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Abstract

The global and local synchronisation of a square lattice composed of

alternating Duffing resonators and van der Pol oscillators coupled through

displacement is studied. The lattice acts as a sensing device in which the

input signal is characterised by an external driving force that is injected into

the system through a subset of the Duffing resonators. The parameters of the

system are taken from MEMS devices. The effects of the system parameters,

the lattice architecture and size are discussed.

1. Introduction

Real biosensor networks, such as the mammalian olfac-

tory bulb as an exemplar system, and neurally–integrated

autonomous communication networks in many nervous sys-

tems, share common characteristics and behaviours which

are still not understood. For example (1), biophysical models

to explain the gamma band oscillation in the olfactory bulb

based on coupled subthreshold oscillators have been shown

to exhibit synchronisation and coherence effects when driven

with correlated inputs. Similarly, in recent models of temporal

coding (2), competition for coherence driven by increased

phase velocity of neural units in cases of coherent input from

the connected neurons leads to different perspectives on as-

sembly formation in collections of coupled oscillator neurons.

The ability of a network of coupled nonlinear oscillators to

develop emergent behaviour including topological organisa-

tion, associative memory and gamma band synchronisation,

has already been used to illustrate a computational capability

for abstract pattern recognition (3).

However, a major query is whether we can learn from such

biological sensor and communication networks to design more

robust biomorphically engineered sensor, communication and

computing arrays in recent technologies such as micro and

nano-mechanical silicon-based systems.

Motivated by the examples presented above, we are in-

vestigating the effects of Si-based sensor arrays of coupled

microelectromechanical oscillators and resonators.

As already noted, in biological systems of coupled oscil-

latory devices, the interaction permits macroscopic temporal

characteristics such as common locking of the phase or

amplitude into synchronised states. In order to understand

and predict the emergent phenomena of these systems, dif-

ferent mathematical models of chains and arrays of coupled

resonators or oscillators have been constructed and studied

(4). In a strongly coupled system, the synchronisation effects

may be observed globally in all elements (5; 6; 7) or locally

in clusters of neighbouring elements (8; 9; 10; 11) (cluster

synchronisation).

Recent progress in micro/nano technology now enables

scientists to design and manufacture coupled mechanical res-

onators to experimentally investigate the collective behaviour

of such systems. For example, intrinsic localized modes were

observed in a micromechanical oscillator array of about 220

coupled cantilevers (12). The formation and propagation range

of the acoustic waves over two-dimensional array of 400 cou-

pled nano mechanical resonators were studied as a potential

application in RF signal processing (13). It could be also

expected that the collective behaviours of coupled oscillators

can be utilized in novel sensing devices (14), optomechan-

ical signal processing devices (15) or artificial intelligence

decision-making (16).

To extend these recent activites and also to link to recent

mathematical work on coupled oscillator array systems, in

this paper, the collective behaviour of alternating Duffing

resonators and van der Pol oscillators elastically coupled in

a square lattice is numerically studied with typical MEMS

parameters. The architecture of the lattice of resonators and os-

cillators along with some characterisations of synchronisation

will be described first. Then the effect of parameter variation

on the behaviour of the system will be discussed followed by

different configurations and sizes of the lattice.

2. Experimental setup

The architecture of the network of oscillators consists of

a square lattice of alternating Duffing resonators and van der

Pol oscillators in a checkerboard configuration as shown in
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Figure 1. The dimensionless equations governing the coupled

systems are:

ẍ + γẋ + x + δx3 = κ(xi,j+1 + xi,j−1 + xi−1,j

+xi+1,j − 4xi,j) (1)

ẍ + γ(x2
− 1)ẋ + x = κ(xi,j+1 + xi,j−1 + xi−1,j

+xi+1,j − 4xi,j), (2)

where γ is the damping of the Duffing resonator and the van

der Pol oscillator, δ is the cubic nonlinear spring constant of

the Duffing resonator and κ is the coupling strength between

the resonators and oscillators. The element xi,j represents the

displacement of the resonator or oscillator located at the i-th
row and j-th column in the square lattice.

Since the array of oscillators will act as a sensing device,

it is usually subject to some external signal that can be

represented as a driving force or energy for the array. The

equations for the driven Duffing resonator and van der Pol

oscillator respectively are therefore given below:

ẍ + γẋ + x + δx3 = Fd cos(Ωτ), (3)

and

ẍ + γ(x2
− 1)ẋ + x = Fd cos(Ωτ), (4)

where Fd is the normalised driving force.
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Fig. 1. Square lattice of alternating Duffing resonators

and van der Pol oscillators.

In this paper, the synchronous behaviour of the resonators

and oscillators in the square lattice will be characterised in

terms of their global and local synchronisations. In the first

case, the resonators and oscillators will mainly be considered

as one group whereas the elements in the array can be

gathered in different subgroups in the second case. The global

coherence of the array will be measured by a synchronisation

index based on the normalised entropy (17):

ρ̃ =
Smax − S

Smax

, (5)

where S = −
∑N

k=1
ρk ln ρk is the entropy of the distribution

of the instantaneous phase or the amplitude of the oscillators,

which is given by their respective histograms from which the

probabilities ρk are computed, and Smax = lnN , where N

is the number of bins of the histogram. 0 ≤ ρ̃ ≤ 1 and

ρ̃ = 0 means that the array is not coherent or in total disorder,

whereas ρ̃ = 1 indicates that all the oscillators in the array

are perfectly synchronised. Besides full synchronisation it is

also interesting to consider another aspect of synchronisation

namely the cluster synchronisation where the oscillators in-

volved in the same cluster have identical temporal dynamics

and completely synchronise between each other. Unlike the

global synchronisation case, no cluster synchronisation index

is available yet. Therefore, only a visual inspection of the

displacements and phases of the elements in the lattice will

be carried out. To this end, phase images and polar plots of

the elements of the square lattice will be produced. The phase

and polar plots will be complementary as the phase images

will help to locate the resonators and oscillators within the

array while the polar plots will display both the amplitudes

and phases of the elements. In the following, the color scale

in the phase images lies between −π and π and the polar plots

are normalised in amplitude which means that the maximum

amplitude corresponds to a distance of 1 in the unit circle.

3. Parameter effects

We investigate the effect of the normalised coupling strength

κ between the oscillators, the amplitude Fd of the driving force

that is injected from one edge of the lattice and the quality

factor Q of each element of the lattice. The quality factor

Q of the oscillators and resonators is directly related to their

damping γ through γ = 1/Q. It is also important to stress

that only the Duffing resonators are driven since they absorb

energy whereas the van der Pol oscillators are self-sustained.

The parameters are given in their dimensionless values. In

the context of MEMS devices, the coupling strength κ ranges

from 0.001 to 1000. The amplitude Fd of the driving force

is assumend to be in the range 0.3 to 30. The quality factor

Q lies within the interval [10, 1000], where the lowest and

biggest Q values corresponds to the devices being in air and

in vacuum respectively.

The coupling strength between the elements of the array

has a counter-intuitive effect on the global coherence of the

amplitudes of the resonators and oscillators. The lower the

coupling the more coherent is the system as shown in Figure

2. The value of the coupling strengthhas no clear relaton with

the global phase coherence of the elements although the global

phase coherence of the system tends to converge quicker with

higher coupling values. More detailed information regarding

the cluster synchronisation of the elements in the lattice are

given by the phase and polar plots in Figure 3. It can clearly

be seen that with low coupling (κ = 1) the behaviour of the

elements is more like random. However, with high coupling

(κ = 100) the phases of the resonators and oscillators located

on odd rows, and respectively on even rows, are synchronised

between them. These two distinct clusters are shown in both

the phase and amplitude spaces by the polar plot of Figure

3(d). When the coupling strength is extremely high (κ = 1000)
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(b) Amplitude

Fig. 2. Coupling strength effect on the global coherence

of the square lattice. The phase coherence does not

seem to have a direct relation with the coupling strength

although for a very high coupling (κ = 10000) the phases

of the elements of the lattice tend to converge faster. On

the other hand, the amplitude coherence clearly depends

on the coupling strength value: the higher the coupling

strength, the slower the convergence and the less syn-

chronised are the elements of the lattice.

the phases and amplitudes of the elements of the lattice are

almost homogeneous (plots not shown) as can be expected.

The amplitude of the driving force has an opposite effect

on the global coherence of the phase and amplitude of the

system. More precisely, the higher the amplitude of the driving

force the less coherent is the phase of the system whereas the

opposite effect is observed for the amplitude of the elements

of the lattice. However it should be noted that the difference in

global phase coherence is not very significant as the amplitude

of the driving force is multiplied by ten. By looking at

the cluster synchronisation aspect, it can be observed that

increasing the amplitude of the driving force will result in a

randomisation of the phases of the resonators and oscillators

as depicted by Figure 4. The latter result is also valid for the

amplitudes of the elements although the plots are not shown.

The global phase coherence of the lattice is not sensitive

to the value of the quality factor. However, for low quality

factor value (Q = 10) the global amplitude coherence of the

system displays better synchronisation behaviour than higher

values of Q as shown by Figure 5. In contrast to the previous

full synchronisation results, more distinguishable amplitude

and phase clusters appear in the lattice when the quality

factor value is high (Q = 1000) as can be seen in Figure

6. It should be noted however that for small Q value, the

Duffing resonators and van der Pol oscillators have two distinct

behaviours. The system is not sensitive to initial conditions

(plots not shown).
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Fig. 3. Phase and polar plots of a square lattice of 32 by

32 x-coupled alternating Duffing resonators and van der

Pol oscillators driven from the top edge with an energy

whose amplitude is Fd = 0.3. The figures are plotted

at t = 3600 with different coupling strength values. At

low coupling (κ = 1) both the phases and amplitudes of

the resonators and oscillators seem to be random. For

high coupling (κ = 100) the resonators and oscillators

on odd rows are synchronised between them and so

are the resonators and oscillators located on even rows.

When the coupling is extremely high (κ = 1000) the

Duffing resonators and the van der Pol oscillators are both

synchronised in phase and amplitude (plots not shown).
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Fig. 4. Phase plots of a square lattice of 32 by 32 x-

coupled alternating Duffing resonators and van der Pol

oscillators at a coupling strength of κ = 10. The array is

driven from the top edge of the lattice and the figures are

plotted at t = 3600 with different amplitudes of the driving

force. It can be noticed here that when the lattice is driven

ten times higher, then the phases of the elements tend to

desynchronise.
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(b) Amplitude

Fig. 5. Relation between the quality factor Q of the

elements of the square lattice and its global coherence.

It can be noticed that the lower the value of Q the

worse the phase coherence. A possible explanation of

this observation is that for low Q values, the separation

between the behaviour of the Duffing resonators and van

der Pol oscillators is clearly seen as depicted by Figure

6(c). In contrast, the amplitude coherence of the lattice is

improved as the value of Q is decreased.

4. Architecture and size effects

In the previous section, a square lattice of alternating Duff-

ing resonators and van der Pol oscillators has been studied.

In this section, we investigate the behaviour of the coupled

systems when we permute the Duffing resonators and the van

der Pol oscillators in the lattice.

The two different architectures, characterised by a lattice of

alternating Duffing resonators and van der Pol oscillator on

one hand and alternating van der Pol oscillators and Duffing

resonators on the other hand, have almost the same behaviour

in terms of the global coherence of their phases and amplitudes

(plots not shown). However they have different cluster syn-

chronisation properties as illustrated in Figure 7. In the case

of a lattice composed of alternating Duffing resonators and

van der Pol oscillators, different subgroups can be observed

in which the phases of the Duffing resonators and van der

Pol oscillators are synchronised. In the other case, the Duffing

resonators and van der Pol oscillators behace as two separate

subgroups.

It is also interesting to be able to understand the change of

behaviour as the size of the lattice varies. In particular, the

effect of having an odd number of oscillators and resonators

is considered as opposed to the previous case where the
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Fig. 6. Phase and polar plots of a square lattice of 32 by

32 x-coupled alternating Duffing resonators and van der

Pol oscillators driven from the top edge with an energy

whose amplitude is Fd = 0.3. The coupling between

the elements is κ = 10 and the figures are plotted at

t = 3600 with different values of the quality factor Q. The

figures show that when Q is small (Q = 10) the Duffing

resonators (red circles) and the van der Pol oscilators

(blue circles) have two distinct behaviours. However at a

high quality factor (Q = 1000) they tend to synchronise

between them.

dimension of the square lattice is even. From the plots in

Figure 8, it can be concluded that the global phase and

amplitude coherence of the lattice decrease as the size of

the lattice is increased when the number of elements in the

lattice is even. A different behaviour can be noticed for odd

number of elements. In the cluster synchronisation case, it

can be noticed that the bigger the lattice the more clusters are

present for even number of elements (Figure 9). In contrast,

when the number of elements is odd, no identifiable clusters

can be observed but the elements have disparate phases and

almost random amplitudes.

5. Conclusion

The global and local synchronisations of a square lattice

of alternating Duffing resonators and van der Pol oscillators

have been studied numerically. Such a lattice can serve as a

sensing device where the input signal is an external driving

force injected on the Duffing resonators. The parameters of

the resonators and oscillators derive from real micro-electro-

mechanical system (MEMS) devices. It has been found, unsur-

prisingly, that the higher the coupling strength value between

the elements of the lattice the more synchronised they will

become. In contrast, when the amplitude of the driving force

is increased the elements of the lattice tend to randomise.
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Fig. 7. Phase and polar plots of a square lattice of 32 by

32 x-coupled alternating Duffing resonators and van der

Pol oscillators, and alternating van der Pol oscillators and

Duffing resonators at a coupling strength of κ = 40. The

lattice is driven from the top edge with an energy whose

amplitude is Fd = 0.3. The figures are plotted at t = 3600.

The phases of the elements are more synchronised in

the first case (Duff-VdP) and it can observed from the

corresponding polar plot that some the Duffing resonators

and van der Pol oscillators evolve in disctint subgroups.

In the second case (VdP-Duff), the Duffing resonators

tend to group between them and so do the van der Pol

oscillators.

With high quality factor values the synchronisation between

the elements is favoured whereas a low quality factor value

will result in two distinct behaviours of the resonators and

oscillators.

Architecture and finite size effects are apparent. A permu-

tation of the resonators and oscillators results in a lattice with

different properties. The behaviours of the elements in these

two types of lattices are different in that the resonators and

oscillators can be synchronised in one case while they evolve

independently in the other case. Different emergent clusters

of synchronisation can be observed with different array sizes

composed of an even number of elements. However, no

distinguishable clusters of synchronisation appear when the

dimension of the lattice is odd. This suggests that the unit

composed of a Duffing resonator coupled with a van der Pol

oscillator represents an important entity.

We have observed different behaviours depending upon

how it is driven. Driving from the top edge, the resonators

and oscillators tend to synchronise by rows provided that the

coupling strength is high enough. In the second case, driving

from a corner device, a symmetric behaviour of the elements

of the lattice can be seen where the axis of symmetry is given

by the leading diagonal. Different initial conditions have also
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Fig. 8. Lattice size effect on the global coherence of the

elements. In the case of an even number of elements, the

smaller the lattice, the quicker the convergence and the

better the global coherence of the phase and amplitude

of the elements in the lattice. The global synchronisation

of the amplitudes of the elements is however better when

the number of elements is odd (here 31x31) compared to

the even number elements (32x32).

been used but the system is not sensitive to initial conditions.

We have also commented and illustrated that both global

and cluster synchronisations are both possible in the same

heterogeneous architecture.

All of these observations are useful in supporting our

original aim from the Introduction: to engineer more robust

biomorphically-motivated sensor, communication and comput-

ing arrays in MEMS/NEMS technologies. We know that cou-

pled oscillator arrays in biology exhibit a range of behaviours

we have yet to exploit. This study shows we can expect similar

patterns of emergence in real MEMS arrays. We are currently

constructing chains and small arrays of such devices.
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Fig. 9. Phase and polar plots of a square lattice of 32

by 32 x-coupled alternating Duffing resonators and van

der Pol oscillators at a coupling strength of κ = 10. The

array is driven from the top edge of the lattice and the

figures are plotted at t = 3600 for different sizes of the

lattice. It can be observed that for small (8x8) and medium

(16x16) array (plots not shown) sizes, the phases and

amplitudes of the Duffing resonators and the van der Pol

oscillators are in synchrony. In particular, the smaller the

lattice, the better is the synchronisation. However, when

the dimension on the lattice is odd, 31 by 31 in this case,

the synchronisation is lost and it can also be noticed that

the amplitudes of the Duffing resonators are quite small

compared to those of the van der Pol oscillators.
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