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Chapter 1

PROJECTION AND INTERPOLATION BASED
TECHNIQUES FOR STRUCTURED AND IMPULSIVE
NOISE FILTERING

Bishnu Lamichhane and Laura Rebollo-Neira
Aston University
Birmingham B4 7ET, United Kingdom

Abstract

In this chapter we present the relevant mathematical backgrto address two
well defined signal and image processing problems. Namdyptoblem of struc-
tured noise filtering and the problem of interpolation of simig data. The former is
addressed by recourse to oblique projection based teabsighilst the latter, which
can be considered equivalent to impulsive noise filterisgiackled by appropriate
interpolation methods.

1 Introduction

Structured noise filtering is a particular problem of siggggparation, in which the subspaces
hosting the signal components are assumed to be known anplamentary. Thus, the
filtering can be realized in a straightforward manner by vese to an oblique projection
onto the subspace where one of the signals belongs, and tlergubspace hosting the
other components. A number of signal processing applicatio which this procedure is
of assistance are discussed in [1].

Oblique projectors were introduced early [2, 3]. Recertigré has been a renewed in-
terest in their properties [4—6]. As a very small sample efghblications concerning sig-
nal processing application of oblique projections we caunkhtion [7—10]. Unfortunately,
given two complementary subspaces, it is not always passibtonstruct a numerically
stable oblique projector onto one of the subspaces and #hengther. If the angle between
such subspaces is small, the numerical errors in the ctitmsaare magnified and yield,
thereby, an oblique projector of poor quality. In relatiorthie problem of structured noise
filtering this may cause the failure to correctly filter theisgo Nevertheless, if the sig-
nal component one wishes to discriminate belongs to an ‘awkhsubspace of the given
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one, and the construction of the oblique projector onto smhller subspace is numeri-
cally stable, the problem of discriminating the signal comgnt can be transformed into
the one of finding the right subspace. This has motivated dlaptave Oblique Matching

Pursuit approach for signal separation [11], extended 2j. [The approach is effectively
implemented by recursive equations for adapting obliqugeptors given in [13].

Impulsive noise is characterised by a linear combinatiowerf sharp spikes. This
type of noise can be regarded as a particular case of stegchoise and in some situa-
tions its filtering could be accomplished by techniques deedtructured noise. However,
especially for images, impulsive noise can be effectivelgdied as a problem of interpola-
tion of missing data or ‘image inpainting’ [14, 15]. This piem has been addressed from
different points of view [14, 16, 17]. Here we focus on a melhased on scattered data
interpolation [18,19]. The interpolation is realised byngsDelaunay triangulation [20, 21].
Interpolation methods based on Delaunay triangulatior haen previously applied to im-
age processing in [22, 23].

The chapter is organised as follows: For the conveniencéefd¢aders all the ele-
mentary mathematical terms used throughout the chapteatedied in Section 2. More
advanced technical terms are defined in the sections wheyeatle introduced. Section 3
discusses oblique projectors in the context of structuasenfiltering. Section 4 provides
the basic mathematical background relevant to polynomidlpgecewise polynomial inter-
polation in one and two dimensions. Delaunay triangulatexhnique for scattered data
interpolation is discussed in the same section. Such aitpedhiis applied to the problem
of filtering salt and pepper impulsive noise from an image.

List of Symbols
We shall use standard set-theoretic notation
U n, <, c, €

to denote ‘union’, ‘intersection’, ‘subset of’, ‘properisset of’, ‘belong(s) to’, respectively.
For the set¥; andV,, the set{ve V; : v¢ sy} is denoted by \ Va.

The following standard notations and symbols will be usetheuit defining them ex-
plicitly:

set of all positive integers

set of all integers

field of all real numbers

field of all complex numbers
field of real or complex numbers
imply (implies)

if and only if

maps to

lﬂu'ﬁﬁ%NZ
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The Kronecker symbol is given by

s f1 ifi=]
"7 )10 otherwise.

The characteristic functiogs of a setSis defined as

Xs(X) = 1 ifxeS
SV Y0 otherwise.

The absolute value of a numbek F is indicated asa.
IfacR
a ifa>0
&l = .
—a ifa<O.

If a € C its complex conjugate is denoted aynd|al? = aa.
Note: Bold faceis used when a terminology is defindthlics are used to emphasise a
terminology or statement.

2 Elementary Definitions

A vector spaceover a fieldF is a set?’ together with two operations vector addition,
denotedv+w € ¥ for vyw € 7 and scalar multiplication, denotext € ¥ for a € F and
v € Y, such that the following axioms are satisfied:

1.viw=w+v,vywe V.

2. U+ (Vv+w)=(u+v)+w, uvwe 7.

3. There exists an element&07/, called the zero vector, suchthat 0=v, ve 7.
4

. There exists an elemeutc™ 1/, called the additive inverse af such thatv+ VvV =
O,ve 7.

a(bv) = (ab)v, a,be Fandve 7.
a(v+w) =av+aw, ac Fandv,we 7.

(a+b)v=av+bv abeFandve 7.

© N o v

lv=v, ve ¥, where 1 denotes the multiplicative identitylin

The elements of a vector space are calledtors A subsetS of a vector space’ is a
subspaceof ¥V if it is a vector space with respect to the vector space opaabn?. A
subspace which is a proper subset of the whole space is @pesper subspace Two
subspaced/ and 7%, arecomplementaryor disjoint if 71N 15 = {0}.

The sum of two subspacel) and 75 is the subspacé’ = 14 + 1% of elementsy =
Vi + Vo, V1 € W, Vo € T4, If the subspace$’ and 75 are complementaryl/ = 14 + 15 is
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calleddirect sum and each elemente 9 has a unique decompositian= vy + Vo, v1 €
T, Vo € V5. A
Let 71 and 7% be vectors spaces. A mappiAg 71 — 1% is alinear operator if

A(v+w) =Av+Aw,  Aav) = aAy,

for all v,w € 9, anda € F. 7/ is called thedomain of A and 1% its codomainor image If
the codomain of a linear operator is a scalar field, the opeigatalled dinear functional
on 7;. The set of all linear functionals o] is called thedual spaceof 7.

Theadjoint of an operatoA: 14, — 74 is the unique operatdk* satisfying that

(Agt,%2) = (01, A" g).

If A* = Athe operator iself-adjoint. )
An operatorA: 74, — 715 has arinverseif there existsA~! : 45 — 94 such that

NP .
A A=, and AA1=T,,

whereli,/1 andIAf,/2 denote the identity operators i and15, respectively. By @eneralised
inversewe shall mean an operatdi satisfying the following conditions

AATA = A
RAAT = AT

If vi,...,Vv, are some elements of a vector spdéeby alinear combination of vi,..., v,
we mean an element i of the formavy + -+ +apvy, withg € F,i=1,...,n.

Let Sbe a subset of element 6f. The set of allinear combinationof elements ofS
is called thespanof Sand is denoted by sp&h

A subsetS= {v;}{! ; of 7/ is said to bdinearly independentif and only if

Vi +--+avh=0, = a=0/i=1...,n

A subset is said to biinearly dependentif it is not linearly independent.

S is said to be dasisof V if itis linearly independent and sp&3= 7. Thedimension
of a finite dimensional vector spack is the number of elements in a basis fbt The
number of elements in a set is termed tlaedinality of the set.

Let{vi}' ; be a basis fofl/. Forv=ajvi+---,anVn let fi(v) : ©/ — F be defined by

filv)=a, i=1,...,n

Thenfj is a linear functional for each The linear functionald,, ..., f, are calledcoordi-
nate functionalson 7’ with respect to the basig/ }i ;.
We denote thepace of polynomialf degreeme N onR by

Pn(R) = {p: p(x) = iaixi, xe R}.

Such a space is a vector space.
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Given a compact intervah, b] we define gartition of [a,b] as the finite set of points
A={x}'o,neN, suchthat a=xg<X <+ <X =Db.

An inner product on a vector spacé’ is a map from?’ to IF which satisfies the fol-
lowing axioms

1. (vv) >0,ve ¥, and(v,v) =0<=v=0.

2. (V+wW,2) = (v,2) +(W,2), v,w,ze V.

3. (vyaz = a(v,2), v;ze ¥ andacF.

4. (v,w) = (W,V), ,w € V.

A vector spacel’ together with an inner produgt, -) is called aninner product space
Two vectorsv andw in an inner product space are said todothogonal if (v,w) = 0.
Two subspaced/ and 1% are orthogonal ifivy,v,) = 0 for all v; € 74 andv; € 1.

The sum of two orthogonal subspacgs and 1% is termedorthogonal sum and will be

indicated asl = 1, @ 1%. The subspacé’ is called theorthogonal complementof 74

in 7. Equivalently,?} is the orthogonal complement 6% in V.

A norm || -] on a vector spac®’ is a function from?’ to R such that for every,w € 7V
anda € F the following three properties are fulfilled

1. |lv|| > 0, and|lv|| =0 <= v=0.
2. [lavi] = [al]|v]].
3. [Ivwi[ < V][ + [Jw].

A vector spacel’ together with a norm is calledreormed vector space
Two vectorsv andw are said to berthonormal if they are orthogonaland ||v|| =
[wl| = 1.
TheEuclidean spaceR" is an inner product space with inner product defined by
<X7y> = lel + .. -Xnym
with X = (Xg,...,X,) andy = (y1,...,¥n). The norm||x|| is induced by the inner product

1
2

1 1
1] = (X,X)2 = (4% + ... XnXn) 2 = (X2 + ...+ [Xa]?) 2.

The spaceL?[a,b] is an inner product space of functions f@b] with inner product
defined by

oy = [ xpo

x| = (x )% = ( / b|x<t>|2dt) .

The spaceCK[a, b] is the space of functions da,b] having continuous derivatives up
to orderk € N. The space of continuous functions [anb] is denoted a€°[a, b].

and norm
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3 Signal Representation, Reconstruction, and Projection

Throughout this chapter signalis considered to be an element of an inner product space
# with norm induced by the inner produdt; || = (-,-)% Moreover, for the problems to
be addressed we assume that all the signals of interestgodasome finite dimensional
subspacé of # spanned by the sét; € #}M,. Hence, a signaf can be expressed by a

finite linear superposition
M

f= i;CiVi,

where the coefficients, i = 1,...,M, are inF.

We callmeasurementor sampling to the process of transforming a signal into a num-
ber. Hence aneasureor sampleis afunctional Because we restrict considerations to
linear measures the associated functional is linear. Aliegly, making use oRiesz theo-
rem[24] we can express a linear measure as

m=(w, f) forsome we #.

We refer the vectow to asmeasurement vector
ConsideringM measurementsy, i = 1,...,M, each of which is obtained by a measure-
ment vectow;, we have a numerical representationfads given by

m=(w,f), i=1...,M.

Now we want to answer the question as to whether it is posgileconstructf € 7/ from
these measurements. More precisely, we wish to find the negaints we need to im-
pose upon the measurement vectgrs = 1,..., M, so as to use the concomitant measures

(wi, f), i=1,...,M, as coefficients for the signal reconstruction, i.e., wehwishave
M M
f=3avi=>% (w,fw. 1)
22
By denoting
M
E=Sviw,), 2)
i; | |

where the operatiofw;, -) indicates thaE acts by taking inner products, (1) is recast
f=Ef.

As will be discussed next, the above equation tells us tlatrtbasurement vectong, i =
1,...,M, should be such that the operakois a projector ontal/.
An operatorE : H — ¥/ is a projector if it isdempotenti.e.,

E2=E.

As a consequence, the projection is ot¢E ), the range of the operator, and alahgE),
the null space of the operator. Let us recall that

R(E)={f, suchthatf =Eg, ge H}.
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Thus, if f € R (E), o )

Ef=E’g=Eg=f.
This implies thaE behaves like the identity operator for &lE ® (E), regardless of\(E),
which is the subspace @f defined as

N(E) = {g, suchthattg=0, ge #}.

It is clear then that to reconstruct a sigriat 7’ by means of (1) the involved measurement
vectorswi, i = 1,...,M, should give rise to an operator of the form (2), which mustabe
projector onto?’. Notice that the required operator is not unique, becalese #xist many
projectors ontal’ having diﬁerent‘)\[(é). Thus, for reconstructing signals in the range of
the projector its null space can be chosen arbitrarily. Harehe null space becomes ex-
tremely important when the projector acts on signals oat#&range. A popular projector,
to be discussed below, is the orthogonal one. Wigit) happens to be equal ®(E)*,
which indicates the orthogonal complementﬂQtE), the projector is calle@rthogonal
projector onto R (E). This is the case if and only if the projectorsslf adjoint

A projector which is not orthogonal is called ablique projector and we need two
subscripts to represent it. One subscript to indicate thgaaf the projector and another to
represent the subspace along which the projection is peeidr Hence the projector onto
7 along W is indicated a&,q, . .

The particular casé,,/,w corresponds to aorthogonal projectoand we use the special
notationlsq/ to indicate such a projector. When a projector ofitas used for signal pro-
cessing M+ can be chosen according to the processing task. The exabgitesillustrate
two different situations.

Example 1. Let us assume that the signal processing task is to appraxiaggnalf € #
by a signalf,, € . In this case, one normally would chookg = P,, f because this is the
unique signal i’ minimising the distancéf — f,/||. Indeed, let us take another sigmal
in 9/ and write it asg = g+ P, f — P, f. Sincef — P, f is orthogonal to every signal i
we have

If =gl = | f —g+Pyf —Pyf[ = ||f =Py f|>+ [Py f —g|*.
Hence| f — g|| is minimised ifg = Py, f.

Example 2. Assume that the signdl to be analysed here is the superposition of two sig-
nals, f = f; + f,, each component being produced by a different phenomenomaneto
discriminate. Let us assume further thfate 9/ and f, € W+ with 7/ and W= disjoint
subspaces. Thus, we can obtaipsay, fromf, by an oblique projector ont®’ and along
W+, The projector will map to zero the componetto produce

f1 = Eqqp f.

3.1 Constructing Oblique Projectors for Structured Noise HRltering

Example 2 discusses the fact that a signal component carsbendinated from another
components by an oblique projection. In this section we folus on the actual construc-
tion of such a projector.
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Given 7 and W disjoint, i.e., such that
vVnwt={0},

in order to provide a prescription for constructiﬁg;(WL we proceed as follows. Firstly we
defineS as the direct sum of’ and W+, which we express as

S=V+w.
Let W = (W*)+ be the orthogonal complement @ in . Thus we have
S= rV+Wl: W@WJ_a

where the operatiom indicates the orthogonal sum.
Considering thafvi }M , is a spanning set fot’ a spanning set fo#/ is obtained as

Ui :Vi—lf)WJ_Vi :ISin, iZl,...,M.

Denoting as{e}M, the standard orthonormal basisli, i.e., the Euclidean inner
product(e, ;) = &, we define the operatoxs: FM — 1/ andU : FM — 9 as

A~

V= _ﬁvi(e.,), U= _iuﬂa,).

Thus the adjoint operatot$* andV* are
R M R M
Vi=>Sev,), U= e(u,).
2 2

It follows thatP,,V = U andU*P,, = U* hence G : CM — CM defined as:
=0V =0"0
is self-adjoint and its matrix representati@a, has elements
Gij = (U, Vj) = Py, vj) = (Ui, Poyuy) = (Ui uy), i, j=1,...,M.

From now on we restrict our signal space tofesince we would like to build the oblique
projectorE, 4. onto 4’ and alongW-- having the form

M

Epgp = ;Vi (Wi, -). 3)

Clearly for the operator to map to zero every vectoriin- vectors{w;}M, must span
W = (W)t =spar{u;}M,. This entails that for eacl; there exists a set of coefficients
{bi ;}., such that

M
W = i;bi,jui, (4)
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which guarantees that every is orthogonal to all vectors i+ and thereforew- is
included in the null space tﬁ,,/wl Moreover, since every S|gnag say, inS can be written
asg = gy + gy With g, € ¥ andg,,. € W+, the fact thaEVWLg 0 impliesgy = 0.
Henceg =gy, which implies that the null space Ef,/WL restricted tqs is W*. In order
for E,qp. to be a projector it is necessary tlﬁggwL = Eyqp.. As will be shown in the
next proposition, if the coefficients, ; are the matrix elements ofgeneralised inversef
the matrixG defined above, this condition is fulfilled.

Proposition 1. If the coefficients iy in (4) are the matrix elements of a generalised inverse
of the matrix G, which has elements; g= (vi,u;), i, =1,...,M, the operator in(3) is a
projector.

Proof. For the measurement vectors in (4) to yield a projector offéhe (3), the corre-
sponding operator should be idempotent, i.e.,

M M M M

nzlrrgli;hzlwbl Vol B, Zl Z vibi j (U, ). (5)
Defining

B= Ziz abi (e, ) (6)

as
VB'U*'VBU* (7)
and the right hand side as
VB*U™. (8)
Assuming thaB* is a generalised inverse (f*V) indicated ag8* = (UV)T it satisfies (c.f.
Section 2)

B*(U*V)B* =B, 9)
and therefore, from (7), the right hand side of (5) followsnc® B* = (U *\7)T =G' and
G* = G, we haveB = G'. Hence, if the elements ; determlnlngB in (6) are the matrix
elements of a generalised inverse on the matrix repres@mtaf G, the corresponding

vectors{w; }i! ; obtained by (4) yield an operator of the form (3), which is dilique
projector. ]

Property 1. LetE, . be the oblique projector ontd’ and along " and P,, the or-
thogonal projector onta’ = (W+)+. Then the following relation holds

PyyEyays = Poy.
Proof. E, 4. given in (3) can be recast, in terms of operatoandU*, as:
Epge =V (UV)0".
Applying P, both sides of the equation we obtain:
PyEygp =PV (U*V)T0* =0 (0V)'0* =0 (0*0)"0",

which is a well known form for the orthogonal projector oRgU ) = /. O
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Notice that the operative steps for constructing an oblioigector are equivalent to
those for constructing an orthogonal one. The differengegothat in general the spaces
spafvi}M, =% and spafw}M, = W are different. For the special case=vi, i =
1,...,M, both sets of vectors spaf and we have an orthogonal projector oritbalong
VL.

Example 3. Suppose that the chirp signal in the first graph of Figure lorsupted by
impulsive noise belonging to the subspace

W = sparfy;(t) = e %M 00" te(0,1)13%.

The chirp after being corrupted by a realization of the naisesisting of 50 pulses taken
randomly from elements oft’* is plotted in the second graph of Figure 1.
Consider that the signal subspace is well representet given by

V = spar{vi,1(t) = cosrit, t € [0,1]}M5%.

In order to eliminate the impulsive noise from the chirp weétb compute the measure-
ment vectors{wi}ilzog’, here functions of € [0,1], determining the appropriate projector.
For this we first need a representationlfc;jh, which is obtained simply by transforming
the set{y; }5%] into an orthonormal set. Since the given §g}%] is linear independent
its orthogonallsatlon can be achieved bem Schmidtor Generalised Gram Schmidt
procedure. For the extension to include the non-linearpaddent case, see [25]. The cor-
responding codes can be found at [26]. Using the orthonobasis{o; }2%9 for %+ the
orthogonal projector onto this subspace is the operator

A 200
Py = Z 0i(0j,-).
=1

With this projector we construct vectors

200
Ui+1(t) = cosrit — Z 0j(t)(0j(t),cosrmit), i=0,...,99, te0,1]
=1

using a quadrature formula [27] for computing the inner piaid involved in the above
equations and in the elemengg,;, of matrix G

1
gim“:/ Ua(t)cosTijtdt, i—0,...,99 j—0,...,99
0

This matrix has an inverse, which is used to obtain functimst), t € [0, 1]}19 giving
rise to the required oblique projector. The chirp filteredsiigh a projector is depicted in
the last graph of Figure 1.

Example 4. Here we deal with the image of Lena shown in the first pictur&igtire 4.
This image is an array of 512512 pixels that we process row by row. Each row is a vector
li e R%12 i =1,...,512 The image is affected by structured noise produced wherorand
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Figure 1: Chirp signal (first graph). Chirp corrupted by 56damly taken pulses (middle
graph). Chirp denoised by oblique projection (last graph).

noise passes through a channel characterised by a giveix ditaving 100 columns and
512 rows. The model for each raf € R512 of the noisy image is

1°=1,+Ah, i=1,...,512

where eaclh; is a random vector ii®1°°. The image plus noise is represented in the middle
graph of Figure 4. In order to denoise the image we consideietrery rowl; € R5*is well
represented in a subspatespanned by discrete cosines [28]. More precisely, we censid
lie Vfori=1,...,512, where

: . 300
rV:spam{xi :cos<w>, j:l,...,512} .
2L i—1

The space of the noise is spanned by the 100 vectdS$%ificorresponding to the columns
of the given matrixA. The image, after being filtered row by row by the oblique pctyr
onto %’ and along the space of the noise, is depicted in the last gidiigure 4.

Figure 2: Image of Lena (first picture). Image plus struaduneise (middle picture). The
image obtained from the middle picture by an oblique prapecglast picture).

Notice that the oblique projector ontid is independent of the selection of the spanning
set for . Thus, one has a number of possibilities for expressing tigue projector.
Although all the forms are theoretically equivalent, thegrymot always be ‘numerically’
equivalent. This feature is illustrated in the next example

Example 5. Consider thati* is as in Example 3 and’ is also as in that example but
with M = 250 which, as illustrated by the experiment below, makestmstruction of the
corresponding oblique projector numerically unstable.



12 Bishnu Lamichhane and Laura Rebollo-Neira

We consider four theoretically equivalent ways of compyitrectors{w; } 259.

) wi = $229Gijuj, wheregj; is the (i, j)-th element of the inverse of the matit
having elements; ; = (u,vj),1,j =1,...,250.

i) Vectors {w;}2°? are as in i) but the matrix elements Gfare computed ag; ; =
(ui,uj),i,j=1,...,250.

iiiy Orthonormalising{u; }2°? to obtain{q; }?°9, vectors{w; }2°9 are then computed as

250

wi =% Gijdj,
=1
with g j = (qi,vj>, i,j=1,...,250.
iv) Same as in iii) but j = (g;,u;),i,j =1,...,250.

We test the numerical quality of the corresponding projechy comparing the following
guantities

I(E,pgpr —E2,_ )l
8) Mavgey, gy — 22w g]| 0,

b) max, g LErm iUy £ 0,

Vil

IE, LSl
0) max,cqp. 422 s 0.

The quality of the projector is indicated by the quantiti¢skd, and c), which should be
small if the numerical representation of the projector suaate. All the projectors produce
equivalent results for quantity c). Nevertheless, thera significant difference between
case iii) and the others with respect to the quantities apan@ase iii) produces a value of
a) and a value of b) which are 1dtimes smaller than the corresponding values produced
by cases i), i), and iv).

Unfortunately, even when the subspadésand 7+ are ‘theoretically’ complemen-
tary, in practice, due to the calculations being performedinite precision arithmetics,
the inaccuracy in the computation of the correspondingegtoy may cause the failure to
correctly filter structured noise. This is discussed in 2, where examples illustrating
such situations are provided. As pointed out in those effolne problem can be overcome
if the signal, f,,, one is trying to discriminate from the noise, admits a spaepresen-
tation in a spanning set foP’. This implies that given{v;}M, there exists a subset of
elements characterised by the set of indlﬂ;asf cardinalityK < M, spanning the subspace
Tk = spa{ V¢ } ey and such thaf,, = E,VKWJ Under the hypothesis that the numerical
construction oEf,/K w1 1S well posed, this projector will produce the correct sigspitting.
The problem one has to address then is the one of finding & ‘subspacel. Assum-
ing that{v }, is a basis for’, out of it we have(}{) possible basis of dimensidt. Hence
the problem of finding that of the right subspatg is in general intractable. In order to
reduce complexity one can make the search for the right sgkspignal dependent. An
adaptive approach is considered in the next section.
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3.2 Adaptive Pursuit Strategy and Structured Noise Filterhg

Given a signalf, and assuming that the subspa@#s and?/, are known, the goal is to find
asubset/ € ¥ suchthaty,,,, f =Egq. f. Moreover, itis assumed that = spar{v; }M ;

and V¥ = sparf{Vv,}scJ, WhereJ is a unknown subset of indices, out of the originaliset
1,...,M. The cardinality of] is such that the construction EAf,;/WL is well posed. This
assumption restricts the class of signals that can be hhibgllehe approach.

Under the above hypothesis, if the subsp@teere known, one would have

Epaf =Bz | :lzvg<wg,f>. (10)

cJ

However, if the computation cﬁ,,/wi is an ill posed problem, which is the situation we are
consideringEr,/wL f is not available. In order to look for the subset of indidgselding 7/
one may proceed as follows: Applymw on every term of (10) and using the properties
PyEqqy: = Py and PWE,VWL = P , whereW = spar{u, } 3, (10) becomes

Iswleswf:;w(Wg,f). (1)
eJ

SinceW/* is given and5wf =f— ISWL f, the left hand side of (10) is available. We are then
in a position to look for the s, } <3, out of the se{u; }M ,, in a stepwise manner. This can
be achieved by an adaptive pursuit approach, termed Opgtih@sthogonal Matching Pur-
suit approach [29], which at each step, say the k;te[l, selects the elemeugm minimis-

ing the norm of the residual errgP,, f —Py, P, f||?, whereMi 1 = spar{ug } , +uy.,
and{uy, }k 1 is the set of elements that have been selected in the presteps. Minimisa-
tion of HPWf PmHowHZ = ||Pyyf — PmeH2 is equivalent to choosing the indéx, 1
such that

‘(VmISWfH [(yn, )

U1 = arg max =arg max———

b 07
e vl Ay ol #

with vy, = un — Ismun andJ\ J the set of indices not selected in previous steps.

Details on the implementation of this approach and extendezlons of it are presented
in [30]. Further discussions in the context of structuret@diltering are given in [12] and
relevant MATLAB codes are available at [31].

4 Signal Interpolation

As already mentioned, we wish to consider the problem of isipel noise filtering, spe-
cially in the case of images, as a problem of ‘missing datdbeé@ddressed here by means
of interpolation techniques. The interpolation methodspn@pose are based on particu-
lar piecewise polynomial interpolation. However, in ordemassist the readers unfamiliar
with approximation theory, we introduce in the next two sBt some basic elements of
polynomial and piecewise polynomial interpolation.
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4.1 Polynomial Interpolation

Suppose that we are given data as a satiof points{x }{ , and a functionf having values
{yi = f(%)}i,. Suppose further that we want to approximétey a simple functiorp with
the properties

px) =y, i=0,...,n (12)

A function p satisfying the properties given in (12) is said to interpolthe functionf
at the points{x }{ , and is called amnterpolant. In practice, the simple functiop is a
polynomial, a piecewise polynomial or a rational functiddifferent interpolation methods
arise from the choice of the interpolating function. If théerpolating function is chosen to
be a polynomial, the interpolation is callpdlynomial interpolation.

A polynomial interpolation problem can be stated as: Giveetaofn+ 1 pairs of real
numbers{(x;,yi) }{' o, find a polynomialpy, € Pm(R) such thaty; = pm(x;), i =0,...,n. If
n = m, the problem is over or under-determined. The followingtleen holds ilh =m. We
refer to [32, 33] for a proof.

Theorem 1. If {x;}]! ; is a set of distinct points, for an arbitrary sg; }!' , of n+1 numbers
there exists a unique polynomial g Z,(R) such that p(x) =vVi,i=0,...,n.

Assume that we are given a functiérn [a, b}, and we have an interpolating polynomial
pn of degreen on a partition{x; }! ; of [a,b]. Clearly, the functionf and the polynomial
pn have exactly the same values at the interpolation pdixtg' ,. However, if we pick
some arbitrary poink € [a,b] which is not an interpolating point, the function valéiex)
may be quite different fronp,(x). Under the assumption that the functibns sufficiently
smooth, the interpolation error is estimated in the follogvtheorem, the proof of which
can be found in many numerical analysis textbooks, e.g, 3[&7

Theorem 2. Suppose that f is an+ 1)-times continuously differentiable real-valued
function on[a,b]. Suppose further that the interpolating poifts}; ; are distinct. Then,
for x € [a,b],

(o (g)
(n+1)!

whereg € [a,b] is a function of X, andt,+1(X) = (X—Xg)(X—X1) - - - (X— X»). Denoting by
Mn1 the maximum value of ("9 (€)| in [a,b], we can bound the above error as

F(X) = pn(x) = Th1(X),

1100 Pa0] < o2 im0 (13

Lagrange Form of the Interpolation Polynomial

The Lagrange form of the interpolation polynomial is obgairby using the Lagrange basis
for the vector spacé,(R).

Definition 1. A set of functionl;}!' , is said to be a.agrange basisfor the space of
polynomials?,(R) with respect to the set of distinct poirits }'  if [ (Xj) = &;.
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Explicitly, the Lagrange basis functions with respect @ skt of distinct point$x; }!' ,

is
n

nX—X;
li(x) = '
0=]x
J#i i=0
In this case the interpolam, is given by

n
Pn(X) = > Vili(x),
2,
and is said to have the Lagrange form of polynomial interjomta

Newton Form of the Interpolation Polynomial

Although the Lagrange form of the interpolation polynomsssuitable from the theoretical
point of view, practically it is not the most convenient farihis sometimes useful to start
from an interpolation polynomial of lower degree and camsthigher degree interpola-
tion polynomials. In the case of the Lagrange polynomiatdlie no constructive relation
betweenp,_; andp,. The Newton form of polynomial interpolation is designeditothat.

Let {x }{', be a partition ofa,b] and assume that we are given an interpolation poly-
nomial p,_1 of degreen— 1 for n pairs of numberd (X, V:) i”:‘ol with ph_1(X) =V, i =
0,...,n—1. We want to represent the interpolation polynonpglof degreen for a set of
n+ 1 pairs of number$(x;,yi) }{ o as a sum op_1 and a polynomial of degregwith only
one unknown coefficient depending on the set of pofmi$! ;. Thus, takingg, € Pa(R),
we set

Pn(X) = Pn-1(X) + On(X).

Using the fact thap,_1(X) = yi, we havegn(X) = pn(%) — pn-1(%) =0,i=0,...,n— 1.

Hence g, can be written agn(X) = bnl‘l{‘;ol(x—xi), whereby, is to be determined. Assuming

thaty; = f(x), i =0,...,n, the coefficientb, can be found by setting,(x,) = f(X,).

Thereby

f (%) — Pn-1(%0)
Th(Xn)

wherert, (x) = NI (x—x). The coefficienb, is called then-th Newton divided difference
and is denoted by

b, = : (14)

bn = fX0,X1,...,%], n>1. (15)
The interpolation polynomigb, can then be written as
Pn(X) = Pn-1(X) + TH(X) f X0, . . . , Xn].

Using recursion om, we obtain the formula for the interpolation polynomial ire\Won
form

P = 3 (0 Tbo.. %), (16)

wherepg(x) = f(xo0) = f[Xo] = yo ando = 1.
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The Lagrange and Newton forms yield the same interpolatmgnomial due to the
uniqueness of the interpolation polynomial. The interpotapolynomial in the form (16)
is called theNewton divided differenceformula. There are many properties of the Newton
divided differences which make them computationally egfiti[27, 32].

It is interesting to compare the two forms of interpolatiariymomial in terms of the
basis of the polynomial spac®,(R). The interpolation polynomial of the Lagrange form
is obtained by using the Lagrange bafig ,, whereas the Newton form is obtained by
taking the basigT }{! . In the case of Lagrange form, the coordinate functionasanply
the function values at the given set of points whereas thedawate functionals in the
Newton form are given by Newton divided differences.

Hermite Interpolation

If the polynomial interpolation consists of finding an irgetant which is required to take
not only the function values but also the derivatives of tiection at the prescribed points,
it is calledHermite interpolation .

Assume that we require the polynomial of lowest degree whitdrpolates a function
f and its derivatives at two distinct points, say,andx; with xg # x;. Thus, we have to
find a polynomialp which fulfils the properties:

p(x)=f(x), P(x)="f(x), 1=01
Since there are four conditions, we look for a solutiorPyiR). Let

X— X1 X— X0
lo(X) = , and I1(x) =
o = omx 10 =

be the two Lagrange basis functions with respect to thetjpart{xo, x; }. We consider the
following basis of P3(R): Ho(X) = (X — X1)2(1+ 211(X)), H1(X) = (X — X0)?(1+ 2lo(X)),
Ko(X) = (X—X1)?(X—Xo), K1(X) = (Xx—X0)?(Xx— x1). It is immediate to verify that

Hi(Xj) :Céij, Hi/(Xj) :O, K|(XJ) :0’ KI/(XJ) :Céij W|th C= (Xl_)(o)z_

Hence, the required polynomial of lowest degree is simply

(be x)+ f'( x.)Ki(x)).

The general Hermite interpolation problem can be posedllsvia Given a partitiomA =
{xi}[, of [a,b], find a polynomialp satisfying the conditions

DD ) —a, 1=0.. k-1 =0 17
W(X')_Clh =0, k=1, 1=0,...,n, ( )
whereOI P = pfor j =0. At nodex;, k interpolatory conditions are imposed, whege
might change with respect to There are in totaln= ' (ki conditions. The proof of the
following theorem can be found in [32].
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Theorem 3. There exists a unique polynomialgp?,_1(R) fulfilling the Hermite condi-
tions in(17).

Example 6. We give a construction of Hermite interpolation with= 2 for all i. Let

A= {x}]', be a partition ofa, b] with n+ 1 points, andy; }{ , and{z }{_, two sets of real
numbers. We wish to find a polynomiple P»,.1(R) so thatp(x) =y; andp/(x) = z for

i =0,...,n. Our construction is based on a polynomial basis

B={Ho,...,Hn,Ko,...,Kn}
for Pon1(R) with the properties
Hj(x) = &j, Hj(x) =0, Kj(x) =0, Ki(x)=23j, i,j=0,...,n. (18)
Assuming thafl;}!! , is the Lagrange basis with respect to the partitioif we define
Hi (%) = 0012 (1— 21 06) (x— %)), Ki(%) = [li(x)](x—x)

fori =0,...,n, the basidB satisfies the properties (18). Hence, the interpolant
n
p(x) = Z)ai Hi(X) + biKi(x)
i=
fulfils the required conditions fag = y; andb; =z,i=0,...,n.

Extension to Two Dimensions

The two-dimensional interpolation is concerned with iptdating a function of two vari-
ables. Assume thaf = {(x,Vi)}\ , is a set of points iR?, and a functionf is given onG
with {z = f(x;,Vi)}\,. We are interested in an interpolation problem posed in ygooial
domainQ c R?.

Definition 2. A domain or subdomainin two dimensions is an open bounded region. A
polygonal domain or subdomainis an open and bounded region whose boundary consists
of pieces of lines.

In order to state the two-dimensional interpolation probleve need definitions of a
convex set and a convex hull.

Definition 3. A set Sc R¥, k€ N, is convexif for all x,y € S and all t€ [0, 1], the point
(1-t)x+tyesS.

Definition 4. Theconvex hullfor a set of pointsj is the minimal open convex set contain-
ing G.

Definition 5. Theclosureof a domainQ is defined by ¢Q) = QU0Q, wheredQ denotes
the boundary of the domaiq.



18 Bishnu Lamichhane and Laura Rebollo-Neira

A two-dimensional interpolation problem is then posed devies: Given a set of points
G, the convex hullQ, of G and given a functiorf defined ong, find a functionp: cl(Q) —

R with {z = p(x,y1) H.

We only consider the situation for which is a polynomial or a piecewise polyno-
mial. If the set of pointsg has a tensor product structure, it is easy to extend the itlea o
one-dimensional construction to the multi-dimensionalecaA tensor product partition is
defined as follows:

Definition 6. Assume thaf\, = {x;}i._, is a partition of the closed intervah, b] and Ay =
{yi}L, is that of[c,d]. Then the set of pointaxy, = {(x,Y;)}{-5 ;o is called atensor
product partition of the rectangular regioffia, b] x [c,d]. In short, we writehy, = Ay ® Ay.

Let Ay = Ay ® Ay be a tensor product partition @ b] x [c,d]. Assume tha{l>}"  is
the Lagrange basis @,(R) with respect to the partitiofy, and{IjAy}rj‘”:O is that of Zn(R)
with respect to the partitiopy. Then, given the values of the functidix,y) at the partition
Ay, the Lagrange interpolation polynomial 6fx,y) with respect to the partitiod,y is of

degreenin x and degreenin y, and is given by
n m A A
F O,y 01 (y).
22,

If G does not have a tensor product structure, we have to solvebalgbolynomial in-
terpolation problem in a non-rectangular domain or nosdéemproduct partition, which is
difficult and often ill-posed [27]. Furthermore, the followg remark points out another
limitation of the global polynomial interpolation.

Remark 1. If the function f to be interpolated is not a polynomial, theaqtity
Mn+1|Th+2(X)| In (13) can be very large when n is large, leading to a severe linutati
of the higher order polynomial interpolation. This problésntypically known as Runge’s
phenomenon and is explained by Runge’s exaf2@l&2] If one has the freedom to choose
the interpolating points, the expressigm,1(x)| can be made small by choosing the set of
interpolation points as the zeros or the maxima of a Chebyploé/nomial[32, 33] How-
ever, in many interpolation problems, the set of points ieaaly given and one cannot use
a different set of points.

Piecewise polynomial interpolatidio be discussed in the next section provides a flexi-
ble and efficient solution to the above discussed problems.

4.2 Piecewise Polynomial Interpolation

So far we have considered the approximation of a function global polynomial. This
implies that if the definition of the function is to be maodifiatia point, the polynomial
interpolant changes globally. On the contrary, the piesewvgiolynomial interpolant does
not change globally if the definition of the function changmsally.

Assume that the interpolation problem is posed in a dorfainRK with k= 1,2. The
central idea of piecewise interpolation is to decomposeltmainQ into non-overlapping
subdomains yielding its decomposition and define polynbbaais functions in each sub-
domain.
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R @ R @

Figure 3: Four decompositions of the dom&ngeometrically conforming (first two) and
geometrically non-conforming (last two).

Definition 7. LetQ ¢ RX be a domain with k= 1,2. The collection of disjoint subdomains
7T with cl(Q) = UrcCl(T) is called adecompositionof Q.

In the two-dimensional case, if the interpolant is to be asieontinuous, the decom-
position should be geometrically conforming.

Definition 8. A decompositioriZ of Q ¢ R? is called geometrically conforming if the
intersection between the boundaries of any two differebdsmainsdT, N dTy, k # I,
Ty, T} € 7 is either empty, a vertex or a common edge.

Four decompositions of the domaihare shown in Figure 3. The two on the left are
geometrically conforming and the two on the right are geoitaty non-conforming. In
the one-dimensional case, the subdomains are always aigenin the two-dimensional
case, only quadrilaterals or triangles are allowed.

The polynomial spac&n(T) will denote three different spaces dependingronf T is

an interval,
m .
Pn(T)=1p: pX) =Y ax ¢,
() = { 3 ax}
if T is a triangle,

j
|Z_0 auxy }
|+J<m

Zn(T) = {p: POxY) =

and finally, if T is a quadrilateral,
Pn(T)={p: pxY) = ¥ ajxy
{ .,Zo }

The smoothness of the interpolation polynomial is deteeaiiby the smoothness of the
piecewise polynomial on the boundary of two subdomains.

Definition 9. Let mk € No = NU{0}. Thepiecewise polynomial spacef degree m and
smoothness k with respect to the decomposifiaa defined as

Snk(T)={feCXQ): flr € Bn(T), TET},

where fir represents the restriction of the function f to the elementHe space of piece-
wise constant function with respect to the decomposifias denoted by §7').

A generalisation of a Lagrange basis to the piecewise paljalcspace is a nodal basis.
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Definition 10. Let G = {(x,Yi)}N, be a set of points iik?, and ‘T be a decomposition of
Q = convex hull ofG. Then, a basi§@ }N , of Shk(7) is called anodal basisof Snk(7)
with respect tog if and only if@;(x;,y;) = & fori,j=0,...,N.

One-Dimensional Case

Before constructing some examples, we introduce a decdtigromduced by a partition.

Definition 11. LetA = {x}]' , be a partition of the closed intervéga, b, and | = (X, Xi+1)
an interval. The decompositiohi = {I;}I"§ of the open intervafa, b) is calledthe decom-
position induced by the partitiod of [a, bJ.

Example 7. Assume thafl is the decomposition &, b) induced by a partitiod = {x; }{' ,
of [a,b]. Then,S;o(‘T) is the space of linear splines on the decomposifioriet

XX i xel, XZX1 e,
W(X) = X=Xt ;o On(X) = q Xn—Xn-1 and
0 otherwise

0 otherwise
XTN iyel
I .
ax) = X1 ifxey , for i=1,...n-1
Xi — X1
0 otherwise

The set{@}! , forms a basis for the spa& (7). Thus, a functiors € S;o(‘7) can be

written as .

X) =Y c@(x),
s(x) i; i@ (X)
wherecy, ..., C, are arbitrary constants. Ag(xj) = &, the basis{@}]. , is a nodal basis
of S o(7) with respect to the partitioA. Therefore, the piecewise linear interpolation of a
continuous functiorf : [a,b] — R on the decompositioff” is obtained by setting = f(x;),
i=0,...,n.

Example 8. Nearest Neighbour Interpolation i@, b]: Assume that the values of a func-
tion f at the partitionA = {x;} , are given. Associated with the partitidy we form a
dual partitionA = {7z} with zp = %o, z = XA i =1,...,n, andzy1 = X,. Lety,, be

a characteristic function of the intervial= [7,z.1), i =0,...,n. If 7 is the decomposi-
tion induced by the partitioft, S(7) is spanned by the bas{x; }',. Then, the nearest
neighbour interpolation of the functiohat the partitionﬁ is given by

NG9 = 3 £, 09

Example 9. Piecewise Cubic Hermite InterpolatiorGiven a partitionA = {x;}! , of the
interval[a, b] havingn-+ 1 number of points, we want to find a piecewise polynorpialith
p(x)=vVi, andp'(x) =z fori =0,...,n. Using the construction of Example 6, we define
a piecewise polynomigbfori=0,...,n—1as

P(X) = Hi(X)yi + Hit1(X)Yir1 +Ki(X)z + Ki1(X)z 11, X € [X,%i11)
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with H;, Hi. 1, K, K. 1 asin Example 6, buf andl; ; are now piecewise linear polynomials
given by

X—Xi+1 X=X
G = X — X1’ ) = Xit1 =X

Assume that no derivatives are provided at the partitionphly function values. A piece-
wise cubic polynomial can be constructed also in this casigrisg some suitable deriva-
tives of the function at the partition. The derivatives assigned in such a way that the
resulting piecewise curve is continuously differentiab@ne such example can be found
in [34] and is used in piecewise cubic interpolation oARMAB. The derivativeg, are as-
signed in such a way that the function is continuously déffeiable and function values do
not locally overshoot the data values. ldebe defined as

=YY i_o o1
Xit1—Xi

For an inner poink;, if d; andd;_; are of opposite signs or if either of them is zexas the
local extremum. Thug is set to be zero. Ifi andd;_1 have the same siga, is set to be a
weighted harmonic mean of the two discrete slopes

1 . 1 (W]_ +W2>
z wi+wy \di_1 di

with wy; = 2h; 4+ h_1 andw, = hj + 2h;_1. For more details see [34].

Although in the one-dimensional case a decomposition camyal be induced by a
partition, this is not the case in two dimensions. Thereféwe simplicity, we divide the
two-dimensional case into two parts depending on whetleeddtomposition has a tensor
product structure or not.

Two-Dimensional Tensor Product Case

We start by defining a decomposition of a rectangular donradnded by a tensor product
partition.

Definition 12. Let Ay, = Ay ® Ay be a tensor product partition of the rectangular region
[a,b] x [c,d], whereA, = {x;}., is a partition of [a,b] and Ay = {yi}! , is that of[c,d].
n-1m-1 .

Let kj = (%, %i+1) X (¥j,¥j+1), i =0,...,n=1, j=0,....m—1. ThenT = {ljj }_gj—o is
calledthe decomposition of the domain(a, b) x (c,d) induced by the partitior,y.

Example 10. Let 7y be the decomposition @&, b) induced by a partitiod, = {x; }]' , and
7y that of (c,d) induced by a partitiody = {y; }{1,. Let{@}L,and{¢;} 4 be bases of
S10(7x) andS; o(Zy), respectively, as constructed in Example 7Z{fis the decomposition
of the domain(a, b) x (c,d) induced by the partitiory, = Ax @ Ay, then{yij 17 ;o with
Wij (X, Y) = @ (X)d;(y) forms a nodal basis fd8 o(Z,) with respect to the set of pointsy.
A piecewise linear interpolation of a continuous functibnR2 — R can be obtained as

n -m

> 3 f06yi(xy).
1=0 =
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Image Transformation through Interpolation

A digital image can be resized, rotated or distorted by upirgewise polynomial interpo-
lation. Although the interpolation technique can be agpte any digital image, we only
consider intensity images. An intensity image is an arrasizgm x n, where each element
of the array represents the intensity or gray scale of thel pix
Associated with an imageof sizem x nwe define a tensor product partitiv&tﬁy of the
squar€0,1] x [0,1] as
89, = {(a. b))} o™t where g = ' andb = 3.
i=0j=0" n—1 T m-1
We also define aimmage function I+ : AQy — R in such a way that¢(a;,bj) gives the
intensity of the pixel at the poir{e;, b;).
Suppose that we are given an intensity imagd sizem x n, and we want to convert
this image into another imadeof sizemy x n;. The image functiori; for the new image is
to be defined on the new tensor product partition

A = {(6.d) )™ with 6 = n1|—1 and d; = mlj_ -
The central idea of image resizing is to define a function enstuard0, 1] x [0,1] and
to sample it at the tensor product partitibfgy. This procedure leads to the image function
ff : A)]('y — R.

In general, image resizing, rotation or distortion can bensas a transformation of an
image. Suppose that we are given an invertible transfoomatio be applied to an intensity
image of sizanx n. At the first step, we apply the transformation to the undegyensor
product partitiorASy to obtain a new set of pointsﬁy, and find a suitable rectangular region
[a,b] x [c,d] which contains all the points iﬂ)%y.

Let

n—1m—1
By = {(@.d)}io 20

be a tensor product partition of the regif@b] x [c,d], where we want to define the new
image function’s :A){y—> RR. Notice that for image resizing is an identity transformation
and thereford\}, andAZ, are the same. Sinds), has a tensor product structure, it is easy
to find a piecewise polynomig on [0, 1] x [0, 1] which interpolates the image functidp
at the tensor product partiticilsﬁy (see Example 10).

Let (ci,dj) be a point in the tensor product partitim;}y with

ol =la)

At the second step, the new image functieris obtained by settin (c;,dj) = p(x;,y;) if
(Xi,y;j) is inside the closure of the convex hull of the set of po'ﬂsﬂ§ otherwiselt (¢, d;)
is set to zero. The algorithm for image transformation isgiin Algorithm 1. MATLAB
codes are available at [31].

In Figure 4, we show three examples of image transformatjonsing linear interpo-

lation of the test image. The top left picture of Figure 4 shdhe original image of size
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Require: A digital imagel and a transformatiof

Ensure: A transformed digital imagé
1. Associate a tensor product partmﬁﬁy and an image functioty : AO —R
2: Compute

(7 []. by 2

3: Find a rectangléa, b] x [c,d]| with Axy C [a,b] x [c,d]

4: Define a tensor product partltlcm}y_ (i, dj) H™ O%ml Lof [a,b] x [c,d], ny x my is
the size of the new image
5. For each(c;,d;) € AL, find (x,y;) with

R

6: Compute an interpolation polynomiglof I on the unit square
7: Define an image functiofy : Al —Ras

My (c.d) = p(x.yj) if (x,yj) € convex hull ofAd,
T 0 otherwise

8: The new digital imagé is then given byi(i, j) = It(c;,d;)

Algorithm 1: Image Transformation

512x 512. The top right one is the original image rotated dfti-clockwise. The pictures
at the bottom correspond to the original image resized to2B00 (left) and to 20& 200

(right).

Two-Dimensional Non-Tensor Product Case

The two-dimensional interpolation problem is more difftafithe interpolation points do
not have a tensor product structure. In such a situationtwbedimensional interpolation
is calledscattered data interpolation There is a vast amount of literature devoted

23

to

scattered data interpolation. We refer to [18, 19] for esi@n surveys on this subject.

Here, we consider an approach based on decomposing thexdwrVef G into triangles
with vertices inG and piecewise polynomial interpolation. Therefore, in Wiodows we

restrict ourselves to the case of piecewise interpolatiotriangles. The most efficient and

popular way of decomposing the polygonal dom@imto triangles wher is the convex
hull of the scattered points is the Delaunay triangulation.

Definition 13. Given a setG of points inR?, a Delaunay triangulation for G is a de-
compositionZ of convex hull ofG into triangles such that no point i is inside the
circumcircle of any triangle inZ".

A Delaunay triangulation of a finite set of points in the plase triangulation that

minimises the standard deviations of the angles of theglésn In this sense, the Delau-
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Figure 4. The original image of size 5%2512 and image rotated 4@op left and right).
Resized image of size 200500 and of size 20Q 200 (bottom left and right).

nay triangulation is the most equi-angular triangulatidie dual graph of the Delaunay
triangulation is a Voronoi diagram for the same set of points

Definition 14. For a set of pointsg C R?, theVoronoi diagram is the decomposition of the
plane into convex polygons such that each polygon contaiastly one generating point
from G and every point in a given polygon is closer to its generapiogt than to any other
point in G. A convex polygon,associated with the generating poixe ¢ is called the
Voronoi cell for the pointx € G.

In other words, the Voronoi celly for the pointx € G has the property that the dis-
tance from every € Vi to x is less than or equal to the distance frgrto any other point
in G. The circle circumscribed about a Delaunay triangle hasetsre at the vertex of
a Voronoi cell, see the right graph of Figure 5. The idea ofaDehy triangulation and
Voronoi diagram is also extended to higher dimension. Armieffit algorithm for comput-
ing Delaunay triangulations and Voronoi diagrams are prteskin [35], see also [20, 36].
A lot of interesting materials can be found in websites [8], 3

As an example of a Delaunay triangulation and Voronoi diagnae define a sefj; =
{(0.1,0.4),(0.5,0.1),(0.45,0.5),(0.3,0.6),(0.3,0.3),(0.1,0.4),(0.9,0.8),(0.3,0.9),
(0.2,0.1),(0.8,0.9)}, and generate the Delaunay triangulation and the Vorongraia
of G1. The Delaunay triangulation and the Voronoi diagramgafare shown in the left
and middle graphs of Figure 5, respectively. The right gragpicts the circumcircle of a
triangle with its centre at a vertex of the Voronoi diagrartigd circle).

Example 11. Let 7 be a Delaunay triangulation of the set of poigtsWe construct a nodal
basis{@}N , of S.0(7) with each basis functiog corresponding to a poir(i,yi) € G
and satisfyingp (xj,yj) = 8ij,1,j =0,...,N. A basis functiong is shown in the right graph
of Figure 6. The basis functiog vanishes OUtSidej?:]_CI(Tj), whereT; € 7, j=1,...,5,
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Figure 5: The Delaunay triangulation of the gat(left graph). The corresponding Voronoi
diagram (middle graph). The circumcircle of a triangle widklaunay triangulation and
Voronoi diagram (last graph).
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e (0,1) (X3,Y3)
I3 Fr A
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l1 P! . X (x1,¥1) (XZ’XyZ) N (Xig1,Yit1)
(0,0) (1,0)

Figure 6: The reference triangle and an affine nrgpfrom the reference triangle to a
generic triangle (first two graphs). A nodal basis functplast graph).

are the triangles having the common vertexy;) as shown in the right graph of Figure
6. The key point for the construction is to define a referemiemgle, where it is easy to
compute polynomial basis functions, and map the triangted@ctual element by using an
affine transformation. It is convenient to choose the rigigied trianglel = {(X,§) : X >

0,y > 0,X+Y¥ < 1} as the reference triangle.

The local Lagrange basis functions associated with threices of T for the linear
interpolation are given bl (X,§) = (1—-X—9), [2(X,¥) =X, andl3(X,¥) =¥. See the left
graph of Figure 6. If%;,y;), j =1,...,3 are the three vertices of the reference triangle,
the basis functions satisfly(X;,y;) = &jj, i,j = 1,...,3. LetT € 7 have three vertices
(X1,Y1), (X2,¥2) and(xs,ys) as in the middle graph of Figure 6. The mappkgtransforms
a point in the reference trianglieto a point in the actual triangl€ as follows

X ~ X . ~ X Xo— X1 Xz —X1| [X X1
= ~|  with .| = |+ .
M T M T M [Y2 —Y1 Y3— YJ M [YJ
The first two graphs of Figure 6 show a reference triafigind the triangldr.
If the three vertices of the triangle are not collinear, the determinant of the matrix

{b—m m—m}
Yo—VY1 Y3— )1

does not vanish and henég is invertible. The three global Lagrange basis functions on
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the triangleT are then given by (x,y) =i(X,§),i=1,...,3, with

-1}

By construction the global Lagrange basis functigisatisfyg; (x;,y;) = &j,i,j=1,...,3,
and are linear ifT.

Let us consider the construction of the basis functprtorresponding to the point
(x,Yi) in more detail. The pointx;,y;) is a vertex of five triangles as shown in the right
graph of Figure 6. The Lagrange basis function correspagniditthe vertexx;,y;) for each
of these five triangles has value one at the p&mty;) and value zero on all edges of the
triangle opposite to this vertex. Lég be the Lagrange basis function for the triang|e
j=1,...,5, corresponding to the poirik,y;). The global basigy corresponding to the
point (x;,Y;) is then defined by

G(xy) if (xy)eT, j=1...,5
0 otherwise

QMWZ{

It is obvious that the basis functiam is piecewise linear ang (x;,y;) = &;. Furthermore,
the following lemma shows thaj is continuous.

Lemma 1. The basis functiom defined as above is continuous on the boundary of two
triangles.

Proof. Let us analyse the value of the functignon the boundary of; andTs, which is a
line joining two points(x;,y;) and(Xi+1,Yi+1), see the right graph of Figure 6. Here, both
@, andes take the values one &t,y;) and zero atxi11,Yi+1). In between are linear. Since
there is a unique linear polynomial having this propertgythave exactly the same value
on the boundary of; andTs. O

Each vertex inG has an associated basis function which has value one aettiés<\and
zero at all other vertices. This leads to a nodal b&gi$l, of the piecewise polynomial

spaceS; (7).

Example 12. Nearest Neighbour InterpolationThe nearest neighbour interpolation of a
set of scattered datd = {(x, i)}, can be realised by generating the Voronoi diagram of
the setG. Assume that we are given the valugs} , of a function atg, andyy, is the
characteristic function of the Voronoi c&fl corresponding to the poirx;,y;),i =0,...,N.
Then, the nearest neighbour interpolarif the given data is obtained as

N
P = 3 20

Image Denoising through Interpolation

As an application of the scattered data interpolation, vep@se a very simple method of
denoising an image in those cases in which the noisy and jxeks gan be identified. For
example, we can identify the noisy and pure pixels in an imagreupted with salt and
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Require: A noisy digital imaged
Ensure: A filtered digital image’
1. Associate a tensor product partitimﬁy and an image functioiy : AQy — R with the
imagel
2: Let S and S denote the set of points with pure and noisy pixels vm‘fp: SuSs,
respectively, andlf = I¢|s
3: Compute the Delaunay triangulati@h of the set of points®
4: Find a piecewise interpolation polynomiglof IF on the convex hull of?

5. Let AL, = {(ci,d))} ", ;"8 " be a tensor product partition of the squéed] [0, 1]
where we want to define the new image functlerfor the filtered image. Define the
new image function : Ay, — R as

(e, di) = p(ci,dj) if (ci,d;) € convex hull ofS?
TP, G otherwise

where(%,¥;) € S” and is nearest t(c;,d;)
6: The filtered imagé is then given byi (i, j) = It (ci,d;)

Algorithm 2: Impulsive Noise Removal

pepper noise. The salt and pepper noise is of impulsive @ataran intensity image the
noisy pixels are randomly set either to white or black [15]erélwe apply the scattered
data interpolation to filter this type of noise. An altermatepproach for removing high
density salt and pepper noise is proposed in [17]. Howekiermethod of scattered data
interpolation based on a Delaunay triangulation is easyeéfiaent.

Assume that a digital imageof sizem x nis corrupted with salt and pepper noise. As
in the previous case, we associate with the image a tensdugrpartition

Ay = {(ai,bj)}{‘;&'jrigl, where a = n+ and bj = mL—l
and the image functiohy : A} — R.

Let S be the set of points iIA)(()y having corrupted pixels. Denoting 8P the set of
points where only the pure pixels of the image are locatedpliethe image functiorl
into two functions! ! and!?, which are defined d§ = I¢|s andIf = ||, respectively. As
the positions of the noisy pixels are random, the pointS'ihave no structure.

The key idea for getting rid of noisy pixels is to find an intglant which interpolates the
scattered data iB°. To such an end we generate a Delaunay triangulation of Hteesed
points inS” and compute an interpolapton the convex hull o8°. Hencep(x,y) = If(x, y)
for all (x,y) € SP. Choosing a tensor product partitiad, = {(c,,d;j) }{*o % * we define
a new image functioffi :A)l(y—> R so thatit(x,y) = p(x,y) for all (x,y) € A)l(y. If the point
(xy) € A)l(y does not belong to the closure of the convex hulB&fwe need to extrapolate
for that point. For this, we choose one poffty) in S, out of the nearest t(x,y), and set
r(xy) = If()”(,y). We have canned the complete denoising procedure in Afgora.

Assuming that we know the image before being corrupted witisey we use peak
signal-to-noise ratio (PSNR) to compare our results withrisults obtained by using the
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standard median filter [16]. The peak signal-to-noise @®BNR) is defined by

MAX? MAX

whereMAX; is the maximum pixel value of the image, aM&BE s the mean square error,
ie.,

1 m n
MSE= — 10, ) — IR, j)I,
m”i;,;

wherelO is the original image before corruption aid is the image recovered after re-
moving the noise.

In Figure 7, we show an example of applying the linear intifpon to remove the salt
and pepper noise. The first picture (from the left) of Figush@ws the original image. The
second one shows the noisy image with noise density 50%. hitteficture is the image
reconstructed by using the linear interpolation, and thetfoone is the image denoised
by the median filter. In this example, the nearest neighboterpolation produces the
image which is visually equivalent to that produced by timedir interpolation. We also
observe that the image obtained by the median filter doesiff@t chuch from the previous
ones. However, if the noise density is increased, the mditan does not recover even
the main feature of the image. This is illustrated in FiguyevBere we deal with noise
density 95%. The first picture of this figure shows the noisgdgen The second picture
shows the image reconstructed by using the linear intetipalaThe third picture shows
the image reconstructed by using the nearest neighboupai&tion, and the last one the
reconstruction by using the median filter. We can see that thermedian filter produces a
meaningless image.

The peak signal-to-noise ratio (PSNR) for two test imagegafen in Table 1. The two
images we have considered are Lena (first picture in Figuaad)Baboon (top left picture
of Figure 4). For both images, the linear interpolation s the best PSNR values for
all noise densities. The PSNR values from the nearest neighhterpolation are not far
from these values. The PSNR values from median filter arepéaiole in the cases of low
noise densities, whereas at high noise densities (abovg B8P SNR values decrease
considerably.

Figure 7: The original image. Noisy image (noise density h0%nage denoised with
linear interpolation and median filter.
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Figure 8. Noisy image (noise density 95%). Image denoisdti Wiear interpolation,
nearest neighbour interpolation and median filter.

Table 1: PSNR of the test images with various noise densities
PSNR for Lena’s image PSNR for Baboon’s image

Noise Density Noise Density

Method of Denois.| 30% | 50% | 70% | 90% | 30% | 50% | 70% | 90%
Linear Interp. 38.57| 35.20| 32.12| 27.73| 26.60| 23.91| 21.76| 19.34

Nearest Neighbouf 34.43| 31.53| 29.18| 25.61 | 23.79| 21.74| 20.10| 17.89

Interp.
Median Filter 26.11| 23.68| 19.34| 9.47 | 19.01| 18.14| 17.23| 9.36

As a final remark we would like to stress that the method ofteced data interpolation

based on Delaunay triangulation provides a promising ambrdo remove high density
impulsive noise. It is easy to implement and computatignefficient. Our numerical
results show that linear and nearest-neighbour intelipalatan outperform the standard

median filter.
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