Hydrodynamic Modeling of Mineral Wool Fiber Suspensions in a Two-Dimensional Channel Flow

G. M. Cartland Glover, E. Krepper, F.-P. Weiss (Forschungzentrum Dresden-Rossendorf) F. Zacharias, A. Kratzsch, S. Alt and W. Kästner (Hochschule Zittau-Görlitz)

• www.fzd.de • NURETH13, Kanazawa Japan, 29th September 2009 • Mitglied der Leibniz-Gemeinschaft

Investigation of the behavior of insulation material in emergency coolant flow

The problem

- + Line break LOCAs
- + Isolation material or other debris is released
- + Some debris is transported through to the containment sump
- + At the sump strainers
 - Fine debris can penetrate the strainer
 - Large debris is deposited
- + The consequences
 - Pressure drop increases could compromise the ECC pump
 - Fibres can accumulate in the reactor core
- Combined experimental and numerical study is being performed on mineral wool fiber agglomerate generation, transport and accumulation

Thanks to TUEV Sued for use of the image.

Studies of the horizontal transport of submerged mineral wool fibers

- Numerical models
 - + Eulerian-Eulerian multiphase flow
 - + Dispersed fluid form
 - + SST turbulence with automatic wall functions
- Boundary and initial conditions
 - + Section or whole of the channel
 - + Velocity inlet and outlet conditions $(\textit{Re} \sim 10.4*10^4 \text{ or } 0.5 \text{ m s}^{-1})$
 - + Uniform volume fraction of dispersed phase at the inlet
 - + Medium turbulence intensity
 - + Total fiber mass of $\sim 440 g$
- ► To determine the impact of
 - + Phase description
 - + Local velocity and turbulence field
 - + Local concentration profiles
 - + Viscosity
 - + Buoyancy, drag and turbulence dispersion forces

・ロト・日本・モト・モー うくぐ

Categorisation of the dispersed phase

Particle Classes

- Particles can be classified by
 - + sphericity
 - + compactness
 - + convexity
- Measured distribution of agglomerate velocities
- Estimated distribution of spherical diameter based on the measured cross-sectional areas of the agglomerates

 d_p = particle diameter; N_p = Number of agglomerates; u_{tp} = terminal settling velocity

ロト・四ト・ヨト・ヨー ク

Dispersed phase morphology

Assumed spherical agglomerate of wetted fibers

- ▶ Knowing both d_p and u_{tp} , ρ_p can be determined
- Share of fibers and water in the virtual particle

$$\zeta_{p} = \frac{\rho_{p} - \rho_{c}}{\rho_{f} - \rho_{c}}$$

Viscosity

+ Mixture viscosity

$$\mu_{cp} = \mu_c \mu_r$$

+ Relative viscosity

$$\mu_r = 1 + 2.5r_p + 7.6r_p^2$$
 (Batchelor, 1977)

r = volume fraction; μ = dynamic viscosity; ρ = density; ζ = fiber share; Subscripts: c = continuous; cp = mixture; f = individual fiber; r = relative; p = dispersed;

Interphase Forces

Buoyancy force characterises the motion of the particles

 $\vec{S}_{cp}^{B}=\vec{g}r_{p}\left(
ho_{p}ho_{c}
ight)$

- Drag Force characterises the resistance of the particles to fluid flow $\vec{M}_{cp}^{D} = C_{cp}^{D} (\vec{u}_{p} - \vec{u}_{c})$
- Turbulent dispersion force characterises the response and spread of particles due to turbulent eddies

$$\vec{M}_{cp}^{TD} = C_{TD} C_{cp}^{D} \frac{\nu_{tc}}{\sigma_{tc}} \left(\frac{\nabla r_{p}}{r_{p}} - \frac{\nabla r_{c}}{r_{c}} \right)$$

Momentum exchange coefficient using Schiller-Naumann coefficient

$$C_{cp}^{D} = rac{3}{4} rac{C_{D,SN}}{d_p} r_p
ho_c \left| ec{u}_p - ec{u}_c
ight|$$

 C_{cp}^{D} = momentum exchange coefficient; $C_{D,SN}$ = Schiller-Naumann drag coefficient; d_{ρ} = particle diameter; C_{TD} = turbulence dispersion coefficient; \vec{g} = gravitational acceleration; \vec{M} = interfacial force; r = volume fraction; \vec{S} = body or external force; \vec{u} = mean velocity vector; ν_{tc} = kinematic turbulent viscosity; ρ = density; σ_{tc} = turbulent Prandtl number; Superscripts: B = buoyancy; D = drag; TD = turbulence-dispersion

Z

Experimental profiles

RT = Relative Turbidity; RT400 = Relative Turbidity at 0.4 m.

・ロト・西・・山・・山・・

Experimental and numerical profiles

k = turbulent kinetic energy; u_x = horizontal velocity component; ε = turbulent eddy dissipation rate; ν_t = turbulent viscosity;

Simulations with one dispersed phase

 r_{p400} = volume fraction at 0.4 m; ρ_c = 997 kg m⁻³ and μ_c = 8.899*10⁻⁴ kg m⁻¹ s⁻¹

・ロト・日本・モート ヨー もくの

• G. M. Cartland Glover et al.• www.fzd.de • NURETH13, Kanazawa Japan, 29th September 2009

Z

Simulations with two dispersed phases

• G. M. Cartland Glover et al. • www.fzd.de • NURETH13, Kanazawa Japan, 29th September 2009

Conclusions

- Uniform velocity profile has a significant effect on the volume fraction profiles
- Solids layer formed at the channel base for larger heavier phases, which is not observed in the experiments
- Varying the volume fraction of the lighter phases in simulations with two dispersed phases caused reductions in solids found near to the channel base
- Modifications to C_D and C_{TD} can also reduce the maximum volume fractions observed
- Further simulations modelling the whole channel are necessary
- Evaluation is also required for the closure of the mixture viscosity
- Improved experiments are also essential

Acknowledgments

- Project partners:
 - + Institut für Prozeßtechnik, Prozeßautomatisierung und Meßtechnik Hochschule Zittau/Görlitz
 - Sören Alt, Thoralf Gocht, Rainer Hampel, Wolfgang Kästner, Alexander Kratzsch, Stefan Renger, Andre Seeliger and Frank Zacharias
 - + Institut für Sicherheitsforschung
 - Forschungszentrum Dresden-Rossendorf
 - Alexander Grahn, Eckhard Krepper, Günter Hessel, Wolfgang Hoffmann, Holger Kryk, Frank-Peter Weiss and Micheal Wiezorek
- German Federal Ministry of Economy and Labor Contracts No. 1501270, 1501307 and 1501363
- This project is not part of the oversight process and does not intend to deliver safety guidelines