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Thesis Summary

This thesis proposes a novel graphical model for inference called the Affinity Network,
which displays the closeness between pairs of variables and is an alternative to Bayesian
Networks and Dependency Networks. The Affinity Network shares some similarities with
Bayesian Networks and Dependency Networks but avoids their heuristic and stochastic
graph construction algorithms by using a message passing scheme.

A comparison with the above two instances of graphical models is given for sparse
discrete and continuous medical data and data taken from the UCI machine learning
repository. The experimental study reveals that the Affinity Network graphs tend to be
more accurate on the basis of an exhaustive search with the small datasets. Moreover, the
graph construction algorithm is faster than the other two methods with huge datasets.

The Affinity Network is also applied to data produced by a synchronised system. A
detailed analysis and numerical investigation into this dynamical system is provided and
it is shown that the Affinity Network can be used to characterise its emergent behaviour
even in the presence of noise.

Keywords: Affinity Network, Bayesian Network, Dependency Network, Clinical
Decision Support, Microelectromechanical Systems, Emergent Collective Behaviour.
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Nathanaël, P’Nong, Kyu, Bora, Sam, Han, Song, Sarah, Jane, Sue Ann, John, Nortin,

Ming-Chin, Min, Simon and Shirley, Salem, Emmanuel, Wayne, Jason and many others

for their love.

ix



1 Introduction

This thesis concerns the development of a new type of graphical model focussed on provid-

ing a description of probabilistic relationships driven by similarity clustering. Graphical

models are the fruits of a desire of researchers from many fields, including computer

science, engineering, mathematics, physics, neuroscience, and cognitive science, to build

systems that can adapt to their environments and learn from their experience. As the

name suggests, graphical models are a combination of probability theory and graph the-

ory. These two theories enable the existence of an important feature of a graphical model

which is called modularity, that is a complex system made up of simpler parts. In par-

ticular, probability theory provides a principled way of combining the different parts and

interfacing models to data. On the other hand, graph theory constitutes a user-friendly

tool by which human operators can easily interpret relationships between sets of variables

and a natural data structure for the design of efficient general-purpose algorithms. This

thesis introduces a novel model called an Affinity Network (AN).

1



Chapter 1 INTRODUCTION

1.1 Graphical models

A graphical model is a graphical representation of a probability distribution. The nodes

in the graph correspond to variables and the links between variables denote probabilistic

relationships. This thesis only considers directed graphical models, that is, the links

are represented by arrows. Each node in the graph is also associated to a conditional

probability from which the joint probability of the variables in the dataset is computed.

Bayesian Networks (BNs) (Pearl, 1988) are well-known directed graphical models which

usually display causal relationships between variables although they can also be used to

represent acausal relationships (Heckerman et al., 1995). The BN graph is constructed

using a heuristic hill-climbing approach in which nodes are added or deleted and the

direction of the links reversed until an optimum graph is obtained. It should be noted

that cycles are not allowed in a BN graph. The joint probability that is encoded by a BN

factorises as the product of the conditional probabilities of the nodes.

A Dependency Network (DN) (Heckerman et al., 2000) is another instance of a directed

graphical model. DNs represent general dependency relationships and were developed in

order to address criticism from BNs users who found it hard to interpret some causal

and conditional independence relationships that are encoded in a BN graph. This can be

illustrated by a medical example as shown in Figure 1.1 where if the variables “HIV” and

“Lymph. T” (decrease in level of lymphocyte T) are predictive of the variable “AIDS”,

it is also reasonable to say that “AIDS” is predictive of “HIV” and “Lymph. T” which

induces a cycle, that is prohibited in a BN, between “AIDS” and “HIV” and also between

between “AIDS” and “Lymph. T”. Furthermore, the fact that “HIV” and “Lymph. T”

are dependent given “AIDS” would not be meaningful given that the decrease in level

of lymphocyte T can also be related to another major disease which attacks the immune

system. Consequently, the insights that can be gained from the data are hidden by the task

of interpreting those causal and conditional independence relationships (Heckerman et al.,

2000). A classification or regression algorithm is used to build a DN graph and the joint

probability distribution is computed through a stochastic method called pseudo-Gibbs

sampling. Unlike a BN, a DN can have loops.

An Affinity Network (AN) is an alternative directed graphical model to a BN and

a DN. The AN graph shows similarity relationships between variables in a dataset. In

contrast to a BN and a DN, an AN graph is constructed using a message-passing algorithm

known as Affinity Propagation (AP) (Frey and Dueck, 2007) and its extension called Soft-

Constraint Affinity Propagation (SCAP) (Leone et al., 2007). The graph construction is

2



Chapter 1 INTRODUCTION

a crucial part in the specification of a graphical model since the conditional probabilities

and consequently the joint probability distribution are derived from the graph structure.

In contrast to a BN where a heuristic search procedure is used to construct the graph, the

SCAP method, from which an AN graph is built, is based on a principled belief propagation

algorithm. An AN graph can have loops and a similar approach as in a DN can be used

to derive the joint probability distribution of an AN given that the joint distribution does

not factorise as in a BN. The AN graphical model can serve as a clinical decision-support

system and a tool to characterise the emergent collective behaviour of coupled dynamical

systems respectively. A comparative summary of the differences between a BN, a DN and

an AN is given in Table 1.1. The properties of the AN will be illustrated by application

to sparse medical data and both regular and random dynamical time series data from

microelectromechanical systems (MEMS).

BN DN AN

Can approximate
conditional and
joint probabili-
ties?

Yes Yes Yes

Easy-to-interpret
network structure
(graph)?

No Yes Yes

Can the network
structure have
loops?

No Yes Yes

Heuristic network
structure search?

Yes Yes No

Network struc-
ture learning
(Chapter 2 and
3)

Hill climbing +
BDe score

Probabilistic de-
cision tree + BDe
score

SCAP + BDe
score

Network param-
eter learning of
conditional prob-
abilities (Chapter
2 and 3)

Dirichlet/Bayesian
model

Probabilistic de-
cision tree

Dirichlet/Bayesian
model

Joint probability Product of con-
ditional probabili-
ties

Pseudo-Gibbs
sampling

A pseudo-Gibbs
sampling can be
used

Table 1.1: Comparison between a BN, a DN and an AN.
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HIV

AIDS

Lymph.T

(a) BN graph.

HIV

AIDS

Lymph.T

(b) DN graph.

HIV

AIDS

Lymph.T

0.4

0.3

0.3

(c) AN graph.

Figure 1.1: A medical example illustrating the differences between a BN, a DN and an
AN. The node “Lymph. T” represents the decrease in level of lymphocyte T. The BN
graph tells us that AIDS is caused by HIV and the decrease in level of lymphocyte T.
On the other hand, the DN graph is more general in the sense that the three variables
depend on each other without assuming any causal relationship as the decrease in level
of lymphocyte T can also be dependent on HIV. Finally, the AN graph can give an
alternative interpretation to the problem by providing affinity relationships between the
variables based on the available dataset. The strengths of the arcs in the AN graph are
given by the normalised mutual information between the connected nodes.
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1.2 Graphical models and clinical decision-support

A key function in a medical decision-support tool is the ability to highlight to the clini-

cian important relationships between variables. There may be many candidate variables

influencing a given outcome making searching for relationships in a very high dimensional

space NP-complete. Graphical models have been suggested and developed over the past

decade as a possible technique to assist in the discovery of relationships between biomedical

variables.

Probabilistic graphical models are the main tools in a clinical decision-support system

for two main reasons. First of all, they provide a simple representation of the medical

problem to clinicians thanks to their graphical nature. The probabilistic framework used

is also a rigorous way of processing the data. A graphical model is then characterised by its

graph structure and (conditional) probabilities which are also known as the parameters.

Automatic structure and parameter learning and inference are the core functions in a

graphical model-based decision-support system.

Most probabilistic clinical decision-support systems make use of a Bayesian Network

to model a medical problem and answer probabilistic inference queries. The limitation of

the existing systems such as the NasoNet (Galán et al., 2002) originates from the usage

of medical expert knowledge to construct its Bayesian Network structure and parameters.

As a result, only a few variables can be taken into account in the modelling process. A

recent clinical decision-support system called PROMEDAS (Kappen and Neijt, 2002) is

an improvement of the NasoNet in the sense that its network structure is automatically

generated and hence the system can deal with a variable number of variables. However,

the specification of the conditional probabilities requires medical expert knowledge which

can still be tedious. It will be shown in Chapter 3 that both the graph and the conditional

probabilities of an Affinity Network can be constructed automatically using only the data

at hand which is an advantage over current clinical decision systems.

1.2.1 Clinical decision-support

Clinical Decision Support Systems (CDSS), also referred to as medical expert systems,

are defined as “active knowledge systems which use two or more items of patient data to

generate case-specific advice” (Bemmel and Musen, 1997). The first papers dealing with

CDSS date back to the late 1950s and were followed by prototype systems. Then the

field of Artificial Intelligence (AI) appeared at the beginning of the 1970s which made it

possible for expert systems to deal with uncertain and incomplete medical knowledge.
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From the above definition, a CDSS has three main components which are medical data,

some patient data and patient-specific advice. The medical knowledge that is required to

make decisions is encoded in a certain formalism. Two types of formalism are currently

used:

• Well-defined statistical methods are used to capture knowledge from patient data.

This type of formalism is also called a model-based approach or a quantitative

model. Bayesian networks and neural networks are examples of model-based ap-

proach (Heckerman et al., 1992; Nicholson, 1996; Mani et al., 1997; Herskovits and

Dagher, 1997; Chevrolat et al., 1998; Sakellropoulos and Nikiforidis, 1999; Onisko,

2001; Ogunyemi et al., 2002; Galán et al., 2002).

• The second formalism is less formal and uses directly the expert knowledge of the

clinician as a reasoning tool. This formalism is also referred to as a rule-based

approach or a qualitative model. Examples of rule-based approaches include decision

trees and truth tables (Meditel, 1991; QMR, 1992; DXPLAIN, 1992; ILIAD, 1992).

When the medical knowledge is combined with the patient data, patient-specific advice is

generated by the system.

In this work we consider quantitative models to aid decision-support by considering graph-

ical models as the tools to achieve inference. Two instances of graphical models will be

discussed in Chapter 2, namely Bayesian networks (BNs) (Neapolitan, 2004) and a more

recent class called dependency networks (DNs) (Heckerman et al., 2000) which is very close

to BNs as will be seen later. A new class of graphical models, called Affinity Networks

(ANs), will be introduced in Chapter 3. ANs shares some interesting properties of BNs

and DNs but with a more rigorous structure learning procedure.

One of the attractions of Bayesian networks resides in their practical use in real world

applications. This is illustrated for instance by the NasoNet system which is a large-scale

Bayesian network that performs diagnosis and prognosis of nasopharyngeal cancer (cancer

involving the nasal passages) or PROMEDAS, which is a probabilistic medical diagnostic

advisory system. These applications are briefly reviewed in the next section.

1.2.2 Examples of CDSS

Two examples of a medical decision-support system are described in this section. A

comparison between them is also given along with a brief discussion on how the Affinity

Network that will be introduced later can be regarded as an interesting option for a clinical

advisory purpose.
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NasoNet

The NasoNet system models the different dynamic causal interactions that take place

during the spread of nasal-passage cancer (Galán et al., 2002). The degree of uncertainty

that is present in the case of nasopharyngeal cancer is higher than other types of cancer

because the nasopharynx is a hidden and difficult-to-enter cavity located in the highest

part of the pharynx. Time is also a fundamental factor since it usually determines the

stage of the disease and, consequently, the type of treatment to be applied. Figure 1.2

shows a part of the Bayesian network used in the NasoNet system.

A representation method that deals with both uncertainty and time is thus given

by a temporal Bayesian network called a network of probabilistic events in discrete time

(NPEDT). Under the NPEDT approach, time is discretised, nodes are associated with

events, and each value of a node represents the occurrence of an event at a particular

instant. Here an event is a change of state provoked by an anomaly. Diagnosis and

prediction consist of fixing the values of the observed nodes and computing the posterior

probabilities of some of the unobserved nodes.

Figure 1.2: Part of the Bayesian network modelling the evolution of a cancer of the
nasopharynx (Galán et al., 2002).

Another CDSS that was developed in the same year as the NasoNet system and which

also uses a Bayesian Network will be described next.
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PROMEDAS

PROMEDAS stands for PRObabilistic MEdical Diagnostic Advisory System (Kappen

and Neijt, 2002). The authors aim to scale-up the system to thousands of variables by

automating the generation of probabilistic networks, contrary to the standard procedure

where the Bayesian network structure and the probabilities are defined by hand. Because

of this, only medium sized networks (50-100 variables) can be constructed in the standard

procedure.

The probabilities that are needed to define the local interactions between the nodes

quantitatively are given as a conditional probability table whose entries are to be set

on the basis of expert knowledge. The domain knowledge acquired from the literature

is entered in a knowledge database which is “compiled” into a model represented by a

causal probabilistic network. More specifically, a database structure is developed in which

medical specialists can enter their knowledge in a way that is familiar for them. The

database contains information from which the structure of the network can be derived,

and the parameters of the network can be learned. Figure 1.3 shows the Bayesian Network

used in the PROMEDAS system.

Figure 1.3: Bayesian network structure of the PROMEDAS system. Three kinds of nodes
are handled: prior nodes Hi (risk factors such as occupation, drug use), diagnostic nodes
Dj (diseases) and test nodes Tk (tests, symptoms, . . .). The structure of the network is that
arrows point from cause to effect: the prior nodes point to diagnostic nodes. Diagnostic
nodes can point to other diagnostic nodes and test nodes. The arrows are read from a
medical database (Kappen and Neijt, 2002).

Besides medical data where strong prior models are usually missing, it will be shown

later how the Affinity Network can also applied to physical data in order to provide a

higher-level inference layer on top of a lower physical layer represented by coupled dynam-

ical systems which are modelled by second order differential equations. In particular, it

will be shown that the Affinity Network is useful in the study of the emergence of collective

behaviour of MEMS. An overview of this area is given in the following section.
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1.3 Emergence of collective behaviour in MEMS

Microelectromechanical systems (MEMS) are amongst the smallest functional machines

that are currently engineered by humans. The field was considered highly speculative in

its early days when Richard Feynman gave his insightful lecture, “There is plenty of room

at the bottom” in 1959 (Feynman, 1959). He attempted to spur innovative miniature

fabrication techniques for micromechanics, but failed to generate a fundamentally new

fabrication technique. However, early successes in the 1970s with the first silicon pressure

sensors and accelerometers contributed to the growth of the research activity.

MEMS are useful in building sensors and actuators, together with measurement, con-

trol, and signal conditioning circuitry, and equipped with power and communications,

all in the tiniest space. MEMS-based sensor systems are particularly important in the

automotive area where mechanical microsensors in modern cars are mainly pressure sen-

sors, inertial sensors such as accelerometers and gyroscopes, and sensors for steering angle

and torque. Biomedical applications are equally essential, where the combination of high-

performance sensing and a high degree of miniaturisation through MEMS techniques offers

unique opportunities to improve the quality of life for the ill and the disabled. For in-

stance, microdosing systems combined with microsensors can control the supply of drugs

such as insulin to the bloodstream, inertial sensors attached to the legs of people suffering

from certain types of brain damage help improve their walking capabilities, to name a few.

The two idealised MEMS elements that will be used in this thesis are the Duffing

resonator (Duffing, 1918) and the van der Pol oscillator (van der Pol, 1920). Usually MEMS

elements are designed to be explicitly separate and non-interacting and any crosstalk due

to capacitive or overlap effects is regarded as a problem to be resolved. However, in this

thesis we are more interested in arrays of coupled systems where the interactions between

devices may be exploited to positive effect. It is important to be able to characterise

the emergent behaviour of such an array of coupled systems in order to design sensors.

This is a rather difficult task since the elements of the array are composed of nonlinear

dynamical systems as illustrated in Figure 1.4. It will be shown in Chapter 3 that the

Affinity Network can provide an interpretation layer on top of the physical layer.

1.3.1 Collective behaviour in MEMS

Real biosensor networks, such as the mammalian olfactory bulb as an exemplar system,

and neurally–integrated autonomous communication networks in many nervous systems,

share common characteristics and behaviours which are still not understood. Such systems
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Figure 1.4: The Affinity Network (AN) provides an interpretation layer on top of the
physical layer composed of a square lattice of nonlinear dynamical systems. The red
circles correspond to Duffing resonators and the blue ones are van der Pol oscillators. The
state of the system can be determined by the clusters of synchronisation that are learned
by the AN depending on the response of the sensor array to its external environment.
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are composed of interconnected relatively simple dynamical systems, but which are non-

linear, or interact nonlinearly and permit dynamical interactions on multiple time scales.

Such systems exhibit a huge diversity of behaviours and produce emergent and macro-

scopic properties which are responsive in ways they interact with the environment that

are unfamiliar to traditional engineering sensor design.

For example Breaa et al. (2009) used biophysical models to explain the gamma-band

oscillation in the olfactory bulb based on coupled sub-threshold oscillators which have

been shown to exhibit synchronisation and coherence effects when driven with correlated

inputs. Similarly, in recent models of temporal coding Burwick (2009), competition for

coherence driven by increased phase velocity of neural units in cases of coherent input from

the connected neurons leads to different perspectives on assembly formation in collections

of coupled oscillator neurons. This assembly formation suggests novel mechanisms for

pattern recognition. The ability of a network of coupled nonlinear oscillators to develop

emergent behaviour including topological organisation, associative memory and gamma-

band synchronisation, has already been used to illustrate a computational capability for

abstract pattern recognition (Ursino et al., 2009).

However, a major query is whether we can learn from such biological sensor and com-

munication networks to design more robust biomorphically engineered sensor, communi-

cation and computing arrays in recent technologies such as micro and nano-mechanical

silicon-based systems.

Motivated by the examples presented above, we will investigate the effects of sensor

arrays of coupled microelectromechanical oscillators and resonators. We are interested in

the characterisation and detection of novel self-organising response patterns as prototype

simultaneous sensing and computing primitives in a pattern recognition system. Whereas

traditional design rules would attempt to create an array of isolated and linear-response

sensors, the biomorphic design implies interaction and nonlinear oscillators. This allows

the emergence of a much richer range of complex behaviours of the array beyond that

expected in a traditional design strategy as shown in Figure 1.5.

As a preliminary stage to investigating whether MEMS arrays are capable of exhibiting

and thus exploiting similar ranges of behaviour to the biological counterparts, this thesis

focusses on the range of emergent properties of coupled oscillator arrays as expected in real

microelectromechanical arrays where the simple ‘neuron’ oscillator elements are allowed

to interact locally with neighbouring elements. Each neuron element is a simple nonlinear

dynamical system characterised by self-sustaining and damped oscillator.

As already noted, in biological systems of coupled oscillatory devices, the interaction
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Figure 1.5: An example of a complex behaviour that can occur in an array of 32 by 32
alternating Duffing resonators and van der Pol oscillators. The colours correspond to
different phase values of the elements.

permits macroscopic temporal characteristics such as common locking of the phase or

amplitude into synchronised states. In order to understand and predict the emergent

phenomena of these systems, different mathematical models of chains and arrays of coupled

resonators or oscillators have been constructed and studied (Acebron et al., 2005). In

a strongly coupled system, the synchronisation effects may be observed globally in all

elements (Wang and Slotine, 2004; Lohmiller and Slotine, 1998; Slotine and Lohmiller,

2001; Chiu et al., 1998, 2001; Afraimovich et al., 1997; Afraimovich and Lin, 1998; Hale,

1997) or locally in clusters of neighbouring elements (cluster synchronisation) (Kaneko,

1990; Belykh and Mosekilde, 1996; Xie and Hu, 1997; Hasler et al., 1990; Belykh et al.,

2000; Belykh and Mosekilde, 2001).

Recent progress in micro/nano technology now enables scientists to design and man-

ufacture coupled mechanical resonators to experimentally investigate the collective be-

haviour of such systems. For example, intrinsic localised modes were observed in a mi-

cromechanical oscillator array of about 220 coupled cantilevers (Sato et al., 2003). The

formation and propagation range of the acoustic waves over a two-dimensional array of 400

coupled nano mechanical resonators were studied as a potential application in RF signal

processing (Zalalutdinov et al., 2006b). It could be also expected that the collective be-

haviours of coupled oscillators can be utilised in novel sensing devices (Truitt et al., 2007),

optomechanical signal processing devices (Buks and Roukes, 2002) or artificial intelligence

decision-making (Rand and Wong, 2008a).

To extend these recent activities and also to link to recent mathematical work on cou-

pled oscillator array systems, in this thesis the collective behaviour of alternating Duffing
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resonators and van der Pol oscillators elastically coupled in a square lattice is numerically

studied with typical MEMS parameters in Chapter 4, followed by an investigation of the

behaviour of the lattice in the presence of random noise in Chapter 5. The stationary

patterns are then analysed using the Affinity Network to provide a link between the mi-

croscopic many-element state description, to a macroscopic inference of response in terms

of clusters.

1.4 Thesis contribution

This thesis proposes a new graphical model structure: the AN. Its novelty is in the con-

struction of a network structure using a principled message-passing algorithm that uses

similarities between variables in a dataset: this has not been used before as a search pro-

cess for graphical models. This is a non-heuristic approach compared to existing methods

to build a graphical model network structure where nodes are selected randomly then

added or deleted from an initial network structure. Its diverse applicability is revealed

in this thesis by illustrating its properties in two very different domains: graphical model

representations of problems that have no strong prior models, and spatiotemporal patterns

in coupled dynamical systems in which we regard the AN as providing a higher-level infer-

ence or logic layer above the lower physical ‘sensing’ layer. This thesis therefore provides

a preliminary investigation into the use of a ‘similarity seeking’ graphical model (the AN),

to achieve the pattern processing equivalent of ‘interpretation’.

The dynamical-system analysis in Chapter 4 and Appendix B are new results and have

not appeared in the literature before and lead to the predictions that coupled van der Pol

and Duffing systems will show multiple hysteresis effects, locking and synchronisation as

discussed in Chapter 4. These results have now been accepted in the following journal

publications:

• X. Wei, M. F. Randrianandrasana, M. Ward and D. Lowe. Nonlinear dynamics of

a periodically driven Duffing resonator coupled to a van der Pol oscillator. Mathe-

matical Problems in Engineering, 2010. In press.

• M. F. Randrianandrasana, X. Wei and D. Lowe. A preliminary study into emergent

behaviours in a lattice of interacting nonlinear resonators and oscillators. Commu-

nications in Nonlinear Science and Numerical Simulations, 2010. In press.

Additionally, work in Chapter 3 and 4 has been published in the following peer-reviewed

international conferences:
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• M. F. Randrianandrasana and D. Lowe. Bayesian approach to learning Dependency

Networks in biomedical domains. Proceedings of the 3rd International Conference

on Computational Intelligence in Medicine and Healthcare, Plymouth, 2007.

• M. F. Randrianandrasana, X. Wei and D. Lowe. Collective Behaviour in a Square

Lattice of Driven Duffing Resonators Coupled to van der Pol Oscillators”. Pro-

ceedings of the 10th IEEE International Conference on Computer and Information

Technology, p785-790, 2010.

1.5 Notation

The following notation will be used throughout this thesis: a variable is denoted by an

upper case letter and a state or value of that variable by the same lower case letter. A

set of variables is denoted by a bold-face capital letter(s) and an assignment of state or

value to each variable in a given set is denoted by the corresponding bold-face lower-case

letter(s). And finally, calligraphic letters will be used to denote statistical models. The

main symbols are summarised in Table 1.2.

Symbol Meaning

D A dataset
G A graph
M Number of samples (rows) in the data D

x(h) hth case of the data D
X A set of random variables
x The set of realisations of the variables in X
n Number of random variables
Xi A random variable
xi A realisation of the variable Xi

ri Number of possible states of Xi

PAi The set of parents of Xi

pai A realisation of the set of parents of Xi

qi Number of possible configurations of PAi

paij The jth possible configuration of PAi

μT The transpose of the vector μ

Table 1.2: Notation.

1.6 Thesis structure

The structure of this thesis is as follows:

Chapter 2 describes state-of-the-art graphical model instances, namely the Bayesian Net-

work and the Dependency Network. It shows how their network structures and parameters
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are learned from a dataset.

Chapter 3 introduces the Affinity Network graphical model, compares it with the two

previous models on various medical and general data with different sizes and shows that

the Affinity Network is generally more accurate and faster to construct.

Chapter 4 provides analysis of the coupled driven Duffing resonator and van der Pol os-

cillator as a single unit to show that they exhibit interesting and complex behaviour. The

unit is then used as a building block in a square lattice of such elements and the effects

of system parameters and lattice topology are numerically studied. It is shown that, as

expected, more complicated behaviour can occur in such a lattice.

Chapter 5 extends the regular square lattice of coupled dynamical systems by introduc-

ing random connections with various strengths and the effect on synchronisation in the

lattice is investigated. The Affinity Network is then applied to this probabilistic network

of dynamical systems and its satisfactory macroscopic inference capability is shown.

Chapter 6 uses the Affinity Network to analyse the spatiotemporal patterns in the square

lattice of coupled dynamical systems and shows that the resulting clusters of synchroni-

sation are sensible compared to the stationary patterns that are observed in the lattice.

Chapter 7 concludes the thesis and provides directions for future research.

Appendix A derives the dimensionless equation of the coupled Duffing resonator and

van der Pol oscillator.

Appendix B provides a detailed explanation of the main results from the multiple time

scale analysis of the coupled system.
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2

Bayesian and Dependency

Networks

In this chapter we provide the background and framework for describing inference problems

through graphical models. We specifically highlight the distinction between Bayesian and

Dependency Network approaches. A brief description of the necessary concepts from

graph theory and probability theory that are needed to understand this chapter is given

in Section 2.1 followed by definitions of a Bayesian Network and a Dependency Network

in Section 2.2. The remaining two sections will be concerned with how to construct a

Bayesian network and a Dependency Network from a dataset and how to use them to

answer probabilistic queries respectively.

2.1 Graphical and probabilistic backgrounds

A graph G is composed of a set of nodes V (also called vertices) and a set of edges E

(also called arcs) that connect the nodes, and the graph is usually represented using the

notation G = (V,E). An edge can be directed, which means that it has an arrow on one of

its ends, or undirected and consequently the graph will be called a directed or undirected

graph. For example X → Y is a simple directed graph which has two nodes X and Y and

a directed edge connecting them. In this example, there is an edge between X and Y ,
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consequently X and Y are adjacent. When a directed graph contains no directed cycles,

it is also called a directed acyclic graph (DAG). X is called the parent of Y , which is

reciprocally called the child of X, since the direction of the edge goes from X to Y . If we

have a set of nodes X1, . . . , Xk with k ≥ 2 such that (Xi−1, Xi) ∈ E for 2 ≤ i ≤ k, then

the set of edges which connect the k nodes is called a path from X1 to Xk. A node Z is

called a descendent of a node X and X is called an ancestor of Z if there is a path from X

to Z. When the directionality of every edge in a DAG is ignored, the resulting undirected

graph is called the skeleton of the DAG . A v-structure in a DAG G is an ordered triple

of nodes (X, Y, Z) such that G contains the edges X → Y and Z → Y , and X and Z are

not adjacent in G.
The notions of independence and conditional independence are at the core of graphical

models and hence it is important to define them clearly. Two random variables X and Y

are independent if and only if P (X, Y ) = P (X)P (Y ) and the statement that they are in-

dependent given another random variable Z is equivalent to P (X, Y |Z) = P (X|Z)P (Y |Z)

or P (X|Y, Z) = P (X|Z). Another important property that follows from the previous def-

initions is the Markov condition which is a constraint that a variable is independent of

its non-descendents given its parents (Pearl, 1988). This property constitutes the foun-

dation of Bayesian networks (BNs) as the computation of the joint distribution requires

this constraint which is encoded in the structure of the graph. The notion of Markov

equivalence, which is related to the previous definition, is also useful to understand for the

remaining of this chapter: two DAGs are Markov equivalent if and only if they have the

same links, regardless of their directions, and the same set of uncoupled head-to-head (for

example, X → Z ← Y ) meetings (Pearl et al., 1990). In particular, two DAGs are Markov

equivalent if and only, based on the Markov condition, they entail the same conditional

independencies (Neapolitan, 2004). A DAG pattern for a Markov equivalence class is a

graph that has the same links as the DAGs in the equivalence class and has oriented all

and only the edges common to all of the DAGs in the equivalence class as shown in Figure

2.1. The equivalence property has later been generalised by Pearl and Verma (1991b) as

follows: two DAGs are equivalent if and only if they have the same skeleton and the same

v-structures.

The relevance of Markov equivalence to BN structure learning is that DAG patterns

should be learned instead of DAGs given that DAGs belonging to a Markov equivalence

class represent the same statistical dependence. Therefore, the structure learning algo-

rithm can be speeded up since time can be saved by avoiding rescoring DAGs in the same

Markov equivalence class (Anderson et al., 1995). This will be discussed further in Section
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2.3.2 after defining a BN and a DN in the following section.

(b)

Figure 2.1: Markov equivalence class and DAG pattern. The DAG pattern in (2.1(b))
represents the Markov equivalence class in (2.1(a)) (Neapolitan, 2004).

2.2 Bayesian and Dependency Networks definitions

Bayesian networks (BNs) (Pearl, 1988; Neapolitan, 2004) and Dependency Networks (DNs)

(Heckerman et al., 2000) are both graphical representations of probability distributions.

They are especially useful in the presence of uncertainty, which is a common feature in

the field of artificial intelligence, due to their probabilistic nature. BNs usually display

causal relationships between variables although they can also be used to represent acausal

relationships (Heckerman et al., 1995). DNs were developed in order to address criticism

from BNs users who found it hard to interpret some causal and conditional independence

relationships that are encoded in a BN structure. This can be illustrated for example

by the situation where if the variables “Age” and “Gender” are predictive of the variable

“Income”, it is also reasonable to say that “Income” is predictive of “Age” and “Gender”

which induces a loop, that is prohibited in a BN, between “Income” and “Age” and

also between between “Income” and “Gender”. Furthermore, the fact that “Age” and
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“Gender” are dependent given “Income” would not be meaningful. Consequently, the

insights that can be gained from the data are hidden by the task of interpreting those

causal and conditional independence relationships (Heckerman et al., 2000).

The two main components of a BN and a DN are a network structure and parameters.

A DAG represents the structure of a BN whereas the graph structure of a DN is likely

to have cycles. The edges of both BN and DN graphs are used to specify dependence

properties between variables. Both graphs contain a node for each variable Xi. The

parameters of a BN and a DN are the conditional probability distributions of the variables

given their parents. The learning procedures of these two components will be described

in the following section.

2.3 Learning Bayesian and Dependency Networks

Learning a Bayesian or a Dependency Network, and more generally a graphical model,

consists of searching for the best network structure and estimating the model parameters.

The learning procedure is usually performed from the data in hand, especially for large

datasets where an expert knowledge of the domain is not always available. A comparative

description between the parameter and structure learning in a BN and a DN will be

presented in this section.

2.3.1 Parameter learning

As mentioned in Section 2.2, the parameters of a BN and a DN are represented by the

conditional probabilities of each variable given their parents. The Bayesian approach to

parameter learning in a BN puts a prior subjective probability distribution on the value

of a random variable, updates that distribution based on the data and finally the param-

eters are computed using the properties of the corresponding probability distribution. In

contrast, the conditional probabilities in a DN are estimated directly from the data using

classification or regression algorithms.

Parameter learning for BNs

The Dirichlet and normal distributions are respectively used to learn the parameters of a

BN with discrete and continuous variables due to their properties for multinomial (discrete)

and normally (continuous) distributed data. These two different cases will be described

next.
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Discrete variables

Parameter learning in a BN with discrete variables is described as follows: the parameters

are learned by modelling each variable with a Dirichlet distribution which is a conjugate

distribution for the multinomial likelihood which means that the posterior distribution

follows the same parametric form as the prior distribution (Gelman et al., 2004). As a

result, the computation of the posterior distribution (model update) is simplified as well

as the expression of the conditional distribution which is given by (Heckerman et al., 1995;

Neapolitan, 2004)

P (Xi = k|paij) =
aijk

Nij
, (2.1)

where paij denotes the jth possible instantiation of the set of parents PAi of Xi, aijk

are the Dirichlet parameters and Nij =
∑

k aijk. The aijk are usually initialised to 1 to

express the absence of knowledge concerning the value of the relative frequency or if one

wants to be objective and let the data “speak” for itself. Consequently, the different states

that a variable can have are equiprobable.

Continuous variables

In order to understand how the parameters are learned for continuous variables, a defini-

tion of a Gaussian Bayesian Network is first given, in which the value of each variable is

a linear function of the values of its parents, as

x = wX +
∑

Z∈PAX

bXZz,

where PAX is the set of all parents of X, wX is a value that the random variable WX

can have and the coefficient bXZ in the linear combination represents the strength of the

connection or edge between X and Z. The variable WX represents the uncertainty in

X’s value given the values of X’s parents; it has density function N (w; 0, σ2
WX

) and is

independent of each Z. σ2
WX

is the variance of X conditional on the values of its parents.

For each root X, its unconditional density function N (x; μX , σ2
X) is specified from prior

knowledge. For example, a density function equal to N (x; μX , 0) means the root’s value

is known, while a density function equal to N (x; μX ,∞) means complete uncertainty as

to the root’s value. Since σ2
WX

is the variance of X conditional on values of its parents,
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the conditional density function of X is

ρ(x|paX) = N (x,
∑

Z∈PAX

bXZz, σ2
WX

). (2.2)

X1
σ2

1
μ1

b31 b32

X2
σ2

2
μ2

X3
σ2

3
μ3

Figure 2.2: An example of a Gaussian Bayesian Network. Each continuous variable Xi,
i = 1, . . . , 3, is characterised by its mean μi and its variance σ2

i . The strength of the link
between two connected nodes is given by the scalar bij , where the index i denotes a child
node Xi and j its parent Xj .

Figure 2.2 illustrates a Gaussian Bayesian network where each continuous variable Xi,

i = 1, . . . , 3, is characterised by its mean μi and its variance σ2
i . The strength of the link

between two connected nodes is given by the scalar bij , where the index i denotes a child

node Xi and j its parent Xj .

The following variables will be used throughout the learning algorithm:

μ = (μ1, μ2, . . . , μn)T and v are the mean vector in the hypothetical sample and the size of

the hypothetical sample upon which the prior belief concerning the value of the unknown

mean vector is based, respectively, β is the value of the sample covariance matrix ψ in

the hypothetical sample, α represents the degrees of freedom and is given by α = v − 1,

n is the number of variables and M is the sample size of the data. The steps involved in

the parameter learning algorithm are (Neapolitan, 2004; Groot, 1970):

1. the network structure is first constructed by initialising, for 1 ≤ i ≤ n, μi, σ2
i , and

bij as the coefficient in the linear combination,

2. the network structure is converted to the corresponding multivariate normal dis-

tribution N (x;μ,T−1) using Algorithm 2.3.1 that creates the precision matrix T ,

which is the inverse of the covariance matrix (Shachter and Kenley, 1989),

3. the prior values for α and v are assessed as α = v − 1 and v is given by the size
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of the hypothetical sample upon which the prior belief concerning the value of the

unknown mean is based,

4. the prior value for β is assessed as

β =
v(α− n + 1)

(v + 1)
T−1, (2.3)

5. the values of β, α, μ and v are updated as

β� = β +ψ +
vM

v + M
(x− μ)(x− μ)T , (2.4)

α� = α + M, (2.5)

μ� =
vμ+ Mx

v + M
, (2.6)

v� = v + M, (2.7)

where x denotes the sample mean vector,

6. the precision matrix T is updated as

(T �)−1 =
(v� + 1)

v�(α� − n + 1)
β�, (2.8)

7. the variables are ordered as parent nodes coming first; then N (x(M+1);μ�, (T �)−1)

is converted to a Gaussian network yielding updated values σ�2

i and b�
ij ,

8. and finally the distribution of x(M+1) by the Gaussian network containing the graph

and the parameter values μ�
i , σ�2

i , and b�
ij is estimated.

Algorithm 2.3.1: Precision matrix T construction.
T 1 = 1

σ2
1
;

for i = 2; i ≤ n; i + + do

bi =

⎛
⎜⎝ bi1

...
bi(i−1)

⎞
⎟⎠ ;

ti = 1
σ2

i
;

T i =
(
T i−1 + tibib

T
i −tibi

−tib
T
i ti

)
;

end
T = T n;
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Parameter learning for DNs

The parameters in a DN are represented by the local conditional probabilities given by:

p(xi|pai) = p(xi|x\xi), (2.9)

where pai represents an instance of the set of parents of the variable Xi. Classification or

regression algorithms (for example, probabilistic decision trees (Buntine, 1991), generalised

linear models (McCullagh and Nelder, 1989), neural networks (Bishop, 1995), probabilistic

support vector machines (Platt, 1999)) are used in order to model those probabilities and

a different model for each local distribution can be applied. The probabilistic decision tree

approach will be described briefly as decision trees satisfy the near consistency assumptions

discussed in Section 2.3.2. It is recalled that near consistency means strong inconsistencies

are rare when the dataset contains many samples because each local distribution is learned

from the same dataset, which is assumed to be generated from a single underlying joint

distribution. In the probabilistic decision tree approach, a child variable Xi is the target

variable and its parents X\Xi are the input variables in the probabilistic decision tree

method and each leaf (node that has no child) of the tree is modelled as a multinomial

distribution. A hill-climbing approach combined with a BD score is used to learn the

decision tree structure as follows: for a variable Xi, the search algorithm is initialised with

a singleton root node that has no children; then each leaf node is replaced with a binary

split on some variable Xj in the set of parents X\Xi until the score of the tree ceases to

increase. The binary split on Xj is a decision tree node having two children: one child

corresponds to a particular value of Xj and the other child corresponds to all other values

of Xj . A uniform prior distribution for the parameters of all multinomial distributions is

used by the BD score function. Its structure prior is proportional to κf , where κ > 0 is a

tunable parameter and f is the number of free parameters in the decision tree. A value

of κ = 0.1 is used in Heckerman et al. (2000) because it has been found to give accurate

predictions over a wide variety of data.

2.3.2 Structure learning

The methods for learning the structure of BNs can be grouped into two main categories:

algorithms based on conditional independence tests (Cheng et al., 2002; de Campos, 1998;

de Campos and Huete, 2000; Meek, 1995; Pearl and Verma, 1991a; Spirtes et al., 1993;

Verma and Pearl, 1990; Wermuth and Lauritzen, 1983), which are also called constraint-

based algorithms, and algorithms that use a scoring function and a search method (Chow

23



Chapter 2 BAYESIAN AND DEPENDENCY NETWORKS

and Liu, 1968; Cooper and Herskovits, 1990; Bouckaert, 1993, 1995; Friedman and Gold-

szmidt, 1998; Lam and Bacchus, 1994; Suzuki, 1993; Cooper and Herskovits, 1992; Heck-

erman et al., 1995; Kayaalp and Cooper, 2002). A combination of independence-based

and scoring-based methods can also be found in the literature (Acid and de Campos,

2000, 2001; Dash and Druzdzel, 1999; de Campos et al., 2003; Singh and Valtorta, 1995;

Spirtes and Meek, 1995). On the other hand, the structure of a DN is governed by a

classification/regression process.

Structure learning for BNs

In this section, the focus will be put on the techniques that use a scoring metric and

a search procedure where the task of learning a network structure can be summarised

as follows: given a finite set U = {X1, . . . , Xn} of n random variables and a dataset

D = {u1, . . . ,uM} of instances of U (M samples), find a DAG G such that

G̃ = argmaxG∈GS s(G, D),

where s(G, D) is a scoring function that measures the goodness of fit of the DAG G with

respect to the data D and GS is the search space which is composed of all the DAGs that

contain all the variables in the data.

Scoring functions

Most scoring functions can also be grouped into two categories: scoring functions based

on a Bayesian approach, such as K2 (Cooper and Herskovits, 1992), Bayesian Dirichlet

(BD) (Heckerman et al., 1995), and those that are based on information theory such as

the Minimal Description Length (MDL) (Rissanen, 1986; Lam and Bacchus, 1994) and the

Akaike Information Criterion (AIC) (Akaike, 1974). Attention will be focused on the BD

scoring function in this chapter. The likelihood equivalence property needs to be specified

in order to derive the BD score. Under the likelihood equivalence assumption, two network

structures G1 and G2 are equivalent if p(D|G1) = p(D|G2), in other words, the probability

of the data D is the same given hypotheses corresponding to any two equivalent network

structures. This also implies that the data cannot distinguish between equivalent network

structures.

The likelihood of a network structure G given the data D can be obtained using Bayes’
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rule as follows:

p(G|D) ∝ p(D|G).p(G). (2.10)

The possible network structures are generally equiprobable so that the prior p(G) can be

neglected and hence the computation of the data likelihood p(D|G) is enough to select the

best network. Its expression is described next depending on the type of the variables.

Discrete variables

The Bayesian score is a scoring function which represents the goodness of fit of a net-

work with respect to the data and has been introduced by Heckerman et al. (1995). It

is proportional to the posterior probability of a network structure G given the data D in

Equation (2.10). Learning consists then in searching for the network that maximises this

probability.

The BD score is built under different assumptions:

1. the variables must be discrete with a finite number of states,

2. the parameter sets θij = xi|paij , where paij denotes the jth possible instantiation

of the parents PAi of Xi, are mutually independent:

p(θG|G) =
n∏

i=1

qi∏
j=1

p(θij |G), (2.11)

where n denotes the number of variables and qi represents the number of different

instantiations of the parents PAi of the variable Xi;

3. each parameter set θij has a Dirichlet distribution:

p(θij |G) = Dir(θij |aij1, . . . , aijri), (2.12)

where ri is the number of possible states of the variable Xi;

4. the data must be complete, that is every variable is observed in every case of the

data D.

Under the previous assumptions the BD score reduces to the marginal likelihood (the

proof can be found in Heckerman et al. (1994)):

p(D|G) =
n∏

i=1

qi∏
j=1

Γ(Nij)
Γ(Nij + Mij)

ri∏
k=1

Γ(aijk + zijk)
Γ(aijk)

, (2.13)
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where aijk are the Dirichlet parameters for the variable Xi being in the state k and

having the parents paij , Nij =
∑

k aijk, zijk is the number of times in the data where

the variable Xi is in the state k and its set of parents is paij , Mij =
∑

k zijk. Γ is the

Gamma function. The parameters aijk specify one’s current knowledge about the domain

for purposes of learning network structures. But in practice, the specification of aijk for

all possible variable-parent configurations and for all values of i, j and k is not an easy

task. The K2 score (Cooper and Herskovits, 1992) is obtained when aijk = 1. When

the likelihood equivalence assumption is considered, then the hyperparameters can be

computed as follows (Heckerman et al., 1995):

aijk = Ne × p(.|G0), (2.14)

where p(.|G0) represents a probability distribution associated with a prior BN G0 and

Ne =
∑qi

j=1 Nij is called the equivalent sample size of the network. This constitutes

the BDe score where “e” denotes likelihood equivalence. A particular case of the BDe

metric, suggested by Buntine (91), is obtained using another uninformative assignment:

p(.|G0) = 1
ri.qi

, so that the probability distribution in the resultant BN is uniform. The

metric is therefore abbreviated as BDeu (“u” for uniform).

Continuous variables

The conditional density function ρ(D|G) of the data given a graph is maximised in or-

der to learn the network structure with continuous variables and is given by (Neapolitan,

2004):

ρ(D|G) =
(

1
2π

)Mn
2

(
v

v + M

)n
2
(

c(n, α)
c(n, α + M)

) (
|β|α2
|β�|α+M

2

)
, (2.15)

where

c(n, α) =

[
2αn/2πn(n−1)/4

n∏
i=1

Γ
(

α + 1− i

2

)]−1

.

The steps 1-5 in Section 2.3.1 are used to determine the different parameter values in

Equation (2.15).

Once a scoring function has been specified, it is then combined with a search procedure

in order to learn a BN structure.

Network structure search methods
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The search for a network structure (DAG or DAG pattern) that best fits some data

is called model selection where a model in this case means a candidate DAG or DAG pat-

tern. This task is usually done using a heuristic search algorithm which is characterised

by a search space and a set of operations. The search space is usually composed of all the

DAGs that contain all the variables in the data which is the simplest search space. The

operations typically consist of adding or removing edges or reversing the direction of an

edge.

One of the first popular heuristic search algorithms was called K2 and was developed by

Cooper and Herskovits (1992) as an evolution of an expert system named Kutató (Cooper

and Herskovits, 1990) from which the name of the algorithm is derived. The search space

of the K2 algorithm is given by the set of all DAGs which contain all the variables and

the addition of a parent to a node is its unique operation. In addition, an ordering of

the variables is required as a first step of the algorithm. This ordering can be obtained

from domain knowledge where a time ordering can be used in which the variables that

are suspected to be the cause of a certain situation precede those that are suspected to

be the effects of the latter variables. In practice, this prior ordering phase can be very

tedious and hence undesired especially when the number of variables in a dataset is huge.

Greedy algorithms that do not need prior ordering have therefore been devised where

the search space is still the set of all DAGs containing the variables but where removal

and reversal operations are combined with edge additions. Among those algorithms are

the standard greedy hill-climbing (Friedman and Goldszmidt, 1998) in which the search is

initialised with an empty network, for example, then edges addition and removal that lead

to the largest improvement in the score are repeatedly applied to the “current” candidate

network. This “upward” step is repeated until a local maxima is reached, meaning that

no modification of the current candidate improves the score.

A common problem with heuristic search algorithms is the fact of being stuck in local

minima. Different strategies have been proposed to avoid this problem among which are

iterated hill-climbing, in which a random perturbation is applied to the current structure

then the search procedure is repeated and in the end the maximum over the local max-

ima is taken, simulated annealing (Metropolis et al., 1953), best-first search (Korf, 1993)

and Gibbs sampling (Geman and Geman, 1983; Neal, 1993). However those techniques

that avoid local minima only improve the search but do not guarantee that an optimal

network structure will be found. It should be noted also that those methods belong to the

class of algorithms that search over DAGs. In an attempt to reach an optimal solution,

algorithms that search DAG patterns have been developed (Chickering, 2002b) and have
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been improved recently (Chickering, 2002a). These algorithms are based on the greedy

equivalent search property, also called Meek’s conjecture (Meek, 1997). This conjecture

says that if a perfect map of the generative distribution P exists, that is, there is a DAG

that encodes the distribution P , the limit of the probability of finding a perfect map of P

as the size of the dataset approaches infinity is equal to 1. As mentioned earlier in Section

2.1, algorithms that search for DAGs are less efficient than algorithms that search for DAG

patterns since time can be wasted when they encounter and rescore DAGs in the same

Markov equivalence class (Anderson et al., 1995). Nevertheless, algorithms that search

for DAG patterns will also fail to find an optimal solution if the sample size is not large

enough or it may be large but an unlikely event occurs or if the generative distribution of

the data does not have a faithful DAG representation.

Another class of search algorithms is called approximate model averaging (Heckerman

et al., 1999) where an average over all structures is computed. When the number of pos-

sible structures is large, high-probability structures are heuristically searched for instead.

This is usually done using the Markov Chain Monte Carlo method. Approximate model

averaging has been reported to work well in situations where the number of variables is

small and the amount of data is big or when the amount of data is small relative to the

number of variables (Friedman et al., 2000) or when learning relationships among some

of the variables, also called partial structure learning, is more of interest than using the

network structure for inference and decision making.

Structure learning for DNs

In a general DN, the network structure is such that each variable has the remaining

variables as parents, which can be denoted formally as PAi = X/Xi. If the DN is

constructed from data using a classification/regression method, the resulting DN is highly

likely to be inconsistent. The inconsistency can be both structural and numerical. For

instance, if the data is X = X1, X2, it can happen that X1 helps to predict X2 but

X2 does not help to predict X1 when the estimator of p(x1|x2) discards X2 as an input

(conditioning variable) whereas the estimator of p(x2|x1) keeps X1 as an input, which is

inconsistent in terms of the structure. On the other hand, numerical inconsistency stems

from the absence of a joint distribution p(x) from which each of the local distributions

p(x1) and p(x2|x1) can be obtained from the rules of probability. However, the authors

argue that when the dataset contains many samples, strong inconsistencies will be rare

because each local distribution is learned from the same dataset, which is assumed to be

generated from a single underlying joint distribution. The resulting DN will be “almost”
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consistent. Another necessary assumption to get an “almost” consistent DN is that the

model classes (classification or regression algorithms) which are used to estimate the local

distributions can closely approximate the conditional distributions consistent with the

underlying joint distribution. The authors use probabilistic decision trees (Buntine, 1991)

since they satisfy the previous assumption for variables with finite domains.

Once the structure and parameters of a graphical model have been estimated from

a dataset containing the set of variables X, it can then be used to answer probabilistic

queries of the form p(y|z), where the target variables Y and the input variables Z are

disjoint subsets of X. This task is called probabilistic inference and its important special

case is the determination of the joint probability distribution p(x). The estimation of

these two types of distributions in a BN and a DN will be described next.

2.4 Probabilistic inference

In a BN, the expression of the joint distribution relies on an assumption which allows

its factorisation using the conditional probabilities of the variables. The computation of

the marginal probabilities can then be derived from this factorisation through a message-

passing algorithm. Conversely, the probabilistic inference task in a DN is based upon the

independencies encoded in the network structure for a consistent DN and on a stochastic

sampling algorithm for a general DN.

2.4.1 Inference in BNs

The key property in a Bayesian Network is that a variable is independent of its non-

descendants given the values of its parents in the graph, which is referred to as the

Markov condition (Pearl, 1988). This implies that any distribution p that satisfies the

independence assumption encoded in the graph can be factored as

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|PAi), (2.16)

where PAi is the set of parents of the variable Xi. Inference queries using marginal

probabilities, which is the most typical case in practice, can be answered through Pearl’s

belief propagation algorithm which is a message-passing-based method.
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Pearl’s belief propagation algorithm

Belief propagation (Pearl, 1988) is an inference algorithm where random variables are rep-

resented by nodes in a graph and the relationship between these variables are symbolised

by directed edges. Belief propagation is valid for directed acyclic network structures where

the algorithm gives exact inference results. However, for networks having cycles, the al-

gorithm, which is then referred to as loopy belief propagation (Weiss, 1997), can also be

applied. In that case, when the algorithm converges, good approximate inference results

can be obtained (Murphy et al., 1999).

In this section, we shall refer to the following network: U → X → Y where the node

X is the node under consideration and whose sets of parents and children are denoted by

U and Y respectively. Each directed link X → Y is associated with a fixed conditional

probability matrix in which the (x, y) entry is given by P (Y = y|X = x). Belief propa-

gation computes the belief, which is a dynamic probability value, in variable X being in

the state x by fusing two types of support information: messages λ, also called evidential

or diagnostic support, from X’s children, and π messages, also called causal or predictive

support, from X’s parents.

The belief update equation is derived by partitioning the total evidence e, that is, the set

of all instantiated variables, into disjoint subsets: e−X and e+
X which represent evidence

connected to X through its set of children Y and evidence connected to X through its set

of parents U respectively, as shown in Figure 2.3.

x

e−X

e+
X

Figure 2.3: Evidence nodes in a BN. e−X and e+
X represent evidence connected to X through

its set of children and parents respectively.
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We then have:

BEL(x) = P (x|e),

= αP (e|x)P (x), using Bayes’ rule, where α =
1

P (e)
(2.17)

= αP (e−X |x)P (x|e+
X), from Figure 2.3 (2.18)

= αλ(x)π(x), (2.19)

where λ(x) and π(x) are defined as λ(x) = P (e−X |x) and π(x) = P (x|e+
X), respectively.

By using probability rules, independence relationships and graph separation, it can be

shown that

BEL(x) = α

[ m∏
j=1

λYj (x)
][∑

u

P (x|u)
n∏

i=1

πX(ui)
]
, (2.20)

where λYj (x) = P
(
e−XYj

|x
)

are messages received from X’s children Y , e−XYj
stands for

evidence contained in the subnetwork on the head side of the link X → Yj . πX(ui) =

P (ui|e+
UiX

) are messages received from X’s parents U , e+
UiX

stands for evidence contained

in the subnetwork on the tail side of the link Ui → X, and P (x|u) is an entry of the

conditional probability matrix that quantifies the link between X and U .

The message going to a parent can be calculated from the messages received from the

children and the matrix stored on the link from the parent:

λX(ui) = β
∑

x

λ(x)
∑

uk:k �=i

P (x|u)
∏
k �=i

πX(uk), (2.21)

where λ(x) =
∏m

j=1 λYj (x), λYj (x) = P (e−XYj
|x), and πX(uk) are messages received from

X’s parents U .

The message going to a child is given by

πYj (x) = α
∏
k �=j

λYk
(x)π(x), (2.22)

where π(x) =
∑

u P (x|u)
∏n

i=1 πX(ui) and πX(ui) = P (ui|e+
XYj

). Therefore, outgoing

messages, λX(ui) and πYj (x) are determined from the incoming messages λYj (x) and

πX(ui).

2.4.2 Inference in DNs

The computation of joint and marginal distributions in a DN is not as straightforward as in

a BN mainly because of inconsistency issues. Consequently, methods based on stochastic
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sampling are used in order to approximate the joint distribution. This also makes sense

since the conditional distribution of each variable is known as a result of the parameter

learning step in which the classification or regression algorithms compute the necessary

conditional probabilities as discussed in Section 2.3.1. However, in the ideal case where

a DN is consistent, the independencies encoded in the network structure can be used to

lighten the computation involved in the inference task. These two different scenarios will

be discussed next.

Consistent DN

Probabilistic inference in a consistent DN D for a set of random variables X can be done

by converting D into a Markov networkM, triangulatingM, giving T , and then applying

one of the standard algorithms for probabilistic inference, such as the junction tree algo-

rithm of Jensen et al. (1990), in the triangulated representation T . A triangulated graph,

also called a chordal graph, is a graph whose cycles of four or more nodes have a chord,

which is an edge joining two nodes that are not adjacent in the cycle.

An alternative solution to the previous procedure is to use Gibbs sampling in order to

recover the joint distribution p(x) of a consistent DN for X. Gibbs sampling consists of

cycling through each variable X1, . . . , Xn, in that order, and resampling each Xi according

to p(xi|x\xi) = p(xi|pai), after having initialised each variable to some arbitrary value.

This procedure is also called an ordered Gibbs sampler and the proof showing that it recov-

ers the joint distribution for X, when applied to a consistent DN, is given in Heckerman

et al. (2000). The proof is based on the irreducibility of the Markov chain, that comes

from the sequential samples of x, which is due to the positivity of the local distributions.

Those samples are then used to estimate p(X).

The Gibbs sampler is also used to compute a conditional probability but with a slight

modification: the instance of the set of conditioning variables is fixed during the Gibbs

sampling algorithm in order to speed up its convergence. The reason is a possible small

value of the probability of the set of conditioning variables, due to the fact that this set has

many variables, which requires many iterations to get an accurate estimate of the condi-

tional probability of interest. For example, if p(y|z) needs to be computed, then Z = z is

fixed during the ordered Gibbs sampling. This procedure is also called a modified ordered

Gibbs sampler.

A decomposition of the inference task into a set of inference tasks on single variables is

also possible by using the independencies encoded in the corresponding DN along with

the law of total probability in order to compute the conditional probability of interest.

32



Chapter 2 BAYESIAN AND DEPENDENCY NETWORKS

For example, if a DN D is given by [X1 X2 ↔ X3], then the independencies in D imply

that p(x1, x2, x3) = p(x1)p(x2)p(x3|x2), and p(x1, x2, x3) can be obtained by computing

each term separately as follows: the distribution of p(x1) can be read directly from the

local distribution for X1 in D and thus no Gibbs sampling is required. A modified ordered

Gibbs sampler can be used to determine p(x2) and p(x3|x2) where the target variable in

the sampler is x2 and x3, respectively.

General DN

In most situations, a DN will be inconsistent due to the way its network structure and

parameters are learned as explained in Section 2.3.2. The joint distribution of an incon-

sistent DN is approximated using the ordered Gibbs sampling described earlier. Since

the joint distribution is likely to be inconsistent with the conditional distributions that

are used to produce it, the procedure is called an ordered pseudo-Gibbs sampler. Another

drawback of this procedure is that the joint distribution obtained will depend on the order

in which the pseudo-Gibbs sampler visits the variables.

A comparison between BNs and DNs regarding the accuracy of the joint probabilities

produced by each of them on different datasets has been carried out in Heckerman et al.

(2000) and a better performance of BNs has also been reported although the results from

the DNs are close to those of the BNs. This outcome is attributed to the number of

parameters which are fewer in a BN than in a DN and also because the joint probabilities

are computed via multiplication in a BN whereas they are obtained via pseudo-Gibbs

sampling in a DN where non-convergence of sampling can occur due to the inconsistency

of the joint distribution.

2.5 Summary

BNs and DNs are both graphical representations of probability distributions. They are

characterised by a network structure, which is a graph where each node corresponds to

a random variable from a dataset, and some parameters represented by the conditional

probabilities of the variables. BNs usually display causal relationships between random

variables whereas DNs were devised to relax this hard constraint associated with the causal

relationships in BNs. Consequently, unlike a BN, which is represented by a directed acyclic

graph, a DN structure is likely to have cycles.

The structure of a BN is usually learned by combining the BDe scoring function with a

hill-climbing heuristic search although a conditional independence test can also be used to
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construct a BN structure. On the other hand, a classification/regression algorithm governs

the structure learning of a DN. The conjugacy property of the Dirichlet distribution for

discrete variables, and the Normal distribution properties for continuous variables enable

the computation of the conditional probabilities in a BN. In contrast, these conditional

probabilities are directly estimated from the data using a classification or regression tech-

niques in a DN. The structure and parameters of a BN and a DN are both learned from

data although expert knowledge can also be used to specify the conditional probabilities

in a BN.

The computation of the joint distribution in a BN is performed through the Markov

property. The joint probability is obtained by taking the product of all the conditional

probabilities as a result of the Markov property. The Markov property simplifies the

computation of the joint distribution in a BN whereas in a DN, a stochastic sampling called

an ordered pseudo-Gibbs sampling is needed due to the fact that conditional probabilities

are not consistent with the joint distribution.

The structure learning of a graphical model is especially crucial since both the parame-

ter learning and the inference task depend on it. In BNs, the structure is learned first then

the parameters whereas in DNs the structure and parameters are learned simultaneously.

However the structure learning in both BNs and DNs is based on heuristic optimisation

techniques. This issue can be addressed using a more principled structure search algorithm

and the resulting graphical model instance will be discussed in the next chapter.
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3 Affinity Network

In this chapter a novel graphical model structure that we call an Affinity Network (AN)

and which has preferable characteristics to the graphical models discussed in the previous

chapter is introduced. An AN is a directed, possibly cyclic, graphical model in which

the nodes represent random variables. The links between those random variables denote

probabilistic relationships based on similarities between two connected nodes. The AN

shares some properties of a BN and a DN in the sense that the conditional probabilities

of an AN are learned using a similar approach to learn the conditional probabilities of a

BN. In addition, the joint probability of an AN can be computed the same way as in a

DN. The AN differs from the BN and the DN in its graph learning, also called network

structure learning.

An important aspect of a graphical model in practice is its interpretability. Dependency

Networks (DNs) are easier to interpret than Bayesian Networks (BNs) due to their more

flexible dependency relationships compared to the strong causal meaning of the arcs in

BNs. An affinity network (AN) shares this user-friendly property of DNs since it displays

variables that are close to each other given the data. Since BNs do not have cycles,

they cannot discriminate spurious causal relations between confounding variables (Pearl,
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1998). In contrast, AN and DN graphs can be cyclic and can therefore capture more

general dependency relationships. The way an AN structure is constructed is superior to

BNs and DNs structure learning as it is based on a data-driven message update of simple

formulae that search for minima of a scoring function, whereas BNs and DNs structure

learning relies on heuristic search procedures.

An AN can then be viewed as a DN but with a better network structure search method.

This will be illustrated later in this chapter using small and large real-world and synthetic

datasets. It will also be shown in Chapter 6 that an AN can outperform a DN when

characterising cluster synchronisation of dynamical systems from time series data. More-

over, given that the AN uses similarity measures between variables, in the absence of raw

data, when only those similarity values are available, it would still be possible to con-

struct an AN whereas a DN needs the raw data to learn the network structure through a

classification/regression procedure.

In this chapter the new AN structure learning, using a combination of the soft-

constraint affinity propagation (SCAP) algorithm (Leone et al., 2007) and a scoring func-

tion, will be introduced after describing the affinity propagation (AP) algorithm, upon

which SCAP is based, and how the parameters are learned.

3.1 Affinity propagation

AP is a general optimisation algorithm that searches for a global maximum of an energy

function. It can be derived as the max-sum algorithm in a factor graph, which is another

graphical representation for the factorisation of a joint probability distribution (Frey et al.,

1997; Kschischang et al., 2001). It has been used for data clustering in Frey and Dueck

(2007) where AP looks at pairs of variables, also called data points, take a similarity

matrix s as an input from which a responsibility matrix r and an availability matrix a

are constructed, and return a vector containing the cluster center for each data point. In

the following, the discussion will be put in the context of learning an AN structure, as

an introduction to the AN structure, where the goal is to find the set of parents PA of

each variable in a dataset. In other words, a random variable Xi and its potential parent

variable pai, in the AN structure learning, can be viewed as a data point at index i and

its cluster center ci respectively, in the AP clustering algorithm.

The problem of learning a graphical network structure can then be summarised as

finding the set of parents PAi for each variable Xi, i = 1, . . . , n in a dataset. To facilitate

the discussion, we suppose that a variable has only one parent and the general case will be
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described later. The identification of the parents can also be viewed as searching over the

space of valid configurations of PA = {pai, . . . , pan}, where the scalar pai, i = 1, . . . , n is

the parent of Xi, so as to minimise the energy

E(PA) = −
n∑

i=1

s(Xi, pai), (3.1)

where s(Xi, pai) indicates how well the variable pai is suited to be the parent of the variable

Xi. Usually the maximisation of the network similarity, Snet, which is the negative energy

plus a constraint function that enforces valid parent configurations, is performed:

Snet(PA) = −E(PA) +
n∑

k=1

δk(PA), (3.2)

=
n∑

i=1

s(Xi, pai) +
n∑

k=1

δk(PA), (3.3)

where δk(PA) is a penalty term that equals −∞ if some variable Xk, whose parent is

different from itself, has been chosen to be the parent of variable Xi and 0 otherwise.

This means that whenever a variable is selected as a parent by another variable, it is not

allowed to have a parent other than itself. Equation (3.3) can be represented using a factor

graph F in which each term in (PA) is represented by a function node and each parent

pai is represented by a variable node. Function nodes and variable nodes are connected by

edges, and a variable node is connected to a function node if and only if its corresponding

term depends on the variable. For example, the term s(Xi, pai) in the above expression

has a corresponding function node that is connected to the single variable pai and the term

δk(PA) has a corresponding function node that is connected to all variables pa1, . . . , pan

as shown in Figure 3.1. The global function S(PA) in the factor graph F is given by the

sum of all the functions represented by function nodes. The max-sum algorithm, which is

the log-domain version of the sum-product algorithm (and by replacing the “sum” operator

with the “max”), can be used to search over configurations of the parents PA in the factor

graph that maximise S(PA). The max-sum algorithm for the factor graph F consists of

recursively sending messages from variables to functions and from functions to variables

as follows:

• the message sent from pai to δk(PA) consists of n real numbers

⎛
⎜⎜⎜⎝

ρi→k(X1)
...

ρi→k(Xn)

⎞
⎟⎟⎟⎠

(Figure 3.1(b)).
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• The message sent from δk(PA) to pai also consists of n numbers

⎛
⎜⎜⎜⎝

αi←k(X1)
...

αi←k(Xn)

⎞
⎟⎟⎟⎠

(Figure 3.1(c)).

The value of pai can be estimated at any time by summing all incoming availability α and

similarity S messages (Figure 3.1(d)). The responsibility ρ messages are computed as the

element-wise sum of all incoming messages because they are outgoing from variables:

ρi→k(pai) = s(Xi, pai) +
∑

k′:k′ �=k

αi←k′(pai). (3.4)

The sum of the incoming messages and the maximum over all variables except the variable

the message is being sent to, give the messages sent from functions to variables. For

instance, the message sent from the penalty function δk to the parent variable pai is:

αi←k(pai) =

best possible configuration satisfying δk given pai︷ ︸︸ ︷
max

X1,...,Xi−1,Xi+1,...,Xn

[
δk(X1, . . . , Xi−1, pai, Xi+1, . . . , Xn) +

∑
i′:i′ �=i

ρi′→k(Xi′ )

]
.

(3.5)

After some simplifications that are described in Appendix A, messages can be con-

sidered to be scalar. This allows to define the responsibilities r(Xi, Xk) and availabilities

a(Xi, Xk) as:

r(Xi, Xk) = s(Xi, Xk)− max
Xj :Xj �=Xk

[
s(Xi, Xj) + a(Xi, Xj)

]
(3.6)

a(Xi, Xk) =

⎧⎪⎨
⎪⎩

∑
i′:i′ �=k max

(
0, r(Xi′ , Xk)

)
, for Xk = Xi

min
[
0, r(Xk, Xk) +

∑
i′:i′ /∈{i,k}max

(
0, r(Xi′ , Xk)

)]
, for Xk 
= Xi

(3.7)

The responsibility r(Xi, Xk) reflects the accumulated evidence for how well-suited the

variable Xk is to serve as the parent of variable Xi. The availability a(Xi, Xk) reflects the

accumulated evidence for how appropriate it would be for variable Xi to choose variable

Xk as its parent, taking into account the support from other variables that variable Xk

should be a parent.

The min[0, .] in the availability update comes from the fact that x − max(0, x) =

min(0, x).

The value of a variable pai can be estimated after any iteration by summing together all
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incoming messages to pai and taking the value, p̂ai, that maximises it:

p̂ai = argmaxXj

[∑
k

αi←k(Xj) + s(Xi, Xj)
]
, (3.8)

= argmaxXj

[∑
k

α̃i←k(Xj) +
∑

k

αi←k + s(Xi, Xj)
]
, (3.9)

= argmaxXj

[
a(Xi, Xj) + s(Xi, Xj)

]
, (3.10)

where αi←k = αi←k(pai : pai 
= Xk) which will make α̃i←k(pai) zero for all pai 
= Xk. This

is also equivalent to
∑

k′:k′ �=k α̃i←k′(pai) = α̃i←pai(pai) for pai 
= Xk and the summation

is zero for pai = Xk. When the energy function in Equation (3.1) has multiple minima

with corresponding multiple fixed points of the update rules, then the max-sum algorithm

that is used to maximise the network similarity in Equation (3.3) represented by the factor

graph in Figure 3.1 may not converge. This can be tackled by damping the messages or by

adding a small noise to the similarities (Frey and Dueck, 2007). The messages are damped

by setting each message to λ times its value from the previous iteration plus 1− λ times

its prescribed updated value, where λ is a damping factor between 0 and 1.

In the Affinity Propagation (AP) algorithm, the fact that a parent variable has to be

its own parent is considered as a hard constraint. This hard constraint can be relaxed in

the Soft-Constraint Affinity Propagation (SCAP) and will be discussed next.

3.2 Soft-Constraint Affinity Propagation

In this section, we provide a generalisation of the SCAP equations (Leone et al., 2007)

which are similar to the AP equations except that a constraint p̃ is introduced in the

expressions of the self-responsibility r(Xi, Xi) and the self-availability a(Xi, Xi) as follows:

r(Xi, Xj) = s(Xi, Xj)−max
k �=j

[s(Xi, Xk) + a(Xi, Xk)] (3.11)

r(Xi, Xi) = max
[
− p̃, s(Xi, Xi)−max

k �=i
{s(Xi, Xk) + a(Xi, Xk)}

]
(3.12)

a(Xi, Xj) = min
[
0, r(Xj , Xj) +

∑
k �=j

max
(
0, r(Xk, Xj)

)]
(3.13)

a(Xi, Xi) = min
[
p̃,

∑
k �=i

max{0, r(Xk, Xi)}
]

(3.14)
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(a)
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Figure 3.1: Factor graph for Affinity Propagation in the context of AN structure learning.
(a): s(Xi, .) indicates how well the scalar variable pai is suited to be the parent of the
variable Xi. δk is a penalty term that equals −∞ if some variable Xk has been chosen to
be the parent of variable Xi without Xk being a parent (i.e., Xk /∈ PA) and 0 otherwise.
(b): the message sent from pai to δk(PA) consists of n real numbers (one for each possible
value, Xj , of pai) and can be denoted as ρi→k(Xj). αi←k represents the message sent from
the penalty function δk to the parent variable pai and ρi→k denotes the message sent from
the parent variable pai to the penalty function δk. (c): the message sent from δk(PA)
to pai also consists of n numbers and can be written as αi→k(Xj). (d): the value of pai

can be estimated at any time by summing all incoming availability α and similarity S
messages.
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Using the same reasoning as for Equation (3.10), the parent p̂ai of any variable Xi can be

computed by maximising the marginal a posteriori probability:

p̂ai = argmaxXj

[
a(Xi, Xj) + r(Xi, Xj)

]
. (3.15)

When p̃ = +∞ (in practice p̃ is set to a large positive number), from (3.12) and (3.14),

we have

r(Xi, Xi) = s(Xi, Xi)−max
k �=i

{
s(Xi, Xk) + a(Xi, Xk)

}
and

a(Xi, Xi) =
∑
k �=j

max
(
0, r(Xk, Xi)

)
which is equivalent to the AP equations. On the other hand, if p̃ = −∞ (that is, a large

negative number in practice), then a(Xi, Xi) = −∞, r(Xi, Xi) = +∞ and their sum is

equal to zero. From Equation (3.15), self-loops are discouraged and the hard constraint in

AP is relaxed when a(Xi, Xi) + r(Xi, Xi) > 0. From (3.13) and (3.11), this occurs when

min
[
0, r(Xj , Xj)+

∑
k �=j

max
(
0, r(Xk, Xj)

)]
+ s(Xi, Xj)−max

k �=j
[s(Xi, Xk)+a(Xi, Xk)] > 0.

(3.16)

Inequality (3.16) holds if

min
[
0, r(Xj , Xj) +

∑
k �=j

max
(
0, r(Xk, Xj)

)]
≥ 0, (3.17)

and

s(Xi, Xj)−max
k �=j

[s(Xi, Xk) + a(Xi, Xk)] > 0. (3.18)

Inequality (3.17) is valid if r(Xi, Xi) ≥ 0, that is, using (3.12),

max
[
− p̃, s(Xj , Xj)−max

k �=j
{s(Xj , Xk) + a(Xj , Xk)}

]
≥ 0. (3.19)

This is equivalent to

p̃ ≤ 0, (3.20)

and

p̃ < s(Xj , Xj)−max
k �=j
{s(Xj , Xk) + a(Xj , Xk)}. (3.21)

In summary, the inequalities in (3.18), (3.20) and (3.21) need to be satisfied to avoid self-

loops. In Leone et al. (2007), p̃ was set to be in the interval [0, +∞] but here we have
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expanded the interval to [−∞, +∞] in order to remove the possibility of having self-loops.

Since the parent of a variable is selected through the maximum M of the sum of the

availability a and the responsibility r this implies that a variable can only have one parent.

However, by using a threshold on the value of M multiple parents could be obtained but

we do not pursue this further.

3.3 Parameter and structure learning for ANs

In this section, algorithms that learn the parameters and structure in an AN will be dis-

cussed along with a simple method to quantify the strengths of the arcs between connected

nodes.

3.3.1 Parameter learning for ANs

Parameter learning in an AN is similar to learning the parameters of a BN and is sum-

marised as follows: the parameters are learned by modelling each variable with a Dirichlet

distribution for discrete variables or a Gaussian distribution for continuous variables. As a

result, the computation of the posterior distribution is simplified as well as the expression

of the conditional distribution which is given by Equation (2.1) and Equation (2.2) for

discrete and continuous variables respectively.

3.3.2 Structure learning for ANs

The SCAP method of constructing an AN combines a scoring function and soft-constraint

affinity propagation (SCAP) (Leone et al., 2007) as a search algorithm. SCAP is used as a

local network structure search algorithm in our case since it can be viewed as a method that

searches for minima of an energy function where the energy function here is represented

by a scoring function. The search is local in the sense that each node looks at its most

probable parent where a parent is equivalent to a cluster center in the AP clustering

algorithm. The O(n2) complexity of the SCAP algorithm, where n is the number of data

points, makes it suitable for big datasets and for network structures having loops where

this approach of recursively propagating messages has been used to approximate NP-hard

problems (Frey and Dueck, 2007).

A general AN structure might have loops and hence the structure search algorithm

should be able to find them. Unfortunately, standard AP cannot perform this task as em-

pirically shown in Leone et al. (2007) which is why a soft-constraint version of AP, called

SCAP, has been devised in Leone et al. (2007) to cluster gene-expression data. Like AP,
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SCAP looks at pairs of variables, also called data points, takes a similarity matrix s as an

input from which a responsibility matrix r and an availability matrix a are constructed,

and return a vector containing the cluster center for each data point. In our case, the

entry s(i, j) of the similarity matrix s is given by the BDe score of the two-nodes network

structure where the node j is the parent of the node i. This means that the similarity

s(i, j) indicates how well the variable with index j is suited to be the parent of the vari-

able i. The responsibility r(i, j) reflects the accumulated evidence for how well-suited the

variable j is to serve as the parent of variable i and the availability a(i, j) reflects the

accumulated evidence for how appropriate it would be for the variable i to choose the

variable j as its parent.

The values in the diagonal of the similarity matrix s are also called preferences and vari-

ables with larger values of s(k, k) are more likely to be chosen as parents. If all variables

are equally suitable as parents then the same value is assigned to the preference of each

variable. This value is usually set to the median of the input similarities (Frey and Dueck,

2007). It should be noted that setting the preference value in this way might not al-

ways yield the best result in terms of clustering and implicitly in terms of model selection

especially for high-dimensional data. This observation has been verified on a range of clus-

tering problems. Heuristic solutions such as the Adaptive AP (Wang et al., 2007) have

been proposed in order to tackle this problem but no efficient method has been found so

far to the best of our knowledge. However, in our case, the value of s(k, k) is set to the

BDe score of the single-node network Xk.

The affinity between two data points is given by the sum of their availability and

responsibility. The corresponding SCAP equations are given by:

r(i, j) = s(i, j)−max
k �=j

[s(i, k) + a(i, k)],

r(i, i) = max
[
− p̃, s(i, i)−max

k �=i
{s(i, k) + a(i, k)}

]
,

a(i, j) = min
[
0, r(j, j) +

∑
k �=j

max
(
0, r(k, j)

)]
,

a(i, i) = min
[
p̃,

∑
k �=i

max{0, r(k, i)}
]
,

where i, j and k are variable indices (the variable at index j being the parent of the

variable at index i as defined previously). The responsibility and availability matrices are

then added together and the index of the maximum value for each row is considered as

the best parent index for the variable in the corresponding row. The search algorithm

is stopped when a predefined maximum number of iterations has been reached or when
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there is no change in the ouptut. It should be noted that, like in the AP algorithm, the

messages are damped to avoid numerical oscillations during their update. A default value

of λ = 0.5 has been used as in Frey and Dueck (2007). The AN structure learning method

is summarised in Algorithm 3.3.1. In our experiments, we have set p̃ to −∞ in order to

relax the hard constraint in AP and to remove the possibility of having self-loops.

Algorithm 3.3.1: AN structure learning. The entry vector parent indices(k) cor-
responds to the parent index of the variable at index k, where k = 1, . . . , n.

Input: Data having n variables
Output: Vector of parent index for each variable
for i = 1; i ≤ n; i = i + 1 do

for j = 1; j ≤ n; j = j + 1 do
// similarity matrix
sim mat(i,j) = BDe score of the network structure where the variable at
index j is the parent of the variable at index i;

end
end
vector parent indices = SCAP(sim mat);

3.3.3 Quantification of the arcs’ strength in an AN

In a DN, the significance of connections between variables was originally ranked by deter-

mining the order in which arcs would be added during a greedy structure search (Heck-

erman et al., 2000). The magnitude of the arcs’ significance is quantified by computing

the mutual information in the case of discrete variables. The mutual information I which

measures the mutual dependence of random variables X and Y is given by

I(X; Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
. (3.22)

In our case, the joint probability p(x, y) is computed using the conditional probability

and the product rule of probability which gives p(x, y) = p(x|y)p(y). A transformation

of Equation (3.22) can be used so that the value of the mutual dependence between two

nodes is normalised and hence can be interpreted as a generalisation of the correlation as

discussed in Joe (1989); Gentleman et al. (2005). This transformation will be denoted by

δ∗ (Gentleman et al., 2005) which is given by

δ∗ =
√

1− exp(−2I), (3.23)

where I is the mutual information given by Equation (3.22).

For continuous variables, the arc strength value is given by the covariance between two
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connected variables. The covariance matrix is computed using Equation (2.4).

3.4 Experimental results

In this section, we compare AN and DN network structures after giving a description of

the main datasets that have been used to carry out the comparison.

3.4.1 Datasets

Synthetic and real-world datasets of different sizes will be presented in the following sec-

tion. The description will focus only on the data for which graphical AN and DN network

structures have been generated and a reference to the remaining data will be given.

Table 3.1: Chest clinic dataset attribute information. There are 16 instances that contain
a single missing value and there are 458 (65.5%) benign cases and 241 (34.5%) malignant
cases. The sample code number is not used in the analysis.

α: p(a) = 0.01 ε: p(e|l, t) = 1
p(e|l, t) = 1

τ : p(t|a) = 0.05 p(e|l, t) = 1
p(t|a) = 0.01 p(e|l, t) = 0

σ: p(s) = 0.50 ζ: p(x|e) = 0.98
p(x|e) = 0.05

λ: p(l|s) = 0.10
p(l|s) = 0.01 δ: p(d|e, b) = 0.90

p(d|e, b) = 0.70
β: p(b|s) = 0.60 p(d|e, b) = 0.80

p(b|s) = 0.30 p(d|e, b) = 0.10

Synthetic data

Chest clinic dataset:

The Chest clinic data is a synthetic binary dataset that has been generated using proba-

bilistic logic sampling (PLS) (Henrion, 1988; Lin and Druzdzel, 1989), which is a stochastic

sampling algorithm, by randomly instantiating each node to one of its possible states given

the instantiated states of its parents. The instantiations are performed in a topological

order, in other words, parent nodes are sampled before their children nodes.

The network, which comprises eight nodes and eight arcs, models the following hypo-

thetical situation (Lauritzen and Spiegelhalter, 1988) in which the variable associated to

each node is put between brackets: a patient presents at a chest clinic with dyspnoea (δ),
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and has recently visited Asia (α). Smoking history (σ) and chest X-ray (ζ) are not yet

available. The doctor would like to know the chance that each of the diseases is present,

and if tuberculosis (θ) were ruled out by another test, how would that change the belief

in lung cancer (λ)? Also, would knowing smoking history or getting an X-ray contribute

most information about cancer, given that smoking may ‘explain away’ the dyspnoea since

bronchitis is considered a possibility? Finally, when all information is incorporated, can

we identify which was the most influential in forming our judgement?

The probabilities of each state conditional on all possible parent states were assessed from

medical quantitative knowledge and are given in Table 3.1 where, for example, a is used to

indicate a positive response on the node α ‘VisitAsia’, a to indicate a negative response,

and p(a) to stand for P (α = a) and similarly for the other nodes.

ALARM dataset:

ALARM (A Logical Alarm Reduction Mechanism) is a patient monitoring system that

uses a Bayesian network to represent the causal relationships between diagnosis, measure-

ments and other non-measurable variables for diagnosis purposes (Beinlich et al., 1989).

The system contains prior probablities and conditional probabilities computed from equa-

tions relating the variables and a number of subjective assessments. These probabilities

are used to generate the data through the PLS algorithm.

Real-world data

Ferrara breast cancer dataset:

This is a breast cancer dataset which was used in Ambrogi et al. (2006) where the au-

thors tried to identify tumour profiles with possible clinical relevance based on clusters

of immunohistochemical molecular markers measured on a large, single institution, case

series.

Tumour biological profiles were explored on 633 archival tissue samples taken from

patients who underwent surgery for primary infiltrating breast cancer between 1983 and

1992 at the University of Ferrara, Italy. Five validated markers were considered namely

estrogen receptors (ER), progesterone receptors (PR), Ki-67/MIB1 proliferation index

(PROLIND), HER2/NEU (NEU), and p53 in their original scale of measurement.

The percentage of expression values of ER, PR, and NEU tended to distribute around

the following values: 0%, 10%, 25%, 50%, 75% and 100%, and were consequently discre-

tised on these values. Percentages of Ki-67 and p53-expressing cells were analysed without

discretisation in the original paper but have been discretised to the previous values in this
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work because they are continuous. The dataset is summarised in Table 3.2. We would

like to thank Elia Biganzoli from the University of Milan for giving us access to this data.

Wisconsin breast cancer dataset:

Table 3.2: Distribution in 633 cases of primary invasive breast cancer of the clinical and
pathological variables, of the discretised biologic variables ER, PR, NEU, and of the
categorised variables, KI-67 and p53 from the Ferrara breast cancer dataset (Ambrogi
et al., 2006).

Variable Frequency (%)
ERs

0 116 (18.3)
10 36 (5.7)
25 80 (12.6)
50 131 (20.7)
75 184 (29.1)

100 86 (13.6)
PR

0 182 (28.8)
10 79 (12.5)
25 65 (10.3)
50 76 (12.0)
75 108 (17.0)

100 123 (19.4)
HER2/NEU

0 328 (51.8)
10 132 (20.9)
25 45 (7.1)
50 26 (4.1)
75 78 (12.3)

100 24 (3.8)
Ki-67/MIB-1 proliferation index (PROLIND)

q1 (0-2.5) 129 (20.4)
q2 (2.5-5.75) 125 (19.7)
q3 (5.75-13) 143 (22.6)
q4 (13-30) 114 (18.0)
q5 (30-90.8) 122 (19.3)

p53
0 (0-0.9) 293 (46.3)

10 (0.9-10) 175 (27.7)
75 (10-75) 78 (12.3)

100 (75-100) 87 (13.7)

This incomplete dataset was taken from the Machine Learning Repository1 which is avail-

able publicly. It is also a breast cancer dataset provided by Dr. William H. Wolberg from

the University of Wisconsin Hospitals and has been used by Wolberg and Mangasarian
1http://www.ics.uci.edu/~mlearn/MLSummary.html
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(1990) and Zhang (1992) for medical diagnosis and learning respectively.

The dataset reflects a chronological grouping of the data since samples arrive periodi-

cally as Dr. Wolberg reports his clinical cases. This grouping information appears below,

having been removed from the data itself:

Group 1: 367 instances (January 1989)

Group 2: 70 instances (October 1989)

Group 3: 31 instances (February 1990)

Group 4: 17 instances (April 1990)

Group 5: 48 instances (August 1990)

Group 6: 49 instances (Updated January 1991)

Group 7: 31 instances (June 1991)

Group 8: 86 instances (November 1991)

Total: 699 points (as of the donated database on 15 July 1992)

Table 3.3: Wisconsin breast cancer dataset attribute information. There are 16 instances
that contain a single missing value and there are 458 (65.5%) benign cases and 241 (34.5%)
malignant cases. The sample code number is not used in the analysis.

# Attribute Domain
1. Sample code number id number
2. Clump Thickness 1-10
3. Uniformity of Cell Size 1-10
4. Uniformity of Cell Shape 1-10
5. Marginal Adhesion 1-10
6. Single Epithelial Cell Size 1-10
7. Bare Nuclei 1-10
8. Bland Chromatin 1-10
9. Normal Nucleoli 1-10

10. Mitoses 1-10
11. Class (2 for benign, 4 for malignant)

3.4.2 Comparison between AN and DN

In the following, AN and DN structures obtained from a classification tree and from a

combination of SCAP and the BDe score are compared. The comparison first starts from

small discrete synthetic and real datasets which are taken from the Machine Learning

Repository except the Ferrara breast cancer data and the Chest data. In the following

comparisons the variable which has the maximum BDe score is selected as the parent of the

corresponding child variable in the method for constructing the AN structure. Likewise,

only the root of the classification tree is used as the parent of the corresponding child
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variable in the DN structure learning approach.

Since the small datasets have few variables, an exhaustive search can be used to find

their network structures as benchmarks. More specifically, for each variable in the data,

the parent combination that maximises the BDe score among the set of all possible parent

combinations is chosen as the parent set. The gold standard network is computed as such

given that a local structure search is performed for both the AN and the DN. In other

words, for each variable in the data, the selected parent set is the one that optimises the

scoring criterion or the regression/classification function. The synthetic data are generated

using probabilistic logic sampling (Henrion, 1988) from the chest-clinic model (Lauritzen

and Spiegelhalter, 1988).

As can be seen in the main results of Table 3.4, the combination of SCAP and BDe is

able to reconstruct the essential graphs (undirected graphs) of the small datasets as shown

in Table 3.4 while the classification tree usually adds extra parents or fewer parents but

with more deleted arcs when only the root of the tree is taken into account. The Nursery

data is the only case where the root of the classification tree gives the true network

structure. Figure 3.2 shows the AN and DN structures of the Chest data. In Figure

3.2(b), the AN obtained from the SCAP and BDe method provides extra information

through the quantification of the strength of each arc which is useful especially in the

medical domain.

AN (SCAP+BDe) DN (Tree) DN (Tree root)

Ferrara 0,0,0 0,15,0 0,3,3
Wisconsin 8,0,0 0,78,0 1,9,9

Chest 0,0,0 2,32,2 0,1,1
Lenses 3,0,0 0,8,1 0,1,1
Nursery 7,0,0 0,63,0 0,0,0

Balance scale 3,0,0 0,15,0 1,4,4
Car evaluation 5,0,0 0,35,0 1,6,6

MONK’S 5,0,0 0,8,3 0,2,5
Endgame 8,0,0 0,80,0 1,7,7

Table 3.4: Comparison between the network structures of small datasets given by an
exhaustive search in conjunction with the BDe score, the AN structure learned from a
combination of SCAP and the BDe score, the DN structures built using a classification
tree, and a tree where only the root is taken as the parent of a child variable. The data were
taken from the Machine Learning Repository except the Ferrara and Chest data which
are private real and synthetic data respectively. The numbers in each entry of the table
correspond to the numbers of reversed, added and deleted arcs respectively. Therefore
a good network structure has a minimal number of reversed, added and deleted nodes,
in other words, has a maximal number of zero entries in the table. The best candidate
structure for each dataset is highlighted in bold face.
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(a) Chest network structure using a local exhaustive search.

VisitAsia Smoking

Cancer

TbOrCa

XRay

Bronchitis

DyspneaTuberculosis
0.16

0.24

0.59 0.52

0.32
0.62

(b) Chest AN structure using SCAP and the BDe score.

VisitAsia

Smoking

Cancer

TbOrCa

XRay

Bronchitis

DyspneaTuberculosis

(c) Chest DN structure using a classification tree.

Figure 3.2: Comparison between the AN structure resulting from a combination of SCAP
and the BDe score and a DN structure obtained from a classification tree and on a syn-
thetic data with discrete variables. The Chest data is generated by probabilistic logic
sampling. Based on a comparison with an exhaustive structure search (see Table 3.4), the
AN structure, which is the same as the benchmark network structure, is better than the
DN structure, which has one added and one deleted arcs.
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Figure 3.3 shows the AN and DN structures for the Ferrara breast cancer data. These

two networks are particularly interesting because they respectively show that the proges-

terone (PR) and estrogen (ER) receptors are the main variables in this dataset. This fact

is sensible since breast cancer is considered to be a hormone-dependent cancer and that

the balance between these two hormones is vital to the health of every woman.

Two arcs are missing when AP and the Bayesian score are used, while with the SCAP

and the Bayesian score, only one arc is missing. The correct network structure, when the

directions of the arcs are ignored, is recovered with the SCAP when self-loops are avoided.

Likewise, when the AP algorithm and the Bayesian score are applied to the Wisconsin

breast cancer data, three arcs are missing. When SCAP is used instead of AP the loop

is recovered but two arcs are still missing. Finally, by not allowing self-loops, the exact

essential graph structure is obtained as in Figure 3.4. Note that each of the three networks

contain a loop.

The method has also been tested on bigger artificial (ALARM and Madelon) and real

(Insurance company) data. The Madelon and Insurance data are taken from the Machine

Learning Repository while the ALARM data is generated using probabilistic logic sampling

(Beinlich et al., 1989). The AN structure of the ALARM data is shown in Figure 3.5 along

with the DN structure obtained from a classification tree where only the root of the tree

is displayed as the parent of a variable.

For information, the corresponding BN was constructed in 998 seconds on a Macintosh

II running LightSpeed Pascal version 2.0 with one missing and one extra arc using the K2

algorithm and an ordering of the variables (Cooper and Herskovits, 1991) compared to the

AN approach where the network structure was constructed in 20 seconds on a machine

with two 2.40 GHz Intel Xeon processors with 512 KB memory each.

Database #Attributes #Instances Search time (seconds)
Tree SCAP+BDe

ALARM 37 10000 135 20
Insurance Company 86 5822 230 52

Madelon 500 4400 32415 6421

Table 3.5: Computational time for AN structure construction on big data using a classi-
fication tree and a combination of SCAP and the Bayesian score. The experiments were
performed on a machine with two 2.40 GHz Intel Xeon processors with 512 KB memory
each.
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(a) Ferrara network structure using a local
exhaustive search.
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(b) Ferrara AN structure using SCAP and
the BDe score.

PR
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(c) Ferrara DN structure using a classifica-
tion tree.

Figure 3.3: Comparison between the AN structure learned using a combination of SCAP
and the BDe score and the DN structure obtained from a classification tree and on a small
real data with discrete variables. The network structure is learned from a breast cancer
data provided by the University of Ferrara. Based on a comparison with an exhaustive
structure search (see Table 3.4), the AN structure, which is the same as the benchmark
structure, is better than the DN structure, which has three added and three deleted arcs.
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(a) Wisconsin structure using a local exhaustive search

(b) Wisconsin AN structure using SCAP and the BDe score

(c) Wisconsin DN structure using a classification tree

Figure 3.4: Comparison between the AN structure from a combination of SCAP and the
BDe score and the DN structure obtained from a classification tree on a small real data
with continuous variables. The network structures are learned from a breast cancer data
from the University of Wisconsin. Based on a comparison with an exhaustive structure
search (see Table 3.4), the AN structure, which has eight reversed arcs, is better than the
DN structure, which has one reversed, nine added and nine deleted arcs.
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(a) ALARM AN structure using SCAP and the BDe score

(b) ALARM DN structure using a classification tree

(c) ALARM network structure shared by both AN and DN structures above

Figure 3.5: AN network structure of the ALARM data from a combination of SCAP and
the BDe score and DN network structure from a classification tree. The network structure
was constructed in 20 seconds with SCAP and the BDe score, and in 135 seconds with
a classification tree on a machine with two 2.40 GHz Intel Xeon processors with 512
KB memory each. The corresponding BN (structure not shown) was constructed in 998
seconds on a Macintosh II running LightSpeed Pascal version 2.0 with one missing and one
extra arc using the K2 algorithm and an ordering of the variables (Cooper and Herskovits,
1991).
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3.5 Joint probability approximation

In this section we would like to test the ability of the AN to mimic an underlying joint

distribution. To this end, a synthetic data problem is generated from a known joint

distribution that is represented by a network structure having three binary variables and

one loop. The generated data is then used to learn an AN, a DN and a BN. Besides the

ability to give a good approximation of a joint distribution, it is also important to check

whether the local conditional distributions are consistent with the set of data sampled

from a network structure when the samples are large enough.

3.5.1 Synthetic model

We would like to generate data from a joint distribution that is specified by the network

structure in Figure 3.6. By using the product rule of probability, we can write that

p(ABC) = p(A|BC)p(BC), (3.24)

= p(A|BC)p(B|C)p(C). (3.25)

From the independencies in the network structure of Figure 3.6, we obtain p(A|BC) =

p(A|B) and using Bayes’ rule we have p(B|C) = (p(C|B)p(B))/p(C) which implies that

p(ABC) = p(A|B)p(C|B)p(B). (3.26)

A

C

B

Figure 3.6: True benchmark network structure with three random variables and a loop
used in the synthetic data generation.

3.5.2 Experimental methodology

For convenience, we are going to adopt the following notation: the probability of a single

random variable will be represented by a lower case letter with a subindex indicating the
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value of the random variable. A conditional probability (given one random variable only)

will be represented by two lower case letter with subindices indicating the values of the

random variables respectively. For example, p(A = 0) = a0 and p(A = 0|B = 0) = ab00.

We have the following set of constraints:

a0 + a1 = 1, (3.27)

b0 + b1 = 1, (3.28)

c0 + c1 = 1, (3.29)

ab00 + ab10 = 1 and ab01 + ab11 = 1, (3.30)

ba00 + ba10 = 1 and ba01 + ba11 = 1, (3.31)

cb00 + cb10 = 1 and cb01 + cb11 = 1. (3.32)

Given the expression of the joint probability of the three random variables in Equation

(3.26), the constraints (3.28), (3.29) and (3.30) will be needed in order to compute the

joint distribution. We then have the following joint probability table:

A B C p(ABC)

0 0 0 ab00 × cb00 × b0

0 0 1 ab00 × cb10 × b0

0 1 0 ab01 × cb01 × b1

0 1 1 ab01 × cb11 × b1

1 0 0 ab10 × cb00 × b0

1 0 1 ab10 × cb10 × b0

1 1 0 ab11 × cb01 × b1

1 1 1 ab11 × cb11 × b1

Table 3.6: Joint probability table of the three random variables. The following probability
values are used to generate 1000 samples from the joint probability given in this table:
b0 = 0.7, b1 = 0.3, ab00 = 0.6, ab10 = 0.4, ab01 = 0.5, ab11 = 0.5, cb00 = 0.2, cb10 = 0.8,
cb01 = 0.4, cb11 = 0.6.

The following probability values are used to generate 1000 samples from the joint

probability given in Table 3.6: b0 = 0.7, b1 = 0.3, ab00 = 0.6, ab10 = 0.4, ab01 = 0.5,

ab11 = 0.5, cb00 = 0.2, cb10 = 0.8, cb01 = 0.4, cb11 = 0.6.

3.5.3 Experimental results

The different network structures are given in Figure 3.7 where the AN and the DN are able

to learn the true network structure whereas the BN has one missing and one extra arcs.

The BN graph is constructed using the greedy hill-climbing approach that was discussed
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in Section 2.3.2 of Chapter 2. The hill-climbing algorithm was implemented using the

BNT2 (Bayes Net Toolbox) and SLP3 (Structure Learning Package) Matlab toolboxes.

A

C

B

(a) Benchmark net-
work

A

C

B

(b) AN

A

C

B

(c) DN

A

C

BA

C

B

(d) BN

Figure 3.7: Approximation of a joint probability distribution by an AN, a DN and a BN.
The benchmark network structure is generated from a known joint probability distribution
specified in Table 3.6. The AN and the DN are able to learn the true network structure
whereas the BN has one missing and one extra arcs. The BN graph is constructed using
a hill-climbing approach that was discussed in Section 2.3.2 of Chapter 2. The AN was
constructed in 0.23 seconds, the DN in 0.66 seconds and the BN in 1.10 seconds on a
machine with two 2.40 GHz Intel Xeon processors with 512 KB memory each.

The conditional probabilities given in Table 3.7 confirm the fact that in the limit of a

large dataset, the AN, the DN and the BN are consistent with the true joint probability.

Benchmark model AN DN BN

p(A = 0|B = 0) 0.60 0.73 0.60 0.73
p(A = 1|B = 0) 0.40 0.27 0.40 0.27
p(A = 0|B = 1) 0.50 0.50 0.50 0.50
p(A = 1|B = 1) 0.50 0.50 0.50 0.50
p(B = 0|A = 0) 0.74 0.74 0.58 -
p(B = 1|A = 0) 0.26 0.26 0.42 -
p(B = 0|A = 1) 0.65 0.50 0.52 -
p(B = 1|A = 1) 0.35 0.50 0.48 -
p(C = 0|B = 0) 0.20 0.25 0.20 0.25
p(C = 1|B = 0) 0.80 0.75 0.80 0.75
p(C = 0|B = 1) 0.40 0.40 0.40 0.40
p(C = 1|B = 1) 0.60 0.60 0.60 0.60

Table 3.7: Consistency of the conditional distributions of an AN, a DN and a BN. The
true conditional probabilities are computed directly from the joint probability specified in
Table 3.6. The conditional probabilities of the AN, the DN and the BN are obtained from
the learned network structures in Figure 3.7. The values of p(B|A) and p(C|B) are not
available for the BN due to its graph. The results confirm the fact that in the limit of a
large dataset, the conditional probabilities of an AN, a DN and a BN are consistent with
the true joint probability.

2http://code.google.com/p/bnt/
3http://ofrancois.tuxfamily.org/slp.html
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3.6 Summary

A new class of graphical model called an Affinity Network (AN) and its structure learning

algorithm using the soft-constraint affinity propagation (SCAP) algorithm combined with

the BDe scoring function have been described. The SCAP algorithm is derived from AP

which is an optimisation algorithm that is used to drive the AN structure search. SCAP

is able to reconstruct the possible loops in the network structure contrary to AP because

of its soft constraints. The parameter learning algorithm for an AN is similar to BN

parameter learning.

Contrary to a BN, an AN and a DN do not necessarily represent a factorisation of

the joint distribution of the data. In a DN, inconsistencies are likely to occur when there

is no joint distribution from which the conditional probabilities may be obtained via the

rules of probability. However when the sample size is large, inconsistencies will be rare

given that the conditional distribution is learned from the same dataset, which is assumed

to be generated from a single underlying distribution (Heckerman et al., 2000). Hence,

when the data has many samples, an AN structure, similarly to a DN, can also be seen

as a representation of the joint distribution of the data since the conditionals are directly

learned from the data. A DN displays the dependencies between variables whereas an AN

shows the closeness between pairs of variables with respect to the chosen scoring function.

The proposed approach has also been compared with the Dependency Network (DN)

where a classification tree is used to construct the DN structure. The combination of

SCAP and the BDe score to construct an AN always recovers the essential graph, that

is the undirected graph, of the benchmark networks obtained from an exhaustive search

whereas the classification tree adds more parents than required. However, when only the

root of the tree is taken as the parent of the corresponding child variable, the classification

tree performs better than the normal DN.

SCAP is a good alternative to heuristic or stochastic search algorithms since the SCAP

algorithm is based on a message passing scheme. Furthermore, the algorithm has been

proved to be efficient, fast and especially suited for huge data such as the alarm network

where the proposed method is faster than a classification tree. Moreover, this alternative

method to learn an AN structure provides extra information by quantifying the strength

of each arc in the network.

The limitations of the AN reside in the choice of the SCAP parameters such as the

preference values in the similarity matrix and the parameter p̃ in the message-update

equations. Different values of these parameters will produce different network structures
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and so far an automatic procedure for setting their values is not available. Moreover, an

AN structure only has one parent node for each variable node. The number of parents

can be increased by taking the first m maximum values of the affinity function instead of

the maximum value. However, the choice of m also remains an open problem that needs

to be solved.

In this chapter the AN algorithm has been applied to sparse and static data. It will

be seen in the following chapter that it can also be useful in the analysis of dense and

dynamic time series data.

59



4

A coupled dynamical system

example

The previous chapter introduced the Affinity Network (AN) graphical model to discover

dependency relationships between sparse data taken from the medical domain. The AN has

more preferable characteristics to the Bayesian Network (BN) and Dependency Network

(DN) graphical models. In particular, ANs, like DNs, are easier to interpret then BNs due

to their more flexible dependency relationships compared to the strong causal meaning of

the arcs in BNs. Furthermore, the AN graph construction algorithm is superior to that

of BNs and DNs since it is based on a data-driven message update of simple formulae,

whereas BNs and DNs structure learning relies on heuristic search procedures. Besides

the ability to display important dependency relationships, we also would like to exploit

the capability of the AN for clustering.

In addition to the sparse and static medical data of the previous chapter, we now look

at high-dimensional dynamical data from large many-body systems. Although the AN

is not intrinsically designed for dynamical data due to the absence of a temporal factor,

the quasi-stationary state of the system can be used as input to the AN algorithm. We

shall consider exemplar systems that represent sensor arrays for real biosensor networks.

The biomorphic design implies interaction and nonlinear oscillators as opposed to the
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traditional design rules where the focus is on arrays of isolated and linear-response sensors.

The interaction of nonlinear elements permits the emergence of a much richer range of

complex behaviours of the array beyond that expected in a traditional design strategy.

We are interested in the characterisation and detection of emergent collective behaviours

in such arrays of interacting nonlinear systems. This aim can be achieved through the

clustering of a priori unknown self-organising macrostates that are present in the array.

This chapter therefore discusses the behaviour of coupled nonlinear dynamical sys-

tems in a square lattice representing a microelectromechanical system (MEMS) device.

Typically, the number of elements in such a device is very large and hence the analysis

of their collective behaviour is complex. It will be seen later that two different types of

elements will be coupled in this work which will increase the challenge of trying to predict

their behaviour. To the best of our knowledge, only a few analytical results on the study

of such systems are available and those studies only consider identical coupled elements.

The logical state of the lattice can be viewed as a graphical model where nodes repre-

sent collective states and links display weak nonlinear interactions resulting in different

macrostates. Therefore, the AN graphical model will be used as an inference model in

Chapter 6 in order to characterise the emergent collective behaviour of the elements in the

lattice. Chapter 5 will extend the discussion provided in the current chapter to a square

lattice that is subject to noise. Before we apply the AN to the dense regular time series

data produced by a synchronised system, the current chapter provides an analysis and

numerical investigation into this dynamical system. We have chosen this system as it has

relevance for future design of sensor arrays. We provide a detailed analysis since there has

been very little work on this type of system in the literature.

In studies of the collective behaviour of oscillatory systems, when some elements share

similar temporal characteristics such as the phase or amplitude, they are generally said to

be synchronised. The synchronisation effects may be observed globally in all elements or

locally in clusters of neighbouring elements. This chapter focuses on a population of ele-

ments composed of Duffing resonators coupled to van der Pol oscillators in a square lattice.

The fundamental study of coupled nonlinear oscillators is important in understanding the

emergent behaviour of complex dynamical systems and developing novel M/NEMS devices

(Zalalutdinov et al., 2006a; Aubin et al., 2004; Mendelowitz et al., 2009). The analysis of

a simpler case as the building block can help to gain insight into larger complicated sys-

tems (Bernardo et al., 1998; Rand and Wong, 2008b). Among the building blocks studied

in the literature, the essential elements are either self-sustained oscillators (van der Pol

oscillators) or dissipative oscillators (Duffing-type resonators) and the most intensively
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studied cases are the coupled van der Pol and the coupled Duffing oscillators (Rand and

Holmes, 1980; Barron and Sen, 2009; Kapitaniak, 1993). To the best of our knowledge,

less has been done in a dynamic system consisting of a Duffing-type resonator coupled

to a self-excited oscillator. Therefore, the current chapter starts with a discussion of one

driven Duffing resonator coupled to a van der Pol oscillator, followed by the case where

they are coupled together in a square lattice.

4.1 Single unit of a weakly driven Duffing resonator coupled to a

van der Pol oscillator

In this section, the behaviour of a periodically driven Duffing resonator coupled to a van

der Pol oscillator is discussed. A good understanding of the behaviour of those two coupled

elements is necessary as they constitute the building block of a more complicated system

such as a square lattice of Duffing resonators coupled to van der Pol oscillators which will

be investigated in the next section. An analytical treatment of the two coupled elements is

possible due to the small size of the system. This can be done through multiple time scales

analysis (Nayfeh and Mook, 1995) which is derived from perturbation analysis. The linear

stability of the system can also be analysed through the eigenvalues of the Jacobian matrix

of the system. The study of the presence of chaos in the system can be conducted through

bifurcation analysis or through the computation of its maximum Lyapunov exponent.

These different aspects of the analysis will be discussed in the following.

4.1.1 Multiple time scales analysis of the driven Duffing resonator coupled to

a van der Pol oscillator

The motion of the coupled dynamical system in dimensionless form is described by the

following set of equations:

ẍ + γxẋ + x + δx3 = κ(y − x) + fd cos
(ωd

ωx
τ
)
, (4.1a)

ÿ + γy(y2 − 1)ẏ +
(ωy

ωx

)2
y = κ(x− y), (4.1b)

where, x1, γx, ωx and x2, γy, ωy are the displacement, damping coefficient and fundamental

frequency of the Duffing resonator and the van der Pol oscillator respectively. fd and ωd

are the amplitude and frequency of the external driving force. δ is the nonlinearity of

the Duffing resonator and κ is the coupling stiffness between the two coupled elements.

Usually, MEMS resonators and oscillators are working in a high Q scenario (Appendix B)
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while they are driven into their resonances with a small force. However, if the Duffing

resonator and van der Pol oscillator are working at different fundamental frequencies (the

nonresonant case ωx 
= ωy), it can be proved that the dynamic systems are uncoupled and

the time evolution of the amplitudes is the same as the classical driven Duffing resonator

and van der Pol oscillator (Woafo et al., 1996). In this section, we consider the case where

both the internal and external resonances coincide (ωx = ωy). As the coupling stiffness

varies across a large range, the system of weak coupling (κ � 1) and strong coupling

(κ� 1) are dealt with separately.

The resonant case of weak coupling

When the van der Pol oscillator is weakly connected to the Duffing resonator, Equation

(4.1) is rewritten as follows:

ẍ + x = ε
[
β(y − x) + F cos(Ωτ)− μxẋ− αx3

]
, (4.2a)

ÿ + y = ε
[
β(x− y)− μy

(
y2 − 1

)
ẏ
]
, (4.2b)

where the coefficients μx, μy, α, β and F are such that γx = εμx, γy = εμy, δ = εα, κ = εβ

and fd = εF . ε � 1 is a positive parameter and Ω = ωd
ωx

is the ratio of the frequency of

the excitation to the linear natural frequency of the system.

The response of the system for small dissipation and driving can be calculated from

Equation (4.2) using the standard multiple time scales method (Nayfeh and Mook, 1995).

In Nayfeh and Mook (1995), the basic method has been described to characterise the

behaviour of a single driven Duffing resonator and a single van der Pol oscillator. In this

work, the derivations are related to a driven Duffing resonator coupled to a van der Pol

oscillator, which is novel and has appeared in the following two journal papers: Wei et al.

(2010); Randrianandrasana et al. (2010). Since the calculation involved in the analysis is

intricate, the following results are an abridged version of the main derivations that are

given in Appendix C. In general, we consider x(τ) and y(τ) in the form

x(τ, ε) = x0(τ0, τ1) + εx1(τ0, τ1), (4.3a)

y(τ, ε) = y0(τ0, τ1) + εy1(τ0, τ1), (4.3b)

where τ0 = τ is a fast scale and τ1 = ετ is a slow scale characterising the modulation

in the amplitudes and phases caused by nonlinearity, coupling and resonances. The time
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derivatives, in which the single overdot is d/dτ and the double overdot is d2/dτ2, become

d

dτ
= D0 + εD1 + . . . ,

d2

dτ2
= D2

0 + 2εD0D1 + . . . ,

where Dn = ∂/∂τn.

After eliminating the secular terms, that is, the slow varying terms, in the multiple time

scales analysis of Equation (4.2), we obtain the following set of equations:

2
dAx

dτ1
+ μxAx − 3iα|Ax|2Ax + βi(Ay −Ax)− i

2
Feiστ1 = 0, (4.5a)

dAy

dτ1
+ i

β

2
(Ax −Ay) +

μy

2
(|Ay|2 − 1)Ay = 0, (4.5b)

where the quantities Ax(τ1) and Ay(τ1) are arbitrary, complex functions which represent

the amplitudes of the Duffing resonator and the van der Pol oscillator respectively. A

detuning parameter σ has been introduced since the case Ω ≈ 1 is considered. σ is defined

by

Ω = 1 + εσ. (4.6)

Then

Ωτ0 = (1 + εσ)τ0 = τ0 + εστ0 = τ0 + στ1. (4.7)

Expressing Ax(τ1, ε) and Ay(τ1, ε) in the polar forms Ax(τ1, ε) = ax(τ1, ε)eiθx(τ1,ε) and

Ay(τ1, ε) = ay(τ1, ε)eiθy(τ1,ε), where ax(τ1, ε) and θx(τ1, ε), respectively, ay(τ1, ε) and θy(τ1, ε)

are the amplitudes and the phases of the fundamental solutions. Separating real and imag-

inary parts in (4.5) yields

2
dax

dτ1
= −μxax + βay sin Γy −

F

2
sin Γx, (4.8a)

2
day

dτ1
= −μy

(
a2

y − 1
)
ay − βax sin Γy, (4.8b)

2ax
dΓx

dτ1
= −(β − 2σ)ax + 3αa3

x − βay cos Γy −
F

2
cos Γx, (4.8c)

2ay
dΓy

dτ1
= (β − 2σ)ay − βax cos Γy − 2ay

dΓx

dτ1
, (4.8d)

where the following transformations have been introduced:

Γx = θx − στ1, (4.9)

64



Chapter 4 A COUPLED DYNAMICAL SYSTEM EXAMPLE

and

Γy = θy − θx. (4.10)

The amplitude response of the steady-state motions of Equation (4.5) are given by the

following set of algebraic equations,

(
ax(β − 2σ) + 3a3

xα−
a2

y(β − 2σ)
ax

)2

+

(
axμx −

a2
yμy

ax
(1− a2

y)

)2

=
1
4
F 2.(4.11a)

(β − 2σ)2a2
y + μ2

ya
2
y

(
1− a2

y

)2 = a2
xβ2.(4.11b)

The corresponding frequency-response curves, for the variation of the amplitude A with

the frequency Ω, of the Duffing resonator and van der Pol oscillator are shown in Figure

4.1, where the coupling strength κ = 0.002.

If the coupling stiffness κ is not the same order of magnitude as the other parameters,

the above analysis does not hold, so a modified analysis considering the strong coupling

case is given in the next section.
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Figure 4.1: Frequency-response curves of the driven Duffing resonator (red curve) weakly
coupled to a van der Pol oscillator (blue curve). The unstable branches are drawn in dashed
lines. The system parameters are γx = γy = 0.001, δ = 0.005, κ = 0.002, fd = 0.003.

The resonant case of strong coupling

The case of strong coupling can be dealt with by using the transformation ε = 1
2κ+1 . When

the coupling strength κ is bigger than 4.5 then ε is less than 0.1 and it can be assumed that

the other system parameters are all small as defined in the previous section. By adding
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and subtracting (4.2a) and (4.2b), we obtain:

ẍ + ÿ + εμxẋ + εμy

(
y2 − 1

)
ẏ + x + y + εαx3 = εF cos(Ωτ), (4.12a)

ẍ− ÿ + εμxẋ− εμy

(
y2 − 1

)
ẏ + x− y + εαx3 = 2εβ(y − x) + εF cos(Ωτ),(4.12b)

or,

ẍ + ÿ + εμxẋ + εμy

(
y2 − 1

)
ẏ + x + y + εαx3 = εF cos(Ωτ), (4.13a)

ẍ− ÿ + εμxẋ− εμy

(
y2 − 1

)
ẏ + (x− y)(1 + 2εβ) + εαx3 = εF cos(Ωτ). (4.13b)

Since (1 + 2εβ) = (1 + 2κ) = 1
ε , multiplying (4.13b) by ε, Equation (4.1) can then be

written as

ẍ + ÿ + εμxẋ + εμy(y2 − 1)ẏ + x + y + εαx3 = εF cos(Ωτ), (4.14a)

ε(ẍ− ÿ) + ε2μxẋ− ε2μy(y2 − 1)ẏ + x− y + ε2αx3 = ε2F cos(Ωτ). (4.14b)

The approximate solutions of Equation (4.14) can be obtained by following the same steps

as in the previous section and are given by

D2
0(x0 + y0) + x0 + y0 = 0, (4.15a)

x0 − y0 = 0, (4.15b)

for the zero-order approximation. Equation (4.15) means that the Duffing resonator and

the van der Pol oscillator are completely synchronised. The solutions of Equation (4.15)

can be written as

x0(τ0, ε) = y0(τ0, ε) = A(τ1)eiτ0 + A(τ1)e−iτ0 . (4.16)

The first-order approximation gives

D2
0(x1 + y1) + x1 + y1 = −2D1D0(x0 + y0)− μxD0x0 − μy(y2

0 − 1)D0y0

−αx3
0 + F cos(Ωτ), (4.17a)

x1 − y1 = 0. (4.17b)

This also means that the Duffing resonator and the van der Pol oscillator are still com-

pletely synchronised in the first-order approximation when they are strongly coupled. By

substituting the expressions of x0 and y0 from Equation (4.16) into the right hand side of
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Equation (4.17a) and by imposing secular conditions, the following equation is obtained:

4
dA

dτ1
+ (μx − μy)A + μyA|A|2 − 3iαA|A|2 + i

1
2
Feiστ1 = 0. (4.18)

Expressing A in polar form and substituting the resulting expression into Equation (4.18),

the following set of first-order differential equations can be obtained for the amplitude and

phase of the system:

4
dA

dτ1
= (μy − μx)a− μya

3 − 1
2
F sin Γx, (4.19a)

4a
dΓx

dτ1
= −4aσ + 3αa3 − 1

2
F cos Γx, (4.19b)

where a = ax = ay. For the steady state solutions, the following algebraic equation

describing the frequency and the amplitude response of the system is obtained:

a2
(
− 4σ + 3αa2

)2 + a2
(
μx − μy + μya

2
)2 =

1
4
F 2. (4.20)

The corresponding frequency-response curve of the system is shown in Figure 4.2, where

the coupling strength κ = 8. The shark’s fin shape of the curve is typical of a single driven

Duffing resonator.

After eliminating the secular terms in the two time scales analysis of Equations (4.2a)
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Figure 4.2: Frequency-response curve of the driven Duffing resonator strongly coupled
to a van der Pol oscillator. The unstable branch is drawn in dashed line. The system
parameters are γx = 0.1, γy = 0.05, δ = 0.3, κ = 8, fd = 0.2.

and (4.2b), the second-order differential equation can be solved and x1 and y1 are obtained

as follows:

x1 = y1 =
1
16

(α− μxi)A3e3iτ0 + cc. (4.21)
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Therefore, the general solution of the strongly coupled Duffing resonator and van der Pol

oscillator in the first order approximation is given by

x = y = �(x0 + εx1) = �
(

aei(Ωτ0+φ) +
1
16

ε(α− μyi)a3e3i(Ωτ0+φ) + cc

)
, (4.22)

which shows that in the case of a strong coupling, the van der Pol oscillator is completely

synchronised to the Duffing resonator and their oscillations are also locked to the external

driving force by a phase lag φ. This is confirmed numerically, for a coupling strength

κ = 8, by the plots in Figure 4.3: Figures 4.3(a) and 4.3(b) show the early complicated

behaviour, also called initial transient, of the Duffing resonator and van der Pol oscillator

during the first hundred periods of oscillations. In these phase portraits, the trajectories

of the Duffing resonator and the van der Pol oscillator are plotted in phase space, that is

the abscissa corresponds to the displacement and the ordinate represents the velocity of

each element. After an initial transient of 2000 periods, the Duffing resonator and the van

der Pol oscillator become synchronised as shown in Figure 4.3(c).

4.1.2 Stability analysis

The frequency-response curves obtained in the previous section showed the steady-state

approximate solutions of the coupled system given by the multiple time scales analysis. In

this section the stability of those equilibrium points, also called fixed points, is investigated.

The stability of a fixed point characterises whether the equilibrium point will stay close

to its initial condition or will be repelled away from it when it is subject to a small

perturbation. The linear stability of fixed points of dynamical systems is determined by

the sign of the real part of the eigenvalues of the Jacobian matrix, also called eigenvalues

of equilibrium. The Jacobian matrix J of the coupled system of Duffing resonator and van

der Pol oscillator is the matrix of partial derivatives of the right-hand side of Equations

(4.8) with respect to the state variables ax, ay, γx and γy:

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂f1

∂ax

∂f1

∂ay

∂f1

∂Γx

∂f1

∂Γy

∂f2

∂ax

∂f2

∂ay

∂f2

∂Γx

∂f2

∂Γy

∂f3

∂ax

∂f3

∂ay

∂f3

∂Γx

∂f3

∂Γy

∂f4

∂ax

∂f4

∂ay

∂f4

∂Γx

∂f4

∂Γy

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where the functions f1 to f4 correspond to the right-hand side of Equations (4.8). Equa-

tions (4.8c) and (4.8d) are divided by ax and ay respectively in order to get the expressions
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(a) Duffing (Duff).
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(b) van der Pol (VdP).
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Figure 4.3: Phase portraits and time series of a driven Duffing resonator (red) strongly
coupled to a van der Pol oscillator (blue). The system parameters are γx = 0.1, γy = 0.05,
δ = 0.3, κ = 8, fd = 0.2. Both elements show an early complicated behaviour, also called
initial transient, during the first hundred periods of oscillations (4.3(a) and 4.3(b)). After
an initial transient of 2000 periods, the Duffing resonator and the van der Pol oscillator
become synchronised as shown by the time series in 4.3(c) where the red and blue curves
are superimposed.
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for dΓx
dτ1

and dΓy

dτ1
. The expression of the resulting Jacobian matrix is then given by

J =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μx β sin Γy −1
2F cos Γx βay cos Γy

−β sin Γy μy

(
1− 3a2

y

)
0 −axβ cos Γy

J31 − β
ax

cos Γy
F

2ax
sin Γx

ayβ
ax

sin Γy

J41
β
ax

(
1 + a2

a2
y

)
cos Γy − F

2ax
sin Γx β

a2
x−a2

y

axay
sin γy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where J31 = 6αax + ayβ
a2

x
cos Γy + F

2a2
x

cos Γx and J41 = − β
ay

(
1 + a2

y

a2
x

)
cos Γy − 6αax −

F
2a2

x
cos Γx. The Equations (4.8a) to (4.8d) are equal to zero for fixed points of the coupled

system. This enables the computation of the trigonometric quantities in the Jacobian

matrix which are given by

sin Γx =
2
F

(
− axμx +

a2
yμy(1− a2

y)
ax

)
,

cos Γx =
2
F

(
ax(β − 2σ) + 3αa3

x −
a2

y(β − 2σ)
ax

)
,

sin Γy =
μyay(1− a2

y)
axβ

,

cos Γy =
ay(β − 2σ)

axβ
.

The derivatives in J are evaluated at a pair of equilibrium points (ae1 , ae2) which corre-

sponds to the pair of points in the frequency-response curves of Figure 4.1 for the Duffing

resonator and van der Pol oscillator respectively. The eigenvalues of J determine linear

stability properties of an equilibrium. An equilibrium is asymptotically stable if all eigen-

values have negative real parts whereas it is unstable if at least one eigenvalue has positive

real part. Figure 4.1 shows the stable (solid lines) and unstable (dashed lines) branches

of the coupled system. As can be expected, the lower branches, in red and blue colours,

of the hysteresis for the Duffing resonator and the van der Pol oscillator respectively are

unstable for the system parameters that have been chosen. Similarly, in the strong cou-

pling case, Figure 4.2 shows that the middle branch of the frequency-response curve of the

coupled system is unstable. The stability of the system is further investigated numerically

in the next section where an analysis of the time series is carried out using some tools to

study chaos in nonlinear dynamical systems.
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4.1.3 Asymptotic dynamics of the coupled system

The Poincaré section is a useful way of analysing the dynamics of a chaotic motion. As

the name suggests, it consists in taking a section of the trajectory at a fixed time t rather

than considering the whole trajectory for all times, which gives a continuous curve. For

a driven oscillator, for example, the time t corresponds to the period of the driving force,

namely t = 2π/ω, t = 4π/ω, t = 6π/ω, etc, where ω is the frequency of the driving force.

Consequently, for a periodic motion the Poincaré section is a single point, when the period

has doubled it consists of two points, and so on. A cloud of points would then be expected

for a chaotic motion in the sense that no periodic orbit is present.

It is also interesting to see the effect of changing one system parameter on its trajectory.

To this end, the parameter of interest can be varied in small steps and the Poincaré sections

can be merged together. The resulting plot is called a bifurcation diagram. It should be

noted that after each step, the last location and velocity of the trajectory are used as new

initial conditions for the next step.

Besides the Poincaré section, which provides a reduced visual representation of a tra-

jectory, chaotic motions of dynamical systems can also be quantified by a measure of the

divergence of nearby trajectories called Lyapunov exponents. The idea is that a set of ini-

tial conditions, which characterise the nearby trajectories, will be distorted by the effect of

the dynamics for sufficiently short time scales. The largest Lyapunov exponent measures

the asymptotic rate of expansion of the largest axis upon which the set of initial condi-

tions in the phase space is distorted. The largest axis corresponds to the most unstable

direction of the flow. Formally, the largest Lyapunov exponent for an initial point x0 that

is under a small perturbation u0 is given by

λ(x0, u0) = lim
t→∞

1
t

ln
||ut||
||u0||

= lim
t→∞

1
t

ln ||Dx0f
t(x0).u0||, (4.23)

where ut ≡ f t(x0 + uo)− f t(x0).u0 denotes the perturbation of the images of the nearby

points x0 and x0 + u0 under the flow f t after a time t. and ||u|| represents the length

of a vector u. The last term in (4.23) is obtained by linearising f t. If λ(x, u) > 0, then

an exponential divergence of nearby orbits is observed which means that chaos is present,

otherwise the system is stable. The limit in (4.23) exists and is finite for almost all points

x0 and for almost all tangent vectors u0 (Oseledets, 1968).

Figure 4.4 shows the bifurcation diagrams and the maximum Lyapunov exponents of the

strongly coupled system (κ = 5) with varying frequency Ω of the external driving field

where an abrupt transition to chaos can be observed. 4.4(a) and 4.4(b)
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Figure 4.4: Bifurcation diagrams and maximum Lyapunov exponents of the driven Duffing
resonator strongly coupled to a van der Pol oscillator with varying frequency Ω of the
driving force. An abrupt transition to chaos can be observed. The system parameters are
γx = γy = 0.01, δ = 1, κ = 5, fd = 4.5.
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The frequency-response curves obtained previously showed the steady-state approx-

imate solutions of the coupled systems given by the multiple time scales analysis. For

the weak coupling case, the system can be driven into multiple states as shown in Figure

4.1. One can then expect that in a lattice of such units, more complicated behaviour can

appear and it is therefore interesting to investigate their collective behaviour. The system

also displays interesting phenomena such as an anti-resonance at Ω ≈ 1 and a shoulder in

the curve which is due to a stagnant response of the van der Pol oscillator. For the strong

coupling case, the system behaves like a driven Duffing resonator as shown in Figure 4.2.

Now that some insights about the behaviour of the two coupled elements have been gained,

a new topology in which the Duffing resonators and van der Pol oscillators are coupled

alternatively in a square lattice will be considered in the next section.

4.2 Collective behaviour in a square lattice of driven Duffing res-

onators coupled to van der Pol oscillators

In this section, the collective behaviour of alternating Duffing resonators and van der

Pol oscillators elastically coupled in a square lattice is numerically studied with typical

MEMS parameters. The architecture of the lattice of resonators and oscillators along

with some characterisations of synchronisation will be described first. Then the effect of

some parameters on the behaviour of the system will be discussed followed by different

configurations and sizes of the lattice.

4.2.1 Experimental setup

The architecture of the network of oscillators consists of a square lattice of alternating

Duffing resonators and van der Pol oscillators in a checkerboard configuration as shown

in Figure 4.5. The dimensionless equations governing the coupled systems are:

ẍi,j + γẋi,j + xi,j + δx3
i,j = κ(xi,j+1 + xi,j−1 + xi−1,j + xi+1,j − 4xi,j), (4.24)

ẍi,j + γ(x2
i,j − 1)ẋi,j + xi,j = κ(xi,j+1 + xi,j−1 + xi−1,j + xi+1,j − 4xi,j), (4.25)

where γ is the damping of the Duffing resonator and the van der Pol oscillator, δ is the

cubic nonlinear spring constant of the Duffing resonator and κ is the coupling strength

between the resonators and oscillators. The element xi,j represents the displacement of

the resonator or oscillator located at the i-th row and j-th column in the square lattice.

Since the array of oscillators will act as a sensing device, it is usually subject to some
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external signal that can be represented as a driving force or energy for the array. The

equations for the driven Duffing resonator and van der Pol oscillator respectively are

therefore given below:

ẍ + γẋ + x + δx3 = Fd cos(Ωτ), (4.26)

and

ẍ + γ(x2 − 1)ẋ + x = Fd cos(Ωτ), (4.27)

where Fd is the normalised driving force.

D D

D D

D D

D D

V V

V V

V V

V V

Figure 4.5: Square lattice of alternating Duffing resonators and van der Pol oscillators.

In this section, the synchronous behaviour of the resonators and oscillators in the

square lattice will be characterised in terms of the global and local synchronisations of

their amplitude and instantaneous phase. The instantaneous phase φ(t) of a real-valued

signal s(t) is given by

φ(t) = arg(Z(t)), (4.28)

where Z(t) is a complex-valued function which is called the analytic representation of s(t)

and is obtained as follows:

Z(t) = s(t) + jH[s(t)]. (4.29)

H represents the Hilbert transform which is defined as

H[s(t)] = s(t) ∗ 1
πt

, (4.30)

where ∗ denotes the convolution operation.

In the first case, the resonators and oscillators will mainly be considered as one group

whereas the elements in the array can be gathered in different subgroups in the second

case. The global coherence of the array will be measured by a synchronisation index based
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on the normalised entropy (Tass et al., 1998):

ρ̃ =
Smax − S

Smax
, (4.31)

where S = −∑N
k=1 ρk ln ρk is the entropy of the distribution of the instantaneous phase

or the amplitude of the oscillators, which is given by their respective histograms from

which the probabilities ρk are computed, and Smax = lnNh, where Nh is the number of

bins of the histogram. 0 ≤ ρ̃ ≤ 1 and ρ̃ = 0 means that the array is not coherent or in

total disorder, whereas ρ̃ = 1 indicates that all the oscillators in the array are perfectly

synchronised. Besides full synchronisation it is also interesting to consider another aspect

of synchronisation namely the cluster synchronisation where the oscillators involved in the

same cluster have identical temporal dynamics and completely synchronise between each

other. Unlike the global synchronisation case, no cluster synchronisation index is available

yet. Therefore, only a visual inspection of the displacement and phases of the elements in

the lattice will be carried out. To this end, phase images and normalised polar plots of the

elements of the square lattice will be produced. The phase and normalised polar plots will

be complementary as the phase images will help to locate the resonators and oscillators

within the array while the normalised polar plots will display both the amplitudes and

phases of the elements. In the following, the colour scale in the phase images lies between

−π and π and the polar plots are normalised in amplitude which means that the maximum

amplitude corresponds to a distance of 1 in the unit circle.

4.2.2 Parameter effects

In this section we investigate the effect of different parameters which have an impact on

the behaviour of the lattice of oscillators and resonators. These include the normalised

coupling strength κ between the oscillators, the amplitude Fd of the driving force that is

injected from one side of the lattice and finally the quality factor Q of each element of the

lattice. It should be noted that the quality factor Q of the oscillators and resonators is

directly related to their damping γ through the expression γ = 1/Q. It is also important

to stress the fact that only the Duffing resonators are driven since they absorb energy

whereas the van der Pol oscillators are self-sustained and that the system is not sensitive

to initial conditions (plots not shown).

In the following, the parameters are given in their dimensionless values. In the context

of MEMS devices, the coupling strength κ ranges from 0.001 to 1000. The amplitude Fd

of the driving force is assumed to be in the range 0.3 to 30. The quality factor Q lies
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within the interval [10, 10000], where the lowest and biggest Q values correspond to the

devices being in air and in vacuum respectively.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Iteration

N
or

m
al

is
ed

 e
nt

ro
py

κ=0.001 κ=0.01 κ=0.1 κ=1 κ=10 κ=100 κ=1000

(a) Phase.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Iteration

N
or

m
al

is
ed

 e
nt

ro
py

κ=0.001 κ=0.01 κ=0.1 κ=1 κ=10 κ=100 κ=1000

(b) Amplitude.

Figure 4.6: Coupling strength effect on the global coherence of the square lattice. The
phase coherence does not seem to have a direct relation with the coupling strength, al-
though for a very high coupling (κ = 1000) the phases of the elements of the lattice tend
to converge faster. On the other hand, the amplitude coherence clearly depends on the
coupling strength value: the higher the coupling strength, the quicker the convergence into
a stable state. It should be noted that the normalised entropy is low when the coupling
strength is high because the Duffing resonators and the van der Pol oscillators evolve into
two different clusters as shown in Figure 4.7. The normalised entropy is maximum only
when all the elements have the same value or in other words when there is only one cluster.

The coupling strength between the elements of the array has a counter-intuitive effect

on the global coherence of the amplitudes of the resonators and oscillators. The lower the

coupling the more coherent is the system as shown in Figure 4.6. This is due to the fact

that the value of the normalised entropy is maximum only when all the elements have the

same value, or in other words, when there is only one cluster. However, when the coupling

strength is high a synchronisation across rows is observed as shown in Figure 4.7(b). The

value of the coupling strength has no clear relation with the global phase coherence of

the elements although the global phase coherence of the system tends to converge quicker

with higher coupling values.

More detailed information regarding the cluster synchronisation of the elements in the

lattice are given by the phase and normalised polar plots in Figure 4.7. It can clearly be
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Figure 4.7: Phase and normalised polar plots of a square lattice of 32 by 32 x-coupled
alternating Duffing resonators and van der Pol oscillators driven from the top edge with
an energy whose amplitude is Fd = 0.3. The figures are plotted at t = 3600 with different
coupling strength values. At low coupling (κ = 1) both the phases and amplitudes of the
resonators and oscillators seem to be random. For high coupling (κ = 100) a synchronisa-
tion across rows is observed as shown in Figure 4.7(b). This is an example of distributed
cluster synchronisation where there is a division into quasi-independent sublattices.
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Figure 4.8: Phase portrait of selected elements in an array of 32x32 x-coupled alternating
Duffing resonators and van der Pol oscillators. The notation vdp(x, y) and duff(x, y)
indicates the selected locations (x, y) of a van der Pol or Duffing device. An energy, whose
amplitude is Fd = 0.3, is injected from the top edge of the lattice. The coupling strength
between the oscillators is κ = 1. The figure shows that small coupling induces different
types of complicated behaviours.
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Figure 4.9: Phase portrait of selected elements in an array of 32x32 x-coupled alternating
Duffing resonators and van der Pol oscillators. An energy, whose amplitude is Fd = 0.3,
is injected from the top edge of the lattice. The coupling strength between the oscillators
is κ = 100. The figure shows that more homogeneous behaviours between each type of
element are observed with strong coupling.
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seen that with low coupling (κ = 1) the behaviour of the elements is more like random.

However, with high coupling (κ = 100) the phases of the resonators and oscillators located

on odd rows, and respectively on even rows, are mutually synchronised. These two distinct

clusters are shown in both the phase and amplitude spaces by the normalised polar plot

of Figure 4.7(d).

Regarding the dynamical properties of each single element, it can be noticed from the

phase portrait plots in Figure 4.8 and 4.9, where the displacement x is plotted against the

velocity v, that different types of complicated behaviours of the elements appear with small

coupling (κ = 1) whereas more homogeneous behaviours between each type of element are

observed with strong coupling (κ = 100).
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Figure 4.10: Effect of the amplitude of the driving force on the global coherence of the
square lattice. When the amplitude of the driving force is increased the phase coherence of
the elements of the lattice deteriorates slightly whereas an opposite behaviour is observed
in the case of the amplitude coherence.

10 20 30

5

10

15

20

25

30
−2

0

2

(a) Fd = 3.

10 20 30

5

10

15

20

25

30
−2

0

2

(b) Fd = 30.

Figure 4.11: Plots of the instantaneous phase of components in a square lattice of 32
by 32 x-coupled alternating Duffing resonators and van der Pol oscillators at a coupling
strength of κ = 10. The array is driven from the top edge of the lattice and the figures are
plotted at t = 3600 with different amplitudes of the driving force Fd. It can be noticed
here that when the lattice is driven ten times higher, then the phases of the elements tend
to desynchronise.
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Figure 4.12: Selected phase portrait plots in an array of 32x32 x-coupled alternating Duff-
ing resonators and van der Pol oscillators. An energy, whose amplitude is Fd, is injected
from the top edge of the lattice. The coupling strength between the oscillators is κ = 10.
The figure shows that increasing the amplitude of the driving force favours complicated
behaviours. The remaining elements in the lattice also have a similar behaviour although
the phase portraits are not shown.
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The amplitude of the driving force has an opposite effect on the global coherence of the

phase and amplitude of the system. More precisely, the higher the amplitude of the driving

force the less coherent is the phase of the system whereas the opposite effect is observed for

the amplitude of the elements of the lattice as shown by Figure 4.10. However it should be

noted that the difference in global phase coherence is not very significant as the amplitude

of the driving force is multiplied by hundred. By looking at the cluster synchronisation

aspect, it can be observed that increasing the amplitude of the driving force will result

in a randomisation of the phases of the resonators and oscillators as depicted by Figure

4.11. The latter result is also valid for the amplitudes of the elements although the plots

are not shown. It can also be observed from the phase portrait plots in Figure 4.12 that

increasing the amplitude of the driving force favours complicated behaviours.
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Figure 4.13: Relation between the quality factor Q of the elements of the square lattice
and its global coherence. It can be noticed that the lower the value of Q, the worse the
phase coherence. In contrast, the amplitude coherence of the lattice is improved as the
value of Q is decreased.

The global phase coherence of the lattice is not sensitive to the value of the quality

factor. However, for low quality factor value (Q = 10) the global amplitude coherence of

the system displays better synchronisation behaviour than higher values of Q as shown by

Figure 4.13. In contrast to the previous full synchronisation results, more distinguishable

amplitude and phase clusters appear in the lattice when the quality factor value is high

(Q = 1000) as can be seen in Figure 4.14. It should be noted however that for small Q

values, the Duffing resonators and van der Pol oscillators have two distinct behaviours.

In terms of the effect on the dynamics of the each element, increasing the quality factor

Q tends to inhibit their complicated behaviour as shown by the phase portrait plots in

Figure 4.15.
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Figure 4.14: Phase and normalised polar plots of a square lattice of 32 by 32 x-coupled
alternating Duffing resonators and van der Pol oscillators driven from the top edge with
an energy whose amplitude is Fd = 0.3. The coupling between the elements is κ = 10 and
the figures are plotted at t = 3600 with different values of the quality factor Q. The figures
show that when Q is small (Q = 10) the Duffing resonators (red circles) and the van der
Pol oscillators (blue circles) have two distinct behaviours. However at a high quality factor
(Q = 1000) they tend to synchronise between them.
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Figure 4.15: Phase portrait of selected elements in an array of 32x32 x-coupled alternating
Duffing resonators and van der Pol oscillators. An energy, whose amplitude is Fd = 0.3, is
injected from the top edge of the lattice. The coupling strength between the oscillators is
κ = 10. Figures 4.15(b) and 4.15(d) show that increasing the quality factor Q (Q = 1000)
tends to inhibit the complicated behaviour of the elements of the lattice that is illustrated
by Figures 4.15(a) and 4.15(c) for example when Q is low (Q = 10).
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4.2.3 Architecture and size effects

In the previous section, a square lattice of alternating Duffing resonators and van der Pol

oscillators has been studied. In this section, we investigate the behaviour of the coupled

systems when we permute the Duffing resonators and the van der Pol oscillators in the

lattice and modify the size of the lattice.
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Figure 4.16: Impact of the network architecture on the square lattice global coherence.
It is interesting to see that the elements in the two different architectures (Duff-VdP
and VdP-Duff) have almost the same behaviour in terms of both the global phase and
amplitude coherence although the elements have different behaviours from the results in
Figure 4.17.

The two different architectures, characterised by a lattice of alternating Duffing res-

onators and van der Pol oscillators on the one hand and alternating van der Pol oscillators

and Duffing resonators on the other hand, have almost the same behaviour in terms of

the global coherence of their phases and amplitudes as shown by Figure 4.16. A com-

pletely different situation can be seen when looking at the cluster synchronisation where

two different types of behaviour emerge for the two architectures as illustrated by Figure

4.17. Namely, in the case of a lattice composed of alternating Duffing resonators and van

der Pol oscillators, different subgroups can be observed in which the phases of the Duffing

resonators and van der Pol oscillators are synchronised. In the other case, the Duffing

resonators and van der Pol oscillators have two distinct behaviours.

It is also interesting to be able to understand the change of behaviour as the size of

the lattice varies. From the plots in Figure 4.18, it can be concluded that the global phase

and amplitude coherence of the lattice decrease as the size of the lattice is increased. In

the cluster synchronisation case, it can be noticed that the bigger the lattice the more

clusters are present (Figure 4.19).

So far we have driven the lattice from one edge and have observed that when the array
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Figure 4.17: Instantaneous phase and normalised polar plots of a square lattice of 32 by 32
x-coupled alternating Duffing resonators and van der Pol oscillators, and alternating van
der Pol oscillators and Duffing resonators at a coupling strength of κ = 40. The lattice
is driven from the top edge with an energy whose amplitude is Fd = 0.3. The figures are
plotted at t = 3600. The phases of the elements are more synchronised in the first case
(Duff-VdP) and it can observed from the corresponding normalised polar plot that some
of the Duffing resonators and van der Pol oscillators evolve in distinct subgroups. In the
second case (VdP-Duff), the Duffing resonators tend to group between themselves and so
do the van der Pol oscillators.
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Figure 4.18: Lattice-size effect on the global coherence of the elements. The figures show
that the smaller the lattice size, the quicker the convergence and the better the higher the
normalised entropy of the phase and amplitude of the elements in the lattice.
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Figure 4.19: Instantaneous phase and normalised polar plots of a square lattice of 32 by 32
x-coupled alternating Duffing resonators and van der Pol oscillators at a coupling strength
of κ = 10. The array is driven from the top edge of the lattice and the figures are plotted
at t = 3600 for different sizes of the lattice. It can be observed that for small (8x8) and
medium (16x16) array sizes, the phases and amplitudes of the Duffing resonators and the
van der Pol oscillators are in synchrony.
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Figure 4.20: Phase and normalised polar plots of a square lattice of 32 by 32 x-coupled
alternating Duffing resonators and van der Pol oscillators at a coupling strength of κ = 40.
The array is driven from the top left corner of the lattice and the figures are plotted at
t = 3600. The system displays an almost perfect symmetrical behaviour in terms of the
phases of the elements. The symmetry axis, in this case, is given by the diagonal joining
the driven Duffing resonator and the last Duffing resonator located on the opposite corner.
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is driven from the top edge, the Duffing resonators and van der Pol oscillators tend to

synchronise by rows. We have also looked at a different scenario where we drive the lattice

only from one of its corners. Namely, we have driven the array from the Duffing resonator

located on the top-left corner of the array. It can be observed from Figure 4.20 that the

system displays an almost perfect symmetrical behaviour in terms of the phases of the

elements. The symmetry axis, in this case, is given by the diagonal joining the driven

Duffing resonator and the last Duffing resonator located on the opposite corner.

4.3 Summary

The behaviour of a Duffing resonator coupled to a van der Pol oscillator with MEMS

parameters as two coupled elements and in a square lattice has been discussed in the

current chapter. The two coupled elements display rich behaviours such as hysteresis, anti-

resonance, stagnant response and multiple branches in their frequency-responses which

have been obtained using the method of multiple time scales analysis. The stability of the

system has also been investigated where two unstable branches of the Duffing resonator

and van der Pol oscillator respectively have been found. Moreover the system also displays

interesting transient and asymptotic behaviour. The bifurcation analysis also revealed an

abrupt transition to chaos of the system. This analysis of the fundamental unit that was

then reproduced into a lattice was done in order to show some of the complexity that

could occur in a coupled lattice of units.

The global and local synchronisations of a square lattice of alternating Duffing res-

onators and van der Pol oscillators were studied numerically. Such a lattice could serve as

a sensing device where the input signal is simulated with an external driving force that is

injected to the Duffing resonators. The parameters of the resonators and oscillators that

have been used were taken from real micro-electro-mechanical system (MEMS) devices.

The effects of different system parameters was investigated. It was found that the higher

the coupling strength value between the elements of the lattice the more synchronised they

will become, as expected. In contrast, when the amplitude of the driving force is increased

the elements of the lattice tend to randomise. It has been observed that with high quality

factor values the synchronisation between the elements is favoured whereas a low quality

factor value resulted in two distinct behaviours of the resonators and oscillators.

Besides the effects of the system parameters on the behaviour of the coupled systems,

a different architecture has also been investigated. More precisely, a permutation of the

location of the resonators and oscillators has been carried out, resulting in a square lattice
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of alternating van der Pol oscillators and Duffing resonators. The behaviours of the ele-

ments in the two types of lattice are different in that the resonators and oscillators can be

synchronised in the former case while they evolve quasi-independently in the latter case.

The behaviour of the elements in the lattice is also dependent on its size. In particular,

different clusters of synchronisation can be observed with different array sizes composed

of even number of elements. However, no distinguishable clusters of synchronisation ap-

pear when the dimension of the lattice is odd. This suggests that the unit composed of a

Duffing resonator coupled with a van der Pol oscillator represents an important entity in

order to have rich synchronisation behaviours.

The square lattice has been driven in two different ways: from the top edge and the

top left corner reflecting likely interaction in a real physical array. It has been observed

that in the first case, the resonators and oscillators tend to synchronise by rows provided

that the coupling strength is high enough. In the second case, a symmetric behaviour of

the elements of the lattice can be seen where the axis of symmetry is given be the diagonal

joining the driven Duffing resonator on the top left corner and the last Duffing resonator

on the opposite corner. Different initial conditions have also been used but the system is

not sensitive to them at all.

The square lattice that has been studied can be seen as an ideal 2D array of resonators

and oscillators. However, it does not reflect a real physical device where random parameter

mismatch and connections can occur as a result of the imperfections of the fabrication

process. The behaviour of the system when taking into account those random noise should

also be studied and will be the focus of the next chapter.
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Probabilistic square lattice

of Duffing resonators and

van der Pol oscillators

We have seen in the previous chapter how the coupled van der Pol oscillators and Duffing

resonators behave in a square lattice that is subject to a driving force from one of its edges

and corners. The oscillators and resonators were simulated with MEMS parameters and

each of them were connected to its four nearest neighbours except the elements located

on the corner and edges of the lattice which had two and three neighbours respectively.

The randomness was limited to the random initial configurations of the components in

the lattice. A real MEMS device is very likely to have physical imperfections which can

be regarded as noise and the substrate on which the devices are constructed can introduce

parasitic capacitance tracks. These defaults can be translated into random parameter

mismatch or random electrical connections between the different components of the square

lattice which can then be regarded as a probabilistic square lattice. Therefore, the square

lattice architecture that was studied in the previous chapter is an ideal one and does

not reflect a real physical system. Thus, a question that arises is: how these random

connections would affect the collective behaviour of the oscillators and resonators in the

square lattice? The addition of random mismatch terms and connections in the square
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lattice naturally leads us to consider the theory of synchronisation in complex networks

in which different distributions of connections can be present and the effects of those

topologies on the synchronisation of oscillatory systems are investigated. However, it

should be noted that apart from the case of a square lattice topology with added random

connections, the different complex networks architectures are not physically conceivable

from a MEMS device perspective but constitute an interesting conceptual problem that

can be present in other fields such as biology (Elowitz and Leibler, 2000; Garćıa-Ojalvo

et al., 2004; Wagemakers et al., 2006; Koseska et al., 2007; Strogatz, 2003; Chialvo and

Jalife, 1987) and social science (Buchanan, 2007; Chialvo and Jalife, 2005) to mention a

few. This chapter is organised as follows: an overview of the study of synchronisation in

random networks of oscillators will first be given in section 5.1. Next, some synchronisation

indices that will be used in the study of the current probabilistic network of resonators and

oscillators will be described in section 5.1.1. In section 5.2, numerical simulation results

of the square lattice with random noise will be presented.

5.1 Synchronisation in random networks of oscillators

The analysis of synchronisation in the complex networks literature is mainly based on the

coupling matrix, which will be defined later, and its extreme eigenvalues (Arenas et al.,

2008; Dorogovtsev et al., 2008; Marro and Dickman, 1999; Gómez-Gardenes et al., 2007a,b;

Gómez-Gardenes and Moreno, 2007; McGraw and Menzinger, 2005, 2007; Restrepo et al.,

2005, 2006). A complex network can be defined as a graph having a set of nodes which

are connected by a set of random links. The links are usually undirected and can be

weighted where the weight represents the coupling strength between two nodes. On the

other hand, a clustered complex network (Huang et al., 2007) consists of a number of

groups, in which nodes within each group are densely connected, but the linkage among

the groups is sparse.

The tools to characterise synchronisation in complex networks will therefore be ap-

plied and discussed in the context of the MEMS square lattice where random connections

are introduced and their effects on synchronisation will be studied. In complex networks,

random connections are usually added to a regular array, that is, an array whose elements

have the same number of neighbours. The case of the square lattice is peculiar in this

thesis in that it models a real MEMS physical system. In particular, the corners have two

neighbours, the edges have three and all other elements have four neighbours. The cor-

responding MEMS system where random connections are added will therefore be referred
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to as a probabilistic square lattice.

The analysis of synchronisation in complex networks has been focused mainly on com-

plete synchronisation of identical oscillators in the field of nonlinear dynamics. The stabil-

ity of the completely synchronised state, also called synchronisability (Arenas et al., 2008),

has also been studied analytically (Zhou et al., 2006). The importance of the analysis of

stability comes from the fact that it is an indication of the emergence of patterns when

the stability is lost or it leads to a coherent state when the stability can remain (Pecora,

2008). The stability has been studied under the Master Stability Function (MSF) ap-

proach (Pecora and Carroll, 1998; Huang et al., 2009) which is a tool to analyse various

synchronisation problems and will be briefly described in the next section.

In the following, a description of the tools to characterise synchronisation in the prob-

abilistic square lattice will be given.

5.1.1 Characterisation of synchronisation in the probabilistic square lattice

The main statistics and synchronisation indices that will be borrowed from the complex

networks literature are the average shortest path length, the average clustering coefficient

and the extreme eigenvalues of the coupling matrix. The degree distribution will be ignored

since, on the one hand, the practical effect of the degree distribution on the MEMS square

lattice is not very important since it is more relevant to the differentiation of different types

of complex networks. On the other hand, the degree of each node is implicitly embedded

in the clustering coefficient as will be seen later. A description of each of these statistics

and synchronisation indices will be given next.

The average shortest path length is denoted by l =< dij >, where dij is the length of

the shortest path between node i and j and < . > represents the average operator over

the distances dij . The clustering coefficient C is defined as:

C = 1/N
N∑

i=1

Ci = 1/N

N∑
i=1

ni

ki(ki − 1)/2
, (5.1)

where ni is the number of connections between nearest neighbours of node i. The degree

ki of a node i represents its number of links. A large clustering coefficient implies many

transitive connections and consequently redundant paths in the network, while a low value

of C implies the opposite.

Before discussing the spectral properties of the probabilistic square lattice, it is nec-

essary to define a few graphical concepts. In our case, the network is characterised by

an undirected graph. The graph can be described by its adjacency matrix A whose entry
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aij = 1 if the ith node is connected to the jth node and aij = 0 otherwise. The previous

definition applies to unweighted undirected graphs, that is the connections between nodes

have the same strength. In the case where the coupling strength varies between connec-

tions then aij = w, where w is the strength or weight of the connection between the nodes

i and j. Besides the adjacency matrix, the graph of the network is also characterised by

its diagonal matrix D of node degree. For the general case of weighted networks, the entry

dii of the matrix D is the sum of the weights of edges connected to the node at index

i. And finally, the coupling matrix also called the Laplacian matrix L of the undirected

probabilistic square lattice is defined as L = D − A, where A is the adjacency matrix

and D is the diagonal matrix of node degrees. The measures of synchronisation are based

on the extreme eigenvalues of the Laplacian matrix. The first measure is given by the

eigenratio R = λN/λ2 and the second measure is just λ2, where λ2 is the minimal nonzero

eigenvalue and λN is the maximal eigenvalue of the Laplacian matrix. These two measures

are called type I and type II synchronisation respectively.

The assessment of synchronisability is done under the Master Stability Function (MSF)

approach which provides an objective criterion, based on λ2 and λN . However, this ap-

proach only informs about the dynamics toward synchronisation from small perturbations

of the synchronisation manifold which is the subspace in the state space of the dynamical

equation of motion where all the oscillators evolve synchronously on the same solution

of the isolated oscillator. Moreover the MSF approach assesses the linear stability of

the completely synchronised state, which is a necessary but not a sufficient condition for

synchronisation, and it requires that the oscillators be identical.

5.2 Numerical results

In this section, the effect of noise in the square lattice is studied numerically. In our case,

the source of the noise is mainly due to the imperfections occurring during the fabrication

process and can take the form of different parameter values given to the elements, such

as the intrinsic frequencies of the oscillators, the quality factor or the coupling strengths

between the components for example. Besides the elements of the square lattice having

different parameter values, the noise in the system can also be characterised by random

connections which can also be seen as possible defects of the fabrication process. It is

therefore necessary to study the synchronous behaviour of the elements of the square

lattice when a small random noise is added to the system.
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5.2.1 Small noise added to the natural frequencies of the oscillators

The frequency mismatch between the oscillators is characterised by adding a small uniform

random noise in the interval [−5.4619× 103, 5.4619× 103] to their intrinsic frequencies ω0.

The length of the previous interval corresponds to one percent of ω0 = 109237 rad/s. The

amount of noise has also been increased up to ten percent of ω0.

The global synchronisation of the square lattice is not affected by the noise added to

the frequency of the oscillators as shown by the plots of the global synchronisation index of

the phase and amplitude of the elements in Figure 5.1. However, by looking at the phase

and normalised polar plots of Figure 5.2, it can be observed that the introduction of a

frequency mismatch improves the synchronisation between the oscillators and resonators

as expected. As a comparison, in Osipov and Sushchik (1998), the collective behaviour

of a one dimensional array of diffusively coupled van der Pol oscillators at weak and rela-

tively strong nonlinearity has been investigated when a frequency noise that is uniformly

distributed in the interval [−0.5; +0.5] is introduced in the array. It has also been observed

that the characteristics of the synchronisation are improved when an irregular distribution

of natural frequencies is used.

Figures 5.2(d) and 5.2(f) show that the introduction of a frequency mismatch cancels

the two independent motions of the Duffing resonators and the van der Pol oscillators

shown in Figure 5.2(b). This is translated into a continuous band (Figures 5.2(c) and

5.2(e)) of the instantaneous phases instead of a mixture of stripes and discrete patterns in

the noise-free case (Figure 5.2(a)). In addition, the behaviour of the system is exactly the

same regardless of the amount of noise added to the natural frequency of the oscillators.

5.2.2 Small noise added to the damping

Since the quality factor Q is related to the damping γ by γ = 1/Q, in this section, a

Gaussian random noise with mean and standard deviation equal to half of one and ten

percent of γ = 2 × 10−4 is added to the damping term of each oscillator and resonator.

The mean has been set to 1×10−6 and 1×10−5 instead of the standard zero value to avoid

having negative damping coefficients as this would result in a different type of oscillator or

resonator. Based on the results from the global synchronisation index in Figure 5.3, the

small noise on the damping does not seem to have an effect on the global synchronisation of

the elements since the time series of the global synchronisation index in both the phase and

amplitude spaces are almost similar to the noise-free case. However, by looking directly at

the phases and amplitudes of the elements in the square lattice, it can be noticed from the
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Figure 5.1: Natural frequency mismatch effect on the global coherence of the square lattice.
A small uniform random noise is added to the intrinsic frequencies ω0 of the oscillators,
where the lengths of the intervals from which the uniform random noise is taken correspond
respectively to one and ten percent of ω0 = 109237 rad/s. Both the phase and amplitude
global coherence indices are similar to the noise-free case which indicates that the global
behaviour of the system is not sensitive to the small noise added to the natural frequencies
of the oscillators.

plots in Figure 5.4 that the noise added to the damping, provided that it is small enough,

improves the synchronisation in the square lattice and especially in terms of the phases

of the elements. The effect of adding a small noise to the damping on synchronisation

was not expected: surprisingly, when one percent noise is added to the damping of the

elements, the system behaves exactly as in the case where one percent noise is added to

the intrinsic frequencies of the oscillators. As a matter fact, Figures 5.2(c) and 5.2(d)

are similar to Figures 5.4(c) and 5.4(d) respectively. However, when the noise is slightly

bigger (10%), the system behaves as if there was no noise at all as shown by Figures 5.4(a)

and 5.4(e) in one hand and Figures 5.4(b) and 5.4(f) on the other hand. In the noise-free

case, a phase synchronisation by rows can only be observed on the top half of the lattice

(Figure 5.4(a)), whereas it can be seen on the whole lattice when the small noise (1%)

in the damping is introduced (Figure 5.4(c)). Moreover, the number of rows that are in

synchrony is higher in the noisy case than in the noise-free one.

5.2.3 Random links

Besides the difference in the quality factor value as seen previously, the imperfections in the

fabrication of the system can also be translated into the presence of random connections

between the oscillators and resonators. The number of extra random links is here chosen in

terms of the percentage of the total number of elements in the square lattice. Similarly to

the previous case of noise introduced on the damping, the global coherence index does not
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Figure 5.2: Instantaneous phase and normalised polar plots of a square lattice of 32
by 32 x-coupled alternating Duffing resonators and van der Pol oscillators driven from
the top edge with an energy whose amplitude is Fd = 0.3. The figures are plotted at
t = 3600 with and without a small uniform random noise added to the natural frequencies
ω0 of the oscillators. The lengths of the intervals from which the uniform random noise
is taken correspond respectively to one and ten percent of ω0 = 109237 rad/s. The
coupling strength between the elements is κ = 10. Figures 5.2(d) and 5.2(d) show that the
introduction of a frequency mismatch cancels the two independent motions of the Duffing
resonators and the van der Pol oscillators shown in Figure 5.2(b). This is translated into
a continuous band (Figures 5.2(c) and 5.2(e)) of the instantaneous phases instead of a
mixture of stripes and discrete patterns in the noise-free case (Figure 5.2(a)). In addition,
the behaviour of the system is exactly the same regardless of the amount of noise added
to the natural frequency of the oscillators.
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Figure 5.3: Damping noise effect on the global coherence of the square lattice. When a
small random Gaussian noise is added to the dampings of the oscillators and resonators,
both the phase and amplitude global coherence indices are almost similar to the noise-free
case. This implies that the global behaviour of the system is not sensitive to the small
noise added to the damping term.

reflect the change of behaviour of the system in the phase space with the addition of random

connections. As a matter of fact, the global coherence index of the system with extra

random connections in the phase space is almost the same as the lattice without random

connections (Figure 5.5(a)). However, the global coherence is improved asymptotically

in the amplitude space (Figure 5.5(b)). On the other hand, Figures 5.6(c) and 5.6(e)

show that the addition of random connections in the square lattice completely destroys

the phase synchronisation in Figure 5.6(a) where the ordered phase patterns have been

transformed into completely random ones as expected. However, the lower the amount of

random connections added, the more the amplitudes of the elements tend to be gathered in

one group as shown by the normalised polar plots in Figures 5.6(d) and 5.6(f). By looking

at the MSF synchronisability indices and the network statistics in Figure 5.7, it can be

observed that neither the type I (the ratio of extreme nonzero eigenvalues λN/λ2) nor

the type II (the smallest positive eigenvalue λ2) synchronisation indices best characterise

the synchronisability in the square lattice as the number of random links is increased –

but rather the largest eigenvalue λN of the Laplacian matrix. Regarding the distance

and clustering statistics of the square lattice, the average shortest path length decreases

with increasing number of random links as expected (Figure 5.7(d)). However the average

clustering coefficient does not follow the same trend (Figure 5.7(e)).

5.2.4 Random links with various coupling strengths

In the previous section, random links are added into the square lattice to account for

physical imperfections. However, the coupling strengths of the random links are equal to
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Figure 5.4: Instantaneous phase and normalised polar plots of a square lattice of 32 by 32
x-coupled alternating Duffing resonators and van der Pol oscillators driven from the top
edge with an energy whose amplitude is Fd = 0.3. The figures are plotted at t = 3600
with and without a small Gaussian noise added to the damping term of the oscillators
and resonators. The coupling strength between the elements is κ = 10. Figures 5.4(c) and
5.4(d) show that the small random noise (1%) added to the damping term improves the
synchronisation between the elements similarly to the observations in Figure 5.2 where a
frequency mismatch of the elements was introduced. However, when the noise is slightly
bigger (10%), the system behaves as if there was no noise at all.
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Figure 5.5: Effect of extra uniform random connections on the global coherence of the
square lattice. The variable p corresponds to the number of random links which is asso-
ciated to the percentage of the total number of oscillators. For example, with p = 1%,
11 random links were added in the square lattice of 32x32 oscillators. The global phase
coherence of the elements in the lattice is not sensitive to additional random connections
(5.5(a)). However the global amplitude coherence index improves asymptotically with the
addition of random connections (5.5(b)).
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Figure 5.6: Phase and normalised polar plots of a square lattice of 32 by 32 x-coupled
alternating Duffing resonators and van der Pol oscillators driven from the top edge with
an energy whose amplitude is Fd = 0.3. The figures are plotted at t = 3600 with different
number of uniform random links which is associated to the percentage p of the total number
of oscillators. Figures 5.6(c) and 5.6(e) show that the addition of random connections in
the square lattice completely destroys the phase synchronisation in Figure 5.6(a) where the
ordered phase patterns have been transformed into completely random ones. However, the
lower the amount of random connections added, the more the amplitudes of the elements
tend to be gathered in one group as shown by the normalised polar plots in Figures 5.6(d)
and 5.6(f).
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Figure 5.7: Synchronisability and statistics in a square lattice of 32 by 32 x-coupled
alternating Duffing resonators and van der Pol oscillators driven from the top edge with
an energy whose amplitude is Fd = 0.3. The number of uniform random links is associated
to the percentage p of the total number of oscillators. The largest eigenvalue λN of the
Laplacian matrix increases with the number of random links. Nevertheless, the average
shortest path length appears to be the best measure of synchronisability: it decreases with
increasing number of random links as expected. However the average clustering coefficient
does not follow the same trend.

the non-random connections which may not be realistic since the strengths of the random

connections should be less or greater than the actual nearest neighbour couplings. There-

fore, a coefficient k is introduced in order to get a fraction or a multiple of the actual

coupling strengths for the random links. Figure 5.9 shows that the global phase coherence

is not affected by the strength of the random connections, whereas the global amplitude

coherence is almost the same for extreme values of k (0.1 and 3) while the coherence index

is improved when the strengths of the random connections are similar to those of the four

nearest neighbour ones (k = 1). On the other hand, Figures 5.10(c)-5.10(f) show that

increasing the coupling strength of the random connections does not help in improving

the synchronisation when random links are introduced in the square lattice. It would be

expected that, in the case of a strong coupling of the random connections, hubs of ele-

ments around those random links would appear and resulting in few distinct clusters. The

reason why it does not happen here may be due to the fact that the presence of random

connections destroys the unit composed of a Duffing resonator coupled to a van der Pol

oscillator and hence the loss of synchronisation in the square lattice.

In the previous section, the synchronisability of the square lattice has been mainly charac-

terised by the eigenvalues of the Laplacian matrix. However, when the coupling strengths
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between the elements of the lattice are heterogeneous, another synchronisability index

called intensity is more appropriate in this case of a weighted network S (Arenas et al.,

2008). The distribution of intensity has been used to characterise the synchronisability

of weighted complex networks (Barrat et al., 2004; Yook et al., 2001; Newman, 2001;

Braunstein et al., 2001). The intensity Si of a node i is defined in our case by

Si =
N∑

j=1

aijκij , (5.2)

where N is the number of elements in the square lattice, aij is an entry of the adjacency

matrix A and κij represents the coupling strength between the elements i and j. Zhou

et al. (2006) have proved analytically and verified numerically that the distribution of the

intensities Si controls the synchronisability of sufficiently random complex networks with

large enough minimal degree (kmin � 1).

Another synchronisation index which is related to the intensity is the cost C0 of a network

(Motter et al., 2005a,b) and is defined by

C0 =
< S >

λ2
, (5.3)

where < S > is the average intensity of nodes in the square lattice.

The intensity distributions are shown in Figure 5.8 where 11 extra uniform random links,

which corresponds to 1% of the total number of elements, are added to the square lattice.

The data points represent averages over 50 realisations of the square lattice configurations.

In Figure 5.8(a), κ represents the coupling strength of the random connections and the

figure shows that the synchronisability of the lattice depends on its average intensity.
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5.2.5 Random driving sites

In the previous section the effect of varying the strength of additional random connections

on synchronisation has been looked at. We now turn to the aspect of controlling the array

by injecting random control signals. We are interested in finding whether it is necessary

to drive the array through a small or large number of random driving sites. To this end,

the number of random driving sites is increased from 10 to 1000. It should be noted that

only sparse random control is physically feasible.

Figure 5.11(a) shows that the global behaviour of the array in phase space is not

sensitive to the number of random driving sites. Therefore, random sparse control of

the phases of the elements in the lattice is applicable. However, in Figure 5.11(b), the

amplitudes of the elements become more synchronised globally when most of the elements

are driven. This observation is expected. Moreover, the difference in behaviour in terms

of the global amplitude coherence is negligible between 10 and 100 random driving sites.

In terms of local synchronisation, Figures 5.12(a) to 5.12(f) show that, regardless of

the number of driving sites, the procedure of driving the square lattice from randomly

selected sites has the effect of locking the phases of the elements in two different states:
3π
4 and −π

4 . However the amplitudes of the elements vary with different number of driving

sites (Figures 5.12(b), 5.12(d) and 5.12(f)).
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Figure 5.8: Intensity distributions in a square lattice of 32 by 32 x-coupled alternating
Duffing resonators and van der Pol oscillators driven from the top edge with an energy
whose amplitude is Fd = 0.3. 11 extra uniform random links which corresponds to 1% of
the total number of elements are added to the square lattice. κ is the coupling strength
of the random connections. The data points represent averages over 50 realisations of
the square lattice configurations. 5.8(a) shows that the synchronisability of the lattice
depends on its average intensity.
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Figure 5.9: Effect of extra uniform random connections with various coupling strength
on the global coherence of the square lattice of 32 by 32 x-coupled alternating Duffing
resonators and van der Pol oscillators. 11 random links are added uniformly which corre-
sponds to 1% of the total number of elements in the lattice. The coefficient k represents
the fraction or multiple of the coupling strength κ of the non-random four nearest neigh-
bour connections which is κ = 10 here. The global phase coherence is not affected by
the strength of the random connections (Figure 5.9(a)). On the other hand, the global
amplitude coherence is almost the same for extreme values of k (0.1 and 3) while the
coherence index is improved when the strengths of the random connection are similar to
those of the four nearest neighbour ones (k = 1) (Figure 5.9(b)).

5.3 Summary

In this chapter, the effect of noise in the square lattice has been studied. The noise was

represented by different parameter values of the elements, namely the natural frequency,

the damping coefficient and the coupling strengths, instead of having identical parameters.

Random links were also added to the four nearest-neighbour connections of the square

lattice and random sites were selected as the source of the driving force.

The introduction of a frequency mismatch improves the synchronisation between the

oscillators and resonators especially in the phase space. In addition, the behaviour of

the system is exactly the same regardless of the amount of noise added to the natural

frequency of the oscillators. It was also observed that the noise added to the damping,

provided that it is small enough (1%), improves the synchronisation in the square lattice

and especially in terms of the phases of the elements. Interestingly, when one percent

noise is added to the damping of the elements, the system behaves exactly as in the case

where one percent noise is added to the intrinsic frequencies of the oscillators. However,

when the noise is slightly bigger (10%), the system behaves as if there was no noise at

all. Moreover, the amplitude and phase synchronisations are destroyed regardless of the

value of the coupling strength of the random connections that were introduced. Finally,

the procedure of driving the square lattice from randomly selected sites has the effect
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Figure 5.10: Instantaneous phase and normalised polar plots of a square lattice of 32 by 32
x-coupled alternating Duffing resonators and van der Pol oscillators driven from the top
edge with an energy whose amplitude is Fd = 0.3. The figures are plotted at t = 3600 with
11 extra uniform random links which corresponds to 1% of the total number of elements in
the lattice. The coefficient k represents the fraction of the coupling strength κ of the non-
random four nearest neighbour connections which is κ = 10 here. Figures 5.10(c)-5.10(f)
show that increasing the coupling strength of the random connections does not help in
improving the synchronisation when random links are introduced in the square lattice.
It would be expected that, in the case of a strong coupling of the random connections,
hubs of elements around those random links would appear and resulting in few distinct
clusters. The reason why it does not happen here may be due to the fact that the presence
of random connections destroys the unit composed of a Duffing resonator coupled to a van
der Pol oscillator and hence the loss of synchronisation in the square lattice.
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of locking the phases of the elements in two different states: 3π
4 and −π

4 . However the

amplitudes of the elements are not affected.

Different synchronisation indices have been used to characterise the synchronisation of

the elements of the square lattice. Among those characteristics are the global synchroni-

sation index and the phase image and normalised polar plots that have been used in the

previous chapter. The stability of the synchronisation has also been considered using in-

dices obtained from the MSF approach. The global synchronisation index does not always

reflect the real synchronous behaviour of the elements as shown by the phase images and

normalised polar plots.

An important drawback of the synchronisability indices obtained from the MSF ap-

proach is that they do not take into account the dynamics of the oscillators and resonators

since their computation is based on the eigenvalues of the Laplacian matrix. This obser-

vation has also been stated in Arenas et al. (2008); Huang et al. (2009). Neither the type

I (the ratio of extreme nonzero eigenvalues λN/λ2) nor the type II (the smallest positive

eigenvalue λ2) synchronisation indices, which are the main measures of synchronisabil-

ity for complex networks, best characterise the synchronisability in the square lattice of

Duffing resonators and van der Pol oscillators as the number of random links is increased

but rather the largest eigenvalue λN of the Laplacian matrix. For heterogeneous coupling

strengths in the square lattice, the synchronisability of the system depends on its average

intensity.

The global and local synchronisation studies, in this chapter and the previous one,

can give totally different results which implies that they can provide complementary in-
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Figure 5.11: Effect of the number of random driving sites rs on the global coherence of
the square lattice of 32 by 32 x-coupled alternating Duffing resonators and van der Pol
oscillators. Figure 5.11(a) shows that driving the array from randomly selected sites has
no effect on the global phase coherence while the global amplitude coherence is improved
with more driving sites as shown in Figure 5.11(b).
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(e) Instantaneous phase (rs = 1000)
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Figure 5.12: Instantaneous phase and normalised polar plots of a square lattice of 32 by 32
x-coupled alternating Duffing resonators and van der Pol oscillators driven from the top
edge with an energy whose amplitude is Fd = 3. The figures are plotted at t = 3600 with
different number rs of randomly selected sites as the source of the driving. Figures 5.12(a)-
5.12(f) show that the procedure of driving the square lattice from randomly selected sites
has the effect of locking the phases of the elements in two different states: 3π

4 and −π
4 .

However the amplitudes of the elements are not affected.

terpretations of the collective behaviour of the elements in the square lattice. Another

aspect of synchronisation which can give more useful information than simply looking at

the full synchronisation, especially for a lattice of heterogeneous systems, is called cluster

synchronisation and will be discussed in the next chapter.

This chapter has focused on some of the emergent behaviour characteristics to be

107



Chapter 5 PROBABILISTIC SQUARE LATTICE

expected from our coupled dynamical system in the presence of fixed randomness. In

Chapter 6 we will return to an analysis of this behaviour using the AN model to detect

synchronisation through emergent clusters.
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6

Cluster synchronisation in a

regular network of

microelectromechanical

system elements

In this chapter we provide a characterisation of cluster synchronisation in the square lattice

of coupled Duffing resonators and van der Pol oscillators that was studied in the two previ-

ous chapters. The emergent collective behaviour of coupled oscillators is characterised by

the phenomenon of full synchronisation as the simplest mode of spatiotemporal behaviour

in a lattice of coupled oscillatory systems. In that case, the synchronisation of the elements

in the lattice is studied globally and the regime of global synchronisation is associated to

a stable equilibrium state of the motions of the oscillators (Osipov and Sushchik, 1997,

1998). However, more complicated synchronous behaviour than only full synchronisation

has been observed based on cluster synchronisation manifolds (Belykh et al., 2003b,a). In

this chapter we are interested in the characterisation of novel self-organising response pat-

terns. The interaction of nonlinear oscillators in the square lattice allows the emergence

of a much richer range of behaviours of the array beyond that expected in a traditional

design strategy, where an array of isolated and linear-response sensors are present. These
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behaviours include macroscopic and cluster synchronisation. These different modes of

operation could in the future be used for adaptive integrated sensing and computing.

6.1 Overview

Cluster synchronisation has been defined in different ways and in terms of different system

parameters such as the frequency, phase and amplitude. A cluster is defined as a coupled

set of oscillators having the same average quantity (period, mean frequency) in Osipov

and Sushchik (1998); Lemâıtre and Chaté (1999); Rabinovich et al. (1999). In globally

coupled identical systems, a cluster is characterised by the vanishing difference among

the elements, i.e., |xi − xj | = 0, where xi and xj represent the phases of the oscillators

at position i and j respectively (Zhou et al., 2002). In functional magnetic resonance

imaging, cluster synchronisation consists of identifying voxels in the brain which were

synchronised with the voxels in the cluster that were active during a certain task. A phase

synchronisation map is obtained for each voxel in the original cluster that was analysed

after the recording of a synchronisation index for each voxel in the brain (Laird et al., 2002).

Clusters of oscillators with infinitesimal amplitude can also be formed and this effect is

called “oscillator death” or “amplitude death” (Yamaguchi and Shimizu, 1984; Bar-Eli,

1985; Ermentrout, 1986; Ermentrout and Troy, 1986; Ermentrout, 1990; Aronson et al.,

1990). This type of cluster synchronisation approach has also been applied to two-coupled

chaotic systems as in Rosenblum et al. (1996); Osipov and Kurths (2001) for example. And

finally, the cluster synchronisation phenomenon is present in a lattice of coupled oscillators

when the oscillators synchronise in groups but there is no synchronisation among the

groups (Belykh et al., 2003b; Kaneko, 1990; Belykh and Mosekilde, 1996; Xie and Hu,

1997; Hasler et al., 1990; Belykh et al., 2000; Belykh and Mosekilde, 2001).

Cluster synchronisation has been studied in lattices of coupled identical periodic (Be-

lykh et al., 2000; Belykh and Mosekilde, 2001; Belykh et al., 2003b) and chaotic oscillators

(Afraimovich et al., 1997; Osipov and Sushchik, 1997; Chiu et al., 2001; Zhou et al.,

2002; Belykh et al., 2003a). The analytical study is based upon bounded dissipativeness

(Afraimovich et al., 1997) and linear invariant manifold theory (Belykh et al., 2003a)

where the oscillators are synchronised in clusters defined by hyperplanes. In that case,

the clusters synchronise in pairs symmetrically to the middle of the row and/or column

of the lattice or with respect to the principal and/or secondary diagonals. The few other

theoretical works on full synchronisation that exist only consider homogeneous systems

such as an array of van der Pol oscillators. Among those theoretical studies are the con-
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traction (Lohmiller and Slotine, 1998; Slotine and Lohmiller, 2001), partial contraction

analysis (Wang and Slotine, 2004) and a few other mathematical results in the literature

(Fujisaka and Yamada, 1983; Afraimovich et al., 1986; Rodrigues, 1994; Afraimovich and

Rodrigues, 1994; Wu and Chua, 1994). In the above previous works, the oscillators in

the lattice are of the same type, that is, they have the same dynamics. The nonidentical

case is characterised by the introduction of a parameter mismatch but the oscillators still

have the same equations of motion. The analytical study in the strictly identical case was

conducted for mathematical convenience and hence does not reflect the physical reality.

Furthermore, a restriction on the type of invariant manifold needs to be applied in the

case where the oscillators are slightly nonidentical (Belykh et al., 2003a). As a matter of

fact, the analytical treatment of synchronisation in lattices of coupled oscillators is rather

complex and hence the lack of rigorous mathematical results in the literature as pointed

in Afraimovich et al. (1997). The study of synchronisation in those lattices has therefore

been confined to numerical analysis in which the focus was put on spatial features pre-

sented by stable equilibria of the oscillators in the lattice (Belykh et al., 2003b; Chow and

Mallet-Paret, 1995; Nekorkin et al., 1997; Thiran, 1997).

In our case, where two different types of dynamical systems coexist in the lattice, inter-

esting cluster synchronisation patterns could not therefore be described by these previous

analysis. In order to characterise those unusual patterns, the Affinity Network is applied

to learn those emergent patterns from the dynamical properties of the elements of the

lattice.

6.2 Cluster synchronisation and Affinity Network

In contrast to conventional methods which study the collective behaviour of coupled os-

cillators at the physical level, using the phases of the oscillators such as in the previous

section, for example, the Affinity Network (AN) that is learned from the physical charac-

teristics of the oscillators would give an idea of their collective behaviour at a higher level:

a logical one.

In this framework, each oscillator is regarded as one random continuous variable and

the time series of its displacement and instantaneous phase can be viewed as the samples

from those random variables. The displacements are taken directly from the numerical

integration of the differential equations and the instantaneous phases are computed from

the analytic signal obtained using the Hilbert transform (S. L Marple, 1999; Boashash,

1992a,b; Goswami and Hoefel, 2004). The AN structure that is learned from the time
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series of the displacements and/or instantaneous phases of the oscillators will be such

that each parent node and its child(ren) in the network can be considered as one cluster.

The oscillators in each cluster can then be interpreted as forming one unit where these

oscillators would have a similar behaviour. For concision, the AN structures will only be

learned from the phase data although the displacement data can also be used.

6.2.1 Experimental results

The time series produced from the simulations in the two previous chapters are used in

this section to compute the input similarity matrix in the AN construction algorithm.

The purpose of the following experiments is to characterise the collective behaviour of the

elements in the square lattice by locating clusters of synchronised elements. Moreover, we

would like to evaluate the clustering capability of the AN against the DN and a standard

clustering technique. In order to appreciate the clustering results, they are plotted together

with the asymptotic instantaneous phase data obtained in the two previous chapters. In

addition, to quantify the cluster synchronisation results, the correlation coefficient between

the AN or DN cluster image and the corresponding instantaneous phase image is computed.

Each cluster and instantaneous phase images have been rescaled before computing the

correlation coefficient.

The parameter p̃ in the SCAP algorithm has been set to the largest negative number

in Matlab. Each resonator and oscillator are regarded as random variables. Their instan-

taneous phase values, from an initial time t0 = 0 to a time t = 3600, are considered as

samples. Since the time for the series to converge varies between experiments, as shown by

the normalised entropy plots in the two previous chapters, the first 900 samples have been

discarded. These instantaneous phase data are then used as inputs to the AN algorithm

to generate the AN cluster images where the resonators and oscillators which belong to

the same cluster have the same colour.

Figure 6.1 shows that both the AN and the DN are not able to capture the phase

patterns that are displayed in the lattice with different coupling strengths. In particular,

the AN tends to group the elements in the lattice in one cluster as shown by the AN clusters

and histograms in Figures 6.1(a) to 6.1(d). Likewise, the DN clusters in Figure 6.1(e) and

6.1(g) clearly do not reflect the row synchronisation as it appears that the elements are

synchronised across columns. Moreover, the number of DN clusters, as shown in Figures

6.1(f) and 6.1(h) are far more than the number of actual phase values which can be

observed from the phase images in Figures 6.1(i) and 6.1(j).

The checkerboard-like and ordered behaviours that are observed for low (Q = 10) and
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high (1000) Q respectively are made clear from the AN clustering results. In particular,

the AN clusters and histogram in Figures 6.2(c) and 6.2(d), respectively, show that most

of the elements are grouped in one cluster. The corresponding phase image in Figure 6.2(j)

agrees with this observation since the phase is circular and hence the elements coloured in

blue and red are close in phase space. On the other hand, the DN clusters in Figure 6.2(e)

and 6.2(g) tend to show synchronisation across columns which is in contradiction with

the phase images in Figure 6.2(i) and 6.2(j) respectively. The DN histograms in Figure

6.2(f) and 6.2(h) show that in the case of different Q values, the DN clusters still exceeds

the actual number of different phase values that are observed from the phase images in

Figures 6.2(i) and 6.2(j).

A rather atypical behaviour is observed in the system when the external driving force

is injected from one corner of the lattice since a symmetrical behaviour along the diagonal

joining the corner from which the energy is injected and its opposite corner is present. In

spite of this different ordered behaviour, the AN clustering can still reflect this symmetry

as shown in Figure 6.3: when the square lattice is driven from its top left corner, the

phases of the elements are symmetric along the main diagonal as shown in Figure 6.3(e).

The same diagonal represents the axis of symmetry of the corresponding AN clusters in

Figure 6.3(a). Similarly, it can be said that the DN reflects the fact that the array is

driven from the top left corner in the sense that a line representing the main diagonal can

be observed in Figure 6.3(c). However, a symmetric behaviour along the main diagonal

cannot be observed as the DN clusters display synchronisation across rows. The AN and

DN histograms in Figure 6.3(b) and 6.3(d), respectively, show that both the AN and the

DN do not give sensible number of clusters compared to the phase image in Figure 6.3(e)

where around five clusters can be observed.

The AN has also been tested on the random networks of resonators and oscillators

and Figure 6.4 shows that the clusters of synchronisation captured by the algorithm are

sensible when completely random patterns occur. Unlike the AN clusters, the random

phase patterns shown in Figure 6.4(e) are not captured by the DN clusters in Figure 6.4(c)

where a noisy synchronisation across columns can be observed. This is also confirmed by

the AN clusters in Figure 6.5 where randomly selected sites are chosen as the source of

the driving signal in the square lattice. The AN clusters in Figures 6.5(e) and 6.5(g) are

very close to the phase images in Figures 6.5(i) and 6.5(j) respectively whereas the DN

clusters are less accurate. This is confirmed by the AN histograms in Figures 6.5(f) and

6.5(h) where the two AN clusters exactly match with the two different phase values in

Figures 6.5(i) and 6.5(j) whereas the DN clusters are slightly more.
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The standard k-means clustering algorithm with the same number of centres as are

found in the images has also been applied in the experiments in order to independently

validate the AN clustering results. The correlation measure ρ has been computed to

evaluate the results. It has been found that sometimes k-means can outperform the AN.

This is illustrated by the results in Figure 6.6 where the k-means with seven centres gives

more meaningful clusters than the AN when the array of oscillators and resonators is

driven from the top-left corner. However, the k-means with two centres performs poorly

on the array that is randomly driven at 1000 different sources whereas the AN produces

sensible clusters. The average correlation ρ over the different graphs in the experiments

of this chapter has been computed in order to compare the overall performance of the

diffferent methods: ρAN = 0.39, ρDN = 0.18 and ρk-means = −0.17 for the AN , DN and

k-means, respectively.
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Figure 6.1: Characterisation of cluster synchronisation using AN and DN with varying
coupling strength κ in a square lattice of 32 by 32 x-coupled alternating Duffing resonators
and van der Pol oscillators driven from the top edge with an energy whose amplitude is
Fd = 0.3. ρ represents the correlation coefficient between the AN or DN cluster image
and the corresponding instantaneous phase image. Each cluster and instantaneous phase
images have been rescaled before computing the correlation coefficient. Both the AN
and the DN are not able to capture the phase patterns that are displayed in the lattice
with different coupling strengths. In particular, the AN tends to group the elements in
the lattice in one cluster as shown by the AN clusters and histograms in Figures 6.1(a)
to 6.1(d). Likewise, the DN clusters in Figure 6.1(e) and 6.1(g) clearly do not reflect
the row synchronisation as it appears that the elements are synchronised across columns.
Moreover, the number of DN clusters, as shown in Figures 6.1(f) and 6.1(h) are far more
than the number of actual phase values which can be observed from the phase images in
Figures 6.1(i) and 6.1(j).
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gence (Q = 10)
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Figure 6.2: Characterisation of cluster synchronisation using AN and DN with varying
damping through the quality factor Q in a square lattice of 32 by 32 x-coupled alter-
nating Duffing resonators and van der Pol oscillators driven from the top edge with an
energy whose amplitude is Fd = 0.3. ρ represents the correlation coefficient between the
AN or DN cluster image and the corresponding instantaneous phase image. Each cluster
and instantaneous phase images have been rescaled before computing the correlation co-
efficient. Similarly to the previous figure, the checkerboard-like and ordered behaviours
that are observed for low (Q = 10) and high (1000) Q respectively are made clear from
the AN clustering results. In particular, the AN clusters and histogram in Figures 6.2(c)
and 6.2(d), respectively, show that most of the elements are grouped in one cluster. The
corresponding phase image in Figure 6.2(j) agrees with this observation since the phase
is circular and hence the elements coloured in blue and red are close in phase space. On
the other hand, the DN clusters in Figure 6.2(e) and 6.2(g) tend to show synchronisation
across columns which is contradiction with the phase images in Figure 6.2(i) and 6.2(j)
respectively. The DN histograms in Figure 6.2(f) and 6.2(h) show that in the case of dif-
ferent Q values, the DN clusters still exceeds the actual number of different phase values
that are observed from the phase images in Figures 6.2(i) and 6.2(j).
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Figure 6.3: Characterisation of cluster synchronisation using AN and DN with a different
location of the external driving force in a square lattice of 32 by 32 x-coupled alternating
Duffing resonators and van der Pol oscillators. ρ represents the correlation coefficient
between the AN or DN cluster image and the corresponding instantaneous phase image.
Each cluster and instantaneous phase images have been rescaled before computing the
correlation coefficient. When the square lattice is driven from its top left corner, the
phases of the elements are symmetric along the main diagonal as shown in Figure 6.3(e).
The same diagonal represents the axis of symmetry of the corresponding AN clusters in
Figure 6.3(a). Therefore, the symmetrical behaviour of the system is also captured by the
AN algorithm. Similarly, it can be said that the DN reflects the fact that the array is
driven from the top left corner in the sense that a line representing the main diagonal can
be observed in Figure 6.3(c). However, a symmetric behaviour along the main diagonal
cannot be observed as the DN clusters display synchronisation across rows. The AN and
DN histograms in Figure 6.3(b) and 6.3(d), respectively, show that both the AN and the
DN do not give sensible number of clusters compared to the phase image in Figure 6.3(e)
where around five clusters can be observed.
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Figure 6.4: Characterisation of cluster synchronisation using AN and DN in a square lattice
of 32 by 32 x-coupled alternating Duffing resonators and van der Pol oscillators driven from
the top edge with an energy whose amplitude is Fd = 0.3. ρ represents the correlation
coefficient between the AN or DN cluster image and the corresponding instantaneous phase
image. Each cluster and instantaneous phase images have been rescaled before computing
the correlation coefficient. Figures 6.4(e) is plotted at t = 3600 with 11 extra uniform
random links which corresponds to 1% of the total number of elements in the lattice.
The coefficient k represents the fraction of the coupling strength κ of the non-random
four nearest neighbour connections which is κ = 10 here. In this case, the AN algorithm
produces six sensible clusters. Unlike the AN clusters, the random phase patterns shown
in Figure 6.4(e) are not captured by the DN clusters in Figure 6.4(c) where a noisy
synchronisation across columns can be observed. In addition, the number of DN clusters
as shown by the histogram in Figure 6.4(d) is far beyond the number of different phase
values in the phase image of Figure 6.4(e).
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(i) Instantaneous phase after conver-
gence (rs = 10)
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Figure 6.5: Characterisation of cluster synchronisation using AN and DN with different
number rs of randomly selected sites as the source of the driving in a square lattice of 32
by 32 x-coupled alternating Duffing resonators and van der Pol oscillators driven from the
top edge with an energy whose amplitude is Fd = 3. ρ represents the correlation coefficient
between the AN or DN cluster image and the corresponding instantaneous phase image.
Each cluster and instantaneous phase images have been rescaled before computing the
correlation coefficient. The AN clusters in Figures 6.5(e) and 6.5(g) are very close to the
phase images in Figures 6.5(i) and 6.5(j) respectively whereas the DN clusters are less
accurate. The AN histograms in Figures 6.5(f) and 6.5(h) show that the two AN clusters
exactly match with the two different phase values in Figures 6.5(i) and 6.5(j) whereas the
DN clusters are slightly more.
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left corner); ρ = 0.08
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(b) K-means clusters (driven
from top left corner); ρ = 0.70
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(c) Instantaneous phase after
convergence (driven from top left
corner)
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(d) AN clusters (rs = 1000);
ρ = 0.99
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(e) K-means clusters (rs = 1000);
ρ = 0.13
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(f) Instantaneous phase after con-
vergence (rs = 1000)

Figure 6.6: Comparison between AN and k-means. In Figures 6.6(b)-6.6(c), the square
lattice of 32 by 32 x-coupled alternating Duffing resonators and van der Pol oscillators
is driven from its top left corner with an energy whose amplitude is Fd = 3. In Figures
6.6(e)-6.6(f), different number rs of randomly selected sites as the source of the driving
are applied on the square lattice. ρ represents the correlation coefficient between the AN
or k-means cluster image and the corresponding instantaneous phase image. Each cluster
and instantaneous phase images have been rescaled before computing the correlation co-
efficient. The k-means with seven centres (Figure 6.6(b)) gives more meaningful clusters
than the AN (Figure 6.6(a)) when the array of oscillators and resonators is driven from the
top-left corner. However, the k-means with two centres (Figure 6.6(e)) performs poorly
on the array that is randomly driven at 1000 different sources whereas the AN produces
sensible clusters (Figure 6.6(d)).

6.3 Summary

The application of the Affinity Network (AN) as an inference, or interpreting, logic layer to

analyse the physical output of the dynamical system lattice was examined in this chapter

since the analytic investigation in such a large system is complex and most theoretical

studies deal with homogeneous systems. It was found that the clustering ability of the

AN can produce sensible results on the structures of the emergent patterns across the

lattice, even when the clusters were fragmented and distributed. This is evidenced by

the correlation coefficient as a quantitative measure of the clustering results. In contrast,

the DN clusters tend to show phase synchronisations across columns when synchronisation

across rows was displayed by the actual phase images. Moreover, less accurate DN clusters
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are observed when random links and driving sites are introduced in the lattice. However,

the AN can also fail to characterise well the cluster synchronisation in the lattice. For

instance, the AN was not able to capture the symmetric phase pattern which occurs when

the array is driven from the top left corner. In that case, a standard clustering method,

such as k-means, can be applied.

In sensing applications it would be an enormous advantage to be able to predict ac-

curately the behaviour of the system depending on its parameter values and the charac-

teristics of the driving signal that is applied to it. Unfortunately, no analytical tool is

currently available to achieve this purpose for lattices of coupled oscillators to the best of

our knowledge and further studies are therefore needed.
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7 Conclusion

This thesis has considered problems of inference and macroscopic clustering derived from

lower physical or data layers with inherent similarity relationships. We considered both

non-model based problems such as discovering relationships in medical data, and a strongly

physics-oriented problems of dynamical systems synchronisation. To provide a statistical

analysis level of these problems, a new class of graphical model called an Affinity Network

(AN) was introduced and compared with other state-of-the-art models, and in particular

the Dependency Network and Bayesian graphical model.

7.1 Graphical model and existing instances

A graphical model is characterised by a network structure, which is a graph where each

node corresponds to a random variable from a dataset, and some parameters represented

by the conditional probabilities of the variables. Bayesian Networks (BNs) and Depen-

dency Networks (DNs) are the main instances of a graphical model. BNs usually display

causal relationships between random variables whereas DNs were devised to relax this

hard constraint associated with the causal relationships in BNs. Since BNs do not have

cycles, they cannot discriminate spurious causal relations between confounding variables.
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In contrast, AN and DN graphs can be cyclic and can therefore capture more general

dependency relationships.

The structure of a BN is usually learned by combining the BDe scoring function with a

hill-climbing heuristic search although a conditional independence test can also be used to

construct a BN structure. On the other hand, a classification/regression algorithm governs

the structure learning of a DN. The conjugacy property of the Dirichlet distribution for

discrete variables, and the Normal distribution properties for continuous variables enable

the computation of the conditional probabilities in a BN. In contrast, these conditional

probabilities are directly estimated from the data using a classification or regression tech-

niques in a DN. The structure and parameters of a BN and a DN are both learned from

data although expert knowledge can also be used to specify the conditional probabilities

in a BN.

7.2 The AN graphical model

An AN is a directed, possibly cyclic, graphical model in which the nodes represent random

variables and the links between those random variables denote probabilistic relationships

based on similarities between two connected nodes. The AN shares some properties of a

BN and a DN in the sense that the conditional probabilities of an AN are learned using

a similar approach to learn the conditional probabilities of a BN. In addition, the joint

probability of an AN can be computed the same way as in a DN. The AN differs from the

BN and the DN in its graph learning, also called network structure learning.

The AN graphical model structure learning algorithm uses the soft-constraint affin-

ity propagation (SCAP) algorithm combined with the Bayesian Dirichlet (BD) scoring

function. The SCAP algorithm is derived from affinity propagation (AP) which is an

optimisation algorithm that is used to drive the AN structure search. SCAP is able to

reconstruct the possible loops in the network structure contrary to AP because of its soft

constraints. The parameter learning algorithm for an AN is similar to a BN parameter

learning.

Contrary to a BN, an AN and a DN do not necessarily represent a factorisation of

the joint distribution of the data. In a DN, inconsistencies are likely to occur when there

is no joint distribution from which the conditional probabilities may be obtained via the

rules of probability. However, when the sample size is large, inconsistencies will be rare

given that the conditional distribution is learned from the same data set, which is assumed

to be generated from a single underlying distribution. Hence, when the data has many
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samples, an AN structure, similarly to a DN, can also be seen as a representation of the

joint distribution of the data since the conditionals are directly learned from the data.

A DN displays the dependencies between variables whereas an AN shows the closeness

between pairs of variables with respect to the chosen scoring function.

7.3 AN for medical data

The proposed AN approach has also been compared with the DN where a classification

tree is used to construct the DN structure. The combination of SCAP and the BD score

to construct an AN always recovers the essential graph, that is, the undirected graph of

the benchmark networks obtained from an exhaustive search whereas the classification

tree adds more parents than required. In particular, based on a comparison with an

exhaustive structure search, the AN structure, which mainly had reversed arcs, was found

better than the DN structure, which had more added and deleted arcs on the Chest,

Ferrara and Wisconsin breast cancer data. However, when only the root of the tree is

taken as the parent of the corresponding child variable, the classification tree performs

better the normal DN. The AN and DN networks of the Ferrara breast cancer data were

particularly interesting because they respectively showed that the progesterone (PR) and

oestrogen (ER) receptors are the main variables in this dataset. This fact is sensible

since breast cancer is considered to be a hormone-dependent cancer and that the balance

between these two hormones is vital to the health of every woman.

SCAP is a good alternative to heuristic or stochastic search algorithms that are used

in BNs and DNs since the SCAP algorithm is based on a message-passing scheme. Fur-

thermore, the algorithm has been proved to be efficient, fast and especially suited for

huge data such as the medical alarm network where the proposed method is faster than

a classification tree. It was observed that the AN structure of the alarm network was

constructed in 20 seconds with SCAP and the BDe score, and in 135 seconds with a DN

and a classification tree on a machine with two 2.40 GHz Intel Xeon processors with 512

KB memory each. The corresponding BN structure was constructed in 998 seconds on a

Macintosh II running LightSpeed Pascal version 2.0. Moreover, this alternative method

to learn an AN structure provides extra information by quantifying the strength of each

arc in the network and also by providing a simple way to analyse the sensitivity of the

scoring function used in conjunction with the SCAP algorithm.
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7.4 AN of MEMS dynamical data

Besides static medical data, the AN graphical model was applied to dynamic time series

data from Duffing resonators and van der Pol oscillators coupled alternatively in a square

lattice. Such a lattice can serve as a sensing device where the input signal is simulated

with an external driving force that is injected to the Duffing resonators. The physical

behaviour of the system has been studied and it has been found that it displays rich

behaviours such as hysteresis, anti-resonance, stagnant response and multiple branches in

their frequency responses which have been obtained using the method of multiple time

scales analysis. The stability of the system has also been investigated where two unstable

branches of the Duffing resonator and van der Pol oscillator respectively have been found.

Moreover the system also displays interesting transient and asymptotic behaviour. The

bifurcation analysis also revealed an abrupt transition to chaos of the system. The global

and local synchronisations of the square lattice of up to 1024 devices was also studied

numerically. The parameters of the resonators and oscillators that have been used come

from real micro-electro-mechanical system (MEMS) devices. The effects of different system

parameters have been investigated. The square lattice that has been studied can be seen

as an ideal 2D array of resonators and oscillators. However, it does not reflect a real

physical device where random parameter mismatch and connections can occur as a result

of the imperfections of the fabrication process. For this reason, the lattice has been called

a probabilistic square lattice when random noise is present. The behaviour of the system

when taking into account random noise was also briefly considered. In particular, the

noise was represented by different parameter values of the elements, namely the natural

frequency, the damping coefficient and the coupling strengths, instead of having identical

parameters, on one hand. On the other hand, random links were added to the four nearest-

neighbour connections of the square lattice and random sites were selected as the source

of the driving force.

The global and local synchronisation studies can give totally different results whereas

the cluster synchronisation aspect provides more useful information than simply looking

at the full synchronisation especially for a lattice of heterogeneous systems. Nevertheless,

no cluster synchronisation characterisation is available to the best of our knowledge as

opposed to the case of global synchronisation in which various synchronisation indices

can be used. Moreover, the analytic investigation in such a large system is complex and

most theoretical studies deal with homogeneous systems. The application of the Affinity

Network as an inference, or interpreting, logic layer to analyse the physical output of the
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dynamical system lattice was examined since the analytic investigation in such a large

system is complex and most theoretical studies deal with homogeneous systems. It was

found that the clustering ability of the AN can produce sensible results on the structures

of the emergent patterns across the lattice, even when the clusters were fragmented and

distributed. This is evidenced by the correlation coefficient as a quantitative measure of

the clustering results. In contrast, the DN clusters tend to show phase synchronisations

across columns when synchronisation across rows was displayed by the actual phase images.

Moreover, less accurate DN clusters are observed when random links and driving sites are

introduced in the lattice.

7.5 Limitations of the AN and future directions

The shortcomings of the AN stem from the setting of some parameter values in the struc-

ture learning algorithm on one hand. On the other hand, the AN is mainly used to find

meaningful relationships between variables. The aspect of probabilistic inference through

the computation of the joint probability of the variables has received a lesser attention.

This also leads to additional limitations regarding inference and control tasks in the MEMS

domain.

7.5.1 AN parameters

The value of the penalty term p̃ in the SCAP equations controls the AN structure. How-

ever, an automatic procedure which sets the value of p̃ is not currently available. In our

experiments we have set p̃ to a large negative number in order to relax the AP hard con-

straint and to remove the possibility of having self-loops. Moreover, a node can only have

one parent in the AN graph. Multiple parents can be obtained by introducing a threshold

parameter on the maximum value of the affinity function. The choice of this parameter

also remains an open question.

7.5.2 Inference and belief propagation

It has been discussed in this thesis that the joint distribution is not computed in an

AN since the network structure may not represent a factorisation of the joint probability

density function (pdf) as in a BN. Therefore, the belief propagation algorithm for BNs

may not be suitable to use with ANs. Hence the inference part which is an important

aspect of a graphical model is missing in the AN approach. However, the pseudo-Gibbs

sampling for DNs can be used in order to answer probabilistic queries since conditional

126



CONCLUSION

probability tables are available in ANs. Nevertheless, it has been shown empirically in

Heckerman et al. (2000) that computing the joint probability in this way is not efficient

compared to belief propagation in BNs.

7.5.3 Inference in MEMS

In the context of cluster synchronisation, the AN can also fail to produce good clusters in

the lattice of oscillators and resonators. In that case, a standard clustering algorithm, such

as k-means, can sometimes complement the AN. In addition, it would also be interesting

to be able to predict the collective behaviour of the resonators and oscillators for a given

set of initial conditions and system parameters. The AN is currently unable to perform

this task due to the absence of a temporal factor. The analytical study of such inference

problem remains a huge challenge because of its complexity. It has been mentioned earlier

that most theoretical works consider identical elements although some noise has been

introduced in the system. Moreover some works such as Wang and Slotine (2004) only

treat the problem from a purely theoretical point of view without any numerical validation.

7.5.4 Pinning control

Another interesting problem which is related to the square lattice of resonators and os-

cillators is the ability to control the cluster synchronisation patterns. This is referred

to as pinning control where for an arbitrarily selected cluster synchronisation pattern, a

controller is introduced for each cluster and sufficient conditions are derived such that the

given cluster synchronisation pattern is achieved for any initial conditions (Wu et al., 2009;

Li et al., 2004; Grigoriev et al., 1997; Greilich et al., 2005). The different applications of

control in chaotic systems include for instance turbulence (Katz et al., 1994), instabilities

in plasma (Pentek et al., 1996), multimode lasers (Colet et al., 1994) and reaction-diffusion

systems (Petrov et al., 1994). Linear control theory (Romeiras et al., 1992; Petrov et al.,

1995) has been used so far to address the problem of pinning control. This is therefore a

topic for future research.
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AN message-update

equations

In this appendix we derive the AN update equations for the availability and responsibility

messages. We follow the steps in Frey and Dueck (2007) but in the context of learning an

AN structure. In other words, a data point and a cluster centre in Frey and Dueck (2007)

are replaced by a child node and a parent node respectively.

We recall from Section 3.1 that the problem of learning a graphical network structure

can then be summarised as finding the set of parents PAi for each variable Xi, i = 1, . . . , n

in a dataset. To facilitate the discussion, we suppose that a variable has only one parent

and the general case will be described later. The identification of the parents can also be

viewed as searching over the space of valid configurations of PA = {pa1, . . . , pan}, where

the scalar pai, i = 1, . . . , n is the parent of Xi, so as to minimise the energy

E(PA) = −
n∑

i=1

s(Xi, pai), (A.1)

where s(Xi, pai) indicates how well the variable pai is suited to be the parent of the variable

Xi. Usually the maximisation of the network similarity, Snet, which is the negative energy
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plus a constraint function that enforces valid parent configurations, is performed:

Snet(PA) = −E(PA) +
n∑

k=1

δk(PA), (A.2)

=
n∑

i=1

s(Xi, pai) +
n∑

k=1

δk(PA), (A.3)

where δk(PA) is a penalty term that equals −∞ if some variable Xk, whose parent is

different from itself, has been chosen to be the parent of variable Xi and 0 otherwise.

This means that whenever a variable is selected as a parent by another variable, it is

not allowed to have a parent other than itself. Equation (A.3) can be represented using

a factor graph F in which each term in (PA) is represented by a function node and

each parent pai is represented by a variable node. Function nodes and variable nodes

are connected by edges, and a variable node is connected to a function node if and only

if its corresponding term depends on the variable. For example, the term s(Xi, pai) in

the above expression has a corresponding function node that is connected to the single

variable pai and the term δk(PA) has a corresponding function node that is connected

to all variables pa1, . . . , pan as shown in Figure 3.1. The global function S(PA) in the

factor graph F is given by the sum of all the functions represented by function nodes. The

max-sum algorithm, which is the log-domain version of the max-product algorithm, can

be used to search over configurations of the parents PA in the factor graph that maximise

S(PA). The max-sum algorithm for the factor graph F consists of recursively sending

messages from variables to functions and from functions to variables as follows:

• the message sent from pai to δk(PA) consists of n real numbers

⎛
⎜⎜⎜⎝

ρi→k(X1)
...

ρi→k(Xn)

⎞
⎟⎟⎟⎠

(Figure 3.1(b)).

• The message sent from δk(PA) to pai also consists of n numbers

⎛
⎜⎜⎜⎝

αi←k(X1)
...

αi←k(Xn)

⎞
⎟⎟⎟⎠

(Figure 3.1(c)).

The value of pai can be estimated at any time by summing all incoming availability α and

similarity S messages (Figure 3.1(d)). The responsibility ρ messages are computed as the

element-wise sum of all incoming messages because they are outgoing from variables:

ρi→k(pai) = s(Xi, pai) +
∑

k′:k′ �=k

αi←k′(pai). (A.4)
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The sum of the incoming messages and the maximum over all variables except the variable

the message is being sent to, give the messages sent from functions to variables. For

instance, the message sent from the penalty function δk to the parent variable pai is:

αi←k(pai) =

best possible configuration satisfying δk given pai︷ ︸︸ ︷
max

X1,...,Xi−1,Xi+1,...,Xn

[
δk(X1, . . . , Xi−1, pai, Xi+1, . . . , Xn) +

∑
i′:i′ �=i

ρi′→k(Xi′ )

]
.

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

best configuration with or without parent Xk︷ ︸︸ ︷∑
i′:i′ �=k

max
j′

ρi′→k(Xj′)) , for pai = k = i

best configuration with no parent Xk︷ ︸︸ ︷∑
i′:i′ �=k

max
j′:j′ �=k

ρi′→k(Xj′)) , for pai 
= k = i

Xk is a parent︷ ︸︸ ︷
ρk→k(Xk) +

best configuration of others︷ ︸︸ ︷∑
i′:i′ /∈{i,k}

max
j′

ρi′→k(Xj′)), for pai = k 
= i

max

[ best configuration with no parentXk︷ ︸︸ ︷
max

j′:j′ �=k
ρk→k(Xj′) +

∑
i′:i′ /∈{i,k}

max
j′

ρi′→k(Xj′),

best configuration with a parentXk︷ ︸︸ ︷
ρk→k(Xk) +

∑
i′:i′ /∈{i,k}

max
j′

ρi′→k(Xj′)

]
, for pai 
= k 
= i

(A.5)

The vector messages

⎛
⎜⎜⎜⎝

ρi→k(X1)
...

ρi→k(Xn)

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

αi←k(X1)
...

αi←k(Xn)

⎞
⎟⎟⎟⎠ are easier to interpret if they

are viewed as the sum of constant and variable components (with respect to pai), that is,

ρi→k(pai) = ρ̃i→k(pai) + ρi→k, (A.6)

and

αi←k(pai) = α̃i←k(pai) + αi←k. (A.7)

For convenience, if we let

ρi→k = max
j:j �=k

ρi→k(Xj), (A.8)

then

max
j′:j′ �=k

ρ̃i→k(Xj′) = 0, (A.9)

and

max
j′

ρ̃i→k(Xj′) = max(0, ρ̃i→k(Xk)). (A.10)
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By setting

αi←k = αi←k(pai : pai 
= Xk), (A.11)

we have

α̃i←k(pai) = 0 for all pai 
= Xk. (A.12)

This also means that

∑
k′:k′ �=k

α̃i←k′(pai) = α̃i←pai(pai) for pai 
= Xk. (A.13)

and ∑
k′:k′ �=k

α̃i←k′(pai) = 0 for pai = Xk. (A.14)

Using (A.6) and (A.7), we solve for

ρ̃i→k(pai = Xk) = ρi→k(pai = Xk)− ρi→k (A.15)

and

α̃i←k(pai = Xk) = αi←k(pai = Xk)− αi←k (A.16)

to obtain simple update equations where ρ and α terms cancel as follows:

ρ̃i→k(pai = Xk) = ρi→k(pai = Xk)− ρi→k, (A.17)

= ρi→k(Xk)− max
j:j �=k

ρi→k(Xj), (A.18)

= s(Xi, Xk) +
∑

k′:k′ �=k

αi←k′ − max
j:j �=k

[s(Xi, Xj)

+α̃i←j(Xj) +
∑

k′:k′ �=k

αi←k′ ], (A.19)

where (A.18) is obtained using (A.8). (A.19) results from (A.4), (A.13) and (A.14).

α̃i←k(pai = Xk) = αi←k(pai = Xk)− αi←k (A.20)

= αi←k(Xk)− αi←k(Xj : Xj 
= Xk) (A.21)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i′:i′ �=k max(0, ρ̃i′→k(Xk))

+
∑

i′:i′ �=k ρi′→k −
∑

i′:i′ �=k ρi′→k, for k = i

ρ̃k→k(Xk) +
∑

i′:i′ /∈{i,k}max(0, ρ̃Xi′→Xk
(Xj′)) +

∑
i′:i′ �=i ρXi′→Xk

−max[0, ρ̃k→k(Xk)

+
∑

i′:i′ /∈{i,k}max(0, ρ̃Xi′→Xk
(Xj′))]−

∑
i′:i′ �=i ρi′→k, for k 
= i

(A.22)
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where (A.21) is obtained using (A.11). (A.22) results from (A.5), (A.6), (A.9) and (A.10).

The vector messages are of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

ρi→k(Xk)
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

αi←k(Xk)
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

given that

ρ̃i→k(pai) and α̃i←k(pai) for pai 
= Xk are not used in the updates. Hence messages

can be considered to be scalar. This allows to define the responsibilities r(Xi, Xk) and

availabilities a(Xi, Xk) as:

r(Xi, Xk) = ρ̃i→k(pai = Xk) = s(Xi, Xk)− max
j:j �=k

[s(Xi, Xj) + a(Xi, Xj)], (A.23)

and

a(Xi, Xk) =

⎧⎨
⎩ α̃i←k(pai = Xk) =

∑
i′:i′ �=k max(0, r(Xi′ , Xk)), for k = i

min[0, r(Xk, Xk) +
∑

i′:i′ /∈{i,k}max(0, r(Xi′ , Xk))], for k 
= i
(A.24)

where the min[0, .] in the availability update comes from the fact that x − max(0, x) =

min(0, x).
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B Dimensionless equations

B.1 Duffing resonator

The dimensional form of the driven Duffing equation is given by

mẍ + k1ẋ + k2x + δx3 = F cos(ωt), (B.1)

where m is the mass of the resonator, k1 = is the damping term (ω0 is the natural

frequency of the resonator and Q is its quality factor), k2 is the spring constant, δ is the

cubic nonlinear spring constant. F and ω represent the amplitude and the frequency of

the driving force, respectively.

By setting x = zd, where d is the maximum allowable displacement of the oscillators

or characteristic dimension, and t = τ
ω0

and using the dimensionless variables z and τ ,

Equation (B.1) then becomes

mω2
0d

d2z

dτ2
+ mω2

0

d

Q

dz

dτ
+ mω2

0dz + δd3z3 = F cos
(

ω

ω0
τ

)
. (B.2)
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Using the relations mω2
0 = k2 and k2d = F , and setting Ω = ω

ω0
, we have,

F d2z

dτ2
+
F
Q

dz

dτ
+ Fz + δd3z3 = F cos(Ωτ). (B.3)

Dividing the above equation by F = k2d, we obtain

d2z

dτ2
+

1
Q

dz

dτ
+ z +

δ

k2
d2z3 = Fd cos(Ωτ), (B.4)

where Fd = F
F is the normalised driving force. Hence the normalised form of the Duffing

equation can be written as

ẍ + γẋ + x + δx3 = Fd cos(Ωτ), (B.5)

where γ = 1
Q and δ = δ

k2
d2.

B.2 Van der Pol oscillator

The van der Pol equation is given by:

mẍ + μ(x2 − d2)ẋ + kx = 0, (B.6)

where μ is the damping term and k is the spring constant. To match the fundamental

frequency of Duffing resonator and Van der Pol oscillator, we assume that μ = k1 and

k = k2.

By using the scaled variables for the displacement and time as previously, we have

mω2
0d

d2z

dτ2
+ μd3ω0(z2 − 1)

dz

dτ
+ kdz = 0, (B.7)

d2z

dτ2
+

μd2

√
mk

(z2 − 1)
dz

dτ
+ kdz = 0. (B.8)

The term μ√
mk

is equivalent to 1
Q which implies

d2z

dτ2
+

d2

Q
(z2 − 1)

dz

dτ
+ z = 0. (B.9)

Therefore the normalised form of the Van der Pol equation is given by

ẍ + γ�(x2 − 1)ẋ + x = 0, (B.10)
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where γ� = μd2√
mk

.

B.3 Coupled driven Duffing resonator and van der Pol oscillator

When the driven Duffing resonator and van der Pol oscillators are coupled together through

displacement, the following two equations are obtained using the above re-scaled time and

displacement variables.

ẍi,j + γẋi,j + xi,j + δx3
i,j = κ

( N∑
n=1

xn −Nxi,j

)
+ Fd cos(Ωτ), (B.11)

ẍi,j + γ�(x2
i,j − 1)ẋi,j + xi,j = κ

( N∑
n=1

xn −Nxi,j

)
, (B.12)

where κ is the coupling strength between the resonators and oscillators, xi,j represents the

displacement of the resonator or oscillator located at the i-th row and j-th column in the

square lattice, N is the number of nearest neighbours of the element at indices (i, j), and

xn, n = 1, . . . , N , are the displacements of its nearest neighbours. A resonator coupled to

an oscillator that is located in the middle of the array, for example, have four neighbours

each and the equation of motion of the coupled system is given by:

ẍi,j + γẋi,j + xi,j + δx3
i,j = κ(xi,j+1 + xi,j−1 + xi−1,j + xi+1,j − 4xi,j)

+Fd cos(Ωτ), (B.13)

ẍi,j + γ�(x2
i,j − 1)ẋi,j + xi,j = κ(xi,j+1 + xi,j−1 + xi−1,j + xi+1,j − 4xi,j). (B.14)
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C

Multiple time scales analysis

of the driven Duffing

resonator weakly coupled to

a van der Pol oscillator

The method of multiple time scales (Nayfeh and Mook, 1995) is a global perturbation

scheme, that is, a method that is used to find an approximate solution to a problem which

cannot be solved exactly. It is useful in systems characterised by disparate time scales,

such as weak dissipation in an oscillator. In Nayfeh and Mook (1995), the basic method

has been described to characterise the behaviour of a single driven Duffing resonator and

a single van der Pol oscillator. In this work, the derivations are related to a driven Duffing

resonator coupled to a van der Pol oscillator, which is novel and has appeared in the

following two journal papers: Wei et al. (2010); Randrianandrasana et al. (2010).

In order to introduce the method of multiple time scales, let us recall the dimensionless

equation of motion of the coupled system when the van der Pol oscillator is coupled to
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the driven Duffing resonator, as seen in Chapter 4:

ẍ + γxẋ + x + δx3 = κ(y − x) + fd cos
(ωd

ωx
τ
)
, (C.1a)

ÿ + γy(y2 − 1)ẏ +
(ωy

ωx

)2
y = κ(x− y), (C.1b)

where, x, γx, ωx and x2, γy, ωy are the dimensionless displacement, damping coefficient and

fundamental frequency of the Duffing resonator and the van der Pol oscillator respectively.

fd and ωd are the amplitude and frequency of the external driving force. δ is the non-

linearity of the Duffing resonator and κ is the coupling stiffness between the two coupled

elements. We consider the case where both the internal and external resonances coincide

(ωx = ωy). The method of multiple time scales is valid when the system parameters

are small and are of the same order so that a solvable linear problem around a small

perturbation is obtained. Equation (C.1) is therefore rewritten as:

ẍ + εμxẋ + x + εαx3 = εβ(y − x) + εF cos(Ωτ), (C.2a)

ÿ + εμy

(
y2 − 1

)
ẏ + y = εβ(x− y), (C.2b)

where the coefficients μx, μy, α, β and F are such that γx = εμx, γy = εμy, δ = εα, κ = εβ

and fd = εF . ε � 1 is a positive parameter and Ω = ωd
ωx

is the ratio of the frequency of

the excitation to the linear natural frequency of the system. Equation (C.2) could not be

solved using a standard perturbation method in which a solution expressed as an expansion

in a power series is assumed to exist. This is due to the presence of small divisors and

secular terms in the expansion. On the one hand, the small divisor terms occur for some

values of the frequency Ω which make some of the denominators in the expansion to be

very small. Normally the expansion is composed of two terms and when Ω ≈ 1, small

divisors first appear in the first term hence the name primary or main resonance when

Ω ≈ 1. For other values of Ω which cause the small divisors to first appear in the second

term, these cases are referred to as secondary resonances. On the other hand, the name

“secular terms” comes from the astronomy literature. Etymologically, the word secular

is derived from the French word siècle, which means century. For the expansion to be

uniform, the corrections must be free of secular terms as will be explained later.

As the name of the method suggests, in the multiple scales analysis, the scales τ0 = τ

and τ1 = ετ are introduced to determine an approximate solution to Equation (C.2). τ0 is

called the fast time and τ1 the slow time since it only becomes significant when t ∼ 1/ε.
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Hence the derivatives are transformed according to

d

dτ
= D0 + εD1 + . . . ,

d2

dτ2
= D2

0 + 2εD0D1 + . . . ,

where Dn = ∂/∂τn.

Since we consider the coupled system as one unit, we set the natural frequencies (ω0) of

the Duffing and the van der Pol to be the same.

Since τ appears explicitly in the governing equation, we check whether the dependence on

τ is fast or slow. In this case, we check cos(Ωτ). At the primary resonance, Ω ≈ 1. Since

Ω is away from zero, cos(Ωτ) is fast varying, and we write

cos(Ωτ) = cos(Ωτ0),

that is, τ is represented in terms of τ0.

Then Equation (C.2) becomes

D2
0x + x = ε

[
β(y − x) + F cos(Ωτ0)− 2D0D1x− μxD0x− αx3

]
, (C.3a)

D2
0y + y = ε

[
β(x− y)− 2D0D1y − μy

(
y2 − 1

)
D0y

]
. (C.3b)

Clearly, the left-hand side of Equation (C.3) is a simple harmonic oscillator whose solutions

can be approximated in the form

x = x0(τ0, τ1) + εx1(τ0, τ1) + . . . , (C.4a)

y = y0(τ0, τ1) + εy1(τ0, τ1) + . . . . (C.4b)

Substituting (C.4a) and (C.4b) into (C.3a) and (C.3b) respectively and equating coeffi-

cients of like powers of ε, we obtain

D2
0x0 + x0 = 0, (C.5a)

D2
0y0 + y0 = 0, (C.5b)

D2
0x1 + x1 = −2D0D1x0 − μxD0x0 − αx3

0 + β(y0 − x0) + F cos(Ωτ0), (C.5c)

D2
0y1 + y1 = −2D0D1y0 − μy

(
y2
0 − 1

)
D0y0 + β(x0 − y0). (C.5d)
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The general solution of (C.5a) and (C.5b) can be expressed as

x0(τ0, ε) = Ax(τ1)eiτ0 + cc, (C.6a)

y0(τ0, ε) = Ay(τ1)eiτ0 + cc, (C.6b)

where cc denotes the complex conjugate. The quantities Ax(τ1) and Ay(τ1) are arbitrary,

complex functions which are determined from Equations (C.5c) and (C.5d) by imposing

solvability or secular conditions.

Then (C.5c) and (C.5d) become

D2
0x1 + x1 = −2

(
ieiτ0 dAx

dτ1
+ cc

)
− μxiAxeiτ0 − α

(
A3

xei3τ0

+3|Ax|2Axeiτ0 + cc
)

+ β
(
(Ay −Ax)eiτ0 + cc

)
+

F

2
(
ei(1+εσ)τ0 + cc

)
, (C.7a)

D2
0y1 + y1 = −2

(
ieiτ0

dAy

dτ1
+ cc

)
+ β(Ax −Ay)eiτ0 + cc

−μy

(
A2

ye
2iτ0 + 2|Ay|2 + Ay

2
e−2iτ0 − 1

)(
Ayie

iτ0 + cc
)
,

where a detuning parameter σ has been introduced since the case Ω ≈ 1 is considered. σ

is defined by

Ω = 1 + εσ. (C.8)

Then

Ωτ0 = (1 + εσ)τ0 = τ0 + εστ0 = τ0 + στ1. (C.9)

In Equation (C.7a), for example, there are terms whose common factor is eiτ0 and other

terms whose common factor is ei3τ0 , where τ0 is a fast time scale. In that case, the secular

terms correspond to the factors of eiτ0 since eiτ0 becomes appreciable compared to ei3τ0

after very long times, given that τ0 is fast varying. Thus, for the expansion to be uniform,

the corrections must be free of secular terms.

Eliminating the secular terms from (C.7), yields

2
dAx

dτ1
+ μxAx − 3iα|Ax|2Ax + βi(Ay −Ax) +

i

2
Feiστ1 = 0, (C.10a)

dAy

dτ1
+ i

β

2
(Ax −Ay) +

μy

2
(|Ay|2 − 1)Ay = 0. (C.10b)

Expressing Ax(τ1, ε) and Ay(τ1, ε) in the polar forms Ax(τ1, ε) = ax(τ1, ε)eiθx(τ1,ε) and

Ay(τ1, ε) = ay(τ1, ε)eiθy(τ1,ε), where ax(τ1, ε) and θx(τ1, ε), respectively, ay(τ1, ε) and θy(τ1, ε)

are the amplitudes and the phases of the fundamental solutions. Separating real and imag-
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inary parts in (C.10) yields

2
dax

dτ1
= −μxax + βay sin Γy −

F

2
sin Γx, (C.11a)

2
day

dτ1
= −μy

(
a2

y − 1
)
ay − βa1 sin Γy, (C.11b)

2ax
dΓx

dτ1
= −(β − 2σ)ax + 3αa3

x − βay cos Γy −
F

2
cos Γx, (C.11c)

2ay
dΓy

dτ1
= (β − 2σ)ay − βax cos Γy − 2ay

dΓx

dτ1
, (C.11d)

where the following transformations have been introduced:

Γx = θx − στ1, (C.12)

and

Γy = θy − θx. (C.13)

Hence
dΓx

dτ1
=

dθx

dτ1
− σ, (C.14)

and
dΓy

dτ1
=

dθy

dτ1
− dθx

dτ1
. (C.15)

The previous derivatives in Equations (C.7a) to (C.11d) are computed with respect to

τ1. To determine the steady-state motions, we use the fact that ax, ay and Γx, Γy are

constants, set dax
dτ1

= day

dτ1
= 0 and dΓx

dτ1
= dΓy

dτ1
= 0. From (C.11), we find, for the Duffing

resonator,

(
ax(β − 2σ) + 3a3

xα−
a2

y(β − 2σ)
ax

)2

+

(
axμx −

a2
yμy

ax
(1− a2

y)

)2

=
1
4
F 2. (C.16)

Similarly, for the Van der Pol oscillator, we have

(β − 2σ)2a2
y + μ2

ya
2
y

(
1− a2

y

)2 = a2
xβ2. (C.17)

Equations (C.16) and (C.17) correspond to the steady-state response of the amplitudes of

the Duffing resonator and van der Pol oscillator respectively, from which the frequency-

response curves in Figure 4.1 are constructed.
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