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Properties of computing Boolean circuits composed of noisy logical gates are studied using the statistical
physics methodology. A formula-growth model that gives rise to random Boolean functions is mapped onto a
spin system, which facilitates the study of their typical behavior in the presence of noise. Bounds on their
performance, derived in the information theory literature for specific gates, are straightforwardly retrieved,
generalized and identified as the corresponding macroscopic phase transitions. The framework is employed for
deriving results on error-rates at various function-depths and function sensitivity, and their dependence on the
gate-type and noise model used. These are difficult to obtain via the traditional methods used in this field.
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I. INTRODUCTION

Computation as a physical phenomena takes many forms
including classical logical circuits, quantum computing and
biological neural networks. Noise is present in all practical
computing systems and is a source of error with an immedi-
ate effect on the ability to represent specific functions and
operations and the viability of some computing paradigms.
The main sources of errors in classical computing circuits
based on semiconductor technology are heat generation, cos-
mic rays and production defects �1�. The impact of noise
becomes even more dramatic as the drive toward miniatur-
ization of computer components causes the circuits to be-
come more complex and of large scale �1�. The presence of
decoherence-noise in quantum computers is also a significant
obstacle for exploiting their full computational power �2�.
The effects of noise on computing and information process-
ing in other systems, such as biological neural networks,
which are inherently noisy, remain poorly understood.

One of the first to study the effect of noise in computing
systems was von Neumann �3� who attempted to explain the
robustness of biological computing circuits by representing
them as logical circuits comprising conventional Boolean
logical gates. His model represented neural activities by a
circuit �or formula� composed of �-noisy Boolean gates; he
suggested alternative gate-constructions to limit the resulting
noise and analyzed the maximal noise tolerated before the
generated functions become random. Boolean variables and
gates correspond to spins and structured interactions between
them within the statistical physics framework used in this
paper; noise level in this context relates to temperature.

Before progressing any further, a few formal definitions
are required: �i� A circuit may be regarded as a directed
acyclic graph in which nodes of in-degree zero �representing
boundary conditions, unaffected by other variables� are ei-
ther Boolean constants or references to arguments, nodes of
in-degree k�1 are logical gates of k arguments and nodes of
out-degree zero �that are monitored but do not affected other
variables� correspond to the circuit outputs. �ii� A formula is

a single-output circuit where the output of each gate is
used as an input to at most one gate. �iii� The �-noisy gate
is designed to compute a Boolean function � : �−1,1�k

→ �−1,1�, representing structured k-spin interaction between
variables, but for each input S� �−1,1�k there is an error
probability � such that ��S�→−��S�; this can be viewed as
thermal noise. To simplify the analysis, error-probability is
taken to be independent for each gate in the circuit. Clearly,
a noisy circuit ���0� cannot perform any given computation
in a deterministic manner: for any circuit-input there is a
non-vanishing probability that the circuit will produces the
wrong output. �iv� The maximum of this error probability �
over all circuit-inputs determines the reliability of the circuit,
i.e., mismatch between expected �noiseless� and actual out-
puts.

In his paper, von Neumann showed that reliable compu-
tation ���1 /2� is possible for a sufficiently small � �3� and
demonstrated how reliability of a Boolean noisy circuit can
be improved by using gate-constructions based only on
�-noisy gates. There had been little development in the
analysis of noisy computing systems until the seminal work
of Pippenger �4� who addressed the problem from an infor-
mation theory point of view. He showed that if a noisy k-ary
formula is used to compute a Boolean function f with the
error probability ��1 /2, then �i� there is an upper bound for
the gate-error ��k� which is strictly less than 1/2 and �ii� there
is a lower bound for the formula-depth d̂�k ,� ,���d, where d
is the depth of a noiseless formula computing f; the depth of
a formula being the number of gates on the longest path from
an input node to the output node. In comparison to its noise-
less counterpart, a noisy formula that computes reliably has
greater depth due to the presence of restitution-gates, imply-
ing longer computation times �4�.

A number of papers have followed and extended Pip-
penger’s results. For instance, similar results were derived
for circuits by Feder �5�, who also improved the bounds ob-
tained by Pippenger for formulas. The exact noise thresholds
for k-ary Boolean formulas were later determined for odd k
�6,7� and formulas constructed of 2-input NAND gates �8�;
the latter was recently suggested as the exact noise threshold
for general 2-input gate formulas �9�.

Against this plethora of results from the information
theory and theoretical computer science �TCS� literature, our*a.s.mozeika@aston.ac.uk
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aim is to provide an alternative view based on a statistical
physics framework, which offers a powerful methodology
that can recover and extend existing results to provide insight
beyond what is accessible via the information theory meth-
odology. The latter mainly relies on specific circuit construc-
tions and methods that correspond to the worst case bounds.
In contrast, our emphasis is on the typical case analysis of
noisy circuits, which facilitates the study of formulas prop-
erties at any depth and offers flexibility in extending the
results to any distribution of logical gates.

The analysis in the current paper is based on path integral
methodology, specifically tailored for this task and originated
in the statistical physics of disordered systems. It comple-
ments other methods that have been successfully employed
in the study of similar problems from TCS and information
theory �10� ranging from classical combinatorial optimiza-
tion problems �graph coloring, k-SAT, reconstruction on
trees and graph-isomorphism to name but a few� to source
and channel coding �11�, but is arguably more appropriate
here due to the directed nature of the formulas studied.
Nonetheless, similar results may be obtained via alternative
methodology such as the replica and cavity methods �10�. As
in the previous cases, we believe that our understanding of
Boolean formulas will be significantly enhanced by the in-
teraction across disciplines �10�.

The study of noisy computing requires the generation of
typical functions. Apparently, constructing typical functions
by randomly connecting Boolean gates is not trivial and con-
stitutes an area of research in its own right. Most of the
familiar paradigms in the TCS literature identify gates or
processes that can represent any arbitrary function, but when
applied at random they tend to generate trivial functions
showing weak dependence on the input variables. To gener-
ate typical formulas, which compute all Boolean functions
with uniform probability, using randomly generated circuits,
we employ a variant of the growth process suggested by
Savický �12� that, under very broad conditions, produces
uniformly sampled functions as the depth of the formulas
becomes large.

The remainder of this paper is organized as follows. In
Sec. II, we discuss generation of typical Boolean functions
and the model we employ for generating them. In Sec. III,
we define our model of noisy computation used for the
analysis followed by the derivation of the corresponding
mean-field theory in Sec. IV. Results obtained by applying
our method to random formulas which use single gates or
distribution over gates are presented in Sec. V followed by a
summary and discussion of future work in Sec. VI. Technical
aspects of the calculations which lead to our theoretic results
are provided in Appendixes A and C.

II. RANDOM BOOLEAN FUNCTIONS

To investigate the effect of gate-noise on circuits repre-
senting random Boolean functions one should first identify a
method for generating such circuits using basic logical gates.
The importance of random Boolean functions is that they
facilitate the study of average case properties, in contrast to
the traditionally-studied worst-case scenario �13�. A common

approach to represent a random Boolean function is by con-
structing a random Boolean circuit or formula. However,
finding a circuit representation of a Boolean function using a
particular set of gates and of a bounded size is considered a
difficult problem �14�. The most studied methods of generat-
ing random Boolean functions use random tree generation or
a growth process as their core procedure. We will briefly
introduce two of these methods.

In the first method, a rooted k-ary tree is sampled from the
uniform distribution of all rooted k-ary trees; the leaves of
this random tree are then labeled by reference to the Boolean
variables and internal nodes are labeled by the Boolean gates
used. This method was used to investigate typical properties
of random Boolean AND/OR formulas �15–17� and obtain
bounds on the probability P�f� of a random formula to com-
pute a given Boolean function f; they also show that for a
small number of inputs n such formulas result in very simple
functions �16� with high probability, a behavior that becomes
more pronounced for large n.

The second method uses the following growth process:
First, one defines an initial distribution over a set of simple
Boolean functions. Second, and in further steps, the formulas
chosen from the distributions defined in previous steps are
combined by Boolean gates. One such process, described by
Savický �12�, uses only a single Boolean gate � and is de-
fined by the recursion on the set of formulas A�,

A0 = �1,− 1,S1, . . . ,Sn,− S1, . . . ,− Sn,� ,

A�+1 = ����1, . . . ,�k�;� j � A� for j = 1,2, . . . ,k� . �1�

Savický showed that under very broad conditions on � the
probability of computing a Boolean function by a formula
��A� tends to the uniform distribution over all Boolean
functions of n variables when �→	 �12�. Furthermore, de-
pending on the initial conditions A0 and the gate � the pro-
cess converges to a single Boolean function or to the uniform
distribution over some class of Boolean functions �13�.

In this framework, all Boolean functions of n variables are
represented with equal statistical weight when �→	, but the
number of gates in formulas grows exponentially with the
formula depth �. Here, in order to tame this explosion in the
number of gates, we propose a layered variant of the Savický
growth process. The first step in our process is to sample
randomly and uniformly exactly N entries of an input vector

Ŝ0= �S1
0 , . . . ,SN

0 �. In the second, and all subsequent steps for

�=1, . . . ,L−1, we construct a vector Ŝ�+1= �S1
�+1 , . . . ,SN

�+1�
where the ith entry Si

�+1 is an output of the gate ��Si1
� , . . . ,Sik

� �
with k input-indices sampled uniformly from the set of all
possible �unordered� indices �i1 , . . . , ik�. The result of the
process is the layered N
 �L+1� Boolean circuit shown in
Fig. 1 �left construction, in blue�. For large N, the variable Si

�

in our model corresponds to the output of a random k-ary
formula of depth �, which computes a Boolean function
�−1,1�N→ �−1,1�. In the limit N→	, with ��O�N0�, we
expect the statistical properties of the formulas generated by
this and the Savický’s growth process to be equivalent; this
is supported by the results reported later. The advantage of
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using the layered representation is that it allows us to explore
the typical behavior of noisy random Boolean formulas.

While the vector Ŝ0 represents randomly sampled single
entries, one would also like to study cases where entries are
statistically dependent and sampled from a smaller set. To
cater for a higher level of correlation, the 0-layer boundary

conditions are generated by selecting randomly Ŝ0 entries
from the finite set SI= �S1

I , . . . ,Sn
I �. This facilitates studying

the functions generated and their dependence on properties
of the set SI.

III. MODEL

As described in Sec. II, the noisy computation model con-
sider here is a feed-forward layered N
 �L+1� Boolean cir-
cuit. The layers in the circuit are numbered from 0 �input� to
L �output�. Each layer �� �1, . . . ,L� in the circuit is com-
posed of exactly N �-noisy, k-ary Boolean gates. Noise at
gate �i

� on site �i ,�� operates independently and in a stochas-
tic manner according to the microscopic law

P�Si
��Si1

�−1, . . . ,Sik
�−1� =

e�Si
��i

��Si1
�−1,. . .,Sik

�−1�

2 cosh���i
��Si1

�−1, . . . ,Sik
�−1��

, �2�

where �=1 /T is the inverse temperature, related to the gate
noise � via tanh �=1−2�. The gate-output Si

� is completely
random when �→0 ��=1 /2� and completely deterministic
when �→	 ��=0�. Our model is acyclic by definition, so
given the state of gates at layer �, gates at layer �+1 operate
independently of each other. The latter suggests that the
probability of the microscopic state S0 , . . . ,SL, where S�

� �−1,1�N, is just a product of Eq. �2� over all sites and
layers in the circuit. Furthermore, to investigate the proper-
ties of noisy formulas we consider two copies of the same
topology, shown in Fig. 1, but with different temperatures

��	 �noisy� and �̂→	 �noiseless�, comparing the two will
enable one to study the effect of noise on the resulting func-
tions. Following similar arguments to those of the single cir-
cuit case, the probability of microscopic states in the two
systems is

P��S��;�Ŝ��� = P�S0,Ŝ0�SI��
�=1

L

P�S��S�−1�P�Ŝ��Ŝ�−1� �3�

where

P�S��S�−1� = �
i=1

N e�Si
� 	

j1,. . .,jk

N
Aj1,. . .,jk

�,i �i
��Sj1

�−1,. . .,Sjk
�−1�

2 cosh
� 	
j1,. . .,jk

N

Aj1,. . .,jk
�,i �i

��Sj1
�−1, . . . ,Sjk

�−1�� .

�4�

The set of connectivity tensors �Ai1,. . .,ik
�,i �, where Ai1,. . .,ik

�,i

� �0,1�, denotes connections between gates at different lay-
ers in the circuit; the indices i1 , . . . , ik at layer �−1 serve as
the inputs of gate i at layer �. The conditional probability

P�Ŝ� � Ŝ�−1� is the same as in Eq. �4� but with �→ �̂.
The sources of disorder in our model are the random con-

nections, random boundary conditions and random gates.
The former two arise in the layered growth process described
in the last two paragraphs of Sec. II and represent random
interactions between variables.

Random connections. The basic step in this growth
process is the addition of a new gate with probability
P�Aj1,. . .,jk

�,i �= 1
Nk �Aj1,. . .,jk

�,i ;1+ �1− 1
Nk ��Aj1,. . .,jk

�,i ;0 of being connected

to exactly k gate-outputs on the previous layer �−1. This
procedure is carried out independently for all gates in the
circuit giving rise to the probability distribution

P��Ai1,. . .,ik
�,i �� =

1

ZA
�

�,i=1

L,N 
�
1; 	
j1,. . .,jk

N

Aj1,. . .,jk
�,i �


 �
i1,. . .,ik

N 
 1

Nk�Ai1,. . .,ik
�,i ;1 + �1 −

1

Nk�Ai1,. . .,ik
�,i ;0�� ,

�5�

where ZA is a normalization constant. The Kronecker delta
function inside the definition �5� enforces the constraint
	 j1,. . .,jk

Aj1,. . .,jk
�,i =1, i.e., the gate on site �i ,�� is mapped to

exactly one element from the set of all possible output-
indices �i1 , . . . , ik� from the previous layer. Other sparse con-
nectivity profiles can be easily accommodated into our
framework by incorporating additional constraints into the
definition �5� via the appropriate delta functions.

Random boundary conditions. In the layered growth pro-
cess, these are generated by selecting members of the input
set SI, where �SI��O�N0�, with probability 1

�SI� , and assigning
them to the input layer 0. The boundary condition is identical
for the two systems which leads to the distribution

P�S0,Ŝ0�SI� = �
i=1

N

�Si
0;Sni

I �Ŝi
0;Si

0, �6�

where �ni� are independent random indices pointing to mem-
bers of input set SI with probability P�ni�= 1

�SI� . Further cor-
relations can be introduced via the probability P�SI�.

Random gates. In addition to the topological disorder, in-
duced by the growth process, we assume that the gate �i

�

added at each step of the process can be sampled randomly

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �� � � �� � � �� � � �� �

^

^

^ LS

SL−1

SI

S0

LS

SL−1

SI 1

1 12 2 33 N N

n

S0

β̂→∞ β

FIG. 1. �Color online� The model of two coupled systems with

identical topology and different inverse temperatures � and �̂→	.
Gates are indicated by squares, SI and input nodes by circles. Blue
�dark gray� indicates noiseless gates, red �gray� noisy gates.
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and independently from the set G of k-ary Boolean gates.
Under this assumption the distribution over gates takes the
form

P���i
��� = �

�,i=1

L,N

P��i
�� , �7�

where P��i
��=	��Gp���;�i

� with 	��Gp�=1 and p��0.

IV. METHOD

To compute the probability distribution �Eq. �3�� directly
for a circuit of finite but significant size is difficult. However,
the structure of Eq. �3� is similar to the one that describes
evolution of the disordered Ising spin system �18�. This simi-
larity becomes apparent if one regards the layers in our
model as discrete time steps of parallel dynamics. A common
way to deal with the probabilistic objects that take this form
is to use the generating functional method of statistical me-
chanics �19�. The generating functional is given by

���;�̂� = �e−i	�,i�i
�Si

�+̂i
�Ŝi

��� , �8�

where the shorthand � . . . � denotes the average over the joint
probability �Eq. �3��. The generating functional �Eq. �8�� can
be regarded as a characteristic function of �Eq. �3�� from
which moments of the distribution can be obtained by taking

partial derivatives with respect to the generating fields

�i
� , ̂ j

���, for example �Si
�Ŝj

���=−lim�,�̂→0
�2

�i
��̂j

��
��� ; �̂�. Fol-

lowing prescription of �19�, we assume that for N→	 the
system is self-averaging, i.e., the macroscopic behavior of
the system depends only on the statistical properties of the

disorder, and compute ��� ; �̂� where �¯ � denotes an aver-
age over the disorder. The disorder-averaged generating
function �Eq. �8�� gives rise to the following macroscopic
observables

m��� =
1

N
	
i=1

N

�Si
�� = lim

�,�̂→0

i

N	
i=1

N
�

�i
�
���;�̂� ,

C��� =
1

N
	
i=1

N

�Si
�Ŝi

�� = − lim
�,�̂→0

1

N	
i=1

N
�2

�i
��̂i

�
���;�̂� , �9�

where m��� is the average activity �magnetization� on layer �
and C��� is the overlap between two systems. Averaging
over the disorder in Eq. �8� leads to the saddle-point integral
�see Appendix A for details�

�̄ =� �dPdP̂d�d�̂�eN��P,P̂;�,�̂�, �10�

where � is the macroscopic saddle-point surface

�� . . . � = i	
�=0

L−1

	
S,Ŝ

P̂��S, Ŝ�P��S, Ŝ� + i	
�=0

L−1� dxdx̂d��̂��x, x̂,�����x, x̂,�� + 	
�=0

L−1

	
�Sj,Ŝj�

�
j=1

k

�P��Sj, Ŝj��� dxdx̂d����x, x̂,��


�e−i�x���Sj��+x̂���Ŝj��+���� + 	
n

P�n�ln� �dHdxdĤdx̂�� D�	
S,Ŝ

Mn�H,x;Ĥ, x̂;�;S,Ŝ� , �11�

where � · �� represents an average over gate distribution and M is an effective single-site measure

Mn� . . . � = �S0;Sn
I �Ŝ0;S0�

�=0

L−1

�eix�H�+ix̂�Ĥ�+�S�+1H�+�̂Ŝ�+1Ĥ�
e−ln 2 cosh��H��−ln 2 cosh��̂Ĥ��−iP̂��S�,Ŝ��−i�̂��x�,x̂�,��+1�+i��+1

� . �12�

The generating fields � , �̂ have been removed from the above as they are no longer needed. For N→	 the path-integral �Eq.
�10�� is dominated by the extremum of the functional �� . . . � of Eq. �11�. Functional variation of Eq. �11� with respect to the

order parameters �P , P̂ ,� ,�̂� gives rise to four saddle-point equations

P��S, Ŝ� = 	
n

P�n���S�;S�Ŝ�;Ŝ�Mn
, �13�

P̂��S, Ŝ� = i	
i=1

k

	
�Sj,Ŝj�

�Si;S
�Ŝi;Ŝ�

j�i

k

�P��Sj, Ŝj��� dxdx̂d����x, x̂,���e−i�x���Sj��+x̂���Ŝj��+����, �14�
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���x, x̂,�� = 	
n

P�n����x − x����x̂ − x̂����� − ��+1��Mn
,

�15�

�̂��x, x̂,�� = i 	
�Sj,Ŝj�

�
j=1

k

�P��Sj, Ŝj���e−i�x���Sj��+x̂���Ŝj��+����

�16�

where �¯ �Mn
is the average over the probability distribution

resulting from Eq. �12�. The saddle-point Eqs. �13�–�16� can
be simplified significantly �see Appendix B for details� and
it turns out that in order to solve this problem we only need
to compute the order parameter �Eq. �13��. The physical

meaning of this order parameter is given by P��S , Ŝ�
=limN→	

1
N	i=1

N ��Si
�;S�Ŝi

�;Ŝ� �SI, i.e., the disorder-averaged joint
probability of sites in the two systems. The single-site effec-
tive measure �Eq. �12�� also benefits from the simplification;
in particular, if we integrate out the continuous variables in
Eq. �12� we are led to the expression.

Mn�SL, ŜL, . . . ,S0, Ŝ0�

= �S0;Sn
I �Ŝ0;S0�

�=0

L−1� 	
�Sj,Ŝj�

�
j=1

k

�P��Sj, Ŝj��


� e�S�+1���Sj��

2 cosh �����Sj���
e�̂Ŝ�+1���Ŝj��

2 cosh �̂����Ŝj���
�

�
� .

�17�

Using Eq. �17� the macroscopic observables Eq. �9� can be
easily computed from the joint probability distribution Eq.
�13�, resulting in the set of equations

m�� + 1� = 	
�Sj�

�
j=1

k 
1 + Sjm���
2

��tanh����S1, . . . ,Sk����,

�18�

C�� + 1� = 	
�Sj,Ŝj�

�
j=1

k 
1 + Sjm��� + Ŝjm̂��� + SjŜjC���
4

�

 �tanh����S1, . . . ,Sk��tanh��̂��Ŝ1, . . . , Ŝk����,

�19�

where the magnetization m̂��� is computed by a similar equa-

tion to Eq. �18� but with �→ �̂. Initial conditions for these
equations are given by m�0�= m̂�0�= 1

�SI�	S�SIS, C�0�=1.
The connectivity profile considered in our model leads to

a simple mean-field theory, where the macroscopic behaviors
of the two copies of the same system is completely deter-
mined by the set of observables �m��� , m̂��� ,C����; which

relate to the order parameter Eq. �13� via P��S , Ŝ�= 1
4 �1

+Sm���+ Ŝm̂���+SŜC����, while the single system behavior
is described by �m����. Furthermore, since �� jSij

��→� j�Sij

��
for finite j, when N→	 �directly computed from Eq. �8�� the

spins on layer � are uncorrelated as any site �i ,�� is a root of
a full k-ary tree growing from the input layer �=0, which in
turn points to the input set SI. Loops in the circuit are rare
and trees can be regarded as independent random Boolean
formulas. The output of a typical formula at layer � is deter-
mined by the probability P��S�.

Overlap and function error. The overlap order parameter
of Eq. �9� is related to the normalized Hamming distance

D��� between the states S� and Ŝ� via the identity D���
= 1

2 �1−C����. This allows one to define the order parameter
����=lim�,�̂→	

1
2 �1−C����, used to probe sensitivity of the

circuit with respect to its input, an indication to the complex-
ity of the functions represented by the given circuit. The
Hamming distance D��� is also related to the probability

P�Si
�� Ŝi

�� and facilitates the estimate of the error probability
���� on the �th layer of a noisy circuit. More specifically, we
define this error probability ����=maxSI lim�̂→	

1
2 �1−C����,

comparing the maximal error between the noisy and noise-
less version of the same circuit with respect to all possible
inputs. Obviously, in the absence of noise ��→	� one trivi-
ally obtains ����=0 for all �.

V. RESULTS

In this section, we apply the main equations of our theory
Eqs. �18� and �19� to study a Boolean formulas constructed
from a particular single gate �MAJ-k and NAND� or from a
distribution of gates �AND/OR�. Our choice of single gates
is motivated by the rigorous results of �7–9� for noisy com-
putation by Boolean formulas based on this particular subset
of logical gates. Here we extend these results to the typical
formulas generated by the layered growth process of Sec. II.
In particular, we identify the Boolean functions computed in
the absence of noise and study their complexity and sensitiv-
ity as a function of their depths and types of gates used. For
the noisy formulas, we compute phase diagrams and study
dependence of the formula-output error on the formula-depth
for a different levels of gate-noise. In addition, we study the
impact of a quenched noise on a noisy computation and also
introduce the noisy computation model where thermal noise
enters the system via random gate-thresholds. The noiseless
random AND/OR formulas have been studied extensively in
the area of Boolean function complexity �20�, here we con-
sider random formulas both with and without noise.

A. Majority vote (MAJ-k) gate

1. Critical behavior

In this section our choice of � is a universal majority gate
with k inputs �MAJ-k�. The reasons for choosing this gate
are twofold. First, it was proved in �6,7� that the majority
gate is optimal for the noisy computation in formulas. Sec-
ond, formulas constructed from the majority gates can in
principle compute any Boolean function �12�. A convenient
representation of the MAJ-k gate is given by the identity
MAJ�S1 , . . . ,Sk�=sgn�	 j=1

k Sj�, where k is odd. Using this
representation, Eqs. �18� and �19� become
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m�� + 1� = �1 − 2��	
n=0

k �k

n




1 + m���
2

�n
1 − m���
2

�k−n

sgn�2n − k� ,

�20�

C�� + 1� = �1 − 2�� 	
k1+..+k4=k

k!

k1! 
 . . 
 k4!


Pk1�− 1,− 1�Pk2�1,− 1�


 Pk3�− 1,1�Pk4�1,1�sgn�k1 − k2 + k3 − k4�


sgn�k1 + k2 − k3 − k4� , �21�

where P�S , Ŝ�= 1
4 �1+Sm���+ Ŝm̂���+SŜC����. To obtain Eqs.

�20� and �21� we used the identity tanh �=1−2� relating the

gate-error � to the inverse temperature �, and the limit �̂
→	 ��̂=0� for comparing noisy and noiseless circuit outputs
later on.

We now concentrate only on Eq. �20� that describes the
evolution of magnetization from layer to layer. The point
m�	�=0 is always a stationary solution of this equation, i.e.,
m��+1�=m���=m�	�. Expanding Eq. �20� around this sta-
tionary solution gives the critical noise value ���k�=1 /2
−2k−2 /k� k−1

�k−1�/2 �, identical to the results of �6,7�; at the critical
noise the asymptotic solution m�	�=0 becomes unstable and
two stable solutions �m�	� emerge �e.g., for k=3 we find
m�	�= ��1−6�

1−2� �21��. In the case when �����k� the magne-
tization m��� decays to 0 asymptotically; while for �
����k� we have lim�→	 m���= �m�	� where the positive
and negative stationary solutions correspond to the positive
and negative initial magnetizations m�0�= 1

�SI�	S�SIS, respec-
tively. Thus the critical noise level ���k� separates the unor-
dered and ordered phases �see Fig. 2�.

The relation between the new stable solutions and the
reliability of the computation follows from the ability to pre-
serve one bit of information presented at the input, by setting
SI= �S�; the phase transition observed in Eq. �20� implies
that the circuit can preserve one bit of information for arbi-
trarily many layers only when �����k�. The error probabil-
ity P��−S�= 1

2 �1−Sm���� is a measure of how well this one
bit is preserved after passing through � layers. A complicated

computational task may require significant number of layers,
hence only relatively simple operations can be performed by
the circuit reliably when �����k�.

Now we turn to Eq. �21� that describes evolution of the
overlap between two systems. The initial conditions are
the same for both systems, so we have m�0�= m̂�0� and
C�0�=1. The magnetization in the noisy system ������k��
converges to �m�	� and for the noiseless system we
have m̂�	�= �1, depending on the sign of m�0�. Inserting
these stationary points into the Eq. �21� results in C�	�
= �m�	�. The overlap C�	� relates to the probability of er-
ror ��	�= 1

2 �1−C�	��. Thus the error ��	��1 /2 only when
�����k�.

2. Boolean functions generated

The analysis of Eq. �20� can also reveal the type of Bool-
ean functions generated in the layered growth process. In
particular, in the noiseless case ��=0� the stationary solutions
of this equation are given by m�	�=1 and m�	�=−1 which
correspond to the initial conditions m�0��0 and m�0��0,
respectively. For m�0�=0 we obtain m�	�=0. Each site in
our model can be associated with an output of the formula
that computes some Boolean function. The average formula
on layer � provides outputs S with probability P��S�= 1

2 �1
−Sm����. This suggests that for the noiseless case �=0 the
average formula on layer � converges to a constant output
��1� if the initial magnetization m�0� is positive/negative,
respectively, and to a random output ��1� if m�0�=0, where
m�0�= 1

�SI�	S�SIS. An alternative representation of the func-
tions generated takes the form F=sgn�	i=1

n �iSi
I+�0�, where

�i�Z, using the definition: sgn�0�= �1 with probability 1/2.
This means that depending on the initial conditions the for-
mulas converge to a single Boolean function or to the uni-
form distribution over some set of functions. For example,
if 	i=1

n �iSi
I+�0�0 for ∀�S1

I , . . . ,Sn
I �� �−1,1�n then all formu-

las in the circuit converge to a single linear threshold func-
tion and can compute any linearly separable Boolean func-
tion �22�.

In general, when 	i=1
n �iSi

I+�0=0, it is difficult to say if
the generated formulas compute all Boolean functions or
only the subset of these functions. However, this result is
consistent with the study of Savický �12�, where it has been
shown that when SI= �−1,1 ,S1

I , . . . ,Sn
I ,−S1

I , . . . ,−Sn
I � the for-

mulas in the stationary state of the process compute all Bool-
ean functions of n variables. It is also consistent with results
�13� showing that for SI= �−1,1 ,S1

I , . . . ,Sn
I � the formulas

converge to the MAJ-n function when n is odd and to the
uniform distribution over so-called slice functions when n is
even �13� �also in the absence of the constants �−1,1� in the
set SI�.

3. Sensitivity of the generated functions

We will now turn to Eq. �21� when m�0�= m̂�0�=0 and
C�0�=1. For the noiseless case �=0 the stationary solution
of this equation is given by C�	�=1. This solution, however,
is unstable and a small perturbation to the initial state
C�0�=1 leads to the stationary state C�	�=0, which is stable.
This implies that the circuit is very sensitive to its input
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FIG. 2. �Color online� Phase diagram of a circuit based on
MAJ-k gates.
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when m�0�=0. In particular, the Hamming distance ����
= 1

2 �1−C���� increases for small perturbations to ��0� �see
Figs. 3�a��, i.e., a small perturbation to the input is amplified
by the circuit. This in turn means that when ��0 the circuit
also amplifies the noise-perturbation and the error ���� is
growing. The error, however, can be kept under control for
many layers by making � sufficiently small �see Fig. 3�b��.

4. Dynamics

We will now examine how the computation in the circuit
proceeds from layer to layer. As an example we take SI

= �S1 , . . . ,S11� and study the evolution of magnetization m���
and error ����; in the noiseless case the corresponding circuit
computes the MAJ-11 function. The initial magnetization
�m�0�� takes its values from the set �1,9/11,7/11,5/11,3/11,1/
11� for this choice of SI. The input with the smallest magne-
tization in this set is very important. On the one hand, when
�=0 the initial state with the smallest �m�0�� is also the fur-
thest from the stationary state �m�	��=1. So it will take for
the magnetization m��� the largest number of layers to con-
verge for this input. On the other hand, when ��0 the input
with the smallest �m�0�� is more likely to be suppressed
by the noise. For these reasons, in what follows we study
the evolution of the magnetization and errors only for m�0�
=1 /11.

Magnetization. In Fig. 4�a� we examine how the magne-
tization m��� evolves from layer to layer in circuits with
MAJ-7 gates. We observe that when �=0 the magnetization
converges to its stationary value m�	�=1 relatively quickly.
Since we use m�0�=1 /11 the convergence to m���=1 indi-
cates that all formulas in the circuit compute the MAJ-11
function. For noise values ��0 the speed of convergence
is decreasing as � increases and becomes very slow as we
approach ���k�. In general, increasing k �0������k�� leads

to a reduction in relaxation times because of the inequality
F�

k+2�m��F�
k�m��m, where F�

k�m� is the right hand side
of Eq. �20�. Finally, when we increase the noise level to
�����k� the magnetization relaxes to its stationary 0 value
exponentially fast.

Function error. Figure 4�b� shows the evolution of the
error ����. In the region 0������k� we observe two distinct
stages in the dynamics. Initially, the error is increasing until
it reaches its maximum value. Note that this happens before
the MAJ-11 function is computed exactly when �=0 �see
Fig. 4�a��. Also, the location of this maximum is only weakly
affected by noise. These two observations suggest that ini-
tially the inputs to the gates are very inhomogeneous which
leads to noise amplification. After the error reaches its maxi-
mum value the inputs become more and more homogeneous
leading to the suppression of noise and as a result the error
decreases until it eventually becomes stationary. As we ap-
proach the critical boundary ���k� the number of layers
needed for the error to equilibrate increases. The dynamic
behavior of the error changes from nonmonotonically in-
creasing to monotonically increasing when we approach the
critical boundary ���k� from below. The evolution of error
becomes strictly monotonic when �����k� and in this region
the error relaxes to its stationary value 1/2 exponentially fast.
This example is highly representative of the situation when
all formulas in the circuit converge to a single Boolean func-
tion. Here we can tell exactly how many layers it takes for
the circuit to compute this function when �=0. This number
is given by L such that m�L��m�	� starting with the small-
est initial magnetization m�0� induced by the inputs SI. Ob-
viously, adding more layers to the circuit with L layers will
not affect the computation when �=0. However, in the region
0������k� we can reduce the error ���� by adding more
layers. This is not true for all � and m�0�. The error can be
reduced only when ���0�k�, where �0�k� is the solution of
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FIG. 3. �Color online� �a� Evo-
lution of the Hamming distance as
a function of the layer � for k=3
�solid line� with input mismatch
��0�=10−3 ,10−4 ,10−6 �left to
right� and, for k=5 �+� and k=7
�
� with ��0�=10−6. �b� Phase
boundaries for gate-noise � at
layer L when k=3,5 ,7, using the
same symbols.
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m�0�=F�0�k�
k �m�0�� for a given initial magnetization m�0�. At

�=�0�k� the dynamic behavior of m��� changes from the
monotonically increasing �when ���0�k�� to monotonically
decreasing �when ���0�k��. Respectively, the dynamic be-
havior of the error ���� changes from the nonmonotonically
increasing to the monotonically increasing. Only in the
former regime one can reduce the error ���� by adding more
layers to the circuit. However, this strategy fails for inputs
with m�0�=0 and the circuit computes more than one Bool-
ean function. For m�0�=0 the probability of error ���� in-
creases toward its stationary value ��	�=1 /2 �m���=0� even
when �����k�. The error ���� can be bounded away from
1/2 only by reducing the gate-error �, which depends on the
formula depth L �Fig. 3�b��.

5. Convergence rates

In this section we study convergence rates at �=0 and �
=���k���� regions of the phase diagram plotted in Fig. 2.
The former allows us to estimate the number of layers re-
quired in a formula to represent the asymptotically corre-
sponding function, which is directly related to its size, when
all formulas in the circuit converge to a single Boolean func-
tion. The latter probes the regime where the computation is
expected to be very slow, but the error can be still reduced by
adding more layers to the circuit.

Noiseless formulas. First, we study the rate of conver-
gence when �=0 and m�0�=1 /n, where n�N is odd, and the
MAJ-k based circuit computes MAJ-n function. In general,
we find that the number of layers needed for the magnetiza-
tion to converge scales as O�f�k�ln�n��. This rate of conver-
gence is consistent with rigorous results �13� for the growth
process defined by Savický �12�. However, the worst case
bound f�k� derived in �13� grows as k2k with the gate in-
degree k, while in our study we find that in the typical case
f�k� is decreasing with increasing k �see Fig. 5�. Further-
more, this result holds not only for MAJ-n, but for any linear
threshold function �with integer weights� computed by the
MAJ-k circuit. It is natural to expect that when k→	 the
function f�k� is vanishing and the numbers of layers L in the

circuit approaches 1. The discrepancy in the asymptotic be-
havior of the worst case bounds �13� and the typical
asymptotic behavior observed in our work is due to the av-
erage topology considered here, which turns out to be more
realistic.

Near the critical noise. Second, we study convergence
rate for �=���k����, where 0����1. Very close to the
phase boundary ���k� the differences m��+1�−m��� are very
small and the difference Eq. �20� can be well approximated
by a differential equation. For k=3 the differential equation
reduces to d

d�m���=−m���+ 1
2 �1−2���3m���−m3����, where

� is continuous, which can be solved exactly. The solution is
given by m2���= �� 1

m2�0� − 1−2�
1−6� �e−�1−6���+ 1−2�

1−6� �−1. This ap-
proach is only accurate in the region �=1 /6���, where it
gives us the asymptotic form �m���−m�	���e−��3����. The
��3� coefficient equals 3 in the paramagnetic region and 6 in
the ferromagnetic region. Thus the convergence to the
asymptotic paramagnetic solution m�	�=0 is slower than to
the stationary ferromagnetic solutions m�	�= ��1−6�

1−2� for k
=3. The differential version of the difference Eq. �20� is
difficult to solve analytically for k�3 and a different method
is employed �see Appendix C�, resulting for large k in the
form

�m��� − m�	�� � e−O�k0��k���; �22�

convergence in both paramagnetic and ferromagnetic re-
gimes speeds up with k.

6. Hard noise

The model studied so far can be regarded as a model of
computation where errors result from single-event upsets
�soft noise�. Imperfections in real integrated circuits �1� that
are introduced during production are an additional source of
permanent errors �hard noise�.

A natural way to introduce hard noise into our model is to
define quenched random variables ��i

��, where P��i
��

= p��i
�;−1+ �1− p���i

�;1, which can invert the gate output �i
�

permanently. Using transformation �i
�→�i

��i
� in Eq. �2� and

following the steps of calculation in Sec. IV, we find that the
inclusion of hard noise in our model leads to �1−2��→ �1
−2p��1−2�� in Eqs. �20� and �21�. As a result, the effect of
quenched noise is to reduce the critical noise ���k�. In par-
ticular, the new critical noise value is given by ���k , p�= 1

2

− 2k−2

�1−2p�k� k−1
�k−1�/2 �

when 0� p����k ,0� and ���k , p�=0 when

p����k ,0�.
The hard noise can also be introduced by making a frac-

tion of the gates insensitive to the inputs, i.e., gates that
produce constants. In particular, by taking P���
= p0��;MAJ−k+ p−��;−1+ p+��;1, where p� are the probabilities
of constant �1 outputs and p0 , p− , p+�0 with p0+ p−+ p+

=1, Eq. �18� for p+− p−=0 results in ���k , p0�= 1
2

− 2k−2

p0k� k−1
�k−1�/2 �

when 0� �1− p0� /2����k , p0=0� and ���k , p0�

=0 when �1− p0� /2����k , p0=0�. So the introduction of
constant gates reduces the critical noise value ���k� when
p+= p− by effectively reducing the number of active gates.
For p+− p−�0 the effect of hard noise is more drastic. For
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FIG. 5. �Color online� Number of layers in the noiseless MAJ-k
based circuit computing MAJ-n function. Theoretically obtained
data-points are represented by the symbols + �k=3�, 
 �k=5� and �

�k=7�. Slopes of the respective straight lines �not shown� fitted to
the data are 2.473, 1.595, and 1.282, respectively. The straight line
corresponds to the bound k2k ln�n�, derived in �13�, plotted here for
k=3 only.
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�=0 the circuit, irrespective of its input, is biased toward one
of its outputs �1, depending on the value of p+− p−.

7. Threshold noise

The MAJ-k function can be seen as a special case of a
linear threshold function. The linear threshold functions �or
binary perceptrons� are widely used in modeling the neu-
ronal activities of the brain such as memory and learning
�23�. The noise in these models is usually introduced via
random thresholds �23� giving rise to the microscopic law

P�Si
��Si1

�−1, . . . ,Sik
�−1� =

e�Si
� 	

j=1

k
Sij

�−1

2 cosh
�	
j=1

k

Sij

�−1� , �23�

which in the limit of �→	 corresponds to the noiseless
MAJ-k gate. Using the microscopic law �Eq. �23�� in the
model of noisy computation �Eq. �3�� requires only minor
change to the calculations in Sec. IV and leads to the corre-
sponding equations for magnetization and overlap

m�� + 1� = 	
n=0

k �k

n

1 + m���

2
�n
1 − m���

2
�k−n


tanh���2n − k�� , �24�

C�� + 1� = 	
k1+..+k4=k

k!

k1! 
 . . 
 k4!
Pk1�− 1,− 1�Pk2�1,− 1�


 Pk3�− 1,1�Pk4�1,1�tanh���k1 − k2 + k3 − k4��


sgn�k1 + k2 − k3 − k4� . �25�

In the limit �→	��=0�, Eqs. �24� and �25� and Eqs. �20�
and �21� are identical. So that all the results derived for the
noiseless MAJ-k circuit are also valid here.

Critical noise level. However, the macroscopic behavior
of the model with noisy thresholds is different from the noisy
MAJ-k model for any ��0. Analysis of Eq. �24� reveals that
the point m�	�=0 is always a solution of this equation. Ex-
panding Eq. �24� around this point leads to the condition

1 = 2−k	
n=0

k �k

n
�2n − k�tanh���2n − k�� , �26�

where m�	�=0 becomes unstable and two stable �m�	� so-
lutions emerge. In Fig. 6, we compare the resulting phase
boundary with that of the MAJ-k based circuits. The MAJ-k
gate is more resilient to the threshold noise �Eq. �23�� than to
the flip noise �Eq. �2��. This is not surprising since the effect
of flip noise on the MAJ-k gate �inverting the gate-output
regardless of the input� is more drastic than the effect of
threshold noise where gate-outputs Si

� corresponding to in-
puts with high input-magnetization �	 j=1

k Sij

�−1� are less likely
to be flipped. Furthermore, as k→	 the critical noise level
���k� in both models approaches 1/2 as 1 /2−���k�=O�k−��,
but for the threshold noise model it can be shown that �=1
while for the model with flip noise �=1 /2.

Convergence rate. For the noisy threshold model consid-
ered here the evolution of magnetization and �-error is quali-
tatively similar to the evolution of these order parameters in
the flip-noise model. However, we find that the convergence
to all stationary states is much quicker in the noisy threshold
model; for large k convergence is dominated by �m���
−m�	���e−O�k0�k���, which is significantly faster than Eq.
�22�.

Finally, we note that the magnetization Eq. �24� is identi-
cal to the one derived for the parallel dynamics of an Ising
ferromagnet in a fully asymmetric Bethe lattice �18,24� if
layers in the circuit-model are regarded as the time-steps of
parallel dynamics. This suggests that the site-time topology
�recurrent network� generated by the parallel dynamics is
similar to that of layered networks considered here when N
→	. Based on this observation, which was exploited for
instance in �25�, we expect the computation performed by
the recurrent and layered networks to be the same at least for
m�0��0. Potential differences may arise from the non-
vanishing connected correlations between the different times
�layers�.

B. NAND gate

Formulas constructed by 2-input universal NAND gates
are optimal for noisy computation using 2-ary Boolean gates
�8,9�. Using the NAND gate representation as the linear
threshold function −sgn�S1+S2+1� the magnetization �Eq.

�18�� and overlap �Eq. �19�� equations become �using �̂
→	 and tanh �=1−2��

m�� + 1� =
1

2
�1 − 2����1 − m����2 − 2� �27�

C�� + 1� =
1

4
�1 − 2���1 + 2m��� + 2m̂��� + 2C��� − m2���

+ 2m���m̂��� − 2m���C��� − m̂2��� − 2m̂���C���

+ C2���� , �28�

where m�0�= m̂�0�= 1
�SI�	S�SIS, C�0�=1. Here, the equation

for m̂��� is identical to Eq. �27�, but with �=0.
Critical noise level. The magnetization �Eq. �27��

admits only one steady state �m�	�=m��+1�=m���� solu-
tion in the region m�	�� �−1,1�. However, the solution
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FIG. 6. �Color online� The critical noise level �� as a function of
k for the perceptron �dotted line� and MAJ-k �solid line� circuits.
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m�	�=1− 1−�8�2−12�+5
2�−1 to Eq. �27� becomes unstable for the

values of noise ����= �3−�7� /4, which identifies �� as the
critical threshold. Above this threshold the �output� magneti-
zation on layer �→	 converges to the value m�	�, which is
independent of the initial �input� magnetization m�0�. Below
the threshold �� the magnetization m��� oscillates from layer
to layer and the properties of this oscillation depends on
m�0�. The latter suggests that the circuit performs computa-
tion only in the region ����, in agreement with �8�. To
explore the properties of this computation we follow the dif-
ference equation of the probability P−���= �1−m���� /2 at
even layers via Eq. �27� to obtain

P−�� + 2� = 1 − � − �1 − 2���1 − ��2 + 2�1 − ���1 − 2��2P−
2���

− �1 − 2��3P−
4��� , �29�

where P−�0�= �1−m�0�� /2. Equation �29� also describes the
evolution of P−��� on odd layers with the initial condition
being P−�1�= 1

2 �1−2���P−
2�0�− 1

2 �. In the region P−� �0,1�
Eq. �29� admits three steady state solutions P−�	�
= � 1−�8�2−12�+5

4�−2 , −1��8�2−12�+1
4�−2 �. The first solution becomes un-

stable at the noise threshold ��= �3−�7� /4 and the other two
solutions are stable for the noise values ����. Plotting these
solutions with respect to the noise � in terms of the corre-
sponding magnetization variables m�	� gives the phase dia-
gram depicted in Fig. 7. The stationary solutions of Eq. �29�

also allow one to compute the �-error which, due to oscilla-
tory behavior of the magnetization m��� in Eq. �27�, depends
on the sign of the output. In particular the error ��	� takes its

values from the set ��−= −1+�8�2−12�+1
4�−2 ,�+=1− −1−�8�2−12�+1

4�−2 �

when m�0�� �2−�5,1− 1−�8�2−12�+5
2�−1 � and ��	�� �1−�+ ,1

−�−� when m�0�� �2−�5,1− 1−�8�2−12�+5
2�−1 �, respectively. The

dependence of the error-functions �� on the gate-noise � is
shown in the inset of Fig. 7.

Functions generated: For �=0 the basins of attraction
of the fixed points P−�	�� �1,0� are given by P−�0�
� �1,

�5−1
2 � and P−�0�� �

�5−1
2 ,0�, respectively. Thus for

�=0 and �→	 the NAND formulas results in −1 if
m�0��2−�5 and +1 otherwise, where m�0�= 1

�SI�	S�SIS,
when � is even and its inverse −F when � is odd. In contrast
to the result for MAJ-k circuit, the variety of functions gen-
erated by the NAND formulas is rather limited. All formulas
in the NAND circuit converge to linear threshold functions,
which due to the threshold value of 2−�5 cannot compute all
linearly separable Boolean functions.

Example. As an example of a noisy computation by the
NAND circuit we consider the input set SI= �S1 ,S2 ,S3�; the
initial magnetization is given by m�0�= �S1+S2+S3� /3
� �−1,−1 /3,1 /3,1� and the noiseless circuit converges to
the MAJ-3 Boolean function on even layers and to its dual
on odd layers. In Fig. 8 we plot the evolution of magnetiza-
tion m and �-error only for m�0�=−1 /3 where the number of
layers � needed for the magnetization m��� to converge to its
stationary value −1 �for � even� is maximal.

We observe that for �=0 the magnetization approaches its
stationary value −1 in approximately 16 layers, beyond
which all formulas compute MAJ-3 function. For gate-noise
values ��0, the number of layers L needed for the magne-
tization to became stationary increases as we increase � to-
ward its critical value ��, while the stationary magnetization
value m�	� decreases ��m�	���1�. As a result, the stationary
values of the �-error, which is directly related to m�	�,
grow monotonically toward ��	�. The error grows first
then reduces with the addition of layers �see Fig. 8�;
this error reduction is only possible when ����0�, where

��0�= m2�0�−m�0�−3+�−3m2�0�+4m�0�+8
2�m2�0�−2m�0�−1� . Above the critical noise

level �� the stationary magnetization m�	� is independent of
m�0� and the computation becomes unreliable.

Convergence rate. Following the method outlined in Sec.
V A, we obtain convergence rates to the stationary solutions
of Eq. �29� in the range 0�����; for �=��−� we find
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FIG. 7. �Color online� Magnetization m and error � as a function
of gate-noise � in NAND-gate formulas. Inset–The dependence of
�� on the noise level in the range 0��� �3−�7� /4.
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�P−��� − P−�	�� � const 
 exp��

2
ln
8�3 − �7

4
− �


�3 + �7

4
+ ��� . �30�

Close to the critical noise level ��→0� the argument of the
log function approaches unity and the number of layers
needed to converge to the stationary solution �the point of
intersection of all magnetization curves in Fig. 7� diverges.
In the opposite limit of �→��= 3−�7

4 the argument of the log
function approaches zero and the convergence to the station-
ary states m�	�= �1 is very fast.

Finally, we note that the results obtained provide definite
answers to some of the conjectures proposed in �8�, in par-
ticular: �a� The threshold ��= 3−�7

4 is valid for random
NAND-based formulas with reliable �hard� inputs. �b� Reli-
able computation at �=�� is not possible as Eq. �29� has only
one fixed point, which is both unstable and attractive.

C. AND/OR gates

In the model of computation which we consider here
the gate � is sampled from the distribution P���
= p��;sgn�S1+S2+1�+ �1− p���;sgn�S1+S2−1�. Using this definition in
the gate-averages of Eqs. �18� and �19� gives

m�� + 1� =
1

2
�1 − 2���2p − 1 + 2m��� − �2p − 1�m2���� ,

�31�

C�� + 1� =
1

4
�1 − 2���1 − 2m��� − 2m̂��� + 2C��� + 4pm���

+ 4pm̂��� − 4pm���C��� − 4pm̂���C��� − m2���

+ 2m���m̂��� + 2m���C��� − m̂2��� + 2m̂���C���

+ C2���� . �32�

Equation �31� can be written in a more convenient form

P−�� + 1� = � + 2�1 − 2���1 − p�P−���

+ �1 − 2���2p − 1�P−
2��� , �33�

where P−���= �1−m���� /2 is the probability of output taking
value of −1. For ��0 Eq. �33� has only one �stable� steady
state solution P−�	�. Thus there is no phase transition in this
model for any noise value ��0 and the information about
the input cannot be preserved for infinitely many layers.

The noiseless balanced AND/OR trees were studied in
�20�. Here we only show how to recover their results �30�
from the Eqs. �31�–�33�.

First, we note that by setting �=0 in Eq. �33� one obtains
the equation of Lemma 3.1 in �20�. Equation �33� has two
fixed points P−�	�� �1,0� �m�	�� �−1,1�� when p�1 /2.
The first point P−�	�=1 is stable while the second point
P−�	�=0 is unstable when p�1 /2, so the circuit computes
the OR function of the variables belonging to the input set SI.
For p�1 /2 the point P−�	�=1 is unstable and the point

P−�	�=0 is stable, so the circuit computes AND function.
Second, we set p=1 /2 and allow for m�0�� m̂�0�, i.e., we

have two copies of the same circuit but with different inputs
in Eqs. �31� and �32�. For p=1 /2 the magnetization is con-
served from layer to layer �m���=m�0�� and the overlap Eq.
�32� reduces to

C�� + 1� =
1

4
+

1

2
C��� −

1

4
m2�0� +

1

2
m�0�m̂�0� −

1

4
m̂2�0�

+
1

4
C2��� . �34�

Computing the joint probability P��−1,1�= �1−m�0�
+ m̂�0�−C���� /4 from Eq. �34� one obtains

P��− 1,1� = P��− 1,1�
1 −
1

2
m�0� +

1

2
m̂�0� − P��− 1,1�� ,

�35�

which corresponds to Lemma 3.2 in �20�. In general, for �

→	, we have P	�S , Ŝ�= �1+Sm�0�+ Ŝm̂�0�+SŜC�	�� /4,
where C�	�=1− �m̂�0�−m�0��. The analysis �20� of Eq. �35�
reveals that AND/OR-based formulas compute constant �1
functions when SI= �S1 , . . . ,Sn ,−S1 , . . . ,−Sn� and linear
threshold functions sgn�	 j=1

n Sj −n+2i�, where i� �1, . . . ,n�
and SI= �S1 , . . . ,Sn�. Finally, convergence to the functions
computed is exponential in � except for the special case of
p=1 /2 when it is logarithmic ���−1� �20�.

VI. DISCUSSION

Random formulas generated by a layered variant of the
Savický formula-growth process are used to study the typical
properties of noisy formulas. The layered framework facili-
tates a direct mapping to the physical Ising spin system,
which can be seen as a dynamical system where time steps
correspond to circuit layers. This analogy facilitates the use
of generating functional analysis �GFA� methodology to ana-
lyze properties of noisy formulas.

Here, we use GFA to study the typical properties of noisy
random Boolean formulas constructed from single gates or
distributions of gates. All exact noise thresholds, which were
derived in TCS using rigorous methods, are recovered within
our framework and identified as macroscopic phase transi-
tions. On a quantitative side, we attribute this to the exact
correspondence of the mean-field Eq. �18� to the single-gate
probability of error �assuming independence of inputs� used
to derive these noise thresholds in TCS.

In the noiseless case ��=0�, we have identified the Bool-
ean functions generated by the layered growth process, but
only when the input-set magnetization m�0�=0 is not a fixed
point of the dynamics �Eq. �18��. For inputs with m�0�=0 our
results are consistent with those of Savický’s growth process
that generates Boolean functions of arbitrary complexity.
Furthermore, we have established that functions generated in
the layered growth process are sensitive to the input vari-
ables, an indication of their complexity. In order to find ex-
actly which functions are generated for the input set with
m�0�=0, with or without noise, one needs a more sophisti-
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cated version of the mean-field theory presented here �26�.
In the noisy case ��0 we studied the evolution of the

output magnetization and computation-error from layer to
layer and their dependence on the input-set magnetization
and noise. We identified a range of the critical gate-noise
parameter values, and their dependence on the input-set mag-
netization m�0�, where adding more layers to the circuit may
reduce the computation error. The speed of convergence to
the equilibrium was studied both numerically �for �=0� and
analytically �for ��0�. Results for �=0 are consistent with
the existing bounds, but show that tighter bounds can be
derived in a typical case.

The standard noisy computation model was extended to
include “production errors” �uncorrelated hard noise�. We
have found that the effect of hard noise on the critical behav-
ior of noisy circuit is to effectively reduce its critical noise
threshold. We expect that the critical noise threshold �if it
exists� in any noisy circuit will be affected in this way. Also,
in our work a standard flip-noise is compared with threshold
noise. In particular, we have found that the MAJ-k gate is
more resilient against threshold noise than to flip-noise. We
expect that any gate which can be represented as the linear

threshold function is more robust against threshold noise, at
least for the threshold noise distribution considered here.

We believe that much can be learned about the typical
properties of noisy computation via this approach, which
complements the rigorous bounds derived in the TCS litera-
ture and provides insight that may help in the development
of new rigorous techniques. Also, the problem studied and
the method presented here may offer a different perspective
on the dynamics of physical systems with binary degrees of
freedom, in the same way as the exchange of ideas has ben-
efited both the statistical physics and TCS in the past �27,28�.
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APPENDIX A: DISORDER AVERAGE

Here, we outline the calculation steps which lead to the
saddle-point integral Eq. �10�. The starting point of this cal-
culation is the generating functional

���;�̂� = 	
�S�,Ŝ��

P�S0,Ŝ0�SI�exp
 	
�,i=1

L,N

��Si
�Hi

�−1�S�−1� + �̂Ŝi
�Ĥi

�−1�Ŝ�−1���

 exp
− 	

�,i=1

L,N

�ln 2 cosh��Hi
�−1�S�−1�� + ln 2 cosh��̂Ĥi

�−1�Ŝ�−1����e−i	�,i�i
�Si

�+̂i
�Ŝi

�� �A1�

defining Hi
�−1�S�−1�=	 j1,. . .,jk

N Aj1,. . .,jk
�,i �i

��Sj1
�−1 , . . . ,Sjk

�−1� and Ĥi
�−1�Ŝ�−1�=	 j1,. . .,jk

N Aj1,. . .,jk
�,i �i

��Ŝj1
�−1 , . . . , Ŝjk

�−1�. Introducing the fields
via the integral identities

�
i=1

N

�
�=0

L−1 �� dHi
�dxi

�

2�
eixi

��Hi
�−Hi

��S���� = �
i=1

N

�
�=0

L−1 �� dĤi
�dx̂i

�

2�
eix̂i

��Ĥi
�−Ĥi

��Ŝ���� = 1 �A2�

leads to

���;�̂� = �
i=1

N

�
�=0

L−1 �� dHi
�dxi

�dĤi
�dx̂i

�

�2��2 � 	
�S�,Ŝ��

P�S0,Ŝ0�SI�e−i	�,i�i
�Si

�+̂i
�Ŝi

�� �A3�


e	i=1
N 	�=0

L−1��Si
�+1Hi

�+�̂Ŝi
�+1Ĥi

�−ln 2 cosh��Hi
��−ln 2 cosh��̂Ĥi

��+ixi
�Hi

�+ix̂i
�Ĥi

��


 �
�,i=1

L,N

�
j1,. . .,jk

N

e−iAj1,. . .,jk
�,i �xi

�−1�i
��Sj1

�−1,. . .,Sjk
�−1�+x̂i

�−1�i
��Ŝj1

�−1,. . .,Ŝjk
�−1��. �A4�

Averaging Eq. �A4� over the connectivity �Eq. �5�� and gate disorders �Eq. �7�� results to leading order in

MOZEIKA, SAAD, AND RAYMOND PHYSICAL REVIEW E 82, 041112 �2010�

041112-12



ZA 	
�Ai1,. . .,ik

�,i �

P��Ai1,. . .,ik
�,i ��	

��i
��

P���i
��� �

�,i=1

L,N

�
j1,. . .,jk

N

e−iAj1,. . .,jk
�,i �xi

��i
��Sj1

�−1,. . .,Sjk
�−1�+x̂i

��i
��Ŝj1

�−1,. . .,Ŝjk
�−1��

= 	
�Ai1,. . .,ik

�,i �
�

�,i=1

L,N ��
−�

� d�i
�

2�
ei�i

� �
i1,. . .,ik

N 
 1

Nk�Ai1,. . .,ik
�,i ;1 + �1 −

1

Nk�Ai1,. . .,ik
�,i ;0�


 	
�i

�

P��i
��e−iAi1,. . .,ik

�,i �xi
�−1�i

��Si1
�−1,. . .,Sik

�−1�+x̂i
�−1�i

��Ŝi1
�−1,. . .,Ŝik

�−1�+�i
���

= �
�,i=1

L,N �
−�

� d�i
�

2�
ei�i

�
exp
 1

Nk 	
i1,. . .,ik

N

�e−i�xi
�−1��Si1

�−1,. . .,Sik
�−1�+x̂i

�−1��Ŝi1
�−1,. . .,Ŝik

�−1�+�i
�� − 1��� . �A5�

In the first line of Eq. �A5� we have used the integral representation of Kronecker delta function �n;m=�−�
� d�

2�ei��n−m�; the final
exponential form is valid for large N. By setting all xi

� and x̂i
� variables to 0 in Eq. �A5�, we find that the normalization constant

ZA contributes the factor eNL to the generating functional �Eq. �A1�� for large N. Using the result of disorder-average �Eq. �A5��
in Eq. �A1� we obtain the disorder-averaged generating functional

���;�̂� = �
i=1

N

�
�=0

L−1�� iHi
�dxi

�dĤi
�dx̂i

�

�2��2 �
−�

� d�i
�+1

2�
ei�i

�+1�

 	

�S�,Ŝ��

P�S0,Ŝ0�SI�e−i	�,i�i
�Si

�+̂i
�Ŝi

��+NLe	i=1
N 	�=0

L−1��Si
�−1Hi

�+�̂Ŝi
�−1Ĥi

�−ln 2 cosh��Hi
��−ln 2 cosh��̂Ĥi

��+ixi
�Hi

�+ix̂i
�Ĥi

��


 �
�=1

L

exp
 1

Nk 	
i,i1,. . .,ik

N

�e−i�xi
�−1��Si1

�−1,. . .,Sik
�−1�+x̂i

�−1��Ŝi1
�−1,. . .,Ŝik

�−1�+�i
�� − 1�� + O�N−k+1�� . �A6�

In order to achieve factorization over sites in the equation we isolate the densities

P��S, Ŝ� =
1

N
	
i=1

N

�S;Si
��Ŝ;Ŝi

�, �A7�

���x, x̂,�� =
1

N
	
i=1

N

��x − xi
����x̂ − x̂i

����� − �i
�+1� �A8�

ia the respective integrofunctional representations of unity

� �dP�dP̂��eiN	S,ŜP̂��S,Ŝ��P��S,Ŝ�−�1 � N�	i=1
N �S;Si

��Ŝ;Ŝi
�� = 1, �A9�

� �d��d�̂��eiN�dxdx̂d��̂��x,x̂,������x,x̂,��−�1 � N�	i=1
N ��x−xi

����x̂−x̂i
�����−�i

�+1�� = 1,

which leads to

���;�̂� =� �dPdP̂d�d�̂�exp
N	
�=0

L−1�i	
S,Ŝ

P̂��S, Ŝ�P��S, Ŝ� + i� dxdx̂d��̂��x, x̂,�����x, x̂,����

 exp
N	

�=0

L−1

	
�Sj,Ŝj�

�
j=1

k

�P��Sj, Ŝj��� dxdx̂d����x, x̂,���e−i�x��S1,. . .,Sk�+x̂��Ŝ1,. . .,Ŝk�+�����

 �

i=1
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Si

0,Ŝi
0

�Si
0;Sni

I �Si
0;Ŝi

0�
�=0

L−1� 	
Si

�,Ŝi
�

� dHi
�dxi

�dĤi
�dx̂i

�

�2��2 �
−�

� d�i
�+1

2�
ei�i

�+1


 e�Si
�+1Hi

�+�̂Ŝi
�+1Ĥi

�−ln 2 cosh��Hi
��−ln 2 cosh��̂Ĥi

��+ixi
�Hi

�+ix̂i
�Ĥi

�−iP̂��Si
�,Ŝi

��−i�̂��xi
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L �i
�Si

�+̂i
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���eO�LN−k+1�

�A10�
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The site-dependent part of the above equation can be written in the form

exp
	
n

1

N	
i=1

N

�n;ni
ln� �dHidxidĤidx̂i�� D�i 	

Si,Ŝi

Mn�Hi,xi;Ĥi, x̂i;�i;Si,Ŝi�� �A11�

where we have defined the effective single-site measure

Mni
�Hi,xi;Ĥi, x̂i;�i;Si,Ŝi� = �Si

0;Sni

I �Si
0;Ŝi

0e−i	�=0
L �i

�Si
�+̂i

�Ŝi
��


 �
�=0

L−1

e�Si
�+1Hi

�+�̂Ŝi
�+1Ĥi

�−ln 2 cosh��Hi
��−ln 2 cosh��̂Ĥi

��+ixi
�Hi

�+ix̂i
�Ĥi

�−iP̂��Si
�,Ŝi

��−i�̂��xi
�,x̂i

�,�i
�+1� �A12�

and the use the notation �D�i=��=1
L �−�

� d�i
�

2� ei�i
�
. Using Eq. �A11� in the disorder-averaged generating functional �Eq. �A10��

with all the generating fields �i
� , ̂i

�� set to 0 and assuming that the law of large numbers for the random index-variables �ni�
holds, i.e., limN→	

1
N	i=1

N �n;ni
→P�n�, we arrive at Eq. �10�.

APPENDIX B: SIMPLIFICATION OF THE SADDLE-POINT PROBLEM

To solve the saddle-point Eqs. �13�–�16�, we first use the saddle-point Eq. �16� to eliminate the conjugate order parameter

�̂� from the effective measure �Eq. �12��, giving

Mn� . . . � = �S0;Sn
I �Ŝ0;S0�

�=0

L−1
e�S�+1H�+�̂Ŝ�+1Ĥ�

2 cosh��H��2 cosh��̂Ĥ��
eix�H�+ix̂�Ĥ�+i��+1


 exp
 	
�Sj,Ŝj�

�
j=1

k

�P��Sj, Ŝj���e−i�x����Sj��+x̂����Ŝj��+��+1����e−iP̂��S�,Ŝ��. �B1�

Second, using the above result we compute the Fourier transform

F�
���y,z� =� �dHdxdĤdx̂D��	

S,Ŝ

Mn�H,x;Ĥ, x̂;�;S,Ŝ�e−i��x��y+x̂��z+���+1� �B2�

where �� �0,1�. For �=0,1 we obtain

F0
���y,z� = 	

�S�,Ŝ��

�S0;Sn
I �Ŝ0;S0�

�=0

L−1

W�S�+1; Ŝ�+1�N�S�; Ŝ�� , �B3�

F1
���y,z� = 	

�S�,Ŝ��

�S0;Sn
I �Ŝ0;S0W̃�S��+1; Ŝ��+1�N�S��; Ŝ��� �

����

L−1

W�S�+1; Ŝ�+1�N�S�; Ŝ�� , �B4�

respectively, where

W�S�+1; Ŝ�+1� = 	
�Sj,Ŝj�

�
j=1

k

�P��Sj, Ŝj��� e�S�+1���Sj��+�̂Ŝ�+1���Ŝj��

2 cosh�����Sj���2 cosh��̂���Ŝj���
�

�

�B5�

W̃�S�+1; Ŝ�+1� =
e�S�+1y+�̂Ŝ�+1z

2 cosh��y�2 cosh��̂z�
and N�S�; Ŝ�� = e−iP̂��S�,Ŝ��. �B6�
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Next we notice that �dxdx̂d�����x , x̂ ,��e−i�xy+x̂z+��=
F1

���y,z�

F0
���y,z�

.

Using the fact that Eqs. �B5� and �B6� are both probability

distributions the computation for ��=L−1 gives
F1

���y,z�

F0
���y,z�

=1.

Plugging in this result into the saddle-point Eq. �14� gives us

P̂L−1�S , Ŝ�= ik implying that N�SL−1 ; ŜL−1�=ek. The latter is

used to show that for ��=L−2 gives
F1

���y,z�

F0
���y,z�

=1 and so on

until we conclude that P̂��S , Ŝ�= ik for all �.

APPENDIX C: CONVERGENCE RATE

To show how the asymptotic form �Eq. �22�� can be ob-
tained we first note that

const 
 �� d

dm
F�

k�m��
m=m�	�

��

� �m��� − m�	�� , �C1�

where F�
k�m� is the right hand side of Eq. �20�, i.e., the dis-

tance �m���−m�	�� for an arbitrary point m��� is alway-

sgreater than the distance for m���=m�	�+�m���. The
lower bound �Eq. �C1�� can be made into an upper bound by
choosing an appropriate constant �29�. Computing the left
hand side in �Eq. �C1�� for the MAJ-k circuit with �
=���k���� results in

�
1 −
2��

1 − 2���k���1 − m2�	���k−1�/2��

� �m��� − m�	�� .

�C2�

Since �1− 2��

1−2���k� ��1−m2�	���k−1�/2� �1− 2��

1−2���k� �, the conver-
gence rate in the paramagnetic region ������k�� is slower
than in the ferromagnetic one ������k��. The latter is due
to the amplification of thermal fluctuations which are only
suppressed for �→	. The critical noise ���k� for large k can
be approximated by ���k�� 1

2 �1−
��
�2k

�. Inserting this into the
Eq. �C2� for m�	�=0 gives us the asymptotic form �Eq.
�22��.
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