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Abstract

Control design for stochastic uncertain nonlinear systems is traditionally based on minimizing the

expected value of a suitably chosen loss function. Moreover, most control methods usually assume

the certainty equivalence principle to simplify the problem and make it computationally tractable. We

offer an improved probabilistic framework which is not constrained by these previous assumptions,

and provides a more natural framework for incorporating and dealing with uncertainty. The focus of

this paper is on developing this framework to obtain an optimal control law strategy using a fully

probabilistic approach for information extraction from process data which does not require detailed

knowledge of system dynamics. Moreover the proposed control method framework allows handling

the problem of input–dependent noise. A basic paradigm is proposed and the resulting algorithm is

discussed. The proposed probabilistic control method is demonstrated theoretically on two classes of

nonlinear discrete time systems: the affine and the general class. A nonlinear simulation example is also

provided to validate theoretical development.

I. I NTRODUCTION

In active control engineering the main objective is to ensure that systems of interest perform

according to predefined specifications despite changing conditions, dynamics and noise. However,

the growing complexity of control systems, accompanied by high levels of inherent uncertainty in

modeling and estimation and intrinsic nonlinear dynamics involving unknown functionals, make

achieving the above objective impossible except under idealized conditions. For example, several

control techniques, including adaptive control, optimal control and robust control, are based on

designing fixed controllers that can achieve good control results under fixed assumptions. For

situations where the plant parameters are uncertain or time varying the techniques of adaptive

control [2], [31] are usually performed on–line to maintain tracking performance. However, these

adaptive control methods fail when the situation becomes more complex such as if the plant

to be controlled is characterized by a multi–valued function or even if it exhibits a number

of distinct modes of behavior during its operation. The solution to this problem has been

discussed in [23]–[25] among others. Another restriction is that uncertainty modeling is usually

limited to linear plant models, since propagating uncertainty through nonlinear models destroys

preferred Gaussian distributions of error signals. The Pontryagin Minimum Principle, or the

Hamilton-Jacobi-Bellman partial differential equation are the known methods for optimal control

of continuous noise free known model processes. However, the inclusion of noise renders the



approaches unmanageable except under some very special circumstances. This problem has been

recently considered by Kappen [21] who derived an elegant reformulation of the HJB equations

in a form similar to the quantum mechanical Schrodinger equation, thus opening up the toolbox

of computational approaches from that domain. However the reformulation assumed quadratic

cost functions and linear dynamics in the control parameter. Unfortunately, this formulation does

not map over to the case we are considering in this paper, where the systems are not continuous,

are nonlinear and generally unknown, and are not generally linear in the control parameter, nor

have quadratic cost functions.

Uncertain systems however have been traditionally controlled using the theory of stochas-

tic adaptive control. Fel’dbaum [10]–[12] discovered that control laws derived on the basis

of stochastic adaptive theory generate a control signal that possess two important properties:

direction and probing. Direction means that it directs the system output to follow some desired

value even by taking into consideration uncertainty of the parameter estimates. While probing

means that it elicits further information from the system so as to reduce further parameter

uncertainty. Fel’dbaum used the term dual control to characterize control laws that possess these

two properties. However dual control has not been widely used in practice because of the compu-

tational complexity associated with solving the equations required to find an optimal solution. For

this reason few stochastic adaptive control schemes are based on finding a suboptimal solution

that retains the desirable properties of ideal dual control while permitting implementation [4],

[22], [27], [28], [33].

In the recent past, consideration of complexity in control deriving purely from the interplay

of degrees of freedom through nonlinearity has previously led to the development of techniques

within the framework of intelligent control theory [29], [32], [35], [39] that have enhanced the

degree of adaptation, learning and autonomy. In the neuro-control field, unknown functions are

usually handled by machine learning methods where extra issues of nonlinear model identification

and stability under iteration have arisen [6], [7], [20], [37]. But they still tend to cling to

basic assumptions of approximate knowledge of the plant and deterministic function mappings

describing forward and inverse control. Some of the adaptive control schemes that attempt to

deal with stochastic uncertain nonlinear control systems typically adopt a Heuristic Certainty

Equivalence (HCE) [2], [14] control principle which often leads to an inadequate transient

response because of the initial uncertainty involved in the unknown parameters. Most other



neural network approaches try and reduce the prior uncertainty of the stochastic uncertain

nonlinear control systems by performing intensive batch off–line training [5], [31], [36]. Fabri

and Kadirkamanathan [9] explicitly states that the off–line training defeats the main objective

of adaptive control because the off–line training phase reduces uncertainty through time existing

prior to application of the control. Consequently they proposed a suboptimal dual adaptive control

scheme which was proved to give superior performance to that of certainty equivalence based

control methods. Other approaches for stochastic uncertain nonlinear control systems have also

been developed [8], [17]–[19].

However, complexity in the control arena is also a consequence of uncertainty: uncertainty

due to ignorance of underlying latent structures, incomplete specifications of the processes, and

noise and randomness in data and approximate model parameters. To date these issues have been

largely ignored in the active control field, with only a few notable exceptions. Despite major

efforts which have been put forward in the recently developed control methods for stochastic

uncertain nonlinear control systems, there is still a lack of a complete methodology guaranteeing

satisfactory solutions.

In this paper we propose a novel approach based on a fully probabilistic control framework. In

the proposed control method, historical process data, fully describing the forward and the inverse

models of the system are processed by a semi-Bayesian algorithm. An appropriate likelihood

function is then maximized instead of the usual minimization of the expected value of a data

dependent loss function. The conditional distributions required by the proposed semi-Bayesian

control algorithm are estimated using recent development in machine learning. Although all

conditional distribution functions are assumed to be Gaussian in this paper, expected means and

variances of these distributions are estimated using nonlinear neural network models. Detailed

knowledge of system dynamics is not required in the underlying probabilistic extraction of

information from process data, which supports the approach’s generality.

The proposed probabilistic design methodology gives interesting insight into the probabilistic

decision making problem. For instance, it allows us to take model uncertainty estimation into

consideration when deriving the optimal control law. Moreover the explicit dependency of model

uncertainty on the input data is considered in the proposed probabilistic control algorithm.

This new framework provides an alternative to standard adaptive control theory based on

probabilistic control methods rather than deterministic methods. Designing a probabilistic control



method allows, as will be demonstrated in the paper, taking model uncertainty into consideration

when designing the near to optimal control law. Taking knowledge of uncertainty into consider-

ation when deriving the near to optimal control gives superior control results [8], [17]–[19].

II. PRELIMINARIES

This preparatory section recalls basic elements of modeling conditional distributions of system

outputs and fully probabilistic control.

A. Probabilistic Control

In this paper we are concerned with the trajectory control problem. Here a stochastic system

to be controlled acted upon by an input commanduk at time k is considered (for simplicity

a discrete time system will be considered, although an equivalent continuous time formulation

could be considered). Since we consider a trajectory control problem, the objective is to minimize

the trajectory error,et(k + τ) = y(k + τ) − yd(k + τ), on average such that the mean value

of the system output becomes equal to the desired value, whereτ is the relative degree of the

plant. The resulting trajectory error, which describes the causal relationship between the input

command and the system output is described by a conditional probability density function (pdf),

p(et | xxx,uuu, yd(k + τ)) = f(et(k + τ) = et | xxx(k) = xxx,uuu(k) = uuu, yd(k + τ) = yd), (1)

whereet(k + τ) is the trajectory error,uuu(k) is the control input,xxx(k) = [y(k), . . . , y(k − q +

1),uuu(k − 1), . . . ,uuu(k − p + 1)]T is the system state vector. In this paper all probability density

functions are assumed to be unknown and will be estimated as described in Section II-B.

The randomized controller to be designed is described by the pdf

p(uuu | xxx, yd) = c(uuu(k) = uuu | xxx(k) = xxx, yd(k + τ) = yd), (2)

where yd(k + τ) is the desired output at time(k + τ).

The joint distribution of(et,uuu) will be denoted byp(et,uuu) and the distribution ofuuu condi-

tional onet by p(uuu | et), with the evaluation

p(uuu | et) =
p(et,uuu)

p(et)
. (3)

The value of the variableuuu need not be specified as a random variable jointly withet, but could

simply be a quantity whose value parameterizes and consequently affects the distribution ofet.



Such a variable is called a parameterizing variable, and the distribution ofet for prescribeduuu

is denoted asp(et |;uuu). On the other hand the stochastic description could be completed so

that (et,uuu) can be regarded jointly as random variables. In such a case it may or may not be

true thatp(et | uuu) = p(et |;uuu) [40]. To simplify notations from now onp(et | uuu) will be used

throughout the paper.

The problem of designing a randomized controller is addressed from a stochastic adaptive

perspective. This means finding an admissible control sequence that minimizes a pre-specified

performance index that usually takes the form of the expected value of some cost function [2],

[40]. Admissibility implies thatuuu(k) must be restricted to depend upon the information stateIk,

which consists of all outputs measured up to the present time,Yk, and all previous inputs,Uk−1.

Adherence to the admissibility condition ensures the causality of the control law derived from

the optimization procedure. Following the terminology from probability theory, whenuuu(k) is a

function of (k, Ik) we say thatuuu(k) is Ik−measurable [9].

Stochastic adaptive systems generate a control signal that possess two important properties:

direction and probing. Fel’dbaum [10]–[12] used the term dual control to characterize control

laws that possess these two properties. Although the performance of dual controllers is generally

superior to that of non-dual systems, they have not been widely used in practice because of the

computational complexity issues associated with solving the well known Bellman equations from

dynamic programming [40]. For this reason most practical stochastic adaptive control algorithms

seek a suboptimal solution that to a certain extent retains the desirable properties of ideal dual

control whilst permitting implementations [4], [27], [28], [33], [38].

In this paper an alternative design principle to the stochastic adaptive control problem is

proposed. The principle may be essentially stated as follows:

A controller of a stochastic system may affect its output distribution. The optimal controller

should make the mean value of the output distribution of the estimate of the controlled system

as close as possible to a desired value and at the same time minimize the variance of the output

distribution. In short, the aim is to manipulate estimators of conditional pdfs.

Having accepted this rephrased control aim, it is desirable to construct the posterior distribution

of the control signal which can be estimated using Bayes’ rule as follows:

p(uuu | et) =
p(et | uuu)p(uuu)

p(et)
. (4)



The optimization method of a controller given by Equation (4) will be discussed later in

Section IV. Next we discuss the estimation process for the conditional distribution of the forward

model required by the proposed randomized controller.

B. Conditional Distribution Estimation of Forward Model

The problem of forward model identification is well known and we adopt the same strategy

of generic neural network modeling but augment it with the capability to quantify uncertainty.

The structure of the neural network model is firstly chosen, and is assumed to be identical

to that of the plant if known a priori, otherwise it is determined from the observed data as

in a standard identification process. In this section the problem of estimating the conditional

probability distribution of forward models will be discussed, for the following general class of

nonlinear discrete time systems:

y(k + τ) = f(y(k), . . . , y(k − q + 1),uuu(k),uuu(k − 1), . . . ,uuu(k − p + 1)) + η(k + τ). (5)

The same discussion can be applied to other classes of systems. For the general class of discrete

time nonlinear systems given in Equation (5), the neural network model is taken to have the

general input-output form given by

ŷ(k + τ) = Nf(y(k), . . . , y(k − q + 1),uuu(k),uuu(k − 1), . . . ,uuu(k − p + 1)). (6)

The parameters of the neural network model are then adjusted using an appropriate gradient–

based method to optimize a performance function based on the error between the plant and

the neural model output. The parameters of the forward model can be optimized either off–line

or on–line. For the proposed probabilistic control scheme in this paper on–line identification is

considered. Once the forward model of the plant is identified, it is possible to build a stochastic

model by simply using

y(k + τ) = ŷ(k + τ) + η(k + τ),

whereη(k+η) represents the residual error of the system output which is assumed to be Gaussian

random noise of zero mean andρ2 variance. This term in other words, represents uncertainty

of the forward model. Note, it would be possible to consider more general estimators of the

residual error, but the Gaussian assumption is adequate for the moment.



The above stochastic model has been proposed in [19] to estimate model uncertainty of both

the forward and inverse models of the plant. It is based on theorem 4.2.1 in [13] which states

that the minimum mean squared error (MMSE) estimate of a random vectorz given another

random vectorx is simply the conditional expectation ofz given x, ẑ = E(z | x).

Since the neural network models are optimized based on minimum mean squared error, this

theorem is directly applicable to the output of the neural network model [19]. Letvvv(k) =

[y(k), . . . , y(k − q + 1),uuu(k),uuu(k − 1), . . . ,uuu(k − p + 1)] be the input vector to the neural

network model, the optimal output of the forward modelŷ(k + τ) is the conditional expectation

of y(k + τ) givenvvv(k).

Based on this, two alternative methods have been proposed to provide an estimate for the

variances of the system outputs. In [3] it has been shown that if the network mapping function

is given by the conditional average of the system outputs, then the average variance of the system

outputs is simply the residual error value of the sum–of–squares error function at its minimum,

ρ2 = (1/ND)
∑D

k=1

∑N
i=1 ‖ y(k + τ) − ŷ(k + τ) ‖2. HereD is the dimensionality of the system

outputs, andN is the number of samples. In the second method [15], [16] the variances of

the system outputs are assumed to be input dependent. Based on the same assumption, that

the optimum network outputs approximate the conditional mean of the system output, the input

dependent variances of the system outputs are shown to be equal toρ2 =‖ y(k+τ)− ŷ(k+τ) ‖2.

To provide a prediction value for these local variances, another neural network which takes

the same inputs as the one that predicts the conditional average of the system output can be

trained so that the outputs of this second network approximates the conditional average of the

local estimated variances,̂ρ2 = E(ρ2 | vvv(k)). To emphasize, this provides a pragmatic method

for providing an estimate of the mean and the variance of the nonlinear forward model. It is

equivalent to assumingp(y(k + τ) | vvv(k)) ≈ N[ŷ(k + τ), ρ̂2].

For the probabilistic control method proposed in this paper, the variance of the residual error of

the forward model of the system output is always assumed to be input–dependent. Estimating the

variance of the forward model as a global variance has always been used in the control literature

which consequently suffers from ignoring the term of the error function corresponding to that

variance. In this paper we show that the standard method does not lead to an optimal control

law. This is because the variance of the residual error of the forward model is input–dependent

and should be included in the optimization method, as will be demonstrated shortly. Assuming



an input–dependent variance allows the possibility of deriving a superior control law which

minimizes the variance of the residual error of the forward model in addition to the tracking

error. By doing so the optimization process can be shown to have the duality property. This

means that, in addition to minimizing the tracking error, model uncertainty is also minimized at

the same time.

III. B AYES’ RULE INFERENCE

In this section the problem of deriving the optimal control law in a neural network context on

the basis of a set of training data will be addressed. The problem can be seen by a comparison

with the indirect neural adaptive control problem as follows. In conventional indirect neural

adaptive control, the conditional expectation of the control signals can be estimated directly by

minimizing the mean square error between the system output and a predefined desired output,

e(k + τ) =‖ y(k + τ) − yd(k + τ) ‖2 [1], [17], [34], [39].

In this section we develop a better approach by estimating the conditional distribution of

the control signalsp(uuu(k)), conditioned on the input parameters, rather than estimating the

conditional expectation of control signals as in the standard indirect adaptive control. This new

approach is based on a Bayesian method. The superiority of the proposed approach over the more

common indirect adaptive control methods comes from the fact that standard indirect adaptive

control simply derives the control law based on the assumption of the certainty equivalence

principle. In the new proposed control method, certainty equivalence is not going to be assumed

and the estimation problem will be handled completely probabilistically. This allows taking the

uncertainty of the estimates into consideration in the control algorithm and consequently avoids

performing intensive off–line training of the forward and inverse controller which is usually

performed to reduce the prior uncertainty of the unknown parameters.

The discussion in the next sections will for simplicity of notation be limited to single-output

systems, although the extension to multi-output systems is straightforward.

A. Distribution of Control Signals

The objective in the new developed Bayesian inference framework is to find the maximum

aposteriori estimate of the control signals given the input values, which will be defined shortly.

Therefore, a probability distribution over the control signal values is needed. Before observing



the effect of the control signals on the system outputs, we assume a prior distribution denoted

by, p(uuu(k) | yd(k + τ), xxx(k)). Hereyd(k + τ) = [yi
d(k + τ)] andxxx(k) = [xxxi(k)] denote the set

of training input vectors of the controller,i = 1, . . . , N is the training sample index, andN is

the number of the training samples. Note here that the number of training samples,N = 1 if

an on–line training method is assumed. Otherwise the number of training samples is specified

from the available training data. Let the trajectory error resulting from the control signals in the

training stage be denoted byEt(k + τ) = [E i
t(k + τ)] . Once the trajectory errorsEt(k + τ) are

observed, an expression for the posterior probability distribution of the control signals, which

we denote byp(uuu(k) | Et(k + τ), yd(k + τ), xxx(k)) can be written using Bayes theorem:

p(uuu(k) | Et(k+τ), yd(k+τ), xxx(k)) =
p(Et(k + τ) | uuu(k), xxx(k), yd(k + τ))p(uuu(k) | yd(k + τ), xxx(k))

p(Et(k + τ) | xxx(k), yd(k + τ))
.

(7)

The denominator is a normalization factor which can be written

p(Et(k+τ) | xxx(k), yd(k+τ)) =

∫
p(Et(k+τ) | uuu(k), xxx(k), yd(k+τ))p(uuu(k) | yd(k+τ), xxx(k))duuu(k).

(8)

The problem of deriving the control law under this inference framework can be interpreted as

follows. The problem starts with some prior distribution over the control signal given byp(uuu(k) |

yd(k+τ), xxx(k)). Once the effect of the control signal on the system output has been observed, this

prior distribution can be converted to a posterior distribution using Bayes’ theorem as indicated

in Equation (7). The evaluation of the posterior will require expressions for the prior distribution

p(uuu(k) | yd(k + τ), xxx(k)) and for the likelihood functionp(Et(k + τ) | uuu(k), xxx(k), yd(k + τ)).

B. Prior Distribution of Control Signals

To convert the general inference framework for this probabilistic control design into a tractable

computation, we assume a Gaussian function for the prior distribution of control signals which

can be written as an exponential of the form

p(uuu(k) | yd(k + τ), xxx(k)) =
1

Zu(α)
exp(−αEu), (9)

whereZu(α) is a normalization factor given by

Zu(α) =

∫
exp(−αEu)duuu, (10)



which ensures that
∫

p(uuu)duuu = 1, andEu is a cost function chosen to reflect some preference in

the problem. Here we takeEu to be quadratic, hence the Gaussian assumption. The motivation

for this is as follows:

The discussion in standard control usually prefers small and smooth changes in values of the

control signal, which consequently suggest the following simple form forEu as a regularizer

Eu =
1

2
‖ uuu(k) ‖2=

1

2

N∑

n=1

uuuT
n(k)uuu, (11)

whereU is the dimensionality of the control signals. This corresponds to the penalty term for

uuu(k) which is usually added in control problems to penalize large control signals, reflecting

that in practice the control amplitude needs to be constrained. However, our framework does

not insist on smoothness of the control signal and other regularizers can be used. The prior

distribution can then be rewritten in the following form

p(uuu(k) | yd(k + τ), xxx(k)) =
1

Zu(α)
exp(−

α

2
‖ uuu(k) ‖2). (12)

Thus when‖ uuu(k) ‖ is large, andp(uuu(k) | yd(k + τ), xxx(k)) is small, then this choice of

distribution says that the control signal values are expected to be small rather than large.

The hyperparameterα will be treated as part of the learning process as will be discussed

in Section VII. Since the prior distribution is Gaussian, the evaluation of the normalization

coefficientZu(α) using Equation (10) is straight forward, and gives

Zu(α) =

(
2π

α

)NU
2

. (13)

C. Distribution of Trajectory Error

In general the likelihood function in Bayes’ theorem, Equation (7), can be written in the form

p(Et(k + τ) | uuu(k), xxx(k), yd(k + τ)) =
1

ZEt(β)
exp(−βEEt), (14)

whereEEt is an error function which will be defined shortly, andβ is another hyperparameter

which represents the noise variance of the trajectory error. The functionZEt(β) is a normalization

factor given by

ZEt(β) =

∫
exp(−βEEt)dEt(k + τ), (15)

where
∫

dEt(k + τ) =
∫

de1
t(k + τ) . . . deN

t (k + τ) represents an integration over the trajectory

error. We remind the readers that the system outputs are assumed to be generated from a smooth



function estimated by a neural network model with additive zero mean Gaussian noise. Again

the assumption of Gaussian distribution on the errors of the forward model of the system output

does not mean a linear Gaussian model as in the standard control theory. Here a nonlinear

neural network model is used to estimate the system output. This nonlinear model is assumed

to approximate the output of the system to a sufficient degree of accuracy, which leads to small

error values on the system outputs and consequently the residual error of the system output is

Gaussian. The Gaussian assumption on the residual error of the system output can be relaxed

in a straightforward way by assuming a mixture of Gaussians on the distribution of the forward

model, at the expense of a more complex formalism.

The effect of the control signals on the system output is given by the probability of observing

a trajectory error valueet(k + τ) for a given input as follows

p(et(k + τ) | uuu(k), xxx(k), yd(k + τ)) ∝ exp

(
−

β

2
{y(k + τ) − yd(k + τ)}2

)
. (16)

Given that the data points are drawn independently from this distribution, we have

p(Et(k + τ) | uuu(k), xxx(k), yd(k + τ)) =

N∏

n=1

p(en
t (k + τ) | uuun(k), xxxn(k), yn

d(k + τ))

=
1

ZEt(β)
exp

(
−

β

2

N∑

n=1

{yn(k + τ) − yn
d(k + τ)}2

)
. (17)

The expression in Equation (15) for the normalization factorZEt(β) is then the product ofN

independent Gaussian integrals which can be easily evaluated to give

ZEt(β) =

(
2π

β

)N
2

(18)

The problem of determining the hyperparameterβ as part of the learning process will be

discussed later in Section VII.

D. Posterior Distribution of Control Signals

Once a prior distribution and an expression for the likelihood function have been chosen,

Bayes’ theorem in the form given in Equation (7) can be used to find the posterior distribution

of the control signals. Using the prior expression given in Equation (9), and the likelihood



expression given in Equation (14), the posterior distribution of control signals can be obtained

in the form

p(uuu(k) | Et(k + d), yd(k + d), xxx(k)) =
1

ZS

exp(−βEEt − αEu) =
1

ZS

exp(−S(uuu(k))), (19)

where

S(uuu(k)) = βEEt + αEu, (20)

and

ZS(α, β) =

∫
exp(−βEEt − αEu)duuu(k). (21)

The objective next is to discuss the problem of deriving the optimal control law, the Gaussian

approximation to the posterior distribution, the distribution of the system output, in addition to

the estimation of the hyperparameters.

IV. D ERIVATION OF THE OPTIMAL CONTROL LAW

We firstly discuss the derivation of the optimal control law for the simple class of affine

nonlinear discrete time systems. The more general nonlinear class of models classified in [30]

as the most complicated form of systems model will be discussed later.

Since we are considering a stochastic system, the optimal control law corresponds to the

maximum of the posterior distribution which can be extracted by minimizing the expected

value of the negative logarithm of Equation (19) with respect to the control input. Since the

normalization factorZS in Equation (21) is evaluated by integrating over the control signal, we

see that the minimization process is equivalent to minimizing< S(uuu) > given by Equation (20).

For the prior distribution given in Equation (12) and noise model given by Equation (17) this



can be written in the form

< S(uuu(k)) >=

〈
β

2

N∑

n=1

{yn(k + τ) − yn
d(k + τ)}2 +

α

2

N∑

n=1

uuuT
n(k)uuun(k)

〉

=

〈
β

2

N∑

n=1

{ŷn(k + τ) + ηn(k + τ) − yn
d(k + τ)}2 +

α

2

N∑

n=1

uuuT
n(k)uuun(k)

〉

=
β

2

N∑

n=1

{
(ŷn(k + τ) − yd(k + τ))2 + 2(ŷ(k + τ) − yd(k + τ)) < ηn(k + τ) >

+ < (ηn(k + τ))2 >

}
+

α

2

N∑

n=1

uuuT
n(k)uuun(k)

=
β

2

N∑

n=1

[
{ŷn(k + τ) − yn

d(k + τ)}2 + ρ2

]
+

α

2

N∑

n=1

uuuT
n(k)uuun(k) (22)

where we substituted y(k + τ) = ŷ(k + τ) + η(k + τ), evaluated the expected value and used

the fact that< η(k + τ) >= 0.

As discussed in Section II-B, the variance of the residual error of the system output is input–

dependent and therefore should contribute to the derivation of the optimal control law. The

minimization of Equation (22) with respect to the control signal will be discussed next for the

affine and the general classes of nonlinear discrete time systems.

A. Affine Class Nonlinear Discrete Time Systems

In this section the problem of deriving the optimal control law corresponding to the maximum

aposterior estimate will be discussed for a stochastic multi-input single-output affine class of

nonlinear discrete time systems having the general form

y(k + τ) = f[xxx(k)] + gggT [xxx(k)]uuu(k) + η(k + τ), (23)

where y(k+τ) is the output,uuu(k) is the control input vector of dimensionU, xxx(k) = [y(k), . . . , y(k−

q + 1),uuu(k − 1), . . . ,uuu(k − p + 1)] is the system state vector,f[xxx(k)] : Rq+Up−U 7−→ R and

ggg[xxx(k)] : Rq+Up−U 7−→ RU are unknown nonlinear functions of the state andη(k + τ) is an

additive noise signal.

Two neural networks can then be used to approximate the nonlinear functionsf[xxx(k)] and

ggg[xxx(k)]. The network estimations are denoted asf̂[xxx(k)] and ĝgg[xxx(k)]. Since in this section the



hyperparameterβ is taken to be input–independent, then Equation (22) will have the same form

as before, repeated here:

< S(uuu(k)) >=
β

2

N∑

n=1

[
{ŷn(k + τ) − yn

d(k + τ)}2 + ρ2

]
+

α

2

N∑

n=1

uuuT
n(k)uuun(k). (24)

To observe the actual value of the noise variance, the system output at timek + τ is required.

To overcome this, another neural network is used to provide an estimate for the variance of

the residual error of the system output. Although two neural network models could be used to

estimateρ2 for the affine class of nonlinear discrete time systems, we believe this complication is

not necessary and therefore use one neural network denoted byhhh[xxx(k)]. This yields the following

form for the variance estimate of the residual error of the system output:

ρ̂2 = hhhT [xxx(k)]uuu(k). (25)

Using Equation (25) in Equation (24) yields:

< S(uuu(k)) >=
β

2

N∑

n=1

[
{ŷn(k + τ) − yn

d(k + τ)}2 +hhhT
n[xxx(k)]uuun(k)

]
+

α

2

N∑

n=1

uuuT
n(k)uuun(k). (26)

Minimization of the explicit performance index given in Equation (26) leads to the control law

specified in the following theorem:

Theorem 1: The control law minimizing the performance index in Equation (26) subject to

the system of Equation (23), is given by

uuu∗(k) =

β{yd(k + d) − f̂[xxx(k)]}ĝgg[xxx(k)] − β
2
hhh[xxx(k)] + β2

2α
{ĝggT [xxx(k)]hhh[xxx(k)]ĝgg[xxx(k)] − ĝggT [xxx(k)]ĝgg[xxx(k)]hhh[xxx(k)]}

βĝggT [xxx(k)]ĝgg[xxx(k)] + α
.

(27)

The proof of theorem 1 can easily be carried out by taking the derivative of Equation (26) with

respect to the control signal and setting the derivative equal to zero.

B. General Nonlinear Input-Output Model

Here the objective is to derive the optimal control law for a stochastic multi-input single-output,

general class of nonlinear discrete time systems having the following form

y(k + d) = f(y(k), . . . , y(k − q + 1),uuu(k),uuu(k − 1), . . . ,uuu(k − p + 1)) + e(k + d), (28)



A neural network model having the following general input-output form

ŷ(k + d) = Nf(y(k), . . . , y(k − q + 1),uuu(k),uuu(k − 1), . . . ,uuu(k − p + 1)), (29)

can then be used to estimate the system output given in Equation (28).

Again following the discussion in Section II-B, a neural network model is then used to provide

an estimate for the input–dependent variance of the residual error of the system output, which

is taken for the general nonlinear class of discrete time system discussed in this section to be

of the following form:

ρ̂2 = h(y(k), . . . , y(k − q + 1),uuu(k),uuu(k − 1), . . . ,uuu(k − p + 1)). (30)

Using this in Equation (22) yields:

< S(uuu(k)) >=
β

2

[ N∑

n=1

{ŷn(k + d) − yn
d(k + d)}2

+ hn(y(k), . . . , y(k − q + 1),uuu(k),uuu(k − 1), . . . ,uuu(k − p + 1))

]
+

α

2

N∑

n=1

uuuT
n(k)uuun(k). (31)

The optimal control law can then be found by setting the derivative of Equation (31) with respect

to the control signal to zero

0 = β[ŷ(k + d) − yd(k + d)]
∂ŷ(k + d)

∂uuu(k)
+

β

2

∂ρ̂

∂uuu(k)
+ αuuu(k). (32)

Since the forward model of the system output and the model of its variance are nonlinear func-

tions of the control signal, a nonlinear optimization method is required for solving Equation (32)

and deriving the optimal control law. A closed form for the optimal control law cannot be found.

V. GAUSSIAN APPROXIMATION TO THEPOSTERIORDISTRIBUTION

Given the definitions of the forward model distribution and the prior of control signals, the

posterior distribution defined in Equations (19) and (21) is then specified. The evaluation of

the probability distribution of the forward model predictions as well as the evidence for the

hyperparameters requires integration over control signals. In order to make these analytically

tractable, some approximations need to be introduced. In the Bayesian work for estimating the

weight parameters of neural networks, Mackay [26] used a Gaussian approximation for the

posterior distribution of the weight vector. Similarly, here we use the Gaussian approximation



for the posterior distribution of the control signal. This is obtained by considering the Taylor

expansion of< S(uuu) > around its minimum value ofuuuMP(k) and retaining terms up to the

second order so that

< S(uuu(k)) >=< S(uuuMP(k)) > +
1

2
(uuu(k) − uuuMP(k))A(uuu(k) − uuuMP(k)), (33)

where the linear term has vanished since we are expanding around a minimum ofS(uuu). Here

A is the Hessian matrix of the total error function, with elements given by

A = βĝ[xxx(k)]ĝT [xxx(k)] + αI. (34)

For the general nonlinear discrete time system discussed in Section IV-B, the elements of the

Hessian matrixA are given by

A = β

(
52 EMP

Y +
1

2
52 ρ̂MP

)
+ αI, (35)

whereEMP
Y = 1

2
[ŷ(k + d)|uuuMP

− yd(k + d)]2. A variety of exact and approximate methods for

evaluating the Hessian of the error functionEY can be found in [3].

The expansion in Equation (33) leads to a posterior distribution which is a Gaussian function

of the control signals, given by

p(uuu(k) | Y(k + d), yd(k + d), xxx(k)) =
1

Z∗S
exp

(
− S(uuuMP(k)) −

1

2
4uuuT (k)A4uuu(k)

)
, (36)

where4uuu(k) = uuu(k)−uuuMP(k) andZ∗S is the normalization constant appropriate to the Gaussian

approximation.

Based on the above Gaussian approximation, the normalization factorZ∗S can now be evaluated

to give

Z∗S(α,β) = e−S(uuuMP(k))(2π)U/2 | A |−
1
2 . (37)

VI. D ISTRIBUTION OF SYSTEM OUTPUT

The Bayesian formalism above is used for estimating the posterior distribution of control

signals. Once the forward and inverse models of the system have been trained and converged,

the distribution of control signals will affect the distribution of the trajectory error and in-turn the

distribution of the system output. In addition, there will be a contribution of the trajectory error

distribution arising from the assumed Gaussian noise on the error trajectory. In this section the



distribution of system output values using the Gaussian approximation of the posterior distribution

will be calculated.

Using the rules of probability, the distribution of the trajectory error for a given input can be

written in the form

p(et(k + τ) | xxx(k), yd(k + τ), Et(k + τ)) =

∫
p(et(k + τ) | uuu(k), xxx(k), yd(k + τ))

p(uuu(k) | Et(k + τ), yd(k + τ), xxx(k))duuu(k), (38)

wherep(uuu(k) | Et(k+τ), yd(k+τ), xxx(k)) is the posterior distribution of the control signal. The

distributionp(et(k+ τ) | uuu(k), xxx(k), yd(k+ τ)) is the model for the distribution of noise on the

trajectory error , and is given by Equation (16).

The evaluation of this integral will require the use of the Gaussian approximation given in

Equation (36) for the posterior distribution of control signals, together with the expression given

in Equation (16) for the distribution of the trajectory error. This gives

p(et(k + τ) | xxx(k), yd(k + τ), Et(k + τ))

∝
∫

exp

(
−

β

2
{y(k + τ) − yd(k + τ)}2

)
exp

(
−

1

2
4uuuT (k)A4uuu(k)

)
d4uuu(k). (39)

The evaluation of this distribution will be carried out for the two classes of models described

earlier in the paper: the affine class of nonlinear discrete time systems, and the general nonlinear

class of discrete time systems.

A. Affine Class of Nonlinear Discrete Time Systems

This section is concerned with the evaluation of the distribution of the system output for the

affine class of discrete time systems defined in Equation (23). Using the neural estimates of the

nonlinear models of Equation (23) in Equation (39), and the fact that y(k+τ) = ŷ(k+τ)+η(k+τ)



yields

p(η(k + τ) | xxx(k), yd(k + τ), Et(k + τ))

∝
∫

exp

(
−

β

2
{η(k+τ)+f̂[xxx(k)]+ĝggT [xxx(k)]uuu(k)−yd(k+τ)}2

)
exp

(
−

1

2
4uuuT (k)A4uuu(k)

)
d4uuu(k)

=

∫
exp

(
−

β

2
{η(k + τ) + f̂[xxx(k)] + ĝggT [xxx(k)][uuuMP(k) +4uuu(k)] − yd(k + τ)}2

)

exp

(
−

1

2
4uuuT (k)A4uuu(k)

)
d4uuu(k). (40)

The evaluation of the integral in Equation (40) is a Gaussian distribution of the form

p(η(k + τ) | xxx(k), yd(k + τ), Et(k + τ))

=
1

(2πσ2
η)

1/2
exp

(
−

{η(k + τ) − [yd(k + τ) − f̂[xxx(k)] − ĝggT [xxx(k)]uuuMP(k)]}2

2σ2
η

)
. (41)

This distribution has a mean given by yd(k + τ) − f̂[xxx(k)] − ĝggT [xxx(k)]uuuMP(k), and a variance

given by

σ2
η =

1

β
+ ĝggT [xxx(k)]A−1ĝgg[xxx(k)]. (42)

Following the discussion in Section II-B, the mean value of the residual error of the system

output is zero. This means thatf̂[xxx(k)] + ĝggT [xxx(k)]uuuMP(k) = yd(k + τ), i.e after training the

forward and inverse models, the expected value of the system output will be equal to the desired

output value.

It is clear from Equation (42) that the standard deviation of the predictive distribution of the

system output has two contributions. The first contribution arises from intrinsic noise on the

trajectory error which in turn is the intrinsic noise on the system output, represented by the first

term of Equation (42). The second contribution arises from the width of the posterior distribution

of control signals, represented by the second term of Equation (42).

B. General Nonlinear Input-Output Model

Here the evaluation of the distribution of the system output for the general class of nonlinear

discrete time systems defined in Equation (28) will be discussed. Since the forward neural

network model of the system output is a nonlinear function of control signals, we need to

introduce some simplifying approximations. Here we shall assume that the width of the posterior



distribution of control signals (determined by the Hessian matrixA) is sufficiently narrow to

allow us to approximate the network functionŷ(k+τ) = Nf(y(k), . . . , y(k−q+1),uuu(k),uuu(k−

1), . . . ,uuu(k − p + 1)) by its linear expansion arounduuuMP(k),

ŷ(k + τ) = ŷMP(k + τ) + JT 4uuu(k), (43)

where

J ≡ 5uuu(k)ŷ(k + τ) |uuuMP(k) . (44)

Using this and the fact that y(k + τ) = ŷ(k + τ) + η(k + τ) in Equation (39) yields

p(η(k + τ) | xxx(k), yd(k + τ), Et(k + τ))

∝
∫

exp

(
−

β

2
{η(k + τ) + ŷMP(k + d) + JT 4uuu(k) − yd(k + τ)}2

)

exp

(
−

1

2
4uuuT (k)A4uuu(k)

)
d4uuu(k), (45)

whereŷMP(k + d) = ŷ(k + d) |uuuMP
. The integral in Equation (45) can be evaluated as given in

the Appendix to give a Gaussian distribution of the form

p(η(k+τ) | xxx(k), yd(k+τ), Et(k+τ)) =
1

(2πσ2
η)

1/2
exp

(
−

{η(k + τ) − [yd(k + τ) − ŷMP(k + d)]}2

2σ2
η

)
.

(46)

This distribution has a mean given by yd(k + τ) − ŷMP(k + d) and a variance given by

σ2
η =

1

β
+ JTA−1J. (47)

Again following the discussion in Section II-B, the mean value of the residual error of the system

output is zero. This means thatŷMP(k+d) = yd(k+τ), i.e after training the forward and inverse

models, the expected value of the system output will be equal to the desired output value.

Also the variance of Equation (47) can be interpreted as before for the affine class of nonlinear

models. It has two terms, the first term corresponding to the intrinsic noise on the system output,

and the second term corresponding to the width of the posterior distribution of control signal.

VII. T HE EVIDENCE FRAMEWORK FORα AND β

Although we may have enough information to estimate the noise levelβ of the trajectory error,

the Bayesian framework can in principle provide a better way for handling the hyperparameters’

estimation.



The correct Bayesian treatment for the hyperparametersα andβ, whose values are unknown

is to integrate them out of any predictions [3]. Rewriting the posterior distribution of the control

signal to include dependencies inα andβ explicitly gives,

p(uuu(k) | Et) =

∫ ∫
p(uuu(k), α, β, | Et)dαdβ

=

∫ ∫
p(uuu(k) | α,β, Et)p(α, β | Et)dαdβ. (48)

Suppose that the posterior probability distributionp(α,β | Et) for the hyperparameters in Equa-

tion (48) is sharply peaked around their most probable valuesαMP andβMP, then Equation (48)

can be written as

p(uuu(k) | Et) = p(uuu(k) | αMP, βMP, Et)

∫ ∫
p(α,β | Et)dαdβ,

= p(uuu(k) | αMP, βMP, Et). (49)

This means that values of the hyperparameters which maximize the posterior probability need to

be found first, and then the remaining calculations can be performed with the hyperparameters

set to these values. In order to findαMP andβMP the posterior distribution ofα andβ need to

be evaluated. This is given by

p(α,β | Et) =
p(Et | α,β)p(α,β)

p(Et)
, (50)

which requires a choice for the hyperpriorp(α,β). Since the denominator in Equation (50) is

independent ofα and β, the maximum posterior of these values is found by maximizing the

likelihood termp(Et | α,β), which is called the evidence forα andβ.

Making the dependencies explicit onα andβ in Equation (8), it can be written in the form

p(Et(k + τ) | α,β) =

∫
p(Et(k + τ) | uuu(k), α, β)p(uuu(k) | α,β)duuu(k),

=

∫
p(Et(k + d) | uuu(k), β)p(uuu(k) | α)duuu(k), (51)

where we made use of the fact that the prior is independent ofβ and the likelihood function

is independent ofα. Using the exponential forms given in Equations (9) and (14) for the

prior distribution of control signals and the likelihood distribution, together with Equation (20)



and (21), the evidence ofα andβ can then be written in the form

p(Et(k + τ) | α, β) =
1

ZEt(β)

1

Zu(α)

∫
exp−S(uuu(k))duuu(k)

=
ZS(α,β)

ZEt(β)Zu(α)
. (52)

The normalization coefficientsZEt(β) andZu(α) have already been evaluated in Equations (13)

and (18) respectively. For the Gaussian approximation of the posterior distribution of control

signals,ZS(α,β) is given in Equation (37). The log of the evidence is then given by

ln p(Et(k + τ) | α,β) = −αEMP
u − βEMP

Et
−

1

2
ln | A | +

NU

2
ln α +

N

2
ln β −

N

2
ln(2π), (53)

where A defined in Equations (34) and (35) for the affine and the general nonlinear classes

of discrete time systems respectively is the Hessian matrix of the error function. For input–

independent noise models considered in this paper, it clearly consists of two terms as can be

seen from Equations (34) and (35). The first term represents the derivative of the likelihood error

function while the second term is the derivative of the prior of the control signals.

Maximization of the explicit form of the log of the evidence defined in Equation (53) leads

to re-estimation equations forα andβ defined in the following theorem.

Theorem 2: The hyperparametersα and β maximizing the log of the evidence defined in

Equation (53) are given by

αnew =
γ

2Eu

, (54)

βnew =
N − γ

2EY
, (55)

where the quantityγ is defined by

γ =

U∑

i=1

λi

λi + α
, (56)

and whereλi denote the eigenvalues of the Hessian matrix given by the first term of Equa-

tions (34) and (35) for the affine and the general nonlinear classes of discrete time systems

respectively.

The proof of theorem2 is given in the Appendix. It can easily be carried out by taking the

derivative of Equation (53) with respect toα andβ and setting the derivative equal to zero.



VIII. I MPLEMENTATION OF THE PROPOSEDBAYESIAN TECHNIQUE

since much of the theory has been covered in our discussion of the proposed Bayesian

method, we summarize here the main steps to implement this method for practical applications.

Only on–line implementation will be summarized which could easily be generalized to off–line

implementation.

• Choose initial values for the hyperparametersα andβ. Initialize network parameters of the

forward model and variance network using values drawn from the prior distribution.

• At each time instantk,

– Calculate the desired output to be followed by the system, yd(k + τ).

– Solve equation (27) if affine class or equation (27) if general nonlinear class for the

optimal control law.

– Forward the optimal control law to the plant and measure the system output, y(k + τ).

– Based on the measured value of the system output, update the network parameters of

the forward model.

– Estimate the system output from the network of forward model.

– Calculate the variance of the output,ρ2 = (y(k + τ) − ŷ(k + τ))2.

– Update the parameters of the variance network based onρ2.

– Re-estimate values forα andβ using equations (54) and (55), withγ calculated using

equation (56). This requires evaluation of the Hessian matrix from equation (34) if

affine class or equation (35) if general nonlinear class, and evaluation of its eigenvalue

spectrum.

The flow chart of implementing the proposed Bayesian method is shown in Figure 1. Example

of practical implementation of the proposed Bayesian method will be given in the next section.

IX. SIMULATION EXAMPLE

In this section a nonlinear SISO stochastic control problem is simulated. The dynamic equation

of the system is

y(k + 1) = sin[y(k)] + cos[3y(k)]

+ {2 + cos[y(k)]}u(k) + e(k + 1). (57)



Fig. 1. On–line implementation of the proposed Bayesian method.

wheree(k+1) was assumed to be sampled from a Gaussian distribution,N (0, 0.2). This system

has been used in [8], [9] to illustrate theoretical developments for suboptimal dual adaptive

control.

In this paper two radial basis function neural networks with7 and3 Gaussian basis functions

respectively are used to approximate the nonlinear functionsf(y(k)) = sin[y(k)]+cos[3y(k)] and

g(y(k)) = {2+cos[y(k)]}. The following reference model with input–output pairs{r(k), yd(k+1)}



is chosen so that yd(k + 1) represents the desired output behavior at timek + 1

yd(k + 1) = r(k) + 0.0074yd(k). (58)

For comparison purposes, two sets of experiments were conducted to demonstrate the on–line

training methods for the proposed Bayesian control algorithms and the conventional indirect

adaptive control. On–line adaptation for the parameters of the forward models in the indirect

adaptive control method and for the parameters of the forward models and the hyperparameters

α and β in the Bayesian control method were conducted. The number of outer loops in the

proposed Bayesian control algorithms is taken to be 1 in order to be consistence with the idea

of online control. The same noise sequence, initial conditions, neural network structure, and

reference input were used during implementation of each control method. The result is shown in

Figure 2. As expected, the figure shows that the indirect adaptive control exhibits large transient

overshoot because it is not taking into consideration the uncertainty of the forward and inverse

models. Only after the initial period, when the parameters of the forward and inverse models

converge, does the control assume good tracking. On the contrary, and although a different

source of uncertainty is introduced (which is mainly coming from the uncertainty introduced

from the online estimation of the hyperparameters), the proposed Bayesian method shows better

characteristics in the transient response reflecting the use of knowledge about uncertainty of the

forward and inverse models. The average tracking error of the Bayesian method and coventional

adaptive control were0.2223 and2.8604 respectively.

X. CONCLUSIONS

The nonstandard formulation of the proposed probabilistic control method presented here can

be viewed as an alternative method to the traditional deterministic adaptive control methods. It

provides a theoretical foothold for a wider aim in probabilistic controller design.

Throughout the paper, the basic paradigm for the proposed probabilistic control method has

been developed. The discussion has demonstrated the proposed method for two different classes

of nonlinear uncertain systems. For the affine class of nonlinear uncertain discrete time systems

a closed form for the optimal control law was found. The results were then extended to the

more general class of nonlinear uncertain discrete time systems where the system equations are

taken to be nonlinear functions in both the previous input and output values. Because of the
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Fig. 2. Results of on–line control: output and tracking error (a) the actual and reference model outputs of standard adaptive

control. (b) tracking error of standard adaptive control. (c) the actual and reference model outputs of the proposed Bayesian

method. (d) tracking error of the proposed Bayesian method.

nonlinearity of the system equations a closed form for the optimal control strategy could not be

found.

This more general framework for adaptive control methods has the major advantage that we

can now incorporate uncertainty (in models and parameters) in a more structured framework.

Different levels of uncertainty and noise models can be treated consistently using the inference

machinery. Moreover, the proposed method provides an estimate for the uncertainty of the system

output as shown in equations (42) and (47). Note that traditional methods which do not estimate

distributions, cannot produce an estimate for the system output uncertainty. Simulation studies

have validated these theoretical findings.

In the current study, the hyperparameter,β, which represents the noise variance of the tra-



jectory error is restricted to be input–independent. This has always been assumed in Bayesian

methods. In future work we will demonstrate how we can exploit the same machinery to deal

with the case of an input–dependent hyperparameter.

APPENDIX

A. Proof of Theorem 2

This section will provide the proof for Theorem2 of Section VII. To obtain the re-estimation

equation of the hyperparameterα the maximum of Equation (53) with respect toα needs to

be found. In order to differentiate ln| A | with respect toα, the Hessian matrixA of the error

function is firstly written asA = H + αI whereH = β

(
52 EY + 1

2
52 ρ̂MP

)
is the Hessian

matrix of the unregularized error function. If{λi}, (i = 1, . . . , U) denote the eigenvalues ofH,

thenA has eigenvaluesλi + α and we have

d

dα
ln | A | =

d

dα
ln

(∏

i

(λi + α)

)

=
d

dα

∑

i

ln(λi + α)

=
∑

i

1

λi + α
= TrA−1. (59)

The previous derivation has implicitly assumed the independency of the eigenvaluesλi on α.

This assumption is true for an error functionEY which is exactly a quadratic function of the

control signal as is the case for the affine class of nonlinear discrete time systems, because the

Hessian matrix of the error function is independent ofuuu. For the general nonlinear class of

discrete time systems, the Hessian matrix will be a function ofuuu, consequently we see that the

result in Equation (59) actually neglects terms involvingdλ/dα.

With Equation (59), the maximization of Equation (53) with respect toα then leads to the

result that,

2αEMP
u = U −

U∑

i=1

α

λi + α
= γ, (60)

whereγ is defined in Equation (56). Now we consider the maximization of Equation (53) with

respect toβ. Sinceλi are the eigenvalues ofH = β

(
52 EY + 1

2
52 ρ̂MP

)
it follows that λi is

directly proportional toβ and hence
dλi

dβ
=

λi

β
. (61)



Thus the derivative of the log of the Hessian matrix ln| A | of the error function with respect

to β is

d

dβ
ln | A | =

d

dβ

∑

i

ln(λi + α)

=
1

β

∑

i

λi

λi + α
. (62)

The maximum of Equation (53) with respect toβ is then be given by

2βEMP
Y = N −

U∑

i=1

λi

λi + α
= N − γ. (63)

Rearranging Equations (60) and (63) yields the re-estimation equation of the hyperparameters

α andβ given by Equations (54) and (55) respectively.
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[22] M. Kárńy. Towards fully probabilistic control design.Automatica, 32(12):1719–1722, 1996.
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