 
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These devices have been shown to be as accurate and repeatable as the IOLMaster (Buckhurst at al., 

2009 in submission), and gives the advantage of capturing all measurements without the need for 

realignment and the measurement of additional components of the anterior chamber (such as 

corneal thickness) for use in new and possible future biometry algorithms.  

IOL power calculation formulae  

Several generations of IOL power formulae have evolved, resulting in vastly improved the accuracy 

of post-operative refractive prediction.  SRK-T, Holladay 1 & 2, Hoffer Q and Haigis formulae are 

commonly used.  Although they differ little in predicted optimal IOL power in eyes with average 

axial lengths, some are more accurate than others for lengths outside the mean.  The Royal College 

of Ophthalmologists, London have issued the following guidelines in the choice of formula18 

Axial Length (mm) Formulae 

< 22 Hoffer Q or SRK/T 

22 - 24.5 SRK/T, Holladay 1, Hoffer Q

> 24.6 SRK/T 

 

The Haigis and Holladay 2 are newer formulae and hence have not featured in the above guidelines.  

The Haigis formula uses the anterior chamber depth (ACD) also and employs three constants.  In 

one large series, it has been shown to be more accurate than Hoffer Q in extreme hyperopia.19 It was 

also found to be the most accurate for long eyes (AL>25.0mm).20 The constants in some formulae 

can be customised based on retrospective analysis of individual surgeon’s post-operative results to 

increase their accuracy.21 The Holladay 2 formula uses seven variables namely the axial length, lens 

thickness, corneal power (average K), horizontal white-to-white corneal diameter, ACD, pre-

operative refraction and age of the patient.  One study looking at the accuracy of IOL power 
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prediction using the Hoffer Q, Holladay 1 and 2 and SRK/T formulae found no statistically 

significant difference between them for all subsets of axial lengths.22 Individual surgeons continue 

to use their favourite formulae to give them IOL calculations but newer formulae should help to 

reduce residual refractive error, especially in the more extreme cases of biometric measures. 

Post refractive surgery eyes 

When patients who have had prior refractive surgery present for cataract surgery often many years 

later, accurate intraocular lens power estimation becomes challenging.  When traditional 

keratometry and biometry methods are used on this subset of patients, there is a risk of inducing 

hyperopia following a prior myopic refractive correction or vice versa.  Traditional IOL power 

calculation formulae are dependent on two variables, namely axial length and the dioptric power of 

the cornea.  Based on these variables, the Effective Lens Position (ELP) that is, the eventual 

location of the IOL implant is calculated which subsequently yields the power of the IOL that is 

needed to achieve emmetropia.  The location of the ELP is also based on the assumption that the 

anterior and posterior segments of the eye are proportional.  A second assumption is in the 

determination of corneal diopteric power.  It is estimated based on the central anterior curvature 

alone multiplied by the presumed average refractive index of the cornea, which is adjusted to 

account for the posterior corneal curvature which is roughly -10% of the power of the front surface.   

The resultant of these assumptions when applied to a situation where the cornea has been flattened 

centrally following myopic refractive correction by laser, leads to an estimation of the ELP to lie 

shallower than actual.23  This results in an underestimation of the implant power resulting in a 

‘hyperopic surprise’ in this situation.   

Numerous formulae have been developed in an attempt to overcome this problem with varying 

success.24  Preservation of pre-operative biometric data is vital in these patients as many formulae 
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need those variables to calculate the IOL power.  It is recommended that the following information 

should be retained by the patient undergoing refractive surgery: pre-operative keratometry and 

pachymetry, pre- and post-operative best corrected acuity and IOP and pre-operative and stabilised 

post-operative refraction. 25 Measurements of the true anterior and posterior elevation using the 

Scheimpflug principle and corneal thickness measurements may also be used in standard formulae 

reliably, without the need for any pre-refractive surgery data.26 

 

Operative considerations 

Anaesthesia 

 The UK EPR group have analysed data pertaining to anaesthetic techniques and complications in 

their dataset of 55, 567 operations.  The audit found that local anaesthesia (which allows adequate 

anaesthesia for an approximately 30 minute routine cataract surgery in appropriate patient) was 

used in 95.5% of cases and the remainder were given general anaesthesia.  The local anaesthetic 

methods varied from topical anaesthesia alone in 22.3%, topical and intracameral in 4.7%, 

subtenons in 46.9%, peribulbar in 19.5% and retrobulbar in 0.5%.  One or more minor 

complications occurred in 4.3% of the local blocks administered by either sharp needle or subtenons 

cannula.  Minor complications (such as chemosis or sub-conjunctival haemorrhage) were 2.3 times 

more common with subtenons blocks (P<0.001).  Serious complications, defined as sight or life 

threatening occurred in 25 eyes (0.066%), undergoing sharp needle or subtenons cannula blocks.  

There was a 2.5-fold increased risk of serious complications with sharp needle techniques compared 

with subtenons cannula techniques (P=0.026).27 
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Astigmatic targeting 

Pre-existing corneal astigmatism as identified by corneal topography can be surgically corrected at 

the time of cataract surgery.  An “on-meridional” approach is where the incision is made on the 

steep axis of the corneal astigmatism with a view to reducing the diopteric power of that axis.  

However as the surgically induced astigmatism (SIA) of a standard corneal incision is low, 

combined with rapid wound stabilisation, the effect is small and unpredictable.28  Opposite Clear 

Corneal Incisions involve making another self-sealing, stepped tunnel incision opposite to the on-

axis primary surgical incision.  Having two incisions along the steep axis enhances the effect of a 

single incision.29  Temporal corneal tunnel combined with a paired Limbal Relaxing Incision (LRI) 

placed at the steep keratometric axis at the time of cataract surgery has been shown to have a more 

favourable and lasting effect.30 Arcuate keratotomy has also delivered favourable results when 

performed at the time of cataract surgery.31  Nomograms exist to get more predictable results using 

these interventions.32  Individual surgeons use their preferred technique or a combination of 

techniques to optimise their results. 

Toric IOLs 

These lenses are of toroidal optical design intended to correct regular astigmatism at the time of 

cataract surgery.  The effect of toric IOL implantation in reducing astigmatism is more effective and 

more predictable than any of the corneal surgical methods described above.33, 34 The potential 

drawback of toric lenses is that the rotation of the implant away from the intended axis would result 

in a lesser correction.  For example, if the lens rotates 30 degrees off axis, the astigmatic correction 

would be nil.  Should the lens rotate more than 45 degrees off axis, the lens adds to the ocular 

cylinder, thereby making patients even more astigmatic than they were prior to surgery.35 Surgical 

techniques to accurately position the toric lenses on axis and better IOL designs offering rotational 
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stability are going to be the key determinants for the future success of this lens type. Modern loop 

and plate haptic toric IOLs have been shown to rarely rotate more than 15 degrees from the 

intended axis.36 

Management of refractive surprises 

In spite of best efforts, ‘refractive surprises’ do happen.  This may be due to errors in biometry and 

the use of inappropriate power calculation formulae.  Sometimes as a result of human error, a wrong 

lens can be implanted.  In every case of unexpected refractive outcome, steps should be taken to 

review the process and identify the precise reason for this to have happened.  Hospital critical 

incident procedures should be invoked for a multi-disciplinary approach with a view to learning 

from mistakes and minimising clinical risk in future.   

The unexpected refractive error could be predominantly spherical, cylindrical or both.  Unexpected 

astigmatism may result from poor wound construction (high surgically induced astigmatism), 

unplanned intraoperative conversion to a large incision to express lens fragments or due to the 

unmasking of high pre-existing corneal astigmatism that had been masked by lenticular 

compensation.   

Surgical options for management of post surgery astigmatism include arcuate keratotomy if 

astigmatism is regular or laser refractive surgery.  For spherical corrections, the surgical options 

include lens exchange, piggy-back lens implants or laser refractive surgery. 
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Advances in technology 

Micro Incision Cataract Surgery (MICS) 

Conventional phacoemulsification incisions are in the region of 2.8mm in length. This 

allows for the phacoemulsification hand-piece with a silicone sleeve covering it to fit 

snugly through the wound.  The sleeve facilitates infusion around the needle and prevents 

thermal injury to the cornea.  A second smaller incision is made to insert an instrument, 

the so called second instrument to manoeuvre the cataract during emulsification.  The 

MICS concept involves removing the sleeve off the phaco hand-piece and transferring the 

irrigation system to the second instrument.  This allows reducing the incision width to 

about 1.5mm.37 Aggarwal et al from Chennai in India, have helped to rekindle the interest 

in this area and they coined the term Phakonit to describe their technique.38   

Microphacoemulsification is yet another term to describe the same concept although 

MICS has come to be accepted as the proper term for the procedure.  Although this 

technique has been around for a while, the availability of lens implants that could be 

introduced through such small incisions has delayed its uptake.  The benefits of MICS 

include a reduction in surgically induced corneal aberrations39  and a potentially reduction 

in post-surgical infections.  However it is not without its limitations.  Dense cataracts have 

been difficult to manage owing to amount of heat generated.  There is a loss of efficiency 

due to lower vacuum, aspiration and infusion rates.  Incision leaks and loss of chamber 

stability have also been areas of concern.  The phaco machines have stepped up to this 

challenge by enhancing the capability of the fluid management (infusion, aspiration and 

vacuum capabilities termed fluidics); phacoemulsification energy delivery together with 

improved instrumentation to facilitate more effective MICS.40  
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Ultrasonic phacoemulsification is the standard for cataract surgery although laser has been tried but 

has never really caught on.41, 42 Instead research is being focussed on refining existing ultrasound 

technology delivery in terms of instrumentation and energy delivery. 

Hand-piece design and construction 

The main developments in the hand-piece design and construction has been in the use of a flared tip 

to decrease ultrasound time and energy43 and smaller frequency (sonic rather than ultrasound range) 

probes which are claimed to improve efficiency and minimisation of thermal dispersion.  

Torsional and transversal ultrasound 

Tip-fragment interaction is another area where major strides in phaco development are occurring. 

Conventional phaco tip movement is linear - like a jack-hammer effect where the stroke length 

determines the phaco power.  Increased phaco energy results in greater corneal endothelial injury.44  

Torsional movements rather than the longitudinal movement are claimed to be beneficial for two 

reasons.  First the linear movement in the conventional phaco tends to repulse the fragment away 

from the tip.  Secondly there is no cutting during the backward cycle of the stroke.  Both these 

drawbacks are overcome by the torsional movement.45  Transversal ultrasound is another 

modification wherein the longitudinal movement of the phaco tip is combined with transverse 

movement giving rise to an elliptical motion. 

Energy waveforms 

The parameters involved in a phaco energy waveform are pulse width, frequency, energy and duty 

cycle.  Continuous, pulsed and burst have been the traditional profile choices.  Advanced power 

modulations include hyper-pulse and hyper-burst.  While, traditional pulses or bursts are delivered 

in square waves, newer advances in software, permit gradual ramping up pulses and bursts (variable 
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rise time) as well as delivering waveform-modulated packets of energy.  The aim of these 

advancements is to minimise the phaco energy delivered and consequently minimising endothelial 

injury and heat damage to the wound. 

Fluidics 

Fluidics is based on the physical principles of fluid dynamics.  In an intraocular environment, it 

concerns the co-ordination of vacuum, aspiration and flow.  The suction force is generated by either 

a peristaltic or venturi pump in conventional systems depending on the machine type.  Peristaltic 

pumps generate a vacuum on occlusion and it builds up steadily till the fragments are consumed 

when a post-occlusion surge is generated.  A venturi pump generates a more constant vacuum and is 

capable of drawing fragments towards the tip.  There are advantages and disadvantages with both 

systems and with conventional incision sizes, has been only a matter of surgeons’ personal 

preference.  However with MICS, a high degree of fine-tuning of the machines fluidics capabilities 

is required.  The balance between inflow and outflow has to perfectly balance throughout surgery to 

maintain chamber stability.   

A dual pump is an innovation that provides both venturi-type vacuum and peristaltic flow, 

controlled by specially designed software.  It monitors vacuum levels, and when a pre-determined 

threshold is reached, backs up the pump instantaneously (response time as quick as 26 milliseconds) 

to reduce vacuum to a second, lower, pre-set level thereby reducing the post-occlusion surge.   

Other innovations include non-compliant tubing to help suppress surge; enhancement of outflow 

stability by a micromesh filter that prevents particles from clogging the aspiration line, allowing 

vacuum and flow to be maintained at a constant and a bypass valve that opens during surges to pull 

fluid from the bottle instead of the anterior chamber thereby preventing sudden IOP drops.  
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In addition, advanced software and sensors also contribute to surge suppression and fluidics control.  

Ophthalmic Viscosurgical Devices (OVD) 

Viscoelastic substances play a major role during surgery.  Advances in this field have pushed the 

safety margin further.  The shearing force generated by ultrasonic phacoemulsification, fluids and 

lens fragments tends to damage the endothelial lining of the cornea.  Viscoelastic substances when 

injected intracamerally, protect the endothelium by lining it (visco-dispersion).  They also create 

space (visco-cohesion) to work safely with instruments.  Higher density polymers have uses if 

greater cohesive power is demanded during surgery.  Viscoelastics that are either predominantly 

dispersive or cohesive are available or in combination to be used concurrently.46 Newer agents are 

capable of transforming from dispersive to cohesive depending on the shear rate (visco-

adaptation).47  A lesser known benefit of OVDs is their role in inhibiting free-radicals generated 

during phacoemulsification.48 Higher viscosity agents are difficult to remove completely at the end 

of surgery and incomplete removal leads to increased IOP in the early post-operative period.49 

 

Advances in intraocular lenses  

Aspheric lenses 

The cornea has a positive spherical aberration which increases with age.  This is countered by the 

negative spherical aberration of the crystalline lens.  When the cataract is removed this effect is lost 

and further positive spherical aberrations induced when an IOL of convex spherical design is 

implanted.  Spherical aberration results in lowered contrast sensitivity.  Aspheric lenses are 

designed with a more prolate edge to reduce the spherical aberration.  Good centration of these 

lenses is the key to achieving maximum reduction in aberrations.50  



18 
 

While no difference in visual acuity was found in comparison to spherical lenses, the results of 

aspheric lenses with regards to improvements in contrast sensitivity have been mixed.  No 

significant difference in contrast sensitivity between spherical and aspherical lenses at three to four 

month follow-up was found in one study51  However other studies have reported significant 

improvement in contrast sensitivity52,53 and without a reduction in pseudoaccommodation 

amplitude54.  A reduction in the depth of focus which can result from asphericity is an important 

consideration as most patients undergoing cataract surgery are presbyopic.55  In a postal survey of 

ophthalmologists in New Zealand done in 2007, 27% of surgeons who responded claimed to use 

aspheric IOLs routinely.56 

IOLs for presbyopia 

IOLs for presbyopia are of two types namely the multifocal pseudoaccommodative and the ‘true’ 

accommodative designs.  Early generation IOLs for presbyopia (refractive multifocal) were 

designed to have different refractive zones arranged concentrically, alternating between distance 

and near focal lengths (pseudoaccommodation).  Newer designs have altered the zone width and 

introduced intermediate focal length zones, in addition to aspheric surfaces which enhance the 

spherical aberrations of the eye and hence depth of focus.57  

IOLs have taken advantage of diffractive optics.58  Whereas a smooth convex surface of a lens 

produces one sharp point of focus for the image, diffractive lenses by way of a stepped design on 

the lens surface diffract the light resulting in two focal points.  The central zone of the lens is 

apodised whereby the diffractive step heights are gradually reduced and blended away towards the 

periphery.  At smaller pupil diameters the light energy is directed towards the near focus and at 

larger pupil sizes, towards the distance.  Good lighting during near tasks enhances this effect.  Some 



19 
 

comparative studies have found that diffractive lenses perform better than refractive multifocal 

lenses and have lesser photic effects. 59, 60, 61 

 ‘Accommodative’ IOLs try to mimic the crystalline lens, changing position or curvature in 

response to contraction of the ciliary muscle contraction.  They are designed to work on the optic 

shift principle, with the IOL moving forward on attempted near focus due to increased lens capsule 

equatorial tension on the flexible ‘hinge’ haptics.  The consensus of long-term follow up studies 

which assess ocular accommodation both subjectively and objectively are that the restoration of eye 

focus is limited and reduces with time, perhaps due to fibrosis around the haptics.62  

One of the major issues with developing IOLs that can mimic the crystalline lens is in ‘coupling’ 

them with the ciliary muscle via the zonules and lens capsule.  The size of the capsular bag varies 

between individuals and cannot currently be measured pre-operatively by clinically available 

techniques.  A lens that is too large for the capsular bag will absorb some of its mechanical focusing 

ability without any attempted near focus, and will result in a change from the intended refractive 

distance power.  Those IOLs that are too small for the capsular bag are unlikely to couple well with 

the ciliary muscle action, resulting in a reduced eye focusing effect.  Despite significant advances in 

ocular imaging, imaging the periphery of the crystalline lens behind the pupil is still a significant 

challenge.63  

All presbyopic lenses have their individual strengths and weaknesses due to their optical design and 

mechanism of action.  A ‘mix and match’ philosophy involves using a lens of a different type for 

each eye has become popular to overcome the individual limitations of different presbyopic IOL 

types.  The initial results of this approach are encouraging.64,65 
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UV absorption 

The crystalline lens absorbs most of the incident UV radiation wavelength region of 300- 400 nm.  

This protects the retina from photochemical damage.  However, when the lens is removed during 

cataract surgery, this protective effect is lost thereby increasing the risk of progression of age-

related macular degeneration (AMD).66 The other benefits of UV blocking lenses include 

restoration of normal spectral sensitivity, reduction of erythropsia and cystoid macular oedema and 

stabilisation the blood-vitreous barrier.67  IOLs are being manufactured with UV-absorbing 

chromophores incorporated into the lens material as well as blue and violet blocking filters.  At the 

same time it would not be appropriate to replace a naturally yellowish (nuclear sclerotic) for another 

albeit artificial one.  Therefore degree of chromophores density in an IOL should be able to achieve 

the balance between photoprotection and photoreception.68  To address this issue, a photochromic 

IOL that is clear but becomes yellow when exposed to UV light, has now become available.69  

Other blue blocking and violet blocking lenses have been available for a while, although 

controversy still presides over whether the potential benefits of reduced oxidative stress to the retina 

outweigh the effects of potential light reduction and disruption of circadian rhythm.70 

Posterior capsular opacification  

Posterior capsular opacification (PCO) is due to the proliferation, migration and myofibroblastic 

transformation of lens epithelial cells on the posterior capsule behind the IOL.71 It ranks as the 

number one complication following cataract surgery.  Whereas originally the lens biomaterial was 

thought to be a major determinant, it is now largely recognised that the design of the IOL, 

principally a square edge of the optic, acts as a barrier to the migration of these cells.72 Enhanced 

square edge designs are now available providing a raised edge and consequently a greater barrier 

function.  PCO or ‘after cataract’ as it is sometimes known, should it happen, can be easily and 
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effectively treated by posterior capsulotomy with Nd:YAG laser.  Retinal detachment is no longer 

considered a risk following Nd:YAG laser capsulotomy after phacoemulsification cataract 

surgery.73 However, the optical properties of the newer lenses risk being seriously degraded 

following capsular opacification and its removal.  Posterior optic buttonholing is a technique 

whereby a 4mm or smaller opening is made in the posterior capsule and the optic is prolapsed into 

the opening.  This technique was adopted from paediatric cataract surgery where the PCO rate 

following cataract surgery is extremely high.  In a consecutive series of 1000 patients, this 

technique has been shown to be safe and effective.74 

 

Future developments 

Three lens designs being evaluated as accommodative lens implants are showing promise.  Dual 

optic lenses consist of a mobile front optic and a stationary rear optic which are connected by 

spring-type haptics.  Magnet-driven systems are claimed to provide an active-shift lens, in contrast 

to the passive-shift lens that is currently available.  Here the moving force is provided by repulsing 

mini-magnets.  Lens refilling is yet another method where the lens content is replaced by an elastic 

material and provides accommodation by an increase of surface curvature.75 

 

Sealed-capsule irrigation system is a device that has been developed to selectively deliver an agent 

to target lens epithelial cells following cataract removal.76 The agents/mechanisms currently 

investigated to prevent PCO include nuclear factor kappaB (NF-kappaB),77 proteasome inhibition,78 

macrophage depletion79as well as drugs like ciclosporin A80 and mitomycin-C.81 

Moving away from the surgical options, drugs have been tried as a therapeutic option for cataracts. 

N-acetyl carnosine is one of the topical agents that has been developed for this purpose.  The Royal 
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College of Ophthalmologists is very sceptical about its claims of cataract reversal and has warned 

against its use until more robust scientific data to back its claim becomes available.82 Agents like 

epigallocatechin gallate are being evaluated to protect the lens from UV damage which might slow 

the rate of cataract progression.83 

 

Conclusion 

Cataract is the most commonly performed ophthalmic procedure in Australia and the numbers are 

expected to double in the next half-century.84 This paper has highlighted some of the latest 

innovations in cataract surgery and intraocular lenses.  We envisage that future advances in 

intraocular lenses will allow the restoration of clear vision and eye focus, combined with protection 

of the retina from harmful radiation. Consideration in the future may be whether crystalline lens 

replacement should occur when presbyopia sets in, rather than waiting until cataracts have formed 

at which point other health complications may affect surgery.  

Cataract is one of the major causes of preventable blindness in the developing nations.  Cutting 

edge technology comes with a price which developing nations struggle to adopt.  Challenges, such 

as the management of posterior capsular opacification can be more expensive than the surgery itself 

in such settings.  However surgeons in those parts of the world have good surgical skills which they 

have used to develop techniques for small-incisional cataract extraction that can deliver results 

comparable with phacoemulsification. Collaborative research, including partnership between 

academia and industry is the way forward to ensure scientific rigour and cost-effectiveness so that 

the fruits of science are available for all of humanity to devour. 
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The described innovations will increase the role of optometrists in advising patients of the options 

and risks and managing their expectations.  They are best placed to assist patients on when it is best 

to have surgery in consideration of quality of life and co-morbidity related issues. Optometrists are 

also critical in the monitoring of post-surgical complications and their management; identification 

and correction of residual refractive errors and in the decision making process regarding second eye 

surgery.  Crucially they play an integral part of the continual clinical audit framework that is 

necessary to maintain high standards of care.85   
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