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Chapter 1

PROJECTION AND I NTERPOLATION BASED

TECHNIQUES FOR STRUCTURED AND I MPULSIVE

NOISE FILTERING

Bishnu Lamichhane and Laura Rebollo-Neira
Aston University

Birmingham B4 7ET, United Kingdom

Abstract

In this chapter we present the relevant mathematical background to address two
well defined signal and image processing problems. Namely, the problem of struc-
tured noise filtering and the problem of interpolation of missing data. The former is
addressed by recourse to oblique projection based techniques whilst the latter, which
can be considered equivalent to impulsive noise filtering, is tackled by appropriate
interpolation methods.

1 Introduction

Structured noise filtering is a particular problem of signalseparation, in which the subspaces
hosting the signal components are assumed to be known and complementary. Thus, the
filtering can be realized in a straightforward manner by recourse to an oblique projection
onto the subspace where one of the signals belongs, and alongthe subspace hosting the
other components. A number of signal processing applications in which this procedure is
of assistance are discussed in [1].

Oblique projectors were introduced early [2, 3]. Recently there has been a renewed in-
terest in their properties [4–6]. As a very small sample of the publications concerning sig-
nal processing application of oblique projections we couldmention [7–10]. Unfortunately,
given two complementary subspaces, it is not always possible to construct a numerically
stable oblique projector onto one of the subspaces and alongthe other. If the angle between
such subspaces is small, the numerical errors in the calculations are magnified and yield,
thereby, an oblique projector of poor quality. In relation to the problem of structured noise
filtering this may cause the failure to correctly filter the noise. Nevertheless, if the sig-
nal component one wishes to discriminate belongs to an ‘unknown’ subspace of the given
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one, and the construction of the oblique projector onto suchsmaller subspace is numeri-
cally stable, the problem of discriminating the signal component can be transformed into
the one of finding the right subspace. This has motivated the adaptive Oblique Matching
Pursuit approach for signal separation [11], extended in [12]. The approach is effectively
implemented by recursive equations for adapting oblique projectors given in [13].

Impulsive noise is characterised by a linear combination ofvery sharp spikes. This
type of noise can be regarded as a particular case of structured noise and in some situa-
tions its filtering could be accomplished by techniques usedfor structured noise. However,
especially for images, impulsive noise can be effectively handled as a problem of interpola-
tion of missing data or ‘image inpainting’ [14, 15]. This problem has been addressed from
different points of view [14, 16, 17]. Here we focus on a method based on scattered data
interpolation [18,19]. The interpolation is realised by using Delaunay triangulation [20,21].
Interpolation methods based on Delaunay triangulation have been previously applied to im-
age processing in [22,23].

The chapter is organised as follows: For the convenience of the readers all the ele-
mentary mathematical terms used throughout the chapter aredefined in Section 2. More
advanced technical terms are defined in the sections where they are introduced. Section 3
discusses oblique projectors in the context of structured noise filtering. Section 4 provides
the basic mathematical background relevant to polynomial and piecewise polynomial inter-
polation in one and two dimensions. Delaunay triangulationtechnique for scattered data
interpolation is discussed in the same section. Such a technique is applied to the problem
of filtering salt and pepper impulsive noise from an image.

List of Symbols

We shall use standard set-theoretic notation

∪, ∩, ⊆, ⊂, ∈

to denote ‘union’, ‘intersection’, ‘subset of’, ‘proper subset of’, ‘belong(s) to’, respectively.
For the setsV1 andV2, the set{v∈V1 : v 6∈V2} is denoted byV1 \V2.

The following standard notations and symbols will be used without defining them ex-
plicitly:

N : set of all positive integers

Z : set of all integers

R : field of all real numbers

C : field of all complex numbers

F : field of real or complex numbers

=⇒ : imply (implies)

⇐⇒ : if and only if

→ : maps to
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The Kronecker symbol is given by

δi j =

{

1 if i = j

0 otherwise.

The characteristic functionχS of a setS is defined as

χS(x) =

{

1 if x∈ S

0 otherwise.

The absolute value of a numbera∈ F is indicated as|a|.
If a∈ R

|a| =
{

a if a≥ 0

−a if a < 0.

If a∈ C its complex conjugate is denoted bya and|a|2 = aa.

Note: Bold face is used when a terminology is defined.Italics are used to emphasise a
terminology or statement.

2 Elementary Definitions

A vector spaceover a fieldF is a setV together with two operations vector addition,
denotedv+ w∈ V for v,w ∈ V and scalar multiplication, denotedav∈ V for a∈ F and
v∈V , such that the following axioms are satisfied:

1. v+w = w+v, v,w∈V .

2. u+(v+w) = (u+v)+w, u,v,w∈ V .

3. There exists an element 0∈ V , called the zero vector, such thatv+0 = v, v∈ V .

4. There exists an element ˜v ∈ V , called the additive inverse ofv, such thatv+ ṽ =
0, v∈ V .

5. a(bv) = (ab)v, a,b∈ F andv∈V .

6. a(v+w) = av+aw, a∈ F andv,w∈ V .

7. (a+b)v = av+bv, a,b∈ F andv∈ V .

8. 1v = v, v∈ V , where 1 denotes the multiplicative identity inF.

The elements of a vector space are calledvectors. A subsetS of a vector spaceV is a
subspaceof V if it is a vector space with respect to the vector space operations onV . A
subspace which is a proper subset of the whole space is calleda proper subspace. Two
subspacesV1 andV2 arecomplementaryor disjoint if V1∩V2 = {0}.

The sum of two subspacesV1 andV2 is the subspaceV = V1 +V2 of elementsv =
v1 +v2, v1 ∈ V1, v2 ∈ V2. If the subspacesV1 andV2 are complementary,V = V1 +V2 is
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calleddirect sum and each elementv ∈ V has a unique decompositionv = v1 + v2, v1 ∈
V1, v2 ∈ V2.

LetV1 andV2 be vectors spaces. A mappingÂ : V1 → V2 is a linear operator if

Â(v+w) = Âv+ Âw, Â(av) = aÂv,

for all v,w∈V1 anda∈ F . V1 is called thedomain of Â andV2 its codomainor image. If
the codomain of a linear operator is a scalar field, the operator is called alinear functional
onV1. The set of all linear functionals onV1 is called thedual spaceof V1.

Theadjoint of an operator̂A : V1 → V2 is the unique operator̂A∗ satisfying that

〈Âg1,g2〉 = 〈g1, Â
∗g2〉.

If Â∗ = Â the operator isself-adjoint.
An operatorÂ : V1 → V2 has aninverse if there existsÂ−1 : V2 → V1 such that

Â−1Â = ÎV1
and ÂÂ−1 = ÎV2

,

whereÎV1
andÎV2

denote the identity operators inV1 andV2, respectively. By ageneralised
inversewe shall mean an operatorÂ† satisfying the following conditions

ÂÂ†Â = Â

Â†ÂÂ† = Â†.

If v1, . . . ,vn are some elements of a vector spaceV , by a linear combination of v1, . . . ,vn

we mean an element inV of the forma1v1 + · · ·+anvn, with ai ∈ F, i = 1, . . . ,n.
Let Sbe a subset of element ofV . The set of alllinear combinationsof elements ofS

is called thespanof Sand is denoted by spanS.
A subsetS= {vi}n

i=1 of V is said to belinearly independent if and only if

a1v1 + · · ·+anvn = 0, =⇒ ai = 0, i = 1, . . . ,n.

A subset is said to belinearly dependentif it is not linearly independent.
S is said to be abasisof V if it is linearly independent and spanS=V . Thedimension

of a finite dimensional vector spaceV is the number of elements in a basis forV . The
number of elements in a set is termed thecardinality of the set.

Let {vi}n
i=1 be a basis forV . Forv = a1v1 + · · · ,anvn let fi(v) : V → F be defined by

fi(v) = ai , i = 1, . . . ,n.

Then fi is a linear functional for eachi. The linear functionalsf1, . . . , fn are calledcoordi-
nate functionalsonV with respect to the basis{vi}n

i=1.
We denote thespace of polynomialsof degreem∈ N onR by

Pm(R) =
{

p : p(x) =
m

∑
i=0

aix
i , x∈ R

}

.

Such a space is a vector space.
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Given a compact interval[a,b] we define apartition of [a,b] as the finite set of points

∆ = {xi}n
i=0, n∈ N, such that a = x0 < x1 < · · · < xn = b.

An inner product on a vector spaceV is a map fromV to F which satisfies the fol-
lowing axioms

1. 〈v,v〉 ≥ 0, v∈V , and〈v,v〉 = 0⇐⇒ v = 0.

2. 〈v+w,z〉 = 〈v,z〉+ 〈w,z〉, v,w,z∈ V .

3. 〈v,az〉 = a〈v,z〉, v,z∈ V anda∈ F.

4. 〈v,w〉 = 〈w,v〉, v,w∈V .

A vector spaceV together with an inner product〈·, ·〉 is called aninner product space.
Two vectorsv andw in an inner product space are said to beorthogonal if 〈v,w〉 = 0.

Two subspacesV1 andV2 are orthogonal if〈v1,v2〉 = 0 for all v1 ∈ V1 andv2 ∈ V1.
The sum of two orthogonal subspacesV1 andV2 is termedorthogonal sum and will be
indicated asV = V1⊕V2. The subspaceV2 is called theorthogonal complementof V1

in V . Equivalently,V1 is the orthogonal complement ofV2 in V .
A norm ‖·‖ on a vector spaceV is a function fromV to R such that for everyv,w∈V

anda∈ F the following three properties are fulfilled

1. ‖v‖ ≥ 0, and‖v‖ = 0⇐⇒ v = 0.

2. ‖av‖ = |a|‖v‖.

3. ‖v+w‖ ≤ ‖v‖+‖w‖.

A vector spaceV together with a norm is called anormed vector space.
Two vectorsv andw are said to beorthonormal if they are orthogonaland ||v|| =

||w|| = 1.

TheEuclidean spaceRn is an inner product space with inner product defined by

〈x,y〉 = xiyi + . . .xnyn,

with x = (x1, . . . ,xn) andy = (y1, . . . ,yn). The norm‖x‖ is induced by the inner product

‖x‖ = 〈x,x〉 1
2 = (xixi + . . .xnxn)

1
2 = (|xi |2 + . . .+ |xn|2)

1
2 .

The spaceL2[a,b] is an inner product space of functions on[a,b] with inner product
defined by

〈x,y〉 =

Z b

a
x(t)y(t)dt

and norm

‖x‖ = 〈x,x〉 1
2 =

(

Z b

a
|x(t)|2 dt

)
1
2

.

ThespaceCk[a,b] is the space of functions on[a,b] having continuous derivatives up
to orderk∈ N. The space of continuous functions on[a,b] is denoted asC0[a,b].
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3 Signal Representation, Reconstruction, and Projection

Throughout this chapter asignal is considered to be an element of an inner product space
H with norm induced by the inner product,‖ · ‖ = 〈·, ·〉 1

2 . Moreover, for the problems to
be addressed we assume that all the signals of interest belong to some finite dimensional
subspaceV of H spanned by the set{vi ∈H }M

i=1. Hence, a signalf can be expressed by a
finite linear superposition

f =
M

∑
i=1

civi ,

where the coefficientsci , i = 1, . . . ,M, are inF.
We callmeasurementor sampling to the process of transforming a signal into a num-

ber. Hence ameasureor sample is a functional. Because we restrict considerations to
linear measures the associated functional is linear. Accordingly, making use ofRiesz theo-
rem [24] we can express a linear measure as

m= 〈w, f 〉 for some w∈H .

We refer the vectorw to asmeasurement vector.
ConsideringM measurementsmi, i = 1, . . . ,M, each of which is obtained by a measure-

ment vectorwi, we have a numerical representation off as given by

mi = 〈wi, f 〉, i = 1, . . . ,M.

Now we want to answer the question as to whether it is possibleto reconstructf ∈ V from
these measurements. More precisely, we wish to find the requirements we need to im-
pose upon the measurement vectorswi, i = 1, . . . ,M, so as to use the concomitant measures
〈wi , f 〉, i = 1, . . . ,M, as coefficients for the signal reconstruction, i.e., we wish to have

f =
M

∑
i=1

civi =
M

∑
i=1

〈wi, f 〉vi . (1)

By denoting

Ê =
M

∑
i=1

vi〈wi , ·〉, (2)

where the operation〈wi, ·〉 indicates that̂E acts by taking inner products, (1) is recast

f = Ê f.

As will be discussed next, the above equation tells us that the measurement vectorswi, i =
1, . . . ,M, should be such that the operatorÊ is a projector ontoV .

An operatorÊ : H → V is a projector if it isidempotent, i.e.,

Ê2 = Ê.

As a consequence, the projection is ontoR (Ê), the range of the operator, and alongN (Ê),
the null space of the operator. Let us recall that

R (Ê) = { f , such thatf = Êg, g∈H }.
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Thus, if f ∈ R (Ê),
Ê f = Ê2g = Êg= f .

This implies thatÊ behaves like the identity operator for allf ∈R (Ê), regardless ofN (E),
which is the subspace ofH defined as

N (E) = {g, such thatÊg= 0, g∈H }.

It is clear then that to reconstruct a signalf ∈V by means of (1) the involved measurement
vectorswi , i = 1, . . . ,M, should give rise to an operator of the form (2), which must bea
projector ontoV . Notice that the required operator is not unique, because there exist many
projectors ontoV having differentN (Ê). Thus, for reconstructing signals in the range of
the projector its null space can be chosen arbitrarily. However, the null space becomes ex-
tremely important when the projector acts on signals outside its range. A popular projector,
to be discussed below, is the orthogonal one. WhenN (Ê) happens to be equal toR (Ê)⊥,
which indicates the orthogonal complement ofR (Ê), the projector is calledorthogonal
projector ontoR (Ê). This is the case if and only if the projector isself adjoint.

A projector which is not orthogonal is called anoblique projector and we need two
subscripts to represent it. One subscript to indicate the range of the projector and another to
represent the subspace along which the projection is performed. Hence the projector onto
V alongW ⊥ is indicated aŝEVW ⊥ .

The particular casêEVV ⊥ corresponds to anorthogonal projectorand we use the special
notationP̂V to indicate such a projector. When a projector ontoV is used for signal pro-
cessing,W ⊥ can be chosen according to the processing task. The examplesbelow illustrate
two different situations.

Example 1. Let us assume that the signal processing task is to approximate a signalf ∈H
by a signalfV ∈ V . In this case, one normally would choosefV = P̂V f because this is the
unique signal inV minimising the distance‖ f − fV ‖. Indeed, let us take another signalg
in V and write it asg = g+ P̂V f − P̂V f . Since f − P̂V f is orthogonal to every signal inV
we have

‖ f −g‖2 = ‖ f −g+ P̂V f − P̂V f‖2 = ‖ f − P̂V f‖2 +‖P̂V f −g‖2.

Hence‖ f −g‖ is minimised ifg = P̂V f .

Example 2. Assume that the signalf to be analysed here is the superposition of two sig-
nals, f = f1 + f2, each component being produced by a different phenomenon wewant to
discriminate. Let us assume further thatf1 ∈ V and f2 ∈ W ⊥ with V andW ⊥ disjoint
subspaces. Thus, we can obtain,f1 say, from f , by an oblique projector ontoV and along
W ⊥. The projector will map to zero the componentf2 to produce

f1 = ÊVW ⊥ f .

3.1 Constructing Oblique Projectors for Structured Noise Filtering

Example 2 discusses the fact that a signal component can be discriminated from another
components by an oblique projection. In this section we willfocus on the actual construc-
tion of such a projector.
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GivenV andW ⊥ disjoint, i.e., such that

V ∩W⊥ = {0},

in order to provide a prescription for constructingÊVW ⊥ we proceed as follows. Firstly we
defineS as the direct sum ofV andW ⊥, which we express as

S = V +W ⊥.

LetW = (W ⊥)⊥ be the orthogonal complement ofW ⊥ in S . Thus we have

S = V +W ⊥ =W ⊕W ⊥,

where the operation⊕ indicates the orthogonal sum.
Considering that{vi}M

i=1 is a spanning set forV a spanning set forW is obtained as

ui = vi − P̂W⊥vi = P̂W vi , i = 1, . . . ,M.

Denoting as{ei}M
i=1 the standard orthonormal basis inF

M, i.e., the Euclidean inner
product〈ei ,ej〉 = δi j , we define the operatorŝV : F

M → V andÛ : F
M →W as

V̂ =
M

∑
i=1

vi〈ei , ·〉, Û =
M

∑
i=1

ui〈ei , ·〉.

Thus the adjoint operatorŝU∗ andV̂∗ are

V̂∗ =
M

∑
i=1

ei〈vi , ·〉, Û∗ =
M

∑
i=1

ei〈ui , ·〉.

It follows that P̂W V̂ = Û andÛ∗P̂W = Û∗ hence,Ĝ : C
M → C

M defined as:

Ĝ = Û∗V̂ = Û∗Û

is self-adjoint and its matrix representation,G, has elements

gi, j = 〈ui ,v j〉 = 〈P̂W ui ,v j〉 = 〈ui , P̂W u j〉 = 〈ui ,u j〉, i, j = 1, . . . ,M.

From now on we restrict our signal space to beS , since we would like to build the oblique
projectorÊVW ⊥ ontoV and alongW ⊥ having the form

ÊVW ⊥ =
M

∑
i=1

vi〈wi , ·〉. (3)

Clearly for the operator to map to zero every vector inW ⊥ vectors{wi}M
i=1 must span

W = (W ⊥)⊥ = span{ui}M
i=1. This entails that for eachwi there exists a set of coefficients

{bi, j}M
j=1 such that

wi =
M

∑
i=1

bi, jui , (4)
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which guarantees that everywi is orthogonal to all vectors inW ⊥ and thereforeW ⊥ is
included in the null space of̂EVW ⊥ . Moreover, since every signal,g say, inS can be written
asg = gV +gW ⊥ with gV ∈ V andgW ⊥ ∈W ⊥, the fact thatÊVW ⊥g = 0 impliesgV = 0.
Hence,g= gW ⊥ , which implies that the null space ofÊVW ⊥ restricted toS isW ⊥. In order
for ÊVW ⊥ to be a projector it is necessary thatÊ2

VW ⊥ = ÊVW ⊥ . As will be shown in the
next proposition, if the coefficientsbi, j are the matrix elements of ageneralised inverseof
the matrixG defined above, this condition is fulfilled.

Proposition 1. If the coefficients bi, j in (4) are the matrix elements of a generalised inverse
of the matrix G, which has elements gi, j = 〈vi ,u j〉, i, j = 1, . . . ,M, the operator in(3) is a
projector.

Proof. For the measurement vectors in (4) to yield a projector of theform (3), the corre-
sponding operator should be idempotent, i.e.,

M

∑
n=1

M

∑
m=1

M

∑
i=1

M

∑
j=1

vibi, j 〈u j ,vn〉bn,m〈um, ·〉 =
M

∑
i=1

M

∑
j=1

vibi, j〈u j , ·〉. (5)

Defining

B̂ =
M

∑
i=1

M

∑
j=1

eibi, j〈ej , ·〉 (6)

and using the operatorŝV andÛ∗, as given above, the left hand side in (5) can be expressed
as

V̂B̂∗Û∗V̂B̂∗Û∗ (7)

and the right hand side as
V̂B̂∗Û∗. (8)

Assuming thatB̂∗ is a generalised inverse of(Û∗V̂) indicated aŝB∗ = (ÛV̂)† it satisfies (c.f.
Section 2)

B̂∗(Û∗V̂)B̂∗ = B̂∗, (9)

and therefore, from (7), the right hand side of (5) follows. Since B̂∗ = (Û∗V̂)† = Ĝ† and
Ĝ∗ = Ĝ, we haveB̂ = Ĝ†. Hence, if the elementsbi, j determiningB̂ in (6) are the matrix
elements of a generalised inverse on the matrix representation of Ĝ, the corresponding
vectors{wi}n

i=1 obtained by (4) yield an operator of the form (3), which is an oblique
projector.

Property 1. Let ÊVW ⊥ be the oblique projector ontoV and alongW ⊥ and P̂W the or-
thogonal projector ontoW = (W ⊥)⊥. Then the following relation holds

P̂W ÊVW ⊥ = P̂W .

Proof. ÊVW ⊥ given in (3) can be recast, in terms of operatorV̂ andÛ∗, as:

ÊVW ⊥ = V̂(Û∗V̂)†Û∗.

Applying P̂W both sides of the equation we obtain:

P̂W ÊVW ⊥ = P̂W V̂(Û∗V̂)†Û∗ = Û(Û∗V̂)†Û∗ = Û(Û∗Û)†Û∗,

which is a well known form for the orthogonal projector ontoR (Û) =W .
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Notice that the operative steps for constructing an obliqueprojector are equivalent to
those for constructing an orthogonal one. The difference being that in general the spaces
span{vi}M

i=1 = V and span{wi}M
i=1 = W are different. For the special caseui = vi , i =

1, . . . ,M, both sets of vectors spanV and we have an orthogonal projector ontoV along
V ⊥.

Example 3. Suppose that the chirp signal in the first graph of Figure 1 is corrupted by
impulsive noise belonging to the subspace

W ⊥ = span{y j(t) = e−100000(t−0.05j)2
, t ∈ [0,1]}200

j=1.

The chirp after being corrupted by a realization of the noiseconsisting of 50 pulses taken
randomly from elements ofW ⊥ is plotted in the second graph of Figure 1.

Consider that the signal subspace is well represented byV given by

V = span{vi+1(t) = cosπit , t ∈ [0,1]}M=99
i=0 .

In order to eliminate the impulsive noise from the chirp we have to compute the measure-
ment vectors{wi}100

i=1, here functions oft ∈ [0,1], determining the appropriate projector.
For this we first need a representation ofP̂W⊥ , which is obtained simply by transforming
the set{y j}200

j=1 into an orthonormal set. Since the given set{y j}200
j=1 is linear independent

its orthogonalisation can be achieved by aGram Schmidt, or Generalised Gram Schmidt,
procedure. For the extension to include the non-linear independent case, see [25]. The cor-
responding codes can be found at [26]. Using the orthonormalbasis{o j}200

j=1 for W ⊥ the
orthogonal projector onto this subspace is the operator

P̂W ⊥ =
200

∑
j=1

o j〈o j , ·〉.

With this projector we construct vectors

ui+1(t) = cosπit −
200

∑
j=1

o j(t)〈o j (t),cosπit 〉, i = 0, . . . ,99, t ∈ [0,1]

using a quadrature formula [27] for computing the inner products involved in the above
equations and in the elements,gi, j , of matrixG

gi+1, j+1 =
Z 1

0
ui+1(t)cosπ jt dt, i = 0, . . . ,99, j = 0, . . . ,99.

This matrix has an inverse, which is used to obtain functions{wi(t), t ∈ [0,1]}100
i=1 giving

rise to the required oblique projector. The chirp filtered bysuch a projector is depicted in
the last graph of Figure 1.

Example 4. Here we deal with the image of Lena shown in the first picture ofFigure 4.
This image is an array of 512×512 pixels that we process row by row. Each row is a vector
I i ∈ R

512, i = 1, . . . ,512. The image is affected by structured noise produced when random
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Figure 1: Chirp signal (first graph). Chirp corrupted by 50 randomly taken pulses (middle
graph). Chirp denoised by oblique projection (last graph).

noise passes through a channel characterised by a given matrix A having 100 columns and
512 rows. The model for each rowIo

i ∈ R
512 of the noisy image is

Io
i = I i +Ahi, i = 1, . . . ,512,

where eachhi is a random vector inR100. The image plus noise is represented in the middle
graph of Figure 4. In order to denoise the image we consider that every rowI i ∈R

512 is well
represented in a subspaceV spanned by discrete cosines [28]. More precisely, we consider
I i ∈ V for i = 1, . . . ,512, where

V = span

{

xi = cos

(

π(2 j −1)(i −1)

2L

)

, j = 1, . . . ,512

}300

i=1
.

The space of the noise is spanned by the 100 vectors inR
512 corresponding to the columns

of the given matrixA. The image, after being filtered row by row by the oblique projector
ontoV and along the space of the noise, is depicted in the last graphof Figure 4.

Figure 2: Image of Lena (first picture). Image plus structured noise (middle picture). The
image obtained from the middle picture by an oblique projection (last picture).

Notice that the oblique projector ontoV is independent of the selection of the spanning
set forW . Thus, one has a number of possibilities for expressing the oblique projector.
Although all the forms are theoretically equivalent, they may not always be ‘numerically’
equivalent. This feature is illustrated in the next example.

Example 5. Consider thatW ⊥ is as in Example 3 andV is also as in that example but
with M = 250 which, as illustrated by the experiment below, makes theconstruction of the
corresponding oblique projector numerically unstable.
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We consider four theoretically equivalent ways of computing vectors{wi}250
i=1.

i) wi = ∑250
j=1 g̃i, j u j , where g̃i, j is the (i, j)-th element of the inverse of the matrixG

having elementsgi, j = 〈ui ,v j〉, i, j = 1, . . . ,250.

ii) Vectors {wi}250
i=1 are as in i) but the matrix elements ofG are computed asgi, j =

〈ui ,u j〉, i, j = 1, . . . ,250.

iii) Orthonormalising{ui}250
i=1 to obtain{qi}250

i=1, vectors{wi}250
i=1 are then computed as

wi =
250

∑
j=1

g̃i, jq j ,

with gi, j = 〈qi ,v j〉, i, j = 1, . . . ,250.

iv) Same as in iii) butgi, j = 〈qi ,u j〉, i, j = 1, . . . ,250.

We test the numerical quality of the corresponding projectors by comparing the following
quantities

a) maxg∈V+W⊥
‖(Ê

VW⊥−Ê2
VW⊥ )g‖

||g|| , ‖g‖ 6= 0,

b) maxvi∈V
‖Ê

VW⊥vi−vi‖
‖vi‖ , ‖vi‖ 6= 0,

c) maxsi∈W ⊥
‖Ê

VW⊥si‖
‖si‖ , ‖si‖ 6= 0.

The quality of the projector is indicated by the quantities a), b), and c), which should be
small if the numerical representation of the projector is accurate. All the projectors produce
equivalent results for quantity c). Nevertheless, there isa significant difference between
case iii) and the others with respect to the quantities a) andb). Case iii) produces a value of
a) and a value of b) which are 10−5 times smaller than the corresponding values produced
by cases i), ii), and iv).

Unfortunately, even when the subspacesV andW ⊥ are ‘theoretically’ complemen-
tary, in practice, due to the calculations being performed in finite precision arithmetics,
the inaccuracy in the computation of the corresponding projector may cause the failure to
correctly filter structured noise. This is discussed in [11,12], where examples illustrating
such situations are provided. As pointed out in those efforts, the problem can be overcome
if the signal, fV , one is trying to discriminate from the noise, admits a sparse represen-
tation in a spanning set forV . This implies that given{vi}M

i=1 there exists a subset of
elements characterised by the set of indicesJ, of cardinalityK < M, spanning the subspace
VK = span{vℓ}ℓ∈J and such thatfV = ÊVKW ⊥ f . Under the hypothesis that the numerical
construction ofÊVKW ⊥ is well posed, this projector will produce the correct signal splitting.
The problem one has to address then is the one of finding the ‘right’ subspaceVK . Assum-
ing that{vi}M

i=1 is a basis forV , out of it we have
(M

K

)

possible basis of dimensionK. Hence
the problem of finding that of the right subspaceVK is in general intractable. In order to
reduce complexity one can make the search for the right subspace signal dependent. An
adaptive approach is considered in the next section.
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3.2 Adaptive Pursuit Strategy and Structured Noise Filtering

Given a signalf , and assuming that the subspacesW ⊥ andV , are known, the goal is to find
a subset̃V ∈V such thatÊṼW ⊥ f = ÊVW ⊥ f . Moreover, it is assumed thatV = span{vi}M

i=1

andṼ = span{vℓ}ℓ∈J, whereJ is a unknown subset of indices, out of the original seti =
1, . . . ,M. The cardinality ofJ is such that the construction of̂EṼW ⊥ is well posed. This
assumption restricts the class of signals that can be handled by the approach.

Under the above hypothesis, if the subspaceṼ were known, one would have

ÊVW f = ÊṼW ⊥ f = ∑
ℓ∈J

vℓ〈wℓ, f 〉. (10)

However, if the computation of̂EVW ⊥ is an ill posed problem, which is the situation we are
considering,ÊVW ⊥ f is not available. In order to look for the subset of indicesJ yielding Ṽ
one may proceed as follows: ApplyinĝPW on every term of (10) and using the properties
P̂W ÊVW ⊥ = P̂W andP̂W ÊṼW ⊥ = P̂W̃ , whereW̃ = span{uℓ}ℓ∈J, (10) becomes

P̂W f = P̂W̃ f = ∑
ℓ∈J

uℓ〈wℓ, f 〉. (11)

SinceW ⊥ is given andP̂W f = f −P̂W ⊥ f , the left hand side of (10) is available. We are then
in a position to look for the set{uℓ}ℓ∈J, out of the set{ui}M

i=1, in a stepwise manner. This can
be achieved by an adaptive pursuit approach, termed Optimised Orthogonal Matching Pur-
suit approach [29], which at each step, say the stepk+1, selects the elementuℓk+1 minimis-
ing the norm of the residual error‖P̂W f −P̂Wk+1

P̂W f‖2 , whereWk+1 = span{uℓi}k
i=1+uℓk+1

and{uℓi}k
i=1 is the set of elements that have been selected in the previoussteps. Minimisa-

tion of ‖P̂W f − P̂Wk+1
P̂W f‖2 = ‖P̂W f − P̂Wk+1

f‖2 is equivalent to choosing the indexℓk+1

such that

ℓk+1 = arg max
n∈J\Jk

|〈γn, P̂W f 〉|
‖γn‖

= arg max
n∈J\Jk

|〈γn, f 〉|
‖γn‖

, ‖γn‖ 6= 0,

with γn = un− P̂Wk
un andJ\Jk the set of indices not selected in previous steps.

Details on the implementation of this approach and extendedversions of it are presented
in [30]. Further discussions in the context of structured noise filtering are given in [12] and
relevant MATLAB codes are available at [31].

4 Signal Interpolation

As already mentioned, we wish to consider the problem of impulsive noise filtering, spe-
cially in the case of images, as a problem of ‘missing data’ tobe addressed here by means
of interpolation techniques. The interpolation methods wepropose are based on particu-
lar piecewise polynomial interpolation. However, in orderto assist the readers unfamiliar
with approximation theory, we introduce in the next two sections some basic elements of
polynomial and piecewise polynomial interpolation.
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4.1 Polynomial Interpolation

Suppose that we are given data as a set ofn+1 points{xi}n
i=0 and a functionf having values

{yi = f (xi)}n
i=0. Suppose further that we want to approximatef by a simple functionp with

the properties

p(xi) = yi , i = 0, . . . ,n. (12)

A function p satisfying the properties given in (12) is said to interpolate the function f
at the points{xi}n

i=0 and is called aninterpolant . In practice, the simple functionp is a
polynomial, a piecewise polynomial or a rational function. Different interpolation methods
arise from the choice of the interpolating function. If the interpolating function is chosen to
be a polynomial, the interpolation is calledpolynomial interpolation .

A polynomial interpolation problem can be stated as: Given aset ofn+1 pairs of real
numbers{(xi ,yi)}n

i=0, find a polynomialpm ∈ Pm(R) such thatyi = pm(xi), i = 0, . . . ,n. If
n 6= m, the problem is over or under-determined. The following theorem holds ifn= m. We
refer to [32,33] for a proof.

Theorem 1. If {xi}n
i=0 is a set of distinct points, for an arbitrary set{yi}n

i=0 of n+1 numbers
there exists a unique polynomial pn ∈ Pn(R) such that pn(xi) = yi , i = 0, . . . ,n.

Assume that we are given a functionf in [a,b], and we have an interpolating polynomial
pn of degreen on a partition{xi}n

i=0 of [a,b]. Clearly, the functionf and the polynomial
pn have exactly the same values at the interpolation points{xi}n

i=0. However, if we pick
some arbitrary pointx ∈ [a,b] which is not an interpolating point, the function valuef (x)
may be quite different frompn(x). Under the assumption that the functionf is sufficiently
smooth, the interpolation error is estimated in the following theorem, the proof of which
can be found in many numerical analysis textbooks, e.g., [27,33].

Theorem 2. Suppose that f is an(n+ 1)-times continuously differentiable real-valued
function on[a,b]. Suppose further that the interpolating points{xi}n

i=0 are distinct. Then,
for x∈ [a,b],

f (x)− pn(x) =
f (n+1)(ξ)

(n+1)!
πn+1(x),

whereξ ∈ [a,b] is a function of x, andπn+1(x) = (x− x0)(x− x1) · · · (x− xn). Denoting by
Mn+1 the maximum value of| f (n+1)(ξ)| in [a,b], we can bound the above error as

| f (x)− pn(x)| ≤
Mn+1

(n+1)!
|πn+1(x)|. (13)

Lagrange Form of the Interpolation Polynomial

The Lagrange form of the interpolation polynomial is obtained by using the Lagrange basis
for the vector spacePn(R).

Definition 1. A set of functions{l i}n
i=0 is said to be aLagrange basisfor the space of

polynomialsPn(R) with respect to the set of distinct points{xi}n
i=0 if l i(x j) = δi j .
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Explicitly, the Lagrange basis functions with respect to the set of distinct points{xi}n
i=0

is










l i(x) =
n

∏
j=0
j 6=i

x−x j

xi −x j











n

i=0

.

In this case the interpolantpn is given by

pn(x) =
n

∑
i=0

yi l i(x),

and is said to have the Lagrange form of polynomial interpolation.

Newton Form of the Interpolation Polynomial

Although the Lagrange form of the interpolation polynomialis suitable from the theoretical
point of view, practically it is not the most convenient form. It is sometimes useful to start
from an interpolation polynomial of lower degree and construct higher degree interpola-
tion polynomials. In the case of the Lagrange polynomial there is no constructive relation
betweenpn−1 andpn. The Newton form of polynomial interpolation is designed todo that.

Let {xi}n
i=0 be a partition of[a,b] and assume that we are given an interpolation poly-

nomial pn−1 of degreen− 1 for n pairs of numbers{(xi ,yi)}n−1
i=0 with pn−1(xi) = yi , i =

0, . . . ,n−1. We want to represent the interpolation polynomialpn of degreen for a set of
n+1 pairs of numbers{(xi ,yi)}n

i=0 as a sum ofpn−1 and a polynomial of degreen with only
one unknown coefficient depending on the set of points{xi}n

i=0. Thus, takingqn ∈ Pn(R),
we set

pn(x) = pn−1(x)+qn(x).

Using the fact thatpn−1(xi) = yi , we haveqn(xi) = pn(xi)− pn−1(xi) = 0, i = 0, . . . ,n−1.
Hence,qn can be written asqn(x) = bnΠn−1

i=0 (x−xi), wherebn is to be determined. Assuming
that yi = f (xi), i = 0, . . . ,n, the coefficientbn can be found by settingpn(xn) = f (xn).
Thereby

bn =
f (xn)− pn−1(xn)

πn(xn)
, (14)

whereπn(x) = Πn−1
i=0 (x−xi). The coefficientbn is called then-th Newton divided difference

and is denoted by
bn = f [x0,x1, . . . ,xn], n≥ 1. (15)

The interpolation polynomialpn can then be written as

pn(x) = pn−1(x)+ πn(x) f [x0, . . . ,xn].

Using recursion onn, we obtain the formula for the interpolation polynomial in Newton
form

pn(x) =
n

∑
i=0

πi(x) f [x0, . . . ,xi ], (16)

wherep0(x) = f (x0) = f [x0] = y0 andπ0 = 1.
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The Lagrange and Newton forms yield the same interpolation polynomial due to the
uniqueness of the interpolation polynomial. The interpolation polynomial in the form (16)
is called theNewton divided differenceformula. There are many properties of the Newton
divided differences which make them computationally efficient [27,32].

It is interesting to compare the two forms of interpolation polynomial in terms of the
basis of the polynomial spacePn(R). The interpolation polynomial of the Lagrange form
is obtained by using the Lagrange basis{l i}n

i=0, whereas the Newton form is obtained by
taking the basis{πi}n

i=0. In the case of Lagrange form, the coordinate functionals are simply
the function values at the given set of points whereas the coordinate functionals in the
Newton form are given by Newton divided differences.

Hermite Interpolation

If the polynomial interpolation consists of finding an interpolant which is required to take
not only the function values but also the derivatives of the function at the prescribed points,
it is calledHermite interpolation .

Assume that we require the polynomial of lowest degree whichinterpolates a function
f and its derivatives at two distinct points, say,x0 andx1 with x0 6= x1. Thus, we have to
find a polynomialp which fulfils the properties:

p(xi) = f (xi), p′(xi) = f ′(xi), i = 0,1.

Since there are four conditions, we look for a solution inP3(R). Let

l0(x) =
x−x1

x0−x1
, and l1(x) =

x−x0

x1−x0

be the two Lagrange basis functions with respect to the partition {x0,x1}. We consider the
following basis ofP3(R): H0(x) = (x− x1)

2(1+ 2l1(x)), H1(x) = (x− x0)
2(1+ 2l0(x)),

K0(x) = (x−x1)
2(x−x0), K1(x) = (x−x0)

2(x−x1). It is immediate to verify that

Hi(x j) = cδi j , H ′
i (x j) = 0, Ki(x j) = 0, K′

i (x j) = cδi j with c = (x1−x0)
2.

Hence, the required polynomial of lowest degree is simply

p(x) =
1
c

(

1

∑
i=0

f (xi)Hi(x)+ f ′(xi)Ki(x)

)

.

The general Hermite interpolation problem can be posed as follows: Given a partition∆ =
{xi}n

i=0 of [a,b], find a polynomialp satisfying the conditions

d j p
dxj (xi) = ci j , j = 0, . . . ,ki −1, i = 0, . . . ,n, (17)

where d j p
dxj = p for j = 0. At nodexi , ki interpolatory conditions are imposed, whereki

might change with respect toi. There are in totalm= ∑n
i=0 ki conditions. The proof of the

following theorem can be found in [32].
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Theorem 3. There exists a unique polynomial p∈ Pm−1(R) fulfilling the Hermite condi-
tions in(17).

Example 6. We give a construction of Hermite interpolation withki = 2 for all i. Let
∆ = {xi}n

i=0 be a partition of[a,b] with n+1 points, and{yi}n
i=0 and{zi}n

i=0 two sets of real
numbers. We wish to find a polynomialp∈ P2n+1(R) so thatp(xi) = yi andp′(xi) = zi for
i = 0, . . . ,n. Our construction is based on a polynomial basis

B = {H0, . . . ,Hn,K0, . . . ,Kn}

for P2n+1(R) with the properties

H j(xi) = δi j , H ′
j(xi) = 0, K j(xi) = 0, K′

j(xi) = δi j , i, j = 0, . . . ,n. (18)

Assuming that{l i}n
i=0 is the Lagrange basis with respect to the partition∆, if we define

Hi(x) = [l i(x)]
2(1−2l ′i (xi)(x−xi)), Ki(x) = [l i(x)]

2(x−xi)

for i = 0, . . . ,n, the basisB satisfies the properties (18). Hence, the interpolant

p(x) =
n

∑
i=0

aiHi(x)+biKi(x)

fulfils the required conditions forai = yi andbi = zi , i = 0, . . . ,n.

Extension to Two Dimensions

The two-dimensional interpolation is concerned with interpolating a function of two vari-
ables. Assume thatG = {(xi ,yi)}N

i=0 is a set of points inR2, and a functionf is given onG
with {zi = f (xi ,yi)}N

i=0. We are interested in an interpolation problem posed in a polygonal
domainΩ ⊂ R

2.

Definition 2. A domain or subdomain in two dimensions is an open bounded region. A
polygonal domain or subdomainis an open and bounded region whose boundary consists
of pieces of lines.

In order to state the two-dimensional interpolation problem, we need definitions of a
convex set and a convex hull.

Definition 3. A set S⊂ R
k, k∈ N, is convex if for all x,y ∈ S and all t∈ [0,1], the point

(1− t)x+ ty ∈ S.

Definition 4. Theconvex hull for a set of pointsG is the minimal open convex set contain-
ingG .

Definition 5. Theclosureof a domainΩ is defined by cl(Ω) = Ω∪∂Ω, where∂Ω denotes
the boundary of the domainΩ.
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A two-dimensional interpolation problem is then posed as follows: Given a set of points
G , the convex hull,Ω, ofG and given a functionf defined onG , find a functionp : cl(Ω)→
R with {zi = p(xi ,yi)}N

i=0.
We only consider the situation for whichp is a polynomial or a piecewise polyno-

mial. If the set of pointsG has a tensor product structure, it is easy to extend the idea of
one-dimensional construction to the multi-dimensional case. A tensor product partition is
defined as follows:

Definition 6. Assume that∆x = {xi}n
i=0 is a partition of the closed interval[a,b] and∆y =

{y j}m
j=0 is that of [c,d]. Then the set of points∆xy = {(xi ,y j)}n,m

i=0, j=0 is called atensor
product partition of the rectangular region[a,b]× [c,d]. In short, we write∆xy = ∆x⊗∆y.

Let ∆xy = ∆x⊗∆y be a tensor product partition of[a,b]× [c,d]. Assume that{l∆x
i }n

i=0 is

the Lagrange basis ofPn(R) with respect to the partition∆x, and{l
∆y
j }m

j=0 is that ofPm(R)
with respect to the partition∆y. Then, given the values of the functionf (x,y) at the partition
∆xy, the Lagrange interpolation polynomial off (x,y) with respect to the partition∆xy is of
degreen in x and degreem in y, and is given by

n

∑
i=0

m

∑
j=0

f (xi ,y j)l
∆x(x)l∆y(y).

If G does not have a tensor product structure, we have to solve a global polynomial in-
terpolation problem in a non-rectangular domain or non-tensor product partition, which is
difficult and often ill-posed [27]. Furthermore, the following remark points out another
limitation of the global polynomial interpolation.

Remark 1. If the function f to be interpolated is not a polynomial, the quantity
Mn+1|πn+1(x)| in (13) can be very large when n is large, leading to a severe limitation
of the higher order polynomial interpolation. This problemis typically known as Runge’s
phenomenon and is explained by Runge’s example[27,32]. If one has the freedom to choose
the interpolating points, the expression|πn+1(x)| can be made small by choosing the set of
interpolation points as the zeros or the maxima of a Chebyshev polynomial[32, 33]. How-
ever, in many interpolation problems, the set of points is already given and one cannot use
a different set of points.

Piecewise polynomial interpolationto be discussed in the next section provides a flexi-
ble and efficient solution to the above discussed problems.

4.2 Piecewise Polynomial Interpolation

So far we have considered the approximation of a function by aglobal polynomial. This
implies that if the definition of the function is to be modifiedat a point, the polynomial
interpolant changes globally. On the contrary, the piecewise polynomial interpolant does
not change globally if the definition of the function changeslocally.

Assume that the interpolation problem is posed in a domainΩ ⊂ R
k with k = 1,2. The

central idea of piecewise interpolation is to decompose thedomainΩ into non-overlapping
subdomains yielding its decomposition and define polynomial basis functions in each sub-
domain.
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Figure 3: Four decompositions of the domainΩ: geometrically conforming (first two) and
geometrically non-conforming (last two).

Definition 7. LetΩ ⊂ R
k be a domain with k= 1,2. The collection of disjoint subdomains

T with cl(Ω) = ∪T∈T cl(T) is called adecompositionof Ω.

In the two-dimensional case, if the interpolant is to be at least continuous, the decom-
position should be geometrically conforming.

Definition 8. A decompositionT of Ω ⊂ R
2 is called geometrically conforming if the

intersection between the boundaries of any two different subdomains∂Tl ∩ ∂Tk, k 6= l,
Tk,Tl ∈ T is either empty, a vertex or a common edge.

Four decompositions of the domainΩ are shown in Figure 3. The two on the left are
geometrically conforming and the two on the right are geometrically non-conforming. In
the one-dimensional case, the subdomains are always intervals. In the two-dimensional
case, only quadrilaterals or triangles are allowed.

The polynomial spacePm(T) will denote three different spaces depending onT. If T is
an interval,

Pm(T) =
{

p : p(x) =
m

∑
i=0

aix
i
}

,

if T is a triangle,

Pm(T) =
{

p : p(x,y) =
m

∑
i, j=0

i+ j≤m

ai j x
iy j
}

,

and finally, ifT is a quadrilateral,

Pm(T) =
{

p : p(x,y) =
m

∑
i, j=0

ai j x
iy j
}

.

The smoothness of the interpolation polynomial is determined by the smoothness of the
piecewise polynomial on the boundary of two subdomains.

Definition 9. Let m,k∈ N0 = N∪{0}. Thepiecewise polynomial spaceof degree m and
smoothness k with respect to the decompositionT is defined as

Sm,k(T ) =
{

f ∈Ck(Ω) : f |T ∈ Pm(T), T ∈ T
}

,

where f|T represents the restriction of the function f to the element T. The space of piece-
wise constant function with respect to the decompositionT is denoted by S0(T ).

A generalisation of a Lagrange basis to the piecewise polynomial space is a nodal basis.
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Definition 10. LetG = {(xi ,yi)}N
i=0 be a set of points inR2, andT be a decomposition of

Ω = convex hull ofG . Then, a basis{φi}N
i=0 of Sm,k(T ) is called anodal basisof Sm,k(T )

with respect toG if and only ifφ j(xi ,yi) = δi j for i, j = 0, . . . ,N.

One-Dimensional Case

Before constructing some examples, we introduce a decomposition induced by a partition.

Definition 11. Let∆ = {xi}n
i=0 be a partition of the closed interval[a,b], and Ii = (xi ,xi+1)

an interval. The decompositionT = {Ii}n−1
i=0 of the open interval(a,b) is calledthe decom-

position induced by the partition∆ of [a,b].

Example 7. Assume thatT is the decomposition of(a,b) induced by a partition∆ = {xi}n
i=0

of [a,b]. Then,S1,0(T ) is the space of linear splines on the decompositionT . Let

φ0(x) =







x−x1

x0−x1
if x∈ I0

0 otherwise
, φn(x) =







x−xn−1

xn−xn−1
if x∈ In−1

0 otherwise
and

φi(x) =



















x−xi−1

xi −xi−1
if x∈ Ii−1

x−xi+1

xi −xi+1
if x∈ Ii

0 otherwise

, for i = 1, . . . ,n−1.

The set{φi}n
i=0 forms a basis for the spaceS1,0(T ). Thus, a functionsl ∈ S1,0(T ) can be

written as

sl (x) =
n

∑
i=0

ciφi(x),

wherec0, . . . ,cn are arbitrary constants. Asφi(x j) = δi j , the basis{φi}n
i=0 is a nodal basis

of S1,0(T ) with respect to the partition∆. Therefore, the piecewise linear interpolation of a
continuous functionf : [a,b]→R on the decompositionT is obtained by settingci = f (xi),
i = 0, . . . ,n.

Example 8. Nearest Neighbour Interpolation in[a,b]: Assume that the values of a func-
tion f at the partition∆ = {xi}n

i=0 are given. Associated with the partition∆, we form a
dual partition∆̃ = {zi}n+1

i=0 with z0 = x0, zi = xi−1+xi
2 , i = 1, . . . ,n, andzn+1 = xn. Let χIi be

a characteristic function of the intervalIi = [zi ,zi+1), i = 0, . . . ,n. If T is the decomposi-
tion induced by the partitioñ∆, S0(T ) is spanned by the basis{χIi}n

i=0. Then, the nearest
neighbour interpolation of the functionf at the partition∆̃ is given by

N(x) =
n

∑
i=0

f (xi)χIi (x).

Example 9. Piecewise Cubic Hermite Interpolation:Given a partition∆ = {xi}n
i=0 of the

interval[a,b] havingn+1 number of points, we want to find a piecewise polynomialp with
p(xi) = yi , andp′(xi) = zi for i = 0, . . . ,n. Using the construction of Example 6, we define
a piecewise polynomialp for i = 0, . . . ,n−1 as

p(x) = Hi(x)yi +Hi+1(x)yi+1 +Ki(x)zi +Ki+1(x)zi+1, x∈ [xi ,xi+1)
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with Hi, Hi+1, Ki, Ki+1 as in Example 6, butl i andl i+1 are now piecewise linear polynomials
given by

l i(x) =
x−xi+1

xi −xi+1
, l i+1(x) =

x−xi

xi+1−xi
.

Assume that no derivatives are provided at the partition, but only function values. A piece-
wise cubic polynomial can be constructed also in this case assigning some suitable deriva-
tives of the function at the partition. The derivatives are assigned in such a way that the
resulting piecewise curve is continuously differentiable. One such example can be found
in [34] and is used in piecewise cubic interpolation of MATLAB . The derivativeszi are as-
signed in such a way that the function is continuously differentiable and function values do
not locally overshoot the data values. Letdi be defined as

di =
yi+1−yi

xi+1−xi
, i = 0, . . . ,n−1.

For an inner pointxi , if di anddi−1 are of opposite signs or if either of them is zero,xi is the
local extremum. Thuszi is set to be zero. Ifdi anddi−1 have the same sign,zi is set to be a
weighted harmonic mean of the two discrete slopes

1
zi

=
1

w1 +w2

(

w1

di−1
+

w2

di

)

with w1 = 2hi +hi−1 andw2 = hi +2hi−1. For more details see [34].

Although in the one-dimensional case a decomposition can always be induced by a
partition, this is not the case in two dimensions. Therefore, for simplicity, we divide the
two-dimensional case into two parts depending on whether the decomposition has a tensor
product structure or not.

Two-Dimensional Tensor Product Case

We start by defining a decomposition of a rectangular domain induced by a tensor product
partition.

Definition 12. Let ∆xy = ∆x⊗∆y be a tensor product partition of the rectangular region
[a,b]× [c,d], where∆x = {xi}n

i=0 is a partition of [a,b] and ∆y = {yi}n
i=0 is that of [c,d].

Let Ii j = (xi ,xi+1)× (y j ,y j+1), i = 0, . . . ,n−1, j = 0, . . . ,m−1. ThenT = {Ii j }n−1,m−1
i=0, j=0 is

called the decomposition of the domain(a,b)× (c,d) induced by the partition∆xy.

Example 10. Let Tx be the decomposition of(a,b) induced by a partition∆x = {xi}n
i=0 and

Ty that of(c,d) induced by a partition∆y = {y j}m
j=0. Let {φi}n

i=0 and{ϕ j}m
j=0 be bases of

S1,0(Tx) andS1,0(Ty), respectively, as constructed in Example 7. IfTxy is the decomposition
of the domain(a,b)× (c,d) induced by the partition∆xy = ∆x⊗∆y, then{ψi j }n,m

i=0, j=0 with
ψi j (x,y) = φi(x)ϕ j(y) forms a nodal basis forS1,0(Txy) with respect to the set of points∆xy.
A piecewise linear interpolation of a continuous functionf : R

2 → R can be obtained as

n

∑
i=0

m

∑
j=0

f (xi ,y j)ψi, j (x,y).
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Image Transformation through Interpolation

A digital image can be resized, rotated or distorted by usingpiecewise polynomial interpo-
lation. Although the interpolation technique can be applied to any digital image, we only
consider intensity images. An intensity image is an array ofsizem×n, where each element
of the array represents the intensity or gray scale of the pixel.

Associated with an imageI of sizem×n we define a tensor product partition∆0
xy of the

square[0,1]× [0,1] as

∆0
xy =

{

(ai ,b j)
}n−1,m−1

i=0, j=0 , where ai =
i

n−1
and b j =

j
m−1

.

We also define animage function I f : ∆0
xy → R in such a way thatI f (ai ,b j) gives the

intensity of the pixel at the point(ai ,b j).
Suppose that we are given an intensity imageI of sizem×n, and we want to convert

this image into another imagẽI of sizem1×n1. The image functioñI f for the new image is
to be defined on the new tensor product partition

∆1
xy =

{

(ci ,d j)
}n1−1,m1−1

i=0, j=0 with ci =
i

n1−1
and d j =

j
m1−1

.

The central idea of image resizing is to define a function on the square[0,1]× [0,1] and
to sample it at the tensor product partition∆1

xy. This procedure leads to the image function
Ĩ f : ∆1

xy → R.
In general, image resizing, rotation or distortion can be seen as a transformation of an

image. Suppose that we are given an invertible transformation T̂ to be applied to an intensity
image of sizem×n. At the first step, we apply the transformation to the underlying tensor
product partition∆0

xy to obtain a new set of points∆2
xy, and find a suitable rectangular region

[a,b]× [c,d] which contains all the points in∆2
xy.

Let
∆1

xy =
{

(ci ,d j)
}n1−1,m1−1

i=0, j=0

be a tensor product partition of the region[a,b]× [c,d], where we want to define the new
image functionĨ f : ∆1

xy → R. Notice that for image resizinĝT is an identity transformation
and therefore∆0

xy and∆2
xy are the same. Since∆0

xy has a tensor product structure, it is easy
to find a piecewise polynomialp on [0,1]× [0,1] which interpolates the image functionI f

at the tensor product partition∆0
xy (see Example 10).

Let (ci ,d j) be a point in the tensor product partition∆1
xy with

[

xi

y j

]

= T̂−1
[

ci

d j

]

.

At the second step, the new image functionĨ f is obtained by setting̃I f (ci ,d j) = p(xi ,y j) if
(xi ,y j) is inside the closure of the convex hull of the set of points∆0

xy, otherwiseĨ f (ci ,d j)
is set to zero. The algorithm for image transformation is given in Algorithm 1. MATLAB

codes are available at [31].
In Figure 4, we show three examples of image transformation by using linear interpo-

lation of the test image. The top left picture of Figure 4 shows the original image of size
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Require: A digital imageI and a transformation̂T
Ensure: A transformed digital imagẽI

1: Associate a tensor product partition∆0
xy and an image functionI f : ∆0

xy → R

2: Compute

∆2
xy = {T̂

[

ai

b j

]

, (ai ,b j) ∈ ∆0
xy}

3: Find a rectangle[a,b]× [c,d] with ∆2
xy ⊂ [a,b]× [c,d]

4: Define a tensor product partition∆1
xy = {(ci ,d j)}n1−1,m1−1

i=0, j=0 of [a,b]× [c,d], n1×m1 is
the size of the new image

5: For each(ci ,d j) ∈ ∆1
xy, find (xi ,y j) with

[

xi

y j

]

= T̂−1
[

ci

d j

]

6: Compute an interpolation polynomialp of I f on the unit square
7: Define an image functioñI f : ∆1

xy → R as

Ĩ f (ci ,d j) =

{

p(xi ,y j) if (xi ,y j) ∈ convex hull of∆0
xy

0 otherwise

8: The new digital imagẽI is then given bỹI(i, j) = Ĩ f (ci ,d j)

Algorithm 1: Image Transformation

512×512. The top right one is the original image rotated 40◦ anti-clockwise. The pictures
at the bottom correspond to the original image resized to 200×500 (left) and to 200×200
(right).

Two-Dimensional Non-Tensor Product Case

The two-dimensional interpolation problem is more difficult if the interpolation points do
not have a tensor product structure. In such a situation, thetwo-dimensional interpolation
is calledscattered data interpolation. There is a vast amount of literature devoted to
scattered data interpolation. We refer to [18, 19] for extensive surveys on this subject.
Here, we consider an approach based on decomposing the convex hull of G into triangles
with vertices inG and piecewise polynomial interpolation. Therefore, in what follows we
restrict ourselves to the case of piecewise interpolation on triangles. The most efficient and
popular way of decomposing the polygonal domainΩ into triangles whenΩ is the convex
hull of the scattered points is the Delaunay triangulation.

Definition 13. Given a setG of points inR
2, a Delaunay triangulation for G is a de-

compositionT of convex hull ofG into triangles such that no point inG is inside the
circumcircle of any triangle inT .

A Delaunay triangulation of a finite set of points in the planeis a triangulation that
minimises the standard deviations of the angles of the triangles. In this sense, the Delau-
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Figure 4: The original image of size 512×512 and image rotated 40◦(top left and right).
Resized image of size 200×500 and of size 200×200 (bottom left and right).

nay triangulation is the most equi-angular triangulation.The dual graph of the Delaunay
triangulation is a Voronoi diagram for the same set of points.

Definition 14. For a set of pointsG ⊂R
2, theVoronoi diagram is the decomposition of the

plane into convex polygons such that each polygon contains exactly one generating point
fromG and every point in a given polygon is closer to its generatingpoint than to any other
point inG . A convex polygon Vx associated with the generating pointx ∈ G is called the
Voronoi cell for the pointx ∈ G .

In other words, the Voronoi cellVx for the pointx ∈ G has the property that the dis-
tance from everyy ∈Vx to x is less than or equal to the distance fromy to any other point
in G . The circle circumscribed about a Delaunay triangle has itscentre at the vertex of
a Voronoi cell, see the right graph of Figure 5. The idea of Delaunay triangulation and
Voronoi diagram is also extended to higher dimension. An efficient algorithm for comput-
ing Delaunay triangulations and Voronoi diagrams are presented in [35], see also [20, 36].
A lot of interesting materials can be found in websites [37,38].

As an example of a Delaunay triangulation and Voronoi diagram, we define a setG1 =
{(0.1,0.4),(0.5,0.1),(0.45,0.5),(0.3,0.6),(0.3,0.3),(0.1,0.4), (0.9,0.8),(0.3,0.9),
(0.2,0.1),(0.8,0.9)}, and generate the Delaunay triangulation and the Voronoi diagram
of G1. The Delaunay triangulation and the Voronoi diagram ofG1 are shown in the left
and middle graphs of Figure 5, respectively. The right graphdepicts the circumcircle of a
triangle with its centre at a vertex of the Voronoi diagram (filled circle).

Example 11.LetT be a Delaunay triangulation of the set of pointsG . We construct a nodal
basis{φi}N

i=0 of S1,0(T ) with each basis functionφi corresponding to a point(xi ,yi) ∈ G
and satisfyingφi(x j ,y j) = δi j , i, j = 0, . . . ,N. A basis functionφi is shown in the right graph
of Figure 6. The basis functionφi vanishes outside∪5

j=1cl(Tj), whereTj ∈ T , j = 1, . . . ,5,
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Figure 5: The Delaunay triangulation of the setG1 (left graph). The corresponding Voronoi
diagram (middle graph). The circumcircle of a triangle withDelaunay triangulation and
Voronoi diagram (last graph).
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Figure 6: The reference triangle and an affine mapF̂T from the reference triangle to a
generic triangle (first two graphs). A nodal basis functionφi (last graph).

are the triangles having the common vertex(xi ,yi) as shown in the right graph of Figure
6. The key point for the construction is to define a reference triangle, where it is easy to
compute polynomial basis functions, and map the triangle tothe actual element by using an
affine transformation. It is convenient to choose the right-angled triangleT̃ = {(x̃, ỹ) : x̃ >

0, ỹ > 0, x̃+ ỹ < 1} as the reference triangle.
The local Lagrange basis functions associated with three vertices of T̃ for the linear

interpolation are given byl1(x̃, ỹ) = (1− x̃− ỹ), l2(x̃, ỹ) = x̃, andl3(x̃, ỹ) = ỹ. See the left
graph of Figure 6. If(x̃ j , ỹ j), j = 1, . . . ,3 are the three vertices of the reference triangle,
the basis functions satisfyl i(x̃ j , ỹ j) = δi j , i, j = 1, . . . ,3. Let T ∈ T have three vertices
(x1,y1), (x2,y2) and(x3,y3) as in the middle graph of Figure 6. The mappingF̂T transforms
a point in the reference trianglẽT to a point in the actual triangleT as follows

[

x
y

]

= F̂T

[

x̃
ỹ

]

with F̂T

[

x̃
ỹ

]

=

[

x2−x1 x3−x1

y2−y1 y3−y1

][

x̃
ỹ

]

+

[

x1

y1

]

.

The first two graphs of Figure 6 show a reference triangleT̃ and the triangleT.
If the three vertices of the triangleT are not collinear, the determinant of the matrix

[

x2−x1 x3−x1

y2−y1 y3−y1

]

does not vanish and hencêFT is invertible. The three global Lagrange basis functions on
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the triangleT are then given bygi(x,y) = l i(x̃, ỹ), i = 1, . . . ,3, with
[

x̃
ỹ

]

= F̂−1
T

[

x
y

]

.

By construction the global Lagrange basis functionsgi satisfygi(x j ,y j) = δi j , i, j = 1, . . . ,3,

and are linear inT.
Let us consider the construction of the basis functionφi corresponding to the point

(xi ,yi) in more detail. The point(xi ,yi) is a vertex of five triangles as shown in the right
graph of Figure 6. The Lagrange basis function corresponding to the vertex(xi ,yi) for each
of these five triangles has value one at the point(xi ,yi) and value zero on all edges of the
triangle opposite to this vertex. Letφ̃ j be the Lagrange basis function for the triangleTj ,
j = 1, . . . ,5, corresponding to the point(xi ,yi). The global basisφi corresponding to the
point (xi ,yi) is then defined by

φi(x,y) =

{

φ̃ j(x,y) if (x,y) ∈ Tj , j = 1, . . . ,5

0 otherwise.

It is obvious that the basis functionφi is piecewise linear andφi(x j ,y j) = δi j . Furthermore,
the following lemma shows thatφi is continuous.

Lemma 1. The basis functionφi defined as above is continuous on the boundary of two
triangles.

Proof. Let us analyse the value of the functionφi on the boundary ofT1 andT5, which is a
line joining two points(xi ,yi) and(xi+1,yi+1), see the right graph of Figure 6. Here, both
φ̃1 andφ̃5 take the values one at(xi ,yi) and zero at(xi+1,yi+1). In between are linear. Since
there is a unique linear polynomial having this property, they have exactly the same value
on the boundary ofT1 andT5.

Each vertex inG has an associated basis function which has value one at this vertex and
zero at all other vertices. This leads to a nodal basis{φi}N

i=0 of the piecewise polynomial
spaceS1,0(T ).

Example 12. Nearest Neighbour Interpolation:The nearest neighbour interpolation of a
set of scattered dataG = {(xi ,yi)}N

i=0 can be realised by generating the Voronoi diagram of
the setG . Assume that we are given the values{zi}N

i=0 of a function atG , andχVi is the
characteristic function of the Voronoi cellVi corresponding to the point(xi ,yi), i = 0, . . . ,N.
Then, the nearest neighbour interpolantp of the given data is obtained as

p(x) =
N

∑
i=0

ziχVi(x).

Image Denoising through Interpolation

As an application of the scattered data interpolation, we propose a very simple method of
denoising an image in those cases in which the noisy and pure pixels can be identified. For
example, we can identify the noisy and pure pixels in an imagecorrupted with salt and
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Require: A noisy digital imageI
Ensure: A filtered digital imageĨ

1: Associate a tensor product partition∆0
xy and an image functionI f : ∆0

xy → R with the
imageI

2: Let Sp andSn denote the set of points with pure and noisy pixels with∆0
xy = Sp∪Sn,

respectively, andI p
f = I f |Sp

3: Compute the Delaunay triangulationT of the set of pointsSp

4: Find a piecewise interpolation polynomialp of I p
f on the convex hull ofSp

5: Let ∆1
xy = {(ci ,d j)}n1−1,m1−1

i=0, j=0 be a tensor product partition of the square[0,1]× [0,1]

where we want to define the new image functionĨ f for the filtered image. Define the
new image functioñI f : ∆1

xy → R as

Ĩ f (ci ,d j) =

{

p(ci ,d j) if (ci ,d j) ∈ convex hull ofSp

I p
f (x̃i , ỹ j) otherwise,

where(x̃i , ỹ j) ∈ Sp and is nearest to(ci ,d j)
6: The filtered imagẽI is then given bỹI(i, j) = Ĩ f (ci ,d j)

Algorithm 2: Impulsive Noise Removal

pepper noise. The salt and pepper noise is of impulsive nature. In an intensity image the
noisy pixels are randomly set either to white or black [15]. Here we apply the scattered
data interpolation to filter this type of noise. An alternative approach for removing high
density salt and pepper noise is proposed in [17]. However, the method of scattered data
interpolation based on a Delaunay triangulation is easy andefficient.

Assume that a digital imageI of sizem×n is corrupted with salt and pepper noise. As
in the previous case, we associate with the image a tensor product partition

∆0
xy = {(ai ,b j)}n−1,m−1

i=0, j=0 , where ai =
i

n−1
and b j =

j
m−1

and the image functionI f : ∆0
xy → R.

Let Sn be the set of points in∆0
xy having corrupted pixels. Denoting bySp the set of

points where only the pure pixels of the image are located we split the image functionI f

into two functionsIn
f andI p

f , which are defined asIn
f = I f |Sn andI p

f = I f |Sp, respectively. As
the positions of the noisy pixels are random, the points inSn have no structure.

The key idea for getting rid of noisy pixels is to find an interpolant which interpolates the
scattered data inSp. To such an end we generate a Delaunay triangulation of the scattered
points inSp and compute an interpolantp on the convex hull ofSp. Hencep(x,y) = I p

f (x,y)

for all (x,y) ∈ Sp. Choosing a tensor product partition∆1
xy = {(ci ,d j)}n1−1,m1−1

i=0, j=0 we define

a new image functioñI f : ∆1
xy → R so thatĨ f (x,y) = p(x,y) for all (x,y) ∈ ∆1

xy. If the point
(x,y) ∈ ∆1

xy does not belong to the closure of the convex hull ofSp, we need to extrapolate
for that point. For this, we choose one point(x̃, ỹ) in Sp, out of the nearest to(x,y), and set
Ĩ f (x,y) = I p

f (x̃, ỹ). We have canned the complete denoising procedure in Algorithm 2.
Assuming that we know the image before being corrupted with noise, we use peak

signal-to-noise ratio (PSNR) to compare our results with the results obtained by using the
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standard median filter [16]. The peak signal-to-noise ratio(PSNR) is defined by

PSNR= 10· log10

(

MAX2
I

MSE

)

= 20· log10

(

MAXI√
MSE

)

,

whereMAXI is the maximum pixel value of the image, andMSE is the mean square error,
i.e.,

MSE=
1

mn

m

∑
i=1

n

∑
j=1

‖IO(i, j)− IR(i, j)‖2,

whereIO is the original image before corruption andIR is the image recovered after re-
moving the noise.

In Figure 7, we show an example of applying the linear interpolation to remove the salt
and pepper noise. The first picture (from the left) of Figure 7shows the original image. The
second one shows the noisy image with noise density 50%. The third picture is the image
reconstructed by using the linear interpolation, and the fourth one is the image denoised
by the median filter. In this example, the nearest neighbour interpolation produces the
image which is visually equivalent to that produced by the linear interpolation. We also
observe that the image obtained by the median filter does not differ much from the previous
ones. However, if the noise density is increased, the medianfilter does not recover even
the main feature of the image. This is illustrated in Figure 8, where we deal with noise
density 95%. The first picture of this figure shows the noisy image. The second picture
shows the image reconstructed by using the linear interpolation. The third picture shows
the image reconstructed by using the nearest neighbour interpolation, and the last one the
reconstruction by using the median filter. We can see that here the median filter produces a
meaningless image.

The peak signal-to-noise ratio (PSNR) for two test images are given in Table 1. The two
images we have considered are Lena (first picture in Figure 7)and Baboon (top left picture
of Figure 4). For both images, the linear interpolation produces the best PSNR values for
all noise densities. The PSNR values from the nearest neighbour interpolation are not far
from these values. The PSNR values from median filter are acceptable in the cases of low
noise densities, whereas at high noise densities (above 50%) the PSNR values decrease
considerably.

Figure 7: The original image. Noisy image (noise density 50%). Image denoised with
linear interpolation and median filter.
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Figure 8: Noisy image (noise density 95%). Image denoised with linear interpolation,
nearest neighbour interpolation and median filter.

Table 1: PSNR of the test images with various noise densities
PSNR for Lena’s image PSNR for Baboon’s image

Noise Density Noise Density
Method of Denois. 30% 50% 70% 90% 30% 50% 70% 90%

Linear Interp. 38.57 35.20 32.12 27.73 26.60 23.91 21.76 19.34
Nearest Neighbour 34.43 31.53 29.18 25.61 23.79 21.74 20.10 17.89

Interp.
Median Filter 26.11 23.68 19.34 9.47 19.01 18.14 17.23 9.36

As a final remark we would like to stress that the method of scattered data interpolation
based on Delaunay triangulation provides a promising approach to remove high density
impulsive noise. It is easy to implement and computationally efficient. Our numerical
results show that linear and nearest-neighbour interpolation can outperform the standard
median filter.
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[33] E. Süli and D. Mayers.An Introduction to Numerical Analysis. Cambridge University
Press, Cambridge, first edition, 2003.

[34] F.N. Fritsch and R.E. Carlson. Monotone piecewise cubic interpolation.SIAM Journal
on Numerical Analysis, 17:238–246, 1980.

[35] C. B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22:469–483, 1996.

[36] F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R.Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 201–290. North-Holland, Amsterdam,
Netherlands, 2000.



32 Bishnu Lamichhane and Laura Rebollo-Neira

[37] D. Eppstein. Nearest neighbors and voronoi diagrams.http://www.ics.uci.edu/
∼eppstein/junkyard/nn.html.

[38] Qhull computes the convex hull, Delaunay triangulation, Voronoi diagram and halfs-
pace intersection about a point.http://www.qhull.org.


