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Thesis Summary

This thesis provides an interoperable language for quantifying uncertainty using probability the-
ory. A general introduction to interoperability and uncertainty is given, with particular emphasis
on the geospatial domain. Existing interoperable standards used within the geospatial sciences
are reviewed, including Geography Markup Language (GML), Observations and Measurements
(O&M) and the Web Processing Service (WPS) specifications. The importance of uncertainty in
geospatial data is identified and probability theory is examined as a mechanism for quantifying
these uncertainties. The Uncertainty Markup Language (UncertML) is presented as a solution to
the lack of an interoperable standard for quantifying uncertainty. UncertML is capable of describ-
ing uncertainty using statistics, probability distributions or a series of realisations. The capabilities
of UncertML are demonstrated through a series of XML examples.

This thesis then provides a series of example use cases where UncertML is integrated with
existing standards in a variety of applications. The Sensor Observation Service - a service for
querying and retrieving sensor-observed data - is extended to provide a standardised method for
quantifying the inherent uncertainties in sensor observations. The INTAMAP project demonstrates
how UncertML can be used to aid uncertainty propagation using a WPS by allowing UncertML
as input and output data. The flexibility of UncertML is demonstrated with an extension to the
GML geometry schemas to allow positional uncertainty to be quantified. Further applications and
developments of UncertML are discussed.

Keywords: interoperability, probabilistic uncertainty, UncertML
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Chapter 1 INTRODUCTION

1.1 Interoperability

1.1.1 Historical context

The term ‘interoperability’ can refer to an array of different things. In general terms there are two

forms of interoperability, syntactic and semantic. Syntactic interoperability is having a common

set of terms for exchange of information, and semantic interoperability is having a shared under-

standing of what these terms mean. Interoperability is a vital concept in computer science. Without

it many of the functions and applications of modern computers would not exist. The best example

of interoperability within computing is the Internet. Without the clearly defined standards and pro-

tocols that allow communication between machines, the Internet could not function. Historically,

many software vendors chose to remove interoperability from their applications by implementing

proprietary binary file formats, in an attempt to lock users into their software. For example, the

Microsoft Office file formats (e.g. .doc) forced users into purchasing their software so that they

could open them. However, in 2008 Microsoft freely released the full documentation for their bi-

nary file formats, allowing other software vendors to implement them into their applications. With

the benefits gained from interoperable, open standards, and the popularity of Extensible Markup

Language (XML) Microsoft has since released an XML version of all office file formats (e.g.

.docx). The generation of open file formats is a good example of syntactic interoperability within

computers, which is essential for further levels of interoperability, e.g. semantic interoperability.

Semantic interoperability within computer science is an unsolved challenge which constitutes a

large research field. Therefore the contents of this thesis focus on syntactic interoperability and

most concepts relating to semantic interoperability are considered out of scope.

1.1.2 Application in geospatial science

The majority of the work in this thesis is placed in a geospatial context. In a parallel approach

to Microsoft, the early Geographic Information System (GIS) applications were based on closed-

source, binary file formats. However, partly driven by the Open Geospatial Consortium (OGC),

a strong shift towards open file formats is under way. Many of the larger GIS applications

are now either compliant with OGC standards, or implement them. The Geography Markup

Language (GML) specification is perhaps the key standard within the OGC and it has many uses

in describing geometries, raster data and geographic ‘features’. A series of Web service specifica-

tions for delivering geospatial information, either as raster images (Web Mapping Service (WMS))
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or as raw GML data (Web Feature Service (WFS)) have proved popular and are now seeing im-

plementations within mainstream GIS applications, e.g. GRASS 1 and ArcGIS 2. Building on the

success of the early standards, the OGC has recently branched into a new area entitled the ‘Sensor

Web’. Within the Sensor Web are a whole host of new XML-based standards for describing obser-

vations and sensors, as well as services for sharing and processing these observations. The vision

of the Sensor Web is to allow any sensor to be plugged into the Web and automatically publish

observations for discovery and consumption, a process termed ‘plug and measure’.

1.2 Uncertainty and probability theory

1.2.1 Historical context

The work in this thesis is based around the concepts of probability theory, the brief exploration

into the history of probability theory given here may prove useful for some readers. The origins

of probability theory come from games of chance and gambling. Two famous French mathemati-

cians, Blaise Pascal and Pierre de Fermat developed the fundamental principles of probability

theory after a problem was posed to Pascal by Antoine Gombaud, a French nobleman. The prob-

lem was to decide whether or not to bet even money on the occurrence of at least one “double six”

during 24 throws of a pair of dice. A seemingly well-established gambling rule led Gombaud to

believe that betting on a double six in 24 throws would be profitable, but his own calculations indi-

cated just the opposite. Shortly after Pascal and de Fermat’s principles were formulated, Christian

Huygens, a Dutch scientist, published the first book on probability in 1657; entitled De Ratiociniis

in Ludo Aleae. Due to the relation to games of chance, and gambling, probability theory became

very popular during the 18th century. In 1812 Pierre de Laplace published a book that applied

probability theory to many scientific areas outside of games of chance, something that had not

been done previously. However, it was not until 1933 that a formal set of axioms of probability,

defined by Andrey Kolmogorov, was agreed upon; and it is these axioms that form the basis of

most modern probability theory approaches.

Probability theory has evolved since its roots in games of chance, and is now used in a variety

of fields including genetics, economics, engineering and geoinformatics. This evolution has seen

an extension from primarily discrete events to continuous variables. The large body of work based

on probability theory provides numerous tools for inference and other statistical methods that any

1http://grass.fbk.eu
2http://www.esri.com/software/arcgis/index.html
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framework using probability theory can utilise. This is a substantial benefit that other methods

of uncertainty quantification do not posses, and is the primary motivating factor for the use of

probability theory within this thesis (Papoulis and Unnikrishna Pillai, 1984). A more in depth

review of probability theory is given in Section 2.3.

1.2.2 Application in geospatial science

Uncertainty exists in many aspects of the geosciences. As all geospatial data is gathered by ob-

servations of the world there will exist some deviation between an observed value and its corre-

sponding true value. This deviation cannot always be known, if ever, and it must be estimated;

the term ‘uncertainty’ refers to this estimation. Although mankind has been observing the Earth

for centuries, the quantification of the inherent uncertainties in the observations is a relatively re-

cent occurrence. Many techniques are used for quantifying such uncertainties including fuzzy set

and probability theory. While no one method is ‘better’ than the other, we feel that the ability

of probability theory to quantify complex univariate and multivariate uncertainties via a range of

continuous probability distributions is most flexible. Consequently, this thesis adopts probability

theory as the mechanism for quantifying uncertainty.

Despite the inherently uncertain nature of geospatial science, no effort has been made to pro-

vide an interoperable language for describing these uncertainties using probability theory. While

it can be argued that probability theory provides a layer of semantic interoperability, without syn-

tactic interoperability these ideas cannot be shared and processed by other applications.

1.3 Scientific contribution

This thesis looks at interoperability within the geosciences, with a specific regard to the quan-

tification of uncertainty using probability theory. The intention here is not to make a judgement

on the appropriateness of other methodologies of quantifying uncertainty (e.g., fuzzy set theory,

Dempster-Shafer theory). Due to requirements dictated by the INTAMAP project (Chapter 5) and

consortium, the work in this thesis focuses on probability theory. However, where it is deemed

appropriate, alternative approaches are acknowledged.

The contribution of this thesis to the scientific community, and especially the geoinformatics

field, can be summarised in the following points:

• The primary contribution of this work is UncertML: an XML language for describing uncer-
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tainty using probability theory. Although many existing interoperable standards within the

geospatial domain make references to the importance of uncertainty within their field, none

make a conscious effort to model and quantify it. While UncertML was developed for use

within the geospatial domain, it remains domain-agnostic and therefore has potential uses

within a large number of fields.

• A secondary contribution of this research is the development of an interoperable inter-

face to an automatic interpolation service, INTeroperability and Automated MAPping (IN-

TAMAP). The INTAMAP interface allows users to retrieve interpolation predictions easily,

and without prior knowledge of the underlying, complex, geostatistical processes. The sys-

tem provides a middle ground between interpolation procedures that are often too simplistic

(e.g. nearest neighbour interpolation) and those that are too complex for non-geostatisticians

(e.g. kriging).

• A further contribution is the development of a GML application schema for quantifying po-

sitional uncertainty, Uncertain Geography Markup Language (uGML). GML is a widely

adopted language that can be used to describe many elements of geospatial data and pro-

cesses. One of GML’s more successful aspects is the suite of geometry schemas that de-

scribe 1, 2 and 3 dimensional geometries. Despite the popularity of the GML geometry

schemas, no mechanism for describing positional uncertainty exists. uGML extends the

GML geometry types in a way that maintains backwards compatibility with existing GML

software, yet allows more advanced software to utilise the positional uncertainty informa-

tion quantified using probability theory.

• A smaller contribution is the development of an extension to a Sensor Observation Service

(SOS) implementation, allowing quantification and retrieval of uncertainty within sensor ob-

servations. Utilising the Observations & Measurements (O&M) schema allows UncertML

to be added within the resultQuality element. These ‘uncertain’ observations are then

published using an extension to the 52◦ North SOS implementation. The benefits of this

extension are demonstrated by the INTAMAP service, which can use the results of a SOS

request for interpolation, a primitive form of service chaining.

• A final contribution of this thesis is an investigation and discussion into the term ‘interoper-

ability’ and specifically the techniques the OGC has used to achieve interoperability within

the geospatial domain. The work in this thesis is critical of several aspects of some OGC
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standards and suggestions are made where we feel improvements could be made.

1.3.1 Thesis aims and objectives

The primary research aims of this thesis are outlined in the three objectives below:

Objective 1 What is the most flexible, usable and interoperable design for a web-based informa-

tion model for representing uncertainty in a probabilistic setting?

Objective 2 Does the designed uncertainty information model integrate with existing standards

in the context of observation and positional uncertainties?

Objective 3 Does the designed uncertainty information model allow interoperable processing of

data. Specifically, can UncertML be used in workflows that account for uncertainty?

1.4 Outline of thesis

Chapter 1 is this introduction.

Chapter 2 introduces the concepts of interoperability and uncertainty. An overview of XML,

Web services and the Service Oriented Architecture (SOA) paradigm is given. A discussion fol-

lows on the topic of uncertainty and how probability theory can be used to quantify uncertainties.

Finally, I discuss how interoperability and uncertainty are relevant in a geospatial context.

Chapter 3 defines the Uncertainty Markup Language (UncertML) as a solution to the lack of an

existing interoperable standard for exchanging uncertainty probabilistically. A conceptual model

is outlined, using Unified Modeling Language (UML) models, that allows uncertainty to be de-

scribed by realisations, summary statistics or probability distributions. An implementation, re-

alised as a set of XML schemas, is then given and is illustrated through the use of numerous XML

examples. Finally, a discussion on how UncertML can be integrated into existing standards is

given.

Chapter 4 reviews the SOS specification as a service for querying and retrieving observation

data, encoded in the O&M standard. A critical analysis indicates that while uncertainty within ob-

served data is inherent, no standard method for characterising and quantifying these uncertainties

exists within the O&M or SOS specifications. An extension to the 52◦ North implementation of a
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SOS is then discussed that allows UncertML to be integrated. The benefit of using UncertML to

quantify uncertainties within observed data is motivated via a use case, providing a SOS interface

for weather data.

Chapter 5 introduces the INTAMAP project as an automatic service for interpolating sensor

data. INTAMAP is built around a number of OGC standards to provide an interoperable interface.

UncertML is a fundamental component of INTAMAP since it is used to quantify the uncertainties

on the input data, as well as the inherent uncertainties of the interpolation result. A review on

interoperability, and the approach taken by many OGC standards is discussed, with emphasis on

the issues faced during the INTAMAP project.

Chapter 6 introduces an extension to the GML specification that allows UncertML to quantify

positional uncertainty. The chapter starts with an overview of positional uncertainty and current

techniques for using probability theory to quantify it. A review of the GML standard follows, with

a review of the current mechanisms for describing uncertainty with it. A discussion on existing

extensions to GML that allow positional uncertainty to be described is given, followed by the

implementation of a new extension, uGML.

Chapter 7 summarises the work presented in the previous chapters and indicates possible future

directions of research.

1.5 Disclaimer

The work presented in this thesis is original and has not been published anywhere else. Parts of

the work, however, have been presented in the following conferences and papers:

• Work on the integration of UncertML with the INTAMAP project was presented at the

StatGIS 2009 conference in Milos and published in a special issue of Computers and Geo-

sciences (Williams et al., 2011).

• A review of interoperability in the field of geostatistics using UncertML and INTAMAP

was presented in Southampton at the geoENV VII conference. (oral presentation) (Williams

et al., 2010).

• A conceptual model for UncertML was presented at the GI Days 2008 conference in Muen-

ster, Germany and was awarded ‘best poster’. (poster presentation) (Williams et al., 2008b).
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• Preliminary work on the use of UncertML within the Semantic Web was presented at the

7th International Semantic Web Conference in Karlsruhe, Germany. (oral presentation)

(Williams et al., 2008c).

• UncertML was accepted as an official OGC discussion paper in 2008 (OGC 08-122r2,

2008).

• A further oral presentation was given at GISRUK in 2008 (Williams et al., 2008a).
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Chapter 2 LITERATURE REVIEW

2.1 Foreword

This chapter examines the two domains mentioned in the introduction; interoperability (Section

2.2) and uncertainty (Section 2.3). Section 2.2.1 identifies how XML (Section 2.2.1) and Web

services (Section 2.2.2) have provided a cornerstone for a new computer design paradigm, SOAs.

The concept of uncertainty is discussed in Section 2.3. Primarily focusing on probability

theory, Section 2.3.1 describes how uncertain information may be quantified using the concept of

random variables and in some cases two or more (correlated) random variables. Finally, Section

2.3.2 gives a brief overview of some other methods for quantifying uncertainty.

The focus of this work is combining the ideas of uncertainty and interoperability, with partic-

ular application to the geospatial domain. Section 2.5 reviews the geospatial context, with Section

2.5.1 looking at how uncertainty is accounted for in GISs, and how it is currently quantified.

Existing OGC standards for interoperability are investigated. The following key standards are

reviewed: GML (Section 2.5.2), Sensor Web Enablement (SWE) Common (Section 2.5.3) and

O&M (Section 2.5.4).

This chapter provides the reader with a basic understanding of the concepts and ideas behind

the work described in the subsequent chapters. It also identifies existing work within the fields,

reviewing the state of the art and motivating the need for an interoperable standard for quantifying

uncertainty, UncertML, described in Chapter 3.

2.2 Interoperability

With the creation of Advanced Research Projects Agency Network (ARPANET) in the late 1960s,

the idea of distributed systems (concurrent processes running on separate physical machines) was

realised. Since the birth of the Internet in the early 1990s, distributed systems have become far

more commonplace and have extended beyond their humble beginnings as simple E-mail appli-

cations. With this wide-spread adoption comes a pertinent problem. Interoperability, an umbrella

term meaning “the ability to exchange and use information”, raises several challenges when ap-

plied to computer systems.

This section investigates different emerging technologies that seek to aid interoperability by

providing common data formats and communication protocols. Discussion is also provided about

how the creation of several standards providing similar functionality, but using different design

choices, may actually hinder interoperability in practice.
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2.2.1 XML

Ironically, XML is not actually a markup language but a set of rules for constructing markup lan-

guages (Ray, 2001). XML provides a tag-based syntax for structuring data. Visually, XML is

very similar to HyperText Markup Language (HTML). However, where HTML may be consid-

ered a presentation language, XML separates presentation from information and can be used to

provide meaning to any data source. XML documents are self-describing and are both machine

and human-readable. These traits make XML ideal for creating interoperable data formats and

interfaces (i.e. Web services).

Elements and attributes

Elements make up a large proportion of an XML document. Every XML document has one top-

level element, or, root element. XML does not provide any element names but explains how to

create elements specific for each domain (Bray et al., 2006b). An element is realised as an open

and close tag. The syntax of an open tag is the less-than character (<) immediately followed by

the element name (or tag name) and finished with the greater-than character (>). A close tag

begins with the character sequence </ followed by the tag name and finished with the greater-than

character. A close tag must have the same name as the open tag to terminate the element.

<Aircraft code="G-NASW">
<Manufacturer>Airbus</Manufacturer>
<Model>A380</Model>
<Engine>

<Name>Trent 900</Name>
<Thrust>311 Kn</Thrust>

</Engine>
</Aircraft>

Listing 2.1: A simple example demonstrating the key components of XML: elements, attributes
and data.

Elements can have children which may be elements themselves or processing instructions,

comments or character data. When an element does not contain any children it is referred to as

empty. Empty elements can be written in the shorthand form <element />. Elements may also

contain any number of attributes. An attribute resides within the element open tag and takes the

form of a key=value pair (e.g. id="15123"). Attributes are traditionally used to provide elements

with a unique label so that they can be easily located within a larger document.

Listing 2.1 shows a simple XML fragment describing a particular aircraft. The <Aircraft>
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element is the root element containing three children. An attribute, code, exists to distinguish this

aircraft from others within the same document. The <Manufacturer> and <Model> elements have

character data as their children whereas the <Engine> element contains a further 2 child elements.

It is this hierarchical, tree structure of data that allows XML to describe practically any concept,

regardless of its complexity.

Namespaces

With XML providing the framework for anyone to construct data models, a problem quickly be-

comes apparent. Because XML designers are free to choose their own tag names it is entirely

plausible that two, or more, designers will choose the same tag names for some of their elements

(Skonnard and Gudgin, 2001). While not necessarily a problem when the two elements possess

the same meaning, problems arise when two distinct concepts share a common name. Take, for

example, the concept of a tree. To a horticulturist a tree represents a perennial woody plant, how-

ever, a computer scientist may refer to a tree as a ‘commonly used data structure with a set of

linked nodes’. Solving this problem relies on XML namespaces (Bray et al., 2006a).

A namespace in XML allows distinction between elements that share the same name, but are

from different vocabularies. Usage of namespaces relies on two parts. Firstly, the namespace must

be declared in an element. The syntax of a namespace declaration is xmlns:prefix=‘URI’, which

maps the namespace Uniform Resource Identifier (URI) to a typically shorter prefix. When no pre-

fix is specified the resulting namespace is referred to as the default namespace. Namespaces have

a scope — that is, a set of elements to which they apply. The scope of a namespace declaration in-

cludes the element on which it is declared and any descendants. Secondly, elements that belong to

a particular namespace are referenced using the prefix, <prefix:Element>text</prefix:Element>.

If an element omits the prefix and a default namespace declaration exists, and is in scope, then it

is assumed that the unqualified element belongs to the default namespace. If, however, no default

namespace exists then the element does not belong to any namespace. Though such an element is

valid XML, it would prove difficult integrating it into other XML vocabularies.

<hrt:Tree xmlns:hrt="urn:example:horticulture">
<hrt:Name scientific="Corylus avellana">Hazel</hrt:Name>

</hrt:Tree>

Listing 2.2: XML example describing a tree. The addition of a namespace suggests that it is a
plant and not a data structure.

27



Chapter 2 LITERATURE REVIEW

<cs:Tree xmlns:cs="urn:example:computer_science">
<cs:Node>

<cs:SomeElement />
</cs:Node>

</cs:Tree>

Listing 2.3: XML example describing a tree. The namespace suggests it is a data structure and not
a plant.

Listing 2.2 provides a simple XML fragment describing a ‘tree’. The inclusion of a namespace

allows us to infer that it is a ‘perennial woody plant’ and not a commonly used data structure

(Listing 2.3). Using namespaces also allows different vocabularies to be used within the same

document. Imagine, for example, a computer scientist is constructing a tree (data structure) of

trees (plants). Listing 2.4 shows how this may be accomplished by assigning the element ‘Tree’

to two different namespaces. The ability to combine different vocabularies allows new XML

languages to be constructed from individual elements taken from several sources. This separation

of concerns (Dijkstra, 1982) allows individual data modellers to define small, domain specific,

vocabularies, thus promoting reusability — a fundamental requirement of interoperability (Erl,

2005).

<cs:Tree xmlns:cs="urn:example:computer_science">
<cs:Node>

<hrt:Tree xmlns:hrt="urn:example:horticulture">
<hrt:Name scientific="Corylus avellana">Hazel</hrt:Name>

</hrt:Tree>
</cs:Node>

</cs:Tree>

Listing 2.4: XML example combining two types of ‘tree’ into a single data structure. The use of
namespaces provides a clear distinction between the two tree elements.

Namespace declarations use URIs to distinguish themselves from one another. While these

URIs may be Uniform Resource Names (URNs), demonstrated in Listings 2.2– 2.3, they are

typically realised as Uniform Resource Locators (URLs). A detailed discussion about the benefits

of both URLs and URNs can be found on page 33.

XML schema

The effectiveness of an XML language as an interoperable data format relies on the availability of

tools to validate a given instance document, i.e. to ensure the instance document conforms to the

logical structure defined in the data model. Without such validation tools the automatic processing
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Type Description
decimal An arbitrary-precision decimal number.
integer An arbitrary-precision integer.
float A single-precision floating point number.
double A double-precision floating point number.
date A Gregorian calendar date.
dateTime An instant in time.
string A general string type.

Table 2.1: A list of commonly used XML schema simple data types.

of data, which underpins the ideology of interoperability, would be impossible. Within the XML

framework there exists various tools for validating the structure, and content, of an XML instance

document — the most popular of which is XML schema. XML schema was developed as a natural

extension to Document Type Definitions (DTDs) and addresses some of their shortcomings (Bex

et al., 2004). XML schema is a complex language; consequently, only the concepts that are used

throughout this thesis are outlined. A more complete description of the XML schema language

can be found in Vlist (2002) and Fallside and Walmsley (2004).

XML schema is itself an XML vocabulary providing a set of built-in elements that allow users

to construct rules and constraints to apply to a class of XML documents. All elements defined by

XML schema reside in the XML schema namespace and are thus prefixed with xs. In its simplest

form, an XML schema defines a set of allowed XML elements. For instance, in the example in

Listing 2.1, six elements exist: Aircraft, Manufacturer, Model, Engine, Name and Thrust. An

accompanying schema would need to define all six of these elements, and their corresponding data

types. For simple data types (e.g. string, integer etc.) XML schema provides a series of built-in

types that may be used (Table 2.1). Listing 2.5 demonstrates how the Manufacturer element in

Listing 2.1 could be defined in XML schema language.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Manufacturer" type="xs:string" />

</xs:schema>

Listing 2.5: An XSD example.

While these simple data types are adequate for elements such as Manufacturer and Model,

where the content is a string value, certain elements (e.g. Aircraft) have complex content, such

as other XML elements. Complex types in XML schema are defined by the xs:complexType. De-

pending upon the desired restrictions, a choice of elements can be placed inside a xs:complexType
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Element name Description
all A model group that allows elements in any order.
any An element wildcard.
choice A model group that allows one of the elements contained within it.
element An element declaration or reference.
group A reference to a named model group
sequence A model group that allows elements in a fixed order

Table 2.2: A list of allowed XML schema elements within an xs:complexType element.

element. Typically, this is a xs:sequence element that specifies a series, and order, of XML ele-

ments that can reside within this type. Table 2.2 provides the full list of options for a xs:complexType.

Attributes are also considered complex and therefore must be defined within a complexType ele-

ment.

One of the key benefits of XML schema over DTD is that it allows for modularisation (Bex

et al., 2004). Identifying commonly used elements within a domain and placing them in the root

of the schema allows these components to be reused throughout. Elements can then reference

these common components via the ref attribute. An example of this modularisation can be seen

in Listing 2.6 which gives a complete XML schema for the example in Listing 2.1. Notice how the

Aircraft and Engine elements are defined at the root level and that the Aircraft element makes

a reference to the Engine as one of its child nodes. Due to the Engine element being defined at root

level, and not inside the Aircraft element, it has a global scope. If, for example, a user wished to

create a schema allowing aircraft engineers to monitor engine maintenance records, importing the

aircraft schema would allow reference to the pre-existing Engine element, precluding the need to

duplicate elements. The XML schema language also provides the mechanism for deriving from

existing types. For example, if the aircraft engineers wished to add more detailed information to

the basic Engine model then inheriting by extension allows this. Another method of inheriting in

XML schema is by restriction. Inheriting by restriction allows a child element to use only a subset

of the values that are provided by the parent element. However, inheritance by restriction is less

commonly used than extension and does not form any part of the UncertML schemas.

There are many choices to be made when designing an XML schema. One high-level choice

is whether to employ a strong-typed or weak-typed methodology. In a strongly-typed schema all

of the elements and attributes are known a priori and can therefore be defined within the schema.

Defining all elements and attributes relies on a domain expert to identify which concepts require

modelling and which do not. Listing 2.7 provides an example of a strong-typed XML fragment
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<xs:schema>

<xs:element name="Aircraft">
<xs:complexType>

<xs:sequence>
<xs:element name="Manufacturer" type="xs:string"/>
<xs:element name="Model" type="xs:string"/>
<xs:element ref="Engine" maxOccurs="8"/>

</xs:sequence>
<xs:attribute name="code" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

<!-- The Engine element may exist outside of an aircraft -->
<xs:element name="Engine">

<xs:complexType>
<xs:sequence>

<xs:element name="Name" type="xs:string"/>
<xs:element name="Thrust" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

Listing 2.6: An XML schema for defining aircraft (Listing 2.1). A separate Engine element is
defined providing some modularisation.

describing a Golden Eagle. Contrast this with the example in Listing 2.8, which describes the

same Golden Eagle, but with a weak-typed design.

<GoldenEagle tag="GE1312">
<description>...</description>
<wingspan units="m">2.4</wingspan>
<height units="m">0.8</height>

</GoldenEagle>

Listing 2.7: A Golden Eagle defined using a strong-typed design. All elements and attributes have
been defined by a domain expert a priori.

Each design methodology has its relative strengths and weaknesses. A strong-typed design

provides easier validation of XML fragments as all possible elements and attributes have been

defined in a schema. This means that if two computer systems implement the code necessary to

parse and understand all elements and attributes in this schema, they can then communicate with

each other. A disadvantage of strong-typed designs is the difficulty of extension. Due to all known

elements and attributes being well defined in a schema, the addition of a new element, or attribute,

is not trivial. Extending the schema to provide additional elements or attributes breaks any in-
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<Bird type="GoldenEagle">
<property name="tag" type="string">GE1312</property>
<property name="description" type="string">...</property>
<property name="wingspan" type="double">2.4</property>
<property name="height" type="double">0.8</property>

</Bird>

Listing 2.8: A Golden Eagle defined using a weak-typed design. The elements and attributes are
not known a priori so generic terms are used.

teroperability that existing software systems had, unless they update their code to accommodate

the changes. Consider the computer systems in the scenario above. If a change occurs to the

schema which they rely on to communicate, then they must either both chose to ignore the update,

or modify their systems to accommodate the change. In the event that only one system converts

to the new schema they can no longer communicate safely in the knowledge that they speak the

same language. A weak-typed design, on the other hand, only has generic elements and attributes

predefined. Using URIs to provide semantics (possibly through an online dictionary) allows the

XML vocabulary to be extended easily. This methodology is particularly suited to domains where

there are an undetermined number of concepts that need modelling, e.g. types of probability dis-

tributions (Section 2.3.1). A major disadvantage, however, is that weak-typed XML fragments

can only be validated to a simple degree. Take the Golden Eagle example; the property elements

can contain any information with no way to validate it against a schema. The weak-typed schema

simply states that a Bird element may contain any number of property elements, not what these

properties should contain, or indeed how many properties a particular bird should have. This poses

the question: “how can two computer systems communicate with each other efficiently when their

common language is not well-defined?”. This question results in a trade-off, namely -: provide a

strong-typed schema to allow interoperability and risk future extensions breaking this, or provide

a generic, weak-typed, schema that limits the effectiveness of interoperability? In this work it is

argued that perhaps some middle ground can be found that provides a set of common elements

and attributes (strong-typed), but also provides generic elements and attributes to allow extension

(weak-typed).

The existing literature on strong and weak-typed designs does not provide a comparative anal-

ysis of the merits of each philosophy. However, discussion can be found on the use of strong and

weak-typed designs in programming languages (Madsen et al., 1990) and database design (Yang

and Parker, 2007). Providing a comparison between strong and weak-typed methodologies in an

XML schema context is a minor contribution of this thesis.
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URIs — URNs vs URLs

The success of the Web could be attributed to the role played by resource identification. In a

Web context this is handled by the URI scheme. While Web users will be accustomed to the

URL scheme as the main means of resource identification, several other schemes are in existence.

Jacobs and Walsh (2004) state that users of URIs should not try to infer properties of the referenced

resource through the URI — URIs should be opaque. One of the common misconceptions of the

Web is that URLs should describe the resource they identify. While this is typically the case,

Mendelsohn and Williams (2007) explain that a URL such as: http://example.org/weather/

Birmingham/today.html need not necessarily refer to today’s weather in Birmingham, nor that

it points to an HTML file. The role of the URI agent is to provide a unique identifier for resources

under their governance, the use of metadata in these URIs is optional, although considered good

practice, where the URIs are intended for direct use by people (Mendelsohn and Williams, 2007).

Identifiers on the Web have two roles:

• to name or denote a resource,

• to provide a resolvable locator for a Web resource.

The strength of the URL scheme is that it combines both of these roles and uses well estab-

lished protocols for resolutions (e.g., Domain Name System (DNS), Hypertext Transfer Protocol

(HTTP) etc.). However, certain weaknesses of URLs have led to other schemes being developed.

Perhaps the main disadvantage of the URL is the issue of persistence. Due to the fact that the reso-

lution of URLs is handled partly by DNS servers, the resource identifier is left prone to changes in

server configuration, e.g. a resource may move within the server and therefore nullify any existing

identifiers of that resource. The URN syntax was developed to overcome the issues of URLs by

providing persistent, location-independent, resource identifiers (Moats, 1997). The syntax of a

URN takes the form of urn:<namespace identifier>:<namespace specific string>. An

example URN could be written as urn:airbus:a380 where ‘airbus’ is the namespace identifier

and ‘a380’ is the namespace specific string. In stark contrast to URLs, the location-independence

of URNs make them particularly difficult to resolve. While a universal URN resolver does exist

1, it merely points to a series of documents for each scheme, i.e. it is manual. However, it is not

essential to resolve resources. Reasoning can be achieved by simply knowing that resource A is

1http://www.iana.org/assignments/urn-namespaces/
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the same as resource B. If both these resources share the same identifier then the resolution of that

identifier may not be required.

With each scheme having disadvantages, the choice then focusses on the relative importance

placed by the URI agent on persistence and resolvability. The OGC use the URN scheme ex-

tensively through their specifications for defining phenomena, units of measure and other such

concepts (OGC 07-036, 2007; OGC 07-022r1, 2007; OGC 07-000, 2007). However, UncertML

uses the URL scheme for all identifiers due to the ease of resolving URLs and the benefits that this

brings.

2.2.2 Web Services

The term ‘Web service’, in its simplest form, refers to an architecture that allows applications to

talk to each other. It was coined by Microsoft in 2000 to describe a series of standards for allow-

ing machines to communicate via a network (typically the Internet). There are now over 50 Web

service standards in circulation today (Josuttis, 2007), referred to as the WS-* stack, perform-

ing a variety of tasks ranging from security to service management through business processes.

However, it is widely agreed that 5 core standards exist (Josuttis, 2007; Erl, 2004, 2005): XML,

HTTP, Simple Object Access Protocol (SOAP), Web Service Description Language (WSDL) and

Universal Description Discovery and Integration (UDDI).

Extensible Markup Language (XML) is used to describe models, formats and data types. Most

other Web service standards are also based on XML, XML schema or XML namespaces.

Hypertext Transfer Protocol (HTTP) is a low-level protocol used by the Internet. While it is

not a stipulation that Web services communicate via HTTP, it is the most frequently used

mechanism. Details of the HTTP protocol are outside the scope of this thesis, but more

information can be found in Fielding et al. (1999).

Web Service Description Language (WSDL) is used to define service interfaces. Typically split

into three distinct sections, a WSDL file first explicitly describes the interface, i.e. the

operations available and any input and output parameters. The second section is the binding,

i.e. the protocol and format for which the operations are provided. The final section is the

physical location (endpoint) of the Web service, i.e. a URL or address where the service is

available.

Simple Object Access Protocol (SOAP) defines the Web services protocol. Existing at a higher
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level than HTTP, SOAP is the specific format for exchanging Web service data. In a typi-

cally SOAP/WSDL Web service all messages are wrapped in a SOAP envelope that provides

additional information to the contained data, e.g. security information.

Universal Description Discovery and Integration (UDDI) is a standard for managing Web ser-

vices, i.e. registering and discovering services. However, early indications suggest that

UDDI has not been adopted as widely as the other 4 standards (Josuttis, 2007).

The combination of these standards aims to provide interoperability between systems. De-

scribing data payloads and protocols using XML and SOAP allows communication between plat-

form and language-neutral vendors. However, with the recent uptake of Web services and the

generation of numerous other service standards, implementing a ‘Web service’ becomes a daunt-

ing task. In addition to the numerous service standards, account must be taken of the different

versions of these standards. It is not safe to assume that version 1.1 of a particular standard can in-

teroperate with version 1.0 (and vice versa). Even when specific versions of specific standards have

been decided upon, the breadth of some standards is overwhelming and interoperability remains

a problem. The culmination of these issues was the creation of a Web services Interoperability

Organisation (WS-I). A core task faced by the WS-I is the creation of profiles. A profile is a de-

fined set of specific-version standards accompanied by guidelines and conventions for using these

standards in order to ensure interoperability. In 2006 a ‘basic profile 1.1’ was specified indicating

versions of the 5 core specifications that should be used in combination with 150 additional con-

formance requirements (Ballinger et al., 2006). The fact that in accounting for only 5 of the 50

specifications, 150 additional conformance requirements were amassed clearly demonstrates the

huge task faced by the WS-I, and interoperability as a whole.

RESTful Web services

The phrase Web service is often used to refer to Web services constructed using SOAP and the

WS-* standards, as discussed above. However, the concept of a Web service is more abstract and

should be free from any implementation assumptions. The popularity of SOAP services has led

to this confusion but it should be noted that other frameworks for constructing Web services exist.

One such architecture is called Representational State Transfer (REST).

Introduced by Fielding (2000), REST style architectures involve both clients and servers who

interchange messages. These requests and responses are based upon representations of resources.

A resource is defined as “any information that can be named”, for example, a document or image.
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Verb Description
PUT Creates a new resource
GET Gets the current state of a resource
POST Transfers a new state onto a resource
DELETE Deletes a resource

Table 2.3: A list of HTTP verbs and their perceived meaning in a ‘RESTful’ architecture.

Each resource in a RESTful system (a system conforming to the REST constraints) must have a

unique identifier, or URI, and be accessed through a uniform interface. Traditionally, RESTful

services use the HTTP protocol as it provides a complete vocabulary of verbs (or methods) for

manipulation of resources (Table 2.3). The perceived simplicity of REST, due to the use of existing

standards (HTTP, XML, Multipurpose Internet Mail Extensions (MIME), URI etc.), is arguably its

greatest strength (Pautasso et al., 2008). HTTP client and server software is widely available in all

major programming languages meaning RESTful services can be constructed and consumed with

minimal overheads. Scalability and discovery are also key components of a REST architecture,

which is in contrast to WS-* based services. However, the simplicity of REST is also a weakness,

since the limited set of verbs available to HTTP makes it difficult for extended functionality to be

exposed via a REST interface.

There is an extensive literature on comparisons of REST and SOAP-based services (Pautasso

et al., 2008; Vinoski, 2007; Muehlen et al., 2005; Richardson and Ruby, 2007). While opinions

vary wildly depending on the individual’s background, a general consensus can be drawn that both

REST and SOAP services aim to solve different problems and that the choice of interface adopted

should be made according to the functional requirements of a software system. Advocates of

RESTful services would argue that, despite the limited number of verbs, RESTful services are ca-

pable of solving any problems. Likewise, SOAP-based advocates would argue that SOAP/WSDL

services are not overly complicated and provide much more functionality than RESTful services.

However, it can be agreed that for simple services that provide access and limited manipulation

(e.g., edit, delete etc.) of resources a RESTful solution is preferred. When more complex process-

ing is required, or where a service extends beyond the manipulation of resources a SOAP/WSDL

architecture is preferable.

OGC Web Services

The OGC is an international consortium of companies that provide standards and interfaces for

geospatial information on the Web. One standard is the OGC Web Services Common Specifi-

36



Chapter 2 LITERATURE REVIEW

cation (OGC 06-121r3, 2007) which outlines the common operations that “geo-enabled” Web

services should provide. The OGC decided that existing Web service architectures (SOAP and

REST) lacked the required functionality, instead preferring to outline a new, geospatial-oriented,

framework. The hub of an Open Geospatial Consortium Web Service (OWS), is the capabili-

ties document. Within a capabilities document are comprehensive details of a particular service

instance, including any operations, inputs and outputs. Comparisons can be made between the

capabilities document and a WSDL file from traditional Web services as they both describe the

contract between service and user. In fact, efforts have been made to fuse existing OGC services

(WFS, WMS, Web Coverage Service (WCS) etc.) with WS-* standards (WSDL, SOAP, UDDI

etc.) (OGC 03-028, 2003; OGC 03-014, 2003; OGC 04-049r1, 2005; OGC 04-050r1, 2005) with

OGC 04-060r1 (2004) drafting a second version of the OWS Common specification to incorpo-

rate the WS-* stack. The official stance of the OGC towards WSDL is explained in the OWS

specification (OGC 06-121r3, 2007):

. . . operations can return service metadata using different data structures and/or for-
mats, such as WSDL . . . When such operation(s) have been sufficiently specified and
shown more useful, the OGC may decide to require those operation(s) instead of, or
in addition to, the current GetCapabilities operation.

The design ethos of OWSs is that customising services to individual use cases detracts from

interoperability, a view shared by Josuttis (2007). Instead, a set of generic services have been

created to cater for a broad range of situations. Each OWS specifies a number of methods, or

verbs, that adhere to the foundations laid out in the OWS specification (OGC 06-121r3, 2007). The

combination of capabilities document and a succinct set of verbs culminates in a form of hybrid

SOAP/REST service that inherits the benefits of both architectures. A more detailed discussion of

some OWSs, including WFS and WMS can be found in Section 2.5.

Service-Oriented Architecture

SOA is an abstract programming paradigm. Frequently, Web services are used as a mechanism for

implementing a SOA, so frequently in fact, that it has become a common misconception that Web

services are a requirement of a SOA (Erl, 2004, 2005; Josuttis, 2007). In its simplest form a SOA

is a methodology for decomposing logic required to solve a large problem into several smaller

pieces, or services. Erl (2005) draws comparison from a cosmopolitan city, with each business

providing a distinct service to a larger community. This separation of concerns allows a larger,

distributed, environment to exist.
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Principle Description
Loose coupling Services maintain a relationship that minimises dependen-

cies and only requires that they retain an awareness of each
other.

Service contract Services adhere to a communications agreement, as de-
fined collectively by one or more service descriptions and
related documents.

Autonomy Services have control over the logic they encapsulate
Abstraction Beyond what is described in the service contract, services

hide logic from the outside world.
Reusability Logic is divided into services with the intention of promot-

ing reuse.
Composability Collections of services can be coordinated and assembled

to form composite services.
Statelessness Services minimise retaining information specific to an ac-

tivity.
Discoverability Services are designed to be outwardly descriptive so that

they can be found and assessed via available discovery
mechanisms.

Table 2.4: Key principles of a Service-Oriented Architecture.

While distributing logic into distinct logical units is nothing new, there are several notable dif-

ferences to an SOA. Tight coupling of units imposes dependencies that may inhibit their potential

by limiting any future extension. SOA emphasises a loose coupling idea whereby each unit should

be self-governed, allowing them to evolve and grow independently from the rest of the system.

While encouraging independence between the units of logic there still exists a series of funda-

mental conventions they must adhere to. Referring back to the cosmopolitan city example, each

business must share a common currency for exchange of goods and services and it is necessary

that all employees speak the same language as the consumers. Within an SOA, units of logic,

or services, are required to conform to a set of principles that allow them to remain autonomous

while maintaining a sufficient amount of commonality.

For services to interact within a SOA they must be aware of one another, and this is achieved

through the use of a service description. A service description, in its most basic form, describes

the name and location of a particular service, as well as its data exchange requirements. The

similarity of this service description and a WSDL, or capabilities, document is just one reason

why Web services have become synonymous with a SOA. Table 2.4 outlines the key principles of

service-orientation according to Erl (2005).

SOAs are one method of implementing a distributed system, however, other architectures ex-

ist. Common Object Request Broker Architecture (CORBA) is a standard that allows software
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components written in multiple languages to work together, regardless of system hardware. This

definition is similar to that of a Web service, but the implementation of both methods is very differ-

ent. CORBA uses an Interface Description Language (IDL) that describes the interface to shared

objects. Mappings are then provided that convert the IDL into a native programming language

(e.g., Java, C++ or ADA). The IDL in CORBA can be compared to XML, in that they both de-

scribe the interface to an object, or service, respectively. A benefit of CORBA, over an XML-based

approach, is that the data is transported in binary format, which results in drastically smaller file

sizes. However, a problem faced by CORBA implementations is that the connections between dis-

tributed components are made over Transmission Control Protocol (TCP)/Internet Protocol (IP),

but unlike Web services, these connections are not on the commonly-used port 80. The result of

this is that communication can often be impossible when a restrictive firewall, which only allows

communication via port 80, is in place. The use of existing ports and protocols by Web services

has seen a faster adoption by users than CORBA.

While there are benefits of using CORBA (and other distributed architectures) in some sce-

narios, it is generally considered that an XML and Web service approach provides a more loosely

coupled and interoperable solution (Chung et al., 2003; Gokhale et al., 2002).

2.3 Uncertainty

Uncertainty affects many aspects of our lives each and every day. Take, for example, the weather

— will it rain today? This is a frequently asked question and answering with absolute certainty

is not generally possible. Uncertainty, however, extends far beyond the future weather conditions.

What will the lottery numbers be this coming weekend? Will the bus arrive on time? What is

the chance I will get hit by a car today? In science, uncertainty is principally concerned with the

measurement of quantities and the accuracy of these measurements. Uncertainty may also arise

as a by-product of computational models — which often propagate the measurement uncertainties

from inputs. When making decisions based on uncertain information, or concepts, it is important

to quantify the uncertainties. For instance, if a person believes that the probability that it will

rain today (perhaps using a weather forecasting system) is 0.1 then they may decide not to take

an umbrella. Using the available information, they made the decision that the 10% risk of it

raining was not large enough to warrant the inconvenience of carrying an umbrella. It is the

quantification of uncertainties that allows such reasoning. Uncertainty can often be distinguished

as being either aleatory or epistemic. The former arises because of the natural, unpredictable
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variation of the world while the latter is caused by a fundamental lack of knowledge about the

world. The concept of aleatory and epistemic uncertainties are summarised concisely by the US

Environmental Protection Agency (2008) below:

“Uncertainties in the scientific sense are a component of all aspects of the modeling
process. Uncertainties that affect model quality include aleatory uncertainty (due to
the inherent stochastic nature of the world), uncertainty in the underlying science and
algorithms of a model (model structure uncertainty), data uncertainty, and uncertainty
regarding the appropriate application of a model (application niche uncertainty).”

This section outlines the principles behind probability theory, a mechanism for quantifying

uncertainty, as well as other complimentary theories.

2.3.1 A probabilistic approach to quantifying uncertainty

Probability theory is a branch of mathematics that quantifies uncertainties through the use of prob-

abilities (Papoulis and Unnikrishna Pillai, 1984). A simple scenario, often referred to, is the toss

of a coin. Assuming it is a fair coin one can assign a probability of 1
2 , or 50%, to each possible

outcome (head or tails). Extending this idea allows us to apply the same principle to the roll of a

die. Assuming a fair die, the probability of a six appearing is 1
6 . While these are trivial examples

the same principles can be applied to more complex events allowing us to make decisions based

on calculated risk.

Objective and subjective probabilities

There are two ways to think of probabilities: objective and subjective. The two examples given

previously are both examples of an objective probability. An objective probability is where it is

known that, repeated enough times, a particular event will occur a given proportion of the time.

For example, rolling a die enough times will demonstrate that the number six appears 1
6 of the

time. Of course, with probability nothing is certain. It is plausible that a die could roll 100 times

and not have a single six appear. However, roll the die an infinite number of times and eventually

the occurrences of the number six will converge to 1
6 . The concept of calculating probabilities by

repeating experiments, or measurements, is called a ‘frequentist’ approach to probability theory

and is how probability theory is commonly taught. However, there are many situations where

taking repeat measurements is not possible. In such circumstances a subjective, or Bayesian,

approach is better suited.

Subjective (Bayesian) probability differs in that it is a belief about an event. For instance, one

might have a belief that there is a 20% chance it will rain tomorrow. Subjective probabilities are
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liable to change as our knowledge of the event increases. For instance, if tomorrow morning there

are dark rain clouds in the sky the prior belief of 20% chance of rain may increase significantly.

This ‘updating’ of prior beliefs into a ‘posterior’, conditional, probability is achieved using Bayes’

theorem, hence ‘Bayesian’. A key benefit of Bayesian over frequentist theory is that it can be

adopted for all scenarios. For example, if a Bayesian statistician was asked to provide a belief that

the roll of a die would produce a 6, they could base their belief on the repeated throw of a die (an

objective approach). However, if a frequentist statistician was asked the probability that it will rain

tomorrow then they must adopt a subjective approach, i.e. the event is not repeatable. Bayesian

probability theory provides a robust, flexible framework that allows uncertainty to be quantified

using a variety of methods. A Bayesian approach to probabilities is adopted throughout this thesis.

Probability distributions

1 2 3 4 5 6

0.0

0.1

0.2

0.3

p(
x)

Figure 2.1: A uniform probability distribution for the roll of a six-sided die.

When rolling a die there are six discrete possible outcomes. The set of these outcomes is

referred to as the sample space (denoted by Ω). For any given outcome there is a probability

that it will occur. These probabilities are identified by a probability distribution. In the example

of rolling a die the outcomes have an equal probability of occurring and are therefore uniformly

distributed, Figure 2.1. However, probability distributions can take any form. Imagine two dice

are rolled and the sum of the numbers shown is recorded. The sample set (all possible outcomes

of the experiment) can be defined as:

Ω = {2,3,4,5,6,7,8,9,10,11,12} (2.1)

However, P(2) = 1
36 whereas the P(7) = 6

36 , i.e., not all outcomes are equally likely. Figure 2.2

shows the full probability distribution of this experiment.

In all the examples so far the sample set has had a finite number of possible outcomes. The

flip of a coin has two outcomes, the roll of a die has six and the sum of two dice has eleven
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Figure 2.2: Probability distribution for the sum of the scores shown by two dice.

possibilities. The probability distributions in such examples are referred to as discrete probability

distributions. However, what happens when our sample space has an infinite set of outcomes,

for example, possible values for the current air temperature? In these instances a continuous

probability distribution needs to be considered.

A continuous probability distribution can be defined by a probability density function, or PDF.

The PDF is a curve that describes the density of probability at each point in the sample space.

However, it should be noted that the probability of any single value occurring from a continuous

sample space is 0. When dealing with continuous probability distributions the area under the PDF

curve must be considered, that is, the probability that the value lies between two bounds.

Random variables

The previous section looked at probability distributions, or functions, that map events from a

sample space to real numbers. When a quantity follows a particular probability distribution it can

be referred to as a random variable. Examples of random variables could be the temperature at a

given point, the number of cars on a section of road at a given time or even the number of hairs

on a person’s head. Both continuous and discrete examples are described as random variables.

For instance, if a die is rolled, the random variable X could be the number shown, or the random

variable Y could be the number of sixes shown. Examples like this, where multiple functions exist

on the same sample space, are commonplace and are one of the benefits of working with random

variables.

A random variable is typically described by a probability distribution, as discussed in the

previous section. As with probability distributions, random variables come in two main types,
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discrete and continuous. Discussion so far has mainly focussed on discrete scenarios, but often

the more interesting cases are continuous. Imagine a random variable, D, that is the distance (in

miles) travelled by a jet engine before a significant malfunction occurs. A random variable is

described by a probability density function, of which there exist an infinite number. However,

in practice it is easier to work with a smaller class of well-understood probability distributions,

e.g. the Gaussian, or normal, distribution. For instance, the random variable D is not normally

distributed (it is positive and the Gaussian distribution allows for negative values), but because

D is large, a Gaussian assumption is acceptable in this instance. A Gaussian distribution can be

characterised by its probability density function and the parameters location (µ) and scale (σ2).

The distribution for random variable D can be seen in Figure 2.3).

Distance travelled in miles

p(
x)

0 10000 20000 30000 40000 50000

Figure 2.3: Gaussian distribution of the random variable D, describing the distance travelled by a
jet engine before significant malfunction.

Using the distribution in Figure 2.3 one can ask such questions as “what is the probability

a malfunction will occur before 10,000 miles?” or “what is the expected distance for an engine

to travel without malfunction?”. Probabilities, such as in the first query, can be generated by

calculating the area under the curve, which equates to a probability. The expected value of a

continuous random variable is calculated differently and leads us on to the topic of moments.

While the probability distribution fully quantifies a random variable, often it is sufficient to

describe it through a series of statistics, called moments. The first moment of interest is the

expected value. The expected value is typically the ‘average’ value or mean of a random variable.

Unfortunately, the first moment alone is generally not sufficient to describe a random variable.
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This is because the probability of any single value of a continuous random variable is 0. For the

expected value to be of use in decision making, consideration of the second order moment, or

variance is required. The variance is a measure of spread that indicates how far from the expected

value the values of a random variable can be. For the random variable, D, given above, calculating

these two moments is trivial. This is because the location parameter of a normal distribution is

equal to the expected value and the scale parameter is equivalent to the variance. However, with

other distributions the parameters are not the same as the moments, and in such instances a moment

generating function is required.

In some instances the distribution of a random variable may not be known and subsequently

it cannot be described using a probability distribution or its moments. To counter this, a series of

possible outcomes, or realisations, of a random variable can be provided. Given sufficient real-

isations it is possible to infer the underlying probability distribution and consequent uncertainty.

Such realisations are often generated from a Monte Carlo procedure.

Quantiles may also be used to quantify a random variable. A quantile is a point on the

Cumulative Distribution Function (CDF). Typically, a series of quantiles are taken at regular

intervals along the CDF. Providing a collection of quantiles instead of a probability distribution

provides an approximation of the random variable that may provide a sufficient quantification.

This non-parametric approximation is necessary when the parameters of a variable are not known.

There are a large range of probability distributions including the beta, gamma, log-normal

and Poisson distributions. The choice of distribution used is often dependant on the variable

one wishes to model. For instance, the Poisson distribution is often used for modelling spatial

densities (Ripley, 1977). However, due to the relative simplicity of the Gaussian distribution it

is commonly used across a range of domains. This thesis does not attempt to list all possible

probability distributions as the implementation of a weak-typed design (Section 2.2.1) allows the

encoding of any distribution.

Joint random variables

All probability distributions considered up to this point have been of single random variables.

However, often the behaviour of two or more random variables together need to be considered.

As previously stated a random variable, X , is a real-valued function on Ω (the sample space).

Often there will be two or more random variables of interest defined on the same sample space

and their joint behaviour may be of interest. Consider an example where a weather station records
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Time Air temperature, T Air pressure, P
00:00 6.6 994.8
06:00 3.6 993.8
12:00 10.0 995.8
18:00 9.1 994.8

Table 2.5: Values taken from two variables measuring air temperature and air pressure at four
sample times.

the air temperature, air pressure and wind speed. Each of these random variables may depend

on the other and knowing the probabilities of the joint outcomes may be of interest. If the air

temperature is random variable, T , and the air pressure is random variable P then the distribution

of (T,P) is called the joint distribution. The distributions of T and P are referred to as the marginal

distributions. While it is possible to obtain the marginal distributions from the joint distribution

it should be noted that the inverse is not true. A basic rule of probability theory (independence)

states that two events A and B are independent if

P(A,B) = P(A)P(B). (2.2)

The same applies for joint distributions. If T and P have a joint distribution function f (t, p)

then T and P are independent if and only if for all t and p

p(t, p) = pt(t)pp(p). (2.3)

However, when two random variables are not independent there needs to be some mechanism

for quantifying the degree of correlation between them. Let us expand on the weather example.

Imagine that the air temperature, T , and air pressure, P, are measured at four moments in time

throughout the day (00:00, 06:00, 12:00 and 18:00), the corresponding results are recorded in

Table 2.5.

To quantify the degree to which the above variables, T and P, vary together (covary) the

covariance coefficient must be calculated, this is given as

cov[T,P] =
∑(T −E[T ])(P−E[P])

n
. (2.4)

Where E[] denotes the expectation of a specified variable and n is the number of samples (4

in this instance). Applying (2.4) to the data in Table 2.5 results in cov[T,P] = 1.6. A positive

covariance, as in this instance, means that the two variables move together, i.e., as one variable
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increases, so does the other. A negative covariance means that as one variable increases the other

decreases.

Typically a jointly Gaussian distributed random variable is described by the expected value, or

mean, of each of the random variables and a variance-covariance matrix. The variance-covariance

matrix, Σ, (just covariance matrix from herein) has variances in its diagonal and covariance in its

off-diagonal elements.

Σ =

 cov[T,T ] cov[T,P]

cov[P,T ] cov[P,P]


The joint random variable can therefore be quantified by the following information

E[T ] = [7.325]

E[P] = [994.8]

Σ =

 6.1 1.6

1.6 0.5


While the example given only involves two random variables, scaling these rules to larger

collections is natural. In general terms the covariance matrix has the size n2 where n is the number

of variables.

The multivariate Gaussian distribution provides a powerful mechanism for quantifying uncer-

tainties for multiple, correlated, variables. However, there are other methods of quantifying mul-

tivariate uncertainty. Other multivariate probability distributions include the multivariate Student

distribution and the Wishart distribution. Probability distributions provide a complete quantifica-

tion of joint random variables. However, as with univariate scenarios, sometimes the underlying

distribution is not known. In this case it is possible to provide a summary of jointly distributed

random variables by providing their expected values and a covariance matrix. It is also possible

to represent joint random variables via a series of multivariate realisations. All examples of joint

random variables in this thesis use the multivariate Gaussian distribution.

2.3.2 Other methods of quantifying uncertainty

In the previous section probability theory was proposed as the natural mechanism to quantify un-

certainty. The idea of a random variable as a function mapping events in the sample space to a real

number was introduced along with a discussion of how these random variables can be described
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by their probability distributions. In this section a brief overview of some other mechanisms for

quantifying uncertainty is given.

Fuzzy set theory

In traditional set theory, the membership of an element in a set is binary, i.e. it is either a member

or it is not. Fuzzy set theory extends on this idea and says that elements of a set have a degree of

membership. The degree to which an element belongs to a set is calculated through the use of a

membership function which maps membership to the real unit interval [0,1], with 0 representing

absolute falseness and 1 absolute truth. Consider the following statement: “Madrid is hot”. In

traditional set theory the element (Madrid) is either a member of the set (hot) or not. However, the

concept of ‘hot’ is subjective and the membership of Madrid might be considered fuzzy. Given

the average temperature in Madrid is 24 degrees Celsius during August, a truth value of 0.6 could

be assigned to the statement . This can be represented symbolically as mHOT (Spain) = 0.6, where

m is the membership function operating on the set of hot cities which returns a value between

0 and 1. Although both fuzzy set theory and probability theory operate over the same numeric

range and have similarities with 0 representing false and 1 representing truth, distinctions can be

made. In the above statement, the frequentist probabilistic approach would say “there is a 60%

chance Madrid is hot”, while the fuzzy approach says “Madrid’s degree of membership within

the set of ‘hot’ cities is 0.6”. The semantic difference is important as the probabilistic approach

states that Madrid is hot or not, with a 60% certainty. However, the fuzzy approach might state

that Madrid is ‘quite hot’. The probabilistic approach mentioned above is a frequentist view. A

Bayesian statistician, on the other hand, would simply state a belief about the description of the

temperature in Madrid.

A corollary to fuzzy set theory was fuzzy logic, a mechanism for reasoning with fuzzy sets.

Fuzzy logic is built upon the use of IF-THEN rules that apply to fuzzy sets, which take the typical

form IF variable IS property THEN action. A simple example for an air-conditioning

unit is given below.

IF temperature IS hot THEN full power;

IF temperature IS warm THEN low power;

IF temperature IS cold THEN off;

Fuzzy logic has been adopted in a wide range of applications including air conditioning units,
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on-board vehicle controls, remote sensing and even the Massive 2 engine used to simulate large-

scale battles (used in the Lord of the Rings films). Fuzzy logic provides an alternative represen-

tation of uncertainty to probability theory. However, for the concepts discussed within this thesis,

probability theory provides sufficient representation and is therefore the chosen methodology for

the work in Chapters 3, 4, 5 and 6.

Dempster-Shafer theory

Probability theory can effectively model uncertainty (Jaynes, 2003). However, probability theory

cannot describe ignorance. Consider the following example:

If no information exists about a coin, in probability theory it is assumed that there is a 0.5

probability of heads and 0.5 probability of tails. However, in another scenario, the coin is known

to be fair, it is a fact that it is 0.5 probability of heads and 0.5 probability of tails. In the two

different scenarios, the same conclusion was reached. Representing total ignorance in probability

theory is problematic. In Dempster-Shafer theory, for the ignorance scenario, the belief of heads

and the belief of tails is 0. For the fair coin scenario, the belief of heads is 0.5, the belief of tails is

also 0.5.

An alternative parametrization can say that the probability of heads is p and tails is 1− p. In

the case of ignorance, we say that p is uniformly distributed on the [0,1] interval. Upon a fair coin

assumption, we say that p = 0.5 with probability 1 and has other values with probability zero.

Another kind of ignorance might be that p has some beta distribution on the interval [0,1]. Put

in context, a gambler is offered the choice of two bets: to bet that the toss of a coin will result in

heads, or to bet on the outcome of a motor race between a Formula 1 champion and a World Rally

Championship driver. Assuming the gambler is ignorant about motor sports, they would be more

inclined to take the bet on the coin, where the probabilities are known. Dempster-Schafer theory

allows consideration of the confidence of specific outcomes.

Dempster-Shafer theory is a generalisation of Bayesian probability theory, and some argue

that total ignorance does not exist, i.e. we always have some belief.

Imprecise probability and Bayes Linear theory

A key principle in Bayesian probability theory is that the probabilities are subjective. In a typical

Bayesian framework it is assumed that these probabilities are precise. However, it can be argued

2http://www.massivesoftware.com/
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that it is impossible to specify the subjective probabilities of an individual precisely, especially

when there is a lack of information, or data. Imprecise probability theory does not use a single

probability to represent uncertainty, but upper and lower probabilities, or expectations. (Walley,

1996) illustrates this with an example. Marbles are drawn blindly from a bag, the event R is the

event that a red marble is drawn. (Walley, 1996) argues that because nothing is known about

the constitution of the bag (i.e. there could be no red marbles) assigning a non-informative prior

over the event R, as in a classical objective Bayesian approach, is problematic. The author states

that “the problem is not that Bayesians have yet to discover the truly non-informative priors, but

rather that no precise probability distribution can adequately represent ignorance.” (Walley, 1991).

Imprecise probability theory eliminates the need for a single probability associated with R and

replaces it with an upper and lower probability. In the case of the bag of marbles the author argues

that as nothing is known about the make-up of the bag they should not bet on or against the event

R. Thus, before any marbles are drawn, the lower probability is P(R) = 0 and the upper probability

is P(R) = 1. In layman’s terms, the lower probability is the degree to which one is confident the

drawn marble will definitely be red. As nothing is known about the marbles in the bag a value of 0

is chosen. The upper probability represents the degree to which one is concerned the next marble

might be red. As all the marbles might be red a value of 1 has been chosen. The values of 0 and

1 for lower and upper probabilities is a special case that represents no constraint on the event R.

However, as more marbles are drawn from the bag the lower and upper probabilities will change.

In the case where the lower and upper probabilities are equal for R then this is said to be a precise

probability, i.e. a fair gamble. More information on imprecise probability theory can be found in

Walley (1991, 1996).

Bayes linear statistics adopts a similar view to imprecise probabilities; subjective probabilities

are difficult to specify at the necessary level of detail. In a traditional Bayesian approach, every

possible outcome of an event must be enumerated. Bayes linear statistics uses subjective expecta-

tion as a primitive, probability is then defined as the expectation of an indicator variable. Instead

of specifying a subjective probability for every outcome of an event, an analyst specifies the sub-

jective expectation for just a few quantities that they are interested in or feel knowledgeable about.

An adjusted expectation is then calculated using a generalisation of Bayes’ theorem.

Imprecise probability theory, Bayes linear statistics and Dempster-Schafer theory all provide

alternative approaches to representing uncertainty. However, traditional Bayesian statistics (i.e.

precise probability theory) is a complete, principled and sufficient framework for the work in this
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thesis. Therefore, all future examples of uncertainty quantification assume a Bayesian position,

unless stated otherwise.

2.4 Positional uncertainty

The process of locating an object on the surface of the Earth has intrinsic inaccuracies. These

inaccuracies may be relatively large, when using primitive techniques (e.g. measuring from a

known reference point), or small, when using a high-precision Global Positioning System (GPS)

device. Regardless of the process used to locate an object and the relative error, the resulting

position is still uncertain. An interesting experiment to prove this theory would be to measure the

longitude of the Prime Meridian in Greenwich using a consumer-grade GPS device; depending on

the precision of the device the longitude is unlikely to show exactly 0◦E, and will vary across time.

In order to describe the positional uncertainty of geospatial objects Heuvelink et al. (2007)

state that the objects should be classified by their primitive parts and by the types of movement

they support under uncertainty. Heuvelink et al. (2007) continue by suggesting the three following,

first-order, classifications:

• point objects — objects that are single points;

• rigid objects — multiple point objects whose relative positions cannot change under uncer-

tainty (i.e. the internal angles of a polygon would remain fixed); and

• deformable objects — multiple point objects whose relative positions can vary under uncer-

tainty, i.e., internal angles may change.

The same classification is adopted here, and the framework developed should provide the

flexibility to quantify the positional uncertainty of all object types.

Spatial autocorrelation

Many GIS operations involve objects with multiple points. If each point contains some degree

of uncertainty, the spatial autocorrelation of that uncertainty must be considered. Longley et al.

(2005, p. 143) provide an example that demonstrates the effect of spatial autocorrelation in this

context. A common GIS query might be to determine the distance between two points. Imag-

ine that these points were measured using a GPS device and that each measurement has a mean
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distance error of 50m. Longley et al. (2005) argue that if these two points were measured at sig-

nificantly different time intervals, with different satellites above the horizon, then the errors of the

two points may be considered independent. Independence between the errors of the two points

means that one point’s measured position might be 50m North of its true location, while the other

was 50m South, giving a possible error in distance of 100m. This example assumes that the two

points are on the same longitude, illustrated in Figure 2.4. However, Longley et al. (2005) continue

to say that if both points are measured at similar times, using the same combination of satellites,

then the errors would be more likely to be similar (e.g. 50m North and 40m North). With similar

errors, the error in distance becomes much smaller (10m in this instance). The differences be-

tween these two examples can be quantified by the degree of spatial autocorrelation in the factors

influencing errors in measurement. There may also exist a correlation between the errors in the

dimensions of a coordinate (i.e, x and y), however, this is typically not as common (Longley et al.,

2005, p. 142). Locations obtained via a GPS receiver are relatively accurate, i.e. they have small

positional errors. The effects of spatial autocorrelation on positions with small errors could be

perceived as insignificant. However, in many situations, it is either too expensive or simply not

feasible to obtain locations via GPS receivers. Commonly, a process known as geocoding, where a

location is approximated from address information within a GIS system, is used. These locations

contain much larger errors and the effects of spatial autocorrelation, where it exists, are greater

(Zimmerman et al., 2010).

100m

(a) uncorrelated

10m

(b) correlated

Figure 2.4: Effects of spatial auto correlation on distance of errors. The circles represent the true
location of two points. The crosses are the measured locations in two scenarios.

Since spatial autocorrelation is a common phenomenon in geospatial sciences, it is impera-

tive that the developed framework can support not only the correlation of errors between points
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of an object, but also the correlation of errors between the individual coordinates at a location.

A methodology that provides the necessary flexibility to quantify positional uncertainty and its

spatial autocorrelation is probability theory (Section 2.3.1).

2.4.1 A probabilistic approach to positional uncertainty

When faced with uncertainty in spatial data, Hunter and Goodchild (1995) outlined three ap-

proaches. The first approach is labelled the ‘do nothing’ approach, whereby the user simply ig-

nores the errors. Clearly this approach is unsatisfactory in some cases. Another approach is to use

an epsilon band (from the Greek letter (ε) for error) (Perkal, 1966). The epsilon band approach

defines a ‘buffer’ around a point, or line segment, which represents an area of uncertainty. For

example, a measured point in space with an epsilon band of 50m, means that the point, in reality,

may fall anywhere within this 50m buffer. However, this approach does not provide an explicit

confidence level (typically it is assumed that an epsilon band has a 100% confidence) and, con-

sequently, lacks the required information for meaningful processing, or propagation (Shi, 1998;

Heuvelink, 1998). The final approach in Hunter and Goodchild (1995), and the one discussed here,

is the use of probability theory. In simple terms, probability theory provides the ability to add a

confidence (or probability) to the error. For example, the 50m epsilon band could be improved by

saying “the point in reality falls within 50m of the measured point, with 95% confidence”. While

providing more information, an error and confidence level does not provide a complete quantifi-

cation of an uncertain location. For instance, it does not tell us how the uncertainty is distributed;

is the true location equally likely to be anywhere within the 50m bounds? An uncertain variable

can be more completely described by its Probability Density Function (PDF), discussed in Section

2.3.1.

The following sections discuss how probability theory can be used to quantify positional un-

certainty for the three classifications outlined by Heuvelink et al. (2007).

Points

Point objects that exist in 3-dimensional Cartesian space may contain 3 coordinates: x, y and z

(though time, t, may also be considered as an extra dimension). In the presence of uncertainty,

the ‘true’ value of each coordinate (e.g. x) is unknown and therefore should be represented by

a random variable, X (Section 2.3.1). When enough information is known about X it can be

quantified by its marginal PDF. However, in some situations, a complete description (PDF) of
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X is not possible. A less complete summary description of X may be given by providing a mean

(expected value) and a standard deviation. The mean value provides a measure of central tendency,

while the standard deviation is a measure of spread (the average deviation of X from the mean).

x

y

(a) uncorrelated

x

y

(b) correlated

Figure 2.5: Visualisation of point uncertainty.

A complete description of an uncertain point object that exists in space and time would there-

fore contain four marginal PDFs for x, y, z and t. However, this assumes that each coordinate is

independent of the others. When the uncertainties are statistically dependent a multivariate PDF

is required. The parameters of a multivariate PDF, as discussed in Section 2.3.1, are a vector of

expected values (of each coordinate) and a covariance matrix. The covariance matrix contains the

variance (square of the standard deviation) for each coordinate, and the covariance between each

pair of coordinates. Figure 2.5 demonstrates the effects of statistical dependency between coordi-

nates (2 in this case). Figure 2.5a (left) assumes that the uncertainty in the x and y coordinates are

independent, whereas Figure 2.5b (right) has some correlation between the uncertainty in x and y.

The distorted shape in Figure 2.5b suggests that as the value of x is overestimated, it is likely that

the value of y will also be overestimated. If two coordinates have a perfect correlation (i.e. 1.0)

the plot would look like a straight line. However, in practice, variables rarely have a correlation of

1.0.

Deformable objects

A deformable object, defined by Heuvelink et al. (2007), is an object with multiple points whose

relative distances and angles can vary under uncertainty. This is in contrast to a rigid object whose

internal angles and distances cannot vary, i.e. the object’s topology is always preserved.
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The same techniques discussed in the previous section may be used here to quantify the uncer-

tainties of a deformable object. However, when using summary statistics (i.e. mean and standard

deviation), some assumptions must be made. Firstly, it has to be assumed that the individual coor-

dinates of each point are independent. Secondly, it has to be assumed that no statistical dependence

between the points of the deformable object exists.

Figure 2.6: Illustration of positional uncertainty within a deformable object. The black, dashed,
outline represents the measured object and each blue outline represents a possible realisation of
that object. The realisations were generated according to the positional uncertainties in each of the
objects points.

These limitations dictate that only on rare occasions are summary statistics satisfactory for

completely quantifying the uncertainties of a deformable object. Typically, a joint probability

distribution is used to describe deformable objects. This joint PDF must encode the dependencies

between each coordinate of a given point, but also the dependence between the primitive points of

an object. Due to the complexity of such a joint PDF, a joint normal distribution is often assumed.

The parameters of a joint normal PDF would be a vector of expected values, for all dimensions at

each point within the object, and a covariance matrix. Assuming that each point has 4 dimensions

(x, y, z and t) the covariance matrix would have the size 4n x 4n, where n is the number of points

within the object. The variances of each marginal PDF form the diagonal of the covariance matrix

and the covariances between each pair of coordinates and points are placed elsewhere. Figure 2.6

illustrates a deformable object and a number of possible realisations due to uncertainty.
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Rigid objects

A rigid object can be thought of as a deformable object where the correlation between any de-

flection of the primitive points is 1. This prohibits the changing of internal angles and distances

between points. However, rigid objects may still undergo a rotation and translation under uncer-

tainty. Figure 2.7 shows a rigid object (black dashed line) and a number of realisations. Each

realisation has undergone a rotation about the centroid and a translation.

Figure 2.7: Illustration of positional uncertainty within a rigid object. The black, dashed, outline
represents the measured object and each blue outline represents a possible realisation of that object.
Each realisation has undergone a rotation and a translation about the centroid (marked with a black
cross).

The rigid topology of the object means that its positional uncertainty can be characterised

with a single point. For example, when one point moves, the position of every other point is

immediately known. Therefore, quantifying the uncertainty for a rigid object is far simpler than

for a deformable object. In fact, only two pieces of information are required: the joint PDF of

one of the primitive points (or another reference point, e.g., a centroid) and a series of rotation

angles. The joint PDF is required for the positional coordinates of the reference point (x, y, z and

t). There must also exist a rotation angle for every combination of coordinates (e.g. xy), for 4

dimensions this gives the rotation angles θxy, θxz, θxt , θyz, θyt and θzt . The order in which the

rotations are made must be fixed, as it affects the movement of the object (Heuvelink et al., 2007).

Although far more complicated, it is possible and plausible to quantify the positional uncertainty
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of a rigid object using a joint PDF — as described for a deformable object. However, this may be

unnecessarily complicated when the same information can be represented with a joint PDF of a

single point, in conjunction with a number of rotations.

Data or metadata?

When discussing uncertainty there are two schools of thought. The first perceives uncertainty as

metadata, i.e., the temperature is observed to be 10◦C, but there is some associated uncertainty

about that observation. The uncertainty could be characterised by a Gaussian distribution with

a zero mean and a variance of 2◦C2, for example. This method of representing uncertainty is

suited to situations whereby a variable is directly observed, i.e., the distribution represents the

discrepancy between the measured value and reality, and this discrepancy may include many un-

certainties.

However, a variable that is not directly observed i.e., one that is derived is inherently uncertain.

The value of a derived variable is a distribution — the exact value is not known. Taking the

previous example, a temperature derived from an observation could be represented by a Gaussian

distribution with a mean of 10◦C and a variance of 2◦C2. Both approaches can also be used

for measurements of location (e.g. using a GPS device), however, whether or not the location

observed is a direct or derived observation, in this case is not so clear. One could argue that all

observations are in fact derived at some level, so that all variables are inherently uncertain and

should be characterised by a probability distribution.

While both approaches result in the same information, the semantic difference between whether

uncertainty is data or metadata affects how one presents the information.

2.4.2 Other approaches to positional uncertainty

The discussion thus far has focussed on a probabilistic view of positional uncertainty. However, as

mentioned in Section 2.3.2, other approaches to quantifying uncertainty exist. The other method-

ologies discussed in Section 2.3.2 are also applicable to positional uncertainty. For instance, fuzzy

set theory has been widely used in various applications and is supported by a substantial and vary-

ing literature (e.g., Fritz and See (2005); Lucieer and Kraak (2004); Fisher (1999) and Liu et al.

(2009)). Despite the volume of literature, confusion often arises between the concepts of proba-

bility theory and fuzzy set theory (De Bruin, 2000; Fisher, 1994). The confusion stems from the

fact that both theories use the scale of 0.0–1.0 to represent, respectively, probabilities or degrees
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of membership. Despite this similarity both methodologies are in fact different enough to prove

useful in complementary areas of geospatial science. Work has also been done using rough set

theory (Duckham et al., 2001) but is not considered in this thesis.

Figure 2.8: Conceptual model of uncertainty in spatial data from Fisher (1999).

Fisher (1999) outlines a conceptual model of uncertainty in spatial data (Figure 2.8), adapted

from Klir and Yuan (1995). The crux of the conceptual model is whether a spatial object is ‘well

defined’ or ‘poorly defined’. In cases where an object is well defined, probability theory is deemed

applicable. However, if the object is poorly defined and, more specifically, could be described as

vague, then fuzzy set theory may be used. An example of a poorly defined object could be a

locality, e.g. the city of Birmingham (Liu et al., 2009). The Sorites Paradox, discussed in Section

2.3.2, can also apply to the citizenship of people in the Birmingham area. For example, if a person

living in the town centre of Birmingham was asked whether they lived in Birmingham they would

undoubtedly say yes. If a person living 1 mile outside of the city centre was asked they would

also probably say yes. However, at some stage a person located at, say, 5, 6 or 7 miles outside the

centre may not consider themselves to be a citizen of Birmingham. It is the inherent vagueness

of the boundary of Birmingham, and all other localities, that causes this phenomenon. Fuzzy set

theory allows citizens to partially belong to the set of ‘Birmingham citizens’, via a membership

function. Scenarios such as this are typically where fuzzy set theory has become popular. The use
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of fuzzy set theory for quantifying vagueness does have benefits (e.g., simplicity), however, we

would argue that probability theory can also be applied to the concept of vagueness. In this context

it is important to raise the difference between objective (frequentist) and subjective (Bayesian)

probability theory (Section 2.3.1). Using the Birmingham example, one could say that they have

a belief that a particular person is a citizen of Birmingham with a probability of 0.75. That is not

to say, however, that given a sample of 100 citizens, 75 will claim to live in Birmingham and 25

will deny it. The citizenship of a given person is not a repeatable event and cannot, therefore, be

accurately represented by a frequentist interpretation of probability.

2.5 Environmental and spatial context

The previous two sections looked at the concepts of interoperability and uncertainty. Key technolo-

gies in XML and Web services were examined that are striving towards interoperable, distributed

systems through the adoption of SOA. The method of quantifying uncertainty through the use of

probability theory and the concept of random variables was also examined. This section looks

at how uncertainty representation and interoperability have been implemented in the geospatial

domain. Current efforts for fusing the two fields are identified and a discussion about how further

work in this area would be beneficial is given.

2.5.1 Uncertainty in the geospatial domain

Uncertainty in geographic information arises due to the fact that almost all representations of the

world are incomplete; they are approximations. The importance of a GIS framework capable of

handling uncertainty in data inputs, in decision rules and in the geometries and attributes modelled

has been highlighted by authors from Burrough (1992) to Heuvelink et al. (2007). Uncertainties

in data within a GIS framework arise from various sources including measurement error, observa-

tion operator error, processing/modelling errors, or corruption. These uncertainties can be further

categorised into two distinct types: attribute uncertainties and positional uncertainties.

Attribute uncertainty

To understand attribute uncertainty, a brief explanation of how data is represented in a typical GIS

must be given. In a vector-based system, spatial objects (or features), such as rivers, roads, cities or

houses comprise one or more attributes, such as nitrate concentration, surface material, population

size or number of rooms, respectively. Vector features also have boundaries that contain positional
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information, which may also be uncertain (see the following section). Attribute values may be

defined at one or many locations for which the feature is defined (e.g. nitrate concentration as it

varies along a river) or as integral properties of the feature (e.g. average nitrate concentration along

the river). In raster-based GIS, the attribute is recorded at regularly-spaced locations. Features

must be extracted, if necessary, by post-processing of these arrays of pixels. These attributes may

be uncertain — typically for the reasons outlined above. Characterising the uncertainty of a feature

attribute depends on the value scale on which the attribute is measured. As discussed in Section

2.3.1 there are two main classes of scale:

• Attributes measured on a continuous scale.

• Attributes measured on a discrete scale. These can be further split into ordinal and categor-

ical.

If the attribute is discrete (ordinal), a discrete probability distribution can be used to quantify

the uncertainty. When the attribute is continuous a PDF should be used, as discussed in Section

2.3.1. For attributes that are distributed in space, a PDF is required for each location, as well as

any correlations between them (Heuvelink and Brown, 2008). The ‘true’ probability distribution

of an uncertain attribute could be described by one of an infinite number of PDFs. In practice,

however, only a small number of well-understood probability distributions are considered, as an

approximation of the true probability distribution. One such distribution is the Gaussian distri-

bution, a benefit of which is that it is easily generalised to a multi-variate Gaussian distribution,

which may be used to quantify jointly-distributed random variables.

Positional uncertainty

Characterisation of the positional uncertainty of a spatial feature relies on classifying its primitive

parts (coordinates) and the forms of movement they support under uncertainty (Heuvelink and

Brown, 2008). These classifications are listed below:

• objects that are single points;

• objects that comprise multiple points but whose geometry cannot change under uncertainty

(rigid);

• objects that comprise multiple points and whose geometry can vary under uncertainty (de-

formable).
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Firstly, consider the positional uncertainty of a single point feature. The effects of positional

uncertainty on the feature always results in a translation of the feature’s position. This translation

occurs in as many directions as the feature has coordinate dimensions. Positional uncertainty of

a rigid spatial feature involves a rotation about an origin as well as a simple translation. When

considering a deformable spatial feature, the positional uncertainty of its individual points results

in arbitrarily complex changes to the features position or shape. These complexities occur when

the individual points are either partially or completely independent. Once the spatial feature has

been classified, probability distributions can be assigned. Further information about positional

uncertainty and how it may be quantified can be found in Chapter 6.

2.5.2 Geography Markup Language

In order to address the issue of interoperability within the domain of geospatial information, the

OGC is developing and maintaining a series of geospatial information models and services. GML

is one such standard that allows the expression of geographical features (OGC 07-036, 2007).

Within GML a distinction is made between a feature and a geometry object; this is not necessarily

true of all GIS systems. GML defines a feature as an application object that represents a physical

entity, e.g. a river, road or house. A feature may contain geometric aspects, but this is not required.

On the other hand, a geometry object defines a location or region and is thus different from a

feature. GML conforms to the General Feature Model laid out in ISO/TC 211 19109 (2003) which

states that a feature is composed of a series of properties, which themselves may be realised as

features. A feature may have one, or more, geometric properties (e.g. a river may have a bounding

box as well as a line representing its centre-line).

The current version of GML (3.X) contains a large set of primitive elements which may be

used to construct a domain-specific application schema. Included within these elements are the

following:

Feature This is the general feature model discussed above. In the majority of application schemas,

the abstract feature type will form the base.

Geometry GML provides a suite of elements for describing geometries. These range from simple

point geometries through to polygons and rectified grids for encoding raster layers. The

geometry schema is one of the more popular aspects of GML and has been adopted in

several other standards, as discussed later.
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Coordinate Reference System When describing spatial data the coordinate system of that data

is often required. GML provides a mechanism for describing reference systems.

Coverage Coverages are functions that map a domain (e.g. a collection of points in space or time)

to a range, or collection of values.

Observations GML provides a schema for describing observations. However, O&M (another

OGC specification) also provides this functionality. The duplication of standard specifica-

tions hinders interoperability. Therefore, it is anticipated that the GML observation schema

will be deprecated in the future.

While this is not an exhaustive list of the GML primitive elements (the full suite includes

concepts such as topologies, and units of measure and time), it should provide sufficient awareness

of the broad spectrum that GML aims to cover. In fact, the sheer breadth of the GML specifications

may be too complex to implement completely, or even sufficiently, as many software applications

remain conformant to version 2.0 of GML only (which is far simpler). The OGC has recognised

this fact and acted by releasing a series of profiles which are a series of rules restricting the GML

specification to a simpler dialect (OGC 06-049r1, 2006; OGC 05-099r2, 2005; OGC 05-096r1,

2005; OGC 05-094r1, 2005; OGC 05-095r1, 2005). Concentrating on one or two key aspects as

required these profiles allow large sections of the specification to be ignored.

GML geometry schema

The GML geometry schema provides a collection of 0, 1, 2 and 3 dimensional geometry primitives.

These include, but are not limited to:

Point Represents a simple point in space.

LineString Represents a special curve consisting of a single segment with linear interpolation,

defined by two or more coordinate tuples.

Polygon A geospatial polygon defined by an interior and exterior ring.

MultiPoint A collection of points.

MultiPolygon A collection of polygons.

Each GML geometry inherits from a super-type, AbstractGeometryType. Consequently,

each geometry inherits an attribute group for associating it with a Spatial Reference System (SRS).
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When dealing with collections of geometry types (MultiPoint, MultiPolygon etc) all constituent

members are assumed to have the same SRS as the containing type, unless stated otherwise.

Adding to these base attributes, each geometry type is typically constructed with a set of coor-

dinate tuples, organised into various feature properties (Listing 2.9). The expressive capabilities

and inherent simplicity of the GML geometry types has seen the schema adopted by several other

standards including O&M, Sensor Model Language (SensorML), Filter Encoding Specification

and the Web Processing Service (WPS) specification.

<gml:Point gml:id="1312" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
<gml:pos>52.01 0.56</gml:pos>

</gml:Point>

Listing 2.9: A GML fragment showing how a spatial point may be encoded.

The importance of quantifying positional uncertainties, discussed in Section 2.5.1, is outlined

by Burrough (1992). It is surprising therefore that no means of describing positional uncertainty

exists within GML. This ommission from GML motivates the work found in Chapter 6.

2.5.3 Sensor Web Enablement

The Sensor Web Enablement (SWE) is an initiative run by the OGC that is looking at providing

a framework for exploiting Web-connected sensors (Botts et al., 2008; Percivall and Reed, 2006).

The framework, comprising of a series of open standards and services, aims to convert existing

sensor networks into a “sensor web”. Botts et al. (2008) compare the technologies of the Sensor

Web to those of the standard Web, or Internet, claiming to have a similar impact to HTML and

HTTP. The OGC has outlined a list of key functionalities a sensor web should have, some of which

are listed below.

• Discovery of sensor systems.

• Determination of sensors’ functionality and quality.

• Retrieval of real-time or time-series observations.

• Tasking of sensors, where the sensor is capable.

• Subscription to and publishing of alerts.

Meeting these criteria lays the foundation for the OGCs vision of “plug and play” Web-based

sensor networks. Utilising a plug and play foundation would allow new Sensor Web-enabled
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sensors to be “plugged in” and automatically start publishing their observations, as well as be dis-

covered by interested users. At the heart of SWE are two XML encoding specifications: O&M

and SensorML. O&M is capable of describing and exchanging observations, typically produced

by some sensor, which may be described using SensorML (OGC 07-000, 2007). More information

on the O&M specification can be found in Section 2.5.4. The importance of location information

for a Web-connected sensor is highlighted numerous times by Botts et al. (2008) where they state:

“sensor location is usually a critical parameter for sensors on the Web” and “for both fixed and

mobile sensors, sensor location is often a vital sensor parameter”. Despite these statements there

appears to be no definitive solution for encoding sensor location information within the Sensor

Web. However, as the O&M specification states, the location of an observation may not be triv-

ially available. Take, for example, remote sensing applications where the location of the sensor is

different to that of the actual feature being observed. For this reason there is no explicit property of

an observation for encoding a geospatial location, rather a recommendation is made that it should

appear within the featureOfInterest property. The specification states that the featureOfIn-

terest property can be any feature that inherits the GML AbstractFeatureType, which adds

further confusion because, as previously stated, a GML feature may contain one or more geo-

metric properties, or even none. If a feature contains multiple geometric properties there is no

mechanism within O&M to explicitly specify which geometry should be taken as the observation

location. With such emphasis put on the importance of encoding the location of sensors, perhaps

an explicitly defined location property would have been beneficial.

A series of XML Web services have been outlined within SWE to enable discovery, retrieval

and notification of sensor data as well as tasking capable sensors to provide tailored observations.

The SOS provides an interface for retrieving and managing sensors and their observations (OGC

06-009r6, 2007). The SOS specification uses O&M for the encoding of observation data and either

SensorML or Transducer Markup Language (TML) (OGC 06-010r6, 2006), another SWE stan-

dard not covered here, for describing sensor models. A detailed review of the SOS specification

can be found in Chapter 4. Tasking of sensors is achieved through the use of the Sensor Planning

Service (SPS) which defines a set of operations for the collection of information from capable

devices (sensors) of varying specifications (OGC 07-014r3, 2007). Subscription to sensor alerts

is handled through a combination of standards: the Sensor Alert Service (SAS) (OGC 06-028r3,

2006) and the Web Notification Service (WNS) (OGC 06-095, 2006). The SAS provides publish-

ing and subscription to sensor notifications and uses the WNS for asynchronous delivery of said
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notifications.

The Sensor Web is a collection of emerging technologies that has seen early adoption from a

host of different domains. Terhorst et al. (2006) present the evolution of a satellite-based wild fire

detection system into a Sensor Web application. Achieving this relies on an extension to the current

SWE technologies to provide an open, service oriented, multi-agent platform called the Sensor

Web Agent Platform (SWAP) (Moodley and Simonis, 2006). The need for such a framework was

partly driven by the distinct lack of ontological structure within the SWE framework. van Zyl

et al. (2008) also acknowledge this limitation, claiming it to be a big challenge, but outline efforts

by the Global Earth Observation System of Systems (GEOSS) project to compile a collection of

commonly used terms and expressions across the various communities. OntoSensor, developed

by Russomanno et al. (2005), is another project addressing the ontological requirements of the

Sensor Web.

A further limitation that is not discussed in the literature is the lack of standardisation per-

taining to quality information. One of the key functionalities highlighted by Botts et al. (2008)

is “determination of sensors’ functionality and quality”, yet information regarding sensor obser-

vation quality is opaque. The SensorML standard specifies that “the role of the SensorML is to

provide characteristics required for processing, georegistering, and assessing the quality of mea-

surements from sensor systems”. The quantification of quality is delegated to the SWE Common

schema.

Sensor Web Enablement Common schema

The SWE Common model defines basic types and data encodings for elements that are common

amongst all SWE encodings and services. While the SWE Common elements belong to the SWE

Common namespace, they do not form a standalone specification as yet. Formal information

about SWE Common can be found in OGC 07-000 (2007) and OGC 07-022r1 (2007) where the

encoding currently resides. SWE Common is responsible for defining a set of data types and

related components that fall into the following categories (OGC 07-000, 2007):

1. primitive data types, complementing those implemented in GML (Section 2.5.2)

2. general purpose aggregate data types, including records, arrays, vectors and matrices

3. aggregate data types with specialised semantics, including position, curve, and time-aggregates
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4. standard encodings to add semantics, quality indication and constraints to both primitive

and aggregate types

5. specialised components to support semantic definitions, as required above

6. a notation for the description of XML and non-XML array encodings.

Simple data types

Fundamentally, SWE Common is a conceptual model for representing primitive data types and

aggregations of these data types. As shown in Figure 2.9 these simple data types can be limited to

Quantity, Count, Boolean, Category and Time.

Figure 2.9: Simple data types in SWE Common from the SensorML specification (OGC 07-000,
2007).

Each simple type inherits a set of standard properties from the AbstractDataComponent

class, including simple name and description properties. A more informative property, def-

inition, exists to provide an optional link to semantics. The intended use of the definition

property is to identify the phenomenon association or other context of the value (OGC 07-000,
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2007). For example, the definition may indicate that the value (of a simple SWE Common

data type) represents an atmospheric pressure. The value of the definition property should be

realised as a URI and should point to a community-accepted dictionary or registry. An important

concept of the SWE Common simple data types is that the value property is optional. Conse-

quently, when a simple data type is used without value it serves as a descriptor for some data

structure. The key data types and their intended use are detailed below.

Boolean A simple true/false value of a specified property.

Category Textual data that is a member of a particular dictionary.

Quantity A continuous value represented by a floating point number.

Count A discrete value represented by an integer.

Each of these data types may have a Quality component, taken from the quality union (Figure

2.9). This restricted and rather simplified model allows data quality to be encoded as either a

Category, Quantity, QuantityRange or Text type. The SWE Common specification states that

a quality measure may be expressed as “values of precision, accuracy, tolerance and confidence”

and that the type of quality measure should be stated “explicitly in the definition attribute”.

<Quantity definition="urn:ogc:def:property:OGC:scanAngle">
<uom xlink:href="urn:ogc:unit:degree"/>
<quality>

<QuantityRange definition="urn:ogc:def:property:OGC:tolerance2std">
<value>-0.02 0.02</value>

</QuantityRange>
</quality>
<value>25.3</value>

</Quantity>

Listing 2.10: A SWE Common Quantity type with an associated quality property, given as a
tolerance to 2 standard deviations, from the SensorML specification (OGC 07-000, 2007).

Listing 2.10 is an example taken from the SWE Common specification showing how a qual-

ity property can be assigned to a Quantity type. From this example it can be said, with 95%

certainty, that the actual value will be between 25.28 and 25.32, assuming a Gaussian distribution.

As discussed in Section 2.3, this is an adequate method of quantifying one’s uncertainty; however,

there are limitations to SWE Common’s capabilities. For example, it is better to explicitly specify

that the random variable is Gaussian distributed, rather than forcing users to make an assumption.

This is more relevant when the random variable is non-Gaussian distributed. Another method of
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describing uncertainty, which was discussed in Section 2.3, was through the use of realisations.

With the current SWE Common standard this is simply not possible. These shortcomings leave

the SWE lacking the tools for fully quantifying the complex uncertainties found in all sensor ob-

servations and one could even argue that it falls short of fulfilling the functionality requirements

outlined by Botts et al. (2008).

Aggregate data types

Figure 2.10: Aggregate data types in SWE Common, from the SensorML specification (OGC
07-000, 2007).

Aggregate types within SWE Common inherit from the same AbstractDataComponent as the

simple types and thus posses the same properties (name, description, definition and fixed).

However, the definition property now provides semantics for the aggregated data, not the indi-

vidual components. Figure 2.10 outlines the key aggregate data types, which follow conventions

set in ISO/IEC 11404 (1996), two of which (DataRecord and DataArray) are discussed below.

DataRecord The DataRecord is a RecordType that defines a logical collection of simple data

values. Each constituent part of a DataRecord exists within a field property which may

contain any SWE data type. It should be noted that the field property may also contain

aggregate data types so DataRecords can include other DataRecords or DataArrays. An

example of a DataRecord can be seen in Listing 2.11.

DataArray The DataArray is an ArrayType that defines a collection of values of a given data

type, defined by the elementType property. As with DataRecords, the elementType prop-

erty may contain aggregate data types allowing arrays of arrays and arrays of records. A

separate elementCount property exists containing the number of elements within the array.

The SWE Common array types utilise a flexible encoding mechanism that allows data to
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be encoded in XML, or in more efficient formats such as a text block, base64 or binary.

Section 2.5.3 discusses the details of this encoding specification in greater detail. Listings

2.12 – 2.13 give examples of the SWE Common DataArray with a variety of encodings..

<DataRecord definition="urn:ogc:def:property:OGC:WeatherConditions">
<field name="Temperature">

<Quantity definition="urn:ogc:def:property:OGC:AirTemperature">
<uom code="Cel" />
<value>21.4</value>

</Quantity>
</field>
<field name="Pressure">

<Quantity definition="urn:ogc:def:property:OGC:AtmosphericPressure">
<uom code="hPa" />
<value>1014.0</value>

</Quantity>
</field>

</DataRecord>

Listing 2.11: A SWE Common DataRecord describing the weather with temperature and pressure
measurements.

SWE Common encoding

Arrays in SWE Common may be encoded using a variety of methods. Providing binary encodings

as alternatives to XML and American Standard Code for Information Interchange (ASCII) allows

large datasets to be transmitted efficiently. An overview of the key encoding types is given below.

TextBlock The TextBlock encoding is an ASCII string of values separated by a set of specific

characters. The order of the values is specified in the dataComponents section (the el-

ementType property of a DataArray). There are three separator tokens in a TextBlock.

The tokenSeparator is used to separate the individual components of a data structure, i.e.

if the DataArray’s elementType property is not a scalar value but a DataRecord. The

blockSeparator separates each data structure, be it a single scalar value or multiple val-

ues within a DataRecord. The decimalSeparator specifies the character that separates

the integer and fractional part of a decimal number. Listing 2.12 gives an example of a

TextBlock encoding.

BinaryBlock The BinaryBlock encoding is similar to the TextBlock, such that it defines a

stream of values whose order is determined by the order of values in the dataComponents

section. However, the payload of the data is encoded in binary. The byteEncoding specifies
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<DataArray>
<elementCount>

<Count>
<value>4</value>

</Count>
</elementCount>
<elementType name="WeatherConditions">

<DataRecord>
<field name="Temperature">

<Quantity definition="urn:ogc:def:property:OGC:AirTemperature">
<uom code="Cel"/>

</Quantity>
</field>
<field name="Pressure">

<Quantity definition="urn:ogc:def:property:OGC:AtmosphericPressure">
<uom code="hPa"/>

</Quantity>
</field>

</DataRecord>
</elementType>
<encoding>

<TextBlock decimalSeparator="." blockSeparator="," tokenSeparator=" "/>
</encoding>
<values>

21.4 1014.0,
19.8 1005.0,
20.1 1008.0,
21.3 1009.0

</values>
</DataArray>

Listing 2.12: A SWE Common DataArray describing the weather with temperature and pressure
measurements. A TextBlock encoding is used.
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the particular byte encoding method, either raw, base64 or base16 (hex). The byteOrder

attribute specifies whether multiple byte data types are bigEndian or littleEndian. Further

information about the encoding of the values can be found in a list of either Component or

Block properties. Component properties allow each data type to be attributed a dataType

(i.e., byte, integer, float etc.), a number of significant bits, a number of padding bits before

and after the value and the encryption method used, if any. The Block property is similar

to the Component property in that it allows specification of padding bytes and encryption.

However, it relates to a block of data rather than a scalar value so replaces the dataType

and significantBits properties with byteLength and compression (e.g. JPEG com-

pression) properties. For both Component and Block classes the ref attributes refer back to

the data components defined earlier in the structure. An example of the BinaryBlock can

be seen in Listing 2.13.

StandardFormat The StandardFormat encoding allows data to be encoded in a MIME format,

e.g. JPEG or GIF. The mimeType property defines the format that is being referred to. The

MIME type should apply to the whole data structure.

2.5.4 Observations & Measurements

Produced as part of the OGC SWE activity, O&M is a conceptual model, realised as an XML

application schema, for describing observations. The O&M specification (OGC 07-022r1, 2007)

defines an observation as “an act associated with a discrete time instant or period through which

a number, term or other symbol is assigned to a phenomenon”. The distinction between an ob-

servation and a measurement is made according to Fowler (1996) who states that an observation

may have any result (i.e. a category, coverage etc.) whereas a measurement may only have a nu-

meric quantity. The conceptual model, built around the General Feature Model defined in ISO/TC

211 19101 (2001) and ISO/TC 211 19109 (2003), is shown in Figure 2.11.

An observation is modelled as a Feature (ISO/TC 211 19101, 2001) with several properties,

discussed below.

featureOfInterest

The featureOfInterest property is the feature of which the observation was made. Conceptu-

ally this is realised as any Feature type, according to ISO/TC 211 19101 (2001). O&M is a generic

model for describing observations and as such does not provide an application schema for features
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<DataArray>
<elementCount>

<Count>
<value>4</value>

</Count>
</elementCount>
<elementType name="WeatherConditions">

<DataRecord>
<field name="Temperature">

<Quantity definition="urn:ogc:def:property:OGC:AirTemperature">
<uom code="Cel"/>

</Quantity>
</field>
<field name="Pressure">

<Quantity definition="urn:ogc:def:property:OGC:AtmosphericPressure">
<uom code="hPa"/>

</Quantity>
</field>

</DataRecord>
</elementType>
<encoding>

<BinaryBlock byteEncoding="base64" byteOrder="bigEndian">
<member>

<Component ref="WeatherConditions/Temperature" dataType="
urn:ogc:def:dataType:float"/>

</member>
<member>

<Component ref="WeatherConditions/Pressure" dataType="
urn:ogc:def:dataType:float"/>

</member>
</BinaryBlock>

</encoding>
<values>

MjEuNCAxMDE0LjAgMTkuOCAxMDA1LjAgMjAuMSAxMDA4LjAgMjEuMyAxMDA5LjA
</values>

</DataArray>

Listing 2.13: A SWE Common DataArray describing the weather with temperature and pressure
measurements. A BinaryBlock encoding is used.
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Figure 2.11: Conceptual model of O&M, from the O&M specification (OGC 07-022r1, 2007).

of interest. Typically, such features are defined in either a domain-specific application schema or

a cross-domain schema such as the sampling features specification (OGC 07-002r3, 2007). O&M

stipulates that the feature types defined in the domain-specific application schema must conform

to ISO/TC 211 19109 (2003). As such, the feature type must contain the observed property (see

below) as part of its definition.

Frequently, observations are associated with geospatial locations. OGC 07-022r1 (2007) ex-

plains that while it is an important property, the location is not always trivially available. Conse-

quently there is no pre-defined location property of an observation within O&M. The location of

interest for an observation is often associated with the feature of interest and as such the encoding

of geospatial locations falls within the governance of the domain-specific feature type.

observedProperty

The observedProperty describes some phenomenon for which the result of the observation is

an estimate. There is an inherent association between the observed property and feature of interest

such that the observed property must exist as a property of the feature of interest. Moreover the

units of measure of the observation result must map to those of the observed property.
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procedure

The procedure of an observation is the process used to obtain the result. A common example

is an instrument or sensor, however, it could also be a human observer or a computer simula-

tion. The encoding of the procedure is out of the scope of OGC 07-022r1 (2007), however,

SensorML (OGC 07-000, 2007), another outcome of the SWE activity, is capable of describing

sensor processes and may be used within the procedure property.

result

The result property of an observation is the value generated by the procedure and is represented

as an XML anyType element with a single constraint: it must be suitable for the observed property.

There are numerous types of observation result, two of which are included below.

scalar When the property of the feature of interest is single-valued the result of an observation

will be a scalar value.

coverage When the property of the feature of interest depends on some parameter (e.g. space

or time) then the result of the observation is a function, or, coverage (ISO/TC 211 19123,

2004).

resultQuality

The resultQuality property allows “event-specific” quality information to be associated with

an observation. Within O&M, result quality is considered metadata and as such is modelled on

the DQ_Element type from ISO/FDIS 19115 (2003), which will be discussed in Section 3.4.1.

However, the XML schema allows any XML type to be used within this resultQuality prop-

erty. This generality underlines the fact that there is currently no standardised tool for quantifying

uncertainties quantitatively and in an interoperable fashion. While it is possible to use the SWE

Common data model to express uncertainties, this method lacks the capability to express random

variables through their probability distributions, as discussed in Section 2.5.3.

2.6 Conclusions

This chapter reviewed the ideas and technologies behind two distinct domains: interoperability and

uncertainty representation. In terms of interoperability the Extensible Markup Language (XML)
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was examined, identifying how a generic language allows for a multitude of domain-specific vo-

cabularies to be constructed. Using the XML Schema language it was shown how a set of rules,

governing the structure, can aid in creating these vocabularies, consequently allowing multiple

computer systems to interoperate. The differences between a weak and strong-typed schema de-

sign were discussed, and the strengths and weaknesses of both approaches were detailed. It was

concluded that while a strong-typed design was preferential for interoperability it was not always

possible and depended upon the size of the domain to be modelled. An amalgamation of the two

design patterns was suggested as the best solution.

The discussion progressed onto Web services and the way in which a set of core technologies

laid the foundations for interoperable distributed systems, examining three distinct approaches to

Web services including: SOAP and WSDL; RESTful; and OGC Web services. SOAP and WSDL

services are suited to systems where complex processing of data needs to occur, whereas a REST-

ful approach is simpler when only retrieval, updating and deleting of resources is required. Many

tools exist for constructing and consuming both SOAP and RESTful-based services, meaning that

adoption of these methodologies has been popular. The OWS specification, on the other hand,

has not seen such mainstream adoption. This lack of popularity may be partly attributed to the

lack of tools that support the capabilities document standard, thus making it hard to automatically

create marshalling classes. With the maturity of the SOAP and WSDL standards always improv-

ing, and with the suite of other WS-* specifications on offer, perhaps now would be an ideal time

for the OGC to consider migrating their services to a SOAP based system. The possibility of a

RESTful architecture for a typical OGC service was excluded as they primarily deal with complex

geospatial data processing, which may be ill-suited to a RESTful approach.

The discussion on uncertainty outlined the idea of random variables and how they can be de-

scribed using a series of statistics, realisations or by a probability distribution. When dealing with

random variables it is important to be able to use any of the aforementioned methods to describe

uncertainty, as in many instances a full probability distribution is not known. However, when suffi-

cient information is available it is beneficial to be able to explicitly quantify the probability density

function of a particular random variable, as this provides a complete picture of its uncertainty.

Section 2.5 looked at interoperability in the field of geosciences. The OGC has made great

strides by developing a host of data and service specifications. However, the size of some of

the specifications (e.g. GML) and the generic nature of others (e.g. O&M) mean that the OGC

is facing the same problems that the SOAP and WSDL communities faced previously. These
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problems, discussed in Section 2.2.2 mean that interoperability is suffering due to the overly-

complex specifications. This issue led to the foundation of the Web Services Interoperability

Organization (WS-I), which produced a series of profiles that further restrict the use of the WS-

* specifications. Specifically, they state which versions of which standards should be used as

well as a series of other rules that should be adhered to in order to conform to a specific profile.

With the current popularity of interoperability within the geospatial domain, the OGC should

create a subsidiary organisation and mimic the successes achieved by the WS-I. This could be

accomplished by creating documents detailing specific versions of OGC services and standards

that should be used, and with further restrictions put on these standards. Existing work includes

the publication of several GML profiles, however, this is likely to be only the beginning of a

substantial reorganisation.

Considering the prevalence of uncertainty in geospatial data, and the benefits of providing in-

teroperable standards, one might imagine that a standard mechanism for quantifying uncertainty,

interoperably, would exist. The efforts made by SWE Common and O&M to provide for quality

measures were discussed, however, they lacked the expressiveness required to fully and flexibly

quantify a random variable through its probability density function. The importance of such quan-

tification, coupled with the limited power of existing standards, motivated the main work of this

thesis, the Uncertainty Markup Language (UncertML).
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3.1 Foreword

A conclusion from Chapter 2 was that, while interoperability and uncertainty both play an impor-

tant role within geospatial informatics, the two have never been combined, i.e. no interoperable

language for describing uncertainty exists. The work in this chapter seeks to solve this prob-

lem through the development of an interoperable model for quantifying probabilistic uncertainty,

UncertML.

Section 3.2 provides detail of the underlying conceptual model employed within UncertML.

A series of UML diagrams detail how, within UncertML, uncertainty can be described via a se-

ries of realisations (Section 3.2.2), summary statistics (Section 3.2.3) or probability distributions

(Section 3.2.4). Section 3.3 provides examples of an implementation of the conceptual model via

XML; detailing how UncertML can describe uncertainty via realisations, statistics and distribu-

tions in Sections 3.3.1– 3.3.3 respectively. Section 3.3.4 provides a series of examples of how

UncertML can be used to describe the uncertainty types within the International Organization for

Standardization (ISO) 19138 (ISO/TS 19138, 2006) standard. The role of existing ISO standards

and how UncertML fits within them is discussed in Section 3.3.4. Finally, the chapter concludes

in Section 3.5.

3.1.1 UML notation

The diagrams in Section 3.2 use the UML notation to illustrate the UncertML data model. How-

ever, as UML is not specifically designed to conceptualise XML schemas some unconventional

notations have been adopted. Below are a set of rules that have been used throughout:

• The Leaf stereotype been used to represent individual XML schema files. The name of the

Leaf is the file name for that schema.

• The DataType stereotype represents an XML element and corresponding complex type.

• All types and properties are represented as public. There is no concept of visibility in XML

schemas.

• All XML attributes and properties are represented by UML attributes, no explicit differenti-

ation is made. The supporting text and examples will state the differences where necessary.

• A multiplicity of [0..1] or [0..*] represents an optional attribute or property.
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• If no multiplicity is specified it can be assumed that the attribute or property is mandatory

and may exist only once, i.e. a multiplicity of [1..1].

• Inheritance (or XML extension) is denoted by a solid line with a hollow triangle.

• Certain properties are denoted using the UML association notation (an arrow). Where this

notation is used it can be assumed that the source element has a property with the name

above the association, which is of the target type.

3.2 Conceptual model

The Uncertainty Markup Language (UncertML) is an XML encoding for the transport and storage

of information about uncertain quantities, with emphasis on quantitative representations based on

probability theory. This chapter describes the XML schema syntax and conventions that allow an

interoperable description of uncertain data (i.e., random quantities) in a variety of ways including:

• probability distributions including both uni- and multi-variate distributions and mixture

models;

• statistics, including means, (co-)variances, standard deviations and quantiles;

• realisations or sampled data.

These three categories, illustrated in Figure 3.1, cover the full range of representations which

one might commonly use for random quantities. In the diagram, a package is considered as a

distinct XML schema file. A dependency between packages illustrates that an XML schema import

has been used. The intricate relationships between the members of the different packages is not

demonstrated in Figure 3.1, but is explained in the subsequent sections. However, a common

assumption can be made that most elements extend the AbstractUncertainty type in the base

type package.

The most precise description of a random quantity is in terms of its probability distribution,

which is appropriate where the distributional form of that random quantity is known. Where a

strong parametric form for the distribution is not appropriate, a more flexible semi-parametric

mixture model may be used. A weaker, but often more realistic, option which is still useful and is

widely employed, is to represent a random quantity in terms of its statistics. Within UncertML this

is achieved with a range of statistics types, ranging from moments (e.g. mean and variance) to
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histogram and quantile based representations. Finally UncertML allows for fully non-parametric

representations in terms of samples / realisations from the given distribution, such as might arise

from a Bayesian Markov chain Monte Carlo analysis.

The ISO/IEC guide to the expression of uncertainty in measurement (GUM) (ISO/IEC Guide

98:1995, 1995) outlines the importance of quantifying uncertainty in observations by stating that

it is “obligatory that some quantitative indication of the quality of the result be given so that

those who use it can assess its reliability”. The guide goes on to state that it is necessary to

have a readily-implemented and generally-accepted procedure for characterizing the quality of a

result of a measurement; however, it does not outline a mechanism for describing this information

via an exchangeable medium. The GUM guide aspires to provide a worldwide consensus on

the evaluation and expression of uncertainty in measurement, not dissimilar to the International

System of Units.

Section 2.5 discussed the recent developments for sensor observation modelling within the

OGC (e.g. the O&M standard). These developments have opened opportunities for interoperable,

sensor-derived datasets to be exchanged over the Internet. As this Sensor Web community grows,

an increasing volume of data becomes available which requires processing; much of this data will

be used for decision support. However, rational decision-making using incomplete knowledge

(i.e. sensor measurements) is only possible if the inherent uncertainties in those measurements,

and the uncertainties which are introduced or increased by subsequent processing, are quantified.

To be truly valuable in the context of discoverable Web services and datasets (for example, within

automatic online risk management chains), this uncertainty must be represented in an interoperable

manner. Chapter 2 concluded that no formal method of quantifying complex uncertainties (e.g.

probabilistic representations) within the Sensor Web framework exists.

This section describes a conceptual model for uncertainty capable of describing all aspects

of probability theory discussed in Section 2.3.1. The contents of this section form the basis for

UncertML, with Section 3.3 providing an XML implementation of the conceptual model, detailed

here. The conceptual model is realised as a series of UML diagrams, split into three packages:

realisations (Section 3.2.2), statistics (Section 3.2.3) and probability distributions (Section 3.2.4).

All types are designed to allow encoding of both uni- and multi-variate uncertainty, and can

thus be used for specification of marginal and joint distributions. Both continuous and discrete

random quantities are catered for.
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Figure 3.1: An overview of the UncertML package dependencies.

There is a clear separation of concerns in the design of UncertML, in that it is not designed to

address issues covered in other schemas. For example, there is no notion of units of measure in

UncertML — the intention is that UncertML is used with other schemas, and essentially replaces

primitive value types in scalar and vector form. In subsequent chapters of this thesis, GML, SWE

Common and O&M are used to illustrate the application of UncertML, but its design means that

it could as easily be used to describe uncertainty in datasets from other fields of research; for

example, genetics, economics or linguistics.

UncertML is, at present, restricted to probabilistic representations of uncertainty in random

quantities, and does not address concepts such as fuzzy sets, random processes or belief functions.

3.2.1 Base types

Certain types are common to all three UncertML packages. These are referred to as base types.

There are two base types within UncertML — the AbstractUncertainty type and the Parame-

ter type.

AbstractUncertainty

The AbstractUncertainty type provides a root for the conceptual model of uncertainty in Un-

certML — all common uncertainty types extend this base type and inherit any common properties.
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These common types include: Statistic and all it’s child elements (Quantile, Moment, Dis-

creteProbability and Probability), Distribution and MultivariateDistribution. The

decision to provide a root type, common to all uncertainty types, was influenced by the abstract

types present throughout the GML schema.

Figure 3.2: AbstractUncertainty type is the root type of the UncertML model of uncertainty. All
other uncertainty types inherit from this.

Figure 3.2 illustrates the AbstractUncertainty type with a single property, definition.

The definition property provides a link, via the use of URIs, from any uncertainty type (for

example, Distribution) to a definition describing the uncertainty type of interest (for example,

‘Gaussian’).

Section 2.2.1 outlined two common design methodologies for XML schemas: strong and weak

typed. It concluded that, while both methodologies have strengths and weaknesses, an amalgama-

tion of the two would provide the best solution. UncertML follows a ‘weak-typed’ design pat-

tern which promotes the use of generically named elements with links to dictionary definitions to

provide semantics. However, rather than having a pure weak-typed solution (e.g., with a single

Statistic element for all statistics), UncertML provides some hard-typed elements (e.g., Quan-

tile). This approach is far more flexible than a traditional strong-typed design. However, crucial

to the use of a weak-typed design is the implementation of a dictionary describing the concepts

referenced from within the schema. A dictionary is currently under development for UncertML

which describes the most common statistics, distributions and other related concepts, using math-

ematical formulae where appropriate.

The design and implementation of this dictionary is fundamental to the successful adoption

and use of UncertML. Based loosely around the structure of the data quality measures outlined

in ISO/TS 19138 (2006), the definitions are encoded according to the GML dictionary schema

specification. Included within the definition for each statistic, distribution and all other concepts

are the following pieces of information:

• URI

• Name(s).
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URI http://dictionary.uncertml.org/statistcs/mean
Name(s) Mean, arithmetic mean, average, expectation
Definition The arithmetic mean (typically just the mean) is what is com-

monly called the average. It is defined as x̄ = 1
n ·∑

n
i=1 xi where xi

represents with i’th observation of the quantity x in the sample set
of size n. It is related to the expected value of a random variable,
µ = E[X ] in that the population mean, µ, which is the average of
all quantities in the population and is typically not known, is re-
placed by its estimator, the sample mean x̄. Note that !UncertML
however does not deal with issues of sample size, rather the mean
is taken to refer to the population mean.

Table 3.1: An example excerpt from the UncertML dictionary defining the concept of the arith-
metic mean.

• Definition and textual description.

The root of the dictionary is located at http://dictionary.uncertml.org and the URIs are

influenced by the RESTful design pattern whereby they accurately describe the resource that they

refer to. All statistics are located at ’/statistics’ with the name of the statistic following — e.g. the

definition of the statistic ‘mean’ would be located at the following URL: http://dictionary.

uncertml.org/statistics/mean. If the specified statistic has any parameters, these can be

found at: http://dictionary.uncertml.org/statistics/<statisticname>/parameters.

Individual parameter information can be located at the following: http://dictionary.uncertml.

org/statistics/<statisticname>/parameters/<parametername>. The same structure is

applied to all parametric distributions, with the word ‘distributions’ substituted for ‘statistics’.

An Extensible Stylesheet Language Transformations (XSLT) stylesheet exists to allow a human-

readable view of the dictionary and allows easy navigation through the various statistics and dis-

tributions.

An example of a dictionary entry is given in Table 3.1. With a strict mathematical definition

of each term, and a unique identifier (URI), two UncertML users are able to correspond securely

in the knowledge that they are discussing the same statistical term.

Parameter

The second base type in UncertML is the Parameter, this type is common to all parametric

distributions and certain statistics.

Displayed in Figure 3.3, the Parameter type contains two properties: definition and value.

The definition of a Parameter is identical to that of the AbstractUncertaintyType and ref-

erences a dictionary definition of a particular statistic (or distribution) parameter. The value of a
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Figure 3.3: The UncertML Parameter type is common to distributions and certain statistics.

Parameter contains any simple XML type, typically an integer or double value.

3.2.2 Realisations

In some situations, a user may not be able to simply represent the uncertainties of the data they

are working with. In such a scenario, a sample from the random variable might be provided,

allowing uncertainty to be described implicitly. However, when using this approach, a sufficiently

large sample is required to accurately deduce the uncertainties inherent in the data, which means

that efficient encapsulation of large volumes of data was an important issue for UncertML. The

following sections discuss the Realisations type available within UncertML, for describing a

sample of data through a series of realisations.

Figure 3.4: Structure of a Realisations type in UncertML.

Inheriting from the AbstractUncertainty type, discussed in Section 3.2.1, provides a def-

inition property. In this instance the URI, if desired (note that the definition property is

optional), resolves to a definition of the concept of a realisation. Two optional properties are in-

cluded to provide more information about any particular set of realisations. The realisedFrom

property is a URI that references a definition of the underlying distribution from which the realisa-

tions are generated. The second property, samplingMethod, is a URI referencing the definition of

a particular method that was used to sample the realisations. The realisationCount contains the

number of realisations in each sample; this information is useful when describing multiple random

variables at multiple domain points. ‘Domain point’ here refers to a unique sampling location in a

simulation series, which will often, but not always, be distinguished by its location in space and/or

time.
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As with all other array types in UncertML, the Realisations type is based around the SWE

Common DataArray type. However, as the Realisations type can only describe a series of re-

alisations, the elementType property of the DataArray is not used. The elementCount property

is used to indicate the total number of values contained within the array. In cases where a dataset

describes a single variable at a single domain point this value will be the same as the realisa-

tionsCount property. When describing multiple variables and/or or multiple domain points, the

size of the elementCount will be the product of the number of variables, number of domain points

and the number of individual realisations. More information about how to decode the information

within the array may be found in Section 3.3.

The last two properties are directly inherited from the SWE Common encoding schema, which

provides an efficient and flexible solution to encoding data arrays. Loosely speaking, the format

of the data (binary, ASCII, XML etc.) is described in the encoding property and the values

property contains the data which relates to the elementType; i.e. the actual values realised through

sampling.

Aggregate types within UncertML, i.e. arrays or records, do not extend the AbstractUncer-

tainty type, as they are merely perceived as ‘containers’ for uncertainty types with each individ-

ual constituent containing its own definition.

3.2.3 Statistics

This section discusses the range of options available in UncertML for describing summary statis-

tics. Such statistics are used to provide a summary of a random variable, ranging from measures of

centrality (mean, mode, median, etc.) through measures of dispersion (range, standard deviation,

variance etc.) to higher order moments, such as skewness and kurtosis. While certain statistics

(e.g. mean, mode) do not provide any information about uncertainty in isolation, they are often

used in conjunction with other statistics (e.g. variance, standard deviation) to provide a concise

summary, and there is considerable value in the explicit information that a given value represents

the mean, rather than some other statistic such as the mode, or even a single realisation.

Figure 3.5 displays the entire collection of types available within UncertML for describing

statistics. The Statistic type is the simplest method of describing a statistic. Inheriting from

the AbstractUncertainty type provides a definition property which in this instance refer-

ences a definition of the particular statistic, e.g. mean, variance, mode etc. Every Statistic type

has a value property containing the actual value of the statistic, which is encoded as any simple
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Figure 3.5: UncertML provides a suite of data types for describing various statistics including
quantiles, probabilities and general statistics such as mean and variance.

XML type but would typically be an integer or double. When using statistics to describe a dataset

it is often valuable to know the effective degrees of freedom, in order to assess the power and

appropriate uses of the statistics. The base Statistic type in UncertML provides an optional

attribute, degreesOfFreedom, which may be used for this purpose and is inherited by all subtypes

(Quantile, Moment, DiscreteProbability and Probability). This generic and concise con-

cept of a statistic allows most statistics to be encoded, but for certain statistics more information

is required. In such cases the Statistic type contains one or more Parameter types (Section

3.2.1), each with a definition and value.

While the Statistic type is capable of describing all common statistics, certain statistics are

used so frequently as to warrant their own concrete type. One example is a quantile. When work-

ing with quantiles, a user needs to know which quantile is being referred to. UncertML provides a

specific Quantile type which inherits from the Statistic type and provides an additional prop-

erty, level. Within UncertML, particular quantiles are specified by their level. For example, the

0.3 quantile (the value of the random variable below which a proportion of 0.3 of the probability

mass, which always sums to 1.0, lies) has a level property of value 0.3.
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Another frequently-used statistic is the probability value, used to frame questions such as:

“What is the probability that the water level at a specific location will exceed 25m?”, “What is the

probability that the temperature will fall below 24◦ Celsius?”, “What is the probability that this

tree is an oak tree?”. For such instances UncertML provides two further types, DiscreteProb-

ability and Probability, which both inherit from the Statistic type. A further level of

inheritance for probability types was decided against as the intermediate probability type would

offer no extra properties. Furthermore, the use of XML schema choice elements negates the se-

mantic linking between probability types that would have been provided by a second level of

inheritance. DiscreteProbability is used to describe the probability that a variable falls within

a certain enumerated class, as in the third example above. The addition of a category property

provides the ability to specify any data type as a class but will typically be realised as a string;

in the example above the category would be “Oak”. A more explicit design might have allowed

XML anyType as a category. However, this would place a requirement on UncertML users to

know a priori what elements they are being sent within the category in order for meaningful pro-

cessing. It was decided that to improve interoperability the category property should be limited

to a simple textual representation.

Probability may be used to describe the probability that a variable exceeds (or does not

exceed) a certain threshold. Such thresholds are defined through the use of the gt (greater than),

lt (less than), eq (equal to), ge (greater than or equal to) and le (less than or equal to) properties,

which may be used either individually or in combination. The value property of both the Dis-

creteProbability and Probability types always contains a value restricted to fall between

0.0 and 1.0, in contrast to the other statistic types, which contain a value in the relevant scale of

the random quantity. Unfortunately, XML schema does not provide any mechanism for restricting

which attributes can be used in combination, this can result in illogical encodings. For example, it

is syntactically legal for a user to encode a Probability with both gt and ge attributes. There-

fore, it is the responsibility of the user to identify which of the probability elements suits their

particular use case and which attributes they should use.

The final statistic available within UncertML is the Moment type. A random quantity is often

described by a collection of its (centered) moments. A Moment inherits from the Statistic type

and adds an order property which contains the order of the moment as an integer; for example ‘3’

for the 3rd order centered moment often referred to as the skewness.

From herein, reference to ’statistics’ means the generic Statistic type as well as all children
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(Quantile, DiscreteProbability, Probability and Moment).

StatisticsRecord

Grouping of statistics provides a mechanism by which a random quantity can be summarised

in terms of its centrality and dispersion or other attributes, UncertML provides the Statistic-

sRecord type for such use cases. As with all record types within UncertML, the Statistic-

sRecord is closely modelled on the SWE Common DataRecord type. However, the SWE Com-

mon models also include extra attributes and properties that are not required by UncertML so

consequently the UncertML aggregate types are only loosely modelled on them and not a direct

inheritance (OGC 07-000, 2007).

A DataRecord type in SWE Common, and therefore a StatisticsRecord type in UncertML,

consists of a number of field properties. Each field of a StatisticsRecord may be any type that

belongs to the AnyStatistic union: Statistic, Quantile, Moment, DiscreteProbability,

Probability, StatisticArray or StatisticsRecord. A combination of general statistics in

a StatisticsRecord provides a clearly-structured set of summary statistics for a given variable.

The ability to construct complex structures such as records of arrays and records of records allows

users to construct complex representations of uncertainty with relative ease.

StatisticArray

Arrays of statistics are useful when describing a variable at several domain points, or several

variables at a given domain point. The StatisticArray type in UncertML, closely modelled

on the DataArray of SWE Common, provides such a mechanism. The elementType property

of a StatisticArray may be any type from within the AnyStatistic union, allowing multiple

summaries to be encoded flexibly as arrays of single statistics, or an array of StatisticsRecords

types. More complex structures, such as two dimensional arrays, are also possible. Exploiting the

efficiency of the SWE Common encoding schema provides an efficient structure for encoding

complex structures.

3.2.4 Distributions

When the uncertainties of a data set are better understood, it is desirable to describe them through

the use of probability distributions. The types contained within this section of UncertML are

specifically designed to allow a concise parametric or semi-parametric encapsulation of all proba-
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bility distributions.

Figure 3.6: Class diagram of the UncertML distributions package.

Distribution

For the simplest case (describing the probability distribution of a single variable), UncertML pro-

vides the Distribution type. Like all uncertainty types in UncertML, the Distribution type

inherits from the AbstractUncertainty, inheriting the definition property. In the case of

distributions, this definition may contain both a textual description, and a complex mathemati-

cal description of the distribution (for example cumulative distribution function and probability

density function). It is important to note that the Distribution type is not a mechanism for
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completely describing a probability distribution in terms of its functions, parameters and how they

relate to each other; it should be thought of as a mechanism for describing an instance of a dis-

tribution which is defined elsewhere. As previously stated, a dictionary containing definitions of

common distributions is currently under development.

Complementing the definition property is a parameters property which contains a number

of Parameter types. Each Parameter of a distribution is not considered to be an uncertainty

type in itself, but it contains a definition property which can be used to specify this particular

parameter. Each Parameter also has a value property holding the actual value of that parameter.

DistributionArray

When describing the marginal distributions of several variables at a given domain point, or a uni-

variate, marginal distribution over several domain points, the need for an array emerges. The

DistributionArray type provided by UncertML is similar to the StatisticArray. However,

in this instance the elementType property is realised as any type from the AnyDistribution

union. Typically, this will be a simple Distribution type, however, the mechanism for describ-

ing arrays of arrays, and arrays of MultivariateDistributions, is also available. The rest of

the properties remain the same as in the StatisticArray (Section 3.2.3), with one subtle dif-

ference. Distributions often have numerous parameters that help describe them (e.g. a Gaussian

distribution has both a location (centrality) and a scale (variance) parameter). In this instance the

Distribution contained within the elementType property acts as a form of ‘record’. Therefore,

when interpreting distributions which have been encoded within the values property, care should

be taken to clearly understand which set of values refers to which parameter. The examples of

DistributionArray, in Section 3.3 demonstrate how one may encode such a scenario using a

logical ordering of values to clarify their meaning. The benefit of providing a distinct array type for

distributions is that it drastically reduces file sizes. For example, a user may wish to quantify the

probability distribution of a variable over a large spatial field (e.g., 1000 by 1000 cells), perhaps

as a result of an interpolation process (Chapter 5). In such a case this would result in 1,000,000

distinct probability distributions. Without the aggregating mechanism of the DistributionArray

values property, a distinct Distribution element would have to exist for each distribution. The

result of which is a file size that is disproportionately large for the amount of data encoded, as the

majority of the file is consumed with opening and closing Distribution tags and URIs, rather

than the actual data. With the aggregation method described above, only a single opening and
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closing tag and URI is required, dramatically reducing file sizes — a major benefit when working

in a distributed context.

MixtureModel

A MixtureModel is a specialised form of record. Typically, when describing a variable using a

mixture of distributions, a specific weight is assigned to each distribution specifying the relative in-

fluence of that distribution in the mixture. This constraint means that a simple ‘DistributionRecord’

is not sufficient, so a dedicated MixtureModel is included.

The distributions property is equivalent to the fields property of a standard record type

which may contain a type from the AnyDistribution union. The addition of a weights property

allows a weight (floating point value) to be assigned to each distribution within the distribu-

tions property. It should be noted that when constructing MixtureModels of Distribution-

Arrays or MultivariateDistributions care should be taken to ensure that there is a value for

each individual distribution within the distributions property. In addition, though the sum of

all values within the weights property should equal 1.0, this is not enforced within UncertML and

it is the responsibility of the user to ensure such constraints are met.

Examples of MixtureModels encoded using UncertML can be found in Section 3.3.

MultivariateDistribution

The final and most complex type in UncertML is the MultivariateDistribution type. Typical

use cases for a multivariate (joint) distribution are when two variables are correlated, or a single

variable is spatially correlated. As each of these scenarios requires the inclusion of a covariance

matrix, the DistributionArray is not sufficient to describe the structure of the uncertainty. Also,

because the MultivariateDistribution is fundamentally different to the Distribution ele-

ment, the use of inheritance is not warranted. The major difference is the inclusion of a covariance

matrix in most multivariate use cases.

A MultivariateDistribution is similar to the Distribution type, containing both a def-

inition and parameters property. However, a significant difference is that the parameters

property of a MultivariateDistribution now contains a number of ParameterArrays rather

than Parameter types, due to the fact that multivariate distributions, by definition, always deal

with arrays of parameters.

The ParameterArray type is similar to all other array types within UncertML, consisting of
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an elementType, elementCount, encoding and values properties. The elementType property

contains a Parameter type which provides a definition property. The values property then

contains all values for that given parameter. A collection of such arrays allows the description of

complex joint distributions in an efficient manner. Examples of how to use the Multivariate-

Distribution type are detailed in Section 3.3.

3.3 XML encoding and examples

All models discussed in the previous section are encoded as a set of XML schemas. When using

UncertML, instance documents conforming to the rules set out in these schemas shall be cre-

ated. All types within UncertML are concrete types that may be used without the development

of an additional application schema. All elements within the UncertML schema belong to the

http://www.uncertml.org namespace. However, all namespaces within the examples in this

section have been omitted for brevity. Any element using the prefix un belongs to the UncertML

namespace.

The UncertML schemas also utilise two external schemas:

• Geography Markup Language, version 3.1.1, http://www.opengis.net/gml

• Sensor Web Enablement Common, version 1.0, http://www.opengis.net/swe/1.0

Elements prefixed with either swe or gml belong to the SWE Common or GML schemas

respectively.

The rules used to encode the UncertML models into XML schemas are similar to those out-

lined in the GML specification (OGC 07-036, 2007). UncertML uses the design principle that

there are objects that have properties which may themselves be realised as objects. According

to these rules objects are realised as XML elements and are named using UpperCamelCase and

properties are named using lowerCamelCase. XML types are named in UpperCamelCase and

end with the word ‘Type’.

Most properties and elements in the conceptual model are encoded as elements in XML. How-

ever, several properties are realised as XML attributes where deemed necessary.

3.3.1 Realisations

Realisations exists for situations where no a priori knowledge of the underlying probability

distribution is available, or where complex processing of data, such as Monte Carlo analysis, is
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required. Typically, a data sample made up of realisations will contain hundreds or thousands of

values and an efficient encoding is required.

<un:Realisations definition="http://dictionary.uncertml.org/realisation"
samplingMethod="http://dictionary.uncertml.org/realisations/sampling_methods/direct
" realisedFrom="http://dictionary.uncertml.org/distributions/gaussian">
<un:realisationsCount>100</un:realisationsCount>
<un:elementCount>100</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="." blockSeparator=" " tokenSeparator=","/>

</swe:encoding>
<swe:values>
[100 space separated values]

</swe:values>
</un:Realisations>

Listing 3.1: A set of realisations encoded using the UncertML Realisations type.

Listing 3.1 shows how a set of 100 sample realisation values can be encoded. The reali-

sationsCount property states that 100 realisations were generated, and in combination with the

elementCount (also 100) it is possible to deduce that these realisations refer to a single variable,

at one domain point. However, information of this type is not intended to be extracted from the

UncertML, as it would typically be encoded in a higher level schema, representing the domain

points and phenomena sampled

The three URIs present in this example provide information about this particular realisation.

The definition property resolves to a description about the concept of a realisation, realised-

From resolves to a definition of a Gaussian distribution (from which this sample is realised) and the

samplingMethod resolves to a description of a direct sampling technique. Resolving these URIs

gives the user a complete picture of the true meaning of these realisations, when combined with

the values property. For this example, and all subsequent examples, the TextBlock encoding is

used as this best illustrates the examples.

The TextBlock contains three properties. The decimalSeparator defines a single character

that represents a decimal place, blockSeparator represents the character that separates each new

element in the values block and tokenSeparator separates individual items within an element.

In the above example there is only a single value within each element — the actual realisation

itself — therefore the need for a token separator is removed. Later sections demonstrate how the

tokenSeparator can be used to encode complex elements, e.g. distributions.

92



Chapter 3 UNCERTML

3.3.2 Statistics

Statistics can be used to provide a concise summary of a particular variable. The examples in

this section demonstrate how UncertML can be used to encode simple statistics, quantiles and

probabilities. Examples of grouping several statistics to form a summary of a variable and a set of

statistics at several domain points are also given. Finally, an example of how to encode complex

structures, such as histograms, is provided.

Statistics, Quantiles, Probabilities and Moments

Due to the weak-typed design of UncertML all simple statistics appear identical in structure. What

separates a ‘mean’ from a ‘median’ is the URI (and definition upon resolving) of the definition

property. This is demonstrated in Listing 3.2 and Listing 3.3, where almost identical Statistic

elements point to different definition URIs. Assuming the existence of a dictionary containing

definitions of the most common statistics, only the URIs is needed in order for an application to

‘understand’ how to process the data.

<un:Statistic definition="http://dictionary.uncertml.org/statistics/mode">
<un:value>34.67</un:value>

</un:Statistic>

Listing 3.2: The Statistic type encoding a basic statistic, ‘mode’. A URI is used to provide the
necessary semantics.

<un:Statistic definition="http://dictionary.uncertml.org/statistics/
standard_deviation" degreesOfFreedom="251">
<un:value>12.08</un:value>

</un:Statistic>

Listing 3.3: A standard deviation encoded in UncertML using the Statistic type.

A whole array of statistics can be encoded in a similar fashion to the examples in Listing 3.2

and Listing 3.3, including mean, variance and median. However, certain statistics require slightly

more detail. One such example is a quantile (Listing 3.4).

When encoding quantiles, it is crucial to quantify the particular quantile of interest. This

information is encoded in the level property. In Listing 3.4 the 0.95 level quantile has a value of

34.34.

Similar to the quantile example is the Moment (Listing 3.5). When working with moments a

user must know the moment order for meaningful processing. In Listing 3.5 the 2nd order centred
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<un:Quantile definition="http://dictionary.uncertml.org/statistics/quantile" level=
"0.95">
<un:value>34.34</un:value>

</un:Quantile>

Listing 3.4: A Quantile encoded using UncertML. The Quantile type inherits from the
Statistic type, adding a level attribute.

moment, or variance, is described.

<un:Moment definition="http://dictionary.uncertml.org/statistics/centred_moment"
order="2">

<un:value>34.5</un:value>
</un:Moment>

Listing 3.5: A Moment encoded using UncertML. A Moment extends the base Statistic type,
adding an order attribute.

Section 3.2.3 listed probabilities, both discrete and continuous, as another type of statistic that

required more information. A discrete probability requires an association to a particular class. An

example of how to encode a discrete probability in UncertML is seen in Listing 3.6.

<un:DiscreteProbability definition="http://dictionary.uncertml.org/
discrete_probability">
<un:value>0.25</un:value>
<un:category definition="http://www.mydomain.com/trees/list">Oak</un:category>

</un:DiscreteProbability>

Listing 3.6: A DiscreteProbability encoded in UncertML. A DiscreteProbability is used
for quantifying variables which can be catagorised into discrete values.

The value of the category property can be any type, but the typical use case is to use a string

(as demonstrated in Listing 3.6). It should be noted that the value property of all probabilities

represents a probability in the range of 0.0–1.0, in contrast to other statistic types.

The final example is a continuous probability (Listing 3.7). Continuous probabilities see the

addition of five properties: gt (greater than), lt (less than), eq (equal to), ge (greater than or

equal to) and le (less than or equal to). Using these properties individually, or in combination,

allows a user to specify thresholds of importance for a particular variable. Examples include:

“What is the probability that a variable exceeds a given value?” Or, “what is the probability that

a variable falls between an upper and lower bound?”. Utilising the upper and lower bounds of

several Probability types in combination with the grouping of the StatisticsRecord type

allows the encoding of a histogram, seen in Listing 3.11.
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<un:Probability definition="http://dictionary.uncertml.org/probability">
<un:value>0.25</un:value>
<un:gt>35.6</un:gt>

</un:Probability>

Listing 3.7: A continuous probability encoded in UncertML. The Probability type adds five
properties to the Statistic type, specifying the thresholds that a variable may or may not exceed.

StatisticArray

Large numbers of statistics can be efficiently encoded using the StatisticArray type. This

aggregate type utilises the SWE Common EncodedValuesGroup to provide a host of encoding

options. In its simplest form, a StatisticArray provides a collection of instances of a single

statistic, as in Listing 3.8, which encodes an array of five ‘mean’ values.

<un:StatisticsArray>
<un:elementType>
<un:Statistic definition="http://dictionary.uncertml.org/statistics/mean"/>

</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="." blockSeparator=" " tokenSeparator=","/>

</swe:encoding>
<swe:values>46.76 25.75 57.432 12.42 53.64</swe:values>

</un:StatisticsArray>

Listing 3.8: A StatisticArray encoded in UncertML. This StatisticArray contains an array
of five ‘mean’ values.

Encoding a series of summary statistics (i.e. mean and standard deviation) can be achieved

through a combination of the StatisticArray and StatisticsRecord types. An example of

such a scenario can be seen in Listing 3.9, which describes an array of five ‘mean’ and ‘standard

deviation’ values of some variable(s).

When using a record inside an array, the tokenSeparator separates each individual item

within the record. Dissecting the values block in Listing 3.9, a user can deduce that the values

are in the order: Mean, Standard Deviation.

StatisticsRecord

The previous section included an example of a StatisticsRecord inside a StatisticArray, but

sometimes only a single group of statistics may be required. An example of a single Statistic-

sRecord can be seen in Listing 3.10, demonstrating how the mean, variance and the probability
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<un:StatisticsArray>
<un:elementType>
<un:StatisticsRecord>
<un:field>
<un:Statistic definition="http://dictionary.uncertml.org/statistics/mean" />

</un:field>
<un:field>
<un:Statistic definition="http://dictionary.uncertml.org/statistics/

standard_deviation" />
</un:field>

</un:StatisticsRecord>
</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="." blockSeparator=" " tokenSeparator=","/>

</swe:encoding>
<swe:values>
34.64,67.86 45.65,78.41 56.7,45.75 29.86,56.74 45.65,76.43

</swe:values>
</un:StatisticsArray>

Listing 3.9: A StatisticArray used in conjunction with the StatisticsRecord type to provide
an array of summary statistic groups.

that a variable exceeds a certain threshold can be meaningfully grouped into a single structure.

Grouping statistics in this fashion allows complex structures to be formed. One such example

is given in Listing 3.11, which illustrates how a histogram can be constructed by grouping several

Probability types into a StatisticsRecord.

3.3.3 Distributions

The final subset of UncertML is concerned with the encoding of probability distributions. A range

of options are available, including single distributions, arrays of distributions, joint distributions

and mixture models. Examples of common distributions, e.g. Gaussian, arrays of distributions,

mixture models and multivariate distributions are given.

Distribution

A Distribution type in UncertML is a record type. However, rather than having an unbounded

number of fields it has parameters. The decision to extract all mathematical functions from

the encoding of a distribution has enabled complex concepts, such as a Gaussian distribution to be

easily encoded in a simple structure, shown in Listing 3.12.

Generating a weak-typed framework allows any distribution to be encoded in a single generic

Distribution type. Provided that any processing applications understand which distribution is
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<un:StatisticsRecord>
<un:field>
<un:Statistic definition="http://dictionary.uncertml.org/statistics/mean">
<un:value>34.5</un:value>

</un:Statistic>
</un:field>
<un:field>
<un:Statistic definition="http://dictionary.uncertml.org/statistics/variance">
<un:value>2.34</un:value>

</un:Statistic>
</un:field>
<un:field>
<un:Probability>
<un:value>0.12</un:value>
<un:gt>45.6</un:gt>

</un:Probability>
</un:field>

</un:StatisticsRecord>

Listing 3.10: StatisticsRecord encoded in UncertML to allow statistics to be grouped into a
logical structure.

<un:StatisticsRecord>
<un:field>
<un:Probability definition="http://dictionary.uncertml.org/statistics/

probability">
<un:value>0.24</un:value>

<un:lt>30</un:lt>
<un:ge>10</un:ge>
</un:Probability>

</un:field>
<un:field>
<un:Probability definition="http://dictionary.uncertml.org/statistics/

probability">
<un:value>0.57</un:value>

<un:lt>50</un:lt>
<un:ge>30</un:ge>
</un:Probability>

</un:field>
<un:field>
<un:Probability definition="http://dictionary.uncertml.org/statistics/

probability">
<un:value>0.19</un:value>

<un:lt>80</un:lt>
<un:ge>50</un:ge>
</un:Probability>

</un:field>
</un:StatisticsRecord>

Listing 3.11: StatisticsRecord in UncertML encoding a histogram. In this example, only a few
bins are encoded, for brevity.
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<un:Distribution definition="http://dictionary.uncertml.org/distributions/gaussian"
>
<un:parameters>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/

mean">
<un:value>34.564</un:value>

</un:Parameter>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/gaussian/

variance">
<un:value>7.45</un:value>

</un:Parameter>
</un:parameters>

</un:Distribution>

Listing 3.12: A Gaussian distribution encoded in UncertML using the generic Distribution
type.

being described (by resolving the URIs) then there is no need to include complex mathematical

functions in the encoding. This is demonstrated in the example in Listing 3.13, which encodes an

exponential distribution.

<un:Distribution definition="http://dictionary.uncertml.org/distributions/
exponential">
<un:parameters>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

exponential/rate">
<un:value>34.564</un:value>

</un:Parameter>
</un:parameters>

</un:Distribution>

Listing 3.13: An exponential distribution encoded in UncertML using the generic Distribution
type.

DistributionArray

As with statistics, a situation can arise where a user wishes to encode multiple marginal distribu-

tions in an efficient structure. The DistributionArray type included in UncertML is similar in

structure to a StatisticArray containing a StatisticsRecord.

Listing 3.14, illustrates that each parameter of the distribution (mean and variance) is separated

by the tokenSeparator. Each individual distribution is then separated by the blockSeparator

giving the following pattern: mean,variance mean,variance etc. . .
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<un:DistributionArray>
<un:elementType>
<un:Distribution definition="http://dictionary.uncertml.org/distributions/

gaussian">
<un:parameters>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

gaussian/mean"/>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

gaussian/variance"/>
</un:parameters>

</un:Distribution>
</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="." blockSeparator=" " tokenSeparator=","/>

</swe:encoding>
<swe:values>
35.2,56.75
31.2,65.31
28.2,54.23
35.6,45.21
41.5,85.24

</swe:values>
</un:DistributionArray>

Listing 3.14: A DistributionArray containing several Gaussian distributions. The values block
contains 5 ‘mean,variance’ tuples, one for each Gaussian distribution.

MixtureModel

Mixture models are distributions that are convex combinations of other, weighted, distributions.

Semantically, a MixtureModel is not dissimilar to any other record type in UncertML. There are a

number of constituent fields (distributions) that make up a larger structure. However, the addition

of a weights property allows a relative weight, or influence, to be assigned to each constituent

part. Certain guidelines should be followed when using MixtureModels to ensure interoperability.

These are as follows:

• There should be a corresponding weight for each constituent distribution within the dis-

tributions property.

• Each weight should be a value between 0.0–1.0 inclusive (but this is not enforced).

• The sum of all weights should equal 1.0 (though again, this is not enforced).

An example of a MixtureModel is given in Listing 3.15, consisting of multiple Gaussian

distributions and adhering to the above rules.
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<un:MixtureModel>
<un:weights>0.24 0.76</un:weights>
<un:distributions>
<un:Distribution definition="http://dictionary.uncertml.org/distributions/

gaussian">
<un:parameters>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

gaussian/mean">
<un:value>34.564</un:value>

</un:Parameter>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

gaussian/variance">
<un:value>67.45</un:value>

</un:Parameter>
</un:parameters>

</un:Distribution>
<un:Distribution definition="http://dictionary.uncertml.org/distributions/

gaussian">
<un:parameters>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

gaussian/mean">
<un:value>21.564</un:value>

</un:Parameter>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

gaussian/variance">
<un:value>34.45</un:value>

</un:Parameter>
</un:parameters>

</un:Distribution>
</un:distributions>

</un:MixtureModel>

Listing 3.15: A MixtureModel including a number of weights that corresponds to the number of
constituent distributions.
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Combining distributions and weights in this fashion allows the construction of complex mix-

ture models. The ability to include DistributionArrays into the distributions property al-

lows large mixture models to be efficiently created. Care should be taken when working with large

mixture models to ensure adherence to the above rules.

MultivariateDistribution

The final type in the distributions subset of UncertML is the MultivariateDistribution. This

type is required when there is correlation between variables, or a variable varies over a spatial-

temporal domain. Much like a Distribution type, a MultivariateDistribution consists of

a definition and parameters properties. However, instead of each parameter having a single

value, it now consists of multiple values, depending upon either the number of variables or the

extent of the domain. The notion of a multivariate distribution is complex, but the example in

Listing 3.16 demonstrates the relative ease with which a multivariate Gaussian distribution may

be encoded.

The first ParameterArray contains a vector of mean values whose dimensions depend upon

the number of variables, and the size of the spatial or temporal domain. The second Parame-

terArray contains the covariance matrix, which contains the appropriate number of covariance

values. Utilising the SWE Common EncodedValuesGroup ensures that the most efficient encod-

ing of covariances is achieved in applications with large numbers of domain points, since these

matrices can become exceedingly large under normal use.

3.3.4 ISO 19138 data quality measures

ISO/TS 19138 (2006) outlines a list of commonly used data quality reporting measures for the

data quality sub-elements identified in ISO/TC 211 19113 (2002). This section provides several

examples of how UncertML can be used to encode these data quality measures in XML.

Listing 3.17 demonstrates how the statistic ‘mean value of positional uncertainties’ may be

encoded using UncertML. The example is identical to previous statistic examples with only the

definition URL differentiating it. With the addition of a Parameter property, Listing 3.18 demon-

strates how the ‘mean value of positional uncertainties’ can be extended to exclude outliers. In the

example, the emax parameter is used to specify the definition of what an outlier is in this particular

context, and its threshold nature and value type is therefore also specified within the dictionary.

The inclusion of data quality elements from ISO/TS 19138 (2006), such as ‘data quality value
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<un:MultivariateDistribution definition="http://dictionary.uncertml.org/
distributions/multivariate_gaussian">
<un:parameters>
<un:ParameterArray>
<un:elementType>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

multivariate_gaussian/mean"/>
</un:elementType>
<un:elementCount>5</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="." blockSeparator=" " tokenSeparator=","/>

</swe:encoding>
<swe:values>
45.42 53.12 12.53 64.21 55.22

</swe:values>
</un:ParameterArray>
<un:ParameterArray>
<un:elementType>
<un:Parameter definition="http://dictionary.uncertml.org/distributions/

multivariate_gaussian/covariance"/>
</un:elementType>
<un:elementCount>25</un:elementCount>
<swe:encoding>
<swe:TextBlock decimalSeparator="." blockSeparator=" " tokenSeparator=","/>

</swe:encoding>
<swe:values>
2.71828 0 0 0 0
0 2.71828 0 0 0
0 0 2.71828 0 0
0 0 0 2.71828 0
0 0 0 0 2.71828

</swe:values>
</un:ParameterArray>

</un:parameters>
</un:MultivariateDistribution>

Listing 3.16: A multivariate Gaussian distribution encoded in UncertML using the
MultivariateDistribution type.

<un:Statistic definition="http://dictionary.uncertml.org/statistics/
Mean_value_of_positional_uncertainties" degreesOfFreedom="228">
<un:value xsi:type="xs:double">24.21</un:value>

</un:Statistic>

Listing 3.17: Mean value of positional uncertainties, (ISO/TS 19138, 2006) (Table D.29), encoded
in UncertML.
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<un:Statistic definition="http://dictionary.uncertml.org/statistics/
Mean_value_of_positional_uncertainties_excluding_outliers">
<un:parameters>
<un:Parameter definition="http://dictionary.uncertml.org/statistics/

Mean_value_of_positional_uncertainties_excluding_outliers/parameters/e_max">
<un:value xsi:type="xs:double">25.12</un:value>

</un:Parameter>
</un:parameters>
<un:value xsi:type="xs:double">23.45</un:value>

</un:Statistic>

Listing 3.18: Mean value of positional uncertainties excluding outliers, (ISO/TS 19138, 2006)
(Table D.30), encoded in UncertML.

type’ and ‘data quality value structure’, within the dictionary allows more complex statistics, such

as a covariance matrix (Listing 3.19), to be encoded.

<un:Statistic definition="http://dictionary.uncertml.org/statistics/
Covariance_matrix">
<un:value xsi:type="xs:base64Binary">

Mi43MTgyOCAwIDAgMCAwIDAgMi43MTgyOCAwIDAgMCAwIDAgMi43MTgyOCAwIDAgMC
AwIDAgMi43MTgyOCAwIDAgMCAwIDAgMi43MTgyOA==
</un:value>

</un:Statistic>

Listing 3.19: Covariance matrix encoded in UncertML, (ISO/TS 19138, 2006) (Table D.33).

Listing 3.19 demonstrates the ability of a statistic value to contain any simple XML type; in

this example the covariance matrix is encoded in base64 binary.

Listing 3.20 is an extract from the statistics dictionary that describes the concept and structure

of a covariance matrix. The dataQualityValueType property states that it is of type ‘Measures’,

and the dataQualityValueStructure defines it as ‘matrix’. With this knowledge it is possible

to deduce what the statistic value property contains.

Another example of how the dataQualityValueType and dataQualityValueStructure

properties within the definitions are used can be seen in Listing 3.21. The uncertainty ellipse,

as defined in ISO/TS 19138 (2006), does not contain a single value, rather a list (a, b, ϕ) of values.

Including this information within the dictionary definition allows the base Statistic type to

encode a multitude of different statistics, including the uncertainty ellipse, while maintaining the

same structure.
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<un:StatisticDefinition gml:id="Covariance_matrix">
<gml:description>
The covariance matrix generalises the concept of variance from one to n

dimensions, i.e. from scalar-valued random quantities to vector-valued random
quantities (tuples or scalar random quantities).
</gml:description>
<gml:name>Covariance matrix</gml:name>
<gml:name>variance-covariance matrix</gml:name>
<un:definition>
A symmetrical square matrix with variances or point coordinates on the main

diagonal and covariances between these coordinates as off-diagonal elements
</un:definition>
<un:dataQualityValueType>Measures</un:dataQualityValueType>
<un:dataQualityValueStructure>matrix</un:dataQualityValueStructure>

</un:StatisticDefinition>

Listing 3.20: UncertML dictionary extract describing a covariance matrix.

<un:Statistic definition="http://dictionary.uncertml.org/statistics/
Uncertainty_ellipse">
<un:value>21.14 12.42 125.12</un:value>

</un:Statistic>

Listing 3.21: Uncertainty ellipse encoded in UncertML, (ISO/TS 19138, 2006) (Table D.52).

3.4 Relation to ISO standards

UncertML is not intended to be a solely geospatial standard, since the fundamental principle of

UncertML (interoperable representation of probabilistic uncertainty) applies to a wider set of ap-

plication domains. A conscious effort has been made to separate concerns and to ensure that

UncertML is complete with respect to its remit: the probabilistic representation of uncertainty.

Probabilistic uncertainty representation is pertinent to many applications, and provides significant

benefits in terms of a well defined theoretical basis for propagating and working with uncertainty.

However, while UncertML has wide applicability the largest potential application of (and motiva-

tion for) developing UncertML lies within the Sensor Web.

This section summarises the relationship of UncertML to existing ISO standards, while later

examples address the specific relevance of UncertML to these standards in practice. For example,

Section 3.3.4 shows the encoding of specific data quality measures from ISO/TS 19138 (2006).

3.4.1 ISO 19115: Metadata

There are two ways of thinking when it comes to uncertainty and metadata — either that uncer-

tainty is in fact data about data, or that the data itself is uncertain and thus the uncertainty is the
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Property Nature
valueType[0..1] RecordType
valueUnit UnitOfMeasure
errorStatistic CharacterString
Value[1..*] Record

Table 3.2: Properties of a ISO 19115 DQ_QuantitativeResult.

actual data and not metadata. This is a concept that is discussed later in Section 2.4.1. Both cases

are applicable in different situations. For instance, consider an observation, the result (or observed

value), of this observation is considered to be the data. Any uncertainty in this observed value

(e.g., measurement bias) can be considered metadata. However, consider a process, such as in-

terpolation, the output of that process is itself uncertain — in this instance, the data is inherently

uncertain.

With that in mind, the concepts that are discussed in ISO/FDIS 19115 (2003) suggest that

UncertML is actually a realisation of the DQ_QuantitativeResult element, although UncertML

does not to include units of measure. Comparing UncertML to a DQ_QuantitativeResult in

this manner suggests that uncertainty is metadata, and this is certainly a domain where UncertML

might be used. We have deliberately extended the definition in the DQ_QuantitativeResult

section to allow very explicit but flexible representation of the uncertainty in the various types

supported by UncertML. Concepts such as units of measure are not included in UncertML, but are

intended to be represented by existing schemas, which will fully describe the phenomena to which

the uncertainty pertains while using UncertML to efficiently describe that uncertainty. Table 3.2

lists the properties of a DQ_QuantitativeResult from ISO/FDIS 19115 (2003).

The information in Table 3.2 can be encoded using UncertML by delegating the valueUnit

to a ‘wrapper’ which could also encode measurement-specific information such as location and

sensor characteristics. The uncertainty would be represented by an UncertML type in which the

nature of the statistic is given by a URI, rather than the errorStatistic string used here.

An alternative option would be to supply an UncertML type as the actual value of the DQ_-

QuantitativeResult, allowing the representation of qualified estimates for metrics which are

more usually supplied as a single value for a dataset. For example, traditionally a DQ_Quanti-

tativeResult would be used to represent the fact that the value of ‘TopologicalConsistency’

(ISO/TS 19138, 2006) for a polygon dataset is 75%. UncertML allows a more informative repre-

sentation of this estimate, which is likely to be uncertain and to have been derived from a set of

samples. This set of sample consistencies is also highly unlikely to have a symmetrical Gaussian
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distribution, given the 0–100 bounded nature of the measurement scale. UncertML can represent

the variability of the samples without over-simplifying their distribution; for example, (a) by en-

coding a histogram/set of quantiles recording the full range of consistency values recorded; or (b)

by recording an exceedance probability which tells us that, based on our evidence, there is a 99%

chance that the ‘TopologicalConsistency’ exceeds 75%; or (c) by recording the raw sample val-

ues, representing the variation across the dataset. In those cases where the value of a data quality

metric genuinely is certain, UncertML also offers benefits: encoding a value as a Dirac (delta)

distribution conveys the fact that there is a strong and certain belief in the value.

3.4.2 ISO 19114: Quality evaluation procedures

UncertML fits with this standard in the same way as with ISO/FDIS 19115 (2003) — via the DQ_-

QualityResult (realised as the subclass DQ_QuantitativeResult). ISO/TC 211 19114 (2003)

draws a strong distinction between the different types of data quality measures (e.g., thematic,

positional or temporal). This is a topic that is not addressed in UncertML; all these uncertainties

can be described using the same basic UncertML types, within elements which deal with the

context of the uncertainty in another schema. Thus the semantic description of, for example, how

a ‘vertical measurement error’ differs from a ‘percentage of incorrectly-classified pixels’ would

be the responsibility of elements specifically designed to describe these phenomena, while the

statistical representation of uncertainty would be performed by UncertML. There is a fundamental

difference between the conceptual approach of UncertML and ISO 19114, since while the ISO

standard looks at the different ways to describe the quality of a data set, UncertML looks at how

the results of these measures can be encoded concisely.

3.4.3 ISO 19138: Data quality measures

ISO/TS 19138 (2006) defines an extensive list of data quality measures that may be applied to

datasets, but looks at describing these measures, rather than offering standard-specific means of

actually representing those measures. It can be argued that UncertML should be capable of encod-

ing all of the listed data quality measures; however, it is not clear that this falls within the scope of

UncertML. Such a function might belong in a broader “Data Quality Markup Language” — which

would make extensive use of the types in UncertML.

The concept of random variables were discussed in Section 2.3.1. ISO/TS 19138 (2006) relies

on three assumptions when quantifying random variables; these are:
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1. Uncertainties are homogeneous for all observed values

2. The observed values are not correlated

3. The observed values are normally distributed

UncertML addresses these issues as follows:

1) UncertML provides the flexibility to encode individual and global measures of uncertainty

for a dataset, rather than using a single statistic. This is quite essential for many applications;

for example in a heterogeneous sensor network it is quite likely that different instruments, and

deployments of those instruments, may generate very different observational errors / uncertainties.

It is also true that the result of a processing method (for example an interpolation operation) would

produce different uncertainties at each location within the interpolation domain.

2) This assumption seems contradictory, since the standard later discusses the possibility of

describing 2 or 3 random variables using a covariance matrix. As discussed in Section 2.3.1

and again in Chapter 6, correlated random variables are an important, and frequent occurrence in

geospatial data. Consequently, the assumption made within ISO/TS 19138 (2006) is too restrictive

for the requirements of UncertML.

3) Many of the uncertainties in this document’s examples are assumed to be normally dis-

tributed — however, the flexibility of UncertML means that a user is not limited to using a normal

distribution and may in fact describe a variable using any probability distribution. As users bet-

ter understand and model the uncertainty in their data, this will become increasingly important.

For example the results of many processing applications are likely to result in non-Gaussian dis-

tributions over their outputs, even when the inputs have an approximately Gaussian distribution.

Also for many sensor types, for example most used in remote sensing, Gaussian errors are the

exception, not the norm.

The work in this section has demonstrated that UncertML is flexible and capable not only to

represent uncertainty using probability theory, but also to integrate neatly with the existing ISO

standards. Conforming to existing standards, such as the ones discussed above, allows users to

adhere to a common framework, thus ensuring that interoperability is maximised.

3.5 Conclusions

The lack of any existing XML standards for representing probabilistic uncertainty, discussed in

Chapter 2, motivated the work in this chapter. The solution, UncertML, is an interoperable model
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for representing uncertainty probabilistically. Section 3.2 introduced a conceptual model that un-

derpins the whole of UncertML. Illustrated via a series of UML diagrams, a detailed description

was given into how uncertainty can be represented within UncertML as realisations (Section 3.2.2),

statistics (Section 3.2.3) and distributions (Section 3.2.4). The design methodology for UncertML,

explained in the conceptual model, was a weak-typed design. The relative advantages and disad-

vantages of weak and strong-typed designs were discussed in the previous chapter. Section 2.2.1

concluded that a weak-typed design, with specifically chosen additional hard-typed elements, was

the best approach. Consequently, the conceptual model in Section 3.2 made use of hard-typed

elements where applicable, e.g. Quantile. The design outlined in this chapter attempts to an-

swer the question raised in objective 1 (Section 1.3.1). The flexibility of the design is provided

by the use of a weak-typed schema, allowing any uncertainty concept to be encapsulated. In-

cluding hard-typed elements for commonly used concepts (e.g. quantile) improves the usability

of the design by affording additional statistic-specific attributes. For example, the use of quantile

requires a level attribute. Judging the interoperability of an information model such as UncertML

is challenging. A test of interoperability is perhaps the ability of a given data model to integrate

with a diverse range of existing standards. This was demonstrated in Section 3.3.4 and Section

3.4 where examples, with supporting discussion, were given indicating how UncertML sits with

existing ISO standards. The number elements within UncertML, including realisations, statistics

and distributions and the combination of these elements, through the use of the aggregate types

demonstrated the wide applicability of UncertML. The subsequent chapters in this thesis investi-

gate how this flexibility can be utilised in real-world scenarios and seek to answer the remaining

research questions outlined in Section 1.3.1.

The implementation of UncertML, based on the conceptual model, was achieved using the

XML schema language. Section 3.3 provided an in-depth analysis of the structure of UncertML

using numerous XML examples. Examples were given for all the basic types in UncertML includ-

ing realisations, statistics and distributions (Sections 3.3.1– 3.3.3 respectively). Complex examples

were provided to demonstrate the flexibility of UncertML, including aggregate types (e.g. arrays)

and histograms. The XML examples illustrated how different statistics or distributions can be en-

coded using the same types, due to the weak-typed model. Emphasis was put on the importance

of identifiers to provide the necessary semantic information. UncertML utilises the URL scheme

for providing identifiers, adopting a REST-influenced approach for generating them. The develop-

ment of a supporting ‘dictionary’, containing a governed list of identifiers commenced, however,
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was not fully implemented.

The GUM guide, discussed in the introduction to this chapter, aspires to provide a worldwide

consensus on the evaluation and expression of uncertainty in measurement, not dissimilar to the

International System of Units. With the development of the UncertML standard and an accompa-

nying dictionary a small step has been taken toward achieving this goal.

The work described in this chapter was accepted by the OGC as a discussion paper (OGC 08-

122r2, 2008). The interest sparked by this discussion paper, alongside practical implementations

and demands for usability with large datasets, led to the decision to redesign UncertML. At the

time of publication (September 2010) an initial draft of UncertML version 2 has been prepared,

some details of which are given in the future work section of Chapter 7. The main problem with

the first version of UncertML is the adoption of a weak-typed solution. It is acknowledged in

Chapter 2 that both weak and strong-typed designs have advantages and disadvantages. The major

benefit of adopting a weak-typed solution is that it is flexible enough to allow the encoding of

any statistic and distribution. However, with hindsight it is clear that only a small subset of the

possible statistics and distributions are actually used in practice, and that the benefits of a hard-

typed solution begin to outweigh those of a weak-typed design. While the design described in

this chapter is both flexible and usable, it is thought that the migration to a hard-typed solution in

version 2 will drastically increase the usability with only a slight reduction in flexibility.
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4.1 Foreword

Chapter 3 presented a conceptual model and XML encoding for representing uncertainty using

realisations, statistics and probability distributions. A key design choice was to encapsulate the

representation of uncertainty, while keeping it separate from other concepts including phenomena

and units of measure. Removing the responsibility of encoding such concepts from UncertML

allows it to be integrated into a number of different domain standards. This chapter shows how

UncertML may be integrated into the O&M and SOS standards.

Section 4.2 provides a critical analysis of the SOS standard. A discussion of the SOS require-

ments provides an insight into possible problems faced when implementing SOS-based software.

The compromises made by software implementers to produce a usable product are discussed in

Section 4.3. Focusing on the 52◦ North implementation, Section 4.4 demonstrates how an SOS

may be extended to allow UncertML into the workflow. Section 4.4 concludes with a use case —

providing access to Weather Underground data through a SOS interface.

Finally, Section 4.5 concludes the chapter with an overview of the contributions made and

discussion about future work to be carried out.

4.2 Sensor Observation Service

Originally developed in 2005, the SOS is primarily used as an Application Programming Interface

(API) for “managing deployed sensors and retrieving sensor data, specifically observation data”

(OGC 06-009r6, 2007). The main aim, and challenge, of the SOS specification is to define a

standard method for accessing sensor data that is consistent for all sensor systems. Considering

the differences between remote (e.g., Light Detection And Ranging (LIDAR)), fixed (e.g., weather

station) and mobile (e.g., radioactivity monitoring van) sensors, and their respective communities,

it is clear that a flexible and robust solution is required. Two distinct data types are provided for

by the SOS specification: sensors and observations. By utilising the OGC specifications, O&M

and SensorML, all varieties of sensors and sensor data may be described. However, the generic

conceptual models provided by SensorML and, more specifically, O&M, pose several significant

problems when working at an implementation level, as discussed later in this chapter.

A comparison is made within SOS specification OGC 06-009r6 (2007) to the WFS specifi-

cation (OGC 04-094, 2005). The WFS specification provides a service-based interface to GML

features. These features are generic and may encompass any real-world entity. Features within

111



Chapter 4 UNCERTML AND SOS

a WFS are accessed via the GetFeature request and may be queried using the OGC Filter En-

coding specification (OGC 04-095, 2005). More detailed information on the WFS specification

may be found in its implementation specification OGC 04-094 (2005). The WFS specification

states that due to the generic feature definition, interoperability requires that organisations agree

on domain-specific GML application schemas. Consequently, a WFS client for rich processing,

in a particular domain, must have a priori knowledge of the application schemas used in that

domain. Comparisons are made within this OGC document to the SOS approach, where a com-

mon model for all sensors and their observations is defined. The authors continue to state that

this model is ‘horizontal’, since it applies to all domains, with specific details delegated to the

second layer (feature of interest, observed properties and sensor descriptions). The argument is

that because of this basic, universal observation description, a generic client can process any ob-

servation. However, that statement is misleading, and one may argue that it is in fact incorrect.

While it is true that a generic client may parse an observation in enough detail to understand that

it has featureOfInterest, observedProperty and result properties, it cannot reliably parse

the contents of these properties. The problem stems from the fact that the observation model de-

scribed in the O&M specification (OGC 07-022r1, 2007) is at a higher level of abstraction than

is necessary for implementation. One example of this abstraction is the result property. O&M

states that an observation may contain any data as a result and, due to the broad spectrum of pos-

sible types of observation, one would be inclined to agree. However, when dealing with software

that implements this observation model it is simply not sufficient to suggest that the result may

consist of anything; constraints must be imposed. Another, perhaps more significant, example is

that of geospatial location. As discussed in Section 2.5.4, the O&M model does not provide an

explicit property for encoding the spatial domain of an observation — instead, this responsibility

is delegated to the featureOfInterest property. Conceptually, the idea that an observation is an

event observing some feature of interest which may, or may not, have spatial properties is logical.

However, as before, when implementing software this proves insufficient. Due to the feature-

OfInterest being any GML feature, typically defined by domain experts, the problems faced by

the WFS specification, (i.e., a requirement for a priori domain knowledge) also apply to the SOS

specification. In fact, the topic of abstract specifications and implementation problems within SOS

and O&M is so pertinent that discussions are still ongoing throughout the OGC mailing lists, with

compelling arguments for both sides.
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Observation offerings

The notion of an ‘observation offering’ is introduced in the SOS specification as a collection

of related sensor system observations. Offerings may be constrained temporally, spatially, by

phenomena or by sensor type. The necessity of observation offerings is not made clear within the

SOS specification, which only provides the following scenario.

“... suppose an SOS instance advertises two sensors — one that reports wind speed
and the other that reports air temperature. If these sensors are attached to the same
weather station, they should probably be included in the same offering. That is be-
cause the GetObservation request for weather data for a given area that includes the
weather station to which the sensors are attached and for time periods that the weather
station is reporting will almost always have data for both sensors. If the client asks
for wind speed only, air temperature only, or both, the time and location of the results
should be the same.

On the other hand, if the two sensors are located on weather stations that are far apart
in space or which report during non-overlapping time periods, then they should prob-
ably be factored into two distinct offerings. If they were put into the same offering,
then the combinatorial space of that single offering would be relatively sparse. In
other words, it would frequently be the case that a GetObservation request asking
for temperature might return a result where one for wind speed might not. The client
might have to make quite a few GetObservation requests on a “sparse” offering
before finding data, which is clearly undesirable.”

The uncertain terms such as ‘probably’, ‘almost’, ‘should’ and ‘might’ within those paragraphs

serve only to confuse what is already a flawed argument. Logically, a request for air temperature or

wind speed observations constrained both temporally and spatially should return any observations

that match these criteria, regardless of which offering they belong to. The addition of an observa-

tion offering therefore adds another layer of complexity when constructing a query. Including a

particular observation offering in a spatio-temporal query runs the risk of excluding observations

which belong to another offering, but which otherwise match the search criteria. This problem

is further amplified when the limitation that only one offering may be specified in any given re-

quest, requiring the user to make several requests (a side-effect that observation offerings sought

to remove) is considered.

4.2.1 Core operations profile

A SOS may conform to one of four profiles, each providing a different set of operations. The

operations of the core profile, discussed in this section, form the basis of any SOS instance. The

enhanced and transactional profiles add further operations (discussed later) while the entire profile

implements all operations of the previous three profiles. While this thesis discusses the operations
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Figure 4.1: A sequence diagram showing a typical work flow for a consumer of sensor observation
data. Taken from OGC 06-009r6 (2007).
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of all SOS profiles, the work contained within this chapter focuses on the core set of operations

and subsequently no reference is made to either enhanced or transactional profiles in Sections

4.3– 4.4.

The SOS specification (OGC 06-009r6, 2007) describes two distinct perspectives that may

be taken of a SOS; the perspective of a consumer of sensor observations and the perspective

of a provider of sensor observations. Throughout this chapter only the consumer perspective is

considered, and a typical work flow is given in Figure 4.1. The three operations implemented by

the core profile are GetCapabilities, DescribeSensor and GetObservation. In the figure,

SOS 1 and SOS 2 represent different SOS implementations, the workflow demonstrates how the

same requests can be sent to SOS implementations from different providers.

GetCapabilities

Common to all OGC Web services is the GetCapabilities request. As discussed in Chapter 2

this method is defined by the OWS Common specification (OGC 06-121r3, 2007). The respon-

sibility of this operation is to allow users to access metadata about a particular service instance.

A GetCapabilities request is constructed as described in Subclauses 7.2 and 7.3 of the OWS

Common specification OGC 06-121r3 (2007). The Capabilities document generated by an

SOS instance includes all sections defined within the OWS specification plus an additional two

sections: Contents and FilterCapabilities. The Contents section of a Capabilities re-

sponse includes all relevant information about observation offerings for a given SOS instance. As

mentioned previously, the SOS specification utilises the OGC Filter language as a mechanism for

ad-hoc querying. However, any given SOS instance may not support all facets of the Filter lan-

guage and such limitations must be detailed in the Capabilities document. The FilterCapa-

bilities section does precisely that, informs clients about what query parameters are supported

by the service.

DescribeSensor

The SOS specification was influenced by the WFS specification (OGC 04-094, 2005) with respect

to how a user might interact with the service. This pattern can be seen in Figure 4.1 where a user

first queries the capabilities of a service, through the GetCapabilities request, then proceeds

to retrieve more information, through a describe operation, before finally making a query for

data using a get operation. The DescribeSensor process conforms to this interaction pattern
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by allowing users to retrieve detailed sensor metadata. A list of sensor models associated with a

given SOS instance can be listed in the response to a GetCapabilities request. A user can then

request more information about a particular sensor model via the DescribeSensor operation. A

response to the DescribeSensor process would typically be encoded in either SensorML (OGC

07-000, 2007) or TML (OGC 06-010r6, 2006) and may include lists and definitions of observables

supported by the sensor. A detailed SensorML example is outside the scope of this thesis, however,

more detail can be found in the SensorML specification (OGC 07-000, 2007). While detailed

information about the associated sensor models my be relevant for particular applications, it is not

a prerequisite for obtaining observation data and consequently a DescribeSensor request may be

omitted from a user’s work flow.

GetObservation
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Table 4.1: The parameters of the GetObservation request, taken from OGC 06-009r6 (2007).

The GetObservation request provides the core functionality of a SOS, designed to retrieve ob-

servation data formatted as an O&M document. A GetObservation request contains one or more

constraints on the observations being retrieved from a SOS. Constraints can be specified on the

time, location and observed properties of an observation as well as the encoding and format of the

response. A full list of parameters for a GetObservation request can be seen in Table 4.1.

Specific parameters listed in Table 4.1 highlight the potential issues, mentioned earlier in Sec-

tion 4.2, regarding the ability of generic clients to consume SOSs. For instance, the respon-

seFormat parameter allows observation results to be encoded in a variety of standard formats.

Forgetting, for a moment, the inherent complications of parsing an O&M document, to suggest

that a generic client should be capable of parsing an arbitrary number of possible formats is non-

sensical. The supported formats are described in the Capabilities document so, arguably, a

generic client may select a format which it understands. However, these formats are decided upon

by a particular service provider and therefore may consist only of formats not supported by a

particular client.

Perhaps such difficulties are encountered due to the ambitious requirements set out in the SOS

specification. Specifically, the requirement that a SOS should provide access to observations that

is consistent for all sensor systems (remote, in-situ, fixed and mobile), may prove too broad a scope

to allow an efficient and reliable interface to be implemented. These problems stem from the high-

level conceptual model of observations, outlined in the O&M specification OGC 07-022r1 (2007),

around which the SOS specification is built. A possible solution might be to maintain O&M as

a conceptual model, free of implementation specifics, yet provide a series of profiles that restrict

the model for various implementation use cases. An attempt is already in place to refine the O&M

specification via a series of ‘specialised observations’, including a Measurement, CategoryOb-

servation, CountObservation and GeometryObservation type. However, these restrictions

only apply to the result property of an observation. Developing this idea further would allow

tighter restrictions to be applied to other observation properties, in particular the featureOfIn-

terest. While the featureOfInterest is a domain-specific property, and consequently difficult

to standardise, it is the property that should contain the geometric location of an observation —

important for many use cases. Providing a common set of features of interest would enable re-
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liable spatial querying. However, a more satisfactory solution would be to provide a separate

sampling domain property, leaving the feature of interest intact. Section 4.3 examines how current

implementations of SOS software handle spatial querying.

Additional operations

Other operations outside of the core profile are detailed below.

RegisterSensor The RegisterSensor operation is a mandatory operation for the transactional

profile. A RegisterSensor request includes a SensorML or TML document and an O&M

instance that is a template for the observations that will be published for this sensor (using

the InsertObservation operation). However, the specification is not clear about why such

a template is required.

InsertObservation The InsertObservation operation is an optional operation for the transac-

tional profile. An InsertObservation request must include the sensor ID generated from

a successful RegisterSensor request and an O&M instance that follows the template pro-

vided when the sensor was registered.

GetObservationById The GetObservationById operation is an optional operation for the en-

hanced profile. A GetObservationById request contains the ID of the requested observa-

tion and optional parameters that control the output format of the returned observation. The

optional parameters are the resultModel and responseMode parameters seen in Table 4.1.

GetResult The GetResult operation is an optional operation for the enhanced profile. The mo-

tivation for the GetResult operation is to allow a user to request sensor data from the same

sensor repeatedly. The benefit is that it uses much less bandwidth than a full GetObserva-

tion request. However, in practice the GetResult operation is cumbersome as it relies on

a successful GetObservation request beforehand.

GetFeatureOfInterest The GetFeatureOfInterest operation is an optional operation for the

enhanced profile. A GetFeatureOfInterest request allows the user to fetch a particular

feature of interest, advertised within the capabilities document, encoded as a GML feature.

GetFeatureOfInterestTime The GetFeatureOfInterestTime operation is an optional opera-

tion for the enhanced profile. Given a particular feature ID, this request returns one or more
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GML time primitives that define the time periods for which observations exist for this fea-

ture of interest. However, the granularity (i.e., every year, month, day etc.) of observations

is not provided.

DescribeFeatureType The DescribeFeatureType operation is an optional operation for the en-

hanced profile. A DescribeFeatureType request takes a particular feature ID (advertised

in the capabilities document) and returns the XML schema.

DescribeObservationType The DescribeObservationType operation is an optional operation

for the enhanced profile which returns the XML schema for a specified phenomenon.

DescribeResultModel The DescribeResultModel is an optional operation for the enhanced

profile. This operation returns the XML schema for the result element of an observation.

The transactional profile offers two useful operations for the data provider perspective — Reg-

isterSensor and InsertObservation. However, due to the high level abstraction in the O&M

schema, similar difficulties, in terms of domain specificity, are faced within the InsertObserva-

tion operation to those posed by the GetObservation operation.

The enhanced profile adds a collection of varied operations that allow specific pieces of infor-

mation to be retrieved from the service. There are certain similarities between the SOS GetFea-

tureOfInterest operation and the WFS GetFeature operation. With such a robust interface for

querying features already defined in the WFS specification, it would seem logical to delegate the

retrieval of features from within a SOS to a separate WFS instance. The same argument could be

applied to the DescribeFeatureType operation.

4.2.2 Uncertainty within an SOS

All sensor observation data is uncertain, be it from sensor measurement error, observation operator

error or processing errors. The degree of uncertainty varies per observation: some are essentially

certain, whereas others may be significantly erroneous. Decision making based on uncertain data

requires these uncertainties to be quantified. The current SOS specification (OGC 06-009r6, 2007)

does not mention uncertainty, or data quality, explicitly. However, as it is based upon the O&M

specification, one can assume that the methods discussed in Section 2.5.4 apply. The omission

of quality information from the specification suggests that data filtering based on uncertainty is

currently not supported, a possible side-effect of the absence of a defined standard for quantifying

uncertainty.
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Since the SOS aims to provide free access to sensor observed data it is a logical extension to

integrate UncertML within the service. Doing so would allow users to assess the quality of the ob-

servation data before using it in their work flows. Extending the idea of uncertainty representation

further into the OGC Filter language could allow observation data to be filtered based upon spe-

cific quality assurance policies. As the SWE specifications mature, an increase in available data

will emerge; with no means of governing data suppliers, quantifying the quality of data becomes

essential.

4.3 Existing SOS implementations

At the time of writing, few implementations of SOSs exist. As the SOS standard is still in its

infancy, the lack of available software is not unexpected. However, it may be partly attributed to

the possible implementation issues discussed in the previous section. Currently, a lack of software

is not critical; however, the wide-spread adoption of standards can often go hand-in-hand with

functional software implementations.

This section investigates existing solutions to implementing the SOS interface and the methods

they use to bypass the issues raised in the previous section. A particular focus is put on the 52◦

North implementation.

4.3.1 52◦ North SOS

The 52◦ North SOS is a free piece of software written in Java that conforms to the OGC SOS

specification version 1.0. Data storage within the 52◦ North SOS is delegated to the PostgreSQL

database management system (DBMS)1, with PostGIS extensions 2, while XMLBeans3 is utilised

to parse and encode the XML data. The two primary goals of the 52◦ North SOS are to:

1. Allow data providers to easily install and publish domain-specific sensor observation data.

2. Allow data consumers to query and retrieve sensor observation data, according to the SOS

specification.

These two goals should be applicable for all domains, a constraint that is not easily fulfilled.

The following sections discuss the operations, filtering capabilities and underlying data structure

employed by 52◦ North and highlight any assumptions or compromises that have been made.
1http://www.postgresql.org/
2http://postgis.refractions.net/
3http://xmlbeans.apache.org/
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Supported operations

As discussed in Section 4.2 there are a number of different SOS profiles outlined in the specifi-

cation (OGC 06-009r6, 2007). Each defined profile has a set of operations that should be imple-

mented to conform to that particular profile. Within the 52◦ North SOS, the following operations

have been implemented.

• Core profile

– GetCapabilities

– DescribeSensor

– GetObservation

• Transactional profile

– RegisterSensor

– InsertObservation

• Enhanced profile

– GetResult

– GetObservationById

– GetFeatureOfInterest

– GetFeatureOfInterestTime

Comparing this list to Table 4.1, it is clear that the current version of the 52◦ North SOS

implements a transactional profile. With only a few enhanced operations missing, a relatively

small amount of work is required to progress the 52◦ North SOS to conform to the enhanced

profile.

Filter capabilities

The OGC Filter specification covers a broad spectrum of possible filtering options. It is unrea-

sonable, therefore, to expect any given piece of software to support all filter capabilities; the 52◦

North SOS is no different. Below is a list of the currently supported filter capabilities of the 52◦

North SOS. It is split into three distinct sections: spatial, temporal and result. These relate to the

properties of an observation (according to the O&M conceptual model). Spatial filters are applied

to the feature of interest, temporal filters are applied to the samplingTime property and result

filters are applied to the result property.

• Spatial filters

– Contains

– Intersects
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– Overlaps

– BBox

• Temporal filters

– T_Equals

– T_After

– T_Before

– T_During

• Result filters

– PropertyIsEqualTo

– PropertyIsNotEqualTo

– PropertyIsLessThan

– PropertyIsGreaterThan

– PropertyIsLessThanOrEqualTo

– PropertyIsGreaterThanOrEqualTo

– PropertyIsLike

– PropertyIsNull

– PropertyIsBetween

52◦ North have provided substantial filtering capabilities within their SOS implementation,

but certain compromises had to be made. For instance, the O&M specification states that spatial

properties of an observation should reside in the featureOfInterest element, which may con-

tain any GML feature. Also, the GML specification states that a feature may have several spatial

properties. The combination of these two requirements ultimately converts what should be the triv-

ial task of filtering observations spatially, into a complex and unreliable operation. For example,

if the spatial filter Contains was applied in a SOS GetObservation request on an observation

whose feature of interest contained multiple spatial properties, it is uncertain which of the spatial

properties should be filtered, if any, leading to possible non-deterministic behaviour. In order to

alleviate such issues, the 52◦ North project have limited the feature types which may reside in the

feature of interest. Specifically, in the current implementation, an observation may either have a

SamplingPoint or a SamplingSurface as a feature of interest. These feature types are defined in

Sampling Features specification OGC 07-002r3 (2007) and each may act as a proximate feature of

interest, referencing the ultimate feature of interest through the sampledFeature property. This

solution provides a simple method of filtering observations spatially, as a SamplingPoint may

only contain a GML Point geometry whereas a SamplingSurface may only contain a surface

geometry. However, an obvious compromise has been made by limiting the types of geometry

which an observation within the 52◦ North SOS may contain. Similar problems exist with the
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filtering of the result property. The O&M specification states that the result of an observation is

the XML anyType. This requirement is even more problematic than those referring to the feature

of interest, as it does not restrict the result to any specific schema. 52◦ North utilise the SWE

Common DataRecord for all observation results within the SOS, providing a method of filtering

the result property. Both the compromises discussed here underline the difficulties faced by a

generic client of a SOS.

Perhaps a more interesting omission is present within the temporal filtering. A typical use case

for an observation data consumer may be to gather the latest observations from each sensor within

a particular offering. With the available temporal filters this is currently not possible, a filter like

T_Last or T_Latest is required, and this cannot be built up from available component operators.

A possible workaround might be to request all observations after a specific time. However, this is

not satisfactory, since one sensor may record observations every minute whereas another may only

record every hour. Filtering after a specific time in this scenario would either lack observations

from the second sensor or contain duplicate observations from the first sensor. This duplication of

observations at the same location can raise exceptions in certain processes, specifically interpola-

tion methods, as discussed in Chapter 5. It is not clear whether this omission is the responsibility of

the filter encoding specification, the SOS specification, or even the client applications. However,

as requesting the latest observations is a fairly common requirement, one could argue it should be

handled by the SOS. 52◦ North have developed a ‘hack’ that allows a request to retrieve the latest

observations, but unfortunately it is not reliable and is consequently not documented.

Data model

The previous sections discussed the shortcomings of the SOS specification and the compromises

made by 52◦ North in order to produce a usable system. This section dissects the underlying

data model used within the 52◦ North SOS implementation and how the compromises made are

reflected within this model. Discussion then evolves onto how uncertainty is currently handled

underlining the strengths and weaknesses of the current approach.

Figure 4.2 displays a subset of the key tables within the 52◦ North data model. In the diagram,

a database table is represented by a rectangle and the columns each represent a piece of data. The

data types are listed on the right of the column names. A key symbol represents a primary key and

an arrow symbol is a foreign key. An ‘N’ symbol signifies that the column is optional, or nullable.

Relationships are represented via broken lines; a crow’s foot represents a ‘many’ relationship
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observation_id integer(10)
time_stamp timestamp
procedure_id varchar(255)
phenomenon_id varchar(255)
feature_of_interest_id varchar(255)
offering_id varchar(255)
text_value clob
numeric_value float(10)

observation

procedure_id varchar(255)
description_url varchar(255)
description_type varchar(255)
sml_file clob
actual_position clob
active char(1)
mobile char(1)

procedure
phenomenon_id varchar(255)
phenomenon_description varchar(255)
unit varchar(255)
valuetype varchar(255)
composite_phenomenon_id varchar(255)
om_application_schema_link clob

phenomenon

quality_id integer(10)
quality_name varchar(255)
quality_unit varchar(255)
quality_value varchar(255)
quality_type varchar(255)
observation_id integer(10)

quality

offering_id varchar(255)
offering_name varchar(255)
min_time timestamp
max_time timestamp

offering

feature_of_interest
feature_of_interest_id varchar(255)
feature_of_interest_name varchar(255)
feature_of_interest_description varchar(255)
geom clob
feature_type varchar(255)

Figure 4.2: ERD of the 52 North SOS.
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and a single horizontal bar, perpendicular to the broken line, represents a ‘one’ relationship. For

example, the relationship between the observation and phenomenon table in Figure 4.2 is a ‘many-

to-one’ relationship.

The central table is the observation table which stores a time stamp, value (either textual or

numeric) and a series of foreign keys linking to other tables. The design of this table closely imi-

tates the conceptual model outlined in the O&M specification. One of the compromises mentioned

before is strikingly obvious upon examining the observation table; the result. Within the 52◦ North

SOS a result may be stored as either a textual or a numeric value. This is a vast limitation on the

O&M model which states that an observation result may be anything; however, it is necessary in

order to provide a feasible implementation. Although, due to the text_value column being of

data type TEXT one could argue that any XML could conceivably be stored within the database.

Whether an observation can have both textual and numeric results is not made clear within the 52◦

North documentation.

The observation table contains four foreign key relationships. Firstly, there is an offer-

ing_id which links to an offering table. Observation offerings are a way of logically grouping

a collection of sensor observations and are discussed in Section 4.2. An offering in the data model

consists of a name and bounding times for the observations contained within the offering. A sec-

ond relationship exists between the observation and phenomenon tables. Referring to the O&M

specification, the phenomenon table can be thought of as the observedProperty of an Obser-

vation. The phenomenon_id should be the URN of the phenomenon as specified by the OGC.

A typical value might be urn:x-ogc:def:phenomenon:OGC:Temperature. The value_type

column specifies what value type an observation of this phenomenon will contain. The possible

value types are integerType, doubleType, floatType and textType. The uom column contains

the units of measurement for a particular phenomenon, encoded as a URN. The third relation-

ship exists between the observation and procedure tables. A procedure, as specified by the

O&M specification, is the sensor which produced the observation. While no restriction is made

within the O&M specification, the value of a procedure is typically a SensorML document. 52◦

North specify that the only mandatory column within the procedure table is the procedure_id,

which should contain a URN pertaining to the procedure as specified by OGC. However, the de-

scription_url column allows a reference to be made to a SensorML document located on the

SOS server. The fourth, and most interesting, relationship is between the observation and the

feature_of_interest tables. Within the feature_of_interest table several design choices

126



Chapter 4 UNCERTML AND SOS

have been made. Firstly, a PostGIS geometry column (geom) has been included, which contains a

point. This inclusion is to facilitate the application of spatial queries to the data. Secondly, there

is a feature_type column which is used to store the type of the feature of interest. The docu-

mentation on what should go in this column is missing, however, a quick look at the underlying

code reveals that it should either be om:SamplingPoint or om:SamplingSurface otherwise the

feature of interest, for that observation, is ignored. Furthermore, it is not clear how a sampling

surface is handled using the point geometry specified in PostGIS. While this feature of interest

model is greatly simplified from the O&M ‘any feature’ requirement it enables spatial querying,

which is a fundamental requirement of such a service. It should also be stated that a table exists

to encode a ‘domain feature’ which links to a particular feature of interest; this allows further,

domain-specific, information to be included within the model. It is envisaged that the domain

feature would include a URL referencing a WFS instance to provide the feature information.

Examining the foreign key relationships within the diagram reveals a poor design choice made

throughout the 52◦ North data model. Each of the four foreign keys discussed is of Structured

Query Language (SQL) type VARCHAR. There are numerous problems with using VARCHAR data

types as primary and foreign keys. One issue is memory use. Consider that for every observa-

tion in the table it must store a character string for the reference to the procedure. Now, con-

sider that this string must be an OGC specified URN which typically takes the following form:

urn:ogc:object:feature:Sensor:IFGI:ifgi-sensor-1. This string contains 48 characters,

each consuming a single byte. If a more conventional database design was implemented, where

the primary and foreign keys were integer values (each consuming 32 bits, or 4 bytes) a reduction

of 44 bytes, per record, is achieved. In a database containing a modest 5,000 observations, this

reduction translates to a total of 220,000 bytes. Taking the other three relationships into account,

assuming similar sized URNs, brings the total reduction to 880,000 bytes. There are also numer-

ous many-to-many relationships between these tables, each of which must contain two VARCHAR

primary keys. While memory use is not as critical as perhaps it once was, there are further disad-

vantages of using VARCHAR primary keys that compound the memory issue. Indexing on integer

values is relatively quick compared to VARCHAR, which results in a performance hit when perform-

ing an SQL JOIN between tables. Also, if for some unpredicted reason the OGC change the URN

for a sensor then not only does the entry in the procedure table have to change, every observa-

tion that references that sensor must also be updated. For a relatively simple change, possible

performance improvements could be seen.
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<om:Measurement gml:id="o_23">
<om:samplingTime>

<gml:TimeInstant xsi:type="gml:TimeInstantType">
<gml:timePosition>2008-04-01 17:44:00</gml:timePosition>

</gml:TimeInstant>
</om:samplingTime>
<om:procedure xlink:href="urn:ogc:object:feature:Sensor:IFGI:ifgi-sensor-1"/>
<om:resultQuality>

<swe:Quantity>
<gml:name>completeness</gml:name>
<swe:uom code="percent"/>
<swe:value>10.0</swe:value>

</swe:Quantity>
<swe:Category>

<gml:name>accuracy</gml:name>
<swe:codeSpace xlink:type="mm"/>
<swe:value>1</swe:value>

</swe:Category>
</om:resultQuality>
<om:observedProperty xlink:href="urn:ogc:def:phenomenon:OGC:1.0.30:waterlevel"/>
<om:featureOfInterest/>
<om:result uom="cm">50.0</om:result>

</om:Measurement>

Listing 4.1: An O&M Measurement retrieved from a 52◦ North SOS implementation. The SWE
Common quality model is used for quantifying the uncertainty.

Despite uncertainty not being explicitly mentioned in the SOS specification, 52◦ North have

identified the importance of quantifying uncertainty on sensor observed data by including a qual-

ity table. However, the facility to output uncertainty is switched off by default and thus mandates

a change in settings to enable it. The structure of the quality table (Figure 4.2) includes a qual-

ity_name, quality_unit, quality_value, quality_type as well as a reference to the obser-

vation table via an observation_id column. The quality_unit and quality_value columns

are self-explanatory, however, the purpose of the quality_type is not so clear. Examining the

sample data supplied with the 52◦ North SOS indicates that the quality_type column should be

populated with quantity, count or category. While it is not explicitly stated in the documenta-

tion, it is evident that 52◦ North are using the SWE Common model for quantifying uncertainty, as

discussed in Chapter 2. The problems discussed in Chapter 2 with the SWE Common uncertainty

model are evident in the sample data supplied by 52◦ North. Listing 4.1 is an O&M sample out-

put from the 52◦ North SOS with example data. In this example the observation resultQuality

property contains two SWE common quantities. The meaning of these quantities is not immedi-

ately clear, however, with the terms ‘completeness’ and ‘accuracy’ not providing the necessary

semantics for numerical processing. More explicitly quantitative names could be assigned within
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the database, for example ‘range’ or ‘average’. However, many such terms are ambiguous and

without a standard method for quantifying uncertainties, such as described in Chapter 3, reliable

processing of uncertain data cannot be achieved. Extending the code base of the 52◦ North SOS

implementation to facilitate the use of UncertML for quantifying the observation uncertainty will

not only provide a clearer understanding of the quality of the supplied data, but also open up the

possibility of filtering data based on stringent quality demands.

4.3.2 Other SOS implementations

While the 52◦ North SOS is arguably the most widely used SOS software, there are a couple of

alternatives.

The deegree project 4 is an extensive collection of software tools for implementing OGC stan-

dards. The latest stable release of deegree boasts robust implementations of the WMS, WFS, WCS

and Catalogue Service Web-Profile. The package also includes support for GML 3.1, including

complex features. Unfortunately, at the time of writing, support for the OGC SOS is only included

in the third iteration of the deegree project, deegree3, which is in the development stages.

An alternative to the deegree project is MapServer 5. Originally developed as an OGC WMS,

MapServer has been extended to include a number of other standards including WFS, WCS and

SOS. Unfortunately, the roots of MapServer as a WMS are evident in the implementation of

the SOS specification. For example, each SOS server needs a unique MapFile, a MapServer

specific file format. A MapFile refers to concepts such as layers, a term borrowed from the WMS

specification that is not directly relevant to a SOS instance. References are also made to image

formats and paths, which may cause confusion within a SOS infrastructure, where the primary

output format is XML.

While the choice of SOS implementations is varied, for the purpose of this thesis the 52◦ North

implementation was chosen for a number of reasons. Firstly, the current latest release is version 3

of the software, providing a robust framework. More importantly, the lead developers of the 52◦

North SOS are also active members of the SOS Standards Working Group, allowing the 52◦ North

implementation to develop in tandem with the evolving SOS specification.

4http://deegree.org
5http://mapserver.org
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4.4 Integrating UncertML with 52◦ North

Section 4.2 discussed how the SOS specification functions as an API for accessing sensor ob-

served data formatted as an O&M document. Due to the flexible model outlined defined by O&M,

any XML type may be used within the resultQuality property (Chapter 2). This flexibility al-

lows UncertML to be integrated within O&M, and thus within a SOS, without the requirement

to alter the underlying schema. Leaving the O&M core schema unaltered maintains backwards

compatibility with existing SOS clients.

4.4.1 Extended data model

uncertainty_id integer(10)
observation_id integer(10)
definition varchar(255)
value float(10)
uncertml_type varchar(255)

uncertainty

uncertainty_attribute_id integer(10)
uncertainty_id integer(10)
attribute_name varchar(255)
value float(10)

uncertainty_attributes
uncertainty_parameter_id integer(10)
uncertainty_id integer(10)
definition varchar(255)
value float(10)
parameter_name varchar(255)

uncertainty_parameters

observation_id integer(10)
time_stamp timestamp
procedure_id varchar(255)
phenomenon_id varchar(255)
feature_of_interest_id varchar(255)
offering_id varchar(255)
text_value clob
numeric_value float(10)

observation

Figure 4.3: Uncertainty within SOS

As discussed in Chapter 3, UncertML has been developed with a weak-typed design phi-

losophy. The extensibility provided by a weak-typed design has to be balanced against some

consequent problems faced in implementing software. The first challenge faced when integrating

UncertML with 52◦ North was creating a flexible data model that would allow the large array

of different types present in UncertML to be stored efficiently. Due to the structural similar-

ity between many UncertML types a simple data model was formulated. Figure 4.3 displays

the complete UncertML model linking to the observation table, which can be seen in more

detail in Figure 4.2. The relationship between the observation and uncertainty tables is a

many-to-one relationship, i.e. one observation entry can have many uncertainty entries. Each

uncertainty entry may only have one observation referenced by the observation_id field. In
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response to the issue raised in the previous sections about VARCHAR keys, all primary and foreign

keys in the UncertML extension are integer values. Individually, the uncertainty table is able

to store ‘simple’ statistics. A simple statistic is defined as a Statistic, within UncertML, that

does not contain any additional attributes or parameters, for example a mean or variance. The

definition column stores the URL relating to the UncertML definition of that statistic (e.g.,

http://dictionary.uncertml.org/statistics/mean). The value column stores the value of a particular

statistic as a floating point number, while the uncertml_type column informs the UncertML API

about the UncertML type which should be used for encoding. For the mean example a value of

Statistic should be stored in the uncertml_type column. It should be noted that a better design

for the UncertML data model would be to delegate the definition and uncertml_type VARCHAR

values to subsidiary tables and reference them through surrogate (integer) keys. However, due to

a design choice within the 52◦ North framework, which is discussed later, a decision was made to

implement the data model in a similar fashion to the existing 52◦ North model.

Particular statistics require more information than is available within the base uncertainty ta-

ble. For instance, a Quantile within UncertML contains a level attribute. Statistics which

require attributes, such as a quantile, need to populate the uncertainty_attributes table. An

uncertainty attribute consists of a foreign key linking to the uncertainty table, an attribute name

and a value. The attribute name translates to the ‘key’ section of the key=value pair. The relation-

ship between the uncertainty and uncertainty_attributes table is a many-to-one relationship,

allowing any entry in the uncertainty table to contain multiple attributes, if such a scenario should

occur. Care should be taken when storing an UncertML Quantile in the data model so that the

value of the uncertml_type column is Quantile, otherwise the UncertML API will encode it as

a base Statistic.

Storage of distributions, or statistics that require additional parameters, requires use of the

uncertainty_parameters table. As with the uncertainty_attributes table, there exists a

many-to-one relationship between the uncertainty and uncertainty_parameters table, allow-

ing a distribution or statistic to contain multiple parameters. The structure of the uncertainty_-

parameters table is also similar to the uncertainty_attributes table, but a simple name is

no longer adequate to characterise the parameter so a definition URL must be supplied. When

encoding a Distribution in UncertML (Listing 3.12) the base Distribution element has no

value property. To reflect this in the data model the value column of the uncertainty table

is optional. When storing distributions in the database the value column of the uncertainty
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table should be left NULL, instead delegating the values to the individual parameters. For example,

a Gaussian distribution has no value per se; however, its parameters, location and scale, do. In

certain instances one may wish to store a statistic that has a value as well as parameters. In this

instance the value column of the uncertainty table may be populated.

While the data model shown in Figure 4.3 is simple in structure, it is flexible enough to allow

a wide range of differing statistics and distributions to be stored. This flexible solution, com-

bined with design choices made by 52◦ North, raises several implementation challenges, which

are discussed in the following section.

4.4.2 Implementation challenges

In some popular computer design architectures a tiered hierarchy is adopted to provide a separation

of concerns. Part of this hierarchy is a layer that separates database access from logic code. In

an n-tier architecture this layer is often called the Data Access Layer (DAL) and in a Model

View Controller (MVC) architecture the Model layer may sometimes be considered as a data

and data access layer. The purpose of this data layer is to provide a simplified interface to the

tables contained within an underlying database. The (often complex) SQL commands used to

manipulate the database are hidden, allowing logical code to interface with the database without

having to contain any SQL. This allows efficient updating of code, should the database structure

change.

While the 52◦ North SOS advocates the use of a 3-tier architecture, the design and imple-

mentation of the data layer is overly-complicated and somewhat cumbersome. In a typical DAL

a class should exist for each of the database tables and relationships are accessed via method

calls. For example, in a SOS, one would expect to find an Observation class, which con-

tains references to FeatureOfInterest and Phenomenon. In such a case a call to observa-

tion.getFeatureOfInterest(); would return the feature of interest for the specified observa-

tion. Relationships are also expected to work in reverse, so that in the previous example, fea-

tureOfInterest.getObservations() would return all observations that refer to that feature of

interest. A modular design of this sort allows complex queries to be run on the database with

minimal code. Unfortunately, the design of the 52◦ North SOS does not provide such facilities.

There are a number of data objects, but each one refers to a single operation within the SOS.

Even in instances where code reuse would be applicable, it is not used. For example, there is

a GetObservationDAO class which provides access for the GetObservation operation. There
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is also a GetFeatureOfInterestDAO class, which facilitates the GetFeatureOfInterest opera-

tion. However, within the GetObservationDAO class, there is code to load in the feature of interest

which could, and should, have been delegated to the GetFeatureOfInterestDAO class. Due to

this design choice, rather than executing a series of small, manageable SQL statements to retrieve

the various constituent parts of an observation, a large, unwieldy, SQL statement is constructed

that retrieves all information at once. This results in a series of SQL JOIN conditions which are

difficult to maintain and slow to execute.

// HashMap mapping observation IDs to processed observations
HashMap<int, Observation> observations;

// Loop through all records returned from SQL statement
while(results.next()) {

// Get the id of the current observation
int observation_id = results.getString("observation_id");

if(observations.containsKey(observation_id)) {
// This observation already exists in the list,
// must be a duplicate row

// Calculate whether the duplication is due
// to multiple uncertainties or multiple
// uncertainty parameters

} else {
// New observation

// Insert this observation into the list
observations.insert(new Observation(observation_id));

}
}

Listing 4.2: A fragment of code taken from the 52◦ North SOS implementation. The if statement
is required due to a lack of well structured code.

A further consequence of this non-modular design is that, for observations containing multi-

ple uncertainty types, or uncertainty types with multiple parameters, duplicate rows of data are

returned from the SQL statement. In practice this causes two problems. Firstly, the duplication of

VARCHAR data increases the memory throughput unnecessarily. Secondly, it poses a logical chal-

lenge in ensuring that the data is processed correctly. Listing 4.2 demonstrates a piece of code that

is required to successfully process the result of the GetObservation SQL request. The bulk of the

processing occurs inside a while loop, which loops until all rows returned from the SQL statement

are processed. In a typical piece of software, this would be one row per observation. However,

due to the structure of the SQL statement within 52◦ North, there are sometimes multiple rows for
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a single observation. In such instances an if statement is required to determine whether the current

row is a new observation, or a duplicated row. In situations when a duplicate row is found a series

of checks (not shown in Listing 4.2) must be carried out to determine what new information has

to be processed. For example, if an observation’s uncertainty is quantified by a Gaussian distri-

bution, the first row would contain the mean parameter while the second row would contain the

variance. Any extra row for a given observation requires a check to determine what the previous

uncertainty type was and whether this row represents a new parameter of the previous type, or a

new uncertainty type altogether. This is a source of confusion that could have easily been avoided,

had a better DAL been implemented.

Despite these obstacles, a working prototype of an UncertML-enhanced 52◦ North SOS was

developed, capable of quantifying sensor-observed data uncertainties via the approaches outlined

in this chapter, using UncertML. Providing this level of detailed uncertainty in sensor data allows

more reliable processing to be achieved, as demonstrated by the use case below.

4.4.3 Use case — Weather Underground

<current_observation>
<location>

<full>Monkspath, Solihull, West Midlands</full>
<neighborhood>Monkspath</neighborhood>
<city>Solihull</city>
<state>West Midlands</state>
<zip></zip>
<latitude>52.390202</latitude>
<longitude>-1.794913</longitude>
<elevation>440 ft</elevation>

</location>
<station_id>I90579489</station_id>
<station_type>OS WMR928NX</station_type>
<observation_time>Sat, 19 December 2009 13:41:10 GMT</observation_time>
<temp_c>0.6</temp_c>

</current_observation>

Listing 4.3: An observation from a sensor within the Weather Underground. The encoding does
not conform to a recognised XML Schema standard. This example only displays a small part of
the information provided by Weather Underground.

Weather Underground is an online community of weather enthusiasts providing up-to-the-

minute information about current weather conditions around the globe. Under the surface lies a

vast repository of freely available weather data recorded by thousands of individual weather sta-

tions. For this experiment a subset of data gathered from the Weather Underground repositories
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was used. Due to the large number of observations, obtained from various types of sensors, the

data contained within Weather Underground is perfectly suited for a SOS interface. Unfortunately,

the current interface to the data uses a custom XML format that does not adhere to a recognised

standard (Listing 4.3). Utilising a ‘screen scraping’ algorithm, a subset of Weather Underground

data was converted into the 52◦ North SOS data model. Listing 4.4 shows how a Weather Under-

ground observation of temperature can be encoded using O&M, and returned from a SOS instance.

Conformance to a recognised standard, such as O&M, allows third-party users to quickly integrate

Weather Underground data into their workflow.

<om:Measurement gml:id="I90579489_12412">
<om:samplingTime>

<gml:TimeInstant xsi:type="gml:TimeInstantType">
<gml:timePosition>2009-12-19T13:41:10</gml:timePosition>

</gml:TimeInstant>
</om:samplingTime>
<om:procedure xlink:href="urn:ogc:object:feature:Sensor:WU:I90579489"/>
<om:observedProperty xlink:href="urn:ogc:def:phenomenon:OGC:temperature"/>
<om:featureOfInterest>

<sa:SamplingPoint gml:id="monkspath">
<sa:position>

<gml:Point>
<gml:pos>-1.794913 52.390202</gml:pos>

</gml:Point>
</sa:position>

</sa:SamplingPoint>
</om:featureOfInterest>
<om:result uom="degC">0.6</om:result>

</om:Measurement>

Listing 4.4: The observation from Listing 4.3 encoded using the O&M standard.

The data obtained from Weather Underground is submitted by a range of users, who will apply

differing levels of quality control to their data, and site their sensors in a wide variety of locations.

Combined with the varying quality of sensing equipment, these influences lead to results which

may contain drastically different levels of uncertainty. The data supplied by Weather Underground

does not record the information pertaining to such uncertainties — however, the uncertainty may

be estimated a posteriori with reference to other data sources. In Williams et al. (2011), we used

a novel technique to correct the bias of Weather Underground data, using the INTAMAP inter-

polation service, and thus to provide an estimate of uncertainty. With the estimated uncertainties

inserted into the UncertML-enhanced SOS, a request can be made which will retrieve the fully

quantified Weather Underground data. Listing 4.5 shows an example output from the SOS, where

the uncertainty is quantified as a Gaussian distribution with zero bias (due to bias correction) and

135



Chapter 4 UNCERTML AND SOS

a variance.

<om:Measurement gml:id="I90579489_12412">
<om:samplingTime>

<gml:TimeInstant xsi:type="gml:TimeInstantType">
<gml:timePosition>2009-12-19T13:41:10</gml:timePosition>

</gml:TimeInstant>
</om:samplingTime>
<om:procedure xlink:href="urn:ogc:object:feature:Sensor:WU:I90579489"/>
<om:resultQuality>

<un:Distribution definition="http://dictionary.uncertml.
org/distributions/gaussian">

<un:parameters>
<un:Parameter definition="http://dictionary.uncertml.

org/distributions/gaussian/parameters/mean">
<un:value>0.0</un:value>

</un:Parameter>
<un:Parameter definition="http://dictionary.uncertml.

org/distributions/gaussian/parameters/variance">
<un:value>0.07595</un:value>

</un:Parameter>
</un:parameters>

</un:Distribution>
</om:resultQuality>
<om:observedProperty xlink:href="urn:ogc:def:phenomenon:OGC:temperature"/>
<om:featureOfInterest>

<sa:SamplingPoint gml:id="monkspath">
<sa:position>

<gml:Point>
<gml:pos>-1.794913 52.390202</gml:pos>

</gml:Point>
</sa:position>

</sa:SamplingPoint>
</om:featureOfInterest>
<om:result uom="degC">0.6</om:result>

</om:Measurement>

Listing 4.5: Estimated uncertainty in Weather Underground data can be encoded using UncertML.
This example was retrieved from an enhanced version of the 52◦ North SOS, capable of returning
UncerML types.

As sensors become cheaper and people are increasingly connected to the Web it seems likely

that user-contributed data will proliferate, and that the collection and use of this data could become

a significant part of our environmental monitoring networks. Quality control and uncertainty as-

sessment will therefore be crucial to the effective use of user-contributed data. With its current

closed interface, access to and subsequent processing of Weather Underground data is difficult.

Providing an open, XML-based, API, like the SOS, opens up this wealth of information for con-

sumption by standards-compliant software.
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4.5 Conclusions

This chapter extended the ideas discussed in Chapter 3 by integrating the conceptual model of

UncertML into existing OGC standards. A thorough review of the SOS revealed that the abstract

conceptual model of O&M, on which it is built, caused potential problems with implementation.

The broad scope of the SOS, seeking to provide a common API for any sensor observed data, is

unrealistic and forces software providers to make compromises. Limiting the scope of the SOS

and providing a series of O&M profiles was suggested to alleviate the majority of implementation

problems.

An investigation into the current SOS software, focused mainly on the 52◦ North implementa-

tion, examined the methods used to handle the problems caused by the SOS specification. Though

it makes several intelligent compromises, the 52◦ North software was found to be flawed by

choices made in the underlying data model and data access layers, discussed in Section 4.3. De-

spite these flaws, Section 4.4 showed that only a small extension to the data model was needed

in order to provide the 52◦ North SOS with UncertML capabilities. Use of an UncertML API

provided the ability to convert seamlessly between native Java objects and the XML form of

UncertML. A use case involving Weather Underground data motivated the need for UncertML-

enhanced Sensor Observation Services to allow more sophisticated processing and use of data.

With the work in this chapter providing a solid framework, future extensions should become

trivial. For instance, extending the OGC Filter specification will allow SOS data to be filtered at

source based on data quality requirements, rather than requiring post-hoc data quality checks on

the client machine. For instance, data could be filtered based on a probability of exceedance, i.e.

only the most critical observations are returned. Alternatively, one may wish to omit data that does

not contain any uncertainty quantification.

The work in this chapter addresses research objectives 1 and 2 outlined in Section 1.3.1. Pri-

marily it demonstrates how, by integrating with O&M, UncertML can be used to quantify prob-

abilistic uncertainty in the context of observational errors. Implicitly, the integration with O&M

and the SOS strengthens the evidence that the UncertML data model is flexible, usable and inter-

operable.
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5.1 Foreword

Chapter 3 outlined a conceptual model and XML schema for representing uncertainty. This was

followed in Chapter 4 with a look at how UncertML could be integrated into existing OGC stan-

dards, specifically the SOS. INTAMAP is a European Union funded project providing an interop-

erable service for automatic interpolation. Due to the uncertainties of both inputs and outputs of

the interpolation process, a language capable of quantifying these in a web-based framework was

required. INTAMAP, can be considered to be the motivation for the development of UncertML.

This chapter discusses the INTAMAP project, introducing the OGC WPS specification on which

INTAMAP is based, in Section 5.2.

Section 5.3 then provides a history and overview of the INTAMAP project. The early prototype

of INTAMAP, based on a WFS framework, is discussed along with reasons for the change to a

WPS. One of the key advantages of the WPS approach over the WFS was the ability to provide

several input parameters to customise the interpolation request. A list of available input parameters

is given at the end of Section 5.3, explaining how a client can tailor their request.

Designing software that is interoperable is not trivial. Implementing a standards-based service

does not guarantee interoperability. Section 5.4 provides a detailed discussion about the challenges

faced while implementing INTAMAP, why they occurred and possible solutions to the problems.

Section 5.4 also provides a critical analysis of UncertML and examines how the hard-typed de-

sign of UncertML version 2 will be a beneficial change prior to the adoption of UncertML as a

recognised standard.

Finally, Section 5.5 concludes this chapter with a recap of the contributions made.

The INTAMAP project combines the work of several researchers across Europe. The develop-

ment of the novel interpolation methods used within INTAMAP was undertaken by other partners

and consequently is not part of this thesis. However, the investigation into OGC standards, and the

development of the WPS interface including the integration of UncertML does form part of this

thesis.

The work in this chapter is a collaboration between the partners of the INTAMAP consortium.

The contribution of this thesis includes:

• The development of a Web service interface for interpolation.

• The integration of UncertML into the WPS standard.

• The development of an UncertML API.
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• The discussion of interoperability and the costs required to achieve it.

The author did not contribute to the development of the novel interpolation techniques used

behind the WPS interface.

5.2 Web Processing Service

The WPS specification became an OGC standard in 2007. The primary function of the WPS is to

provide a standardised interface to allow “the publishing of geospatial processes”. A process may

include any algorithm, calculation or model that operates on spatially referenced data (OGC 05-

007r7, 2007). A secondary function of a WPS is to provide machine-readable binding information

in conjunction with human-readable metadata, allowing service discovery and consumption. Un-

like many other OGC services, the behaviour of a WPS is not defined by its operations. Because

of this a strong emphasis is placed on developing ‘application profiles’ of WPSs. An application

profile is a specific implementation of a WPS that provides a geospatial process. All application

profiles consist of a mandatory OGC URN that uniquely identifies the process and a response to

a DescribeProcess request for that process. An application profile may optionally include a

human-readable description of the process (recommended) and a WSDL description.

The flexibility of the WPS specification allows any type of GIS functionality to be provided.

Combined with the ability to specify WPS inputs remotely provides a convincing framework for

creating a wholly Web-based GIS. In fact, the WPS specification provides methods for handling

both vector and raster data allowing processes to range from simple ‘point in polygon’ algorithms

to a global climate model.

The specification allows a service provider to expose a geospatial process, of arbitrary com-

plexity, without exposing clients to the underlying mechanics. Adhering to this standardised in-

terface allows ‘naive’ clients to integrate complex geospatial processes into their workflow, that

were not previously possible. INTAMAP, discussed in Section 5.3, provides a use case for such a

scenario by providing complex interpolation algorithms via the WPS interface. However, Section

5.4 discusses the challenges faced by potential INTAMAP users and reviews the practicality of the

WPS specification.

140



Chapter 5 INTAMAP

5.2.1 WPS operations

Unlike the SOS specification, discussed in Chapter 4, the WPS specification has a small set of

operations. Specifically, there are three operations, the implementation of which is mandatory for

all servers. The operations are:

• GetCapabilities

• DescribeProcess

• Execute

This small number of operations makes the WPS standard appear simple. However, the com-

plexities of the geospatial processes which a WPS provides are hidden behind the Execute pro-

cess. The three processes are described in more detail in the following sections.

GetCapabilities

Common to all OWSs, the GetCapabilities operation allows a potential client to query meta-

data, or capabilities, of a specific service implementation. For a WPS, the GetCapabilities

operation returns the names and general (textual) description of all processes offered. For a more

detailed description of a particular processes, including the required inputs and supported outputs,

a request to the DescribeProcess operation is required.

DescribeProcess

A familiar interaction pattern is noted within several different OGC service standards. The WFS,

WMS and SOS all outline the pattern a client should adopt when interfacing with the service.

Initially, a client should request the capabilities of a service, via the GetCapabilities opera-

tion. Once the capabilities have been parsed a client may wish to retrieve more information about

a particular part of the service. Such a query is satisfied by a ‘Describe’ operation. A WFS

provides a ‘DescribeFeature’ operation, a SOS exposes a ‘DescribeSensor’ operation and a

WPS has the ‘DescribeProcess’ operation. Following the retrieval of this information the client

typically calls the main operation of the service, these are ‘GetFeature’, ‘GetObservation’ and

‘Execute’, respectively.

The DescribeProcess operation of a WPS provides a client with a full description of a spec-

ified process. The response of the DescribeProcess operation includes the input and output pa-

rameters, including format, of the process. For example, a capabilities response may indicate that a
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‘point in polygon’ process is available. The result of a DescribeProcess request for that process

would indicate that it requires two inputs, a point and a polygon, encoded in GML, and returns a

boolean value as an output. The WPS specification states that the result of a DescribeProcess

request “...can be used to automatically build a user interface to capture the parameter values...”,

however, this is not always possible, as discussed later.

Encoded as either an HTTP POST request with an XML body, or, an HTTP GET request with

key-value pairs, the DescribeProcess request has few parameters. The mandatory service and

request parameters must be set to ‘WPS’ and ‘DescribeProcess’, respectively. The version pa-

rameter can be obtained from the GetCapabilities response. The key parameter is Identifier,

which should contain a unique name of the process of interest. As mentioned previously, a list of

available processes, and their names, is contained within the response to a GetCapabilities

request.

The response to a DescribeProcess operation is a ProcessDescription document. The

ProcessDescription document contains the brief metadata (e.g., the process title), present within

the capabilities document, but also descriptions of all input and output parameters. Each process

may have any number of input and output parameters. The description of each parameter specifies

the supported formats and encodings. However, the WPS specification identifies three distinct data

types:

ComplexData typically used for XML, but often for raster images too.

LiteralData is used for simple data types. Each literal parameter may specify a data type (string,

integer etc), allowed values, default value and possible units of measure (where applicable).

BoundingBoxData specified in a supported coordinate reference system.

The distinction between literal and complex parameters is logical and can be witnessed in

other areas of computer science — primitive types and classes in object-oriented programming

languages, for instance. However, the decision to include a specific data type for bounding boxes

is curious because a bounding box is a complex data type. Perhaps it was perceived to be a

commonly used data type, and thus an attempt was made to improve interoperability between

geospatial processes by providing explicit types. However, it may have proved useful to extend

this idea and provide other common types, for example, points, lines and polygons. Ultimately, the

BoundingBoxData parameter can be considered unnecessary because a bounding box is complex

data. All input parameters must also specify the minimum and maximum occurrences.
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While literal data types are self-explanatory (string, integer, boolean etc), complex data types

are capable of containing any MIME types, including XML and raster image formats. Each com-

plex input defines which MIME type is expected, and a supported encoding and schema URL

may optionally be added if the complex type is an XML fragment. Listing 5.1 is an example

of a DescribeProcess response, describing a complex input. The example MIME type is tex-

t/XML, suggesting that an XML document is required as this input. A schema URL is provided,

in this instance a reference to the O&M 1.0.0 schema. Employing a generic interface to complex

types provides support for any MIME type and XML schema to be used as an input, or output,

of a WPS process. This flexibility enables WPS interfaces to be simply wrapped around exist-

ing legacy systems. Conversely, however, the flexibility also casts doubt over the previous claim

about automatically building an interface based on the result of a DescribeProcess request. The

most obvious problem arises from the reference to a schema, not a schema element. Taking the

O&M schema as a relatively simple example, there are two root elements: Observation and

ObservationCollection. While it is plausible that the input in Listing 5.1 accepts either of

those elements, particular scenarios might require that only a single Observation is supported.

In the WPS specification the distinction between which elements are supported currently resides

in the textual descriptions of each input — i.e., not machine-readable. This problem is further

compounded when more complex schemas are considered. For example, if a service requires a

polygon as an input then a reference to the GML geometry schema might be used. Unfortunately,

there are many other elements within the geometry schema that are not suitable. Distinguishing

between those elements that are accepted and those that are not, automatically, is not possible.

A further difficulty with the automation of generating WPS interfaces is the volume of possible

MIME types and XML schemas that may be utilised. Creating an interface that can handle any

possible complex data type is impossible. With a certain level of abstraction, an interface may

be generated to the level of validating a given input against the specified schema. However, when

considering the previous problem of not being able to specify particular elements within a schema,

this level of abstraction would prove insufficient for most scenarios.

In addition to the input and output parameters, each process description may support two

features. First, a process may support storage of output parameters. This feature proves useful

when dealing with large XML payloads or when service chaining. If storage is supported, a client

can request that the data be stored on the server, in which case a URL pointing to the output data

is provided. The default behaviour of a WPS is to disable storage, in which case all outputs, if
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<Input minOccurs="0" maxOccurs="1">
<ComplexData>

<Default>
<Format>

<MimeType>text/XML</MimeType>
<Schema>http://schemas.opengis.net/om/1.0.0/om.xsd</Schema>

</Format>
</Default>
<Supported>

<Format>
<MimeType>text/XML</MimeType>
<Schema>http://schemas.opengis.net/om/1.0.0/om.xsd</Schema>

</Format>
</Supported>

</ComplexData>
</Input>

Listing 5.1: An example ComplexData type input for a WPS.

requested, are returned within the response to an execute operation. The second feature that a

process may support is asynchronous processing. When a process requires a substantial amount

of time to complete a client may wish to execute the process asynchronously. When a process

is executed asynchronously, a response is returned immediately containing a URL to a status

document for that process, which should describe the current progress. A client is able to poll

this status document and determine the amount of time still remaining. Once the process has

completed successfully, the URL points to the execute response that would have been returned via

a synchronous request.

This section has discussed the key elements of the DescribeProcess request and response.

A complete description of these parameters is found in OGC 05-007r7 (2007).

Execute

The Execute operation allows clients to run the processes specified in the GetCapabilities

response. A valid Execute request must specify, via an identifier, the process which should be

executed, and any mandatory inputs specified in the DescribeProcess response. Reference is

also made to the outputs that a client requires. Recognising that geospatial processes often require

large data inputs (e.g., raster files or XML fragments) the WPS specification provides a mechanism

for reducing client-server bandwidth. Within an execute request the data inputs may be specified

via a URL, rather than embedded within the request. This feature proves useful when processing

large data files that reside on a central server. Remote access to data is also provided for the outputs

of an executed process, discussed previously. The use of remote data stores in a WPS is ideal for
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creating service chains with large data payloads.

In a typical service chain, data will be sent from the client to a server. The server processes

these inputs and returns some data as outputs. The client then sends these outputs to another ser-

vice, or process. This pattern can be repeated numerous times. When the data flow is considered,

the client must send and receive several, potentially large, data payloads. If, however, the chain is

constructed from WPSs, and remote caching is specified, then the flow of data between client and

server(s) is hugely reduced. Only the initial input request, with its associated input data, and the

ultimate outputs are handled by the client.

The WPS specification does not allow for automatic generation of client interfaces, as men-

tioned. However, by enforcing geospatial processes to conform to the same framework, a sub-

stantial saving on the amount of programming required by a client can be gained. The volume of

software tools supporting the more traditional WSDL/SOAP Web services is an attractive alter-

native for service providers. However, the inclusion of ‘out-of-the-box’ features such as remote

caching of data and asynchronous processing make the WPS perfect for geospatial processing.

5.2.2 Uncertainty within a WPS

Unlike the SOS discussed in Chapter 4, the WPS is not built around any particular Web standards.

The generic framework defined in the WPS specification allows any MIME type, including XML

languages, to be included as both inputs and outputs. The broad range of possibilities presented

via the WPS specification means that there are no limitations on how uncertainty can be included.

Integrating UncertML into a WPS can be achieved by specifying a ComplexData input or output

and referring to the UncertML schema. Inclusion of UncertML within another XML schemas, e.g.

O&M, is also a possibility. The INTAMAP project, discussed below, utilises UncertML in both of

these use cases. An O&M input may contain an UncertML fragment within the resultQuality

property. Also, one output of the INTAMAP process is a standalone UncertML fragment.

5.3 INTAMAP

INTAMAP is a Web service for the automatic interpolation of measured point data. Both the

interface and statistical modelling and computation algorithms are built around open standards.

Knowledge of the current state of an environmental system is often critical to decision making,

for example in contexts such as disaster response, public health protection or routine environmen-

tal monitoring and management. This knowledge of the state of a system is obtained from obser-
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vations. However, the process of observing the system of interest can be costly, both financially

and temporally. When making decisions at locations where observations do not exist, predictions

must be made. This process of prediction is often carried out through interpolation between the

existing observations. Spatial interpolation can be used for a wide variety of situations includ-

ing meteorological, air quality or environmental radioactivity variables. Unfortunately, no single

simple solution exists. A recent experiment examined the methods used by several experts to

interpolate the same data set (Dubois and Galmarini, 2005). The results showed that the meth-

ods varied drastically, with no single solution proving greatly superior in all aspects. The lack of

a generally accepted interpolation method has culminated in domain-specific experts developing

tightly-coupled, specialised, tools. This means that certain domains, where interpolation would

prove useful, do not utilise the most advanced methods. This can be attributed to the large over-

heads of gaining the necessary expertise, so that the methods used are sometimes too simplistic.

INTAMAP provides a solution by automating the process of interpolation and allowing access to

the automated process through an interoperable interface. Several novel geostatistical methods

are housed on backend servers and accessed through an OGC WPS, discussed in detail in Section

5.3.1.

5.3.1 The INTAMAP interface

Accessibility is a key ethos of the INTAMAP project. Providing a simple interface on top of com-

plex interpolation algorithms maximises the number and range of potential clients. Hiding this

complexity is achieved by automating, wherever possible, the decisions needed during interpola-

tion. However, to ensure that the INTAMAP service remains useful to more experienced clients,

optional full control over the interpolation process was also a requirement. Interoperability is fun-

damental to a cross-domain service and, consequently, the latest open standards were adopted.

Interpolation, and geostatistics in the broader sense, are geospatial processes and, as mentioned

in Chapter 2, the OGC are the current pioneers in Web-based standards for geospatial data. Im-

plementing OGC standards ensures that the INTAMAP service can be efficiently integrated into

existing OGC compliant software.

The INTAMAP interface underwent several revisions during the project life cycle. The fol-

lowing sections provide an overview of the various iterations of the interface, highlighting the

advantages and disadvantages.

146



Chapter 5 INTAMAP

WFS interface

Figure 5.1: Architectural overview of the initial INTAMAP prototype. A WFS interface provided
access to the underlying interpolation algorithms.

Prior to the release of the WPS as an OGC standard INTAMAP was designed around a WFS

interface (Figure 5.1). The WFS specification defines interfaces for describing data manipulation

operations of geographic features, including:

• Get or query features based on spatial or non-spatial constraints (using the OGC Filter

encoding).

• Create features.

• Delete features.

• Update features.

These operations, from a transactional WFS, are synonymous with the classic Create, Read,

Update, Delete (CRUD) methods of persistent storage. However, the operations of a WFS are

limited to features, usually encoded in GML. Since WFS operations were tailored towards a

feature-store interface, implementing an interpolation process with it posed several problems. The

fundamental issue was that no method provides the necessary parameters to input the observations

while at the same time returning an interpolation result. For example, the GetFeature operation

allows a feature, possibly a map generated as a result of interpolation, to be returned — but does

not provide the ability to include input parameters. Conversely, the InsertFeature operation al-

lows observations to be sent to the server, but does not provide the mechanism to return a generated

map. The solution was to utilise both methods (Williams et al., 2007).
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Web Feature ServiceClient Interpolation Server

InsertFeature

Data Store

Store observations

UniqueID

GetFeature (UniqueID)

Interpolate

Get data

observations

Interpolated data

Interpolated feature (coverage)

Figure 5.2: Sequence diagram showing how an interpolation request was made to INTAMAP via
a WFS interface.
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To initiate an interpolation request via INTAMAP a client was first required to supply the

observation data via the InsertFeature operation. Initially, the observations were encoded us-

ing the GML observation schema, but this was later superseded by the O&M model. INTAMAP

inserted these observations into a PostGIS database and returned a unique identifier for that par-

ticular data set to the client. An interpolation request could then be made via the GetFeature

operation. Requests were made for a RectifiedGrid feature (included in GML) and, using the

Filter encoding, constraints were placed on this grid. Typically, these constraints were the bound-

ing box of the grid and the coarseness, or resolution, desired. At this stage INTAMAP initiated

the interpolation process, retrieving the observations from the database. A sequence diagram of

the complete interpolation process can be seen in Figure 5.2.

Despite producing a working system, the WFS based server had many problems. The use

of the InsertFeature operation necessitated the storage of observations in a database. This

created several issues. Firstly, there was no recommended storage time for inserted observations.

Once a client had called the InsertFeature operation, they were not obliged to immediately

proceed with the GetFeature request. This resulted in a database that could rapidly increase in

size. Another issue with persistent storage of observations was data protection. The observations

submitted to INTAMAP might not have been publicly available, and users might not wish to

have them stored in a database. Perhaps a more fundamental problem was one of semantics.

INTAMAP was using the WFS interface in a manner for which it was not intended. Using the

InsertFeature and GetFeature operations to form a composite operation caused issues. For

example, a typical WFS can describe all the features available to query via the GetCapabilities

and DescribeFeature operations. However, with INTAMAP the GetCapabilities response

would only describe the observations that had been inserted, not the interpolated results. The

reason for this is that the service does not store the interpolation results, and thus in any audit of

resources they don’t exist. Only once a client makes a GetFeature request is an interpolation

executed, with the result being returned directly to the client. Furthermore, interpolation can be

a lengthy process whereas a typical GetFeature request should return instantaneously. All the

problems with the WFS implementation produced a ‘square peg in a round hole’ implementation;

a neater solution was required.
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Web Processing Service interface

2007 saw the public release of version 1.0.0 of the WPS as an official OGC standard. The interface

provided by the WPS, discussed in Section 5.2, is far better suited to geospatial processes such as

interpolation. The ability to supply input parameters with an Execute request allows the removal

of the two-stage process of the WFS (Figure 5.3). The removal of the InsertFeature stage also

allows INTAMAP to function without a persistent data store, thus alleviating some issues present

in the WFS prototype. A further benefit of the WPS system is that there is no reliance on the

GML standard. While the WFS specification is tailored towards the GML feature model, the WPS

specification remains generic. Removing the ties to GML allows INTAMAP to use specifications

such as O&M and UncertML without any extensions to the service standard.

Client Web Processing Service Interpolation Server

Execute

Interpolate

Interpolation results

Execute response

Figure 5.3: Sequence diagram showing how an interpolation request was made to INTAMAP via
a WPS interface.

Advanced features of the WPS are also relevant to INTAMAP. When interpolating large

datasets, the O&M document required can become large. The remote caching ability of the WPS

specification provides a method of reducing bandwidth between client and server. This proves

particularly useful when mobile clients interact with INTAMAP, as the large data sets can be

stored on a central server. The ability to call the Execute operation asynchronously also provides

a benefit for INTAMAP. Some of the geostatistical methods implemented within INTAMAP

require a substantial amount of processing time, especially on larger datasets. Executing these
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time consuming processes asynchronously enables the client to resume operation immediately.

The advantages of using a WPS over a WFS for INTAMAP are numerous. A decision to

migrate to a WPS interface was made.

Inputs

A requirement of INTAMAP was that it should be completely automatic. This resulted in only

a single mandatory input parameter — the observations which should be used to make the pre-

dictions. However, it had to remain flexible enough to allow experienced users to control the

interpolation process efficiently if required. The INTAMAP WPS contains many input parame-

ters, allowing a substantial amount of customisation. This section outlines the input parameters,

detailing the effect they have upon the interpolation result. Given the use of generic schemas (e.g.,

O&M) concessions were made to facilitate a workable system. Details are given where certain

restrictions have been made to an underlying schema.

ObservationCollection This is the only mandatory input. Its contents should be an O&M

ObservationCollection type, containing all observations for use within the interpolation. It

should be stated here that the minimum number of observations required by INTAMAP is 20; any

fewer and a sensible result cannot be obtained. As discussed in Chapter 2, the O&M observation

model contains several properties. A few of these are not used by INTAMAP and are ignored

upon parsing. However, those properties that are required may also contain restrictions on their

use. Below is a list of properties that INTAMAP uses, how they are used and the restrictions which

are enforced.

featureOfInterest INTAMAP uses this as the location of the observation. O&M specifies that

any GML feature can reside here. Unfortunately, reliable parsing of any GML feature,

to extract the location, is not currently possible and consequently only a single feature is

allowed within INTAMAP. A SamplingPoint feature, defined in OGC 07-002r3 (2007),

contains a GML Point geometry, adequate for use within INTAMAP. All other features

within the featureOfInterest are ignored by INTAMAP.

resultQuality INTAMAP is able to parse UncertML documents. If the error of the observation is

known it can be encoded as UncertML and embedded within the resultQuality property.

Typically, observation errors are quantified as normally distributed.
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result According to the O&M specification this can be any XML type, although INTAMAP only

accepts a single real value. The Measurement model is a restricted Observation limiting

the result property to a single real value within the schema. Measurement encodings are

therefore preferred within INTAMAP.

Domain In this context, the term domain refers to the prediction locations, i.e. the point(s) at

which INTAMAP should predict. GML geometry types are utilised for this parameter. The types

currently accepted by the INTAMAP service are listed below:

• Point — predict at a single location.

• Polygon — predict the average and other summaries within this polygon.

• MultiPoint — predict at multiple point locations

• MultiPolygon — predict within multiple polygons.

• RectifiedGrid — predict at every location within a regular grid.

Specification of the prediction locations is critical to most applications. However, within IN-

TAMAP, this parameter is optional. When the Domain parameter is omitted, a regular grid that

encloses all provided observations with a resolution of 100 x 100 cells is created. This is an

example of how the automated nature of INTAMAP can be overridden by experienced users, if

desired.

PredictionType The result of an interpolation is typically an estimated value and a measure of

uncertainty, or, prediction variance. However, it is possible to request a number of alternative

statistics by supplying a relevant UncertML fragment. Below is a list of supported statistics:

• Mean

• Variance

• Probability (of exceeding a specified value)

• Quantile

If no PredictionType is supplied a default assumption is made and the mean and variance

are returned. Any combination of the above statistics may be requested, in which case a value is

returned for each one, at each prediction location.
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MethodName As mentioned previously, there are a number of interpolation methods available

within INTAMAP. If no method is specifically requested, one is chosen based on some heuristics

applied to the supplied dataset. However, if a client believes that a particular method is more

suitable it can be selected via this parameter. Unlike the previous parameters, the method name is

a LiteralData type, accepting a string which may be one of the following values:

• psgp

• copula

• automap

• idw

• automatic

SOSURL An advantage of using a WPS over WFS is that the O&M model can be used. A direct

consequence of this is that input can be taken from a SOS instance, rather than being embedded

within the request. This parameter is a string which is a URL reference to a SOS instance. If this

URL is a valid SOS GET request it may be used alone, however, if a POST request is required,

this URL is used in conjunction with the SOSRequest parameter, below. The returned observations

will be parsed and used within the interpolation. SOS observations can be combined with other

observations, described in the ObservationCollection parameter.

It should be noted that only observations that conform to the restrictions outlined above are

accepted. This is helped by requesting that the SOS returns O&M measurements, rather than

observations. Care should also be taken to ensure that no two observations occur at the same

location, as this causes exceptions during interpolation. If an UncertML-enhanced SOS is being

used, as outlined in Chapter 4, INTAMAP will use any observation errors present.

SOSRequest This parameter can only be used in conjunction with the SOSURL parameter above.

This parameter contains an XML fragment that should validate against the SOS GetObserva-

tions schema. The contents of this parameter are sent to the URL specified in the SOSURL pa-

rameter. The result from the SOS is parsed and the observations are merged with any observations

specified in the ObservationCollection parameter.

maximumTime This parameter is a literal integer value specifying the maximum time allowed

for processing, in seconds. INTAMAP uses this information to select a suitable method. If no

method can complete within the allowed time an exception is raised.
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Outputs

There are a number of outputs generated by the WPS, customised by the supplied inputs. Below

is a description of all available outputs.

PredictedValues The actual result of the interpolation. The contents of this parameter is an Un-

certML StatisticArray element. Within the values section is a result for each statistic specified

in the PredictionType input, at every location specified in the domain input.

Domain Although in many use cases the client is aware of the prediction locations, in certain

instances the prediction locations are generated automatically by INTAMAP. For instance, when

no Domain input is supplied a regular grid is constructed, or, if a polygon domain is specified,

INTAMAP generates regular points within that polygon. In these cases it is imperative that a

client can retrieve the locations for which predictions were made, and thus relate to the values

contained within the PredictedValues output.

PredictionReport Often a client using interpolated data in decision making wishes to know

exactly what processing was applied to their data. The PredictionReport output supplies a

user with a structured string, listing all processing steps performed. This enables clients to assess

whether the results can be used reliably in decision making.

5.3.2 Example INTAMAP request

Figure 5.3 gives an overview of the INTAMAP architecture and how a request is processed by the

two-tier architecture. However, it does not provide a detailed overview of the different compo-

nents that are executed in order to process a request. This section discusses an example request,

demonstrating how the INTAMAP service decomposes a request and then encodes the response.

A more detailed sequence diagram can be seen in Figure 5.4. This diagram contains five con-

stituent objects: the client, WPS interface, O&M and UncertML APIs and an interpolation server.

The shaded objects (the WPS interface and APIs) represent work that was carried out as part of

this thesis, the other two objects (client and interpolation server) were developed by third-parties.

The client object represents any INTAMAP client, whether this is a web application, a desktop

application or browser plugin. All INTAMAP clients initiate a request via the same method —

sending a WPS Execute request (Listing 5.2) document to the INTAMAP URL. The request doc-

ument contains all the information required to perform an interpolation request, encoded in XML,
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INTAMAP client Web Processing Service O&M API UncertML API Interpolation Server

Execute WPS request

Parse observation inputs (XML)

Parse observation errors (XML)

Return UncertML objects (Java)

Return observation object (Java)

Interpolate observation data (Java)

Return interpolation results (Java)

Encode UncertML response (Java)

Return UncertML (XML)

Return WPS request (XML)

Figure 5.4: A sequence diagram showing the interaction between the WPS, APIs and interpolation
server. Shaded boxes are contributions to this thesis.
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<Execute service="WPS" version="1.0.0">
<Identifier>org.intamap.wps.Interpolate</Identifier>
<DataInputs>
<Input>
<Identifier>ObservationCollection</Identifier>
<Data>
<ComplexData>
<!-- O&M observations -->

</ComplexData>
</Data>

</Input>
<!-- Other inputs go here -->

</DataInputs>
<!-- Response options go here -->

</Execute>

Listing 5.2: A truncated example of an INTAMAP request. Several options have been removed
for brevity.

these inputs can be seen in Section 5.3.1. Once the WPS receives the request document, it uses

the developed O&M API to extract the observation information and convert it into native objects.

Typically, the information of interest is the location of the observation (X and y) and the observed

result (z). However, if the observation has an attached error, encoded in UncertML, the O&M API

delegates the parsing to the UncertML API (the fourth object in Figure 5.4). This interaction can

be seen in the Java code in Listing 5.3. The INTAMAP service also contains code for parsing the

other inputs to the service, including GML, however, these are minor contributions.

private Uncertainty parseResultQuality(Element root) throws IOException {
// Get the child node of the resultQuality element.
// A check has previously been done to ensure one exists.
Element uncertml = root.getChild("resultQuality", Namespaces.OM).getChild();
UncertMLParser parser = new UncertMLParser();
return parser.parse(uncertml);

}

Listing 5.3: A Java code snippet from the O&M API that utilises the UncertML API to parse an
uncertainty element.

Once all inputs have been parsed into native Java objects, the INTAMAP WPS communicates

via TCP/IP with the interpolation server to request an interpolation. The interpolation is han-

dled by the statistical language, R. The interpolation algorithms were not developed as part of

this thesis, however, more information can be found in Williams et al. (2011). The result of an

interpolation is a series of arrays containing the predicted values at each location. These values

are passed back to the INTAMAP WPS which in turn passes them to the UncertML API. Due to
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a requirement of the INTAMAP project, all interpolation requests return a mean and variance at

each prediction location. Therefore, the UncertML API always converts the provided values to a

StatisticArray of StatisticsRecord containing both mean and variance values. These val-

ues, now encoded in XML are sent back to the INTAMAP WPS and wrapped with the remaining

outputs that were requested by the client and returned. The whole interpolation process typically

takes twenty seconds to execute.

Figure 5.5: A screenshot of a web application that simplifies the INTAMAP WPS interpolation
process. The image displayed is an interpolation of NO2 data over the United Kingdom.

Once the client retrieves the result from the INTAMAP server the results can be processed in

a number of ways. A typical use case is for the client to display the mean values overlaid with the

observation data, usually with some background mapping. An example of this, generated as part

of the INTAMAP project can be seen in Figure 5.5, which uses Google Earth as the background

mapping. The benefit that UncertML brings to this client, and the numerous other clients discussed

in Section 5.4.1 is that the meaning of the returned data is explicitly described. For instance, the

image in Figure 5.5 shows the mean level of NO2 over the United Kingdom. Without UncertML

the meaning of this data is lost and it becomes nothing more than a static image. The quality of

the inter-operation of UncertML with INTAMAP can be inferred from the success of the service

and by the number of supporting clients that have been developed (Section 5.4.1).

157



Chapter 5 INTAMAP

5.4 Interoperability review

Interoperability was defined in Chapter 2 as “the ability to exchange and use information”. Putting

this broad definition into the context of computer systems can refer to the ability of two machines

to communicate while remaining hardware, platform and language independent. The recent pop-

ularity of XML and Web services has proven that interoperability is a growing trend, yet it is

difficult to measure how ‘interoperable’ a service is. This section provides a review of the IN-

TAMAP service, investigating how interoperability has been achieved, and at what cost.

5.4.1 Open standards, good or bad?

A key requirement of INTAMAP was to produce an easily accessible interface to the underlying,

complex interpolation algorithms. In order to achieve this requirement, a series of recognised

open standards were adopted. The core of INTAMAP revolves around the O&M standard, but

also uses GML, SWE Common and SensorML. A further XML standard, UncertML, is also used

extensively. The service itself is constructed using the WPS specification, discussed above. The

combination of all these XML based standards certainly allows multiple hardware, platform and

language independent devices to communicate with INTAMAP. By that measurement, one could

assess that INTAMAP is indeed interoperable. However, the use of so many open standards also

generates difficulties when creating supporting software.

Another important measurement of how interoperable INTAMAP is might be how easily it

can be integrated into existing software. It is here that the double-edged sword of utilising the

OGC open standards becomes apparent. Currently very few tools exist to aid software designers

with OGC standards. For instance, no API exists for parsing and creating valid O&M documents.

The reasons for this are likely to be because of the problems discussed in Chapter 2 about the

abstract nature of O&M. It should be stressed that O&M is a conceptual model and thus relies

on the creation and adoption of application profiles. However, with the lack of any official O&M

profiles, the absence of an API is not surprising. This lack of a definitive API for O&M leads

software designers to create their own, based on their interpretations of the O&M specification.

Paradoxically, the differences between software designers’ perceptions of O&M can result in APIs

that cannot parse valid O&M generated by an other. For example, two designers may require an

O&M profile whose result is an array of floating point values. One designer may choose to encode

this as a series of comma separated values, while the other adopts the SWE Common standard

(Section 2.5.3). Both of these profiles conform to the O&M model and both encode the same data,
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yet they are syntactically different and thus may not be ‘interoperable’. One could argue that, given

the openness of O&M, a sufficient API can never exist. This same problem exists for other OGC

standards, but is less prominent. Ultimately this means that the overheads of a software designer

integrating INTAMAP into their existing software are potentially costly. In fact, for INTAMAP to

be consumed a developer must create APIs for parsing O&M, GML and WPS requests/responses,

even before they start to investigate the various input parameters of INTAMAP. Had INTAMAP

created a set of heavily restricted profiles of the standards instead, many of the implementation

strains could have been relieved. However, when using profiles so specific to a particular project,

it raises doubt about the benefits of adhering to the overruling conceptual standards. For instance, it

is not guaranteed that an existing piece of O&M software would be able to process the INTAMAP

profile without alterations. In such an example the benefits of conforming to the O&M model are

not clear.

The effort required by INTAMAP clients was noticed during the development stage. Several

approaches to alleviate the problem were attempted.

SimpleInterpolate

Devised particularly with mobile INTAMAP clients in mind, SimpleInterpolate was devel-

oped as a middleware client to INTAMAP. Based around the WPS specification, it provided an

interpolate process. However, rather than relying on the use of O&M, GML and UncertML as

inputs and outputs, SimpleInterpolate uses Comma Separated Values (CSV) and bitmap im-

ages. The bandwidth required by the classic INTAMAP server for a typical interpolate request

(10,000 prediction locations) is large. The motivation, then, was to create a service that was still

‘interoperable’ but used more concise inputs. The simplicity provided by the SimpleInterpo-

late interface became immediately popular and it was adopted by a number of users. However,

there are several disadvantages to the SimpleInterpolate service. The limitations placed on it

by the CSV inputs mean that a client cannot specify many types of observation error, or sensor

models. Indeed, the CSV inputs are limited to a x,y,z,s format where x and y are coordinates,

z is the observed value and s is a standard deviation. The expressive capabilities provided by

the OGC standards have been lost. The same applies to the output. While many clients simply

wish to display the result as an image, usually overlaying a digital map, many wish to analyse

the results for decision making. SimpleInterpolate provides output as raster formats (PNG, GIF,

JPEG etc) but also the more expressive GeoTIFF format. It does not, however, provide a fully
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quantified representation of the uncertainty generated by INTAMAP. This can only be achieved

using UncertML.

WCS/WMS interaction

While software supporting OGC standards such as O&M and WPS is scarce, there are other stan-

dards which have, arguably, seen more support. Two such OGC services are the WMS and the

WCS. The WMS serves features as images, while the WCS serves coverages, defined by their

domain and range or results. A result of an interpolate request can be considered as an image

(as described above) but also as a coverage. This led to the creation of an extension to the classic

INTAMAP service. The idea is similar to that of SimpleInterpolate, but it does not lose the

expressive capabilities of the input parameters. A request is made to INTAMAP in exactly the

same way as the original INTAMAP WPS. The extension stores the interpolation result within

a WCS or WMS server, generates a URL containing a valid HTTP GET request for the newly

created ‘feature’ and returns that with the INTAMAP response. This allows clients to use existing

WMS/WCS compliant software to parse and consume the results generated by INTAMAP.

Unfortunately, several problems exist with the INTAMAP extension that hindered its adoption.

Primarily the extension was written with a specific WMS/WCS server implementation that was

only available for Windows servers. Also, clients can’t solely rely on the WMS/WCS software

to interface with INTAMAP. An INTAMAP request still needs to be constructed, which relies

on an O&M and WPS API as a minimum but would benefit from a GML API also. This means

that clients willing to put the effort into generating an INTAMAP request, may as well create the

software for parsing a response. This would allow them to use the full capabilities of INTAMAP.

The disadvantages with both this approach, and the SimpleInterpolate approach underpinned

the need for a smarter solution.

INTAMAP API

With potential users discouraged by the overhead of integrating with INTAMAP, an accompany-

ing API was produced. Developed in Java, the INTAMAP API implemented basic parsers and

generators for O&M, WPS, and GML. It also interfaced with the UncertML API. Within the API

a client can create an instance of a Java class representing an interpolation request. All the input

parameters can then be modified using native Java method calls. Eventually, an interpolate

method can be called which constructs the XML from the supplied parameters and sends it to the
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INTAMAP server. Once the API receives a response, it parses the XML to construct a Java class

representation. Effectively, this allows a client to interface with INTAMAP through native Java

code, without even having to understand the underlying XML messages. The benefits of this are

huge, since any Java certified developer could integrate INTAMAP into their Java application with

ease.

There are particular disadvantages to the API. For instance, it is a Java implementation, and

thus might not be compatible with existing software written in another language. Also, a limited

model of O&M, GML and other supporting languages is used — enough to satisfy an INTAMAP

request/response. This may cause friction if a client has another model of O&M, in which case

the INTAMAP API might not operate correctly.

The creation and use of a common API does raise one question though. If every client deems it

too much effort to create their own software and would rather use the provided API, is it necessary

to use so many open standards? For example, if everyone uses the Java API then the underlying

code could easily communicate via binary, which would be much more efficient than converting

everything to and from XML. This idea can be extended by suggesting that it is not the open

standards that make a service interoperable, but the software that ultimately supports it. However,

there is one, major, benefit of implementing an interface using open standards. The possibility

exists for other software to be developed by unrelated clients, should the need arise.

The concept of interoperability is certainly useful. Achieving it, however, is extremely diffi-

cult. This section identified that in one respect, INTAMAP could be conceived as ‘interoperable’

— it provides an open interface, independent from any such machine restrictions. However, it tran-

spires that implementing software to communicate with INTAMAP is not trivial. On one level,

the idea of interoperability is for machines to communicate with one another. Ironically, if the

standards adopted to achieve this are too complex, creating software that communicates could be

deemed too difficult. The issues faced during the INTAMAP project underlined the difficulty of

creating interoperable software. In fact, a separate ‘INTAMAP’ system was created devoid of any

XML standards or services and exists simply as a piece of software, written in the statistical lan-

guage ‘R’. One way of simplifying the process may be to create restricted profiles of the abstract

standards. Creating profiles of standards, restricted to a manageable level, would enable software

that was ‘standards-compliant’ to be created more efficiently, reliably and quickly.
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5.4.2 UncertML and weak-typed schema

Chapter 2 introduced the concepts of strong and weak-typed schema design. Chapter 3 intro-

duced UncertML, an XML schema to quantify uncertainty. The approach taken with UncertML

is a weak-typed schema, providing flexibility. The problem with weak-typed designs is that writ-

ing compliant, usable, software is impossible. The flexibility provided by the weak-typed design

means that there are no clearly defined boundaries or scope. Within UncertML, for instance, a

probability distribution is encoded via a definition, providing the necessary semantics, and a series

of parameters (each with their own definitions (Chapter 3)). Theoretically, this allows any distri-

bution to be encoded with UncertML. It is entirely possible that a user describes a distribution that

only they are aware of. Providing software capable of parsing any distribution, at a high level, is

trivial. The current UncertML API is capable of doing just that. However, these distributions con-

tain little or no meaning. Parsing the XML into programming language objects does not provide

the necessary information to meaningfully process these distributions. For example, the UncertML

parser can parse a distribution with the definition urn:uncertml:distribution:gaussian, but

to use it appropriately requires another level of detail.

The solution to the problem is simple. UncertML defines all possible statistics and distribu-

tions as hard-typed elements. Providing a definitive list of supported elements gives software a

clear scope. Once boundaries have been established, hard-typed classes can be created within the

API. Rather than a generic Distribution class, capable of representing any distribution but with

little processing ability, a series of distribution classes would exist. For example, a Gaussian-

Distribution class would be able to process its parameters to good effect, such as generating

realisations or exceedance probabilities. This is not simple with a generic framework as it relies

on comparisons between URIs, which may differ between users. Another indirect benefit is that

by establishing an explicit scope, software implementing UncertML can claim to be ‘UncertML

compliant’. While this may seem trivial, it allows two UncertML compliant pieces of software

to communicate effectively. With a generic framework this is not possible. For instance, another

piece of software could send a perfectly valid UncertML fragment that another piece of software

has not encountered before and consequently is unable to process.

Hard-typed schemas are plausible for domains where a small, well-defined, set of features

exist. Unfortunately, with statistics and probability distributions this is not so easily achieved.

There are a huge set of probability distributions that could be defined in UncertML and a hard-

typed schema of that size suffers from the same problems as a weak-typed design. Fortunately,
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there are a relatively small number of distributions and statistics that are more commonly used

than others; for instance, the statistics ‘mean’, ‘variance’ and ‘standard deviation’, or a Gaussian

distribution. Although limiting UncertML to this small subset of features is too restricting, a

compromise may be found through the use of profiles. Following the OGC’s example of the GML

simple feature profile (OGC 06-049r1, 2006), a similar design could be utilised with UncertML,

maintaining the existing, weak-typed, statistics described in Chapter 3 but complementing them

with a collection of hard-typed, commonly used statistics and distributions. Software compliant

with this UncertML ‘simple feature profile’ could then communicate reliably, yet the flexibility of

UncertML remains.

The problems faced by software designers due to extensible, weak-typed, XML schemas are

great. This is emphasised by the challenges faced in INTAMAP and the UncertML API. To

tackle these problems and provide the community with more effective software, thus increasing

the uptake of open standards, an effort has to be made. Focus should be placed on creating smaller,

discrete, independent profiles of the large, flexible, standards. These profiles should fall under the

governance of the standards organisation committee, and not the software providers. The creation

of manageable profiles will allow software designers to focus on creating the APIs that are needed

to see wide-scale adoption of OGC standards.

5.5 Conclusions

The work carried out in Chapter 4 demonstrated the ease with which UncertML can be integrated

into existing standards-based software. The work in this chapter continues the trend by intro-

ducing the INTAMAP project. Developed as an “interoperable service for automated mapping”,

INTAMAP was the primary motivation for the development of UncertML.

After an initial prototype based on a WFS, INTAMAP was built using the OGC WPS standard.

Section 5.2 provided an overview of this standard, highlighting some particular advantages over

other service based architectures. Particular attention was paid to the remote caching of data

and asynchronous processing, both of which are perfectly suited to the interpolation algorithms

found within INTAMAP. Section 5.3 gave a history of the INTAMAP project. While the early,

WFS-based, prototypes did produce working systems, there were many problems, in particular,

the reliance on a two stage process. During 2007, the OGC released version 1.0.0 of the WPS and

the potential advantages that could be gained by its use in INTAMAP were recognised. Migration

to the new WPS based system provided users with more functionality. A clear benefit of the WPS
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over WFS was the ability to pass numerous input parameters with the execute request, allowing

a user to customise an interpolation request. The end of Section 5.3 provides a list of parameters

accepted by INTAMAP and how they can be used. One parameter of importance was the ability to

provide a SOS request. This ability is enhanced by the fact that INTAMAP can parse UncertML.

If a user has implemented an UncertML-enhanced SOS, detailed in Chapter 4, they can propagate

those errors through INTAMAP directly.

The chapter finished with a discussion of interoperability, and what it means to be ‘interop-

erable’. It argued that providing an open standards-based service is often not enough to ensure

interoperability. During the development of INTAMAP, several users found it difficult to cre-

ate the necessary software to process the number of different standards used. This led to several

methods to try and alleviate the strain. One method was to create a simpler interface to the inter-

polations using comma separated values and bitmap images. However, the flexibility lost for the

sake of simplicity was a great disadvantage. A Java API was actually most efficient as it provided

users with the full capabilities of INTAMAP but with a much simpler integration process.

An overview of weak-typed schema designs and the problems that they cause to users was

given in Section 5.4.2. Making reference to UncertML, a strong case for hard-typed designs was

forged. However, acknowledging that hard-typed designs are not always possible, a recommenda-

tion to standards organisation committees was made. The development of simple, atomic profiles

of larger, extensible standards facilitates growth in available software. A suite of software APIs

to accompany the OGC standards would enable domain users to adopt them with greater ease and

thus increase cross-domain interoperability.

The research in this chapter found several notable disadvantages to weak-typed XML schemas

that hinder their usability. However, the success of the INTAMAP project is a clear demonstration

of how UncertML can be used within a geoprocessing workflow. The ability of INTAMAP to

accommodate observation errors on the data inputs enhances the justification that the work in this

thesis has met objective 2 in Section 1.3.1. Furthermore, the propagation of uncertainty through

the workflow to the data outputs clearly indicates that objective 3 has been satisfied. The success

of the INTAMAP project and the integration with UncertML can be quantified by analysing the

client applications and tools. Section 5.4.1 analysed three separate client tools that interfaced

with INTAMAP. Each of these tools utilises the UncertML API and thus can be considered an

indication of the success of the integration with INTAMAP. Furthermore, the diversity of the client

tools is a demonstration of the interoperability provided by INTAMAP and UncertML. However,
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the effort required to achieve this level of interoperability taints this success.
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6.1 Foreword

UncertML, proposed in Chapter 3, outlines an interoperable language for probabilistically quanti-

fying uncertainty. Chapters 4 and 5 demonstrate how UncertML may be integrated into a number

of different frameworks. However, as discussed in Section 2.5, there are two areas where uncer-

tainty is present in geospatial information. Both Chapters 4 and 5 provide examples of how Un-

certML may be used to encode attribute uncertainty. This chapter outlines a framework whereby

UncertML can be utilised to encode positional uncertainty.

Section 6.2 critically analyses the GML schema, discussed previously in Section 2.5.2. In

particular, Section 6.2 will discuss existing methods of representing quantified positional uncer-

tainty within GML, and explore ways in which GML can be extended to allow a more thorough

representation of uncertainty.

Section 6.3 documents an XML schema, uGML, that allows positional uncertainty to be en-

coded using a similar syntax to that used for existing GML geometries. The flexibility of uGML

to encode uncertainty in a variety of geometries is demonstrated with a series of examples towards

the end of the section. Section 6.3.3 further demonstrates the benefits of uGML with a Web-based

software application that allow users to visualise the positional uncertainty of lines and polygons

using the Google Maps API 1.

Finally, Section 6.4 concludes the chapter by outlining the contributions of uGML and dis-

cussing possible further work.

6.2 GML

Initially titled xGML, and later Simple Features XML (SFXML), GML was first presented to the

OGC in 1999. The first proposal of GML was based around the Resource Description Framework

(RDF) 2, however, due to strong opposition within the OGC a complementary DTD version was

developed. GML version 1.0 was adopted by the OGC as a recommendation paper in 2000.

During the same period work was being undertaken by the World Wide Web Consortium (W3C) to

produce another XML schema language, titled XML Schema language. With many benefits over

DTD (discussed in Section 2.2.1) the OGC pursued the development of an XML Schema-based

GML — leading to the adopted standard, GML version 2, in May 2001.

GML 2 offered a simple view of geographic features described through the object model. Fun-

1http://maps.google.co.uk
2http://www.w3.org/RDF/
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Figure 6.1: GML 2 example of a feature, ‘Road’, illustrated in UML.

damentally, the object model states that a geographic feature is a named list of properties, some of

which may be geometric or other features. The basic premise that geographic features are made up

of properties, which may themselves be features, underpins one of the fundamental design prin-

ciples of GML, the feature-property model. The names of specific features and properties are not

specified by GML, but left to the developer of a GML application schema. Figure 6.1, taken from

OGC 02-069 (2002), illustrates a simple application schema where a Road feature has 4 proper-

ties: name, surface, centerLine and destination. Both the name and surface properties are

primitive types, but the destination and centerLine properties are more complex. The desti-

nation property is another feature, Town, and the centerLine property is a geometry. While the

feature-property design allows for arbitrarily complex, nested features, the properties themselves

are always primitive types, geometries or complex features (which are themselves composed of

only primitive, geometric or complex feature properties). This simplicity led to a large user base

for GML 2. Unfortunately, partly motivated by developments in a rival standard, G-XML, it was

established that the simple feature/geometry model was not expressive enough for many purposes.

Work was undertaken to include key ideas from G-XML (e.g., observations, temporal and topo-

logical elements) in the next version of GML. There was also a need to bring GML in line with the

abstract specifications published by the ISO TC/211 committee; a committee primarily involved

with the standardisation of geographic information models. This work culminated in GML 3.

GML 3 represented a significant step forwards for GML in terms of scope but also complexity.

The number of XML schema files increased from 2 (feature and geometry schemas) to over 10.

The basic feature-property model still exists within GML 3, however, it has been modified to

conform to the General Feature Model outlined in ISO/TC 211 19109 (2003). The increased
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complexity has caused concern (OGC 06-049r1, 2006; OGC 03-003r10, 2003; Tamayo et al.,

2010) over the usability of GML 3, with many software implementations preferring to conform

to GML 2. Due to the large number of elements interoperability can only be achieved through

the development of profiles, e.g., the Simple Features profile (OGC 06-049r1, 2006). Despite the

drastically increased complexity of GML 3, the ability to select and use only a subset of the XML

schemas allows users to ignore the irrelevant portions for their projects. One such subset is the

geometry schemas.

6.2.1 GML geometry schemas

During the transition from GML 2 to GML 3 the geometry suite of schemas underwent a sub-

stantial change to bring the components of the GML geometry schemas in line with the ISO/TC

211 19107 (2003) spatial schema and form a partial implementation. These changes produced

a large increase in the geometry types available within GML 3. This section provides a brief

overview of the GML 3 geometry schemas, and later discusses a selection of geometries in more

detail.

At the head of the geometry schema is the AbstractGeometry element, which is a child of

the AbstractGML element. All geometries within GML 3 will inherit, either directly or indi-

rectly, from the AbstractGeometry element. Consequently, a geometry inherits (via Abstract-

GML) an identifying attribute (gml:id) and metadata elements gml:name, gml:identifier and

gml:description. Additionally, any element inheriting from AbstractGeometry may be asso-

ciated with a spatial reference system, via the SRSReferenceGroup. The SRSReferenceGroup

provides the facility to identify which specific Coordinate Reference System (CRS) is being used

by a geometry. In theory, the attribute gml:srsName points to an instance of AbstractCoordi-

nateReferenceSystem, however, in practice a URI referring (but not resolving) to a well-known

CRS (e.g., European Petroleum Survey Group (EPSG) codes3) is used. The srsName attribute is

optional and if omitted from a geometry it is implicitly assumed that the CRS is specified as part

of a larger context, e.g., a geometric aggregate. OGC 07-036 (2007) states that “any geometry

that inherits the semantics of AbstractGeometryType may be viewed as a set of direct posi-

tions”. Within the GML 3 geometry schemas there are two elements for encoding direct positions:

DirectPositionType (used for geometries with a single direct position) and DirectPosition-

ListType (used for geometries containing multiple direct positions). Instances of the DirectPo-

3http://www.epsg.org/

169

http://www.epsg.org/


Chapter 6 UGML

Figure 6.2: A concise overview of the GML 3 geometry schemas illustrated using UML. The
diagram is not a complete representation of the GML hierarchy it is purely illustrative.
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sitionType hold the coordinates for a position within some CRS. However, since direct positions

will often be included in a larger context (e.g., within a geometry type) the CRS is implicitly as-

sumed from the containing element. A DirectPositionListType holds the coordinates for a

sequence of direct positions within the same CRS. Similarly to the DirectPositionType, the

CRS of a DirectPositionListType will typically be specified at a higher level. In addition,

the DirectPositionListType contains an optional attribute, count, that specifies the number of

direct positions encoded within the list. The primary instance of the DirectPositionType is the

element pos and the primary instance of the DirectPositionListType is the element poslist.

Figure 6.2 provides an overview of the GML 3 geometry schema hierarchy, including the Ab-

stractGeometry root, both direct position types and a selection of geometry types (point, line

and polygon) that are discussed in the following sections. The diagram in Figure 6.2 is not a com-

plete representation and certain inconsistencies have been introduced. For example, the Polygon

element has two properties, interior and exterior, however, these are not directly inherited

from the DirectPositionListType, as suggested in the diagram. The properties are actually

LinearRingTypes, which themselves are AbstractRingTypes. The decision to omit these types

was in the interest of retaining simplicity. Nonetheless, Figure 6.2 provides an illustration of the

concepts and types discussed in this section.

GML Point

The GML Point element is the simplest geometry provided, completely described by a single

coordinate tuple. The gml:pos element specifies the direct position of a Point. Listing 6.1

provides an example of a GML 3 Point element.

<gml:Point gml:id="1312" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
<gml:pos>52.01 0.56</gml:pos>

</gml:Point>

Listing 6.1: A GML 3 Point element, the direct position of a Point is encoded within the pos
property.

The example in Listing 6.1 demonstrates that the srsName attribute of a pos element is inferred

from its parent element if left blank. GML provides a MultiPoint type to aggregate multiple

Point elements. When a MultiPoint element is defined with an srsName attribute, the srsName

attribute of the constituent Point elements may be omitted. The GML MultiPoint type is an

implementation of the ISO 19107 GM_MultiPoint.
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GML LineString

Conceptually, a LineString element is perceived as an AbstractCurveType within GML 3. A

LineString is defined as “a special curve that consists of a single segment with linear interpo-

lation”, i.e., it contains two or more direct positions with a straight line between each coordinate

tuple. There are many other types of curves detailed in OGC 07-036 (2007), however, they are

not covered here. The direct positions of a LineString can be encoded in two ways. Firstly,

as depicted in Figure 6.2, they may be encoded in a single poslist element. Alternatively, it is

possible to encode a LineString as a series of DirectPositionTypes, or, pos elements. The

second method of encoding can be seen in Listing 6.2.

<gml:LineString gml:id="4121" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
<gml:pos>52.01 0.56</gml:pos>
<gml:pos>51.72 0.56</gml:pos>
<gml:pos>52.01 0.42</gml:pos>

</gml:LineString>

Listing 6.2: A GML 3 LineString element. This example demonstrates how the direct positions
of a LineString may be encoded using a series of pos elements.

GML provides a MultiCurve element for aggregating multiple curves, which includes LineStrings.

The same principles apply to the MultiCurve as the MultiPoint element with regards to the

srsName attribute. The GML MultiCurve element is an implementation of the ISO 19107 GM_-

MultiCurve.

GML Polygon

A GML Polygon inherits from the AbstractSurfaceType (Figure 6.2). OGC 07-036 (2007)

defines a surface as a continuous region of a plane. A Polygon is a special surface, defined

by a single surface patch whose boundary is coplanar. The interior of a Polygon uses planar

interpolation. The implementation of the surface boundary for a Polygon is through the interior

and exterior elements. Both the interior and exterior elements are LinearRings, which

must contain a minimum of 4 direct positions. A Polygon may have any number of interior

boundaries, but may only have a single exterior boundary. Listing 6.3 provides an example

encoding of a GML Polygon.

There are more surface types defined in OGC 07-036 (2007), however, they are not described

in this thesis. Collections of polygons and other surfaces may be aggregated using the GML

MultiSurface element, an implementation of ISO 19107 GM_MultiSurface.
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<gml:Polygon gml:id="5311" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
<gml:exterior>

<gml:LinearRing>
<gml:posList>

52.01 0.56 52.01 0.42 51.72 0.42 51.72 0.56
</gml:posList>

</gml:LinearRing>
</gml:exterior>

</gml:Polygon>

Listing 6.3: A GML 3 Polygon element. This polygon is constructed with an exterior boundary,
defined by the DirectPositionListType, poslist.

6.2.2 Uncertainty within GML geometry schemas

With the importance of quantifying the uncertainties relating to spatial data outlined in Section

2.4, the lack of scope for expressing uncertainty within the GML geometry schemas is discon-

certing. The most direct mechanism for quantifying positional uncertainty within GML is via the

GenericMetadata element, inherited by each geometry from the AbstractGML type. However,

this solution has a number of substantial flaws. Firstly, the GenericMetadata element is now dep-

recated, it may still be used but is liable to be removed from GML in future versions. Secondly,

the content of the GenericMetadata is XML anyType, effectively allowing any data to reside

within it. This could cause problems, for example, if a user encodes just a single value. This

value may be intended to represent the standard deviation of a variable, yet the lack of a structured

representation means that it could be interpreted as any number of things. Listing 6.4 provides an

example of how a GML Point may look with a GenericMetadata element.

<gml:Point gml:id="1312" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
<gml:metaDataProperty>

<gml:GenericMetaData>
<un:Statistic definition="std_dev">

<un:value>0.0012</un:value>
</un:Statistic>

</gml:GenericMetaData>
</gml:metaDataProperty>
<gml:pos>52.01 0.56</gml:pos>

</gml:Point>

Listing 6.4: A GML Point with a GenericMetadata to encode the positional uncertainty. The
content of the GenericMetadata is a cut-down example of UncertML, encoding the standard
deviation.

With GenericMetadata now deprecated, the inclusion of metadata within GML features has

become the responsibility of application schema designers, i.e, GML users. OGC 07-036 (2007)
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states that to associate metadata with a GML object, a property element should be defined whose

content model is derived (by extension) from the AbstractMetadataPropertyType element.

This approach provides greater flexibility to GML producers, but is inadequate to fully quantify

positional uncertainties for a number of reasons. Firstly, the metadata must be added to a GML

feature; GML geometries are not features, but properties of features. This restriction stipulates that

one would create a feature (e.g, a road) which has a geometric property but which also has some

metadata pertaining to the uncertainty about that geometric property. This presents a semantic

problem which has been touched on earlier — is positional uncertainty data, or metadata? Section

2.4.1 argues that if a value is gathered from a derived observation (e.g., a GPS device) then that

value is intrinsically uncertain. Therefore, the uncertainty of a position recorded in this way should

be encoded directly and not as metadata. While this criticism is purely semantic, a further problem

may also hinder interoperability. When the responsibility of defining metadata is delegated to

GML application schema producers, there is a significant risk that two application schemas may

use different mechanisms to describe the same ideas. To maintain interoperability for concepts

as fundamental as positional uncertainty it is imperative that they be standardised at the highest

level, i.e. within the core GML specifications. This requirement means that the current procedures

available within GML for quantifying positional uncertainty are inadequate and there is scope for

improvement.

6.3 uGML implementation

Section 2.4 provided discussion about the substantial literature on understanding and quantifying

positional uncertainty. A number of common techniques, or frameworks, were introduced includ-

ing simple epsilon bands, fuzzy set theory and probability theory. Each framework has merits, yet

it was concluded that probability theory provided the most complete quantification of uncertainties

regarding geospatial data. Section 6.2 described GML as the de facto standard for representing

geospatial features and concepts within an interoperable framework. Surprisingly, little or no stan-

dard procedure for representing the uncertainty of geospatial data exists within the current version

of GML. The contrast between the necessity of quantifying positional uncertainty, and the inability

to do so within GML provides the motivation for the work in this chapter.

This section provides a discussion on existing extensions to allow positional uncertainty within

GML, highlighting their limitations. Possible solutions are then analysed before a final solution is

suggested and demonstrated via a use case.
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6.3.1 Existing work

Despite the substantial literature on positional uncertainty little research has been conducted into

extending GML to provide such functionality. Perhaps the primary reason is that, until now, no

interoperable (XML) standard existed to allow the quantification of uncertainty. Any extension

of GML to allow positional uncertainty would therefore have to provide a standard for describing

uncertainty; a non-trivial task. Another contributing factor to the dearth of GML extensions for

positional uncertainty might be the complexity of the GML schemas, discussed in Section 6.2.

When considered together, these two factors dictate that the creation of a GML extension for

positional uncertainty is a substantial body of work. Nonetheless, a couple of attempts have been

made. The following two sections analyse the work carried out by Morris and Petry (2006) and

Donaubauer et al. (2008), respectively.

A fuzzy approach

Although Section 2.4 concluded that probability theory provided the most robust framework for

quantifying positional uncertainty, a substantial amount of research has been conducted on the use

of fuzzy set theory. Morris and Petry (2006) outline an extension of GML to provide support for

geographic objects with uncertain boundaries. This extension, also titled UGML (herein denoted

by the use of a capital ‘U’), allows a series of alpha-cut representations to be included within a

GML object. Alpha-cuts are defined by Buckley (2004) as “slices through a fuzzy set producing

regular (non-fuzzy) sets”.

While UGML provides a valuable extension to GML, there are several limitations, or flaws,

that prevent it from fully satisfying the requirements of a positional uncertainty extension to GML.

Primarily, this implementation of fuzzy set theory, unlike of probability theory, does not allow for

complex relationships between locations, i.e. spatial autocorrelation (Section 2.4). This can be

seen clearly in Figure 6.3 which depicts 3 realisations of a polygon (core, maximum and an alpha-

cut). The simplicity of this approach is a clear contrast to the flexibility of the approach shown in

Figure 2.6 and Figure 2.7. Also, the mechanism adopted by Morris and Petry (2006) to allow the

inclusion of alpha-cuts within GML is sub-optimal. The key idea is that by using existing GML

concepts (DynamicFeatureType) the overheads of UGML implementers are reduced. However,

by including the uncertainty information at the feature-level, and not the geometry-level, assump-

tions must be made. For example, if a feature has multiple geometries, a phenomenon that is

supported by GML, it is unclear which geometry the alpha-cuts refer to. The use of DynamicFea-
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tureType also promotes the repetition of duplicate feature properties.

Figure 6.3: An illustration of how alpha cuts can represent positional uncertainty for a polygon.
The dashed grey line represents an alpha cut of the polygon and the orange line is the maximum.

Morris and Petry (2006) clearly identified the need for a GML extension to cater for positional

uncertainty. However, the oversimplification of the fuzzy membership function and poor design

choices culminated in a profile of GML that has limited usability. One further point is that this

approach loses the exact shape of the continuous membership function by discretising it into alpha-

cuts. The ‘shape’ of the PDF can always be implicit in UncertML either through the use of a

well-known distribution of through the use of quantiles to approximate user-specified PDFs. The

solution presented by Morris and Petry (2006) can only approximate the membership function in

the latter manner by storing many alpha-cut representations, and the authors do not discuss this

strategy in any detail.

An ISO 19115 approach

Donaubauer et al. (2008) also identify the need for a GML extension to allow for positional un-

certainty. Their work, however, focusses on the use of the ISO 19115 and ISO 19139 metadata

standards to provide the quantification of uncertainty. While the use of these ISO standards ar-

guably improves interoperability with existing standards there is a significant flaw. The metadata

concepts outlined in ISO 19115 and realised in ISO 19139 are conceptual, or abstract (Kresse

and Fadaie, 2004). While the 400+ elements defined within ISO 19115 may be used as metadata,
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often there is not enough information for practical use. This is especially apparent within the Data

Quality (DQ) clause. Donaubauer et al. (2008) provide an example use case of ISO 19139-encoded

uncertainty within a GML MultiCurve aggregate (Listing 6.5).

<app:area gml:id="idfafe29f9-8992-44c8-9718-c100a7bffdca">
<gml:multiCurveProperty>

<gml:MultiCurve>
<gml:curveMember>

<gml:Curve>
<gml:metaDataProperty>

<mdl:GeometryLevelMetadata>
<mdl:absoluteExternalPositionalAccuracy>

<gmd:DQ_AbsoluteExternalPositionalAccuracy>
<gmd:result>

<gmd:DQ_QuantitativeResult>
<gmd:valueUnit xlink:href="#m"/>
<gmd:value>

<gco:Record xsi:type="gml:LengthType" uom="#m">2.0<
/gco:Record>

</gmd:value>
</gmd:DQ_QuantitativeResult>

</gmd:result>
</gmd:DQ_AbsoluteExternalPositionalAccuracy>

</mdl:absoluteExternalPositionalAccuracy>
</mdl:GeometryLevelMetadata>

</gml:metaDataProperty>
<gml:segments>

<gml:LineStringSegment>
<gml:posList>0 0 10 0 5 10</gml:posList>

</gml:LineStringSegment>
</gml:segments>

</gml:Curve>
</gml:curveMember>

</gml:MultiCurve>
</gml:multiCurveProperty>

</app:area>

Listing 6.5: A GML MultiCurve element using ISO 19115 and ISO 19139 elements to encode
the positional uncertainty (Donaubauer et al., 2008).

The example in Listing 6.5 clearly identifies the problems of using the ISO 19115 metadata

DQ elements to quantify positional uncertainty. Within the MultiCurve element exists a metadata

property of type DQ_AbsoluteExternalPositionalAccuracy. This property contains a DQ_-

QuantitativeResult with a value of 2 metres. The problem is that the semantics of this value

are not well defined, so that it is not clear what the 2 metres actually refers to. Also, using this

extension does not provide a mechanism for quantifying spatial autocorrelation, or other complex

phenomena such as covariance between specific sets of points.

However, the method of extension employed by Donaubauer et al. (2008) is superior to that
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employed by Morris and Petry (2006). The uncertainty has been delegated to a geometry level, via

the proposed GeometryLevelMetadata property, and is therefore more explicit. It is interesting

to note that both Donaubauer et al. (2008) and Morris and Petry (2006) have adopted the view that

positional uncertainty is metadata and not data. The reasons for this are explored in the following

section.

6.3.2 Approaches to extending GML in order to enable uncertain geometries

One of the main benefits of XML is that it is extensible, which means that there are many ways

in which to extend an existing XML vocabulary such as GML to allow additional functionality.

The requirement to integrate UncertML into GML restricts any extension to the use of elements,

rather than attributes. The key decision then becomes whether positional uncertainty should be

considered as data or metadata. The two previous examples of integrating positional uncertainty

into GML both concentrated on a metadata perspective (Morris and Petry, 2006; Donaubauer et al.,

2008). The following section provides an alternative, whereby positional uncertainty is considered

to be data.

Data approach

Listing 6.1 outlines a typical GML Point element. The ‘data’ is considered to be the coordinates,

i.e. the values that reside within the pos element. The current GML specification (3.2.1) states that

a pos (DirectPositionType) is an extension of a doubleList, i.e. it is a space-separated list of

floating point values. Typically, this list contains one value per coordinate so a two-dimensional

point will have two values within the pos element. Perhaps one method of encoding positional

uncertainty would simply be to state, within the specification, that the pos element now contains

the expected value and variance of each coordinate. This extension would not require any physical

changes to the schema. A two-dimensional point would now have the following values: mean

x, variance x, mean y, variance y. A major disadvantage of this proposal is that it is not

explicit enough. For example, while the specification states the desired order and meaning of

values within the schema, there are no physical restrictions in place to allow validation. Further-

more, the quantification of uncertainty is limited to a single data pattern (normal distribution); no

mechanism is in place for other distribution types or spatial autocorrelation. A more sophisticated

extension can be achieved by altering the DirectPositionType and DirectPositionListType

(poslist), replacing the space-separated values with an UncertML type.
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This modification allows the data of a GML geometry to be upgraded to any UncertML type. In

the simplest form this could be a series of expected, or mean, values for the coordinates. However,

the range of available types within UncertML allows for a far more complex representation using

probability distributions for both marginal and jointly distributed coordinates. Listing 6.6 provides

an example of how a GML point is encoded using an UncertML extension to the pos element.

<ugml:uPoint srsName="EPSG:4326">
<ugml:upos>

<un:Distribution definition="Gaussian">
<un:parameters>

<un:Parameter definition="mean">
<un:value>52.01</un:value>

</un:Parameter>
<un:Parameter definition="variance">

<un:value>0.0002</un:value>
</un:Parameter>

</un:parameters>
</un:Distribution>
<un:Distribution definition="Gaussian">

<un:parameters>
<un:Parameter definition="mean">

<un:value>0.56</un:value>
</un:Parameter>
<un:Parameter definition="variance">

<un:value>0.0002</un:value>
</un:Parameter>

</un:parameters>
</un:Distribution>

</ugml:upos>
</ugml:uPoint>

Listing 6.6: A GML Point element extended to use UncertML to encode the positional
uncertainty.

The example given in Listing 6.6 locates a point within a quantified uncertain region by giving

the marginal distributions of its coordinates. Worth noting is that the extended pos element (upos)

contains two UncertML Distribution elements. However, it could contain a Distribution-

Array instead. Care must be taken to ensure that there are enough distributions to quantify each

coordinate of the point. Correlation between error at different coordinates, discussed in Section

2.4.1, can be encoded using the MultivariateDistribution type (Listing 6.7).

The main benefit of encoding positional uncertainty as data, rather than metadata, is that all

uncertainty is expressed explicitly. This stipulation means that it is impossible to encode a ge-

ometry without giving thought to the underlying uncertainty. While the semantic benefits of this

system are obvious i.e. all positions are observed indirectly and are therefore inherently uncer-

tain syntactically it has several problems. Primarily the GML schema has in fact been altered,
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<ugml:uPoint srsName="EPSG:4326">
<ugml:upos>

<un:MultivariateDistribution definition="Gaussian">
<un:parameters>

<un:ParameterArray>
<un:elementType>

<un:Parameter definition="mean"/>
</un:elementType>
<un:elementCount>2</un:elementCount>
<swe:encoding>

<swe:TextBlock decimalSeparator="." blockSeparator=" "
tokenSeparator=","/>

</swe:encoding>
<swe:values>

52.01
0.56

</swe:values>
</un:ParameterArray>
<un:ParameterArray>

<un:elementType>
<un:Parameter definition="covariance"/>

</un:elementType>
<un:elementCount>4</un:elementCount>
<swe:encoding>

<swe:TextBlock decimalSeparator="." blockSeparator=" "
tokenSeparator=","/>

</swe:encoding>
<swe:values>

0.0002,0.0015
0.0015,0.0002

</swe:values>
</un:ParameterArray>

</un:parameters>
</un:MultivariateDistribution>

</ugml:upos>
</ugml:uPoint>

Listing 6.7: A GML Point element using the MultivariateDistribution type to encode spatial
autocorrelation between coordinates.

rather than extended. The alteration to pos to allow it to encode UncertML types rather than

space-separated numbers propagates through the whole GML geometry schema. The effects of

this single alteration are that each geometry that should support uncertainty must also be altered.

While the semantics of a Point and uPoint element are very similar (i.e., they describe a point

location via a direct position) the slight syntactic changes (e.g., upos instead of pos) break all

compatibility with existing GML software. For example, a GML 3.2.1 parser could process a

Point element but would not be capable of processing a uPoint element. A secondary effect of

this alteration is that the changes to both pos and poslist are not automatically inherited by the

GML geometry types. This requires alterations to be made to every GML geometry, i.e. a specific
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‘uncertain’ geometry type must be defined for each existing GML geometry. The result of this

is a schema that contains many elements from the GML geometry schema that have been altered

slightly, but enough to render them incompatible with existing GML software.

Extending, or altering, GML to allow positional uncertainty to be encoded as data, rather than

metadata, provides a semantically sound solution, but at what cost? The need to change the base

position types within the geometry schema forces changes upon all geometry elements, breaking

the compatibility with existing GML software. Technically, all geospatial positions are inherently

uncertain, therefore they should be encoded as such. However, when such an encoding hinders

interoperability it comes at too high a cost.

Metadata approach

The problems encountered by the data-centric extension, discussed above, are resolved by employ-

ing a metadata extension. Extending GML to add an additional ‘metadata’ property is a classical

approach of XML extension and, typically, does not break compatibility with existing software.

While the extension will not validate against the stock GML schemas, any GML parser can choose

to ignore a property if it does not understand it. There are implications to ignoring uncertainty in

geospatial data, especially when the criticality of uncertainty in decision making is considered.

However, the decision to ignore any uncertainty is at the software level and should not be consid-

ered a negative aspect of a metadata-focussed extension, provided that users of the data are aware

that it is not being exploited to the full. In the previous section the need to create separate elements

for each uncertain GML geometry was discussed. Using a metadata approach this can be avoided.

In fact, by extending the GML AbstractGeometry element to add an uncertainty property, ev-

ery GML geometry automatically inherits the changes. Essentially, this results in a single change

to the root of the hierarchy which is adopted, automatically, by all child elements, in stark con-

trast to the previously-discussed method. The tangible benefits of adopting an extension such as

this clearly outweigh the detrimental side-effects of a metadata-centric approach. Therefore, the

decision to implement uGML as a metadata extension was made.

The physical changes required to GML are small. Listing 6.8 depicts how a single element

(uncertainty) has been added to the AbstractGeometryType complex type. The uncertainty el-

ement references the AbstractUncertainty element from UncertML, allowing any UncertML

type to be encoded within a GML geometry. The result of this extension can be seen in Listing

6.9, which shows the same Point as Listing 6.6 but with a metadata extension.
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<element name="AbstractGeometry" type="gml:AbstractGeometryType" abstract="true"
substitutionGroup="gml:AbstractGML" />

<complexType name="AbstractGeometryType" abstract="true">
<complexContent>

<extension base="gml:AbstractGMLType">
<sequence>

<element name="uncertainty">
<complexType>

<sequence>
<element ref="un:AbstractUncertainty"/>

</sequence>
</complexType>

</element>
</sequence>
<attributeGroup ref="gml:SRSReferenceGroup"/>

</extension>
</complexContent>

</complexType>

Listing 6.8: Extension to GML AbstractGeometryType to allow the addition of positional
uncertainty.

On first glance, the two examples in Listings 6.6 and 6.9 appear identical, however, there are

differences. Primarily, the root element is a GML Point, not uPoint, and the data is encoded

within the GML pos, not upos, element. These slight changes mean that an existing GML parser

can process and understand the Point element, choosing to ignore anything between, and includ-

ing, the uncertainty property. This will result in a point with coordinates 52.01,0.56, however,

the actual meaning of these coordinates must be consistent across all users of uGML. When the

positional uncertainty is quantified within metadata as it is here, it is not clear what the actual

coordinates (data) values mean. Therefore, within uGML, it is specified that the values within a

pos or poslist element must always be the expected value (statistical mean). While this may

seem obvious to the reader in situations where the positional uncertainty is quantified using a nor-

mal distribution, care must be taken when using other concepts to quantify the uncertainties. For

instance, when using the UncertML Realisations type to quantify a coordinate, it is important

to remember that the value within the pos element is the mean value and not a single realisation.

Adherence to this rule should ensure that both users who wish to ignore and those who wish to

process the positional uncertainty are aware of exactly what is encoded in the data and what is

encoded in the metadata.

With the extension made to the root of the geometry substitutability chain, all geometries

inherit the benefits. Thus far all examples of positional uncertainty within GML have focussed on a
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<gml:Point srsName="EPSG:4326">
<gml:uncertainty>

<un:Distribution definition="gaussian">
<un:parameters>

<un:Parameter definition="mean">
<un:value>0.0</un:value>

</un:Parameter>
<un:Parameter definition="variance">

<un:value>0.00002</un:value>
</un:Parameter>

</un:parameters>
</un:Distribution>
<un:Distribution definition="gaussian">

<un:parameters>
<un:Parameter definition="mean">

<un:value>0.0</un:value>
</un:Parameter>
<un:Parameter definition="variance">

<un:value>0.00002</un:value>
</un:Parameter>

</un:parameters>
</un:Distribution>

</gml:uncertainty>
<gml:pos>52.01 0.56</gml:pos>

</gml:Point>

Listing 6.9: A GML Point element extended to embed UncertML within an uncertainty, metadata,
property.

simple point. However, much more complex geometries and their uncertainties can be represented

using uGML. Listing 6.10 gives an example of how a GML Polygon can be encoded with uGML.

This example demonstrates the ability of uGML to encode the correlation between the individual

points of an object using a multivariate Gaussian distribution. The values in this example have

been truncated for brevity. However, the covariance matrix structure is capable of storing the

correlation between the uncertainty in coordinates of individual points as well as the correlation

between uncertainties at all points within the polygon. In the example in Listing 6.10 there are

144 values in the covariance matrix. This is because there are 6 points in the polygon, each with 2

dimensions. This gives a matrix of size 12x12. This encoding is scalable, for polygons with more

points and with higher dimensions.

Listing 6.10 is an example of how uGML can be used to encode a deformable object, discussed

in Section 2.4.1. This ability to encode the likely shapes and positions of deformable objects

provides a more functional solution than that proposed by Morris and Petry (2006). The benefit

of integrating UncertML, a well-defined standard for encoding probabilistic representations of

generic uncertainty, is also an improvement over the solution discussed by Donaubauer et al.
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(2008). While the solution discussed here is syntactically similar to that proposed by Donaubauer

et al. (2008), UncertML ensures a more explicit, and arguably, more interoperable package.

6.3.3 A uGML use case

The concepts covered in this chapter can be difficult to understand and the nature of XML, while

human-readable, renders it hard to visualise the uGML encodings. These issues motivated the

development of a small prototype web application to allow users to create and visualise uGML

instances. Developed using the Google Maps API 4, the prototype is a platform to showcase

the capabilities of uGML and to provide users with some ideas about potential uses of uGML.

The web application interface, mapping, uGML parsing and encoding is a contribution of this

thesis. The code to generate realisations from a given set of marginal distributions, or multivariate

Gaussian distribution was provided by a third party.

Figure 6.4: uGML web application demonstrating how uncertainty can be added to individual
points of an object.

Built around the latest web technologies, the application allows users to draw lines and poly-

gons on top of a map layer. The individual points of the line or polygon can then be inspected and,

if required, can have some uncertainty added. Currently, the uncertainty of each point is normally

4http://code.google.com/apis/maps/index.html
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distributed. However it is possible that the application will be extended in future to allow other

types of probability distributions. The user adds uncertainty to points, either individually or as

a group, by adjusting a slider to set the standard deviation. Figure 6.4 shows a point with some

added uncertainty. The concentric circles represent 1, 2 and 3 standard deviations, thus represent-

ing 68%, 95% and 99.7% confidence intervals given it is normally distributed. Unfortunately, due

to limitations in the Google Maps API, the coordinates of a point can not be assigned correlated

uncertainties. However, an overall spatial correlation can be set, using a slider, to quantify the

correlation between uncertainties at the points of an object. All of the objects viewable in the web

application are encoded as uGML. At any stage of the web application, a user can switch between

the map and uGML views to investigate how the uGML changes as they alter the uncertainty

properties. When a polygon or line has no correlation, each point of the shape is represented as

a marginal distribution (Listing 6.6). These upos distributions are parsed in JavaScript and the

mean values are taken as the x and y coordinates. Using this list of coordinates a polygon, or line,

is drawn to the map canvas using the Google API. The uGML web application then calculates the

standard deviation of each point as the square root of the specified variance, this is then used to

draw the concentric circles around each point. If, however, there exists some correlation between

the points then a MultivariateDistribution is used within a posList property (Listing 6.7).

The process for rendering the uncertain shape is similar to the marginal case, however, the extrac-

tion of the variances from the covariance matrix requires more processing (they form the diagonal

of the matrix). The uGML that is generated can be uploaded to a server and retrieved at a later

date, where it is parsed and converted back to a visual representation.

Once the uncertainties at each point have been elicited from the user, a series of realisations of

the object are generated. These realisations are presented to the user in a controllable animation,

to demonstrate the effect that uncertainty has on the position of the object. Figure 6.5 shows the

object created in Figure 6.4 with one possible realisation. The relatively large uncertainties of the

points result in a realisation of an object that is significantly different to the initial one. The web

application allows for many variables to be altered, some with drastic effects on the generated

realisations. Unfortunately, the current version of uGML does not support the description of true

rigid objects. Providing a correlation value of 1.0 generates realisations that translate from the

user-specified polygon, but they do not rotate. The reason for this omission is that the addition of

a number of required rotation angles requires a major structural change to the GML schema that

would break backwards compatibility with existing GML software. It should be mentioned that
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Figure 6.5: A realisation (orange) of an object (blue) created using the uGML web application.
Large uncertainties have resulted in a substantially different geometry.

the inclusion of true rigid objects does not require a change to the UncertML schema.

The web application is freely available to use 5. However, it should be noted that as UncertML

and uGML inevitably evolve the code seen in the web application may differ from that discussed

in this thesis. The basic concepts of positional uncertainty and UncertML, however, will remain

unchanged.

6.4 Conclusions

The work in previous chapters focussed on using UncertML to quantify attribute uncertainty. This

chapter investigated the use of UncertML to quantify positional uncertainty. Section 2.4 provided

an overview of positional uncertainty including current methodologies for quantifying it. There

are many ways of quantifying positional uncertainty ranging from simple epsilon bands to fuzzy

and probabilistic methods. However, it was decided that positional uncertainty is best quantified

using probability theory. Particular attention was paid to the work carried out by Heuvelink et al.

(2007) and their categorisation of objects as points, rigid or deformable. While the description

of a rigid object is statistically simpler than a deformable object, it proved difficult to implement

within uGML. The omission of true rigid objects from uGML is not a reflection on the expressive-

5http://www.uncertweb.org/accuracy
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ness of UncertML, but rather the difficulty of implementing them within GML while maintaining

backwards compatibility. A discussion followed as to whether positional uncertainty should be

considered data or metadata. It was concluded that while both schools of thought provided the

same information, uncertainty should not be considered metadata for any data that are not directly

observed. In the case of positional uncertainty it can be argued that all positions undergo the

scrutiny of some form of processing and are therefore not directly observed. However, Section 6.3

shows that treating all data as derived, and hence uncertain, is not always desirable.

Section 6.2 investigated the GML specification. An overview of the history of GML shows

that the evolution from version 2 to version 3 drastically increased the complexity of the standard.

The increased complexity of GML 3 had led to various software tools continuing to only support

version 2. However, despite this complexity the individual components of GML 3 (e.g., geometry,

topology etc) are simple enough to use in isolation. Within the GML 3 geometry schemas there is

no current mechanism for encoding positional uncertainty. The only means to encode positional

uncertainty is via the ‘GenericMetadataProperty’, however this is far from satisfactory and has, in

fact been deprecated. This omission from the GML schemas motivated the work in Section 6.3.

Despite the lack of functionality in GML and the discussed importance of quantifying posi-

tional uncertainty, few GML extensions exist for this purpose. Section 6.3 detailed two approaches

by Morris and Petry (2006) and Donaubauer et al. (2008) respectively. The method outlined by

Morris and Petry (2006) used alpha-cuts from fuzzy set theory but was found to be insufficiently

expressive. Donaubauer et al. (2008) utilised the ISO 19115 metadata standard to quantify the

uncertainty as metadata. This method proved more complete, but the ISO 19115 standard is too

abstract to accurately quantify uncertainties in a way that makes the data easy to interpret and use.

The shortcomings of the two examined methods further motivated the work in Section 6.3.2.

Two possible methods of extending GML to allow UncertML to quantify positional uncer-

tainty were discussed in Section 6.3.2. Firstly, a method whereby the positional uncertainty is

considered to be data rather than metadata was examined. This method was in-line with the con-

clusions in Section 2.4, but encoding positional uncertainty as data within GML resulted in too

many significant changes to the schema, which in turn led to serious incompatibilities with exist-

ing software. This breach of interoperability forced the development of a metadata model. The

metadata method proved that with only a simple change the entire GML geometry schema could

be enhanced to allow positional uncertainty to be encoded. Various assumptions were identified

and made explicit, namely that the data within a pos or poslist element should always be the
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expected value. However, this limitation is insignificant when set against the benefits provided by

a metadata model. Finally, a web application was discussed that allows users to draw and visualise

uGML shapes via a simple interface.

The work in this chapter has clearly demonstrated the flexibility of the UncertML specification.

Prior to this, all examples of UncertML had focussed on attribute uncertainty. The ease with which

UncertML can integrate with GML to encode positional uncertainty demonstrates the benefits of

designing UncertML in a domain-agnostic way. It can be concluded from the research in this

chapter that UncertML can be used to model positional uncertainty, thus providing an answer to

the question in objective 2 (Section 1.3.1).
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<gml:Polygon srsName="EPSG:4326">
<gml:uncertainty>

<un:MultivariateDistribution definition="multivariate-gaussian">
<un:parameters>

<un:ParameterArray>
<un:elementType>

<un:Parameter definition="mean"/>
</un:elementType>
<un:elementCount>12</un:elementCount>
<swe:encoding>

<swe:TextBlock blockSeparator=" " tokenSeparator=","/>
</swe:encoding>
<swe:values>0,0,0,0,0,0</swe:values>

</un:ParameterArray>
<un:ParameterArray>

<un:elementType>
<un:Parameter definition="covariance"/>

</un:elementType>
<un:elementCount>144</un:elementCount>
<swe:encoding>

<swe:TextBlock blockSeparator=" " tokenSeparator=","/>
</swe:encoding>
<swe:values>

<!-- 144 values -->
</swe:values>

</un:ParameterArray>
</un:parameters>

</un:MultivariateDistribution>
</gml:uncertainty>
<gml:exterior>

<gml:LinearRing>
<gml:poslist>
38.834004 -77.300227
38.826114 -77.308810
38.823439 -77.302458
38.819159 -77.302458
38.818892 -77.299197
38.831463 -77.294047

</gml:poslist>
</gml:LinearRing>

</gml:exterior>
</gml:Polygon>

Listing 6.10: uGML Polygon element demonstrating how an UncertML
MultivariateDistribution can be used to quantify the correlation between the points of an
object.
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7.1 Thesis summary

7.1.1 Development of an interoperable framework for quantifying uncertainty

Chapter 2 reviewed current work in the fields of interoperability and uncertainty. Emphasis was put

on XML as the current de facto standard for building interoperable frameworks. The increasing

popularity of XML has seen a number of supplementary standards evolve. The concept of a

Web service as a platform-independent interface to complex processing algorithms provides the

foundations for a software engineering architecture, SOA.

In comparison to the relatively new technologies in interoperability, the techniques used to

quantify uncertainty are far more established. The basic principles of probability theory have been

understood since the sixteenth century. Chapter 2 focussed on providing a solid understanding of

probability theory, and how it can be used to quantify uncertainty. Other techniques for quantifying

uncertainty were acknowledged, including fuzzy set theory and Dempster-Shafer theory, however,

due to requirements dictated by the INTAMAP project and consortium, probability theory was

used.

The chapter contained a strong emphasis on the application of both interoperability and un-

certainty within the geospatial domain, as this was seen as the main use case for the work in this

thesis. The primary efforts of developing interoperability standards within the geospatial domain

occur within the OGC. Established in 1994, the OGC is a consortium that has successfully de-

veloped numerous geospatial XML standards and services. Several of the key OGC standards

identify the importance of quantifying uncertainty, an integral part of geospatial data, yet do not

specify how. The lack of a recognised interoperable standard for quantifying uncertainty provided

the motivation for the work in this thesis.

In Chapter 3 a solution to the absence of a standard for quantifying uncertainty was provided

in UncertML. In response to the research by Gokhale et al. (2002) and Chung et al. (2003), a

Web service approach was adopted over other distributed technologies. A conceptual model was

outlined that followed a weak-typed model of uncertainty, although arguments were provided for

both weak and strong-typed designs. The implementation of the UncertML conceptual model was

provided by a set of XML schemas rather than a DTD due to the reasons specified by Bex et al.

(2004). The UncertML schemas were illustrated by a series of XML examples, showing how

they can be used to describe uncertainty using realisations, summary statistics and probability

distributions. The XML examples demonstrated the benefits of a weak-typed design by allowing

191



Chapter 7 CONCLUSIONS

multiple statistics to be encoded using a single Statistic type. However, a reliance on identifiers

to provide semantics is introduced. UncertML uses the URL scheme for identifying resources and

a preliminary implementation of a dictionary of uncertainty terms was provided. The provision

of UncertML as an XML-based language allows it to be used within SOAs, which currently are

a popular modelling paradigm (Erl, 2004, 2005; Josuttis, 2007). The success of UncertML as

an interoperable language for describing probabilistic uncertainty can be measured by a few key

metrics: flexibility, usability and interoperability. The remaining chapters in this thesis identi-

fied varying applications where UncertML can be used thus implicitly demonstrating a degree of

success.

7.1.2 Applications of UncertML

Chapters 2 and 3 provided the motivation and implementation of an interoperable standard for

describing uncertainty using the concepts of probability theory. Chapters 4 – 6 discuss applications

of UncertML in a variety of scenarios, using a combination of existing standards. Chapter 4 began

with a critical analysis of the SOS specification — an interface to allow querying and retrieval

of observation data, encoded in accordance with the O&M standard. The goal of the SOS, to

provide an interface for managing deployed sensors and retrieving sensor data consistent for all

sensor systems is ambitious. The difficulties faced by the SOS can be attributed to the standard

upon which it is based, O&M. The problem is that O&M is an abstract conceptual model of an

observation and is not meant to treated as an implementation. It is stipulated that profiles of O&M

should be developed by the user prior to implementing it. However, the development of profiles

by users, rather than the OGC, may result in duplicate profiles for similar observations. This

duplication of profiles is not interoperable.

Despite the problems with both SOS and O&M specifications, a reasonable amount of interest

has grown in the Sensor Web community. The lack of an existing standard for encoding uncertainty

within the OGC, despite the fact that all sensor-observed data is inherently uncertain is a major

oversight. Chapter 4 provided an extension to the 52◦ North implementation of a SOS to allow the

uncertainty of observation results to be encoded using UncertML. This extension was illustrated

by a use case, providing data gathered from Weather Underground, with estimated uncertainties,

via a SOS interface. This use case clearly shows UncertML being used to quantify observation

errors, an objective of this thesis outlined in Section 1.3.1. Furthermore, the use of UncertML

within a Sensor Web context will no doubt contribute to the ongoing research in this field, in
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particular to the work of Havlik et al. (2009), Liang et al. (2005) and Terhorst et al. (2006).

Chapter 5 introduced the INTAMAP project. The development of UncertML occurred as a

requirement of the INTAMAP project. The interpolation techniques utilised in INTAMAP are an

extension of the work carried out in Dubois and Galmarini (2005). The contribution of this thesis

was to provide an interoperable framework around these automated algorithms. This framework

consisted of a WPS interface, integrated with O&M, GML and UncertML — including the API.

Since the process of interpolating observation data identifies and introduces uncertainty, a

language capable of describing this uncertainty was required. The WPS interface provides a

loosely-coupled, autonomous method for requesting the interpolation of observation data; two

key requirements for a SOA (Erl, 2004). The output of an interpolation is inherently uncertain.

However, INTAMAP also allowed for uncertainties on the observation inputs to be encoded, this

meets objective 2 in Section 1.3.1. When the user quantifies the uncertainties on inputs they are

propagated through the interpolation process via novel techniques (developed by other INTAMAP

researchers). The true potential of open standards, and UncertML in particular, was demonstrated

by the ability to seamlessly link an UncertML-enhanced SOS as an input to the INTAMAP WPS.

This chaining of services demonstrates how UncertML can be used in data processing workflows.

The chapter concluded with a philosophical discussion about interoperability and what it means to

be ‘interoperable’. Simply implementing standards-based interfaces is often not enough to ensure

interoperability and often supporting tools and APIs should be developed.

The previous two chapters both utilised UncertML to describe attribute uncertainty. However,

a framework for describing uncertainty needs to be able to quantify positional uncertainty as well.

Chapter 6 provided a critical analysis of existing interoperable standards for encoding geometries,

namely GML. The simplicity of the strong-typed GML 2 saw a rapid adoption, which prompted

the development of a far larger set of schemas: GML 3 (weak-typed). However, the additional

complexities within GML 3 proved difficult for software implementers, who chose to support

version 2.

There is no suitable mechanism for describing uncertainty within GML and this motivated

the development of uGML. Quantification of positional uncertainty was implemented according

to initial work by Heuvelink et al. (2007), who state that uncertain geometries belong to one of

three categories: point geometries, rigid geometries or deformable geometries. UncertML was

demonstrated to be capable of describing all three categories, including cases where spatial auto-

correlation was present; however, rigid objects were only capable of translations and not rotations
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due to potential issues with existing GML software. Using the Distribution type within GML

allows the use of various probability distributions to encode the positional uncertainty. While the

examples in Chapter 6 were all based on the Gaussian distribution, because of the weak-typed de-

sign it is possible to use any probability distribution. This allows the concepts discussed in Ripley

(1977) to be encoded in UncertML.

Two possible implementations of uGML were discussed. One where the uncertainty was con-

sidered to be the data and one where it was considered metadata. It was argued that logically,

perhaps it is better to consider positional uncertainty as the data. Unfortunately, due to com-

plications in the development of uGML it was proved that a schema that treated uncertainty as

metadata was far more extensible. The potential of uGML was illustrated by a prototype web

application that allowed users to build lines and polygons with uncertain points. Any correlation

between these uncertainties could also be defined, demonstrating the flexibility of the uGML and

UncertML schemas. The contribution of this chapter was the demonstration that UncertML can

be used to encode positional uncertainties, as stipulated in objective 3, Section 1.3.1.

7.1.3 Thesis aims and objectives

To summarise, the conclusions of this thesis are given below, specifically how the work in each

chapter relates to the objectives outlined in Section 1.3.1:

• UncertML is an XML language capable of expressing uncertainty using probabilistic tech-

niques. Uncertainty can be quantified using summary statistics, probability distributions or

a set of realisations. The design uses a weak-typed approach which provides flexibility at

the cost of usability. The work in Chapter 3 concluded that UncertML is a flexible and us-

able solution for representing probabilistic uncertainty. This was a primary objective set out

by this thesis in Section 1.3.1. However, the degree to which this objective has been met

is difficult to accurately quantify. Chapters 4– 6 each provided a unique application within

which UncertML was integrated. The diversity of these applications domains is testament

to how interoperable UncertML is as an information model.

• Designing a data model requires a delicate balance between expressiveness (i.e., it must

contain a large enough vocabulary to be of use) and restrictiveness (i.e., it must not be so

vague that it is not clear what terms belong to the vocabulary). Many OGC standards fall

into the ‘too expressive’ category and require the development of profiles (restrictions) to

prove useful. The OGC should govern the creation of these profiles.
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• The INTAMAP project provided an interoperable interface to allow complex interpolation

algorithms to be utilised by naïve users. UncertML was used throughout INTAMAP and

provided a mechanism for propagating uncertainty through the interpolation process. The

propagation of uncertainty coupled with the integration of various OGC standards demon-

strates that UncertML can be used for processing of data in uncertainty-enabled workflows

(objective 3, Section 1.3.1).

• A SOS extension was developed that allowed the SOS to serve observations with charac-

terised uncertainty. This was used by the INTAMAP service, demonstrating a primitive

form of service chaining. The integration with the O&M standard is proof that UncertML

can be used to quantify observation errors, thus answering the first part of objective 2.

• uGML was developed to use UncertML to describe positional uncertainty. Designed as

an extension to the GML schema, uGML provided the ability to describe uncertainty on

point, rigid (partly) and deformable objects, including any spatial autocorrelation present.

The conclusions of Chapter 6 state that UncertML can be used to quantify some forms of

positional uncertainty, in answer to the second part of objective 2.

7.2 Directions for future research

The work in this thesis has provided the foundations of an interoperable language capable of

describing complex uncertainties using a probabilistic framework. This thesis has demonstrated

the flexibility that UncertML provides by integrating it into a series of varying scenarios and

standards. There is huge potential for UncertML, and some of the directions that it can be taken

forward are listed below:

Remodel UncertML — UncertML was modelled on a weak-typed design methodology. This

allowed UncertML to encode uncertainty with any statistic or probability distribution. It is

this flexibility that is UncertML’s greatest strength — but also its greatest weakness. The

ability to describe any distribution or statistic relies on an identifier that references a term

in a dictionary. It is argued that if all users of UncertML understand that identifier A refers

to a specific statistic then meaningful processing of that can ensue. However, the problem

arises when users start referring to their own dictionaries, a valid and reasonable option.

The use of non-standardised vocabularies can result in two Statistic types referring to

the same statistic, but with different identifiers, which breaks interoperability. Coupled with
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the fact that the majority of users would only use a small subset of possible statistics and

distributions a completely hard-typed design would be beneficial. Another criticism of the

UncertML schemas is the reliance on the SWE Common standard. Specifically, it is the

implicit reliance of SWE Common on the GML schemas that causes the problems. Often

users of UncertML are required to write ‘parsers’, pieces of software that convert the XML

implementation of UncertML into a native programming language object. Usually this can

be acheived automatically through the use of existing software tools. However, due to a

problem with the GML schemas (which is propagated through SWE Common, and into

UncertML), these tools do not work with UncertML and so a user must create the parsers

themselves. While the reuse of code has obvious benefits, the problems associated with

the abstraction of GML and the propagation of these problems through to UncertML far

outweigh the benefits. At the time of publication (September 2010) an initial draft of this

remodelled UncertML (titled UncertML 2) has just been released that is purely hard-typed

and removes all dependencies of SWE Common.

Different encodings — The work in this thesis provided a set of XML schemas for implementing

UncertML. XML has been established as the primary interoperable method of sharing data.

However, various other languages exist. One such language that is seeing a rise in popularity

is JavaScript Object Notation (JSON). Due to the separation of the conceptual model from

the implementation of UncertML it is possible to provide UncertML implementations in

different languages, e.g. JSON. While the focus of this thesis has been to provide an inter-

operable method for exchanging uncertainty, it may be beneficial to provide more efficient

(in terms of verbosity) encodings. For instance, a Network Common Data Form (NetCDF)

encoding could prove useful, especially when quantifying uncertainties over a large number

of domain points. This is made possible by the abstraction of a dictionary of uncertainty

terms which can inform various implementations via referencing. The initial prototype of

the dictionary has received a positive response from a number of users.

Develop an API — A side effect of developing a hard-typed schema is that creating software

for it becomes easier. An UncertML API was developed as part of the INTAMAP project,

however, due to the weak-typed design of UncertML, the API had limited use. For instance,

it was able to parse the Distribution element into a corresponding Distribution class

in Java, but this class was generic and therefore could not do any meaningful processing

on this distribution. With a hard-typed design it would be possible to parse a ‘Gaussian
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distribution’ into a corresponding class. This explicit definition of distributions allows the

API to then provide much more functionality. For instance, it would be possible to gen-

erate realisations from a distribution, calculate the moments of a distribution, or find the

probability of exceeding a threshold. Tools could also be included to allow visualisation of

the distributions (and statistics where possible). The API could also support the conversion

between the different UncertML encodings.

Extend the UncertML-enhanced SOS — The SOS prototype in Chapter 4 provided a solid pro-

totype to build upon. This implementation could be improved in two ways. First, an exten-

sion to the Filter Encoding Specification (OGC 04-095, 2005) could allow a user to query

observations based upon uncertainty criteria. For example, all observations with a probabil-

ity of exceeding a particular value could be returned, or all observations with a variance less

than a given value. Combined with the existing spatio-temporal filters, this would provide

users with an extremely powerful filtering tool. The second improvement to the UncertML

SOS could be to integrate the work in Chapter 6. The locations of the sensors within a given

SOS could be uncertain, and therefore encoding this uncertainty within the SOS would be

beneficial. This could be achieved using uGML. The integration of uGML could also be

combined with the filter encoding.

Create a uGML profile — uGML is capable of describing uncertain geometries by extending

the GML geometry schemas. The number of geometries within GML is vast, and creating

software that supports all of these is a complex operation. Creating a profile of uGML which

only supports a subset of geometries could allow the development of supporting tools. For

example, a uGML ‘viewer’ application could be developed that allowed users to visualise

the geometries, and associated uncertainties, which uGML describes. This is only possible

when operating on a small number of geometries from the GML schema. The extension to

uGML could also see support for true rigid objects (i.e., support rotation as well as transla-

tion), which is currently not possible.

Develop supporting schemas — UncertML adopts a ‘separation of concerns’ philosophy. This

stipulates that any information that is not directly relevant to the quantification of uncer-

tainty should not reside within the UncertML schemas. For this reason UncertML does not

provide methods for allowing users to specify concepts such as units of measure, location

or temporal attributes. These concepts should be encoded by supporting schemas such as
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GML. While this separation works well, ensuring UncertML remains uncluttered, delegat-

ing the creation of supporting schemas to users creates the same problems faced by O&M.

A simple ‘random variable’ schema that provides elements to describe units of measure,

space and time would improve interoperability.

Allow for other methodologies — UncertML describes uncertainties quantified using probabil-

ity theory. However, as discussed throughout this thesis, there are other ways to quantify

uncertainty. Future work could investigate the possibility of adding a fuzzy section to Un-

certML, as well as Dempster-Schafer or Bayes linear sections.

Uncertainty-enabled Model Web (UncertWeb) — The UncertWeb project1 is a continuation of

the INTAMAP project. However, rather than only providing a single interpolation service,

UncertWeb is researching the possibility of developing a framework for chaining models

using Web service technologies. UncertML plays a vital role in UncertWeb as the majority,

if not all, inputs and outputs to these models are uncertain. UncertML must be capable

of describing all the different uncertainties present within a host of models including air

quality, weather forecasting and biodiversity models.

1http://www.uncertweb.org
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