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1. Introduction

One of today’s challenges in the area of Artificial Intelligences (AI) is the development

of autonomous intelligent agents. In general terms an autonomous agent is a system

situated within an environment, which the agent senses and acts over [1]. These agents

need mechanisms for assimilating and processing environmental information acquired

through their sensors. Data acquisition and information processing are some of the

most characteristic features of neural networks.

During the past decade great effort has been applied in the research of the on-line

learning scenario in artificial systems. In the on-line scenario information, represented

by strings of bits drawn from a given distribution, is presented to the network for

processing and then discarded [2, 3, 4, 5]. This scenario is particularly appealing for

the development of autonomous agents that have to interpret, adapt and react to ever

changing environmental conditions.

In the statistical mechanics approach to the learning from examples and

generalisation by neural networks, the single-layered perceptron has been the preferred

laboratory. Due to their simplicity, perceptrons are excellent systems to test new ideas

that could lead to applications for more sophisticated and realistic systems. This has

probably been the main motivation for the research focused on a mismatched student-

teacher scenario [6, 7], which signifies a real challenge for the adaptability of the system

modelled by the network. This scenario has been recently revisited and extended to the

situation of a student learning from two teachers [8, 9]. The common factor in all these

studies is that the teacher is a typical perceptron, with a synaptic vector drawn from a

uniform distribution over the N -sphere of radius
√

N .

In a previous article [10], we studied the mismatched scenario where a student uses

an algorithm suited from learning optimally from a teacher different from the one the

student is currently learning from. We demonstrated that in such cases the student

mostly fails to learn even when the algorithm applied is suitable for learning from a

teacher harder than the one currently in use. We have also proven that if the rule to be

learned is the simplest possible (the one-bit diluted perceptron) the algorithm developed

for learning optimally the typical teacher [3] is outperformed by the simplest possible

algorithm (the pure Hebb rule). These results naturally triggered the question whether

it is possible to tailored an algorithm specific for learning a particular realizable rule.

We present in this paper an algorithm developed for learning from almost any

perceptron teacher, with performance not worse than the Caticha-Kinouchi (CK)

algorithm [3]. In the next section we present the background needed for the main

development of the algorithm. In section 3 we present the algorithm based on an

estimate for the distribution of the teacher’s post-synaptic field. In section 4 we present

numerical estimates of the learning curve for different cases, including the particular

synaptic vectors where the algorithm fails. Finally, in Section 5, we present our

conclusions and a brief description of our future work.
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2. Background

In the supervised, on-line learning scenario, the student learns to classify input vectors

like a teacher. The input vectors are drawn according to a given distribution, presented

to the student one by one and then discarded. The measure of the student’s performance

is given by the estimate of the expected mismatch between teacher’s and student’s

classifications. For computing these estimates it is necessary to obtain the distribution

of the relevant variables of the problem.

By the development presented in Appendix A we may suppose, without loss of

generality, that any teacher perceptron has a synaptic vector B with non-negative,

decreasingly ordered entries and norm B. Let J be the student’s synaptic vector learning

from B. The norm of J is denoted by J . Let

b =
BTS

B
, h =

JTS

J

be the teacher’s and student’s post synaptic fields. Observe that we have opted for

the matrix notation of the inner product (i.e. ∀U, V ∈ R
N U · V = UTV, where

T indicates the transpose). The input S is binary, unless said otherwise. It can be

demonstrated (see Appendix A) that the joint distribution of the post synaptic fields

can be expressed as

P(b, h) ≃ N (h|bR, 1−R2)Pb(b), (1)

where N (x|µ, σ2) is a normal distribution in x, centred at µ and variance σ2. The

marginal distribution of the field b is

Pb(b) = lim
N→∞

∫ ∞

−∞

db̂

2π
e−ib̂b

N
∏

k=1

cos(b̂βk) , (2)

where β = B/B is a unit vector with positive, decreasingly ordered entries. The product

of cosines can be rewritten as:

ΦN(b̂) ≡
N
∏

k=1

cos(b̂βk) =
1

2N

∑

{T∈{±1}N}
cos(βTT) (3)

and thus

Pb(b) = lim
N→∞

1

2N

∑

{T∈{±1}N }
δ(b− βTT) ,

where δ(x) is Dirac’s delta function. Thus the field b can only be equated to βTT =
∑N

k=1 βkTk which is the length of a random path with decreasing step sizes βk. An

interesting study on random walks with decreasing steps can be found in [11]. It is

important to note that if the entries βk depend on the size of the path N such that

∀ k limN→∞ βk = 0 then:

(i) Pb(b) = N (b|0, 1), and then the optimal learning algorithm is the one found by

Caticha and Kinouchi [3],
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(ii) bmax ≡ limN→∞
∑N

k=1 βk =∞.

If the entries of β are taken from a sequence {βk}∞k=1 in ℓ2 (i.e. the space of sequences

{ak} such that
∑∞

k=1 a2
k < ∞), with not all of its elements equal to zero, then the

following hold,

(i) The product ΦN (b̂) converges absolutely for all b̂.

(ii) The product ΦN (b̂) converges uniformly on compact sets.

(iii) The product ΦN (b̂) is uniformly continuous.

(iv) The product ΦN (b̂) has a Fourier transform in the distribution sense.

About point (iv) above, the Fourier transform of the product Φ(b̂) is the measure Pb(b)

which may be singular with respect to the Lebesgue measure (we will explore this case

with a particular example in 4.5). If the measure is not singular then the following

algorithm can be applied to learn the teacher B.

3. The Parallel Algorithm

A Hebbian-like algorithm has the following form

Jnew = Jold + F
σB√
N

S (4)

where σB ≡ sgn(BTS) is the classification given by the teacher and F is the learning

rate, which can be a function of the variables available to the student, the pair (σB,S)

and the state of the student, represented by Jold. It has been demonstrated [3] that the

learning rate that produces the lowest expected error has the form:

Fop =

√
Q

R

[

〈|b|〉b|φ − Rφ
]

(5)

where Q ≡ J2/N is the normalised size of the student’s synaptic vector, φ ≡ σBh is the

stability or surprise parameter, R ≡ BTJ/(BJ) is the student-teacher overlap and

〈|b|〉b|φ ≡
∫

db |b| P(b|φ)

is the conditional expected value of the absolute value of the teacher’s synaptic field

given the knowledge available to the student conveyed by the variable φ. It is a simple

exercise to show that the conditional probability can be obtained from (1)

P(b|φ) =
N (φ||b|R, 1− R2)Pb(b)

∫

dbN (φ||b|R, 1−R2)Pb(b)
,

thus

〈|b|〉b|φ =

∫∞
0

db bN (φ|bR, 1− R2)Pb(b)
∫∞
0

dbN (φ|bR, 1− R2)Pb(b)
. (6)

The optimal algorithm relies on the knowledge of the overlap R and the distribution

Pb. To obtain an appropriate estimate for the overlap R we rely on the measurement of

the time averaged generalisation error

eg ≡ 〈Θ(−φ)〉LM
(7)
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where Θ(x) = 1 if x ≥ 1 and 0 otherwise and LM = {S1, S2, . . . , SM} is a collection

of M sets of input samples Sm =
{

S
(m)
1 ,S

(m)
2 , . . . ,S

(m)
P

}

. Each one of these sets is

used in a particular realization of the learning process, and the average over realizations

provides the estimate for the generalisation error. In terms of the joint probability (1)

we have that the ensemble average of the generalisation error is

eg(R) =

∫ ∞

−∞
db dhP(b, h) Θ(−bh)

= 2

∫ ∞

0

dbPb(b)H(bR/
√

1− R2), (8)

where H(x) ≡
∫∞

x
du exp(−u2/2)/

√
2π.

One way to estimate the LHS of (7) is by considering an ensemble of M students

learning in parallel, all following the update rule (4). Let us denote such an ensemble as
{

J
(i)
p , F

(i)
p

}

where J
(i)
p and F

(i)
p are the synaptic vector and the learning rate of the i-th

student after p updates. The natural initial condition is by supposing the students start

from the tabula rasa state, i.e. J
(i)
0 = 0 and learning rates set to pure Hebb algorithms

F
(i)
0 = 1. The first element of Si, i.e. S

(i)
1 is classified according to σ

(i)
B,1 ≡ sgn(BTS

(i)
1 ).

Given that all the students are assigned a null synaptic vector, the initial estimate for

the generalisation error is set to ẽ0 = 1
2
, consistent with a R̃0 = 0. The first update for

the i-th student is

J
(i)
1 =

σ
(i)
B,1√
N

S
(i)
1 . (9)

Next, the second inputs from the sets Si are classified by the teacher producing

the pairs (σ
(i)
B,2,S

(i)
2 ). With these inputs we can compute the stabilities

φ
(i)
1 ≡ σB,2

J
(i)T
1 S

(i)
2

J
(i)
1

(10)

and the generalisation error

ẽ1 ≡
1

M

∑

i

Θ(−φ
(i)
1 ). (11)

Following the Ansatz (A.2) we set J(i) = J
(i)
B

β + J
(i)
⊥ β

(i)
⊥ where β

(i)
⊥ is a random unit

vector in the hyper-plane perpendicular to β. To estimate the teacher’s synaptic vector

we use the arithmetic average over the ensemble of students

β̃1 ≡
∑

i J
(i)
1

|∑i J
(i)
1 |

; (12)

if M is sufficiently large, the perpendicular component of the students synaptic vectors

cancel each other. If M is large enough and there is no correlation between inputs from

different sets (i.e. 〈S(i)T
p S

(j)
p 〉 ≃ Nδi,j) then we would expect β̂1 to be parallel to β with

corrections of O(1/
√

M).

The existence of the fast Fourier transform (FFT) algorithm [12] makes practical

the numerical estimation of the density Pb. This technique produces better results when
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applied to grids of a size equal to a power of two, 2G. The FFT of the function f(x̂),

i.e. FFT[f(x̂)]2G , produces a 2G-dimensional vector F, with entries equal to the Fourier

transform of f(x̂), evaluated at the points xk = (k − 1)2−G xmax, for a suitable value of

the cutoff xmax. Thus

Fk =

∫ ∞

−∞

dx̂

2π
e−ix̂xkf(x̂) ∀ k = 1, 2, . . . , 2G .

In order to compute the estimate of Pb we need first to compute the cutoff bmax,1, the

grid vector b1 and finally the Fourier transform P̃1:

bmax,1 =
N
∑

k=1

β̃1,k (13a)

b1 =
bmax,1

2G
(0, 1, 2, . . . , 2G − 1)T (13b)

P̃1 = FFT

[

N
∏

k=1

cos(b̂β̃1,k)

]

2G

. (13c)

With the estimate of the probability density stored in a vector, the expectation values

take the form of an inner product.

In order to estimate the overlap R̃1 we use the estimate of the error obtained by

(11) and the expression (8). To estimate this last one we define the vectors H(b, R) and

Γ (b, R) with entries

Hi(b, R) ≡ H(bi R/
√

1−R2) (14)

and

Γi(b, R) ≡ biN (bi R|0, 1− R2) (15)

To determine R̃1 we appeal to Newton’s method, which provides the following iterative

equation

R̃1 ←
⌈

R̃1,n + (1− R̃2
1,n)

2 P̃T
1 H(b1, R̃1,n)− ẽ1

2 P̃T
1 Γ (b1, R̃1,n)

⌋

n|δ,Nmax

, (16)

where R̃1,0 ≡ cos(πẽ1) and x ← ⌈f(xn)⌋n|δ,Nmax
represents the iterative map xn+1 =

f(xn) that stops when either |xn+1−xn| < δ or n > Nmax for suitable, prefixed 0 < δ ∈ R

and Nmax ∈ N. In such a case x ≡ xn.

Let us define now the vectors N(φ,b, R) and Υ (φ,b, R) with entries

Ni(φ,b, R) ≡ N (φ|bi R, 1− R2) (17)

and

Υi(φ,b, R) ≡ biN (φ|bi R, 1− R2) (18)

such that the estimate for the conditional average of the teacher’s post-synaptic field

becomes

b̃
(i)
1 ≡

P̃T
1 Υ (φ

(i)
1 ,b1, R̃1)

P̃T
1 N(φ

(i)
1 ,b1, R̃1)

(19)
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and the learning rates

F
(i)
1 ≡

√

Q
(i)
1

R̃1

(b̃
(i)
1 − R̃1φ

(i)
1 ) (20)

where Q
(i)
1 ≡ J

(i)T
1 J

(i)
1 /N . With the M inputs generated to compute the estimate for the

generalisation error (S
(i)
2 ) and their correct labels (σ

(i)
B,2) we can compute the updates

J
(i)
2 = J

(i)
1 + F

(i)
1

σ
(i)
B,2√
N

S
(i)
2 .

This procedure is then iterated. The algorithm can be expressed as a pseudo code in

the following way:

(i) ∀ i make J
(i)
0 = 0 and F

(i)
0 = 1 . Set ẽ0 = 1

2
, R̃0 = 0 and p = 1.

(ii) ∀ i make J
(i)
p = J

(i)
p−1 + F

(i)
p−1 σ

(i)
B,p S

(i)
p /
√

N .

(iii) ∀ i make φ
(i)
p = σB,p+1 J

(i)T
p S

(i)
p+1/J

(i)
p

(iv) Make ẽp = 1
M

∑

i Θ(−φ
(i)
p )

(v) Make β̃p =
∑

i J
(i)
p /|∑i J

(i)
p |

(vi) Compute bmax,p, bp and P̃p(b) using (13a), (13b) and (13c)

(vii) Set R̃p,0 = cos(πẽp) (or R̃p−1)

(viii) Using (14) and (15), compute

R̃p ←
⌈

R̃p,n + (1− R̃2
p,n)

2 P̃T
p H(bp, R̃p,n)− ẽp

2 P̃T
p Γ (bp, R̃p,n)

⌋

n|δ,Nmax

(ix) Using (17) and (18), compute

b̃(i)
p =

P̃T
p Υ (φ

(i)
p ,bp, R̃p)

P̃T
p N(φ

(i)
p ,bp, R̃p)

(x) Make F
(i)
p =

(

√

Q
(i)
p /R̃p

)

(b̃
(i)
p − R̃pφ

(i)
p )

(xi) IF p < P THEN set p = p + 1 and GO TO (ii), else STOP.

4. Results

The curves presented as follows have been computed following the algorithm presented

in section 3, considering an ensemble with M = 4 000 students and networks of size

N = 51. In all cases, the Fast Fourier Transform algorithm was ran considering a grid

of size 28.
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Figure 1. (a) Learning curve for the 1-bit diluted teacher obtained by applying our

algorithm (N) and the Caticha-Kinouchi algorithm (CK, red in the on-line version).

(b) Plot of the estimate for the density distribution of the teacher’s post-synaptic field.

The agreement with the analytical solution, Pb(b) = 1

2
δ(|b| − 1) is excellent.

4.1. Diluted teachers

The first case we analyse is for the diluted teacher perceptrons with dilutions m = 1, 5

(the m-diluted teacher has a synaptic vector with components Bj = 1 for all j ≤ m

and 0 otherwise). These instances were analysed also in [10] and in both cases the

CK algorithm did not converge to zero within the time considered. In figure 1 (a) we

present the learning curves obtained by our algorithm (N) and the CK algorithm (red

in the on-line version). Defining the parameter α ≡ p/N where p is the number of

examples presented, it is observed that our algorithm converges after α = 2, whilst the

CK algorithm still presents an error of 4% even for α > 5. In panel (b) we present

the estimate P̃b(b) which matches the analytical expression of the probability Pb(b) =
1
2
δ(|b| − 1). A similar result has been obtained for m = 5 (figure 2). The analytical

expression of the probability Pb(b) = 10
32

δ(|b| − 1/
√

5) + 5
32

δ(|b| − 3/
√

5) + 1
32

δ(|b| −
√

5)

is very well approximated by our estimate.

4.2. Teachers constructed from geometric series

Suppose that Bk ∝ r−k for any 2 ≤ r ∈ R. Given that sgn(
∑N

k=1 Skr
−k) = S1 these

synaptic vectors will lead to the same algorithm as the 1-bit diluted teacher. If we



Parallel strategy for optimal learning in perceptrons 9

0 2.5 5 7.5 10
α

0

0.1

0.2

0.3

0.4

0.5

e
g

-5/5
1/2

1/5
1/2

3/5
1/2

5/5
1/2

-1/5
1/2

-3/5
1/2

b

0

5

10

15

20

P
b

(a) (b)

CK
N

Figure 2. (a) Learning curve for the 5-bit diluted teacher obtained by applying our

algorithm (N) and the Caticha-Kinouchi algorithm (CK, red in the on-line version).

(b) Plot of the estimate for the density distribution of the teacher’s post-synaptic

field. The peaks’ positions and relative heights are in agreement with the analytical

expression Pb(b) = 10

32
δ(|b| − 1/

√
5) + 5

32
δ(|b| − 3/

√
5) + 1

32
δ(|b| −

√
5). The oscillations

observed around the peaks are effects due to the finite size of the grid.

consider the vector B ∝ (1, 1, 2−1, 2−1, 2−2, 2−2, . . .)T instead, the results obtained are

different. Observe that this vector is not diluted and, although the two first entries

are fifty percent larger than the second largest, all the entries play a role in the input

classification. The limit of the characteristic function is

lim
N→∞

ΦN(b̂) = sinc2

(

√

3

2
b̂

)

which corresponds to the triangular density function Pb(b) = 1
6
Θ(
√

6 − |b|)(
√

6 − |b|)
(where sinc(x) ≡ sin(x)/x). In figure 3 (a) we present the correspondent learning curves

considering our algorithm (N) and the CK algorithm (red line in the on-line version).

Even after a long number of examples (α ≃ 60) the generic algorithm does not perform

as well as the specific algorithm. In panel (b) we present the distributions of post-

synaptic fields. Observe the agreement between of the estimate (full line) and the exact

value (dashed line, red in the on-line version).
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Figure 3. (a) Learning curve for the teacher B ∝ (1, 1, 2−1, 2−1, 2−2, 2−2, . . .)T

obtained by applying our algorithm (N) and the Caticha-Kinouchi algorithm (CK,

red line in the on-line version). (b) Plot of the estimated (full line) and true density

distribution of the teacher’s post-synaptic field Pb(b) = 1

6
Θ(
√

6− |b|) (dashed line, red

in the on-line version).

4.3. Marginal case: The harmonic sequence

The vector constructed from the harmonic sequence has the components Bk ∝ 1/k. Pb

cannot be obtained analytically but, according to [11], we know that it is absolutely

continuous. For this particular case, the algorithm for the typical case and ours

produce indistinguishable results. To illustrate this point we define the variable

X(α) ≡ (eN
g (α)− eCK

g (α))/σ, where eN
g is the learning curve obtained by the application

of our method, eCK
g is the learning curve obtained by the application of the Caticha-

Kinouchi method and σ ≃ 1/
√

M is a parameter associated with the level of noise

inherent of the measurement process (a more thorough discussion about this point is

presented in the conclusions). In figure 4(a) we present the curve X(α) which is, after a

short initial period, bounded in the interval (-1,1). The straightforward conclusion

extracted from this result is that the differences between learning curves is of the

order of the noise. The only advantage in the application of our method is that, as

a byproduct, we obtained a good estimate for the distribution of the teacher’s post-

synaptic field (panel (b) in full line). We also present in panel (b) the numerically

computed distribution Pb, obtained from FFT

[

∏51
k=1 cos(

√
6

π
b̂/k)

]

28

(dashed line, red in

the on-line version).
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Figure 4. (a) Plot of the variable X(α) ≡ (eN
g (α) − eCK

g (α))/σ, where eN
g is the

learning curve obtained by the application of our method, eCK
g is the learning curve

obtained by the application of the Caticha-Kinouchi method and σ ≃ 1/
√

M . (b) Plot

of the estimated density (full line) and FFT

[

∏51

k=1
cos(

√

6

π
b̂/k)

]

28

(dashed line, red in

the on-line version).

4.4. Typical case

We place under the title typical case the teachers whose synaptic vectors have been

drawn from a uniform distribution over the N -sphere, i.e. vectors B whose components

are i.i.d. variables. This implies that the components of the unit vector will be at

most of O(1/
√

N). If that is the case, the characteristic function of the distribution of

post-synaptic fields can be expressed as:

ΦN(b̂) ≃ exp

(

−1

2
b̂2

N
∑

k=1

β2
k

)

+ O(N−1)

which is, disregarding corrections of O(N−1),
√

2π times a Normal distribution in b̂

with unit variance and centred at 0. Trivially, Pb(b) = N (b|0, 1), which is Caticha and

Kinouchi’s result. We ran our algorithm on several teachers satisfying these conditions

with results indistinguishable (in the sense explained in the previous subsection) to the

results obtained by the application of the CK algorithm.
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Figure 5. (a) Learning curves for the teacher Bk ∝ r−k with r = (1+
√

5)/2, obtained

by applying our algorithm (N) and the Caticha-Kinouchi algorithm (CK, red line in

the on-line version). (b) Plot of the estimated density (full line) and the FFT of the

characteristic function computed using the teacher’s synaptic vector (dashed line, red

in the on-line version). Observe that the true value of the density is not a smooth

curve of b and that there is no match between this curve and the estimate.

4.5. PV teachers

Our algorithm relies on the estimation of the teacher’s post-synaptic field distribution

based on a Fourier transform method. If the Fourier transform of the characteristic

function
∏N

k=1 cos(b̂βk) is singular for a particular vector β, then the method could

produce meaningless results.

Following [11] (and references therein) we found that a geometric sequence Bk ∝ r−k

with r equal to the reciprocal of a PV number produces a distribution of the field b that

is singular. A PV number (or Pisot-Vijayaraghavan number) is an algebraic integer

whose Galois conjugates are all less than one in absolute value.

We computed the learning curve for the teacher with entries taken from a geometric

series with basis equal to a particular PV number r = (1 +
√

5)/2, also known as the

Golden Section. The results are presented in figure 5. It is clear that the CK algorithm

produces a better behaved curve (CK, red in the on-line version) than our algorithm

(N).
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5. Conclusions

We developed and tested a new and improved algorithm for learning realizable rules in

perceptrons. The algorithm works in an on-line scenario, using optimally the information

available to the student. The updates of the student’s synaptic vector are based on an

estimate of the distribution of the teacher’s post-synaptic field, computed with the aid of

an ensemble of students learning in parallel. The algorithm performs better than the one

developed for learning optimally a typical rule when the student learns from a diluted

teacher. In marginal (harmonic sequence) and typical cases the algorithm matches the

performance of the CK algorithm. The algorithm produces less competitive results only

when the estimate of the density distribution of the field b is singular. It has been

conjectured that this occurs only for geometric sequences with a base equal to a PV

number. Given that PV numbers are denumerable, it is expected that the occurrence

of one of these cases to be extremely rare.

Observe that both algorithms (CK’s and ours) produce an outcome, per example

presented, that is either a 0 or a 1, depending on whether the student has produced the

correct classification or not. Therefore, the learning curve over one realization of the

learning process, i.e. over only on set S of P examples, produces a discontinuous curve

(a simple sequence of 0s and 1s). If the process is repeated M times (like the usual

serial version of the algorithms) the averaged curve so obtained is still discontinuous,

but with discontinuities of O(1/
√

M). That is why our curves, for both algorithms, look

noisy with fluctuations of order 1/
√

4000 ≃ 0.015 around an average. If M → ∞ the

averaged curves finally obtained are continuous. There is no extra cost on running the

algorithms in parallel, but there is an important advantage for both algorithms alike.

By running in parallel we can generate an estimate for the overlap R as a function of

the number of examples the student has received so far.

Our algorithm is more time consuming than CK’s only because of the estimation

of the distribution Pb and the quantities that depend upon it. The FFT algorithm has

a complexity of O(G2G), and the averages depending on the distribution are calculated

with O(2G) operations. In our experiments we kept a value of G = 8; this value granted

estimates of good quality in a reasonable time.

With respect to the chosen size of the system N = 51, we found that for this value

the curves were produced in a reasonable time and the behaviour of the distribution of

synaptic fields mimic closely the asymptotic behaviour expected at the thermodynamic

limit. A more comprehensive study on the dependencies over the system size are left

for a future work.

Observe that this generalisation of Caticha-Kinouchi’s algorithm occurs because

we present binary inputs to the network. If the input vectors were formed by real

components, drawn from a Normal distribution with zero mean and unit variance, the

distribution of the teacher’s post-synaptic field becomes Normal and Caticha-Kinouchi’s

result is recovered.

In all the cases studied we consider the entries of the input vector to be i.i.d
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variables. The case when there is some structure in the input vectors will be a subject

of future work.

Acknowledgments

I would like to acknowledge the fruitful discussions with Dr R. C. Alamino, Prof. N.

Caticha and Prof. K. E. Morrison which have enriched the contents of this article .

Appendix A. Proof of (1)

Consider the synaptic vector B ∈ R
N and the input vectors S ∈ {±1}N with i.i.d.

entries, distributed according to PS(S) =
∏N

j=1P(Sj) where P(Sj = 1) = P(Sj = −1) =
1
2
. We dub a gauge transformation any linear transformation that leaves invariant the

form of the input vectors and the inner products averaged over PS(S), i.e. K is a gauge

transformation if

(i) ∀S ∈ {±1}N K(S) ∈ {±1}N .

(ii)
〈

BTS
〉

S
=
〈

K(B)TK(S)
〉

K(S)
, where 〈·〉S =

∑

{S} · PS(S).

Consider the following transformations Ti and Eij with the following actions

• TiB = (B1, . . . ,−Bi, . . . , BN)T

• Eij(B1, . . . , Bi, . . . , Bj, . . . . . . , BN)T = (B1, . . . , Bj, . . . , Bi, . . . . . . , BN)T.

It is very simple to prove that these transformations, and their products, satisfy (i) and

(ii) above and, therefore, they are gauge transformations. We can then transform any

vector B ∈ R
N into B′ =

∏

j∈N
Tj

∏

(j,k)∈O
Ejk(B), where N = {1 ≤ j ≤ N |Bj < 0}

is the set of indexes corresponding to negative entries of B, O = {(i, j) , 1 ≤ i < j ≤
N | |Bi| < |Bj|} is the set of all index pairs linking entries that are not yet decreasingly

ordered. In this form the vector B′ so created has entries that satisfy B′
k ≥ B′

l ≥ 0 for

all pair of indexes N ≥ l > k ≥ 1.

The joint distribution of the post synaptic fields can be written as

P(b, h) =
∑

{S}
P(b, h,S) =

〈

δ

(

b− BTS

B

)

δ

(

h− JTS

J

)〉

S

=

∫ ∞

−∞

db̂

2π
e−ibb̂

∫ ∞

−∞

dĥ

2π
e−ihĥ

〈

exp

(

ib̂
BTS

B
+ iĥ

JTS

J

)〉

S

. (A.1)

Let us decompose the synaptic vector of the student

J = JBβ + J⊥β⊥ = JB (β + ǫβ⊥) , (A.2)

where ǫ ≡ J⊥/JB, β ≡ B/B and β⊥ is a random unit vector laying on the hyper-plane

perpendicular to B. If the student learns, we can expect that ǫ ≪ 1. Using (A.2) we

have that

R =
JTB

J B
=

JB
√

J2
B

+ J2
⊥
≃ 1− 1

2
ǫ2 + O(ǫ4).
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It is easy to demonstrate that the frequently used quantity 1 − R2, related to the

projection of the student’s synaptic vector into the hyper-plane perpendicular to the

teacher’s synaptic vector is

1−R2 ≃ ǫ2 + O(ǫ3)

or equivalently

ǫ ≃
√

1− R2 + O
[

(1− R2)
3

2

]

.

Each component of the unit vector η ≡ J/J can be approximated by

ηk ≡
JBβk + J⊥νk
√

J2
B

+ J2
⊥

≃ Rβk + ǫνk + O(ǫ3), (A.3)

where νk ≡ [β⊥]k
The expectation in (A.1) is

〈

exp

(

ib̂
BTS

B
+ iĥ

JTS

J

)〉

S

=
N
∏

k=1

1

2

∑

s=±1

exp(ib̂βks + iĥηks)

=

N
∏

k=1

cos(b̂βk + ĥηk)

and by using (A.3) we have that

b̂βk + ĥηk ≃ (b̂ + ĥR)βk + ĥǫνk + O(ǫ3).

Up to O(ǫ3) we have that

cos(b̂βk + ĥηk) ≃ cos((b̂ + ĥR)βk + ĥǫνk) + O(ǫ3)

≃ cos((b̂ + ĥR)βk) exp

(

− ĥ2

2
ǫ2ν2

k

)

[

1− ĥǫ tan((b̂ + ĥR)βk)νk

]

+ O(ǫ3)

where we used that ǫ exp(ĥ2ǫ2ν2
k/2) ≃ ǫ + O(ǫ3). Thus, by applying the change of

variables b̂ + ĥR→ b̂ and disregarding terms of order ǫ3, we obtain

P(b, h) ≃
∫ ∞

−∞

dĥ db̂

4π2
exp

(

−1−R2

2
ĥ2 − iĥ(h− bR)− ib̂b

) N
∏

k=1

[

1− ǫĥ tan(b̂βk)νk

]

cos(b̂βk)

Observe that
N
∏

k=1

[

1− ǫĥ tan(b̂βk)νk

]

≃ 1− ǫĥ
N
∑

k=1

tan(b̂βk)νk + ǫ2ĥ2
∑

j<k

tan(b̂βj)νj tan(b̂βk)νk + O(ǫ3)

≃ 1− ǫĥ
N
∑

k=1

tan(b̂βk)νk +
ǫ2ĥ2

2





(

N
∑

k=1

tan(b̂βk)νk

)2

−
N
∑

k=1

tan(b̂βk)
2ν2

k



+ O(ǫ3) .

Without lose of generality we can suppose that the entries of the vector β⊥ satisfy the

equation νk = κk/(σN

√
N) where κk are random deviates distributed in [-1,1] according
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to Pκ(κ) ∝ δ(κTβ)
∏N

k=1 Θ(1 − κ2
k) and 0 < σ2

N ≡ 1
N

∑N

j=1 κ2
j ≤ 1. To bound the

parameter σ2
N observe that the expected value of κ2

k and κ4
k are

〈κ2
k〉 =

1

N

∫ ∞

−∞
dx

N
∏

j=1

sinc(xβj)

(

1 + 2
cot(xβk)

xβk

− 2

x2β2
k

)

〈κ4
k〉 =

1

N

∫ ∞

−∞
dx

N
∏

j=1

sinc(xβj)

(

1 + 4
cot(xβk)

xβk

− 12

x2β2
k

− 24
cot(xβk)

x3β3
k

+
24

x4β4
k

)

where N ≡
∫∞
−∞ dx

∏N

j=1 sinc(xβj) is the normalisation constant. Therefore the

following additions can be approached by:

1

N

N
∑

k=1

〈κ2
k〉 ≃

1

N

∫ ∞

−∞
dx

N
∏

j=1

sinc(xβj)
1

N

N
∑

k=1

(

1

3
− 2

45
x2β2

k + O(β4
k)

)

≃ 1

3
+ O(N−1)

1

N

N
∑

k=1

〈κ4
k〉 ≃

1

N

∫ ∞

−∞
dx

N
∏

j=1

sinc(xβj)
1

N

N
∑

k=1

(

1

5
− 4

105
x2β2

k + O(β4
k)

)

≃ 1

5
+ O(N−1)

and thus σ2
N ≃ 1

3
±
√

4
45

+ O(N−1). We can conclude that the parameter σ2
N is strictly

positive and expected to be close to 1
3

independently from β. Thus

N
∏

k=1

(1− ǫĥ tan(b̂βk)νk) ≃ 1− ǫĥ

σN

√
N

N
∑

k=1

tan(b̂βk)κk +

+
ǫ2ĥ2

2σ2
NN





(

N
∑

k=1

tan(b̂βk)κk

)2

−
N
∑

k=1

tan(b̂βk)
2κ2

k



+ O(ǫ3) .

From the Taylor expansion of the tangent we have that

N
∑

j=1

tan(b̂βj)κj =

∞
∑

ℓ=0

Cℓ b̂2ℓ+1
N
∑

j=1

β2ℓ+1
j κj

where Cℓ > 0 and observe that for ℓ = 0, the first term, 0 =
∑N

j=1 βjκj < 1 just because

β and κ =
√

NσNβ⊥ are perpendicular, and the other terms, ℓ ≥ 1, can be bound by

∣

∣

∣

∣

∣

N
∑

j=1

β2ℓ+1
j κj

∣

∣

∣

∣

∣

<
N
∑

j=1

β2ℓ+1
j |κj| <

N
∑

j=1

β2
j = 1 ,

due to the facts that 1 ≥ βk ≥ βk+1 ≥ 0 and |κj| < 1, thus

∣

∣

∣

∣

∣

N
∑

j=1

tan(b̂βj)κj

∣

∣

∣

∣

∣

<

∞
∑

ℓ=0

Cℓ |b̂2ℓ+1| = tan(|b̂|).
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In a similar fashion

N
∑

j=1

tan(b̂βj)
2κ2

j =
∞
∑

ℓ=1

Dℓ b̂2ℓ

N
∑

j=1

β2ℓ
j κ2

j <
∞
∑

ℓ=1

Dℓ b̂2ℓ

N
∑

j=1

β2
j = tan(b̂)2,

where Dℓ > 0 for all ℓ = 1, 2, . . .. Putting all things together and disregarding terms of

order ǫ3, we have that, for a sufficiently large N ,

∣

∣

∣

∣

∣

1−
N
∏

k=1

[1− ǫĥ tan(b̂βk)νk]

∣

∣

∣

∣

∣

< 3 |ĥ tan(b̂)| ǫ√
N

We finally have, disregarding corrections of O(ǫ3, ǫ/
√

N), the estimate to the joint

probability is

P(b, h) ≃ N (h|bR, 1−R2)Pb(b), (A.4)

where N (x|µ, σ2) is a Gaussian distribution in x, centred at µ with variance σ2

and Pb(b) is the Fourier transform of limN→∞
∏N

k=1 cos(b̂βk). In other words,

limN→∞
∏N

k=1 cos(b̂βk) is the characteristic function of Pb(b).
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