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cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists
of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The
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wave equation that describes the fundamental Fourier mode of the axonemal beat.
We study the role of nonlinearities and investigate how the amplitude of oscillations
increases in the vicinity of an oscillating instability. We furthermore present numerical
solutions of the nonlinear wave equation for different boundary conditions. We find
that the nonlinear waves are well approximated by the linearly unstable modes for
amplitudes of beat patterns similar to those observed experimentally.
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1. Introduction

Cilia and flagella are hair-like appendages of eukaryotic cells exhibiting regular, wave-

like oscillations [1]. Their ability to generate regular beat patterns plays an important

role in many systems where motion on a cellular level is required [2]. Examples range

from the propulsion of single cells, such as the swimming of sperm, to the transport

of fluid along ciliated surfaces, such as the flow of mucus in the trachea. Ciliary and

flagellar beat patterns are generated by an active structure called the axoneme which

consists of nine microtubule doublets arranged in a cylindrical geometry [1, 3, 4]. A large

number of dynein motor proteins are arranged between adjacent microtubule doublets

and generate internal stresses within the axoneme that induce relative filament sliding

and as a consequence axonemal bending [5, 6, 7, 8, 9, 10].

Axonemal beat patterns have been the subject of several theoretical analyses

trying to elucidate the mechanisms underlying the generation of regular beat patterns

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Recent evidence suggests that

the interplay of collectively operating motors together with the elastic microtubules

constitutes a mechanical feedback that leads to oscillating instabilities [13, 25, 19]. The

resulting travelling wave bending patterns can account for the experimentally observed

beat patterns in bull sperm [23].

In the present article we extend previous work, in which the linearly unstable modes

near an oscillating instability were analysed to discuss the properties of self-organised

beating patterns [19, 23], by explicitly discussing the effect of nonlinearities on self-

organised beat patterns. We present a nonlinear wave equation that describes the

fundamental Fourier mode of planar axonemal beat patterns and derive analytically how

the nonlinearities determine the amplitude of the beat pattern beyond the bifurcation

point. Furthermore, we present numerical solutions of the nonlinear wave equation

subject to three different boundary conditions.

2. Dynamic equations of motion

Motivated by the observation that the beat patterns of many sperm are approximately

planar we discuss the dynamics of the axoneme in a plane. Such planar beat patterns

can be described by an effective, two-dimensional description of the three-dimensional

axonemal structure, in which the axoneme is represented by two elastic rods separated

by a fixed distance a, corresponding to the axonemal diameter of 185 nm [19, 23].

These rods are linked by elastic structural elements and by active force generators,

corresponding to the dynein motor proteins. To describe the relative motion of the two

rods, we introduce the local sliding displacement ∆ and the local shear force density f

exerted by passive elastic and active elements, as illustrated in figure 1. We denote by

r(s, t) the two-dimensional space curve parameterised by its arc length s describing the

shape of the centre line of the axoneme of length L, at time t. As illustrated in figure
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Figure 1. Schematic representation of the effective two-dimensional mechanics of
planar beats with two elastic rods sliding relative to each other due to the shear forces
generated by active elements. Illustrated are the tangential shear forces f(s) and the
local sliding displacement ∆(s). Elastic structural elements are indicated as springs.

2, this shape can be characterised by the local tangent angle ψ(s, t) such that

r(s) = r(0) +

∫ s

0

(cosψ(s′), sinψ(s′))ds′ , (1)

where we have dropped the explicit time dependence for notational convenience. In this

Figure 2. Geometry of the flagellar deformation in the x, y-plane. The shape at a
given time is described by the local tangent angle ψ(s) as a function of the arc length
s along the flagellum.

two-dimensional geometry, the local sliding displacement and the local tangent angle

are then related by

∆(s) = ∆0 + a (ψ(s)− ψ(0)) , (2)

where ∆0 denotes the relative sliding displacement at the base [10, 26, 23]. For simplicity,

we ignore hydrodynamic interactions and describe the local hydrodynamic friction by

introducing drag coefficients per unit length ξ|| and ξ⊥ for movements in directions

parallel and perpendicular to the axonemal axis, respectively. The dynamics of the

axoneme with a bending rigidity κ and an internal shear force density f(s, t) is then

described by the following set of coupled nonlinear equations [19]

∂tψ =
1

ξ⊥
(−κψ′′′′ + af ′′ + τ ′ψ′ + τψ′′) +

1

ξ‖

(
κ(ψ′)2ψ′′ − af(ψ′)2 + τ ′ψ′

)
(3)

τ ′′ −
ξ‖
ξ⊥

(ψ′)2τ = a (f ′ψ′ + fψ′′)− κ
(
(ψ′′)2 + ψ′ψ′′′

)
+
ξ‖
ξ⊥

(af ′ψ′ − κψ′ψ′′′) , (4)



Nonlinear dynamics of cilia and flagella 4

where the primes denote derivatives with respect to the arc length s, i.e. ψ′ ≡ ∂sψ.

The lateral tension τ(s, t) ensures that the filament satisfies the local inextensibility

constraint (r′)2 = 1. Note that these equations can be derived from a full three-

dimensional dynamic description of the axonemal cylinder, restricted to deformations in

a plane and do not require the introduction of the effective, two-dimensional axoneme

shown in figure 1. [27, 24].

3. Boundary conditions

The dynamic equations (3)–(4) are complemented by boundary conditions. While the

distal end (s = L) is typically free to move without external constraints, the basal end

(s = 0) is subjected to external forces and torques. Furthermore, an important aspect of

basal dynamics are the mechanical properties of the basal connection which determine

the relative sliding between microtubules at the base. Recently, it has been shown

that such basal sliding can have an important effect on the shape of the flagellar beat

[23]. Following this previous work we characterise the visco-elastic coupling between

microtubule doublets at the basal end by a basal elasticity ks and a basal friction γs.

The basal sliding displacement ∆0(t) then obeys [23]

γs∂t∆0 = −ks∆0 −
∫ L

0

f(s)ds , (5)

and in the limit for large ks and γs basal sliding is suppressed.

The boundary conditions for the tangent angle ψ(s, t) and the tension τ(s, t) are

determined by matching the internal and external torques and forces at the ends [19].

Different experimental conditions imply different boundary conditions at the basal end

s = 0. Motivated by experiments in which the centre of the sperm head is held at a fixed

position but potentially free to pivot [23], we describe the dynamics of the head angle

ψ(0, t) by introducing an angular elastic modulus kp and an angular friction coefficient

γp. In the following we discuss the cases of (i) a clamped head corresponding to the

limit of large kp, γp with and without allowing for basal sliding and (ii) a pivoting head

corresponding to kp, γp = 0 in the absence of basal sliding. The set of general boundary

conditions is summarised in table 1.

Table 1. Boundary conditions of sperm with fixed head position and free tail. We
consider specifically the clamped head corresponding to the limit of large kp and the
freely pivoting head limit with kp = 0 and γp = 0.

At s = 0 At s = L

κψ′ + a
∫ L

0
f(s)ds− kpψ − γp∂tψ = 0 ψ′ = 0

κψ′′′ − aḟ − ψ′τ = 0 κψ′′ − af = 0
κψ′ψ′′ − afψ′ + τ ′ = 0 τ = 0
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4. Oscillatory dynamics

4.1. Fourier representation

Time periodic beat patterns can be represented by the temporal Fourier modes ψ̃n(s)

of the tangent angle

ψ(s, t) =
∞∑

n=−∞

ψ̃n(s)einωt . (6)

The Fourier modes f̃n(s),∆̃n(s) and τ̃n(s) of the local shear force density f(s, t), the

local sliding displacement ∆(s, t) and the tension τ(s, t) are defined correspondingly.

The motor proteins in the axoneme generate time dependent shear forces which

induce dynamic sliding displacements ∆(s, t). The relation between sliding speed and

force is a collective property of the motors together with passive elements cross-linking

the axoneme. This effective mechanical property of active and passive elements can be

represented as a nonlinear relation in terms of the temporal Fourier modes [25, 19]

f̃1 = α∆̃1 + β∆̃1|∆̃1|2 +O(∆5) . (7)

The emergence of spontaneous oscillations is related to negative signs of the real and

imaginary parts of the linear response function α, resulting from the collective properties

of many molecular motors coupled to an elastic element [25, 28, 19, 29, 30]. The collective

effects arise from the dependence of transition rates on the state of the system, as for

example introduced by a load dependence of the motor detachment rate [19, 23].

4.2. Nonlinear waves

The nonlinear dynamics of the axoneme can then be expressed by coupled differential

equations for the discrete Fourier modes of the tangent angle and the tension. The

experimentally observed beat patterns of sperm are dominated by their fundamental

temporal Fourier mode [23], with higher harmonics contributing to less than 5% of the

wave pattern. We thus neglect in the following higher temporal harmonics of ψ(t).

To simplify the notation in the following, we drop the tilde when referring to

temporal Fourier amplitudes, defining ψ(s) ≡ ψ̃1(s), τ0 ≡ τ̃0(s), τ2 ≡ τ̃2(s). Furthermore,

we introduce dimensionless parameters ω̄, ᾱ, β̄ and ∆̄0 as defined in Appendix A. Taking

into account nonlinearities self-consistently up to cubic terms, equations (3),(4) and (7)

lead to the following set of coupled nonlinear equations for the dominant modes ψ, τ0

and τ2

iω̄ψ = −
....
ψ + ᾱψ̈ + β̄∂2

s̄ [(ψ + ∆̄0 − ψ(0))|ψ + ∆̄0 − ψ(0)|2] + ∂s̄(τ0ψ̇ + τ2ψ̇
∗)

+
ξ⊥
ξ‖

[
∂s̄(|ψ̇|2ψ̇)− 2ᾱ(ψ + ∆̄0 − ψ(0))|ψ̇|2 − ᾱ∗(ψ∗ + ∆̄∗0 − ψ∗(0))ψ̇2 + τ̇0ψ̇ + τ̇2ψ̇

∗
]

τ̈0 = 2Re{ᾱ∂s̄[(ψ + ∆̄0 − ψ(0))ψ̇∗]} − ∂2
s̄ (|ψ̇|2) + 2

ξ‖
ξ⊥

(
|ψ̇|2Re {ᾱ} − Re{ψ̇∗

...
ψ}
)

τ̈2 = ᾱ∂s̄[(ψ + ∆̄0 − ψ(0))ψ̇]− ∂s̄(ψ̇ψ̈) +
ξ‖
ξ⊥

(
ᾱψ̇2 − ψ̇

...
ψ
)

. (8)
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Here the dots denote derivatives with respect to the rescaled arc length s̄ = s/L and

complex conjugates are denoted by asterisks. In equation (8) we have also introduced

the dimensionless linear contribution to the fundamental Fourier mode of the basal

sliding displacement [23]

∆̄0 =
ᾱ

iω̄γ̄s + k̄s + ᾱ

(
ψ(0)−

∫ 1

0

ψ(s̄)ds̄

)
.

The corresponding boundary conditions complementing equation (8) are summarised in

Appendix A.

5. Wave amplitudes

The above system exhibits an oscillating instability or Hopf bifurcation, at which the

modes with which the system becomes unstable are described by a linearised wave

equation [19, 23]. In the oscillatory regime close to the bifurcation, finite amplitude

solutions to the full nonlinear wave equation (8) are expected to be similar to the

linearly unstable modes. The way the amplitude grows and the the way the shape of the

unstable modes changes with increasing distance from the bifurcation are determined by

the nonlinear terms of equation (8). In the following we study the effects of nonlinearities

near the bifurcation using a systematic expansion.

Linearising the non-linear wave equation (8) in the limit for small amplitudes, the

linearly unstable modes denoted by u0(s̄) satisfy satisfy the equation [11, 19, 23]

Lcu0(s̄) = 0 , (9)

subject to appropriate boundary conditions [19, 23]. where we have defined the linear

operator

L(ᾱ, ω̄) = iω̄ + ∂4
s̄ − ᾱ∂2

s̄ . (10)

Note that the amplitude of the linear mode u0 is not determined by the linear

equation (9). For convenience we normalise u0 such that
∫ 1

0
|u0(s̄)|ds̄ = 1. Equation (9)

together with the appropriate boundary conditions [19, 23] constitute a boundary value

problem. Nontrivial solutions exist only for pairs of critical values of the dimensionless

frequency and response coefficient (ᾱc, ω̄c) [19, 27]. In the following we will denote

Lc = L(ᾱc, ω̄c), where ᾱc and ω̄c are the values of ᾱ and ω̄ at the bifurcation point. In

figure 3, the line of critical values are indicated by the solid line representing ᾱc as a

function of ω̄c. Note that there exists a discrete spectrum of such critical lines [19].

We can express solutions of the full nonlinear problem for parameters ᾱ = ᾱc + δᾱ

and ω̄ = ω̄c + δω̄ in the vicinity of the bifurcation point by an expansion of the form

ψ(s̄) = εu0(s̄) + ε3u1(s̄) +O(ε5)

τ0(s̄) = ε2v(s̄) +O(ε4) (11)

τ2(s̄) = ε2w(s̄) +O(ε4) .
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Here ε is a small dimensionless number that characterises the distance from the

bifurcation point by

δᾱ = ρeiθε2 and δω̄ = µε2 , (12)

where we have introduced the real coefficients ρ and µ as well as the phase θ.

-75 -50 -25 0
-75

-50

-25

0

Figure 3. Schematic diagram of the complex plane of motor impedance ᾱc. For a given
dimensionless frequency ω̄c, there exists a critical value ᾱc describing an oscillating
instability. The line αc parameterised by ω̄c is shown in black. In the dashed region to
the right of the line the system is quiescent, whereas to the left of ᾱc it oscillates. The
phase theta describes the orientation of a displacement δᾱ away from a bifurcation
point in the complex plane such that δᾱ = |δᾱ|eiθ.

Inserting the ansatz (11) into the wave equation (8), we can solve this equation

systematically order by order near a given bifurcation point. First, the linearly unstable

mode u0(s̄) is determined. Then with u0(s̄) known, we can determine the static and

dynamic tension profiles v(s̄) and w(s̄), in terms of u0(s̄) as detailed in Appendix B.

Matching terms to third order in ε then leads to an equation for the nonlinear

correction u1(s̄) to the waveform:

Lcu1 = ρeiθ∂2
s̄u0 − iµu0 −N (u0) , (13)

where the nonlinear terms N (u0) are given by

N (u0) = β̄∂2
s̄

[
(u0 + ∆̄

(c)
0 − u0(0))|u0 + ∆̄

(c)
0 − u0(0)|2

]
+ ∂s̄ (vu̇0 + wu̇∗0)

+
ξ⊥
ξ‖

[
∂s̄(|u̇0|2u̇0)− 2ᾱ(u0 + ∆̄

(c)
0 − u0(0))|u̇0|2

−ᾱ∗
(
u∗0 + ∆̄

(c)
0 − u∗0(0)

)
(u̇0)2 + v̇u̇0 + ẇu̇∗0

]
,

where ∆̄
(c)
0 is the basal sliding term evaluated at the bifurcation, as defined by equation

(B.3) in the Appendix.

Using equation (13) we can obtain a relation between the coefficients ρ,µ and θ

without calculating the nonlinear correction u1. This is achieved by introducing a
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function u+
0 adjunct to u0 which has the property Lcu

+
0 = 0 and obeys

∫ 1

0
u+

0 Lcu = Z,

where Z is a constant and u is an arbitrary function satisfying the boundary conditions,

as detailed in Appendix C. Multiplication of (13) with u+
0 and subsequent integration

leads to

−ρeiθ

∫ 1

0

u+
0 ∂

2
s̄u0ds̄+ iµ

∫ 1

0

u+
0 u0ds̄+

∫ 1

0

u+
0N (|u0|2u0)ds̄+ Z = 0 . (14)

We can now discuss the emergence of the unstable mode ψ(s̄) and its frequency ω̄

when starting at a bifurcation point at ᾱ = ᾱc as illustrated in figure 3: moving from ᾱc

in a direction given by an angle θ, the above equation (14) describes the beating mode

in the oscillatory region of the state diagram characterised by ᾱ = ᾱc + |δᾱ|eiθ. For a

chosen value of θ, the values of ρ and µ can be uniquely determined from the complex

equation (14). Equation (12) then describes the increase of the amplitude as

ε =

(
|δᾱ|
ρ

)1/2

(15)

while the frequency changes at the same time by

δω̄ =
µ

ρ
|δᾱ| . (16)

Note that these behaviors depend on the angle θ chosen. Two special situations

are of interest. There exists in general a specific choice θ̄ such µ = 0, i.e. in this

case the frequency does not change moving in the corresponding direction away from

the bifurcation line. Examples for such lines in the complex plane along which the

frequency of the unstable modes remains the same as at the bifurcation point ᾱc are

displayed in figure 4. A second special choice θ = θ‖ is the direction tangential to the

bifurcation line ᾱc(ω̄c). For this choice, equation (14) becomes singular with ρ→∞ and

ρ/µ = |dᾱc/dω̄c|. In this case the amplitude ε remains zero, but the frequency changes as

it does generally along the bifurcation line [19]. Note also, that the shape and frequency

of the beating mode at a point α do not depend on the reference bifurcation point from

which it is reached.

The method discussed permits us to calculate amplitude and frequency of unstable

modes close to the bifurcation line. In order to study the influence of nonlinearities on

the shapes of beating modes, we make use of the above analytical result to solve the

nonlinear equations numerically.

6. Numerical solutions to the nonlinear wave equations

Periodic and planar beating patterns are solutions to the nonlinear wave equation (8)

together with the boundary conditions given in table A2 which constitute a boundary

value problem, that can be solved numerically by a shooting and matching procedure.

Note that the wave equation is invariant with respect to the overall phase of ψ(s̄).

To remove this degeneracy we thus impose a boundary condition for the phase of the

solution at s̄ = 0.
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In order to obtain numerical solutions that satisfy the wave equation with given

boundary conditions, we first determine an approximate solution ψ(s̄) ≈ εu0(s̄) close to

a bifurcation point ᾱc, ω̄c by the method discussed in the previous section. The value of

this solution and its derivatives at s̄ = 0 can be used as “seed” estimates for a shooting

and matching procedure to find exact numerical results to the full nonlinear equation (8).

This procedure consists of first integrating the coupled differential equations, starting

with initial values that are consistent with the boundary conditions at s̄ = 0. These

initial values are then varied until the obtained solution satisfies also the boundary

conditions at s̄ = 1. Solutions further away from the bifurcation can be effectively

found by changing the parameter ᾱ in small incremental steps, such that the known

properties of the solution for the preceding value of ᾱ can be used as a initial estimates

for the shooting and matching procedure to converge to the exact solution corresponding

to a new value of ᾱ. We use this method to generate a sequence of numerical solutions

choosing steps in a direction for which the frequency ω̄ remains constant. Examples of

these solutions to equation (8) are displayed in figure 4 for different boundary conditions

starting from different bifurcation points.

Parameter values used in these calculations are ξ⊥ = 3.4 × 10−3N · s ·m−2, ξ‖ =

ξ⊥/2, κ = 1.7× 10−21 N ·m2, L = 58.3 µm as estimated for bull sperm flagella [23, 31].

The nonlinear response coefficient, which determines the oscillation amplitude,has not

been measured experimentally. We chose β̄ = 42, such that close to the bifurcation

points of interest the oscillatory solutions show increasing amplitudes when moving into

the unstable region.

The region of stability of the non-oscillating state is indicated in figure 4(A,C,E).

The oscillating instability occurs along the solid black line. The real and imaginary

parts of such waves as a function of the dimensionless arc length s̄ are displayed in

figure 4(B,D,F) for distinct values of α along the grey line shown in figure 4(A,C,E). As

indicated by the insets, the amplitude of the modes A =
∫ 1

0
|ψ(s̄)|ds̄ grows continuously

with increasing distance from the instability following equation (15) in the limit of small

amplitudes.

In contrast to the amplitude, the shape of the beat patterns changes only weakly as

illustrated by figure D1 in the Appendix. Solutions to the linearised equations therefore

provide good approximations to the full nonlinear problem in the range of examined

parameters.

7. Conclusions and outlook

In this article we discussed the dynamics of self-organised planar flagellar beat patterns

resulting from the co-operative effect of many dynein motors interacting with the elastic

microtubule doublets within the axoneme. The dynamics of this system is described by

nonlinear equations for the shape and the lateral tension. In order to discuss time-

periodic states, we introduce temporal Fourier modes and derive a nonlinear wave

equation for the fundamental modes describing the periodic beat patterns. Extending
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Figure 4. Examples of nonlinear solutions as they grow from the linearly unstable
modes. (A) Illustrating how the 26 Hz solutions of the second branch of unstable
modes grow as we go away from the bifurcation in the case of clamped head boundary
conditions with basal sliding. The mechanical properties of the basal connection were
chosen such that the beat patterns resemble experimentally observed ones, with values
for ks and γs as determined in [23]. Indicated is the line along which solutions of equal
frequency grow from the bifurcation (grey line) as well as the amplitude A of those these
iso-frequent solutions (inset). (B) Real and imaginary part of the fundamental mode
of the tangent angle ψ as a function of arc length. Lighter graytone indicates solutions
further away from the bifurcation. (C,D) Same as (A,B) but now for the clamped head
boundary conditions without basal sliding. Here we look at the bifurcation on the first
branch of unstable modes corresponding to a frequency of approximately 28 Hz. (E,F)
Same as (C,D) but now showing an example for the freely pivoting head boundary
conditions, looking at the bifurcation corresponding to a frequency of approximately
5 Hz.
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previous work, which focussed on the linearly unstable modes near a bifurcation [19, 23],

the nonlinear wave equation (8) presented herein describes wave-like patterns of finite

amplitude on the oscillating side of the instability. We derived an equation (14) that

characterises analytically how nonlinear terms determine the amplitude and frequency

of beat patterns in the vicinity of the instability.

Further away from the instability line we analysed the dynamics of cilia and flagella

by solving the wave equations numerically using a shooting and matching procedure,

extending previous studies on nonlinear beat patterns of passive filaments [32, 33, 34] to

actively beating filaments. We find that the full nonlinear solutions remain qualitatively

similar to the waveforms near the instability in the amplitude range discussed herein.

Our work thus explains why the linear modes provide a very good approximation to the

experimentally observed wave forms of beating sperm [23].

In order to study higher harmonics, as well as transients and interactions between

multiple unstable modes, it will be interesting to perform a full numerical simulation of

axonemal dynamics in the time-domain. In contrast to the work presented herein, such

a simulation requires detailed assumptions to describe the specific microscopic motor

dynamics.

For a given motor model, the oscillation frequency emerges from the self-

organisation of motors and filaments, with the frequency selection resulting from a

subtle condition involving the full frequency dependent impedance of motors. In the

future, extensions of our work to include discussions of beat frequencies could allow

for further comparisons between our theory and experiments by analysing frequency

changes observed for varying flagellar length or varying fluid viscosity.
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Appendix A. Dimensionless parameters and boundary conditions

In the following we define the dimensionless parameters and provide explicit expressions

for the boundary conditions that specify the fundamental modes. In order not to

Table A1. Summary of the relations between the physical parameters and the
dimensionless quantities.

∆̄0 = ∆0/a ω̄ = ωL4

κ ξ⊥ ᾱ = a2L2

κ α β̄ = a4L2

κ β s̄ = s
L

τ̄i(s̄) = L2

κ τi(s) k̄s = a2L
κ ks γ̄s = a2

L3ξ⊥
γs k̄p = L

κ kp γ̄p = a2

L3ξ⊥
γp

overburden the notation we have dropped the overbars from τ̄i in equations when

the choice of dimensionless or non-dimensionless form is obvious from the context.
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The physical boundary conditions (see table 1) lead to boundary conditions for the

fundamental modes ψ(s̄), τ0(s̄) and τ2(s̄) as summarised in table A2, where we have

introduced the nonlinear contribution to the dimensionless basal sliding displacement

∆̄
(nl)
0 = ∆̄0 −

β̄

iω̄γ̄s + k̄s + ᾱ

∫ 1

0

|ψ(s̄)− ψ(0) + ∆̄0|2(ψ(s̄)− ψ(0) + ∆̄0)ds̄ .

Table A2. The boundary conditions for the fundamental modes ψ(s̄), τ0(s̄) and τ2(s̄).

(k̄p + iω̄γ̄p)ψ(0) = ψ̇(0) + ᾱ

∫ 1

0

[
ψ(s̄) + ∆̄0 − ψ(0)

]
ds̄

+β̄
∫ 1

0

[
|ψ(s̄) + ∆̄0 − ψ(0)|2(ψ(s̄) + ∆̄0 − ψ(0))

]
ds̄

...
ψ(0) = ᾱψ̇(0) + ψ̇(0)τ0(0) + ψ̇∗(0)τ2(0) + β̄(2|∆̄0|2ψ̇(0) + (∆̄0)2ψ̇∗(0))

τ̇0(0) = −∂s̄(|ψ̇(0)|2) + 2Re
{
ᾱ∆̄0ψ̇

∗(0)
}

τ̇2(0) = −ψ̇(0)ψ̈(0) + ᾱ∆̄0ψ̇(0)

ψ̇(1) = 0

ψ̈(1) = ᾱ(ψ(1) + ∆̄(nl)
0 + ψ(0)) + β̄|ψ(1) + ∆̄0 − ψ(0)|2(ψ(1) + ∆̄0 − ψ(0))

τ0(1) = 0

τ2(1) = 0

Note that for the limiting cases under consideration in the main text the boundary

conditions simplify as follows. In the general clamped head case we have ψ(0) = 0, in

the absence of basal sliding we furthermore have ∆̄0, ∆̄
(nl)
0 = 0, and for a freely pivoting

head without basal sliding we can make use of kp, γp = 0 and ∆̄0, ∆̄
(nl)
0 = 0.

Appendix B. Nonlinear perturbation calculationt to second order

Formally expanding the linear operator as a Taylor series close to the bifurcation point

we obtain

L(ᾱ, ω̄) = Lc − δᾱ∂2
s̄ + iδω̄ . (B.1)

Substituting the ansatz of (11) and (12) into the nonlinear wave equation (8) reproduces

to linear order the equation describing the linearly unstable modes (9) supplemented by

the appropriate boundary conditions (explicitly described in [27]).

Matching terms to second order in ε then leads to

v̈(s̄) = 2Re{ᾱc∂s̄[(u0 + ∆̄
(c)
0 − u0(0))u̇∗0]} − ∂2

s̄ (|u̇0|2) + 2
ξ‖
ξ⊥

(
|u̇0|2Re {ᾱc} − Re{u̇∗0

...
u 0}
)

ẅ(s̄) = ᾱc∂s̄[(u0 + ∆̄
(c)
0 − u0(0))u̇0]− ∂s̄(u̇0ü0) +

ξ‖
ξ⊥

(
ᾱc(u̇0)2 − u̇0

...
u 0

)
(B.2)

where

∆̄
(c)
0 = − ᾱc

iω̄cγ̄ + k̄s + ᾱc

∫ 1

0

u0(s̄)ds̄ , (B.3)
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is the amplitude of basal sliding to linear order. The above system of equations together

with the appropriate boundary conditions [27], allow us to obtain v(s̄), w(s̄) for given

solutions u0(s̄) of the linear problem.

Appendix C. Nonlinear perturbation calculation to third order

Multiplication of (13) with u+
0 (s̄), and subsequent integration leads to an equation in

which the only term involving u1(s̄) is given by∫ 1

0

u+
0 Lcu1 =

∫ 1

0

u+
0 (iω̄cu1 +

....
u 1 − ᾱcü1)

=

∫ 1

0

u1(iωcu
+
0 +

....
u +

0 − ᾱcü
+
0 )

+
[
u+

0

...
u 1 − u̇+

0 ü1 + (ü+
0 − ᾱcu

+
0 )u̇1 − (

...
u+

0 − ᾱcu̇
+
0 )u1

]s̄=1

s̄=0
.

In order to eliminate u1(s̄) from the bulk term in the above expression we require

that Lcu
+
0 (s̄) = 0, implying that u+

0 (s̄) satisfies the same differential equation as the

linear modes u0(s̄). The boundary conditions for u+
0 (s̄) are then chosen such that

terms proportional to u1 vanish at the boundaries s̄ = 0 and s̄ = 1. This can be

done by matching terms of O(ε)–O(ε3) in order to determine the boundary conditions

for u0(s̄), u1(s̄), v(s̄), w(s̄) [27] and then in turn u+
0 (s̄), which leads to the results as

summarised in the next sections, in which we present the results that lead to boundary

conditions specifying the conjugate mode u+
0 (s̄) and the definition of Z in the amplitude

equation (14). In the following we present the results for the different physical boundary

conditions.

Appendix C.1. Clamped head without basal sliding

The boundary conditions for the conjugate linear solutions u+
0 (s̄) are given by

u̇+
0 (0) = 0, ü+

0 (0) = 0, u+
0 (1) = 0,

...
u+

0 (1) = 0 , (C.1)

which leads to∫ 1

0

u+
0 Lcu1 = −u+

0 (0)A− u̇+
0 (1)B ≡ Z , (C.2)

where we have introduced

A = ρeiθu̇0(0) + v(0)u̇0(0) + w(0)u̇∗0(0)

B = ρeiθu0(1) + β̄ |u0(1)|2 u0(1) .

Appendix C.2. Clamped head with basal sliding

The boundary conditions for the conjugate linear solutions u+
0 (s̄) are given by

u̇+
0 (0) = 0, ü+

0 (0) = 0, u+
0 (1) =

ᾱ2
c

iω̄c

1

iω̄cγ̄ + k̄ + ᾱc

u̇+
0 (1),

...
u+

0 (1) = 0,

(C.3)
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which leads to Z of the same form as (C.2), but with a more complicated expression for

A and B which are now given by

A = ρeiθu̇0(0) + β̄(2|∆̄(c)
0 |2u̇0(0) + (∆̄

(c)
0 )2u̇∗0(0)) + v(0)u̇0(0) + w(0)u̇∗0(0)

B = ρeiθ(u0(1) + ∆̄
(c)
0 ) + β̄

∣∣∣u0(1) + ∆̄
(c)
0

∣∣∣2 u0(1)− µ∆̄
(c)
0

ω̄c

ᾱc

+
ᾱ2

c

iω̄cγ̄ + k̄ + ᾱc

1

iω̄c

(
ρeiθu̇0(0)− A+

∫ 1

0

N (|u0(s̄)|2u0(s̄))ds̄
)

+
1

iω̄cγ̄ + k̄ + ᾱc

(
∆̄

(c)
0 (ρeiθ(iω̄cγ̄ + k̄)− iµγ̄ᾱc)− β̄ᾱc

∫ 1

0

|u0(s̄) + ∆̄
(c)
0 |2(u0(s̄) + ∆̄

(c)
0 )ds̄

)
.

Appendix C.3. Freely pivoting head without basal sliding

The boundary conditions for the conjugate linear solutions u+
0 (s̄) are given by

u̇+
0 (0) = 0,

...
u+

0 (1) = 0, u+
0 (1) + i

αc

ωc

ü+
0 (0) = 0

...
u+

0 (0)− αc(u̇
+
0 (0) + ü+

0 (0)− u̇+
0 (1)) = 0 (C.4)

which leads to∫ 1

0

u+
0 Lcu1 = −A(u+

0 (0) + i
αc

ωc

ü+
0 (0))−Bu̇+

0 (1)− Cü+
0 (0) ≡ Z (C.5)

where we have introduced

A = ρeiθu̇0(0) + v(0)u̇0(0) + w(0)(u̇0)∗(0)

B =
ρeiθ

ᾱc

ü0(1) +
1

|ᾱc|2
β̄

ᾱc

|ü0(1)|2 ü0(1)

C =
ρeiθ

ᾱc

u̇0(0)− β̄
∫ 1

0

[
|u0(s̄)− u0(0)|2(u0(s̄)− u0(0))

]
ds̄

+
ᾱc

iω̄c

[
ρeiθu̇0(0) + iµ(u0(0)− 1

ᾱc

u̇0(0)) +

∫ 1

0

N (|u0|2u0)ds̄
]

.

Appendix D. Shape changes of the nonlinear solutions
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