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Abstract. We consider a variation of the prototype combinatorial optimization
problem known as graph colouring. Our optimization goal is to colour the vertices
of a graph with a fixed number of colours, in a way to maximize the number of
different colours present in the set of nearest neighbours of each given vertex.
This problem, which we pictorially call palette-colouring, has been recently
addressed as a basic example of a problem arising in the context of distributed
data storage. Even though it has not been proved to be NP-complete, random
search algorithms find the problem hard to solve. Heuristics based on a naive
belief propagation algorithm are observed to work quite well in certain conditions.
In this paper, we build upon the mentioned result, working out the correct belief
propagation algorithm, which needs to take into account the many-body nature
of the constraints present in this problem. This method improves the naive belief
propagation approach at the cost of increased computational effort. We also
investigate the emergence of a satisfiable-to-unsatisfiable ‘phase transition’ as a
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function of the vertex mean degree, for different ensembles of sparse random
graphs in the large size (‘thermodynamic’) limit.

Keywords: cavity and replica method, message-passing algorithms, optimization
over networks
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1. Introduction

Graph colouring is a prototype of combinatorial optimization or constraint satisfaction
problems [1]. It is NP-complete, so that it can be taken as a benchmark for optimization
algorithms. Moreover, it is at the core of a large number of technologically relevant
combinatorial problems, such as scheduling. The goal is to assign a colour to each vertex
of a given graph (with a fixed number of available colours) in such a way that no pair of
vertices connected by an edge have the same colour. Alternatively, one may be satisfied
with a suboptimal solution, i.e. minimizing the number of vertex pairs with the same
colour.

A nice variant of the above problem has been recently proposed and investigated
by Bounkong and co-workers [2, 3]. The variation consists in requiring that the set of
colours assigned to each given vertex and its neighbours includes all available colours.
The latter problem, which we pictorially call palette-colouring, has been suggested as a
basic example of a constraint satisfaction problem arising in the context of distributed
data storage [2]. The basic idea is as follows. On a computer network with limited storage
resources at each node, it may be convenient to divide a file into a number of segments
(colours), which are then distributed over different nodes. Each given node should be able
to retrieve the different segments by accessing only its own and nearest-neighbour storage
devices, whence the above described constraints. Even in this case, one might be satisfied
with a suboptimal solution, i.e. maximizing the number of colours present in each node
neighbourhood. We note that palette-colouring has not been proved to be NP-complete,
but there is numerical evidence that it becomes intractable for large system sizes [2]. With
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respect to ordinary colouring, the most relevant difference is that the modified problem
becomes easier to solve for graphs with higher, rather than lower, vertex degrees.

In the last few years, different types of constraint satisfaction problems have been
faced by message-passing techniques, among which belief propagation (BP) [4, 5]. BP has
been originally conceived as a dynamic programming algorithm to perform exact statistical
inference for Markov random field models defined on graphs without loops (trees) [6, 7].
Subsequently, it has been demonstrated to be relatively good even for loopy graphs. Such
a successful behaviour seems to be related to the fact that actually BP is equivalent to
determining a minimum of an approximate free energy function (Bethe free energy) for
a corresponding thermodynamic system. The Bethe approximation was indeed very well
known to physicists [8, 9], but the connection with BP is a relatively recent result [4].

In [2], Bounkong, van Mourik and Saad analyse an algorithm based on BP, comparing
its performance with a variant of Walksat [10]. In particular, the BP-based algorithm
makes use of beliefs averaged over several iterations, together with a common decimation
strategy. It is observed that, while Walksat works definitely better for small graphs (100
vertices), the opposite occurs for larger (1000 vertices) random graphs. This result is
somehow related to the nature of BP itself, since large random graphs are known to be
tree-like, in the sense that the probability of finite length loops tends to zero as the number
of vertices becomes large. Nevertheless, the BP algorithm employed in [2] follows a naive
scheme, in which every message provides a contribution to the probability distribution of
a single variable, taking into account a given interaction (constraint). Due to the many-
variable nature of the constraints present in the palette-colouring problem, this scheme
no longer provides the exact solution even in the case of trees. As suggested in the cited
work, the exact solution can be determined at the cost of propagating generalized messages
providing a contribution to the joint probability distributions of pairs of nearest-neighbour
variables (instead of single-variable distributions). This scheme has already been used
in different works dealing with structural and spin glass models (see, for instance, [11]
and [12]) in the presence of similar ‘all-neighbours’ interactions. In the current paper,
we work out the pairwise BP scheme for the palette-colouring problem. As readers
more familiar with these methods may have noticed, this scheme is not a generalized
BP [13]. Indeed, in the literature, the latter term usually denotes a class of algorithms
computing the minima of more refined free energy approximations [14], rather than Bethe
free energies [15]. Here, however, we derive an algorithm computing the correct Bethe
approximation, which is the exact solution for loopless graphs. We then compare the
performance of the new BP algorithm (which we shall simply call BP from now on) to
the naive one, showing that further improvements can be obtained.

Let us note that the correct Bethe approximation has already been considered for
this problem by Wong and Saad [3], in order to investigate the emergence and nature
of the satisfiable-to-unsatisfiable transition, observed upon decreasing the mean vertex
degree of different sparse random graphs. In the replica-symmetry assumption, the
authors of the cited paper study average macroscopic properties of a given random
graph ensemble, making use of a numerical method of the population dynamics type.
In the current work, we mainly focus on the algorithmic properties of the message-passing
procedure and related decimation strategies. In particular, we discuss both analytical
and numerical strategies for limiting the increase of computational cost arising from the
pairwise messages. Also, in the last part of this paper, we develop the distributional
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version of the message-passing scheme, which in the literature is usually denoted as
the cavity method [16] and used to study random (glass-like) systems [17]. We limit
this analysis to the replica-symmetry assumption and to the simple colour-symmetric
(paramagnetic) solution. Within these simplifying hypotheses, we compute the quenched
entropy for given random graph ensembles and estimate the corresponding satisfiability
threshold, partially recovering a result of [3].

2. Statement of the problem and belief propagation

We consider an undirected simple graph, whose vertices are denoted by i = 1, . . . , N . Our
goal is to assign to each vertex i a colour xi from a given colour set C ≡ {1, 2, . . . , q}, in
a way to minimize the cost (energy) function:

E(x1, . . . , xN) =
N∑

i=1

η(xi, x∂i), (1)

where ∂i denotes the neighbourhood of i (i.e. the set of vertices directly connected to i by
an edge) and x∂i ≡ {xj}j∈∂i is the array of colour variables in ∂i. The elementary energy
term η(xi, x∂i) counts the number of missing colours in the neighbourhood of i, including
i itself. A suitable expression for the η function is therefore

η(x1, . . . , xn) =
∑

x∈C

n∏

i=1

[1 − δ(xi, x)], (2)

where δ(x, y) is a Kronecker delta and n is the number of entries of the η function (not a
priori fixed). With the above definitions, the cost function value is E(x1, . . . , xN) = 0 if
and only if the colour assignments x1, . . . , xN satisfy all constraints.

In the current work, we deal with this problem by studying an equivalent
‘thermodynamic’ system, whose potential energy is defined by the cost function
E(x1, . . . , xN). For energy minimization, we consider the zero-temperature limit. The BP
approach allows us to determine approximate marginals of the equilibrium (Boltzmann)
probability distribution for the colour variables. As mentioned in section 1, our
approximation becomes exact when the graph is a tree. From the treatment described
in appendix A, it turns out that we can write two different marginals, namely the joint
distribution of two colour variables on a graph edge pi,j(xi, xj) and the joint distribution of
a given colour variable together with its neighbours pi,∂i(xi, x∂i) (‘cluster’ distribution), as
a function of pairwise messages mj→i(xj , xi). Each given term mj→i(xj , xi) may be viewed
as a message sent from the cluster {j, ∂j} to the edge {i, j}, representing the influence
of the constraint associated with the vertex j onto the colour variables of the edge {i, j}
(some details about this interpretation are elucidated in appendix B). In formulae, we
have

pi,j(xi, xj) = efij mi→j(xi, xj) mj→i(xj , xi), (3)

pi,∂i(xi, x∂i) = efi−βη(xi,x∂i)
∏

j∈∂i

mj→i(xj , xi), (4)
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where β is the inverse temperature, and fij and fi, usually called free energy shifts (see
appendix A), can be determined by normalization as

e−fij =
∑

xi,xj

mi→j(xi, xj) mj→i(xj, xi), (5)

e−fi =
∑

xi,x∂i

e−βη(xi,x∂i)
∏

j∈∂i

mj→i(xj , xi). (6)

The messages have to satisfy a set of self-consistency equations, which basically account
for compatibility between ‘overlapping’ distributions. For instance, the {i, j} edge
distribution must be a marginal of the cluster distributions associated with both vertices
i and j. Considering the former case, we can write

pi,j(xi, xj) =
∑

x∂i\j

pi,∂i(xi, x∂i), (7)

where the sum runs over the values of the array of colour variables x∂i\j ≡ {xk}k∈∂i\j,
i.e. the colour variables in the neighbourhood of i except xj. In fact, we can obtain
the self-consistency equation by replacing (3) and (4) into the compatibility equation (7),
yielding

mi→j(xi, xj) ∝
∑

x∂i\j

e−βη(xi,x∂i)
∏

k∈∂i\j
mk→i(xk, xi), (8)

where a normalization factor has been replaced by the proportionality symbol. In order
to satisfy all the necessary compatibilities, one equation of the above form must hold for
each directed edge i → j. The BP algorithm solves the set of self-consistency equations
iteratively, starting from suitable (usually random or uniform) initial conditions for the
messages, until the distance between messages at subsequent updates goes below a given
threshold. From a heuristic point of view, each message update according to (8) is usually
interpreted as a propagation process, so that in the following we shall also denote (8) as
the propagation equation. For completeness, in appendix B we also report the propagation
equations of the naive BP algorithm, which are numerically simpler.

We note that, by employing the explicit expression (2) of the elementary energy term
(cluster energy), we can significantly reduce the computational cost of the propagation
equation (8) as well. Indeed, it turns out that the latter can be rewritten as

mi→j(xi, xj) ∝
∑

B⊆C\xi\xj

(−1 + e−β)|B| ∏

k∈∂i\j

∑

xk∈C\B
mk→i(xk, xi), (9)

where the outer sum runs over all the possible subsets B of the colour set C without
the colours xi, xj . The derivation can be found in appendix C. Now, we compare the
computational cost of the generic equations with respect to the simplified form. Assuming
that d is the degree of vertex i, the generic equation (8) requires (d−1)qd−1 multiplications,

which can be reduced to 2qd−1 +
∑d−2

n=2 qd−n by suitable (straightforward) programming
tricks. Taking into account that a trivial necessary condition for an elementary constraint
to be satisfiable is d ≥ q − 1, the leading term of the computational cost turns out to be
at least qq−2. The simplified equation (9), however, requires (d − 1)2q−2 multiplications,
which is clearly much more convenient for any q > 2.

doi:10.1088/1742-5468/2011/05/P05010 5

http://dx.doi.org/10.1088/1742-5468/2011/05/P05010


J.S
tat.M

ech.
(2011)

P
05010

Palette-colouring: a belief propagation approach

Finally (for completeness and future use), we also report the simplified expression of
the cluster free energy shift (6):

e−fi =
∑

xi∈C

∑

B⊆C\xi

(−1 + e−β)|B| ∏

j∈∂i

∑

xj∈C\B
mj→i(xj , xi), (10)

which can be obtained by an analogous derivation.

3. Optimization strategy and numerical results

In this section, we define the optimization strategy and test its performance on single
instances of random graphs drawn from a suitable ensemble. Our strategy involves a
decimation procedure, which is analogous to that of [2], but is carried out on the basis of
nearest-neighbour pair distributions pi,j(xi, xj), rather than single-variable distributions.
Given a graph and a number q of available colours, we first fix the colour of a randomly
chosen vertex in order to break the colour permutation symmetry, and proceed as follows.
We perform the first BP run (starting from uniform messages) and determine the pair
distributions according to (3). For each edge {i, j}, we fix the colour variables xi, xj at
the values x̄i, x̄j having the largest joint probability, provided the latter is larger than
a certain threshold. If no probability satisfies such a condition, we only fix the pair of
variables with the largest joint probability over the whole graph. Then, we rerun BP
(starting from the previously computed messages) and iterate the above procedure until
all variables are fixed or all constraints are satisfied (in the latter case, non-fixed variables
can be assigned a random colour). We always set the threshold probability at 0.9, as
done in [2]. We observe that, in most cases, one of the two variables chosen to be fixed
has already been fixed at a previous stage of the decimation procedure, so that, in most
cases, we actually fix just one variable for each given pair. Therefore, even though we are
working with pair, rather than single-variable distributions, we observe that choosing the
same threshold probability results in a similar decimation rate.

We now spend a few words on the precise meaning of ‘fixing a variable’, as introduced
above, from the point of view of the message-passing procedure. In the thermodynamic
language, colouring a vertex is tantamount to imposing an infinite energy penalty to all
other possible colours. Thus, if we want to fix a single variable xi to a given colour x̄i,
we may add to the corresponding cluster energy η(xi, x∂i) a term γ[1 − δ(xi, x̄i)], and
then take the limit γ → ∞. By the propagation equation (8), it is easy to see that such
operations imply that all the messages mi→j(xi, xj), sent from the vertex i (more precisely,
from the cluster associated with the vertex i) must be multiplied by a prefactor δ(xi, x̄i),
which basically preserves only messages of the type mi→j(x̄i, xj). As a consequence, when
we fix the colours of two nearby vertices, it turns out that the latter no longer need to
exchange messages or, in other words, the messages remain fixed at

mi→j(xi, xj) = mj→i(xj , xi) = δ(xi, x̄i) δ(xj, x̄j). (11)

Although such messages have no effect on the vertices i and j themselves, due to the form
of the propagation equation, they may still influence their neighbourhoods ∂i\j and ∂j\i.

Before presenting the results, we note that in [2] the authors observe that the naive
BP hardly ever converges. This problem is circumvented by computing probability
distributions as ‘time averages’ over a number of iterations, which turns out to provide
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sufficient information for guiding the decimation procedure. In our scheme, the BP
algorithm turns out to converge more frequently, except in the vicinity of the satisfiability
threshold (especially after several vertices have been coloured). Convergence may be
improved by computing the message updates as convex linear combinations between the
old estimates (with coefficient α) and the updates obtained from the propagation equation
(with coefficient 1 − α). The adjustable parameter α plays the role of a damping in the
propagation dynamics and we refer to it as the damping parameter. Nevertheless, we
generally find that reaching convergence is not really necessary. Indeed, a very small
number ν of sequential updates7 of all messages are sufficient to provide the relevant
information about pair probabilities and that a larger number of iterations does not
significantly improve the overall algorithm performance. This fact allows us to drastically
reduce the computational cost of the full procedure, although it does not affect the
complexity of a single iteration.

We are now in a position to perform a quantitative comparison with the naive BP
approach [2]. As in the cited work, we consider a number of available colours q = 4 and
random graphs with N = 1000 vertices. Graphs are generated in such a way to have
vertices with two different degrees d = �c� and d = 	c
, where c is the mean degree. The
degree distribution, i.e. the probability of a vertex having degree d, is therefore

ρd =

⎧
⎪⎨

⎪⎩

	c
 − c if d = �c�
c − �c� if d = 	c

0 otherwise,

(12)

which we denote as a linear distribution. We always assume c ≥ q − 1, in order to avoid
the appearance of vertices with degree less than q − 1, for which the local constraints
are necessarily unsatisfiable. We do not report results about graphs with cut-Poissonian
degree distribution [2], which exhibit analogous behaviour.

In figure 1 we report both perfect colouring and unsatisfaction measures, over 1000
random graph samples, as a function of the mean degree. The perfect colouring measure
is simply defined as the fraction of samples for which the algorithm has been able to
find a colour assignment satisfying all constraints. The unsatisfaction measure counts
the fraction of missing colours per vertex, i.e. the energy per vertex divided by the total
number of colours, E(x1, . . . , xN )/Nq (x1, . . . , xN being the colour assignments found by
the algorithm), averaged over all samples. We can see that the BP approach improves the
naive one in both respects. The perfect colouring measure turns out to be consistently
increased in the vicinity of the critical mean degree values, below which it rapidly vanishes.
In this region, naive BP itself was already found to work better than the Walksat-like
algorithm analysed in [2].

In analogy with the ordinary colouring problem [18] (though with a reversed
role for the mean degree c), we expect that, for even lower c values, our problem
becomes unsatisfiable with high probability (i.e. with probability tending to 1 in the
‘thermodynamic’ N → ∞ limit). We also expect the presence of an intermediate hard-
satisfiable phase in which the problem is satisfiable with high probability but BP fails,
because of a clustered structure of the solution space (replica-symmetry breaking) [16]–
[20]. Accordingly, the perfect colouring probability falling down to zero is likely to indicate

7 With reference to the propagation equation (8), by sequential update we mean that, in generating a given ‘output’
(left-hand side) message, one makes use of updated ‘input’ (right-hand side) messages, if already available.
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Figure 1. Perfect colouring (left) and unsatisfaction (right) measures over 1000
graphs for naive BP [2] (open squares) and BP with ν = 3 and α = 0.1 (solid
squares), as a function of the mean degree. In both cases the inverse temperature
used for the computation is β = 10.

Figure 2. Perfect colouring (left) and unsatisfaction (right) measures over 1000
graphs for BP with α = 0.1 and β = 10 as a function of the mean degree. Squares,
circles and triangles denote ν = 1, 2 and 3, respectively. In the main figures,
interpolation between data points in the transition region has been performed by
taking into account the extra data points reported in the insets.

the onset of such hard-satisfiable phase rather than the truly unsatisfiable phase. We shall
return to this point later. For the moment, we observe that the BP approach definitely
works better than the naive one, even for very low c values, in the (expected) unsatisfiable
phase. In this region we observe both a reduction of the unsatisfaction measure itself and
of its growth rate with decreasing c.

Concerning the percentage of perfect colouring, we have noticed that the performance
of the algorithm is significantly affected by the number ν of iterations per decimation step,
only in a narrow region close to the critical c value. This suggests that in this region the
problem is actually more difficult to solve. Some results about the influence of the ν
parameter are reported in figure 2. Upon increasing ν, some improvement can also be

doi:10.1088/1742-5468/2011/05/P05010 8
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Figure 3. Perfect colouring (left) and unsatisfaction (right) measures over 1000
graphs for BP with ν = 2, α = 0.1 and β = 10, as a function of the mean degree.
Squares, circles and triangles denote number of vertices N = 1000, 2000 and 4000,
respectively.

observed in the unsatisfaction measure. However, as previously mentioned, increasing ν
values beyond 2 or 3 does not yield any further significant improvement. We also note
that a quantitatively comparable improvement of the unsatisfaction measure is obtained
by choosing a small but nonzero value of the damping parameter α. All the results
reported in the current paper have been obtained with α = 0.1, but it turns out that in
a rather large range (0.03 � α � 0.3) the average algorithm performance is practically
independent of the precise value of the damping parameter. Finally, we note that (for
ν ≥ 2) the perfect colouring measure exhibits a slight kink at c = 4.0. This can be
ascribed to an abrupt change in the structure of the graph ensemble. In fact, according
to the linear degree distribution (12), for c = 4 all vertices have exactly degree 4, whereas
for c > 4 or c < 4 a few vertices appear with degree 5 or 3, respectively.

We have also analysed the algorithm behaviour as a function of the number of
vertices N . The results are reported in figure 3. We can see that the transition in
the perfect colouring probability becomes more and more abrupt upon increasing N , and
a crossover point appears at a mean degree value c ≈ 3.943. Even though the precise
crossover value may depend on the algorithm parameters, such behaviour suggests that
the transition may be sharp (first-order-like) in the N → ∞ limit. The latter conjecture
is consistent with the fact that random graphs of increasing size become more and more
tree-like, such that the BP approach is able to provide better and better approximations.
In principle, the crossover point might be the signature of the satisfiable-to-unsatisfiable
transition but, as previously mentioned, we are rather led to identify it with the onset of
the hard-satisfiable phase. Indeed, the estimate of the satisfiability threshold, carried out
in the next section, provides further evidence in favour of the latter hypothesis.

4. Entropy and satisfiability threshold

In this section, we study average macroscopic properties of the BP solution over random
graph ensembles, with particular attention to the average entropy. The latter is usually
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denoted as quenched entropy in statistical mechanics language. Taking the limit β → ∞,
this quantity provides an average measure of (the logarithm of) the number of zero energy
configurations, i.e. perfect colourings, for a given ensemble, which also allows us to
estimate the satisfiability threshold. In this context, the main source of approximation
will be the replica-symmetry assumption, since the approximation due to BP itself is
expected to be negligible in the infinite size limit. Furthermore, we limit the analysis to BP
solutions that do not break the colour permutation symmetry (‘paramagnetic’ solutions),
because we have numerical evidence that, when BP converges, no spontaneous symmetry
breaking of the solution is ever observed. Average properties of non-paramagnetic (glass-
like) solutions have been investigated in [3], but they only appear at very low c values,
where the replica-symmetry assumption is expected to break down anyway.

According to the paramagnetic ansatz, the messages are always such that mi→j(x, x)
does not depend on x, and mi→j(x, y) does not depend on x, y, if x �= y. This means
that the only important quantity is ui→j ≡ mi→j(x, x)/mi→j(x, y), i.e. the ratio between
the ‘equal colours’ message and the ‘different colours’ message. Taking into account that
the message normalization is irrelevant to all observable quantities, we can write the full
message as

mi→j(x, y) = 1 − (1 − ui→j) δ(x, y) =

{
ui→j if x = y

1 otherwise.
(13)

We note that in principle one could also think about the inverse ratio
mi→j(x, y)/mi→j(x, x) as the relevant message, but this choice turns out to be unfeasi-
ble, due to the nature of the constraints, favouring the presence of different neighbouring
colours. Indeed, at zero temperature, it is easy to foresee the emergence of ‘hard’ messages
such that mi→j(x, x) = 0, stemming from vertices with degree q−1 (whose all-neighbours
are forced to have a different colour), whereas we always expect mi→j(x, y) �= 0 for x �= y
in a paramagnetic state.

Replacing (13) into the inner sum appearing in the simplified propagation
equation (9), we can write

∑

xk∈C\B
mk→i(xk, xi) = q − |B| − 1 + uk→i, (14)

where the term −1 +uk→i appears because xi /∈ B. Since the sum above only depends on
B via its cardinality |B|, in (9) we can replace the sum over B by a sum over cardinalities,
inserting suitable binomial coefficients. Thus we finally obtain a reduced propagation
equation for the message ratios:

ui→j =

∑q−1
n=0

(
q−1
n

)
(−1)n

∏
k∈∂i\j(q − n − 1 + uk→i)

∑q−2
n=0

(
q−2
n

)
(−1)n

∏
k∈∂i\j(q − n − 1 + uk→i)

, (15)

in which we have also taken the zero temperature (β → ∞) limit. The cluster free energy
shift can be similarly derived by replacing (13) in (10). In the zero temperature limit, we
obtain

e−fi = q

q−1∑

n=0

(
q − 1

n

)
(−1)n

∏

j∈∂i

(q − n − 1 + uj→i). (16)
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The edge free energy shifts can be directly obtained by inserting (13) into (5):

e−fij = q (q − 1 + ui→j uj→i). (17)

We can characterize a random graph ensemble by a probability distribution of
messages P (u). Such a distribution has to obey a functional equation (usually known
as the cavity equation [16]) of the following form:

P (u) =
∑

d

ρ̃d

∫
du1 P (u1) · · ·

∫
dud−1 P (ud−1)δ(u − û(u1, . . . , ud−1)), (18)

where û(u1, . . . , ud−1) is the ‘propagation function’ defined by (15), and where ρ̃d is the
probability of finding a vertex of degree d by choosing a random direction in a randomly
selected edge. It is easy to see that ρ̃d is related to the degree distribution ρd as

ρ̃d =
dρd

c
. (19)

In the context of the cavity method, the replica-symmetry assumption consists in the
fact that we consider a single distribution of messages. In a replica-symmetry breaking
scenario, each propagated quantity ui→j (message) would be replaced by a probability
distribution defined over different ergodic components (states) [16].

We solve the functional equation (18) numerically by a population dynamics
approach [16]. In a nutshell, we represent the distribution P (u) by an evolving population
of messages. An elementary evolution step consists in generating a new message according
to the propagation equation (15), making use of d− 1 messages randomly taken from the
population, where d is randomly generated according to the ρ̃d distribution. The newly
generated message replaces a randomly selected message of the population. Due to the
presence of hard messages u = 0 generated by degree q − 1 vertices, we observe that the
message distribution P (u) contains a Dirac delta peak centred in zero with weight ρ̃q−1.

From the message distribution, we can evaluate the average cluster and edge free
energy shifts as

fc =
∑

d

ρd

∫
du1P (u1) · · ·

∫
dud P (ud)fc(u1, . . . , ud), (20)

fe =

∫
du1 P (u1)

∫
du2 P (u2)fe(u1, u2), (21)

where the functions fc(u1, . . . , ud) and fe(u1, u2) are defined by (16) and (17). Thus we
obtain the average free energy per vertex as

f̄ = fc − c

2
fe, (22)

where c/2 is the average number of edges per vertex. The above formula directly descends
from (A.12). Finally, since we have incorporated a β factor in our free energy definition,
and since the limit β → ∞ fixes the energy at zero, the entropy per vertex is simply
s = −f̄ .

For actual calculations, we have considered random graph ensembles with the linear
degree distribution (as defined in section 3), and with the cut-Poissonian distribution
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Figure 4. Entropy per vertex (left) and fraction of hard messages (right) for
random graphs with linear degree distribution (q = 4), as a function of the mean
degree c.

Figure 5. The same as figure 4 for random graphs with cut-Poissonian degree
distribution.

(also considered in [2]), defined as

ρd =

⎧
⎪⎨

⎪⎩
e−(c−q+1) (c − q + 1)d−q+1

(d − q + 1)!
if d ≥ q − 1

0 otherwise,

(23)

where c is still the mean degree. This distribution also excludes vertices with degree
smaller than q − 1 and, hence, trivially unsatisfiable constraints.

In figures 4 and 5 we report the results for the two ensembles, respectively. As
expected, the entropy turns out to be a monotonically increasing function of the mean
degree, as the problem becomes easier to satisfy. It is interesting to note that the fraction
of hard messages ρ̃q−1 for the linear degree distribution turns out to be nonzero only
for c < q, which explains the kink observed in the entropy function. Negative entropy
identifies the unsatisfiable region (perfect colourings are exponentially rare), whereas the
zero entropy point identifies the satisfiability threshold cth. For the two ensembles, we
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respectively find cth ≈ 3.825 and cth ≈ 4.082. As previously mentioned, we expect that
these values are, in fact, approximate ones, because we have neglected the possibility of
replica-symmetry breaking. Nevertheless, these values are in reasonable agreement with
the numerical estimates put forward in [2], namely cth ≈ 3.8 and cth ≈ 4.1. As far as
the linear ensemble is concerned, we expect that our result is also analytically equivalent
to the (replica-symmetric) one by Wong and Saad [3], and in fact we obtain a very good
numerical agreement for the threshold value.

5. Summary and conclusions

In this paper, we have considered a variation of the well-known graph colouring problem,
which may be viewed as the prototype of a combinatorial optimization problem emerging
in the context of distributed data storage. We have worked out the BP equations
for this problem, which provide the exact solution on a tree. Due to the many-
body nature of the problem, such equations turn out to be different from the naive
BP message-passing scheme, as the latter involves messages sent to single variables,
whereas the former involve messages sent to pairs of nearest-neighbour variables. Our
simulations, performed on random graphs drawn from a suitable ensemble, suggest that
the new algorithm, associated with a decimation procedure, turns out to be much more
effective than the naive BP-based algorithm. In particular, the probability of finding a
perfect colouring is significantly enhanced, especially in the vicinity of the satisfiable-to-
unsatisfiable transition. Furthermore, both the unsatisfaction measure and its growth rate
upon decreasing the average graph connectivity are significantly reduced. This improved
performance is, however, obtained at the cost of increased computational complexity.
Therefore, we have suggested two possible ways of reducing this complexity. On the one
hand, we have shown some analytical manipulations (exploiting the particular form of the
constraints) can simplify a single iteration. On the other hand, numerical experiments
have shown that very few iterations (even a single one) provide sufficient information to
drive the decimation procedure. We note that, in this way, our decimation procedure turns
out to be somehow ‘distributed’ over different BP iterations. This fact partially reminds
us of the so-called ‘reinforced BP’ approach, which has been successfully exploited to
solve different combinatorial optimization problems [21]. Although beyond the scope of
the current paper, it might be interesting to analyse the performance of the latter method
for the palette-colouring problem. Indeed, the reinforcement strategy would replace the
decimation procedure, allowing for a fully decentralized implementation of the algorithm,
which might make it actually appealing from a practical/technical point of view.

From a more theoretical perspective, we have applied the cavity method to investigate
the satisfiable-to-unsatisfiable transition, which appears upon decreasing the average
graph connectivity. Limiting this analysis to the replica-symmetry assumption, we have
observed that the threshold connectivity seems to be significantly displaced with respect
to the value observed in the numerical experiments. As previously mentioned, this fact
suggests that the breakdown of the algorithm may occur because of the onset of a hard-
satisfiable phase. It would also be interesting to investigate this possibility, making use of
the cavity method at the level of one-step replica-symmetry breaking [16], along the lines
of several works dealing with the ordinary colouring problem [18]–[20].
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Figure A.1. Tree graph (left), disconnected branch i → j (centre) and
decomposition of the latter into subbranches k → i, for k ∈ ∂i \ j, plus the
elementary cluster associated with i (right).

Appendix A. Belief propagation equations

The BP equations can in general be derived from a very simple recipe. One first ‘fakes’
that the graph is a tree and then formally applies the equations obtained for such a case
to a generic graph. This derivation also provides a heuristic argument explaining why the
method generally works better for graphs with a tree-like structure.

According to the Boltzmann law, the joint probability distribution of all the colour
variables can be written as

p(x1, . . . , xN) = eF−βE(x1,...,xN ), (A.1)

where E(x1, . . . , xN ) is the energy function (1), β is the inverse temperature, and F is
the free energy (times β), which can be determined by normalization. Following our ‘fake
assumption’, we can consider, for each edge i → j (defined with a direction), the branch
growing from the root vertex j towards i, disconnected from the remainder of the system
(see figure A.1). We can thus define a partial energy function Ei→j(xi→j), obtained by
summing the elementary interaction energies only for vertices in the branch, except the
root vertex. Since our elementary interaction energies couple together clusters of variables
including each vertex and all its neighbours, each partial energy function depends on the
array of all colour variables in the branch including the root vertex. We denote this
array by xi→j. Now, each disconnected branch can be ideally studied as an independent
subsystem, whose Boltzmann probability distribution turns out to be

pi→j(xi→j) = eFi→j−βEi→j(xi→j), (A.2)

where Fi→j denotes the corresponding free energy. Note that it is possible to decompose
the partial energy of the given branch i → j into a sum of the partial energies of its
subbranches k → i, for all k ∈ ∂i \ j, plus the elementary interaction energy associated
with i (see figure A.1):

Ei→j(xi→j) = η(xi, x∂i) +
∑

k∈∂i\j
Ek→i(xk→i). (A.3)
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We also define a free energy shift fi→j as the difference between the free energy of the
i → j disconnected branch and the sum of free energies of its (disconnected) subbranches,
i.e.

Fi→j = fi→j +
∑

k∈∂i\j
Fk→i. (A.4)

From (A.2)–(A.4), we can write

pi→j(xi→j) = efi→j−βη(xi,x∂i)
∏

k∈∂i\j
pk→i(xk→i), (A.5)

which provides a relationship between the Boltzmann distribution of the i → j
disconnected branch and those of its (disconnected) subbranches. Defining the messages
mi→j(xi, xj) as marginals of a corresponding branch distribution pi→j(xi→j) over the
variables xj and xi (respectively, the root vertex and its first neighbour in the branch) we
finally obtain the self-consistency equation (8).

We still have to show how messages can determine cluster and edge marginals of the
full Boltzmann distribution (A.1). As in our previous manipulations, we observe that,
for each given vertex i, it is possible to write the total energy function (1) as a sum of
partial energies of the disconnected branches j → i, for all j ∈ ∂i, plus the elementary
interaction energy associated with i:

E(x1, . . . , xN) = η(xi, x∂i) +
∑

j∈∂i

Ej→i(xj→i). (A.6)

Defining also the free energy shift fi as the difference between the total free energy F and
the sum of the disconnected branch free energies, for all the possible branches growing
from vertex i, i.e.

F = fi +
∑

j∈∂i

Fj→i, (A.7)

from (A.1), (A.2), (A.6) and (A.7), we easily obtain

p(x1, . . . , xN) = efi−βη(xi,x∂i)
∏

j∈∂i

pj→i(xj→i). (A.8)

Now, the cluster distribution pi,∂i(xi, x∂i) for each vertex i can be derived as a suitable
marginal of p(x1, . . . , xN). By this marginalization, we obtain (4). As far as edge marginals
are concerned, we have to consider a different decomposition of the total energy function.
Namely, for each edge {i, j}, the former can be written as a sum of two contributions from
respectively the branch starting from j towards i and the one starting from i towards j:

E(x1, . . . , xN) = Ei→j(xi→j) + Ej→i(xj→i). (A.9)

We define the free energy shift fij as the difference between the total free energy F and
the sum of the free energies of the disconnected branches mentioned above, i.e.

F = fij + Fi→j + Fj→i. (A.10)

From (A.1), (A.2), (A.9) and (A.10), we obtain

p(x1, . . . , xN) = efijpi→j(xi→j)pj→i(xj→i). (A.11)

Evaluating the edge distribution pi,j(xi, xj) as a marginal of p(x1, . . . , xN), we obtain (3).
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Finally, we determine the total free energy as a function of the free energy shifts.
First we sum both sides of (A.7) over all vertices i and both sides of (A.10) over all edges
{i, j}. Then we subtract the latter equation from the former. It is easy to see that, on a
tree, the number of vertices equals the number of edges plus one, such that the left-hand
side of the resulting equation turns out to be exactly F . Furthermore, in the right-hand
side all the branch free energies cancel out, and we obtain

F =

N∑

i=1

fi −
∑

{i,j}
fij, (A.12)

where
∑

{i,j} denotes the sum over all edges.

Appendix B. Factor graph formalism

In this appendix, we first introduce a more general form of BP equations, defined on a
factor graph [22]. Then, we show that from this form one can derive both the naive BP
equations of [2] and the BP equations of the current paper by two different factor graphs
associated with the same problem.

A factor graph is a bipartite graph, whose left- and right-side vertices are usually
referred to as variable nodes and function nodes. The notion of factor graph is meant
to describe the structure of the energy function, whose independent variables (i.e. the
configuration variables of the corresponding thermodynamic system) are associated with
the variable nodes. A function node connected to a number of variable nodes represents
an elementary interaction among the corresponding variables. Let V denote the set of all
the variable nodes, such that each node v ∈ V is associated with a configuration variable
xv. Let also A ⊆ V denote any subset (cluster) of variable nodes and let xA ≡ {xv}v∈A

denote the array of the associated configuration variables. We can thus write the energy
function as

E(xV ) =
∑

A∈F
εA(xA), (B.1)

where εA(xA) denotes the elementary interaction energy among the variables in the cluster
A (cluster energy), whereas the sum runs over the set F of all the interacting clusters. In
what follows, the same label A denotes both a function node and the cluster of variable
nodes connected to it. An example of factor graphs describing the energy function of a
palette-colouring problem is sketched in figure B.1.

When the factor graph is a tree, an argument similar to that in appendix A allows
one to write marginals of the Boltzmann distribution as follows:

• For each variable node v ∈ V we have the marginal:

pv(xv) = efv
∏

A∈F
A�v

mA→v(xv), (B.2)

where the product runs over all the clusters A to which v belongs (i.e. all the function
nodes connected to v), mA→v(xv) is a function-to-variable message and fv is a free
energy shift (ensuring normalization).
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Figure B.1. A simple undirected graph (left) and the related factor graphs giving
rise to naive BP (centre) and BP (right). Open circles and squares denote variable
and function nodes, respectively. The labels are explained in the text.

• For each cluster A ∈ F , we have the marginal:

pA(xA) = efA−βεA(xA)
∏

v∈A

wv→A(xv), (B.3)

where fA is a free energy shift, and where wv→A(xv) is a variable-to-function message:

wv→A(xv) =
∏

A′∈F\A
A′�v

mA′→v(xv), (B.4)

a product of the messages sent to v from all connected function nodes except A.

As shown in section 2, one can derive the propagation equations by imposing compatibility
between overlapping distributions. In this case, for all A ∈ F and for all v ∈ A, we can
write

pv(xv) =
∑

xA\v

pA(xA), (B.5)

where the sum runs over all possible values of the variables in the cluster A except xv.
Inserting (B.2) and (B.3) into (B.5), we obtain the propagation equation

mA→v(xv) ∝
∑

xA\v

e−βεA(xA)
∏

v′∈A\v
wv′→A(xv′), (B.6)

with the wv′→A(xv′) defined by (B.4). Note that, as in (8), we have replaced the
normalization factor with a proportionality symbol. Finally, following the argument of
appendix A, we write the total free energy as a function of the free energy shifts as

F =
∑

A∈F
fA −

∑

v∈V

(dv − 1)fv, (B.7)

where dv is the degree of the variable node v in the factor graph.
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Naive BP

We first consider the energy function (1), where the configuration (colour) variables xi

are associated with the vertices i = 1, . . . , N of an ordinary graph, and the elementary
interaction energy involves a cluster made up of a vertex i and all its neighbours ∂i. This
structure is described by a factor graph in which the variable nodes are associated with
the vertices of the original graph and the function nodes with the clusters. We can use
the same index for both the variable node i and the function node with i at its centre
(the cluster Ai ≡ {i, ∂i}). Hence, each variable node i receives messages mAj→i(xi) from
all the function nodes Aj with j ∈ ∂i, and from Ai itself. With the short-hand mj→i for
mAj→i, omitting the normalization factor, (B.2) becomes

pi(xi) ∝ mi→i(xi)
∏

j∈∂i

mj→i(xi). (B.8)

Similarly, a function node Ai receives variable-to-function messages from i and all j ∈ ∂i,
and the cluster distribution for Ai (B.3) becomes

pi,∂i(xi, x∂i) ∝ e−βη(xi,x∂i)wi→i(xi)
∏

j∈∂i

wj→i(xj). (B.9)

We have identified εAi
(xAi

) with η(xi, x∂i), and wj→i is short-hand for wj→Ai
. From (B.4),

one can see that the variable-to-function messages take two slightly different forms,
depending on whether they travel (to the cluster Ai) either from the ‘central’ node i
or from a ‘peripheral’ node j ∈ ∂i. In the simplified notation, we have respectively

wi→i(xi) =
∏

j∈∂i

mj→i(xi), (B.10)

wj→i(xj) = mj→j(xj)
∏

k∈∂j\i
mk→j(xj). (B.11)

The compatibility condition (B.5) can also be written in two different forms. For all
i = 1, . . . , N , j ∈ ∂i, we have respectively

pi(xi) =
∑

x∂i

pi,∂i(xi, x∂i), (B.12)

pi(xi) =
∑

xj ,x∂j\i

pj,∂j(xj , x∂j). (B.13)

Using (B.8) and (B.9), this in turn gives rise to two different propagation equations:

mi→i(xi) ∝
∑

x∂i

e−βη(xi,x∂i)
∏

j∈∂i

wj→i(xj), (B.14)

mj→i(xi) ∝
∑

xj ,x∂j\i

e−βη(xj ,x∂j)wj→j(xj)
∏

k∈∂j\i
wk→j(xk). (B.15)

These equations, together with (B.10) and (B.11), are identical (apart from the notation)
to the naive BP equations presented in [2]. From figure B.1 one sees that, even when the
original graph is a tree, the corresponding factor graph contains short loops and the naive
BP equations are not exact.
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Current BP

We now consider an alternative form of the energy function (1) by introducing:

(i) a variable xj
i for each vertex-neighbour pair (i, j ∈ ∂i) (a kind of ‘replica’ of xi);

(ii) a constraint imposing that all replicas of xi are equal for each vertex i.

The constraints can be realized by assigning infinite energy penalties to configurations we
want to be forbidden. Assuming γ → ∞, we define

E({xj
1}j∈∂1, . . . , {xj

N}j∈∂N) =

N∑

i=1

[
η(x∗

i , {xi
j}j∈∂i) + γ χ({xj

i}j∈∂i)
]
, (B.16)

where the function χ(·) returns 1 when its entries are not all equal and 0 otherwise,
whereas x∗

i means that the replica index is irrelevant. Note that the allowed (finite energy)
configurations can be directly mapped onto the configurations of the original system, and
also have the same Boltzmann weights. This does not depend on the specific form of the
cluster energy function η(·), but only on the fact that each vertex of the original graph
interacts (at most) with all its neighbours. With these definitions, each edge {i, j} of
the original graph can be naturally associated with the pair of variables {xj

i , x
i
j} (the

j-replica of xi and the i-replica of xj). Moreover, the structure of the modified energy
function (B.16) is described by a factor graph in which the variable nodes v correspond
to the edges {i, j} of the original graph, while the function nodes A now correspond to
the clusters of interacting edges Ai ≡ {{i, j}|j ∈ ∂i}. Figure B.1 shows that, when the
original graph is a tree, this factor graph is also one, and every variable node {i, j} has
degree 2, so that it only receives messages from the function nodes Ai and Aj . Using mi→j

as short-hand for mAi→{i,j}, (B.2) becomes

p{i,j}(x
j
i , x

i
j) = ef{i,j} mi→j(x

j
i , x

i
j) mj→i(x

i
j , x

j
i ). (B.17)

The variable-to-function messages (B.4) are simply

wi→j(x
j
i , x

i
j) = mi→j(x

j
i , x

i
j), (B.18)

where wi→j is short-hand for w{i,j}→Aj
. Finally, the cluster distribution (B.3) is

pAi
({xj

i , x
i
j}j∈∂i) = efAi

−βη(x∗
i ,{xi

j}j∈∂i)−βγχ({xj
i }j∈∂i)

∏

j∈∂i

mj→i(x
i
j, x

j
i ), (B.19)

where the cluster energy εA(xA) has been replaced with the elementary term of (B.16).
Discarding forbidden configurations (dropping replica indices), (B.17) is equivalent to (3)
and, since all the χ-terms vanish, (B.19) is equivalent to (4). This is sufficient to derive
the propagation equation (8), as shown in section 2. Finally, the free energy (B.7) is
equivalent to (A.12), as all variable nodes of the factor graph have degree 2.
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Appendix C. Simplified equations

In this appendix, we derive the simplified forms (9) and (10) of the propagation
equation (8) and the free energy shift (6), respectively. Both derivations are based on
similar manipulations. We consider the elementary energy term (2) associated with
vertex i and note that it can be written in an alternative form for each given choice
of a neighbour vertex j ∈ ∂i:

η(xi, x∂i) =
∑

x∈C\xi\xj

∏

k∈∂i\j
[1 − δ(xk, x)], (C.1)

where the sum runs over the colour set C, excluding the colours xi and xj (if xi = xj , just
one colour is excluded). Since the product in the equation above can only take the values
0 and 1, we can write the corresponding Boltzmann factor as

e−βη(xi,x∂i) =
∏

x∈C\xi\xj

{
1 − (1 − e−β)

∏

k∈∂i\j
[1 − δ(xk, x)]

}
, (C.2)

and expand the outer product

e−βη(xi,x∂i) =
∑

B⊆C\xi\xj

(−1 + e−β)|B| ∏

x∈B

∏

k∈∂i\j
[1 − δ(xk, x)], (C.3)

where the sum runs over all the possible subsets B of the colour set C \ xi \ xj . Then, we
exchange the two products, expand the product over x (taking into account that every
product of two or more deltas vanishes), and use the fact that

∑

x∈C

δ(xk, x) = 1. (C.4)

We finally obtain

e−βη(xi,x∂i) =
∑

B⊆C\xi\xj

(−1 + e−β)|B| ∏

k∈∂i\j

∑

x∈C\B
δ(xk, x). (C.5)

The propagation equation (8) for a given vertex i generates an outgoing message
mi→j(xi, xj) as a function of the set of incoming messages mk→i(xk, xi) (where k ∈ ∂i\ j).
Replacing the final expression for the Boltzmann factor (C.5) into this equation, we readily
obtain the simplified propagation equation (9).

As far as the free energy shift (6) is concerned, we rewrite the elementary energy
term (2) in yet another form, namely

η(xi, x∂i) =
∑

x∈C\xi

∏

j∈∂i

[1 − δ(xj , x)]. (C.6)

In this case the sum runs over the colour set C, excluding only the colour xi. A totally
analogous derivation allows us to write

e−βη(xi,x∂i) =
∑

B⊆C\xi

(−1 + e−β)|B| ∏

j∈∂i

∑

x∈C\B
δ(xj , x), (C.7)

which plugged into (6), yields (10).
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