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Dynamics in Systematic Liquidity

Björn Hagströmer, Richard G. Anderson, Jane M. Binner, Birger Nilsson∗

May 26, 2009

Abstract

We develop the principal component analysis (PCA) approach to systematic liquidity
measurement by introducing moving and expanding estimation windows. We evaluate
these methods along with traditional estimation techniques (full sample PCA and market
average) in terms of ability to explain (1) cross-sectional stock liquidity and (2) cross-
sectional stock returns. For several traditional liquidity measures our results suggest an
expanding window specification for systematic liquidity estimation. However, for price
impact liquidity measures we find support for a moving window specification. The market
average proxy of systematic liquidity produces the same degree of commonality, but does
not have the same ability to explain stock returns as the PCA-based estimates.

Keywords: systematic liquidity, market liquidity, commonality, dynamic principal com-
ponent analysis, robust PCA

1 Introduction

It is well-established that liquidity (the ease of trading) affects equity prices and returns (Amihud,

Pedersen and Mendelson 2005, survey this literature). It is now also well-documented that

the comovement of stocks’ liquidity, referred to as commonality in liquidity, is driven by un-

observable underlying market liquidity factors, or systematic liquidity factors (Chordia, Roll

and Subrahmanyam 2000, Huberman and Halka 2001, Hasbrouck and Seppi 2001). It has

been shown in many studies that these factors affects individual-asset returns (Pastor and

Stambaugh 2003, Acharya and Pedersen 2005, Korajczyk and Sadka 2008). Hence, system-

atic liquidity factors are relevant as risk factors to any investor.

To manage liquidity risk, accurate measurement of systematic liquidity is crucial. In this

paper we use the familiar principal components estimation technique to derive the factors. We

extend previous research by introducing dynamic estimation windows in this setting, allowing

us to test the temporal stability (robustness) of the systematic liquidity measure.

∗Björn Hagströmer and Jane M. Binner are from Aston University. Richard G. Anderson is from Federal Re-
serve Bank of St. Louis. Birger Nilsson is from Lund University, Sweden. Correspondence to Björn Hagströmer:
Address: Aston University SW11, Aston Triangle, B4 7ET BIRMINGHAM, UK. Tel: +44(0)7758 355 883. Fax:
+44(0)121 2043326. E-mail: hagstrob@aston.ac.uk
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Principal component analysis (PCA) is a popular method for explaining the covariation

between many variables in terms of a small number of common factors. Most investigations

use a static specification of PCA, based on analysis of the covariance matrix of variables of

interest, which is assumed to be time-invariant. In the case of liquidity, where both system-

atic liquidity and commonality in liquidity are known to vary over time (Chordia, Roll and

Subrahmanyam 2001, Kamara, Lou and Sadka 2008), this assumption may be counterfactual.

Still, all studies using PCA to derive systematic liquidity choose this static approach.1 We

test the appropriateness of this assumption by introducing moving and expanding (recursive)

estimation windows for PCA.2 We compare our results to those obtained from PCA with static

window (i.e., where the full sample is used); and those from a cross-sectional (equal weighted)

liquidity average, another common approximation of systematic liquidity (Chordia et al. 2000);

giving us four methods to approximate systematic liquidity.

No consensus has been reached on how to measure liquidity. We investigate eight different

liquidity measures, including quoted spread, effective spread, turnover, Amihud’s (2002) illiquid-

ity measure, and Sadka’s (2006) measures of market making costs (inventory cost and adverse

selection cost). We utilize the Trade and Quote database (TAQ) to calculate monthly liquidity

measures for the S&P500 stocks between 1995 and 2007.

For each liquidity measure we evaluate the four different methods for deriving systematic

liquidity factors, using two different evaluation criteria: (A) ability to explain cross-sectional

variation in stock liquidity (i.e., commonality in liquidity) and (B) ability to explain cross-

sectional variation in stock returns. We argue that high commonality is an indicator of system-

atic liquidity measurement accuracy. PCA is based on the estimated covariance matrix. If the

estimated covariance matrix differs over different estimation horizons it can be due to either

sampling error or actual time-variation in the underlying covariance matrix. If it is due to noise,

a longer estimation window should yield higher commonality, as the sampling error is smaller

with more data. If there is time-variation in the underlying covariance matrix, the PCA with

moving estimation window should be able to capture this time-variation and therefore produce

a higher degree of commonality. Hence, by running commonality tests we investigate which

estimation method yields factors that best summarize cross-sectional liquidity variation.
1 Hasbrouck and Seppi (2001); Beltran-Lopez, Giot and Grammig (2006); Chen (2007); Chollete, Næs and

Skjeltorp (2007); Chollete, Næs and Skjeltorp (2008); Kempf and Mayston (2008); Kopp, Hütl, Loistl and Prix
(2008); Korajczyk and Sadka (2008).

2The only related liquidity study that does not stay with the static window (full sample) PCA is Chen (2007)
who uses an expanding window specification; however she does not discuss the implications of this and the
constant covariance assumption remains present.
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Many studies find a relation between stock liquidity and returns. Therefore, if a systematic

liquidity measure can explain cross-sectional stock liquidity, it should be able to explain returns

as well. As the relation between liquidity and returns is central to the application of system-

atic liquidity factors, we make this ability our second evaluation criterion in our assessment

of estimation methods for systematic liquidity. We run an extended market model including

systematic liquidity factors, and study the improvement in return variation explanation relative

to a standard market model.

Our first finding is that time-series properties of the liquidity covariance matrix differ across

liquidity measures. When considering liquidity measured by the bid-ask spread, turnover or the

Amihud measure, the accuracy of estimated systematic liquidity is not improved by allowing

the covariance matrix to vary over time. The static, expanding and moving window approaches

produce roughly the same average commonality. This suggests that the covariance matrices of

these measures are quite stable over time. For the price impact measures by Sadka (2006), how-

ever, we find that the moving window approach improves the accuracy of estimated systematic

liquidity, i.e., the average commonality is consistently higher when applying the moving window

PCA. Hence, there appears to be time-variation in the underlying covariance matrix for these

measures. Our investigation of ability to explain stock returns point in the same direction as

that of stock liquidity. For most liquidity measures, different estimation window specifications

for PCA do not make any difference for explaining returns. Transitory fixed market maker costs,

which is Sadka’s (2006) measure of inventory cost, is an important exception to this. This liq-

uidity measure, relative to the other measures considered, has a good ability in both explaining

stock liquidity and stock returns (highest of all measures), and it is best estimated using the

moving window PCA.

A second finding is that the market average proxy of systematic liquidity, suggested by

Chordia et al. (2000), produces a commonality that on average is in line with the various

PCA factors for all measures considered (with the exception of the Amihud measure, which is

plagued by outliers). For turnover and spread measures of liquidity, the cross-sectional average

can be used as proxy for systematic liquidity. For the other measures, time series properties in

commonality produced by the market average differ substantially from those of PCA measures.

Furthermore, when applied to stock return variation, the PCA-based measures are superior to

the market average regardless of the choice of liquidity measure.

Thirdly, we find that the properties of static window (full sample) PCA and the expanding

window (recursive) PCA in terms of ability to explain both stock liquidity and stock returns
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are converging over time. The latter is computationally more expensive, but the former is

suffering from a forward looking bias that undermines its applicability in practice. Our findings

indicate that the static window PCA can be replaced by expanding window PCA without loss

of accuracy.

In the next section we present the framework applied to estimate systematic liquidity factors

with PCA, along with a discussion on how to deal with missing data, outliers, and computational

burden for this kind of problems. In section 3 we present details of the data, its processing, and

the individual liquidity measures that we apply. In section 4 we perform commonality tests and

analyze results thereof. In section 5 we evaluate systematic liquidity in terms of explanatory

power with respect to stock returns. Finally, in section 6 we summarize the main implications

of the study and point out potential future research.

2 Systematic liquidity derivation

We assume that the data-generating process of liquidity for a given stock is driven by some

underlying market liquidity factor and an idiosyncratic liquidity variable. In a market of N

firms for which we consider τ time periods, yielding a stock liquidity matrix L∗ of dimension

(N × τ), this process can be described as

L∗ = µι′ + BF + U. (1)

The underlying market liquidity factor is described by K row vectors in the matrix F (K × τ)

and each stock’s sensitivity to these vectors is given in the matrix B (N ×K). U is the matrix

of idiosyncratic liquidity shocks (N × τ).

The average liquidity across time for each stock is given in the vector µ of length N , ι

is a vector of ones of length τ . In order to estimate F with equal influence of each stock’s

variance, we standardize the liquidity measure to have unit variance and zero mean over the τ

time periods.3 Denoting the vector of stock liquidity standard deviation for each firm σ, the

standardized liquidity matrix takes the form

Li,t = (L∗i,t − µi)/σi. (2)

3Standardization of the data is customary for PCA, but the exact methodology to do this has varied in the
liquidity literature (and has often not been disclosed). For example, Korajczyk and Sadka (2008) are using
an expanding estimation window to calculate market-wide mean and standard deviation. We standardize on
a stock-by-stock basis using means and standard deviations calculated for the τ time periods considered, as
market-wide standardization may give disproportionate weight to stocks with high liquidity volatility.
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The factor model described in Equation 1 can then be expressed as

L = βF + ε, (3)

where βi,k = Bi,k/σi and εi,t = Ui,t/σi. From this model, we can estimate the underlying market

factor F̂ using PCA. The principal components are the eigenvectors of the covariance matrix

of L multiplied by L, and sorted into row k = 1, 2, ..., K of F̂ by its corresponding eigenvalues,

starting with the highest.

2.1 PCA with dynamic estimation window

In the systematic liquidity literature, τ has typically been set to the sample size T , yielding a

static F̂ . This implies an assumption of constant covariances in the cross-section over the sample

size T . We challenge the validity of this assumption by running a moving window PCA, utilizing

only the τ latest observations. If covariances are time-variant, this will exclude old observations

that may yield biased covariance estimates. Formally, this implies a structure with time indices

t = 1, 2, ..., T on each of the variables in Equation 3 and a time span (t − τ + 1) : t considered

for estimation in each period t. The estimation is repeated for t = τ, τ + 1, τ + 2, ..., T . We also

consider expanding window PCA (or recursive PCA), where the problem dimension is growing

with t, so we have τ = t. This specification is appropriate in problems where the covariances

are believed to be time-invariant, and where the usage of future data should be avoided. Such a

specification has earlier been considered in a systematic liquidity study by Chen (2007). Earlier

economics applications of PCA with dynamic estimation window have appeared in literature

on integration of equity markets (Volosovych 2005, Gilmore, Lucey and McManus 2008) and

macroeconomic forecasting (Heij, van Dijk and Groenen 2008), and more commonly outside

economics, in particular process monitoring (Li, Yue, Valle-Cervantes and Qin 2000, Wang and

Xia 2002). We label these methods PCA with dynamic estimation window. Another type of

dynamics is the dynamic PCA (or generalized dynamic factor model), introduced by Forni,

Hallin, Lippi and Reichlin (2000, 2005), where leads and lags are considered in the estimation.

We do not pursue this technique, but a systematic liquidity application is available in Hallin,

Mathias, Pirotte and Veredas (2009).

For the expanding window PCA we start the estimation at τ = 36 and for the moving window

PCA we keep the sample size constant at that size throughout the sample. As a comparison

to previous studies, we also provide the traditional version of PCA, estimated over the whole
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sample, which in our notation corresponds to τ = T (we refer to this as static window PCA).

This implies that we run PCA with dynamic estimation window of sizes τ = [36, t, T ]. For

further comparison, we evaluate these factors together with an equal-weighted cross-sectional

average of liquidity.

2.2 Estimation methodology: Robust Asymptotic PCA

PCA has some technical complications that have rarely been discussed in the applications to

liquidity. When applying PCA with dynamic estimation windows, where PCA is run hundreds

of times, these complications become important for the robustness of the results. As PCA is

based on finding eigenvectors in the covariance matrix of the underlying variables, it is important

that the covariances are robustly estimated. In this subsection we discuss problems associated

with that estimation in some detail, including issues with missing values, outliers, negative

eigenvalues, and computational burden. For a more general discussion of PCA and technical

considerations thereof, see e.g., Jolliffe (2002).

Firstly, the estimation of the covariance matrix needs to be adapted for missing values.

Typically, when dealing with stock market data there is an unbalanced panel of observations

as companies rise and fall and go through mergers and acquisitions. As exclusion of companies

that do not exist throughout the sample would cause material information losses, a method for

dealing with long series of missing values is needed. With a moving window specification, stocks

with long series of missing values can be excluded until they have enough observations. This

partially sidesteps the missing value problem, but temporary cases of missing values remain. To

estimate covariances in the presence of missing values, we use element-wise estimation, using all

pairs of observations available for the two variables (referred by Jolliffe 2002, Ch. 13). For a

stock to be included in the analysis, we demand that more than 12 observations are available in

the time span considered.4

Secondly, outliers can inflate or deflate variances and covariances to an extent that they

mislead the PCA substantially (see Jolliffe 2002, Ch.10). In our setting, large idiosyncratic

stock liquidity shocks are easily imaginable and these should not be allowed to influence the

estimation of systematic liquidity. To deal with this, we use the robust covariance matrix

estimation technique by Mehrotra (1995). This technique is based on using medians rather

than means when calculating slopes needed in variance and covariance estimation. This is a

computationally expensive technique, but it yields a high stability in the principal components.
4For two alternative methods dealing with missing values in a static setting, see Korajczyk and Sadka (2008).
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Thirdly, a problem appearing when adjusting the covariance matrix as explained above, is

that it may no longer be positive semi-definite. To limit this problem, we use asymptotic PCA

as suggested by Connor and Korajczyk (1986). With this methodology, the covariances between

time periods rather than the covariances between stocks are applied as the basis for PCA. Connor

and Korajczyk show that components derived using this method are asymptotically equivalent

to those of PCA, and our investigation shows that in our setting of 500 stocks, the methods are

equivalent. When using asymptotic PCA, the problem of negative eigenvalues is much smaller

than for PCA, though it is still present. Furthermore, the computational burden of PCA is in

this way limited, as the covariance matrix has dimension τ rather than N .

3 Liquidity measures and data

We limit this study to the stocks that were in S&P500 by the end of 2007. The maximum

time frame considered is 1995-2007, but many stocks have shorter series due to name and/or

ticker changes and company restructuring. To measure liquidity with high accuracy we need

observations on transactions and order book entries. We use the TAQ database which contains

all transactions on major US stock exchanges and frequently updated quotes of best bid and

best ask price from the order books. It also holds data on lot size, shares outstanding and

share types. S&P500 stocks have their primary listing on NYSE (most), Nasdaq (about 100),

and Amex (few). Accordingly, we restrict our data set to equities from NYSE, Nasdaq, Amex

and Nasdaq-ADF.5 In the liquidity literature it is common to exclude Nasdaq trades, as their

reporting of trades differs from other exchanges, which can lead to exaggerated trade volumes.

As we want to study the S&P500 index liquidity, we do not follow this convention. About one

fifth of the stocks in the index have their primary listing on Nasdaq, so excluding them would

give a biased picture of the index.

The liquidity of a market has many aspects. Kyle (1985) summarize these aspects in three

points: (1) Tightness: How much it costs to turn over a position in a short time; (2) Depth:

The ability of the market to absorb quantities without large price impacts (which relates to

Kyle’s λ); (3) Resiliency: The market’s ability to quickly return to the underlying value of a

security, e.g., after an uninformative price shock. This multi-dimensionality of liquidity has

triggered a voluminous literature on what is the most appropriate measurement methodology.

Depending on the research problem different researchers have found different measures more or
5Nasdaq-ADF is an automatized trading platform.
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less appropriate and no consensus on measurement has been reached. As it is not the purpose of

this article to pursue that measurement discussion further, we are using a set of eight liquidity

measures in the subsequent analysis.

The first four liquidity measures are calculated using the expressions presented in Table 1.

All variables presented in this section are firm specific (where the opposite is not noted), but

the firm index i (i = 1, 2, ..., N) has been dropped for brevity of exposition. Note that most of

these measures can be derived using daily data as well. To achieve highest possible quality we

use the high frequency data for all our measures. All measures are of monthly frequency.

The most straightforward measure of liquidity is the bid-ask spread, which provides a measure

of tightness in the market for a security. The spread is an intuitive measure of the cost of an

immediately executed roundtrip trade of a stock (for a single trade the half spread can be

used). According to Amihud and Mendelson (1989) the measure is related to characteristics

associated with liquidity such as the number of investors, the transaction volume, the information

availability, and the size of the firm. We consider both the quoted and the effective spreads, the

latter being adjusted for the fact that trades often are executed within or outside the quoted

spread both at the NYSE and Nasdaq (because of e.g., bettered quotes or hidden limit orders,

see discussion in Huang and Stoll 1996 and Petersen and Fialkowski 1994). In order to be

cross-sectionally comparable both spread measures are divided by the spread midpoint (mpk,t).

Turnover is the ratio of traded volume and shares outstanding, which is an intuitive proxy

of liquidity as its inverse is the average holding period of the stock, which should be longer for

illiquid stocks (see Amihud and Mendelson 1986).

Amihud (2002) suggest a liquidity measure that is a proxy of the adverse selection cost (the

likelihood of trading with informed traders, see Akerlof 1970; Bagehot 1971), related to the

depth of the market and described by λ in the model by Kyle (1985). This measure, the average

daily ratio of absolute returns and dollar volume, proxies the price impact of trading using

daily data. This is attractive when intraday data is unavailable, particularly for asset pricing

studies where long time series are needed.6 Due to its popularity in the literature, we include

the Amihud measure even though we have access to intraday data.

Glosten and Harris (1988) summarize the modeling of how market maker costs motivate the

bid-ask spread in what is called the asymmetric information model. Following Kyle (1985), the

order flow is divided between information-based trading and noise trading. The observed price
6The Amihud measure is adjusted for market capitalization as suggested by Acharya and Pedersen (2005),

on the basis that dollar volume tends to grow over time, indicating inflation rather than increasing liquidity.
Note that market capitalization (mcap) is a market-wide measure – the same factor is used throughout the
cross-section of firms. We use January 1993 as reference date.
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Name Derivation

Quoted Spread L1
t = 1

nt

∑nt

k=1
Askk,t−Bidk,t

mpk,t

Effective Spread L2
t = 1

nt

∑nt

k=1
|pk,t−mpk,t|

mpk,t

Turnover L3
t = 1

SOt

∑dt

j=1 volj,t

Amihud L4
t = mcapref

mcapt

∑dt

j=1
|rj,t|

dvolj,t

Table 1: Liquidity measurement

Notation: Askk,t and Bidk,t are the best ask and best bid prices prevailing at the time of trade k in month t, and
mpk,t is the midpoint which is defined as the average of the Ask and Bid prices. The transaction price of trade
k in month t is denoted pk,t, and the number of trades in month t is nt. The volume of stocks traded on day j
in month t is denoted volj,t, and SOt is shares outstanding in month t. Return on day j in month t is defined
rj,t = (Pj,t/Pj−1,t)− 1 where Pj,t is the dividend adjusted daily price. Monthly returns are defined by the same
principle. Dollar volume traded on day j in month t is denoted dvolj,t, and dt is the number of trading days
in month t. The Amihud measure is adjusted for market capitalization as suggested by Acharya and Pedersen
(2005), denoting market capitalization of S&P500 in month t mcapt and at a reference date mcapref (note that
these measures are not firm specific). We use January 1993 as our reference date.

process at the time of trade k, Pk, is equal to the true price, mk, adjusted for trade-specific

costs that the market maker carries. They model this relation as

Pk = mk + DkCk, (4)

where Ck is a cost component containing fees and inventory costs incurred to the market maker

(see Stoll 1978), but excluding costs of asymmetric information. This is called the transitory

spread component. Dk is a direction of trade dummy which is set to +1 (-1) when the transaction

price is higher (lower) than the prevailing spread midpoint, implying that the trade is buyer-

initiated (seller-initiated).

The true price of the stock is assumed to be affected only by changes in information related

to the company. Information is reaches the market either trough a public information flow, yk,

or through information-based trading that reveals private information. Hence, they model the

true price process as

mk = mk−1 + yk + DkZk, (5)

where Zt is the cost component that is due to information-based trading. Zt is called the adverse
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selection spread component, or the permanent spread component, as the dynamic specification

of the true price process makes the impact of adverse selection costs permanent.

By taking the first difference of Equation 4, i.e., ∆Pk = Pk − Pk−1, and inserting Equation

5, Glosten and Harris (1988) retrieve

∆Pk = DkZk + DkCk −Dk−1Ck−1 + yk. (6)

Both spread components are modelled to be linear functions of volume of trade k, Vk, which

inserted in Equation 6 yields Equation 9, given below.

Ck = Ψ̄ + λ̄Vk, (7)

Zk = Ψ + λVk. (8)

∆Pk = ΨDk + λDkVk + Ψ̄∆Dk + λ̄∆(DkVk) + yk. (9)

In estimating this relationship Glosten and Harris (1988) find that λ̄ = Ψ = 0, implying that

inventory cost is the effect of changes in trade direction Dk−Dk−1, and that the adverse selection

cost is the effect of signed trading volume DkVk. Hasbrouck (1988, 1991) later on points out

that adverse selection costs can only appear in response to unexpected order flows, which has

been implemented in the model framework by Foster and Viswanathan (1993) and Brennan and

Subrahmanyam (1996) (by using the trade innovations from a model with lagged order flows

and lagged price changes). Sadka (2006) incorporates this in the Glosten and Harris’s (1988)

model by writing the signed order flow function as

Zk = Ψ
(

1− Ek−1[Dk]
Dk

)
+ λ

(
Vk − Ek−1[DkVk]

Dk

)
, (10)

where Ek−1 denotes conditional expectations. Inserting this in the framework of Glosten and

Harris (1988), yields on expression of changes in observed stock prices where it is obvious that

adverse selection costs are incurred from unexpected trade flow changes:

∆Pk = Ψ(Dk − Ek−1[Dk]) + λ(DkVk − Ek−1[DkVk]) + Ψ∆Dk + λ∆(DkVk) + yk. (11)

Sadka estimates the unexpected signed order flow using an AR(5) model and denotes it ελ,k =

DkVk − Ek−1[DkVk]). By assuming a normal distribution of ελ,k with constant variance, he is
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able to derive the unexpected order flow direction, which he denotes εΨ,k = Dk − Ek−1[Dk],

using the cumulative density function. Using the estimated time series of ελ,k and εΨ,k, he is

able to analyze the relationship described in Equation 11 using OLS.

We estimate Equation 11 for each firm and each month, retrieving estimates of the coef-

ficients in the transitory inventory cost (and other market making cost) function (Ψ̄ and λ̄)

and of the coefficients in the adverse selection cost function (Ψ and λ). Following Brennan and

Subrahmanyam (1996) and Sadka (2006), the coefficients are scaled by the end of month stock

price, in order to reflect relative rather than absolute costs. In the exposition below, we refer to

the four coefficients as price impact coefficients.

In Table 2 basic statistical properties of the eight monthly liquidity measures are presented.

For comparative purposes, monthly returns are also included. Monthly returns have a mean

of 1.65%, which reflects the bull markets characterizing the time period considered. It should

be noted though that the sample also includes the Asian crisis (Fall 1997), the Russian and

Long Term Capital Management crisis (Fall 1998), the burst of the dot-com bubble (Spring

2000), and the beginning of the credit crunch (Summer/Fall 2007). The development over time

for each of our liquidity measures, on average across stocks, is shown in Figure 3. As seen in

Panel A, turnover is increasing in liquidity, whereas the other measures are falling in liquidity.

Quoted and effective spreads appear to be correlated, but the former is more than double the

magnitude of the latter. This is due to that the effective spread measures the half spread, and

that many trades are closed within the quoted spread. As seen in Panel B, each of the price

impact coefficients are falling in liquidity, so falling trends over the sample periods are expected,

which holds for each coefficient except λ̄. This measure is also negative on average throughout

the sample, which may seem peculiar, but this is in line with the findings of Sadka (2006, pp.317–

318), in which a set of explanations for this is provided. Note that this series offsets the λ series.

All coefficient series have negative values in their distributions, which is to be expected when

a large number of regressions are run. Overall, the values of the price impact coefficients are

smaller than what Sadka (2006) found, which reflects the fact that liquidity in general is known

to be higher in our sample than in his, both with respect to firms and time periods considered

(he investigated 1983-2001, with smaller firms on average). Our results correspond well to Sadka

in that the transitory fixed costs are much higher than the permanent fixed costs (by a factor of

10); and that the variable costs are dominated by the permanent adverse selection component

(which is 0.37 on average, as compared to -0.01 for the transitory variable cost). The finding of
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Mean Median Std.Dev Max Min
L1

t QSpread (%) 0.37 0.26 0.41 9.99 0.02
L2

t ESpread (%) 0.11 0.07 0.14 3.50 0.01
L3

t Turnover (%) 10.49 7.70 11.41 556.58 0.122
L4

t Amihud ×106 0.10 0.02 0.70 47.77 0.00
L5

t Ψ (%) 0.006 0.004 0.014 0.779 -0.591
L6

t λ× 106 0.37 0.16 1.38 63.98 -53.42
L7

t Ψ̄ (%) 0.06 0.03 0.12 3.96 -0.58
L8

t λ̄× 106 -0.12 -0.02 0.84 71.89 -46.58
rm
t Returns (%) 1.65 1.37 10.90 292.59 -72.70

Table 2: Descriptive statistics of liquidity measures

The liquidity measures are calculated monthly for 1995-2007 as specified in Table 1 and Equation 11. Ψ and Ψ̄
are permanent and transitory fixed costs; λ and λ̄ are permanent and transitory variable costs of trading.

Glosten and Harris (1988) that Ψ = λ̄ = 0 is however not supported.7

4 Commonality in liquidity

The degree of commonality is the proportion of stock liquidity variation that is due to systematic

liquidity variation. This can be measured by estimating the relationship

∆L∗i,l = γ1,l,τ + γ2,l,τ∆F̂1:k,l,τ + ui,l,τ , (12)

which is closely related to Equation 1. Stock liquidity is here regressed on the first k rows of the

estimated systematic liquidity factor (i.e., the k first principal components). The residuals, ui,l,τ

are taken to be idiosyncratic liquidity shocks. In accordance with Chordia et al. (2000), the

proportion of variation in stock liquidity explained by systematic liquidity, R2, averaged across

stocks, is taken as the degree of liquidity commonality. As indicated by ∆, we follow Chordia

et al. (2000) and run the commonality test on innovations in liquidity. These are retrieved by

fitting autoregressive models to liquidity measures and systematic liquidity factors.8 In some

previous studies, the commonality test has been run in levels, but we experience substantial non-

stationarity problems with such a specification. Note that in addition to the firm index i, we

add the subscripts l and τ to distinguish the different liquidity measures and PCA specifications

that we evaluate in this framework. Note also that we use non-standardized liquidity data, as
7The t test null hypothesis of each of the coefficients is rejected in more than 50% of the cases for almost all

months throughout the sample. Towards the end of the sample the rejection rate is higher than 75%.
8Autoregressive order is chosen using Schwarz Bayesian information criterion, with up to two lags allowed.

We allow the lag length to differ across liquidity measures. The model is run using a 36 months moving window.
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Figure 1: Average liquidity 1995-2007

This figure shows each of our eight liquidity measures averaged across stocks for the time frame 1995-2007. The
expressions for calculating the measures in Panel A are given in 1. The measures in Panel B are coefficients
estimated from Equation 11. Ψ and λ are coefficients in the adverse selection cost function, with permanent
influence on stock prices. Ψ̄ and λ̄ are coefficient in the inventory cost function and have a transitory impact on
stock prices. All measures in both panels are cross-sectional averages.

13



denoted by L∗.9

We investigate commonality in liquidity for k = 1, 2, 3. This means that all three first

systematic liquidity factors are included in the k = 3 case, implying that R2 is growing with

k. As we are interested in the time-variation of commonality, we run this regression using a

moving estimation window. To capture potential short-term trends in the underlying covariance

structure, we use a three year window for our regressions, the same as we use for the moving

window specification of systematic liquidity. We have experimented with different window sizes,

finding that a two year window yields a less stable systematic liquidity measure (with lower

commonality), whereas slightly longer horizons yield results similar to the three year window.

A larger estimation window has been considered for the commonality regressions as well, but

that naturally makes the differences between moving and expanding windows less significant.

We require more than 12 stock liquidity observations in the specified time frame for a firm to

be considered in this analysis. To investigate how commonality depends on the estimation of

the underlying liquidity factor estimation, the procedure is repeated for our different settings of

τ .10

Before analyzing these differences between systematic liquidity factors, it is useful to ask

whether a high degree of commonality is good. Does high commonality imply that the system-

atic liquidity measure is more accurate? In the regression commonality test we use systematic

liquidity factors that have been estimated using different window specifications τ , but we evalu-

ate them over the same time span. PCA is based on extraction of eigenvalues and eigenvectors

of the covariance matrix. Estimated covariance matrix differences between short and long es-

timation windows can be due to either estimation error (sampling error) or actual variation

over time in the underlying covariance matrix. If the latter is true, the systematic liquidity

factor utilizing a short estimation window should be better suited to capture commonality. If

the variation is due to noise; however, a long estimation horizon should yield higher accuracy.

Based on this discussion, we argue that high commonality is desirable; and more specifically,

that high commonality is a sign of accuracy in the systematic liquidity measurement.
9An alternative way of measuring commonality when using PCA is to study the magnitude of the covariance

matrix eigenvalues. The variation explained by each component vector is equal to the ratio of its corresponding
eigenvalue to the sum of all eigenvalues. This method for liquidity commonality measurement was introduced
by Hasbrouck and Seppi (2001) and has also been applied by e.g., Chen (2007), Kempf and Mayston (2008) and
Kopp et al. (2008). We do not apply it here, as we study shocks of PCA, not PCA directly.

10E.g., Kamara et al. (2008) have looked at commonality in terms of the coefficient γ2,l,τ . When using dynamic
PCA, we have a sign indeterminacy in the factors, making that regression coefficient unstable. It is also difficult
to interpret the absolute size of γ2,l,τ . Hence, in our commonality test, we focus on R2, which is unaffected
by these problems. The problem of sign indeterminacy across liquidity measures was discussed for the static
window PCA case by Korajczyk and Sadka (2008). In the dynamic setting the same problem is added in the
time dimension.
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τ 36 t T
k 1 2 3 1 2 3 1 2 3 L̄

L1
t Qspread 0.11 0.19 0.26 0.16 0.22 0.26 0.15 0.21 0.27 0.23

L2
t Espread 0.12 0.21 0.27 0.20 0.24 0.27 0.20 0.25 0.28 0.29

L3
t Turnover 0.06 0.13 0.20 0.10 0.15 0.20 0.08 0.17 0.21 0.20

L4
t Amihud 0.08 0.16 0.21 0.15 0.21 0.25 0.16 0.22 0.25 0.14

L5
t Ψ 0.05 0.10 0.14 0.04 0.08 0.12 0.04 0.08 0.12 0.11

L6
t λ 0.05 0.10 0.15 0.04 0.08 0.12 0.04 0.08 0.12 0.07

L7
t Ψ̄ 0.11 0.20 0.26 0.14 0.18 0.22 0.13 0.16 0.20 0.26

L8
t λ̄ 0.05 0.10 0.15 0.04 0.08 0.11 0.04 0.08 0.11 0.07

rm
t Returns 0.11 0.18 0.24 0.10 0.17 0.23 0.10 0.16 0.23 0.22

Table 3: Average degree of commonality in liquidity

The table shows the degree of commonality for eight different measures of liquidity. Degree of commonality is
defined as R2 of regression run on Equation 12 run with a moving estimation window of 36 monthly observations.
Numbers in the table are averaged across stocks and time periods. The estimation window size used for deriving
systematic liquidity factors with PCA is given by τ , and the number of systematic liquidity factors considered
is given by k. The same procedure is run using cross-sectional equal-weighted average liquidity, denoted L̄. Ψ
and λ are coefficients in the adverse selection cost function, with permanent influence on stock prices. Ψ̄ and λ̄
are coefficient in the inventory cost function and have a transitory impact on stock prices. See Equation 11 for
details. The routine is repeated for returns, measuring to what degree common factors in returns can explain
variation in individual stock returns.

The commonality regression as specified above allows us to investigate time dynamics of

commonality for different liquidity measures and different measurement methods. We look at

the dynamics over time below, but first we study overall differences between systematic liquidity

measures by looking at commonality averaged both cross-sectionally and over time. These results

are presented in Table 3.

We include the return measure in the table to get an intuition of what different magnitudes

of commonality imply. It is well known that the market as an aggregate to a large extent drives

returns in individual stocks. Using exactly the same methodology as for liquidity measures, we

find that the degree of commonality in returns at k = 3 is 20 to 25% (i.e., variation in common

factors of stock prices can explain more than 20% of the variation in individual stock price

variations). For the bid-ask spread measures, turnover, the Amihud measure, and the fixed

(transitory) inventory cost, we find commonality of about the same degree as for returns. The

other measures register lower degrees of commonality. Before turning to differences across τ ,

which is our main interest, it is interesting to compare our results to some previous studies. In

the case of returns, a commonality of the same level have been found by both Hasbrouck and

Seppi (2001) and Korajczyk and Sadka (2008). Commonality tests of previous literature are

not directly comparable to our results, as specification of commonality tests, liquidity variables,

as well as data frequencies differ. Regardless, a brief review of their findings is useful. Chordia
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et al. (2000) found commonality in quoted and effective spreads. Kamara et al. (2008) identified

commonality in the illiquidity measure by Amihud. Korajczyk and Sadka (2008) performed

level commonality tests on the same measures as we use. They find high commonality in the

bid-ask spread (quoted and effective), the Amihud measure, and Ψ̄; and low commonality in

Ψ, λ and λ̄. This corresponds well to our results, though the magnitudes of commonality they

find are higher due to their commonality specification. Their finding of weak commonality in

turnover is not reflected in our results.

The differences across our specifications of PCA with regard to commonality are on average

small, but some tendencies can be seen. The degree of commonality found in the first four

liquidity measures is slightly higher when using an expanding window rather than a moving

window. For the four price impact coefficients the tendency is the opposite. In accordance with

our interpretation above, the lower degree of commonality registered for the moving window

factors for the first four measures means that the underlying market liquidity is disturbed by

sampling error when a short estimation window is applied. If the covariance matrix is time-

varying that sampling error should be counter-acted by an ability to capture that variation. For

the four price impact coefficients, such short-term effects appear to be present, as the moving

window consistently generates higher commonality than the expanding window specification.

We also run the commonality test using the cross-sectional equal-weighted average liquidity

(L̄), which is another popular proxy for systematic liquidity (Chordia et al. 2000, Kamara

et al. 2008). This can be expressed as

∆L∗i,l = γ1,l,L + γ2,l,L∆L̄l + ui,l,L, (13)

where L replaces τ as subscript to distinguish the notation from Equation 12. Results of

this regression are given in the rightmost column of Table 3. Performance of this average

liquidity approximation of the systematic liquidity factor varies widely across liquidity measures.

Comparing it to PCA with the first three factors considered (K = 3), it appears unsuited to

capture underlying market liquidity in terms of the Amihud measure and quoted spreads as

well as some of the price impact measures. In the case of the Amihud measure, we believe

that the low commonality is due to that the mean is driven by some large outlier observations,

particularly in the first half of the sample.

The static window PCA (τ = T ) has often been used in previous systematic liquidity lit-

erature. With this method the full time sample is considered in the estimation, implying that
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future information is involved in the systematic factors when we evaluate them in the common-

ality test. When looking at liquidity in retrospect this is not a problem, but if these factors are

applied to explain (or even forecast) asset prices, there will be a forward-looking bias.11 We

note here that the static window PCA factor registers degrees of commonality similar to those

of the expanding window. If the methods can be regarded as equivalent in terms of outcome, it

would be appropriate to use expanding window PCA rather than static, but before concluding

this we have to see if the findings are consistent over time.

4.1 Dynamics in liquidity commonality

We now turn to the commonality dynamics over time. Figure 2 displays the time dynamics of

commonality for different τ (within each panel) and different liquidity measures (one in each

panel). The only difference between the curves within each panel is the horizon used when

estimating systematic liquidity factors.12 Commonality depicted is based on the three first

systematic liquidity factors and regressions run on 36 observations.

The graphs reveal that commonality varies over time, and for some liquidity measures it

varies substantially. The largest variations are seen in the spread measures and the tempo-

rary fixed cost measure. For these measures the period chosen for measuring commonality will

matter substantially for what answer is retrieved. In many previous studies of commonality

measurement data has been chosen by availability making the point of measurement arbitrary.

Furthermore, the graphs uncover some cases of substantial differences between measurement

methodology. The difference between the most commonly used proxies of systematic liquid-

ity, static window PCA and average liquidity, can be large (differences of > 0.1 in degree of

commonality can be seen temporarily for most liquidity measures).

Analyzing the dynamics of the individual liquidity measures. For the Amihud measure we

see that the expanding window consistently yields higher commonality than the moving window.

This implies that there are long term covariances between asset liquidities that are not revealed

when using a short estimation window, and that these are more important than potential short

term changes in the covariance matrix. For the Amihud measure, average liquidity appears

to be a consistently worse predictor of firm liquidity than PCA proxies. This is notable as L̄

was the proxy used in a recent study of commonality in Amihud’s illiquidity measure (Kamara

11Several studies have used the static window PCA for such applications.
12This implies that the moving and the expanding window PCA factors are by definition the same in the first

time period at t = 36 (Dec. 1997, not shown), and that the expanding and static window factors are by definition
the same in the last period (Dec. 2007).
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Figure 2: Commonality dynamics
In each panel time dynamics of the degree of regression commonality is graphed for 1998-2007. Degree of
commonality displayed is the R2 value of Equation 12 estimated with k = 3. Commonality measures are
averages across stocks, estimated for the time period (t-35):t. In each panel, the curves represent different
settings of τ = [36, t, T ], denoted MOV36, EXP, STATIC in the legend for each panels. Also, commonality as
predicted by the cross-sectional average is given, estimated as in Equation 13. This curve is denoted MEAN. Each
panel represent commonality in different liquidity measures: A) Amihud; B) Turnover; C) Quoted spread; D)
Effective spread.

et al. 2008). As noted above, a reason for the poor performance of the average liquidity is that it

can be driven by large outliers. For turnover, the degree of commonality is relatively stable over

time and no consistent differences between systematic liquidity measures are seen. The average

liquidity proxy can hence be used without loss of precision. For the two measures of the bid-ask

spread, on the other hand, we see significant variation over time. The spike in commonality in

March 2000 coincides with the burst of the dot-com bubble. It is interesting to see that this

causes a sharp increase in commonality of spreads. This can be related to discussion by e.g.,

Amihud, Mendelson and Wood (1990) about strong liquidity comovement in times of crisis. For

the spread measures, no recommendation on which systematic liquidity measurement technique

that should be used can be given. There appear to be important short-term trends captured by

the moving window PCA during parts of the sample, but during other periods this method is

less efficient in capturing trends appearing in the long term sample.

For the price impact liquidity measures, the highest commonality is consistently recorded by

the moving window PCA. This implies time-varying covariance matrices – revealing significant

short term trends. In general we see low commonality in the price impact measures, except for

the transitory fixed cost Ψ̄, which is exactly the same finding as in Korajczyk and Sadka (2008).

This is the inventory cost that the market maker has to carry. When it is large the market maker

has to charge wider spreads in order to avoid losses. Systematic liquidity in terms of Ψ̄ is also

well proxied by its cross-sectional average, though the moving window specification appears to

be more consistent. Sadka (2006) and Glosten and Harris (1988) find that this transitory fixed

cost (Ψ̄) along with the permanent variable cost (λ) (i.e., the volume related adverse selection

cost) are more important than the other two price impact measures, and the magnitudes shown

in Section 3 point in the same direction for our study. Our commonality regressions; however,

which are more about variation than magnitudes in the underlying liquidity measures, show that

the other price impact measures are as efficient as the permanent variable cost in explaining

liquidity variation. This is another indication of that these (Ψ and λ̄) are non-zero.

In general, the expanding window PCA and the static window PCA yield very similar degrees
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of commonality. In most cases they have converged around 2003, implying that an eight year

window is enough to capture long term trends in systematic liquidity. If such a time frame

is available, the forward-looking bias of static window PCA can be avoided by applying the

expanding window specification, as was done by Chen (2007), without loss of accuracy.

4.2 Correlation between estimated commonality

Although similar on average, commonality series for one liquidity measure often have quite

different time-series properties, i.e., are only weakly correlated, depending on the method used

for systematic liquidity estimation. This is especially so for the cross-sectional mean when

compared to the PCA-based estimates of systematic liquidity. Table 4 shows correlations for

the estimated time-series of commonality for each liquidity measure (i.e., correlations between

the series graphed in Figure 2).

Mov-Exp Mov-Stat Mov-Mean Exp-Stat Exp-Mean Stat-Mean
Qspread 0.52 0.72 0.43 0.82 0.91 0.77
Espread 0.43 0.62 0.37 0.81 0.90 0.82
Turnover 0.75 0.80 0.61 0.86 0.81 0.82
Amihud 0.70 0.68 -0.08 0.96 -0.01 -0.09
Ψ 0.68 0.33 0.33 0.31 0.07 0.46
λ 0.38 0.52 0.29 0.90 0.00 0.30
Ψ̄ 0.48 0.58 0.30 0.91 -0.03 -0.05
λ̄ 0.09 0.15 0.33 0.84 0.45 0.21

Table 4: Correlation between estimated commonality

For each liquidity measure, Pearson correlation coefficients between pairs of commonality series in terms of R2

of the models described by Equations 12 and 13 are calculated. Each series contains monthly observations of
the years 1998–2007. Mov is based on Equation 12 and τ = 36; Exp is based on Equation 12 and τ = t; Stat
is based on Equation 12 and τ = T ; Mean is based on Equation 13. Ψ and λ are coefficients in the adverse
selection cost function, with permanent influence on stock prices. Ψ̄ and λ̄ are coefficient in the inventory cost
function and have a transitory impact on stock prices. See Equation 11 for details.

Apparently, the liquidity measures can be divided in two groups. The first group contains

quoted spread, effective spread, and turnover. For this group, correlations are relatively high for

all estimation methods. The lowest correlation, 0.37, is between the cross-sectional mean and

the moving window (for efficient spread) and the highest correlation 0.91 between the expanding

and static window (for quoted spread). For this group of measures, time series properties of

systematic liquidity are in general similar across estimation methods, implying that average

liquidity is a good proxy of systematic liquidity in terms of these measures.

The second group contains the price impact measures: Amihud, permanent market maker

costs (adverse selection costs; Ψ and λ), and transitory market maker costs (inventory costs;
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Ψ̄ and λ̄). For this group, correlations vary considerably. Correlations between PCA-based

estimates are in most cases high, whereas correlations between the cross-sectional average and

the PCA-based estimates are much lower. For the Amihud measure estimated by the cross-

sectional mean, point estimates of correlation with the static, expanding and moving window

are in all cases negative: -0.09, -0.01 and -0.08, respectively. In other words, the cross-sectional

average estimate of systematic liquidity produces a commonality with very different time-series

properties than the PCA-based estimates of systematic liquidity. Given the fact that the cross-

sectional mean yields an average commonality that is much lower than PCA, this suggests that

the time-series properties of systematic liquidity are not fully captured by the cross-sectional

mean for the Amihud measure. This is interesting as many studies use the cross-sectional average

to estimate systematic liquidity in terms of the Amihud measure.

Turning to the price impact measures of Sadka (2006) similar results hold, i.e., commonality

estimated using the cross-sectional mean is often in principle uncorrelated with commonal-

ity estimated using different specification of PCA. For example, for the fixed inventory costs

measure, which produces the highest commonality among Sadka’s four measures, correlations

between commonality for the cross-sectional average and the PCA-based estimates of systematic

liquidity are -0.05, -0.02 and 0.30. This is in spite of average commonality being at the same

level for PCA- and mean-based measurement. Again, this indicates that time-series properties of

estimated systematic liquidity are very different depending on the method used for estimation.

5 Liquidity factors and stock prices

Above we have argued that commonality is an indicator of liquidity factor measurement accuracy.

A different matter, still of great interest, is whether the liquidity factor is useful for explaining

stock prices. As it is well-known that individual stock liquidity affects prices (Amihud et al. 2005)

it is sensible to believe that if systematic liquidity explains stock liquidity, it should to some

extent be priced in the cross-section of stocks. This hypothesis has been tested and confirmed by

Pastor and Stambaugh (2003), Acharya and Pedersen (2005), and Korajczyk and Sadka (2008).

In the preceding section we studied correlations between the commonality time series re-

trieved with different systematic liquidity derivation techniques. High correlations between

these series would indicate that they also have similar abilities in explaining stock returns. In

our investigation above we found many correlations being low, implying fundamentally different

time series properties of the underlying market factors. If that is the case, the different sys-
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tematic liquidity estimation techniques may lead to differences in the ability to explain stock

returns too. This is the topic of investigation in the current section.

We adopt an extended market model to evaluate the explanatory power of our systematic

liquidity measures. We let

ri,t = αi,l,τ + βi,l,τrM,t + Φi,l,τ∆F̂1:k,l,τ + εi,t,l,τ , (14)

where ri,t is again the return of stock i in time t, and rM,t is the market return in time t. Return

sensitivities to systematic liquidity are given by Φi,l,τ and returns unexplained by the market

returns and systematic liquidity factors are denoted εi,t,l,τ . As indicated by the indexes l and τ ,

the regressions are repeated for our eight liquidity measures and our three different PCA-based

systematic liquidity measurement techniques. We set k = 3. In the same fashion as above, we

run the regression using a 36 months moving estimation window. From these regressions we are

primarily interested in the explanatory power of the systematic liquidity factors with respect

to returns. Hence, we record the R2 of each run of the regression and take the cross-sectional

average, which gives us time series of the explanatory power of liquidity. To isolate the effect

of liquidity, we run three versions of this model: (I) full regression; (II) setting Φi,l,τ = 0; (III)

setting βi,l,τ = 0. In Table 5 we present averages across time of the full model (1) in Panel A; the

excess explanatory power of the liquidity factor [(1)-(2)] in Panel B; and finally the explanatory

power of the liquidity factor alone (3) in Panel C.13 Also, as with the commonality regressions

we consider the alternative relation

ri,t = αi,l,L + βi,l,LrM,t + φi,l∆L̄l + εi,t,l,L, (15)

simply replacing the systematic liquidity factor with the cross-sectional mean liquidity and

changing the subscripts to L.

The results in Table 5 show that the systematic liquidity factor estimated using PCA can

have a substantial explanatory power for stock returns. When studied in isolation (Panel C), it

ranges from 10.9% up to 16.4%. When accounting for the market return factor (Panel B), the

excess explanatory power of systematic liquidity ranges from 7.9% to 10.9%. Cross-sectional

mean liquidity has a substantially lower explanatory power regardless of what liquidity measure

we look at.
13As mentioned in conjunction to the commonality tests, we are unable to interpret the size and the sign of

Φi,l,τ due to the sign indeterminacy of PCA factors. This is the reason that we focus on R2 values.
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Panel A: Average R2 market return and liquidity factor
l τ = 36 τ = t τ = T L̄
1 Qspread 0.286 0.286 0.284 0.235
2 Espread 0.287 0.287 0.289 0.235
3 Turnover 0.291 0.290 0.293 0.234
4 Amihud 0.292 0.296 0.293 0.236
5 Ψ 0.290 0.290 0.289 0.239
6 λ 0.283 0.290 0.292 0.238
7 Ψ̄ 0.313 0.306 0.306 0.241
8 λ̄ 0.285 0.291 0.284 0.234

Panel B: Average R2 liquidity factor in excess of market return
l τ = 36 τ = t τ = T L̄
1 Qspread 0.081 0.082 0.080 0.031
2 Espread 0.083 0.083 0.085 0.031
3 Turnover 0.087 0.086 0.088 0.030
4 Amihud 0.087 0.091 0.089 0.032
5 Ψ 0.086 0.085 0.085 0.035
6 λ 0.079 0.086 0.088 0.034
7 Ψ̄ 0.109 0.102 0.102 0.037
8 λ̄ 0.081 0.087 0.080 0.029

Panel C: Average R2 of liquidity factor alone
l τ = 36 τ = t τ = T L̄
1 Qspread 0.120 0.129 0.127 0.054
2 Espread 0.128 0.128 0.124 0.059
3 Turnover 0.123 0.109 0.119 0.036
4 Amihud 0.112 0.117 0.114 0.038
5 Ψ 0.131 0.129 0.120 0.044
6 λ 0.111 0.122 0.125 0.063
7 Ψ̄ 0.164 0.143 0.135 0.107
8 λ̄ 0.127 0.140 0.154 0.038

Table 5: Systematic liquidity factor ability to explain returns

Panel A shows, for each liquidity measure l, R2 averaged across stocks and across time for the model described
in Equation 14 and 15; Panel B shows R2 averaged across stocks and across time for the model described in
Equation 14 and 15 minus the corresponding number from the same model but with Φ = 0; Panel C shows R2

averaged across stocks and across time for the model described in Equation 14 and 15 with β = 0. τ indicates how
the estimation window is specified in the systematic liquidity derivation in Equation 12. Ψ and λ are coefficients
in the adverse selection cost function, with permanent influence on stock prices. Ψ̄ and λ̄ are coefficient in the
inventory cost function and have a transitory impact on stock prices. See Equation 11 for details.
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The results for the static window PCA systematic liquidity measure are, as was found for

commonality, similar to those of the expanding window PCA. The difference between moving

window and expanding window estimation for systematic liquidity is in general small, but some

cases where they differ can be noted. For the Amihud measure, the expanding window is slightly

better than the moving, which is in accordance with our findings on commonality in Section

4. Among the price impact liquidity measures, an expanding estimation window specification

appears to be better for variable costs, whereas a moving is better for fixed costs.

The spread measures yielded highest commonality of all measures, but do not stand out as

strong measures in terms of explanatory variables for returns. Hence, high commonality does

not necessarily imply high explanatory power of returns. The measure that recorded the second

highest commonality, transitory fixed costs (Ψ̄), has much higher pricing power than all the

other liquidity measures (10.9% in B and 16.4% in C, when using moving window specification).

Sadka (2006) argued that out of the four Ψ̄ and λ should be most important for pricing, but our

results show that they are all on par with the other liquidity measures in this regard. Again,

the covariation rather than the magnitude of the underlying liquidity measure is what matters

for the investigation.

5.1 Time series properties of systematic liquidity pricing power

In our analysis above we established that the two different dynamic estimation window PCA

specifications on average resulted in systematic liquidity factors with rather similar explanatory

power on returns. As we did for commonality time series in the previous section, we now look at

correlation between time series on ability to explain returns. These correlations are presented

in Table 6. In Panel A, correlations between R2 in excess of the market returns are given; and

in Panel B correlations between R2 series of models estimated using liquidity factors as the only

explanatory variable are presented.

Similar to the case of commonality, the correlation between the moving window and ex-

panding window PCA specifications is in general high and positive. We interpret this as a sign

that the two methods explain the same pricing patterns. For Amihud, Turnover and permanent

variable costs (λ) that correlation is lower, which can be interpreted as meaning that the two

methods capture different aspects of return variation. That implies that there are both short

and long term trends that contribute to the return data generating process, captured by moving

and expanding estimation windows respectively. When comparing PCA specifications to the

mean liquidity, correlations are in many cases very low or even negative. This shows that mean
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Panel A: Systematic liquidity pricing effect in excess of market returns
l Mov-Exp Mov-Stat Mov-Mean Exp-Stat Exp-Mean Stat-Mean
1 Qspread 0.67 0.48 0.20 0.73 0.42 0.55
2 Espread 0.57 0.48 0.19 0.67 0.32 0.35
3 Turnover 0.29 -0.12 -0.31 -0.31 0.10 0.41
4 Amihud -0.19 -0.30 0.04 0.77 0.57 0.63
5 Ψ 0.76 0.73 0.56 0.85 0.39 0.58
6 λ 0.31 0.34 0.06 0.80 0.80 0.80
7 Ψ̄ 0.85 0.89 0.85 0.95 0.93 0.93
8 λ̄ 0.55 0.54 0.50 0.82 0.77 0.55

Panel B: Systematic liquidity pricing effect alone
l Mov-Exp Mov-Stat Mov-Mean Exp-Stat Exp-Mean Stat-Mean
1 Qspread 0.86 0.86 0.34 0.95 0.50 0.54
2 Espread 0.53 0.46 0.49 0.20 0.71 -0.20
3 Turnover 0.24 0.56 -0.08 -0.06 0.12 0.03
4 Amihud 0.44 0.24 0.27 0.75 0.38 0.17
5 Ψ 0.88 0.81 -0.18 0.89 -0.21 0.00
6 λ 0.41 0.41 0.48 0.96 0.48 0.48
7 Ψ̄ 0.14 0.48 0.34 0.83 0.86 0.78
8 λ̄ 0.74 0.77 -0.09 0.89 0.01 -0.18

Table 6: Systematic liquidity factor pricing power: correlation between estimation techniques

For each liquidity measure l, Pearson correlation coefficients between pairs of R2 series of the models described
by Equations 14 and 15 are calculated. Panel A shows correlations between R2 averaged across stocks for the
model described in Equation 14 and 15 minus the corresponding number from the same model but with Φ = 0;
Panel B shows correlations between R2 averaged across stocks for the model described in Equation 14 and 15
with β = 0. Each series contains monthly observations of the years 1998–2007. Mov is based on Equation 14
and τ = 36; Exp is based on Equation 14 and τ = t; Stat is based on Equation 14 and τ = T ; Mean is based on
Equation 15. Ψ and λ are coefficients in the adverse selection cost function, with permanent influence on stock
prices. Ψ̄ and λ̄ are coefficient in the inventory cost function and have a transitory impact on stock prices. See
Equation 11 for details.
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liquidity explains other pricing patterns than the PCA measures.

The correlation between the static window PCA and expanding window PCA in terms of

pricing power is again found to be high. In the previous section we found that the two methods

also achieved equivalent levels of explanatory power. Hence, we conclude that the expanding

window PCA is a good substitute for the static window PCA, which has the important drawback

that it uses future information for its estimation.

6 Concluding remarks

We improve the measurement of systematic liquidity, a factor describing market variation of

liquidity that has been shown to be an important risk factor in asset pricing. Traditionally

systematic liquidity is either proxied by the market average liquidity or derived using PCA. By

running PCA it is implicitly assumed that the covariance matrix of cross-sectional liquidity is

constant. As this assumption may be unrealistic, we introduce PCA with dynamic estimation

window, which re-estimates the covariance matrix for each time period. This can be done ei-

ther with a moving or an expanding estimation window. Which one is appropriate depends

on the properties of the covariance matrix over time. We assess these two specifications of dy-

namic estimation window PCA together with the two traditional systematic liquidity estimation

techniques.

The evaluation of the four estimation techniques is run in terms of (A) ability to explain

cross-sectional stock liquidity and (B) ability to explain cross-sectional stock returns. The first

criterion is the explicit purpose of systematic liquidity factors, whereas the second is important

for its application in asset pricing. For both cases, we find support for using the dynamic

estimation window specification of PCA.

Which measurement technique that is most appropriate for systematic liquidity is dependent

on what liquidity measure is considered. For measuring illiquidity as defined by Amihud (2002),

a long time frame is beneficial both in terms of liquidity and return variation, so an expanding

window PCA estimation is appropriate. For turnover and bid-ask spread measures of liquidity,

no single measurement technique dominate the other when measuring commonality in liquid-

ity. The simplest possible proxy, such as a cross-sectional average can therefore be used. For

explaining stock returns; however, all the PCA-based measures are substantially better. For

price impact coefficients as estimated by Sadka (2006), the highest commonality is retrieved

when using a moving window to estimate systematic liquidity, implying a time-varying covari-
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ance matrix. The most important factor from Sadka’s price impact regression, both in terms

of liquidity and return variability, is the transitory fixed cost variable, which is associated with

the inventory cost that a liquidity provider carries. Systematic liquidity in this variable is best

estimated using a moving window PCA. Using that methodology, 26% of the cross-sectional

variation in liquidity can be explained, and 16% of the cross-sectional variation in asset returns.

This is higher than what we find for all the other liquidity measures tested.

Our investigations also show that the expanding window PCA yield results equivalent to

those of the traditional static window PCA, both for explaining asset liquidity and for explaining

asset returns. Hence, where possible, expanding window PCA should replace static window

PCA, as the latter utilizes future information for its estimation.
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A Appendix: Filtering and matching of trades and quotes

For quotes and trades we follow most of the filtering conventions applied in previous literature.

Specifically, trades that are recorded to be cancelled, corrected, out of sequence, or have special

conditions attached to them are excluded.14 Trades recorded outside the interval 9.30am -

4.05pm are also excluded. Quotes are filtered out if the spread is negative or larger than five

dollars or larger than 25% when the spread midpoint is less than twenty dollars.

For the latter years it is common to find numerous quote observations for the same stock

within one second. As TAQ does not distinguish time units smaller than one second, all quotes

can not be considered. There is not much guidance in the literature on how to deal with this

problem. Brownlees and Gallo (2006) recommend using the median quote but also say that

the first or last observation could be used (the latter is the choice of e.g., Korajczyk and Sadka

(2008)). There does not appear to be any theoretical foundation for either, so we make an

arbitrary choice and use the last observation each second. Trades in the same stock that are

recorded within one second are aggregated to one trade with the volume equalling the sum of

all trades in that second. For prices, Brownlees and Gallo (2006) again recommend using the

median, whereas Engle and Patton (2004) use the first observation. We choose to calculate a

volume-weighted average price for aggregation of trades.

Another filtering is needed to avoid outliers. For trades, we follow the recommendation of

Brownlees and Gallo (2006) on how to deal with trade price inconsistencies. For each day, trades

that deviate more than three standard deviations from the delta-trimmed mean are deleted.15

Finally, we also exclude outliers in the data on shares outstanding (used in the turnover measure).

These series feature jumps back and forth between set levels in a way that is not reflected in firm

histories. To avoid these reversals, we exclude SO observation during time periods following a

change in shares outstanding of more than 25% that is reversed within 10 months. This is an
14In TAQ language, only trades with CORR ≤ 1 and COND values of ”*”, ”E” or blank, and 0.5 < PRICE <

15000 are retained. This excludes trades with the conditions: Cash-only basis, Bunched, Cash Sale, Next Day
Settlement Only, Bunched Sold, Rule 127, Rule 155, Sold Last, Next Day, Opened Last, Prior Reference Price,
Seller, Split Trade, Pre-/Post-Market Trades, Average Price Trades, Opened After Trading Halt, Sold Sale,
Crossing Section.

15The specific rule for exclusion is the following (see Brownlees and Gallo (2006), p.2237): (|pi − p̄i(k)|) >
3si(k) + γ, where p̄i(k) is the δ-trimmed mean price, and si(k) is the standard deviation in the neighbourhood
of k observations. A granularity parameter γ is added to deal with the cases where there is no price variability
in the neighbourhood. Of all trades in our sample, 0.08% were affected by this filter. Brownlees and Gallo
suggest that k should be chosen in accordance with the trading activity in the stock. They choose k = 60 for
their sample, which corresponds to a trading intensity of 270*k per day. We use this factor (270) to calculate
k for each day for each stock, setting 10 as a minimum value for k. For days with less than k observations, all
observations are used. The granularity coefficient should be chosen as a multiple of the minimum price variation
(MPV). Brownlees and Gallo choose γ = 0.02, which is a multiple of 2 of decimal (MPV) used in their sample.
As MPV decreases substantially over the years of our dataset, we calculate MPV for each stock in each month
based on the first 1000 non-aggregated trades. δ is set to 10%.
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arbitrary choice based on our overview of the data set – no guidance on this have been found

in the literature.

To measure effective spread, we need to approximate what the bid-ask spread was just

before the trade was executed. Most of the liquidity literature has used the findings of Lee and

Ready (1991) as guidance on how to match trades and quotes for this approximation. Their

recommendation is to use the latest quote recorded at least five seconds before the trade. This

is based on the delay in trade reporting prevailing at the exchanges almost 20 years ago when

trades were still reported manually. According to Henker and Wang (2006) the reporting process

underwent automatization during the period 1994–2001 leading to much shorter reporting time.

Henker and Wang (2006) and Vergote (2005) have investigated what time lag is appropriate

today, finding one and two seconds respectively. Both studies are limited to NYSE, Nasdaq

matching is more involved. In this study we follow the one second rule recommended by Henker

and Wang (2006), as that study was performed on the S&P500 index stocks with primary listing

on NYSE (Vergote uses a much smaller set of stocks). Another outlier check is performed after

the matching: When the trade price is more than 10% outside its prevailing spread, the trade

is not used in price impact regressions, but the data is retained for measures where matching is

not needed.
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