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The (n + 1)/2 rule for dealiasing in the split-step
Fourier methods forn-wave interactions

Stanislav Derevyanko

Abstract—The aim of this short letter is to demonstrate that
complete removal of spectral aliasing occurring due to finite
numerical bandwidth used in the split-step Fourier simulations of
nonlinear interactions of optical waves can be achieved by enlarg-
ing each dimension of the spectral domain by a factor(n+1)/2
where n is the number of interacting waves. Alternatively, when
using low-pass filtering for de-aliasing this amounts to theneed
for filtering a 2/(n + 1) fraction of each spectral dimension.

Index Terms—Numerical analysis, Discrete Fourier transforms.

I. I NTRODUCTION

I N the pseudospectral (or split-step) Fourier (SSF) method
of solution of nonlinear partial differential equations the

solution is propagated in consecutive steps, where the linear
part of the evolution operator is calculated in the Fourier space
and the nonlinear step of the evolution is performed separately
in the coordinate space [1], [2]. The transition between the
Fourier and coordinate space is performed by the Fast Fourier
Transform which requires onlyO(N log2 N) operations. This
makes SSF the ever-attractive tool for numerical modelling
of single and multidimensional nonlinear systems arising in
different fields of photonics [2]. The important and well known
drawback of all spectral methods (including SSF) isaliasing
which comes from the inability of the scheme to resolve
the wave vectors (or frequencies if the problem is posed
in the time domain) beyond the computational boundaries.
Indeed if N discrete wave vectors are chosen within the
interval[−Kmax, Kmax] then the modes with the wave vectors
outside the computational region will be automatically mapped
(aliased) back to the computational domain modulo2Kmax,
that is to say that a mode with the wave vectork′, |k′| > Kmax

is undistinguishable from a modek′ + 2 m Kmax from inside
the domain, wherem is an integer andm 6= 0. Such modes
appear due to spectral broadening when one computes the
nonlinear step of the evolution in the SSF scheme. If the
system is characterised by nonlinear processes ofn−th order
(e.g. via the nonlinear electric susceptibilityχ(n)) then then-
wave interaction of the modes leads to the computationally
resolved wave vectorsk inside the interval[−Kmax, Kmax]
being mapped into the wider region[−nKmax, nKmax] and
all the modes occupying the shellKmax < |k| < nKmax

are spuriously mapped back into the computational domain
which constitutes the effect of aliasing. When the level of
nonlinearity is low and the bandwidth of the signal is easily
controlled during the simulation the aliasing does not present a
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significant problem if one keeps the computational bandwidth
high enough so that the aliased modes have low power and
do not distort the solution (spatial and temporal solitons and
beams provide a good example of such class of systems).
However when working with broadband signals (e.g. sys-
tems characterised by broadband noise, wavelength-division-
multiplexing (WDM) systems, supercontinuum generation etc)
aliasing can present a problem and can potentially lead to false
numerical instabilities.

The problem of aliasing in the pseudospectral modelling
of nonlinear systems first occurred in computational fluid
dynamics with regard to the direct numerical simulations
(DNS) of the Navier-Stokes equation and problems of climate
modelling. Various remedies have been suggested since [1],
[3], [4], [5] and here I will only consider “padding” technique
where prior the computation of the nonlinear step the Fourier
domain is artificially enlarged to accommodate all modes
resulting from then-wave interaction which would otherwise
be spuriously aliased. Before and after computing the non-
linear step the unresolved extra modes with|k| > Kmax

are set to zero (i.e. filtered). Since the enlargement of the
computational domain incurs a computational time overhead
the question then arises of what is the minimal number of
extra modes one has to introduce to dispense from the aliasing
completely. From the reasoning above one can see that then-
fold enlargement of the Fourier domain from[−Kmax, Kmax]
to [−nKmax, nKmax] is sufficient to filter out all the spurious
modes. However it is clear that such broad filtering is wasteful.
For the Navier-Stokes equation (which has a second order
nonlinearity,n = 2) Orszag [7] showed that it is sufficient to
enlarge the computational domain by a factor of 3/2 instead of
2 because the remaining quarter of the modes will be aliased
back into the filter region and hence will not survive anyway.
Note that the method of “padding” is equivalent to low pass
spectral filtering where instead of enlargement of the spectral
domain the aliased high-wavenumber modes are filtered out at
each linear SSF step. In this case Orszag’s rule suggests that
it is sufficient to filter just one third of each spectral domain
and not half of it as one would expect from a naive reasoning.

In the nonlinear photonics one usually deals with Kerr (n =
3) and sometimes higher nonlinearities. Therefore a generic
padding (or filtering) rule is required for higher number of
interacting waves, i.e. for higher order nonlinearities. The next
section provides such a criterion.

II. T HE “ (n + 1)/2” RULE

In this section I propose a simple generalisation of the
Orszag’s “3/2 rule” to systems with arbitrary order of non-
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linearity, n. The problem can be reformulated as follows:
given the computational Fourier domain[−Kmax, Kmax], we
introduce the de-aliasing passband filter that only keeps the
modes inside the interval[−αKmax, αKmax], (0 < α < 1).
The question is then what is the maximum achievable relative
bandwidth of such a filter,α, such that all unfiltered modes
still remain de-aliased. Once suchαmax is found one can
then enlarge the computational domain prior to computing the
nonlinear step by the factor of1/αmax so that the Fourier
resolved (and physically meaningful) modes are always de-
aliased. Alternatively one can keep the domain unchanged but
filter out the top1−αmax fraction of the spectrum at a price
of the corresponding loss of resolution. The naive wasteful
filtering gives an estimateαmax = 1/n which means that in
the case ofn = 3 two thirds of each computational dimension
is wasted and one has to use trice as many modes to maintain
the same resolution. Clearly one needs a more optimal estimate
- an analogue of Orszag’sαmax = 2/3 for n = 2.

Consider the domain of unfiltered modes
[−αKmax, αKmax]. Due to n-wave interaction these modes
are mapped into a wider region[−αnKmax, αnKmax] and all
the resulting modes inside the shellKmax < |k| < αnKmax

will be mapped back into[−Kmax, Kmax] potentially aliasing
modes inside the unfiltered interval[−αKmax, αKmax]. Let
us denote such an aliasing mode ask′ = βKmax where
1 < |β| < αn. Then the condition that the modek′

resulted from the nonlinear interaction ofn modes within the
unfiltered region is mapped back into the unfiltered region is
equivalent to the existence of a non-zero integerm, such that
the following inequalities are met:

−αKmax < k′ + 2m Kmax < αKmax, |m| = 1, 2, . . . (1)

or equivalently:

−α − β < 2m < α − β, |m| = 1, 2, . . . (2)

Finding the optimal filter bandwidth amounts now to finding
such maximum value ofα for which condition (2) is never
met, i.e. non modes within the unfiltered region are able to
produce a mode that is aliased back into the same region. One
can readily see that no non-zerom satisfying inequalities (2)
exists if the r.h.s is less than2 and the l.h.s. is greater than
−2. Recalling that|β| < αn we obtain a sufficient criterion
for full de-aliasing:

α <
2

n + 1
, (3)

which yieldsαmax = 2/(n + 1). The Orszag criterion when
n = 2 follows.

III. N UMERICAL EXAMPLE

Let us illustrate the practical concept of full de-aliasingwith
a simple numerical example. The effect of spurious aliasingis
especially pertinent in the situation where significant spectral
broadening occurs while the spectral intensity remains more
or less fixed. As an example of such a situation I take the
propagation of a chirped pulse in a single mode optical fiber
in the regime where self-phase-modulation (SPM) dominates.
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Fig. 1. (Color online) Spectral evolution of a chirped Gaussian pulse with
(green line) and without (red line) de-aliasing. The initial spectrum is given
as dashed line.

The pulse evolution is given by the 1D Nonlinear Schrodinger
equation (NSE) [2]:

i
∂u

∂z
−

β2

2

∂2u

∂t2
+ γ |u|2 u = 0 (4)

whereu(z, t) is the electromagnetic field andβ2 and γ are
the dispersion and nonlinearity coefficients respectively. As
for the initial condition I opt for a chirped Gaussian pulse
characterized by the peak power,P0, width, T0, and the
dimensionless chirp parameter,C:

u(0, t) =
√

P0 exp

[

−
1 + i C

2

t2

T 2
0

]

(5)

The two important scales of propagation are the nonlinear
length LNL = (γP0)

−1 and the dispersion lengthLD =
T 2

0 /|β2|. On the scales of the order ofLNL the SPM effects
result in the spectral broadening of the pulse (which is assisted
by the presence of chirp) while the anomalous linear dispersion
(acting on the scales∼ LD) prevents the spectral power from
dispersing. In our simulation the following parameters were
used: β2 = −5 ps2/km, γ = 3 W−1km−1, T0 = 20 ps,
P0 = 40 mW, C = 5. This yields LNL = 8.3 km and
LD = 80 km. The pulse is propagated over the distance
of one dispersion lengthL = 80 km. The initial full width
at half minimum (FWHM) bandwidth of the pulse isB =
2 (ln 2)1/2/T0 ≈ 83 GHz. In the simulation I usedM = 1024
Fourier modes with the mode spacing of1.47 GHz so that
the initial computational bandwidth isBc = 1.5 THz. Two
runs were performed: with and without de-aliasing (see Fig.
1). The de-aliasing is achieved by increasing the number of
modesM by a factor of 2 (as prescribed by a(n + 1)/2 rule
for n = 3) at each nonlinear step. One can observe that even in
the case when the computational bandwidthBc encompasses
the broadened spectrum, the effects of spurious aliasing result
in the inadequate description of the evolving pulse (red line
in Fig.1). These effects are efficiently removed by spectral
padding as shown by the green line in the same figure.

One can argue, of course, that the effects of aliasing can also
be removed by choosing large enough number of modes,M
(and hence large enough computational bandwidthBc) while
keeping the mode spacing fixed, so that the aliased modes will
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be of no significance at all (since they will be produced from
the interaction of negligibly small modes from the wings of
the spectrum). While this is true it is also clear that such an
“overkill” solution is wasteful since larger arrays take longer
to process. Moreover, there is no a-priory guideline as to how
large the numberM should be to suppress the aliasing. On
the other hand the(n+1)/2 rule provides a clear recipe as to
how one should enlarge the number of modes (given a fixed
spectral resolutionM ) at each nonlinear step without the need
for blind guessing or using redundantly large arrays.

IV. CONCLUSION

The obtained simple result can be summarised in the fol-
lowing statement:In order to achieve full de-aliasing in the
SSF scheme with the computational domain[−Kmax, Kmax]
in a system withn-th order nonlinearity the domain must
be enlarged by a factor of(n + 1)/2 prior to the nonlinear
step and the aliased modes within the shellKmax < |k| <
Kmax (n + 1)/2 must be filtered (padded with zeros) prior to
the nonlinear step and discarded afterwards. An alternative
statement is that if one employs low pass filtering without
enlarging the computational domain then it is sufficient to keep
a fractionαmax = 2/(n + 1) of the modes to ensure full de-
aliasing - the rest of the modes remain unresolved. One can
see that the higher the nonlinearity the higher the cost, which
is not surprising in view the higher harmonics generation. For
systems with Kerr nonlinearity each spectral dimension must
be enlarged by a factor of 2 (or alternatively half of each
domain must be filtered out) to achieve full de-aliasing. I have
also illustrated the benefits of the full de-aliasing methodby
providing a simple numerical example of pulse propagation in
an optical fiber.

Finally the dimensionality of the problem does not enter
the argument above, or more precisely, for multidimensional
nonlinear systems this criterion applies to each dimension
separately, so for ad-dimensional system the computational
FFT overhead imposed by the enlargement of the array size
scales as((n + 1)/2)d. If one chooses to apply spectral
filtering this amounts to effective domain reduction by the
same factor. For the 1D problem of pulse propagation in
an optical fiber half of the spectral data must be discarded
to prevent aliasing. The situation tends to get worse as one
considers higher dimensional problems (e.g. optical beamsand
optical bullets). Still, compared to the wasteful filteringwith
αmax = 1/n one gets an improvement in resolution by a factor
of (2n/(n+1))d = (3/2)d for systems with Kerr nonlinearity.
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