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The (n + 1)/2 rule for dealiasing in the split-step
Fourier methods for-wave interactions

Stanislav Derevyanko

Abstract—The aim of this short letter is to demonstrate that = significant problem if one keeps the computational bandwidt
complete removal of spectral aliasing occurring due to finié  high enough so that the aliased modes have low power and

numerical bandwidth used in the split-step Fourier simulaions of do not distort the solution (spatial and temporal solitond a
nonlinear interactions of optical waves can be achieved bynéarg-

ing each dimension of the spectral domain by a factofn +1)/2 beams provide a 9°9d exf':lmple of such c_:lass of systems).
where n is the number of interacting waves. Alternatively, when However when working with broadband signals (e.g. sys-
using low-pass filtering for de-aliasing this amounts to theneed tems characterised by broadband noise, wavelength-aivisi
for filtering a 2/(n + 1) fraction of each spectral dimension. multiplexing (WDM) systems, supercontinuum generatiar) et
Index Terms—Numerical analysis, Discrete Fourier transforms. ~ aliasing can present a problem and can potentially leadge fa
numerical instabilities.
The problem of aliasing in the pseudospectral modelling
l. INTRODUCTION of non_linear_ systems first occu_rred in con"_nputati_onal fluid
) . dynamics with regard to the direct numerical simulations
I N the pseudospectral (or split-step) Fourier (SSF) methg§ys) of the Navier-Stokes equation and problems of climate

of solution of nonlinear partial differential equationseth 4 qeljing. Various remedies have been suggested since [1],
solution is propagated in consecutive steps, where thamnTGL [4], [5] and here | will only consider “padding” techrie

part of the evolution operator is calculated in the FOUTBEEC® \here prior the computation of the nonlinear step the Fourie
and the nonlinear step of the evolution is performed seplraty,main s artificially enlarged to accommodate all modes
in the coordinate space [1], [2]. The transition between theg ing from then-wave interaction which would otherwise
Fourier and coordinate space is performed by the Fast FOUg g riously aliased. Before and after computing the non-
Transform which requires onl@(V log, ') operations. This |inaar step the unresolved extra modes With > Knae

makes SSF the ever-attractive tool for numerical modelling, ¢qot to zero (i.e. filtered). Since the enlargement of the
of single and multidimensional nonlinear systems arising {5 tational domain incurs a computational time overhead
different fields of photonics [2]. The importantand well i yhe 4 estion then arises of what is the minimal number of
drawback of all spectral methods (including SSFRIBSING oy1ra modes one has to introduce to dispense from the ajiasin

which comes from the inability of the scheme to resolvgympetely. From the reasoning above one can see that-the
the wave vectors (or frequencies if the problem is poser\gm enlargement of the Fourier domain frdm

. . . . maxvaaa:]
in the time domain) beyond the computational boundarigg, [ 1K mass 1K maz] is sufficient to filter out all the spurious

Indeed if IV discrete wave vectors are chosen within thg,qqes However it is clear that such broad filtering is wartef
interval[— Kz, Kmas] then the modes with the wave vectorg,, e Navier-Stokes equation (which has a second order
outside the computational region will be automatically P2p ,njinearity,n — 2) Orszag [7] showed that it is sufficient to
(aliased) back to the computational domain mlommaz’ enlarge the computational domain by a factor of 3/2 instdfad o
thatis to say that a mode with the wave vedtrik’| > Kiax 5 pecause the remaining quarter of the modes will be aliased
is undistinguishable from a modé + 2m Ky, from inside 504 into the filter region and hence will not survive anyway.
the domain, wheren is an integer andn # 0. Such modes e that the method of “padding” is equivalent to low pass

appear due to spectral broadening when one computes 8. fiitering where instead of enlargement of the spkct

nonlinear step of the evolution in the SSF scheme. If thgmain the aliased high-wavenumber modes are filtered out at
system is characterised by nonlinear processes-ah order g,ch jinear SSF step. In this case Orszag's rule suggests tha

(e.g. via the nonlinear electric susceptibility”)) then then- i i< s fficient to filter just one third of each spectral domai
wave interaction of the modes leads to the computationallyy ot half of it as one would expect from a naive reasoning.
resolved wave vectors inside the interval—Knaz, Kmax] In the nonlinear photonics one usually deals with Kere(
being mapped into the wider regidrnKoaz, nKmaez] @Nd 3y and sometimes higher nonlinearities. Therefore a generic

all the modes occupying the shel,,... < [k| < nKmas  padding (or filtering) rule is required for higher number of
are spuriously mapped back into the computational domgifieracting waves, i.e. for higher order nonlinearitiese hiext
which constitutes the effect of aliasing. When the level Qfoqion provides such a criterion.

nonlinearity is low and the bandwidth of the signal is easily
controlled during the simulation the aliasing does not @nés Il. THE*(n +1)/2" RULE

S. Derevyanko is with the Photonics Research Group, Astoivelsity, In this section | propose a S|mple generallsatlon of the
Aston Triangle, Birmingham B4 7ET, United Kingdom Orszag's “3/2 rule” to systems with arbitrary order of non-
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linearity, n. The problem can be reformulated as follows: e

given the computational Fourier domdin K a2y Kmaz], We 224 Wi dedlasing

introduce the de-aliasing passband filter that only keeps th  *°] “"

modes inside the interval-a K40, K ez, 0 < a < 1).

The question is then what is the maximum achievable relative

bandwidth of such a filterg, such that all unfiltered modes

still remain de-aliased. Once such,,,, is found one can 051 “‘
\A |

14] |
1,2 I

Normalised spectrum

then enlarge the computational domain prior to computig th o]

1 ‘\ f

A riain i
nonlinear step by the factor af/a,,.. So that the Fourier 04 ¥ \H“\\ \HH\ oA
resolved (and physically meaningful) modes are always de- ‘] PARLLERNS
aliased. Alternatively one can keep the domain unchanged bu 08 06 04 02 00 02 04 06 08

Frequency, THz

filter out the topl — a4, fraction of the spectrum at a price

of the corresponding loss of resolution. The naive wasteful

filtering gives an estimate,,,, = 1/n which means that in Fig. 1. (Color online) Spectral evolution of a chirped Gaasspulse with

the case of, = 3 two thirds of each computational dimensiorid"een n¢) and without (red line) de-aliasing. The iispectrum s given

is wasted and one has to use trice as many modes to maintain '

the same resolution. Clearly one needs a more optimal d@stima

- an analogue of Orszag,,.. = 2/3 for n = 2. The pulse evolution is given by the 1D Nonlinear Schrodinger
Consider the domain of unfiltered modegquation (NSE) [2]:

[—aKmaz, @K maz]. Due ton-wave interaction these modes 5

are mapped into a wider regidran K ,qz, anKmq,] @and all i@ _ @ M + |u|2 w=0 (4)

the resulting modes inside the shéll,,... < |k| < anKax 0z 2 0t

will be mapped back intd— K ..., Kma.] potentially aliasing wherew(z,t) is the electromagnetic field ang, and » are

modes inside the unfiltered interveta K40, 0K maz]. Let  the dispersion and nonlinearity coefficients respectivély

us denote such an aliasing mode /s = BK,... where for the initial condition | opt for a chirped Gaussian pulse

1 < |B8] < an. Then the condition that the mode’ characterized by the peak powef,, width, T, and the

resulted from the nonlinear interaction efmodes within the dimensionless chirp parametér;

unfiltered region is mapped back into the unfiltered region is

equivalent to the existence of a non-zero integersuch that w(0,t) = /Py exp [—

the following inequalities are met:

1+1Cﬁ} 5)

2 T3
The two important scales of propagation are the nonlinear

—aK ez <K +2m Kpay < aKpaz, |ml=1,2,... (1) length Ly, = (vPy)~! and the dispersion length, =

T3 /|B3=]. On the scales of the order dfy, the SPM effects

result in the spectral broadening of the pulse (which isstedi

—a—f<2m<a—p, |m=12,... (2) by the presence of chirp) while the anomalous linear dispers

(acting on the scales Lp) prevents the spectral power from

Finding the optimal filter bandwidth amounts now to findingjispersing. In our simulation the following parameters aver
such maximum value of for which condition (2) is never ysed: 3, = —5 pst/km, v = 3 W—km~!, T, = 20 ps,

met, i.e. non modes within the unfiltered region are able tgo, — 40 mw, ¢ = 5. This yields Ly, = 8.3 km and
produce a mode that is aliased back into the same region. Qng — 80 km. The pulse is propagated over the distance
can readily see that no non-zero satisfying inequalities (2) of one dispersion lengtl, = 80 km. The initial full width
exists if the r.h.s is less thah and the |.h.s. is greater thangt half minimum (FWHM) bandwidth of the pulse B =
—2. Recalling thay3| < an we obtain a sufficient criterion o (In2)'/2 /Ty ~ 83 GHz. In the simulation | used/ = 1024

or equivalently:

for full de-aliasing: Fourier modes with the mode spacing bft7 GHz so that
a < i7 (3) the initial computational bandwidth i8. = 1.5 THz. Two

n+1 runs were performed: with and without de-aliasing (see Fig.

which yields a,mqz = 2/(n +1). The Orszag criterion when 1). The de-aliasing is achieved by increasing the number of
n = 2 follows. modesM by a factor of 2 (as prescribed by(a + 1)/2 rule

for n = 3) at each nonlinear step. One can observe that even in
the case when the computational bandwidthencompasses
the broadened spectrum, the effects of spurious aliasggtre
Let us illustrate the practical concept of full de-aliaswigh in the inadequate description of the evolving pulse (red lin
a simple numerical example. The effect of spurious alia@ngin Fig.1). These effects are efficiently removed by spectral
especially pertinent in the situation where significantctfzé padding as shown by the green line in the same figure.
broadening occurs while the spectral intensity remainsemor One can argue, of course, that the effects of aliasing can als
or less fixed. As an example of such a situation | take thee removed by choosing large enough number of mogiés,
propagation of a chirped pulse in a single mode optical fibénd hence large enough computational bandwisglth while
in the regime where self-phase-modulation (SPM) dominaté®eping the mode spacing fixed, so that the aliased modes will

1. NUMERICAL EXAMPLE
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be of no significance at all (since they will be produced frons]
the interaction of negligibly small modes from the wings of
the spectrum). While this is true it is also clear that such
“overkill” solution is wasteful since larger arrays takentger

to process. Moreover, there is no a-priory guideline as t@ ho
large the number\/ should be to suppress the aliasing. On
the other hand thén +1)/2 rule provides a clear recipe as to
how one should enlarge the number of modes (given a fixed
spectral resolutiod/) at each nonlinear step without the need
for blind guessing or using redundantly large arrays.

IV. CONCLUSION

The obtained simple result can be summarised in the fol-
lowing statementin order to achieve full de-aliasing in the
SSF scheme with the computational domai,,az, Kmax)
in a system withn-th order nonlinearity the domain must
be enlarged by a factor ofn + 1)/2 prior to the nonlinear
step and the aliased modes within the sh§l,.. < |k| <
Kz (n+1)/2 must be filtered (padded with zeros) prior to
the nonlinear step and discarded afterwardsn alternative
statement is that if one employs low pass filtering without
enlarging the computational domain then it is sufficienteeix
a fractiona,,q. = 2/(n + 1) of the modes to ensure full de-
aliasing - the rest of the modes remain unresolved. One can
see that the higher the nonlinearity the higher the costchvhi
is not surprising in view the higher harmonics generatian. F
systems with Kerr nonlinearity each spectral dimensiontmus
be enlarged by a factor of 2 (or alternatively half of each
domain must be filtered out) to achieve full de-aliasing.\Jeéha
also illustrated the benefits of the full de-aliasing methgyd
providing a simple numerical example of pulse propagation |
an optical fiber.

Finally the dimensionality of the problem does not ente
the argument above, or more precisely, for multidimendio |‘

nonlinear systems this criterion applies to each dimensit b

separately, so for @-dimensional system the computatlon-
FFT overhead imposed by the enlargement of the array size
scales as((n + 1)/2)%. If one chooses to apply spectral
filtering this amounts to effective domain reduction by the
same factor. For the 1D problem of pulse propagation in
an optical fiber half of the spectral data must be discarded
to prevent aliasing. The situation tends to get worse as one
considers higher dimensional problems (e.g. optical beards
optical bullets). Still, compared to the wasteful filterimgth
amaz = 1/n One gets an improvementin resolution by a factor
of (2n/(n+1))% = (3/2)% for systems with Kerr nonlinearity.
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