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Thesis Summary

This thesis presents an analysis of the stability of complex distribution networks.

We present a stability analysis against cascading failures. We propose a spin [binary]
model, based on concepts of statistical mechanics. We test macroscopic properties of
distribution networks with respect to various topological structures and distributions of
microparameters. The equilibrium properties of the systems are obtained in a statistical
mechanics framework by application of the replica method. We demonstrate the validity
of our approach by comparing it with MonteCarlo simulations. We analyse the network
properties in terms of phase diagrams and found both qualitative and quantitative de-
pendence of the network properties on the network structure and macroparameters. The
structure of the phase diagrams points at the existence of phase transition and the presence
of stable and metastable states in the system.

We also present an analysis of robustness against overloading in the distribution net-
works. We propose a model that describes a distribution process in a network. The model
incorporates the currents between any connected hubs in the network, local constraints in
the form of Kirchoff’s law and a global optimizational criterion. The flow of currents in
the system is driven by the consumption. We study two principal types of model: infinite
and finite link capacity. The key properties are the distributions of currents in the system.
We again use a statistical mechanics framework to describe the currents in the system in
terms of macroscopic parameters. In order to obtain observable properties we apply the
replica method. We are able to asses the criticality of the level of demand with respect to
the available resources and the architecture of the network. Furthermore, the parts of the
system, where critical currents may emerge, can be identified. This, in turn, provides us
with the characteristic description of the spread of the overloading in the systems.

Keywords: Distribution networks, complex networks, statistical physics, replica
method.
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Chapter 1 " INTRODUCTION

1.1 Complex networks, motivation.

The field of complex networks has grown from the research of many other fields of science
and spans many research areas. Stemming from mathematics [1] and social science [2, 3]
the field of complex networks attracts a lot of interest from various scientific communities
and in a period of rapid development.

Complex networks arise naturally in many fields of science. Having understood the
behaviour or properties of individual objects and interactions between objects, researchers
attempt to look into properties of the groups of interacting objects. While 1t is possible to
analyse small groups or groups that have special order, the analysis of large groups, with
just basic knowledge of the objects and interactions, is still an open question in many

cases and is the subject of the study of complex networks.

1.1.1 Applications of complex networks.

There are many applications of complex networks in >vari0us fields. In social studies
[2, 3, 4, 5] the networks are statistically measured to address the questions of the status,
‘nfluence or role of an individual. The structure of social networks reveals social division
or cohesiveness. From the epidemiological point of view, social networks are inter&ting
as a distribution network to study the spread of diseases [1, 6, 7, 8]. The social interactions
in this context could assist in the discovery of new strategies for avoiding or containing
future epidemics. [n biochemical networks, some unexpected features are found, that are
significant in understanding of the evolution of organisms [9, 10].

Technological networks are another type of network of interest. The term “technolog-
ical” refers to various communication and transport networks [1 1], electrical power grids
[12, 13], the Internet [14, 15, 16], as well as other man-made networks. The remarkable
growth of networks of this type completely changed our education and entertainment,
commerce and communication. It is very hard to underestimate the importance of these
networks as they have become a backbone of modern society, and without these networks,

even day to day tasks become surprisingly hard to accomplish.

Technological networks are a particularly fruitful application of complex networks.
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Chapter 1 INTRODUCTION

The studies of such networks proved to be useful in design of new algorithms for search
[17, 18], implementation of the computation/resource sharing [19], analysis of robustness

and vulnerability [20, 21, 22, 23, 24].

1.2 Robustness of complex networks.

In this thesis we focus on the stability issues of complex distribution networks. We focus
on networks where some kind of distribution process is in action such as electrical power
distribution, rail/road transportation, information distribution on the Internet. Thus, elec-
trical power distribution is a process of delivering electrical energy to consumers. The
power grid connects generating power plants to multiple transmission and distribution
substations. Therefore, the success of the distribution process depends on the functioning
of substations and transmission lines in the network. Similarly, transportation of people
and commodities is achieved by use of various transport networks, and both the trans-
port links and the transport hubs are critical to the transportation. Finally, information
distribution on the Internet is a process of sending/receiving electronic documents be-
tween computers connected to the Internet. The Internet is a network of computers and
physical connections between them. The distribution depends on the functioning of many
computers and connections between them.

The typical state of any distribution network is the functional one, that is the service
is delivered throughout the whole network. However, everyday we experience traffic
jams, sometimes the absence of Internet connection and very rare power outages. All
these indicate that the corresponding network does not function to an expected level. In
particular, the grid lock on the roads signals that the road capacity is less than the actual
traffic, the absence of Internet connections could be caused by hardware problems or cable
faults, the power outage by transmission line or substation faults.

However, the malfunction of some parts of the network usually does not affect the
whole network [25]. Thus, the traffic problems in one part of the city do not affect traffic
in other

parts; nonfunctioning servers on the Internet affect only users that connect to

them, broken transmission lines cause outages in particular locations.

12




Chapter 1 INTRODUCTION

Moreover, the design of the core of such networks allows multiple routes between any

locations, computers or substations. This built-in network redundancy, allows avoidance

of problem spots, decreasing stress on the malfunctioning parts of the network [22]. This
is especially important in such systems due to the systematic character of observed failures
[26]. It is known that many routers, websites or Web pages malfunction everyday, but still
the overall functioning of the whole system remains intact. Similarly, studies of power
arids show many low level failures in the systems, yet the overall distribution in general
is unaffected [26].

On the other hand, interconnectedness of network elements may appear to have nega-
tive effects as well. A traffic jam could develop into a total grid lock, or an accident on the
main power station could trigger a blackout in the power grid. The same mechanism that

makes networks robust to local failures could help in propagating such failures through

the network. The question now is under what conditions a network’s function could be
affected by failures [20]. Why do failures ‘in the networks sometimes pass unnoticed,
while sometimes they trigger a cascade of failures causing damage to large parts of the
network? What level of failures could cause such critical damage? To what degree does
the network’s structure influence robustness of the network?

Typically, distribution networks would operate below their maximum capacity level

[27]. Occasionally, due to different factors like the malfunction of some elements in

the network or increases of the flow, transported through the network, some parts of the

network have to operate at their critical level. This may cause failures of these parts and
increase stress on the neighbours. This process spreads in such a fashion from some parts
of the network to others. The failed parts affect neighbours, which in turn affect their
neighbours, causing a cascade of failures [28].

By “capacity” we mean the maximum allowed flow through a link [29]. Of course,
the capacity of the motorway is bigger than that of the country lane, or the capacity of
high-voltage transmission line is bigger than that of the low-voltage line. However, the
capacity of the whole network is not just a sum of its elements. In order to estimate
capacity of the whole network from the capacities of its individual elements we need an

approach that allows the description of the individual elements and their interactions, and

13




Chapter 1 INTRODUCTION

also takes into account the structural properties of the network [30].

1.2 Statistical mechanics of disordered systems.

Statistical mechanics is a field of physics that relates macroscopic properties of large
groups of interacting objects with the microscopic description of the system entities and
interactions between them. Based on simplified or even incomplete descriptions of inter-
acting objects, theoretical models reproduce remarkable agreement with the qualitative
behaviour of real systems. One of the most successful applications is the SK model of

spin glasses.

1.2.1 Sherrington-Kirkpatrick (SK) model.

Figure 1.1: Fully connected network on which SK model is defined. The solid lines repre-
sent ferromagnetic interactions and dashed lines represent antiferromagnetic interactions
between spins. Dark and light nodes indicate spin 1.

The Sherrington-Kirkpatrick (SK) model is a model of magnetism in spin glasses
(ferromagnetic materials with impurities) [31]. Random placements of impurities leads
to the phenomenon of frustration and thereby to dependencies on distance, which can be
ferromagnetic or antiferromagnetic, and leads to non-trivial properties of spin glasses and
to spin glass phase in particular [32].

The SK model describes a system of N spins, the spins can take values {£1}. The
interactions between spins are described by anti-/ferromagnetic couplings J;;. The pos-

itive(ferromagnetic) couplings stimulates parallel alignment of the spins, while negative
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Chapter 1 INTRODUCTION

( antiferromagnetic ) stimulates antiparallel alignment. The equilibrium properties of the

system are described by the Hamiltonian

1 N N
H:—~§2J,'js,'8j—/’lzsi. (11)
ij i

The thermodynamic limit is obtained for a large system size (N — o). As the energy
density should be independent of the size of the system the distribution of J should be
appropriately scaled. It turns out that the presence of the J’s introduces correlations be-
tween spins. For fixed J’s in zero magnetic field at high temperature the magnetisation
(m = %Zis,-) is zero, just like in usual ferromagnets. However, in the low temperature
region in the absence of an external magnetic field two different phases have been found.
The local magnetisation at the low temperature becomes exposed to the disorder J. To

account for this effect the so-called Edwards-Anderson order parameter is introduced
1 N
9= Em%, where  m; = (s;). (1.2)
=1

The two phases are then distinguished by the pair (m,¢). Cooling the system leads to

either spin glass phase (m = 0,g > 0) or the ferromagnetic phase (m #0).

.2.2 Replica method.

The replica method applied to study the SK model [32] will be used throughout this
thesis extensively. The details of the application of replica steps depend on the details of
the particular problem. Here we present the key ideas of the replica method.

The presence of random long range interactions (called disorder) in the SK model
introduces correlations between spins (s) in the system. The quenched or frozen disorder
(.)), as opposed to annealed disorder, appears in the form of fixed random variables that do
not evolve with time or evolve much more slowly compared to physical observable. The
distribution of the variable that represents the disorder is assumed to be known. From the

computational point of view the presence of disorder introduces considerable difficulties.
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Chapter 1 INTRODUCTION

The partition function in the presence of disorder J is

7= Tr e~ PHIL (1.3)
S
and the free energy density
1
f]:—BTvanJ. " (1.4)

Other properties of the system can be calculated from the free energy density. Ina
system with annealed disorder, the physical quantities could be calculated directly through
averaging of the partition function (Z,), but in the presence of the quenched disorder the
calculation of (1.4) is not simple, so we have to use the replica method. We start with
introduction of the n replicas of the system. Each replica is subject to the same quenched
disorder J. With each replica we associate a set of spin variables §* = {s,...,s5}. The

partition function of the n-fold replicated system is

(27 = Q}.QB(%zaz.-,-J.-jsf-*s;H-hza 1)y, (1.5)

The thermodynamically relevant terms in the exponent now become dependent on
the inter-replica correlations Z,-s?"s?’z. The simplest case of inter-replica correlations is
replica symmetry. Replica symmetry (RS) assumes lhét all inter-replica correlations are
independent of the replicas in question. Note that different assumptions about the inter-
replica correlations could be made, leading to hierarchy of solutions, different levels of
replica symmetry breaking(RSB) [33].

Next, we use the identity

) 7" 1
(InZy) :iirg)(—!;——. (1.6)
Finally, we can compute the average of the free energy density
) =~ (n2) (17
=——/|(InZ;). )
S By )

Provided that fluctuations of the disorder variables is proportional to (1/N%), for the
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large system the difference between the free energy density and the average of the free .

energy density becomes negligible

2 2 I
(M ={(f)y=0 (N) . (1.8)
To calculate physical observable properties we would have to take two limits N — oo
and n — 0. The free energy of the system is obtained

1
fr=— Jim lm 5y {Z)) (1.9)

In the limiting procedure the dependence on the integer n is continued to the real
numbers.

The replica method has proven to be successful to study disordered models. The
applications of this method can be found not only in physics, but also in biological models

[34, 35, 36] and mathematical optimisation problems [37, 38, 39, 401.

1.2.3 Optimisation

In the second part of the thesis (capacity) physical properties of interest - distributions of
currents in power-grids - are obtained by finding the systems ground state. In particular,
the flow of currents in a network obtained as a solution of an optimisation problem with
the cost function represented by a partition function. ill our case the cost function is
dependent on a high nﬁmber of parameters (individual resistances) and optimisation is
quite difficult.

There are known parallels between the statistical mechanics and combinatorial opti-
misation problems [37, 40]. In such problems one must find the minimum of a function
which depends on many variables. The typically high number of variables in such prob-
lems makes finding minima of that function quite difficult. However, it is possible to
map such problems on spin glasses. Then a configuration of variables corresponds to a
configuration of the spins, the cost function corresponds to the energy function in the spin

glass, the optimal configuration to a ground state, and the minimal cost to the ground state
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energy. Spin models have been applied to many NP-complete combinatorial optimisation
problems like TSP, matching, assignment [38, 39].

Not all combinatorial optimisation problems can be tackled by statistical mechanics.
There are qualitative differences between say spin glasses and hard optimisation prob-
lems. In statistical mechanical problems one might know very little about the system, and
normally one is interested in some macroscopic properties. In contrast, in optimisation
problems we usually have a lot of information about the problem and are interested in the
detailed answers. While statistical mechanics provides with the most probable solution,
we consider that solution not as optimal but as an improvement on the existing one.

As has been noticed, the problems that arise in the analysis of combinatorial opti-
misation problems are harder than in normal spin glasses due to the necessity to find an
optimal solution. The difficulties arise from the fact that the one has to find frue minima
of the cost function. The number of metastable states in spin glasses depend on the ex-
ternal factors like temperature. As temperature decreases the number of the metastable
states in the system increases. The ground state energy then should be calculated at zero
temperature. Considering that replica symmetric solution of the SK model tends to give a
very bad approximation at low temperature, analysis of the optimisation problem is rather
difficult [32]. However, it has been shown for some problems like TSP, matching or as-
signment, the replica symmetric solution at zero temperature reaches the true minimum

of the cost function [38, 39].

1.3 Graphical models

1.3.1 From real world problems to abstract models.

Historically, studies of complex networks, like early studies of social networks, have fo-
cused on the structural properties of such networks. In many cases it is assumed that
properties of objects and interactions are known and qualitatively similar. Undér these
ogical and physical networks can be studied . The World

assumptions some social, biol

Wide Web and the Internet also could be thought of as a large collection of qualitatively
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similar objects. Given this object homogeneity, the properties of the system will depend
on the structural characteristics of the underlying network. An understanding of the net-
work’s structure and its influence on the final properties of a complex network is thus very
important [12].

In mathematics, graph theory is a natural tool to study the structure of a network.
Some particular networks can be represented as graphs, the network’s nodes and interac-
tions represented by the vertices and the edges. Such a representation produces a clear
view of the network structure, sometimes allowing insightful simplifications. For exam-
ple, the properties of a network with a star-like structure heavily depend on the prop-
erties of the central node(s) and not so much on the dangling nodes, while the nodes
in a chain-like network are all equally important. For networks with directed interac-
tions, like the Web or biochemicals networks, directed graphs enable source-destination
representation. Directed representations, for instance, could be useful to identify genera-

tors/distributors/consumers in power networks.

1.3.2 Lattices.

ee

+
IQB/_/:_

Figure 1.2: Examples of lattices. A, two-dimensional grid. B, three-dimensional grid.

Regular graphs are a good starting point for many physical networks. The regular un-
derlying structures can be found in many real physical systems, e.g. crystalls. Therefore
it is useful to model such systems on lattices. From the mathematical point of view the
treatment of models on lattices is much simpler, i.e. compared to unregular structures.

Other regular structures like trees, chains, stars (Figurel.3 ) also provide simplified

mathematical analysis of the networks.

However, such structures do not typically represent real-world networks. For instance,
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it is highly uncharacteristic for any social or technological network to exhibit strong order.

In contrast, many real networks highlight a high degree of irregularity. The number of

friends varies significantly from person to person (depends on personal characteristics),
or the number of links on the page of a big media site is considerably higher than on
the one’s personal page. It is proposed that such networks could be modelled by random

graphs [41].

OB | e

Bl C

Figure 1.3: Examples of regular structures. A, Star-like structure. B, a tree. C, a chain.
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1.3.3 Exponential and regular random graphs.

Figure 1.4: Schematic illustration of exponential random graph. A graph contains 150
nodes and 225 links (average connectivity C = 3). Only 25 nodes (17%) are reached by
the five most connected nodes.

The exponential random graph model was introduced by Erdds and Renyi [42]. The
random graph G(V, E) obtained by considering a set of nodes ¥ = {v;}, and links £ =
{e;;} between given pairs of nodes (v;,v;) are all drawn independently with probability
p. This construction method produces so-called G(N, p) random graphs. Another way
to construct an exponential random graph is to define the size N, the number of links M
and then randomly assign the links to the pairs of nodes. Such graphs are called G(N, M)
random graphs. For large graphs both models produce qualitatively similar graphs. In this

work, we will use the G(N, M) version to generate large exponential random graphs.

We also consider regular random graphs. The regular randém graph with the average
connectivity C is a graph where each node has C links. In cases when C is not an integer,
the number of links is either [C] or [C] + 1

Exponential random graphs have been extensively studied over the years [42, 43].
Structurally, exponential random graphs are different from regular random graphs. Statis-

tically the difference between structures is assessed by average connectivity!, clustering

IThe average connectivity is typically denoted by C and is an average of connectivities of each node ¢,
C= %21‘ Ci
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Figure 1.5: Schematic illustration of regular random graph. A graph contains 150 nodes
and 225 links (average connectivity C = 3). All nodes have the same number of links.
Only 15 nodes (10%) are reached by the five most connected nodes.
coefficient” and degree distribution3. The average connectivity is the average number of
connections each node in the graph has; the clustering coefficient measures the degree
to which nodes tend to cluster together; the degree distribution is a distribution of the
nodes connectivities or degrees. For regular and exponential random graphs of the same
size and the same average connectivity the clustering coefficient is much higher for the
regular graphs, while the average length between any two nodes is much smaller in ex-
ponential random graphs. The degree distribution for regular random graphs is a delta
peak(if C is an integer, otherwise is a weighted sum of two delta peaks), and follows a
Poison distribution for exponential random graphs [42].

The key differences between random graphs and lattices are: periodicity and dimen-
sionality. The lattices are the periodic structures and can be embedded into space of finite

dimensionality. On the other hand, the infinite random graphs are non-periodic and infi-

nite dimensional structures.

. . 2 jk €ijCjkCki
2The local clustering coefficient can be defined as C; = —k,’(—k"_—l’)/?

3The degree distribution denoted as P(L) is a distribution of degrees or connectivities or coordination
numbers.
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1.3.4 Small world networks, scale-free networks

Random graph models proved to be insightful and useful in many cases [44, 45], but
still are far from being a realistic representation of many systems. Empirical evidence of
many social and technological networks shows that such networks feature properties of
both regular and random structures. Even the earliest experiments [3] reported higher than
random clustering coefficient and small average shortest path. Indeed, in a typical social
network, chances that one’s friends are friends themselves are quite high, i. e. a group of
friends form a clique (fully connected subgraph) and that makes it very similar to lattices.
On the other hand, the so called small-world property has been highlighted for many
different types of networks. The small-world property means that any two individuals
in the network are separated by a small number of intermediaries. The “six degrees of
separation” [3] is the manifestation of these property in the human population, or 19

clicks between any two pages in the World Wide Web [46].
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Figure 1.6: Schematic illustration of scale-free random graph. A graph contains 150
nodes and 225 links (average connectivity C = 3). The majority of the nodes have a few
links but a few nodes have a large number of links. In the scale-free graph 67 nodes (46%)
are reached by the five most connected nodes.

The networks that exhibit the small-world property are called small world networks,
and have been extensively studied in the last two decades [41, 13]. The models of small

world networks introduced by Strogatz and Watts are between the regular and random
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graphs, and provide a better description of biological, social and teclhno.lqgicalf networks
[41] . For all of them, measured properties and properties predicted based on.the cor-
responding models of small world networks are qualitatively similar. However, more
detailed analysis shows some significant differences between different networks [12].

One particular class of small world networks that has been found to be a good ap-
proximation of real networks are scale-free networks. Discovered by A. -L. Barabasi and
R. Albert [47], it has been found that power grids, social networks, biological, chemical
networks can be modeled as scale-free networks.

Scale-free networks are characterised by a power law degree distribution. The struc-
ture of various networks have been probed and it has been reported that many real net-
works are actually scale-free. It was also suggested that there are certain mechanisms
responsible for the developing scale-free structure. Namely, these mechanisms are grow-
ing and preferential attachment. Growing is observed in any real network as new nodes
are added to the network. The second mechanism is responsible for the connections in the
network, new nodes more likely to be connected to the nodes with higher connectivities.

Preferential attachment can be observed in the Internet and social networks [47].

1.4 Stability analysis of distribution networks.

Various factors contribute to the formation of network structures. All parts of even the
simplest of organisms evolve to ensure survival. Power grids are generally planned by
engineers to distribute clectrical energy as efficiently as possible, while the Internet has
spread all over the globe without any central administration and without any preventive
safety measures. Correspondingly, different technological, biological and social networks
display diverse and non-trivial network structure. Yet, despite of the diverse nature of
these networks they all exhibit a high degree of tolerance against failures.

By failures we refer to an uncommon state of the network’s nodes and links. Failures
could be negative as well as positive. Examples of failures are a broken server in the

Internet, a broken electrical transmission line in the power grid, a sick person in the social

network, a useful application (or invention), a new political or cultural opinion. It has been
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recognised that the spread of failures si’gniﬁcéntly ‘d‘ep,en’d_ on "t"hte .
of the network. Stability analysis is applied to identify features of ¢
contribute to the spread/eradication of failures [6,7,48] -

Also, we realise that at least two differeﬂt/tﬁlpesééf;féiglﬁié‘s};an be considered, and sta-
bility analysis depends significantly on the type of ’fai'luresr~uﬁdér,~c::oﬁsideration. Suppose
one is going to inflict damage to a component of a network. Without any knowledge of
the system any component of the system is equally likely to be damaged. This will con-
stitute a random failure or random removal. In real networks random failures take place
due to mechanical (electrical, electronic, etc) problems or natural events. In contrast, with
the knowledge of the network properties, one could decide to damage the most important
components of the system. Damaging the main router in the Internet or a high-voltage
transmission line from the power station will constitute an attack or selective removal.
An attack is a more elaborate case of failures, as it needs an intricate knowledge if not
of the system, at least of the structural properties of the underlying network. In stability
analysis the random failures and attacks should be distinguished [20]

Often the robustness of the network is looked at in the context of the develjopmeﬁt of
global cascades [21, 25]. This strange phenomena can be referred as “robust yet fragile”
nature of many complex systems. Many of the natural and technological systems display
a high degree of robustness : systems appear stable for long periods of time, withstand-
ing many externally inflicted failures (living organism, functioning power grid) However,
suddenly and often unexplained the system collapses, i.e. develops a large cascade of
failures.

A wide spectrum of research disciplines contributes to understanding properties of
complex networks and conditions necessary to develop cascades of failures. The obvious
approach is to investigate the structural properties of the networks. For the generic models
of exponential random graphs and scale-free networks it has been found that both types of
structures display a high degree of tolerance against random failures, with the scale-free
networks outperforming random graphs. However, subject to a targeted attack, random

graphs appear to be significantly more robust than scale-free networks. Robustness of the

network is measured by estimating the size of the largest component and monitoring sizes
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of small clusters [20].

It was suggested that the reason for this behaviour of scale-free ‘netwofk _
tence of the hubs. These are highly connected nodes and highly beneficial in the context
of spreading information in the information network for e,X‘a/I,npl‘e. But in case of attacks
the hubs are targeted first. It has been shown that removal of even a modest number of
highly connected nodes in scale-free networks causes significant changes to the network
structure often with a catastrophic effects to a networks’ robustness. The disintegratidn
of scale-free structures could become apparent aftér removal of as little as 5% of the
highly connected nodes (this is a fragmentation threshold). Continued removal leads to
the fragmentation of the network into many isolated clusters.

However, if subjected to random failures, scale-free networks display a remarkable
degree of robustness. Even for unrealistically high rates of failures (for up to 45% of the
nodes) the network functioning remains mainly intact. It appears that one giant compo-
nent (cluster) is observed at all stages of random removal. The size of this cluster slowly
decreases and no threshold for fragmentation is observed [20].

For random graphs both types of failures (attacks and random failures) cause quali-
tatively similar damage. For the attacks the fragmentation threshold is reported to be at
28% of the order of the graph. The fragmentation process is very similar to a scale-free
fragmentation under attacks. This behaviour is attributed to a homogeneity of the random
network, the damage from elimination of any of the nodes is approximately the same [20].

Similar techniques have been applied to real networks. Both the Internet and World
Wide Web appeared to exhibit scale-free like fragmentation. Different values of fragmen-
tation thresholds have been reported, otherwise qualitatively the same. For the Internet
the random elimination of 2.5% of the nodes does not cause any statistically significant
change to the average shortest pafh of the largest component, yet selective removal of the
same proportion of the nodes causes three-fold increase of average shortest path. The
critical point in the attack mode is at 3% of the order of the graph. For the World Wide
Web response to the failures is very similar, despite the directedness of the links. Under
random failures the network stays intact as a large cluster, but under attacks the system

falls apart abruptly after removal of 6.7% of the nodes [20].

26




Chapter 1 INTRODUCTION

In many networks not only the nodes could be damaged, but the connections bet

them as well. In [49] both node and edge failures are considered in the a‘héﬁyms;~ «

functionality of the network is measured by characteristic path length. Also, from the
local point of view, the evolution of the clustering coefficient and nodes betweenness
is monitored. Four different strategies, the degree-based ( calculated before the start of
the removal process or recalculated after each removal) and betweenness-based* (calcu-
lated before the start of the removal process or recalculated after each removal), applied
for the node attacks. For the random graphs all strategies result in qualitatively simi-
lar fragmentation process, the degree-based strategies resulted in a slower fragmentation.
For the scale-free structures the fragmentation starts considerably earlier than for random
networks, and without any significant difference between degree-based and betweenness-
based attacks.

For the analysis of edge attacks the edge degree is introduced as a product of degrees
of the nodes connected by the edges. Both random graphs and scale-free networks show
similar response to edge removal. Moreover, the edge removal in the random graphs,
confirms that high degree edges are responsible for the networks vulnerability.

Analysis of node and edge removal were performed in scientific collaboration net-
works and computer networks of Internet traffic. Both networks display similar response
to the edge attacks, while under node attacks show very distinct behaviour. The average
shortest path length increases almost linearly for the former and logarithmically for the
latter with decrease of the size of a network [50].

So far, only static structures have been considered and various aspects of networks
robustness and vulnerability explored. More realistic analysis should take into account
processes on the network is studied in [24, 25]. Introduction of such processes brings out
the dynamical aspects into consideration. Now the load of traffic flowing through each
link can potentially damage those links, so the failures appear as part of the processes
on the network, rather than due to some external factors. The simple threshold model is

rtroduced for the link failure and the diversion of the load from the damaged parts of the

4Retweenness is a centrality measure of a node in a graph. It characterises how many shortest paths go
through this node relative to the total number of shortest paths in a graph.
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network is also assumed. In this set up, the scale-free networks arfcifa\’-b.l'e: to héﬁ&@m c
up to some critical average load. Below this level the network faces partiéi\‘\é{!@ngeSt*l:
that start to build up local bottlenecks and small instabilities might trigger global black-
outs with a finite probability. Above the critical load level any small instability leads to
complete network collapse.

Other studies adopt similar approaches to study real world networks like power grids.
The study, focused on the North American Power Grid [26], assumes the simplified load
distribution and illustrates the possibility of blackouts for this particular network. Unlike
effects of node and edge removal‘in the static network, the load-based induced failures

display increased rate of fragmentation. Moreover, load-based removal with dynamical

recalculation of the load appear to resemble real cascades in the network.

1.5 Thesis outline.

This thesis deals with stability and capacity of distribution networks.

In the first part (Stability of distribution networks) of the thesié, the nodes and links
are looked at as processes which can fail due to low maintenance levels. Occurrence of
failures is determined not only by individual properties of the nodes and links but also
by the current state of the network. The failure of a network element happens if the
levels of maintenance fall below certain thresholds. As maintenance levels depend on the
functioning of network elements, the failure of some elements can lead to a catastrophic
breakdown of the network.

In the second part (Capacity of distribution networks) of the thesis we look at the
load based failures. Occurrence of such failures is related to the physical constraints of
the network elements. In a distribution network with relatively low loads such failures are

rare. However, in a distribution network with high loads, such failures may lead to global

congestion of the system.

Stability of distribution networks. To address a problem of random failures in the dis-
tribution network we adopt a statistical mechanical approach. We introduce a spin

model of distribution networks. The model is inspired by statistical mechanics
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spin models with random long range interactions, and enables us to couple the 1 }

croscopic description of interactions with graphical models. We test macroscop

properties of distribution networks with respect to various topological structures
and distributions of microparameters. Moreover, we investigate the conditions for
the development of the global cascades of failures. Monte-Carlo simulations on

finite networks are also presented to validate the theoretical analysis.

We analyse network properties in terms of phase diagrams. We identified key
phases of the network states as well as dynamic and thermodynamic phase tran-
sitions. We observe phase transition for all network structures which we considered
(exponential, regular and scale-free random graphs). We confirm the beneficial role
of redundéncy in networks of all types. However, some qualitative differences have

been noticed between homogeneous and heterogeneous structures.

In addition to a phase transition that points out that random failures in distribu-
tion networks may trigger large blackouts, we identified a coexistence region. The
importance of this phase is the undetectability of a metastable states through the
standard set of observables. Also, once in the metastable state the system might
experience a large blackout without any external influences, but only driven to a

collapse by internal random failures.

Capacity of distribution networks. We introduce capacity of the transmission link in
a4 DC current distribution network. The current that goes through a link can not
exceed the link’s capacity. The distribution of the current at a node is governed by
Kirchhoff’s law. The objective is to minimise dissipation of the energy in a system.
Structurally, we split the whole network into three parts : networks of producers,
distributors and receivers.

Again we use a statistical mechanical approach. We study macroscopic properties

of distribution networks with respect to various topological structures and distribu-

tions of microparameters. We consider two main cases: the Infinite Capacity (Ic)

model and Finite Capacity (FC) model®.

STn this case we set maximal capacity of the links.
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We analyse distribution network properties ‘in‘ terms of distributions -of;cur'rén;tsl
the IC model the the key characteris_ti;:s of the current disn*ibuti\c;ﬁ:‘lsﬂf éx ibit li
dependence on the load in the network. In the FC mode{ we additionally consider
a fraction of a number of maximal currents in the ﬁ'efWork’, denoted by f; . This

measure reflects the level of congestion in the network.

We identify phases of a system using a FC model: operational and critical. The
characterisation of these phases is based on the f.. We also find only one phase in

the IC model. This phase corresponds to the operational phase of the FC model.

Also we are able to identify the subnetworks that develop critical currents first.
This could have implications in the analysis of complex networks’ stability against
overload, as well as provide us with the tools to monitor the spread of load induced
failures through the network.

By using IC and FC models we will confirm the beneficial role of redundancy and
analyse network properties with respect to system parameters and topological struc-

tures.

6\We look at mean and standard deviation of distributions
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Chapter 2

RIBUTION NETWORKS

2.1 Introduction

The present chapter is based on the work [51] and is focused on the stability ‘\iS_S\l\\lé_S\ of
complex networks against random failures. Problems that occur in the financial sector
or in the most advanced technological networks like power grids are well documented.
While the nature, structure and functionality of such systems is completely different, the
global character of the failures observed in both types of systems is common for such
large complex networks. The understanding of this phenomenon has attracted researchers
from many different fields of science and recent advantages in complex networks analysis
encourages applications of new methods and techniques.

This is partly a response to the fact that modern societies are increasingly relying
on network based technologies, including mobile and land-line telecommunication, the
Internet or, lately, grid computing, but also on traditional transport infrastructure, such as
rail or road networks. Much of the interest is also fuelled by the realisation that complex
systems in biology [52, 53, 54], chemistry [55], sociology [4], and economy[56, 57] can
be analysed using various network related techniques and paradigms [58, 59]. The issues
here are to understand the workings of a given complex system in terms of properties of
the underlying network, and given some fundamental understanding has been obtained,
perhaps go further and characterise the way in which the efficiency of a system would
depend on properties of the network.

Network properties of interest include statistical measures characterising structural
and topological aspects globally over a network, such as the degree distribution, clus-
tering coefficients, centrality, percolation thresholds, and more, as well as more specific
information concerning, . g. , the preseﬁce or absence of certain motifs in (local) con-
nectivity patterns.

Connectivity issues aside, both the nodes and the links in a network may be further
characterised by (graded) quality measures. The capacity of a specific directed informa-
tion channel, the current carrying capacity of a power line, or just a distance between
two nodes in a net would constitute examples of graded link properties, whereas the com-

puting power of a server, the capacity of a local water reservoir, the susceptibility of an
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individual to infection by a virus (or an opinion, or by the desire to acquire a newrgad?getf),
would be examples of properties specifically associated with “nodes”. - |

It goes without saying that functionality as well as-efficiency of network based op-
erations will depend to various degrees on the properties of a given network. Points of
concern then are robustness or efficiency, and - on a more basic level - of functionality
against unexpected failures of links or nodes, or the resilience of network based opera-
tions against directed attacks [20, 22, 23, 50]. Clearly these issues have implications-in
the realm of biological evolution; they would have to influence design decisions in engi-
neering contexts, or political decisions, e. g. when setting up supply infrastructure. On a
day-to-day basis, financial institutions are nowadays required to set aside capital to cover
financial losses incurred by process failures (operational risk); as processes in organisa-
tions would normally be set up in a way to mutually support each other, collective effects
creating the possibility of extreme events in large process networks are clearly relevant
and need to be properly quantified in order to set aside the right amount of capital. Erring
i either direction would be costly (for different reasons) and affect the competitiveness
of the organisation in question.

The present investigation is concerned with the issues of resilience of network func-
tionality against random failures or directed attacks in supply infrastructure and distri-
bution networks, such as power grids, various forms of information transfer networks
(telephone, Internet), traffic systems (logistics), or metabolic networks, where these is-
sues are particularly relevant [60, 61]. Failures of nodes and/or links can be threaten the
basic functionality of the network and if cascading through the system (or affecting hubs
of central importance), even lead to a global breakdown. Examples are major blackouts
in power grids , massive gridlock in traffic system, or death of an organism.

We shall look at a simplified setting in which the breakdown of a link or node is trig-
gered when the level of maintenance or support it receives falls below a given threshold,
leaving the case where failures are induced by loads exceeding critical levels to Chapter 3.
The simplified setting renders our model generalisation of previously studied models for
operational risk [60, 61] that includes dynamical properties link variables in the analysis.

Next, we introduce our model, describing its coupled link and node dynamics and
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interpreting the parameters of the model in terms of unconditional and conditional proba-
bilities for link and node failure. Conditions are identified under which the system canbe

analysed using thermodynamic equilibrium methods. The statistical mechanics approach

to analyse long term properties of the model under these conditions is briefly outlined.

Results in terms of a phase diagram characterising the collective behaviour of the system

¥tk

, given its model parameters are presented and discussed. The phase diagram is confirmed
qualitatively and quantitatively by simulations on explicit realisations of the graph, thus
confirming the validity of our approach. We finish with a summary and an outlook on

future lines of research.

2.2 Model.

The distribution network can be thought of as a dynamical structure on a graph. The

distribution centres and lines represented by the set of nodes or vertices ¥ and the set of

the links or the edges E respectively, defining the graph G(V, E).

We assume that both the centres and the lines can fail. That is the functioning network
clement might suddenly break due to some internal or external factors. Furtermore, we
assume that any failed element might recover becoming functioning again. To model this
situation, we associate dynamical variables to each node and each link. The node (7)
carries a dynamical variable v; that can be either 1 or 0. Similarly, with each link (ij) we
associate a dynamical variable e;; that can also be either 1 or 0. For both variables the 0
value represents a failed element, while 1 represents a fully functioning network element.

For the network of N nodes the underlying structure is fully defined by the connectiv-
ity matrix ¢ = {¢;j :i,j = 1,...,N}. The undirected graph is then described by a symmet-
ric matrix. The value ¢;; = 1 indicates that there is a cqnnection between nodes (i) and

(j), otherwise ¢;; = 0. The average connectivity defined as

1
C:E%CU.I 2.1)

I'The (i) denotes summation over all pairs of i and j without repetition.
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e = M — = - .

In our analysis we consider network structures with finite average connectivity. First

of all, such networks are sparse. Indeed, most of the real systems are sparse, that is
any given node is connected to a small fraction of the network. The large number of
connections would be, of course, beneficial from the distributional point of view, but
the limited nature of available resources limits the maintenance of large numbers of direct
links. Secondly, as the network grows, the number of connections increases. However, the
increase in the number of connections typically matches ( is proportional to ) the increase
in the number of the nodes. Therefore, for any given node, the number of connections i

stays the same, finite. In physics, such networks are referred to as sparse networks with

finite connectivity. Such networks are dissimilar to networks with dilution. For the diluted

case the number of connections per node is growing, but at a slower rate than the network

o

size. z

We primarily focus on three types of network structures : regular random graphs

(unimodal or bimodal), the exponential random graphs and scale-free networks.

Regular random graphs
We consider finite regular random graphs and specify the degree distribution as fol-

lows. We nominate the set of coordination numbers {L; : i = 1,...,N}. Then the degree

distribution is given by

P(L) = ]%/ZBL,LH (22)

where L - is a degree or connectivity of a node. The average degree can be calculated as
C=Y LP(L). (2.3)
L

If C is an integer then all L; = C and the degree distribution

Pe(L) =8(L—C). (2.4)
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If C is not an integer the degree distribution
Po(L) = x8(L—[C])+ (1 —x)8(L—[C]+1), where xe[0,1]. (25

The [C] gives an integer part of C. In any case the average connectivity of the graph is C.

Exponential random graphs
We consider exponential random graphs which are determined by the following prob-

ability distribution

= H [( > C,J,0+ 66,1, } SCU)C};) (26)

(i))

i.e. every possible link (i) is present with probability % This typically results in a
random graph where the coordination numbers Z; of the nodes are Poisson distributed

with parameter C ( the average connectivity ). The degree distribution is

Po(L) = —¢C. (2.7)

Scale-free random graphs

e

For the scale-free graphs the degree distribution follows a power law. We use the

following form
Pe(L) =sLYO), §(C)>1 L=mm+1,... K, (2.8)

where m and K are the smallest and largest possible numbers of connections and s is a

normallsatlon constant. In a finite network of order N, the largest connectivity K can be

o2 1
/K P(L)IL = 1 (2.9)

estimated from
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azas

resulting in

‘ ‘
~ mNYO-T, (2.10)

The parameter y for real networks is in the range 1 — 5 and the smallest connectivity

m is usually 1 or 2.

The main statistical characteristic of the networks is their degree distribution, denoted
as Pc(L). Although the degree distribution does not fully describe the network structure
(one should take a closer look at correlations in the network), it is sufficient in the present

model. 2

2.2.1 Dynamics

A dynamical evolution of the node and link variables on the graph can be described and
motivated by analogy with previous operational risk modelling [60] as follows. The node

support is defined as

hi= Y, cijeijaiv;+bis) + i, (2.11)
J(#)
and a link support as
hij=5ijv,‘Vj+Z~7jj‘(Vi+Vj)+dij- (2.12)

In these expressions, the parameter a;; would quantify the contribution of node j to
the support of i, while b;; could describe external support to i that is funnelled through the
link (i), while & would describe a baseline support independent of the dynamical state
of the system itself.

Similarly, &;; would describe a contribution to the maintenance of link (i) that origi-
nates from a collaboration of the nodes connected by it, while b;; would quantify separate
contributions from adjacent functioning nodes which would exist without collaboration,

and d;; would again characterise a baseline support independent of the dynamical state of

the system.

2explained in section 2.3.5, Calculation of observable properties.

37




Chapter 2 STABILITY OF DISTRIBUTION NETWORKS

e e

We propose a probabilistic asynchronous dynamics which stipulates that vertices and
nodes fail, if they receive less than a critical threshold support. Without loss of generality
the thresholds can be taken to be zero by appropriate definition of baseline support levels.

Thus, in formal terms we have

V,'(f—}—Af) = @(/’l,‘(f)‘{‘&j(t)), (2.13)

eij(t+ar) = O(h(r) +&;(t)) (2.14)

where O(x) function defined as

and the node and edge noises &;(¢) and &;;(¢) are taken to be independent and white, and

cither zero mean Gaussians with variances ¢ and G, respectively:

ENE()) = %8B, (2.15)

(E5(E()) = 68, u)Besr (2.16)

or thermal noises with probability density functions:

’ |

p&) = %&—itanh<%§—>, (2.17)
d BE;

p({;,’j) = %déijtanh [—3%—] . (218)

By the integrating over the noises in equations (2.13)-(2.14) one obtains,

Plvi(t+ar)=1) = <Vi(t+Af)>=<!>(;%f)), (2.19)
Plegtr+a)=1) = feylr+a0 =0 (*57), 020)
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/.

) V= 1
e,j =0

J J o

Figure 2.1: Evolution of node and link variables. Filled circles and full lines represent
operational nodes and links respectively. Correspondingly, the empty circles and dashed
lines represent non-operational nodes and links. Transition from the first slide to the sec-
ond: dynamics of the node variable. In the first slide, the central node is non-operational,
assuming support of two operational nodes is greater than support of the bottom node,
the central node changes its state. Transition from the second to the third slide: dynamics
of the link variables. Now the only non-operational link is supported by bottom (non-
operational node) and central (operational node). Providing, support of the central node
is greater than support of the bottom node, the link becomes operational. o

in the case of Gaussian noises, with ¢(x) denoting the integrated unit-variance normal

density, while the corresponding result for the thermal noise model would be

Pvi(t+A)=1) = (vi(t +Ar)) = g (hilt)) (2.21)

Plej(t+Ar)=1) = (e,-j(l'—i—At)):(I)B(hU(z‘)), (2.22)

with

dplx) = % {1 + tanh (%)f” . (2.23)

The collective properties of the system do not crucially depend on which noise model
is chosen as long as the levels are properly matched. Therefore in what follows we work
with the thermal noise model for which standard statistical mechanics methods work best.

Note that the current formulation of the dynamics is in terms of resources or the lack of
them as responsible for the functioning or the failure of nodes and links. In particular, one
would sensibly expect the parameters a;; and d;; as well as the b;; and Z~7,-j to be positive
within this interpretation. The case where failure of links or nodes is triggered by load

levels exceeding certain critical values is left to Chapter 3.

The parameters d;j and y; are related to the a priori probability that the isolated link
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s

(i7) or the isolated node i, respectively, are up. In a similar vein the a;; and ﬁi; as well as
the b;; and b;; can be related to conditional probability of node or link failure for given

configurations of node and link-states.

In the present investigation we will restrict our attention to a case in which the model
parameters satisfy a number of symmetry relations, which ensure that the long time be-
haviour of the system can be described by thermodynamic equilibrium theory. These

are

V,-j . a,‘jzdgj, b,’j:E,’j, (224)

and

\‘/,'<j : ajj = dji, b,‘j = bj,‘, (2.25)

as well as a;; = 0 and b;; = 0 and equality of noises of the link and node dynamics,
B=p. (2.26)

These conditions together are sufficient to ensure that the stochastic dynamics (2.21)
and (2.22) satisfies detailed balance with respect to the Gibbs-Boltzmann equilibrium

distribution at inverse temperature  that is generated by the energy function

H=-Y cijei laijvivi+bij(vi+v)) + dif] = > pivi. (2.27)
(/) J

This feature allows one to study the collective behaviour of the distribution networks

by the methods of equilibrium statistical mechanics, which greatly simplifies the analysis,

and will be the main focus of the remainder of this Chapter. For the details of the detailed
balance see (B.1).

Clearly a full dynamical study is required whenever any of the symmetry assumptions

is violated. However, it is well known that thermodynamic equilibrium theory often gives

a fair qualitative description, provided the violations are not too drastic.
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2.3 Theoretical analysis.

2.3.1 Replica method.

For the analysis of the model described in the previous section, we use the replica method
for sparsely connected systems [44, 62, 63, 64]. In contrast to the previous models studied
with this method, we have a new ingredient that not only the nodes but also the links have
dynamical variables, though we shall find that this introduces only minor complications in
the analysis. The general strategy is to calculate the free energy of the model, from which
all relevant thermodynamic quantities can be derived. The free energy is expected to be
self-averaging, entailing 'that, in the large system limit and under very general conditions
on the disorder distribution in the model (i. e. ¢,a;j, bij, di;j and u), the average of the free
energy over all disorder configurations coincides with its typical value: the free energy
on any explicit realization of the problem drawn from this ensemble will be equal to the
average with probability approaching 1 in the large N limit.

Given the Hamiltonian (2.27), the disorder dependent partition function Z and the free

energy F are obtained from :

Z(e,{a,b,d,u}) = Tr"l"er’exp(—-BH),

F(c,{a,b,d,/,z}) —ln(Z(c,{a,b)d,;z})),

ll

where Tr’ denotes a trace over those ¢;; for which ¢;; = 1.

In order to average the free energy over the disorder, we use the replica method,
=1 : In(Z"
<1nZ>D,Cij - n% " n( )D,Cij’

<o that we have to calculate the average of the replicated partition function (Z")p ¢,

as follows:
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o

(Z") D,y = <{?§}$L}6Xp {BE <Zcu efjlaivivy + bi; (v +5) + dij] +2/"l >} >
(2.28)

Here ()p indicates the average over the disorder. At this point we do not yet need

to specify the disorder distribution for the {aj;,b;j,dij, ui}. We start by performing the
average over the connectivity matrix ¢ and the trace over the link variables {e®}, which
can be easily done as the replicated partition sum factorises over these variables. This
is a well-known fact, which has been extensively used in the study of Ising models with

annealed bond disorder [65].

2.3.2 Order pararmeters, Conjugate variables

Details of the following steps can be found in (B.2). We introduce the order parameter

N
p(ﬁ)E%ZSg)gi, ﬁE{va:OL:L...,n}, (2.29)

and its conjugate p(¥) to enforce the definition of the order parameter. Then, the expres-

sion for the replicated partition function becomes
n C n n
@)= [ dE)p) exp N { 5 Gilp] = Galp, P+ Glpl |- @30

The functionals appearing in (2.30) are given by

G[ = rI:I' {p(ﬁ) rI:I' {p(\"{/) <H (1 + eB{ﬂva1va+b(va+wa)]+d> > } } _ 1’
v W ab.d

o

Gn = TP, (231)

Gy, = 1n<TreB[/1M+;3(v*)]>,
’ “

where we have used the shorthand |7] = X, v%. For the details of calculations see B.3
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2.3.3 Replica symmetry assumptions

For the analytic continuation n — 0 we need to make an ansatz about the symmetry be-

tween the replicas, and assume replica symmetry (RS). The simplest form of RS ansatz is

o |
X
V) = dm(x , 2.32
o) = [ 232
p(V A WdA ——*)EM 2.33
p(V) - 0/01 n(’\)(l +£)”7 ( ' )
where 1(x) and ft(x) are probability functions over non-negative variable x.
Further introducing
Co=1+eP ) =1+P0F) (2.34)
L
Cy = 1+ePlat2btd) ey =TT, (2.35)
=1
and following standard reasoning, we arrive at the typical RS free energy per node
1 /C . .
F= B EG{[R] —CGpm, )+ G4[R] ), (2.36)
where
G = / dn(xy)dre(x2) (In[Co + Ci (x1 +x2) +C2X1X2])a,b,d,
0
G, = / dr(x)df () In[1 +x2], (2.37)
JO

5
I

3 pelt) a0 (n 1+ (21 ]
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2.3.4 Saddle point equations

[t is understood that equation (2.36) has to be evaluated in the saddle point with respect

to 7w and 7. This implies that 7w and #t have to satisfy the self-consistency equations

TE(X) - ;{JPCT(L)/ON{de(xA/)}L_l(5(x—eB'u{ﬁ;}Lﬁ1)>/,, (2.38)
aray « . Ci+Gx
A(%) = /O dn(x)<6 <x—~——-—co+ Qx) >a)b)d (2.39)

2.3.5 Calculation of observable properties

From the free energy, one can obtain physically relevant quantities (see B.4), such as the

fraction m,, of working nodes

eB/‘{ﬁl}L
My, = ZPC / {dR(£)}L <W>P (2.40)

the fraction of working links,

MQ+M](X]+X2)+M2X]X2> (2 41)
a,b,d

= °<’d d
e /O TE(X]) TC(XZ)< C0+C1(XI+X2)+C2)C1X2

in which M; = C; — 1, and the internal energy,

Eo+E(x) +x2) + sz1x2>
b.d

C OO0
U = “E/o dn(x‘>dn(xz><co+cl(m+X2)+C2x‘x2

. eP{2}
_EL:PC(L)/O {th(xz’)}L<TH+—el§Tl)e,i>

with Eg = dePd, Ey = (b +d)eP+) and Ey = (a+2b ) eBlat2brd)

One should note that the inverse temperature BB can be absorbed into the parameters
a,b,d, ;and is only used to derive some of the physical quantities. In what follows, we
implicitly assume that B = 1.

At this point one shbuld also note that although the links are dynamical variables, it
was not necessary to introduce a separate order parameter to describe the link distribution.

It turns out that in any such model the trace over the link variable (irrespective of the type
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of variable) can be carried out directly as the partition function can be written in a form
that factorises over the links.

It should be noted that the saddle-point equations (2.39) can only be solved numeri-
cally using, e. g. a population dynamics algorithm[66]. The analysis of these equations,
and the implications that different types of solution have concerning the possible occur-

rence of sudden global system failures are presented in the next section.

2.4 Results

We solve equations (2.39) numerically for fixed § = 1 and various connectivities C and
distributions of a,b,d and y, using a population dynamics algorithm. The size of popula-

tions in population dynamics is 10000.

After extensive numerical experiments we have obtained the full (at least five-dimensional)

phase diagram, and we find that the parameter space can be qualitatively divided into four

distinctive regions:

(O) the operational state (m, = 1) is the only stable solution,

(N) the non-operational state (1, = 0) is the only stable solution,

(CO) the coexistence of the stable operational state with a metastable non-operational

state,

(CN) the coexistence of the stable non-operational state with a metastable opera-

tional state.

We have not found any region where more than two locally stable phases coexist.
The boundaries between the single-solution and multiple-solution regions are spinodal

~ surfaces (associated with dynamical transitions).
As plots of phase diagrams in more than two dimensions are not easy two interpret
quantitatively, we have restricted ourselves to presenting two-dimensional plots in the

(a, 1) plane (see figures (2.4.2)-(2.13)), for several combinations of the other parameters,
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thus indicating the major trends and characteristics of the full phase diagram. Inall plots,
the numerical precision is of the order of the line widths.

We refer to the boundary between the (O) and (CO) regions as the upper spinodal,
and the boundary between the (N) and (CN) regions as the lower spinodal. The upper
spinodal demarcates the locations in parameter space where the non-operational (N) phase
ceases to exist as a metastable phase, while the lower spinodal gives the locations where
the operational (O) phase becomes unstable. The boundary between the (CO) and (CN)
regions is given by the surface in parameter space where the free energies of the two
solutions coincide, i. e. they mark the thermodynamic equilibrium transition.

The two spinodals and the thermodynamic transition may meet (end) in lines (more
precisely, lower dimensional surfaces) of critical points (analogous to critical points of
liquid-gas systems), so that it is always possible to go from the (O) region to the (N) region
continuously, following some path through the phase diagram that avoids any transitions.

Except when explicitly mentioned, all plots shown have been made for constant pa-
rameters Vx;; = x, with x = {a,b,d,p} . We have also solved the model with varying
parameters, e.g. x;; ~ N((x),0). The general tendency is that an increase in the vari-
ance G leads to a reduction of the (CO) and (CN) regions (pulling the spinodals closer
to the transition), while the thermodynamic transition remains virtually unchanged. This
implies that an increase in the variability of the resources reduces the region where the
working system is locally stable, thus increasing the likelihood of sudden system failures.

Since both m, and me depend on the same distributions 7 and 7, either observable
can be used to monitor the dynamical transitions. In general, any discontinuity in m,
corresponds to a discontinuity in the same direction in m,, although the amplitude of the

discontinuity depends on the relative strength of various parameters (see figures (2.2)-

(2.4)).

2.4.1 Coexistence regions

The (CO) and (CN) regions are of particular interest with respect to the possible occur-

rence of sudden global system failures. Starting from the a state where the working system
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is globally stable, one may , by gradually increasing the average load or by gradually re-
ducing the available resources , push the system over the t.hermodﬁamic transition into a
region where the operational (O) phase no longer corresponds to the global minimum of
the free energy, without realising it, as there are no detectable signatures of such a (first
order) equilibrium transition.

If the system is pushed further in this direction, it will certainly collapse once the spin-
odal is reached. However, as long as the system is still relatively close to the equilibrium
transition point, it may continue to operate for a very long time until a rare unfavourable
fluctuation tips it over the edge, and a global collapse takes place. Both the system size
and the distance from spinodal will determine the likelihood that rare unfavourable fluc-
tuations actually manage to destabilise the system. The time before the collapse occurs,
fluctuates wildly, hence it is impossible to accurately predict the timing of global system

failures.
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Figure 2.2: Population dynamics on regular random graph case. (A) Hysteresis of my, as

a function of u with parameters C=4, (a)= 6. The symbols '+ indicate that we started

from the (O) solution, while *x” indicate that we started from the (N) solution. (B) The

free energy profile across transition.

2.4.2 WMonte-Carlo simulations

In order to confirm the validity of our analytical solution, we have also performed Monte

Carlo simulations of the model using a variant where node and link variable are pooled

and random sequentially updated according to the Metropolis algorithm. The order of the
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Figure 2.3: Population dynamics on exponential random graph. (A) Hysteresis of m, as a
function of u with parameters C=4, (a)= 6. The symbols *+’ indicate that we started from
the (O) solution, while *x” indicate that we started from the (N) solution. (B) The free
energy profile across transition.
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Figure 2.4: Population dynamics on scale-free random graph. (A) Hysteresis of m), as a
function of u with parameters C=3.8, (a)= 6, ml =2. The symbols *x” indicate that we
started from the (O) solution, while *+” indicate that we started from the (N) solution. (B)
The free energy profile across transition.

graphs is 100 and the measurements are taken by averaging over 1000 graph realizations.
In general, our simulation results for spinodals coincide with the theoretical predictions
obtained by population dynamics.

The difference between the theoretical predictions and the Monte Carlo simulations
can be attributed to a small sizes of systems in Monte Carlo simulations. Only relatively
small systems can be simulated and analysed. We present one-dimensional phase dia-

grams to illustrate agreement between population dynamics and Monte Carlo simulations,

see figure (2.4.2).
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Figure 2.5: Fraction of working nodes (m,) : population dynamics and Monte Carlo
simulation on exponential random graphs. Results of population dynamics are depicted
by ’+> and ’x’ lines, while results of Monte Carlo simulations are depicted by square
and star lines. The size of the system in Monte Carlo simulations is 100, the fraction
of working nodes (1) computed by averaging over 1000 realizations of the exponential
graphs. The size of population in population dynamics is 10000. In both cases we have
u=—8,b=0,d=0. While the general agreement between two experiments is good, the
differences are more pronounced around dynamic transitions and could be explained by
the small sizes of the graphs in Monte Carlo simulations.
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Figure 2.6: Population dynamics : phase diagram for regular random graphs, various
connectivities. A section of phase diagram for regular random graph in the (a, u) plane
with b=0, d=0 for three different average connectivities: C=4 (red lines), C=6 (green
lines) and C=8 (blue lines).
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Figure 2.7: Population dynamics : phase diagram for regular random graphs, various
connectivities. A section of phase diagram for exponential random graph in the (a, p)
plane with 5=0, Jd=0 for three different average connectivities: C=4 (red lines), C=6 (green

lines) and C=8 (blue lines).
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Figure 2.8: Population dynamics : phase diagram for regular random graphs, dependence
on parameter b. A section of phase diagram for regular random graph in the (a, x) plane
with C=4, d=0 for three different values of parameter B: h=3 (red lines), b=0 (green lines)
and b=-3 (blue lines).

Figure 2.9: Population dynamics : phase diagram for exponential random graphs, depen-
dence on parameter b. A section of phase diagram for regular random graph in the (a, x)
plane with C=4, d=0 for three different values of parameter B: =3 (red lines), b=0 (green

lines) and b=-3 (blue lines).
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Figure 2.10: Population dynamics : phase diagram for regular random graphs, depen-
dence on parameter d. A section of phase diagram for regular random graph in the (a, 4)
plane with d=0, C=4 for three different values of parameter d: d=3 (red lines), d=0 (green
lines) and d=-3 (blue lines).
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Figure 2.11: Population dynamics : phase diagram for exponential random graphs, de-
pendence on parameter 4. A section of phase diagram in the (a, #) plane with =0, C=4
for three different values of parameter d: d=3 (red lines), d=0 (green lines) and d=-3 (blue

lines).
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2.4.3 Scale-free random graphs

We also applied our model to study the stability of distribution networks on scale-free
random graphs. General results on stability of scale-free networks suggest that random
failures (based on the node removal [20]) have dramatically different impact compared
to homogeneous graphs (regular or exponential random graphs). Indeed, finite scale-free
networks disintegrate at higher fraction of the randomly removed nodes than exponential
random graphs of similar order and size. While any finite scale-free system appears to
have a percolation threshold, analytical calculations indicate that it is caused by finite
size effects, and for the large scale-free networks the fraction of nodes to be removed to
cause disintegration approaches 1 with the size of the network. In other words, scale-free
networks display remarkable robustness against random failures.

However, in the current model we consider dynamical effects of node and link failures.
Failed nodes and links are thought to have an effect on the neighbours that may not have
sufficient resources to function due to loss of support from failed component. Such effects
of random failures are believed to lead to cascading failures , affecting a large fraction of
the network. The work by Watts [13] focuses on development of cascading failures in
networks. The model he used for investigation assumes dynamical effects of random
node failures (but not links). The main findings of the study confirms higher degree of

robustness of scale-free networks compared to exponential random graphs.
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Figure 2.12: Population dynamics: phase diagrams for scale-free random graphs, depen-
dence on the parameter d. A section of phase diagram for scale-free graph in the (a, p)
plane with C=4, b=0 for three different values of parameter d: d=0(red lines), d=-5(green
lines) and d=-10(blue lines). For each, the top line is the upper spinodal [marking the
boundary between the(CO) and the(O) region], the middle line is the equilibrium transi-
tion, and the bottom line is the lower spinodal [marking the boundary between the (CN)
and the (N) region].

Figure 2.13: Population dynamics: phase diagrams for scale-free random graphs, various
connectivities. A section of phase diagram in the (a, w) plane with b=-1, d=5 for three
different connectivities C: C=4 (red lines), C=6 (green lines) and C=8 (blue lines). For
each, the top line is the upper spinodal , the middle line is the equilibrium transition, and

the bottom line is the lower spinodal.
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2.5 Conclusions

We have investigated the performance of distribution networks realised as sets of nodes
interacting via dynamical links arranged on a random graph. We have formulated the
coupled node and link dynamics in such a way that breakdown of a link or node is caused
when a level of support it receives falls below a given threshold. We have identified condi-
tions under which the collective behaviour of such systems can be analysed using equilib-
rium statistical mechanics, and we perform such an analysis using replica and mean-field
techniques for finitely connected random systems.

The model generalises previous models of operational risk, in which link-dynamics
is included as an essential new ingredient. Formally the conventional operational risk
situation can be recovered by considering a limit in which the links are infinitely resilient
against failure, thereby freezing out the dynamics of links.

A phase diagram characterising the global behaviour of the system and its dependence
on the system parameters has been obtained , which confirms and quantifies intuitions one
would have about such systems. In the region of parameter space of interest for an inter-
pretation as distribution networks the system can be in one of two possible phases, an 0p-
erational phase (O) where most nodes and links are up and running, and a non-operational
phase (N) where most nodes and links are down. In certain regions of the parameter space,
both phases can coexist. Theses are further divided into subregions where either the op-
erational phase (CO) or the non-operational phase (CN) are the absolutely stable ones.
These subregions are separated by the thermodynamic first order equilibrium transition.
Coexistence regions are bounded by spinodal surfaces, which mark locations in param-
eter space where the metastable phases become unstable (and therefore cease to exist).
s can meet in lower-dimensional surfaces of critical second-order

We find that spinodal

transitions.

One observes the following main trends. By increasing average connectivity C, or

by increasing the resilience of links against spontaneous failure (parameterised by (d)),

or to a lesser extent by increasing the resilience of nodes against spontaneous failure

(parameterised by (u)) the coexistence region is moved to lower values of the parameter
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(a), which quantifies the individual contribution to node support as well as the cooperative
link support. These trends are clearly in line with intuition one would have about systems
of this type , concerning the beneficial roles of redundancy of resources or the reliability
of nodes and links. There is a concurrent increase of the width of the coexistence region
in the (a) — (u) plane, though throughout most of the coexistence region the operational
(O) phase appears to be the stable phase (the non-operational phase is the metastable one).

From the point of view of assessing the risk of failure of the net, the coexistence re-
gions are clearly the most important regions in parameter space. In these regions, an all
operational state of the system coexists with a non-operational state. Parameter changes,
which drive the system into the coexistence region, would not be detectable in the collec-
tive behaviour of the system and, as already noted, the same is true, in particular, also for
parameter changes that exchange the relative stabilities of the operational (O) and non-
operational (N) phase. As a consequence, parameter changes that would result in making
catastrophic breakdown of the system an event that is eventually bound to occur under
normal operating conditions would go unnoticed.

In the present investigation we have restricted ourselves to situations in which the
system parameters satisfy a set of symmetry relations, allowing us to use equilibrium
methods to analyse collective behaviour. Nevertheless, proper dynamics techniques and
Jor numerical simulations would be required to study this issue in greater detail for the
present model.

A more important point concerns the mechanisms triggering failures of nodes or links.
In many distribution networks the dominant mechanism is related to traffic along certain
links or through certain nodes exceeding critical values, which triggers the failure of a
given element, and rerouting traffic appears as a crucial ingredient responsible for cascad-
ing failures in the system. This aspect is not covered in the present investigation, but is

clearly of great importance.
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Chapter 3 CAPACITY OF DISTRIBUTION NETWORKS

3.1 Introduction

In the present chapter we focus on stability of complex networks, and, in particular, on
stability associated with failures induced by loads exceeding critical levels of capacity of
network elements. These types of failures are common in large complex networks [29, 67]
and can be observed in most real networks, and typical manifestation of such failures are
gridlock on the road network or critical slowing down of telecommunication networks.
While the nature of failures is clearly defined, the influence on network stability are not
yet investigated.

The failures under consideration are associated with finite capacity of network ele-
ments [30, 28]. Both the distribution lines and the centres in real networks are physically
restricted [68], such as bandwith of cpmmunication line and power of a server, capacity
of a stretch of a road and capacity of a road junction. For most of the time the functional
state of these networks can be described as operational, e.g. “stable” Internet access or
“freeflowing” road traffic. However, under some conditions we observe “overloading”
of network elements, that in turn spreads over the rest of network [69]. The key ques-
tion is then to understand conditions under which the “gverloading” occurs and how such
failures spread through the system [29, 8,25].

Of course, the characteristics of individual elements affects development of critical
loads in the system. In a simple system onc may find the weakest link in a chain to
have an idea of a strength of a system. For example the capacity of a backbone of a
transcontinental gas/oil distribution system can be easily reduced by reducing capacity of
any of intermediate parts like capacity of pipe or of oil refinery. Local capacity reduction
in this case has a negative effect on the whole system.

Another factor that affects the stability of a system is a complexity of interconnec-

tions in a network structure [70, 26]. Ina network environment redundancy of possible

re-routing capabilities may be expected to have a positive effect on overall stability. How-
ever, stability of a system compounded by many subnetworks is not clear [28] and as we
will show is nontrivial. We analyse network stability with respect to structural character-

istics as well as properties of individual network elements.
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The network stability against overloading failures has implications in various techno-
logical systems [26, 71] as well as biological[59], business and financial networks [56].
As mentioned before the physical characteristics of network parts in communication and
transportation systems affect stability against overloading. In a biological context the
functioning of an organism can be affected by critically congested blood/air vessels. In
the business network, the collapse of a major player or a small specialised business can
trigger problems in the supply chain, and could affect a large parts of a sector [41]. In
financial networks the financial institutes assign capital against losses, and in case of in-
solvency other cooperative organisations may become insolvent themselves, sometimes
affecting large parts of an economical sector or a whole economy.

We propose a model of a flow in distribution networks, the flow is realized as a set
of currents that goes through the links. The amount of current in a link quantifies a load
and does not exceed the links capacity [25]. In addition to a finite capacity requirement,
we observe a balance relations at the nodes. The general flow is governed by a global
optimisation criterion of a least overall dissipation of energy.

To analyse network stability against overloading failures, we concentrate on occur-
rences of the first maximal currents. Occurrence of the first overloadings in a system 1s
‘ndicative of a load strain in a system. Once a system reaches that state the overloaded
parts of the system can be effectively discounted, while the rest of a system is not only
close to critical load, but also has reduced Joad shedding capabilities. In other words
occurrence of the critical loads in a system signals onset of the critical phase.

This Chapter is organised as follows. In Section (3.2) we introduce a model of a
distribution network, the global flow is defined, as well as local constraints and global

optimisation criteria. We apply a statistical mechanics approach to analyse properties of

our system in Section (3.3). Then we analyse independently two characteristic cases of

infinite link capacity (IC model in Section (3.4)) and of finite link capacity (FC model in

Section (3.5)). Finally, we discuss and compare two models in Section (3.6) .

59




Chapter 3 CAPACITY OF DISTRIBUTION NETWORKS

3.2 The model.

The distribution network can be thought of as a dynamical structure on the graph. The
distribution centres and lines are represented by the set of nodes or vertices (¥) and the set
of links or edges (£) respectively. We denote the graph as G(V,E). The graph structure
is completely described by a symmetric connectivity matrix ¢ = {¢;; : i,/ =1,...,N}. ,

with ¢;; = I 1f nodes i and ; are connected, and ¢;; = 0 otherwise.

3.2.1 The physical model of the flow in a network.

We introduce a physical model of the flow in the network and the optimisation crite-
rion. The physical model of the flow strongly resembles the DC transmission network.
In fact, the current transmission and distribution constraints are inspired by the direct
current transmission networks. Indeed, we introduce the line resistances and direct cur-
rents, Kirchhoff’s law-like constraints, and define a dissipation of the energy in terms of
link resistance and electrical current. The global dissipation provides the optimisation
criterion.

To each link we assign a resistance R;; and a dynamical variable /;; - current. Both
resistances and currents are assumed to be continuous. The current that goes through the
link is in fact a directed current. We use the following agreement: the current /;; is going
from the source node ; to the sink node i. For the opposite current we have /;; = —/j;.
Resistance, in contrast, is assumed to be independent of the direction.

The nodes in the network can be functionally separated into three distinctive classes

as follows

e producers (we use index ’p’ to index variables associated with these nodes),

e distributors (accordingly we use indices ’q” and ’s’),

. . ,
e receivers (we use index 'r’).

Producers are the source nodes in the network, they have only the outgoing currents. Dis-

tributors are the nodes that have both incoming and outgoing currents. Finally, receivers
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are the nodes that have only incoming currents. Such functional separation defines the
general direction of the flow in the network from the producers through the distribution
part of the network to the receivers.

Next, we assume the distribution constraint on the currents at each distribution node
in the network. This constraint is, the sum of all incoming currents should be equal to the

sum of all outgoing currents, and expressed as

Vq 2 qu]qi =0. (31)
i(#q)

For the receiver nodes we specify the level of demand in terms of currents by the set

{I,}. The constraint (3.1) for the receiver and producer nodes transforms to

v, zcrq]rq =1, (32)
q

Yy Y Ipp=1p (3:3)
q

The I,’s reflect the level of production, which, unlike the level of demand we do not
specify. In fact, the specification of either level of production or level of demand is needed,
as the other, through observed balance constraints (3.1), becomes the consequence of the
first. For this reason we will not use last constraint (3.3), but use (3.1) and (3.2).

Finally, we introduce dissipation of the energy that is associated with the transmission

of current through the link. We assume the DC-like form of dissipation

Dyj = Ryl (3.4)
and the global dissipation is just a sum of dissipations over all links
D= ) D (3.5)
(i)

where (ij) denotes summation without repetitions.
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3.2.2 Structure of the network.

The functional separation of the nodes into three distinctive categories imposes certain
structural features. That is, we assume that producer nodes are not interlinked and only
connected to the distribution nodes. Similarly, the receiver nodes do not connect to each
other and only connect to the distribution nodes. On the other hand, the distribution nodes
are inter-connected and also might be connected to both producer and receiver nodes.
In other words, we observe three distinguished networks compounded by distributor-
producer, distributor-distributor and distributor-receiver links respectively. These net-
works connect to each other by distribution nodes, but in terms of connectivity can be
considered independently. We denote these networks as producer, distributor and receiver

networks respectively.

Figure 3.1: Schematic representation of network structure. Three sets of nodes are pro-
ducers, distributors and receivers. We split the network into three subnetworks: producer
subnetwork (blue links), receiver subnetwork (red links) and distribution subnetwork
(solid black links). Consumption level at each receiver node is represented by dashed

black arrow

A graph is fully determined by its connectivity matrix ¢. For the graph of average

connectivity C, the a priori probability of the link to be present is defined like

C C
PC(Cij) = ]T/Bc,‘,,! + (1 - N) 6c»,,,<)~ (3.6)
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To enforce a particular degree distribution Po(L), where L is the node degree we use

1
Pc(L) = EZSL,LN (3.7)

for a given set of coordination numbers L;. The full distribution of connectivity matrices
Pc(¢) is defined by
PC(C) ~ HPC(CI'.[) 64:,7,(:,‘,- H 8L,',2j(7é,-) cij (3 8)
(i) i
As we have imposed constraints on the type of interactions between producer, distrib-

utor and receiver nodes, the full distribution can be factorised

PC (C) ~ H pcp (CQIJ)SC(;;):(—';)(/ l—[ 6Lpan Cqp (3 9)

gp p

X H pcq (C(]-Y) chmcsq H 614(/:23(3&4) Cys
(gs) q

X HPC: (qu)scqr,cl‘q H 6Ln2q Cqr*
gr r

In (3.9) the sets of L, Lg, L, are drawn from the £, (L), P, (L) and P, (L) respectively.
The ¢p,cq and ¢, are average connectivities of each subnetwork.

The connectivity model and parameterisation for the producer and the receiver net-
works are defined on the producer and receiver sides respectively. Thus, the degree

distribution of the producer network P, (L) defines the degrees of the producer nodes.

Similarly, the degree distribution of the receiver network 2, (L) defines the degrees of the
receiver nodes.

The degree distribution of the distribution network is denoted as P, (L). For the dis-
tribution network we consider a non-Poissonian random graph of average connectivity ¢g
I

The total number of nodes in the network is N. As we split nodes into three groups
we obtain (N, Ny, N,)) - number of producers, distributors and receivers respectively. We

'We add another parameter - minimal connectivity (mg > 2) to ensure we do not have oscillated (the
nodes of degree 0) and dangling (the nodes of degree 1) nodes in distribution network.
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have

N = Ny+N,+N,, (3.10)

N, = MN, (3.11)

Ny = AN, (3.12)

N. = N, (3.13)

hp+Ag+A = 1. (3.14)

3.2.3 Simplified network diagram.

To aid understanding of key characteristics of the network we use network diagrams. In

all figures we use the following signs to denote subnetworks (or network elements).
e () - producers
e [ - distributors

e [> - receivers

3[2]

Producers Distributors Receivers

Figure 3.2: Example of a network diagram. Each producer has exactly 2 links, average
connectivity in distributor network is 3 and lowest connectivity is 2, each receiver has
exactly 3 links. The general direction of the flow in the network is from producers to

distributors to receivers.

In our simulations we use a fixed number of connections per node in distributor and

receiver networks. However, a random number of connections may be used as well as in

(2.2).
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3.3 Theoretical analysis

We follow standard steps of replica analysis [32]. We introduce n replicas and calculate
the replicated partition function ((Z"). ). The (...)cz here means averaging over con-
nectivities (¢ = {¢p,¢r,¢q}) and link resistances (R = {R;;}). We assume that the disorder
is quenched. To denote replicas we use index o= {1,...,n}.

The n-fold replicated partition function that includes both the constraints (3.1, 3.2)

and the optimisation criterion (3.5) is given by

(Z7)er = <1;1'exp{ B EC,J,}{,,IO"}H6<B [ZC(,,J;.D (3.15)
L o,q i

o <ij>

b)),

)

Here, I = {I;;} and T = {J%}, so the trace is taken over all realizations of currents in all
replicas. The <ij> denotes the links without repetitions. The constraints (3.1, 3.2) are
scaled to match the exponential term. We use the integral representation of Dirac delta
function : d(u) = 717{ [ dxe™". We introduce conjugate site variables x& and x%, and

q

the partition function is transformed to

BZ 2 CuRu}u } (H/ dx o Pt (’) (3.16)

(Z")er = <Trexp
o <ij>

(H / i dx?-e—ﬁi(zaxf-(m-zchrf;‘f-))) >
orY T R

The conjugate variables in (3.17) turn out to be a voltage-like potentials. It is useful to

introduce short-hand notation for a replicated vector X = ()cI ,...,x"). Also, we introduce

replica link weights

Uir(s,) = Trexp —BZ(RW[U +1nggp)} (3.17)
U (7,,5) = Trexp B}:(Rq,w +i (¢ —x(/)/q)} (3.18)
qu(fq;f$'> = ’IF}I'EXp BE (RCI“JO +1 ()C '—X )[q ):t ) (319)
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and the replica site weight

U'(%) = exp <—B§,ix°‘1,-) = exp («B%V(x“)) . (3.20) |

We start by performing the average over the connectivity. We recall that within our
structure we have three distinctive subgraphs. Therefore, we can factorise the partition
function and perform averaging over connectivity separately for each subgraph. In each
case we can follow the standard steps [72]. Constraints on the local connectivities are

enforced via the identity

dzi (kL
5,:?4 i (Ki=Li), 3.21
Kok lz|=1 omiz; ! (3-21)

In our next step we introduce replica density functions

l
() = - Y #dE ), P = Niqxzqzs(f—fq)- (3.22)
rop q

The physical meaning of order parameters turns out to be the mean-field voltage average.
Enforcing the definitions of the replica density functions in terms of conjugate functions
p"(%) and p?(¥) we obtain the replicated partition function as a functional integral over

the replica densities

(2R = /D{P",p",ﬁ",ﬁq}exp{N(Gl[Pq>p"] = Gulp?,p%,0",p"] + Gs[p%,0'])},(3.23)

where the first term denotes contribution of the “links” (to shorten expressions we use the
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replica link weights)

GlP",0] =g (G107 = 1)+ cr (Gl o) — 1) + (G p7] — 1) 324

Glp?] = < / ) dqu(f)qu(fq)> o (3.25)
B R

Gilp? = </ dEd® pd (£)p? (%) U (, )> , (3.26)

R
Gilp%p"] = < /_ wdfctf’pq(f)p"(f’)uq"(f,f')> : (3.27)

the last term denotes contribution from the ’sites’ '
Gs[p9,p"] = AGIPY +NG[p'], (3.28)
Gyt = Yo [ el (329)
Glp] = ZPC,‘(L)<111 / dfp"L(i)U"()Z,l,.)> , (3.30)

and the middle term is a mixesterm "

Gnulp?,p9,p",0"1 = AGhLIP? P+ MGLlp" B, (3.31)
Gllp® 5 = [ e (p7(e) (332)
Golo 0 = [ @p ) (:33)

3.3.1 Replica symmetry.

To calculate the partition function (3.23), the functionals needs to be calculated at the
relevant saddle point and in order to do this we need to make an ansatz for the replicated
densities and their conjugates which assumes that all replicas are indistinguishable un-
der permutations. Here, both replicated densities and their conjugates are expressed as

superpositions of products of single-replica functions, written in the Gibbsian form :

——BW( “) Ar(~) /D" Ar{A} H e‘B\if(xa-) (3.34)
s X) = Hr Y1 |y TR T
/ byl =7 P o Z[V]
By . o b
9= [ovall gy PO DAL g0

where Z[y] = [ dxe ~By() The functions y and \ are complex single-replica potenti'als

that cenerate the Gibbs distribution. The 1’s and ft’s are probability functions over the
o
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function spaces of single-replica functions.

We obtained prefactors 4, and #q by collecting terms of the order of O(1)

A

-9
,u,«—x—rc,-, Hg = Cp+Cr ¢y, (3.36)

Applying RS ansatz to (3.23) leads to the following expression of the functionals

(3.24),(3.28) and (3.31) :

9
12

e 21U
o | Prlys < Z[v] >R (-37)

b / Drf [y D[] <‘“%Z[WL]Q]>
R

+ 2 [ oryowy) (nZ0EE T |
R

Gn =~ A / D [WIDA[§]In {%} (3.38)

LA, / Dyl DAT(] In [%} '

Gy ~ x,.jjpc,@) / {ch"m;,]}L<1n [%ﬂh (3.39)

+ ay Eno foswun o]

and the partition function can be expressed as
(Z7) p ~ / DrDiexp {nN (G) — G+ Gy)} (3.40)

Here we introduced short-hand notation

L
Drfy] = Dynly], Dm=[]Drfwi], (3.41)

=1
%|f,8U7] = / dxdx'e PUCHEED U (1, 1), (3.42)
2l U%) = [ e MU () (.43

[t is understood that the expression (3.40) should be evaluated at the saddle point. The
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corresponding saddle point equations are obtained by using stationarity conditions with

respect to variations of ’s and &’s.

R = / D) (8 (9 — W[y, U7 ])), (3.44)
) = 2 0 ey, /D’[\v’ (7 =P, UT D)y
+id [ o )58~ 0%, (345)

Ty = 29&,,([—4) / {DR"[W]} 18 (\u"-Lf \I/’[—V) , (3.46)

wiv) = S50 [ i), ls<uﬂ~2w,> 647

L

where
b UM = 1 —Byx) i / 4
vy, UY](x) Bln/dx(e UY (x,x )) (3.48)

The general way to solve saddle point equations is to use population dynamics algo-
rithms [66]. The strategy is based on the sampling from distribution of functions 7t[y] and
the link disorder R to obtain &[], and sampling from distribution of functions 7t[\y], the
corresponding degree distribution Pc(L) and, if necessary, site disorder /.. The updates
can be done iteratively. Note that our single-replica functions are complex. Therefore,
the updates in population dynamics have to be performed for complex functions. Due to
particular form of single-replica functions (a quadratic real part and a linear imaginary

part) the population dynamics can be casily performed without any complications.

3.3.2 Physical properties.

The relevant physical quantities now can be obtained from the averaged replicated parti-

tion function evaluated at the saddle point.

The free energy per node of the system is given by

F = ,% (G — Gp + G (3.49)
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The distribution of currents (in each of the subnetworks) is obtained by taking a
derivative with respect to the corresponding conjugate variable of functionals in (3.37)
For example, to calculate the distribution of the receiver currents P, (1) we take the

derivative with respect to the conjugate variable x, of the second term in (3.37),

N o
Ply) = / dnfy?)dny’] <5 <1q—az(jf£jﬂw‘“£j”>> (3.50)

Similarly we obtain distributions of currents in producer and distribution networks

9 P
Polley) = [ dn[w<s<1qp—aﬂz(j$jf’g]§f; ”)>. 651

J g qs
Pyllys) = /dn[W]dn[W] <8 (Jq.s - ax(lz(f[ﬁjitng]l D) > : (3.52)

Also we define the node load - the sum of all currents passing through the given

node, and calculate the distribution of loads

. L
PP(I,) = ZPCP(L)/{de(II)}LS(IP— 1,> (3.53)
L =1
L
Pil,) = Ech(L)/{qu(ll)}LS(!q—211> (3.54)
L =1
L
Pr([r) = ZPC,(L) /{dpr(]l>}L6 <lr"“ z[!> (3.55)
L . =1

This concludes the theoretical ahalysis of our model. In the next sections we consider

two cases, defined by p.roperties of the links in the system. We consider cases of infinite

and of finite link capacity.

3.4 Case 1: Infinite link capacity (IC model)

There are physical constraints in real systems. For example the amount of electricity
that is managed at one node is restricted by specifications of devices at the substation,
or current that flows through a link is restricted by physical properties of wires that link

consists of. However, for model that we study here we assume no restrictions on currents
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in links at all. This assumption considerably simplifies calculation and it is much easier
to handle numerically. We refer to this model as Infinite Capacity model (IC).

The absence of any restrictions on the links leads to a particularly convenient form
of the link weight interactions, namely, harmonic couplings. The systems with harmonic
interactions have been extensively studied and allow exact solutions in many cases. For
instance, for systems with harmonic couplings which describe amorphous materials like
gels [72] the exact solution can be obtained, due to existence of unique ground states in
such systems.

In [72] the case of harmonic couplings has been studied, and for the single-replica po-
tentials an orthogonal function representation has been used. The complete set of Hermite
polyno.mials provides a suitable set of basis functions. The expansion of single-replica po-
tentials is then obtained. Such representation is preferred if one can avoid full functional
representation .

In the case of harmonic couplings it turns out that the full set of basis functions is not
needed. In fact, the space of finite dimensionality defined on the first three basis functions
is sufficient to solve saddle point equations. The population dynamics is then reduced to
set of simple algebraic updates.

In our model we chose to use quadratic polynomials with real quadratic term and
imaginary linear term to represent single-replica functions. The form of such representa-
tion is basically dictated by the terms in saddle point equations (3.47). The terms associ-

ated with the dissipation are real, while the terms associated with the currents are strictly

imaginary.

2\We will show examples of both approaches. Here we consider particular second order representation
of single-replica functions. The anharmonic case considered later in this chapter requires a full functional

approach.
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3.4.1  Calculation and population dynamics

In case of unrestricted link capacity we can perform the trace over currents / to calculate

link weights (3.17)-(3.19). The / turns out to be3

i(x,-—x~)
[i.:.._L .
1= (3.56)

and by performing Gaussian integration we obtain

2
X

Ui (x) = —B-—- 3.57
(x) B4qu, (3.57)

. \2
U (e vy = ) 3.5
(x‘]"x) 4Rq’. b ( 8)

s (x _x')2
UP(xg,%) = —P- 44Rq: (3.59)

Note, that the numerator in (3.56) has the form of a difference of potentials AV = V; —
V; =1(x; —x;). At the same time the link weights have the form of the scaled dissipation
of energy U;; ~ ]iszlﬂ/"

Now , to solve our saddle point equations, we assume the following form for y and

functions
W(x) =Ax’ +iBx  Plx) = Ax? +iBx, (3.60)

where all coefficients are real numbers. This form of functions is dictated by link and
single-site weights ( quadratic real part and linear imaginary part). We can proceed with
the population dynamics algorithm, but instead of pointwise calculation of functions in

(3.44)-(3.47), we perform Gaussian integration. Now, our update equations reduce to

algebraic updates of coefficients

e Updates of A”’s and B"’s

. 1
V=A% B =89 where =——"". 3.61
A 14 4R A9 (3.6

3Can be done by saddle point method for example.
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e Updates of 49°s and B9’

A7 =0,
AT = 49,
AT = A"t

e Updates of A7’s and B?’s

A 1
pr— .
iR, or

BY = B%, where t= L
[+ 4Ry, A

. . 1

BY=PB"t, where t=-— .
1+ 4Ry, A

L L
A?=% 4], B'=YB] where L isdrawn from P (L).
=1

I=1

Only quadratic and linear terms are important in our calculation. The meaning of the

quadratic term is quite simple, it is reflects the dissipation in the links. As one would

expect the dissipation to be non-negative the A’s and A’s coeflicients are initialised as

non-negative. The linear coefficients are uniformly sampled from the range [—1, ‘l]. By

initialising all 4 coefficients with non negative values we ensure that updates are numeri-

cally stable.

The solutions of (3.16) are meant to be found in the low temperature limit (J — oo).

However, in the IC model, the special form of couplings turns out to lead to the correct

solution at any temperature. The equation (3.16) can be solved at any temperature, so, for

simplicity, we take B = 1.

3.4.2 Results.

We solve saddle point equations (3.44)-(3.45) at finite temperature for various models of

connectivities and distributions of the parameters R;; and /, using a population dynamics

algorithm, the size of populations is 100000. Once the stable distributions of the complex
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single-replica functions n[y] and t[i/] have been obtained, we calculated relevant physical

quantities: the distribution of individual currents (1

ap+1gs:14r) and distribution of the node

loads (7, 1q,1,). For the (IC) model we discuss results in terms of these distributions and
their statistical characteristics like mean and standard deviation,

Given, that the original network is divided into three subnetworks each of them are
defined independently, we analyse the distributions of the currents and loads for each
subnetwork. The effects of the connectivity and disorder in this set up can be localised
and magnified by tuning corresponding model parameters.

All distributions of currents obtained in the experiments have been calculated in equi-
librium. To test if we have reached the equilibrium state we check overall balance.

Furthermore, the calculation results in distributions of optimal currents. For instance,
the distribution of currents in the producer network has been found to be determined on
R, i. e. all the currents from the producer to the distributor nodes are non-negative. This
is what one would expect: the extra currents would cause extra dissipation of the energy.

The distribution of currents in the distribution subnetwork is centred at 0, meaning
that the distribution part of system takes in exactly as much as it gives out. Hence the zero
mean of this distribution.

An increase in the levels of consumption results n an increase of both the mean and
standard deviation of the distribution of produced currents as well as an increase of the
standard deviation of the distribution of distributed currents (see figure 3.3). Moreover, the
growth of mean and standard deviation is linear, as could be expected from the Gaussian
form of the distribution of distributed currents and the linearity of the redistribution law
at the nodes.

Increasing the number of links at producer nodes results in narrower distributions of
produced and distributed currents. A similar effect is observed when the average connec-
tivity in distributor networks is increased (see figures (3.3),(3.9) and (3.12)). In all cases
higher connectivity increases the number of possible ways to distribute currents, making
it more homogeneous, i.e. current values are less spread out.

In the case when line resistances are different the following trends are observed. In

the system where the spread of resistance values is wider, the spread of the currents is

74




Chapter 3 CAPACITY OF DISTRIBUTION NETWORKS

wider as well (see figures (3.14) and (3.17)). As our objective is to minimise dissipation
the lines with low resistances might be preferred over the rest. Such lines may carry high
currents, resulting in a wider distributions of currents. We have sampled resistance values
from uniform distribution. In both cases a wider distribution of link resistances created
higher deviations of distributions of produced and distributed currents.

The same trend, but more pronounced, was observed for a random levels of demand.
The higher spread resulted in a wider distributions of currents in all subnetworks. Also, in
this case we do not observe characteristic peaks in distributions of distribution currents.
The peaks at the (£1.,4+21.,4+317,,...) correspond to the situations where the distribution
network has only one link which connects to the rest of distribution network and the rest of
the links attached to the node are producer/receiver links. The same effect was observed
in producer networks. Peaks are more pronounced in cases when the average connectivity

of the receiver network is 1 (see figures (3.11) and (3.14)).
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Figure 3.3: Distributions of individual currents obtained via population dynamics, case
cp=2,04= 5(2),¢r=2,R=1.0. Each producer has exactly 2 links, average connectivity
in distributors network is 5 and lowest connectivity is 2, each receiver has exactly 2 links.
Size of the population is 10000. We do 100 equilibrating sweeps and 100 measuring
sweeps. Both the means and the standard deviations of distributions of currents exhibit

linear dependence on consumption level.
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Figure 3.4: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /., = 0.1 , case cp=2,¢4=>5Q2), ¢, =2, R=1. Each pro-
ducer has exactly 2 links, average connectivity in distributors network is 5 and lowest
connectivity is 2, each receiver has exactly 2 links. A: Distribution of currents in the
producer-distributor network. B: Distribution of currents in the distribution network.
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Figure 3.5: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /, = 1.0, case ¢) = 2, ¢; = 5(2), ¢, =2, R=1. Each pro-
ducer has exactly 2 links, average connectivity in distributors network is 5 and lowest
connectivity is 2, each receiver has exactly 2 links. A: Distribution of currents in the
producer-distributor network. B: Distribution of currents in the distribution network.
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Figure 3.6: Distributions of individual currents obtained via population dynamics, case
cp=2,¢4=53),¢c,=2,R=1. Each producer has exactly 2 links, average connectivity
in distributors network is 5 and lowest connectivity is 3. Size of the population is 10000.
We do 100 equilibrating sweeps and 100 measuring sweeps. Both the means and the
standard deviations of distributions of currents exhibit linear dependence on consumption

level.

77




T y—

Chapter 3

CAPACITY OF DISTRIBUTION NETWORKS

5(3)
800 800
700t 700
600} 600}
500+ 500}
400} 400
300} 3001
200+ 200
,A:OO 13100~
0

0 0.1 02 03 04 05

Currents (/)

0 2 A i i
-0.2 -0.12 -0.04 0.04 0.12

Currents (/)

0.2

Figure 3.7: Histograms of distributions of individual currents obtained via population dy-
namics. Consumption /., = 0.1, case ¢, =2, ¢, =5(3), ¢, =2, R=1. Each producer has
exactly 2 links, average connectivity in distributors network is 5 and lowest connectivity is
3, each receiver has exactly 2 links. A: Distribution of currents in the producer-distributor
network. B: Distribution of currents in the distribution network. Solid vertical lines depict
mean of distributions while shaded areas highlight a range of 2 units of standard deviation

wide.
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Figure 3.8: Histograms of distributions of individual currents obtained via population dy-
namics. Consumption/, = 1.0, case ¢, =2, ¢, =5(2), ¢, =2, R= 1. Each producer has
exactly 2 links, average connectivity in distributors network is 5 and lowest connectivity is
3, each receiver has exactly 2 links. A: Distribution of currents in the producer-distributor
network. B: Distribution of currents in the distribution network. Solid vertical lines depict
mean of distributions while shaded areas highlight a range of 2 units of standard deviation

wide.
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Figure 3.9: Distributions of individual currents obtained via population dynamics, case
Cp=2,¢4= 3(2), ¢, =2, R=1. Each producer has exactly 2 links, average connectivity
in distributors network is 3 and lowest connectivity is 2, each receiver has exactly 2 links.
Size of the population is 10000. We do 100 equilibrating sweeps and 100 measuring
sweeps. Both the means and the standard deviations of distributions of currents exhibit
linear dependence on consumption level.
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Figure 3.10: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /, = 0.1, case ¢, =2, ¢, =3(2), ¢, =2, R = 1. Each producer
has exactly 2 links, average connectivity in distributors network is 3 and lowest connec-
tivity is 2, each receiver has exactly 2 links. A: Distribution of currents in the producer-
distributor network. B: Distribution of currents in the distribution network. Solid vertical
lines depict mean of distributions while shaded areas highlight a range of 2 units of stan-

dard deviation wide.
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Figure 3.11: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /, = 1.0, case ¢, =2, ¢, = 3(2) , ¢ =2, R = 1. Each producer
has exactly 2 links, average connectivity in distributors network is 3 and lowest connec-
tivity is 2, each receiver has exactly 2 links. A: Distribution of currents in the producer-
distributor network. B: Distribution of currents in the distribution network. Solid vertical
lines depict mean of distributions while shaded areas highlight a range of 2 units of stan-
dard deviation wide.

82




Chapter 3 CAPACITY OF DISTRIBUTION NETWORKS

. PG B
1 o Oeﬁ © i
o< g
0.5¢ 22
_ Mean(i )
_ > | B P
/ - P peb Db P-b : —E- Deviation(ip)
_@_Mean(iq)
~05: {l-e- Deviation(iq)
M&_Mean(ir)
-1t 11-p- Deviation(ir)
-1.5]
' ' * ' 178
0 04 0.8 1.2 1.6 2

Consumption (/)

Figure 3.12: Distributions of individual currents obtained via population dynamics, case
cp=2,c4=312),¢,=2,R=1 Each producer has exactly 2 links, average connectivity
in distributors network is 3 and lowest connectivity is 2, each receiver has exactly 1 link.
Size of the population is 10000. We do 100 equilibrating sweeps and 100 measuring
sweeps. Both the means and the standard deviations of distributions of currents exhibit
linear dependence on consumption level.
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Figure 3.13: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /, = 0.1, case ¢ =2, ¢4 = 3(2),¢,=1,R=1. Each producer
has exactly 2 links, average connectivity in distributors network is 3 and lowest connec-
tivity is 2, each receiver has exactly 1 link. A: Distribution of currents in the producer-
distributor network. B: Distribution of currents in the distribution network. Solid vertical
lines depict mean of distributions while shaded areas highlight a range of 2 units of stan-

dard deviation wide.
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Figure 3.14: Histograms of distributions of individual currents obtained via population
dynamics. Consumption [, = 1.0, case ¢, =2, ¢, =3(2) , ¢, = I, R = 1. Each producer
has exactly 2 links, average connectivity in distributors network is 3 and lowest connec-
tivity is 2, each receiver has exactly I link. A: Distribution of currents in the producer-
distributor network. B: Distribution of currents in the distribution network. Solid vertical
lines depict mean of distributions while shaded areas highlight a range of 2 units of stan-
dard deviation wide.
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Figure 3.15: Distributions of individual currents obtained via population dynamics, case
cp=2,¢4=302),¢=1LRE (0.5:1.5). Each producer has exactly 2 links, average
connectivity in distributors network is 3 and lowest connectivity is 2, each receiver has
exactly 1 link. Size of the population is 10000. We do 100 equilibrating sweeps and 100
measuring sweeps. Both the means and the standard deviations of distributions of currents
exhibit linear dependence on consumption level.
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Figure 3.16: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /, = 0.1, case ¢, =2, ¢, = 3(2), ¢, = |, R€ (0.5: 1.5). Each
producer has exactly 2 links, average connectivity in distributors network is 3 and low-
est connectivity is 2, each receiver has exactly | link. A: Distribution of currents in
the producer-distributor network. B: Distribution of currents in the distribution network.
Solid vertical lines depict mean of distributions while shaded areas highlight a range of 2
units of standard deviation wide.
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Figure 3.17: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /, = 1.0, case ¢, =2, ¢y = 3(2), ¢, = 1, R € (0.5 : 1.5). Each
producer has exactly 2 links, average connectivity in distributors network is 3 and low-
est connectivity is 2, each receiver has exactly | link. A: Distribution of currents in
the producer-distributor network. B: Distribution of currents in the distribution network.
Solid vertical lines depict mean of distributions while shaded areas highlight a range of 2

units of standard deviation wide.
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Figure 3.18: Distributions of individual currents obtained via population dynamics, case
cp=2,¢c4=302), =1, consumption /. € [ii ~é—]] Each producer has exactly 2 links,
average connectivity in distributors network is 3 and lowest connectivity is 2, each re-
ceiver has exactly 1 link. Size of the population is 10000. We do 100 equilibrating sweeps
and 100 measuring sweeps. Both the means and the standard deviations of distributions
of currents exhibit linear dependence on consumption level.
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Figure 3.19: Histograms of distributions of individual currents obtained via popula-
tion dynamics. Consumption /, =0.1,case ¢, =2, ¢, =3(2), ¢, =1, R=1,
I, € (0.05:0.15). Each producer has exactly 2 links, average connectivity in distributors
network is 3 and lowest connectivity is 2, each receiver has exactly 1 link. A: Distri-
bution of currents in the producer-distributor network. B: Distribution of currents in the
distribution network. Solid vertical lines depict mean of distributions while shaded areas
highlight a range of 2 units of standard deviation wide.
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Figure 3.20: Histograms of distributions of individual currents obtained via population
dynamics. Consumption /, = 1.0, casec, =2,¢,=3(2), ¢, =L, R=1,/, € (0.5: 1.5).
Each producer has exactly 2 links, average connectivity in distributors network is 3 and
lowest connectivity is 2, each receiver has exactly 1 link. A: Distribution of currents in
the producer-distributor network. B: Distribution of currents in the distribution network.
Solid vertical lines depict mean of distributions while shaded areas highlight a range of 2

units of standard deviation wide.

91




Chapter 3 CAPACITY OF DISTRIBUTION NETWORKS

We also calculate the distributions of loads per node in each subnetwork (see figures
ol .
(3.21)-(3.22)). Load per node is the amount of net current each node handles. The load
per node could be applied if one wants to concentrate on the node-associated properties

of the network, i.e. monitor critical load. These distributions have similar properties to

the distributions of currents.
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Figure 3.21: Histograms of load per node obtained via population dynamics. Consump-
tion [, = 0.1, case ¢, =2,¢4 =3(2), ¢, =2, R=1, I, € (0.05:0.15). Each producer
has exactly 2 links, average connectivity in distributors network is 3 and lowest connec-
tivity is 2, each receiver has exactly 1 link. A: Distribution of loads per producer node.
B: Distribution of loads per distribution node (This load does not include currents from
producers or to receivers).
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Figure 3.22: Histograms of loads per node obtained via population dynamics. Consump-
tion [, = 1.0, case ¢, =2, ¢, =3(2) ,cr =2, R=1, I, € (0.5:1.5). Each producer
has exactly 2 links, average connectivity in distributors network 1s 3 and lowest connec-
tivity is 2, each receiver has exactly 1 link. A: Distribution of loads per producer node.
B: Distribution of loads per distribution node (This load does not include currents from

producers or to receivers).
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3.4.3 Discussion and Conclusions

We have investigated the properties of the DC-like distribution networks without any con-
straints on link capacity (IC model). The structure of the whole network is assumed to
be separable into three functionally distinctive subnetworks. The core is a distribution
subnetwork that connects producers and receivers in the system. We analysed differ-
ent connectivity models for the distribution subnetwork with different combinations of
connectivities to producers and receivers. To analyse such systems using equilibrium
statistical mechanics, we use the replica method for finitely connected random graphs.

The global properties of interest are distributions of currents in each subnetwork and
the distribution of the node loads. We analyse these distributions and dependencies on the
system macroparameters. The key macroparameters are connectivities of subnetworks,
distribution of link resistances and distribution of levels of demand.

The key observable properties show a linear dependence on the level of demand. As
there is no constraints on the link capacity, the currents are able to adapt according to a
global minimal dissipation requirement. We monitor the mean and standard deviation of
each subnetwork’s flow. The increase in the level of demand results in a wider distribu-
tions of currents in all subnetworks.

The structural characteristics are also in line with the general observations of distri-
bution systems. We show examples of the beneficial role of redundancy. The increase of
average connectivity in any of the subnetworks results in narrower current distributions,
not only for this subnetwork, but also narrows the current distributions in other subnet-
works.

For each subnetwork, the mean of the distribution of currents in the network is found
to exhibit linear dependency on the subnetworks connectivity. However, the standard de-
viation shows non-trivial dependence on the connectivities and distributions of resistances
and levels of demand. We observe qualitatively similar trends for the distributions of node
loads in each subnetwork.

Employing an IC model allows us to find optimal distributions of currents in the net-

work. While the absence of any restriction on the capacity of individual elements is not
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realistic, yet the analysis of real networks may be achieved.v Thus we can assess the
spread of currents in the network, and monitor occurrences of currents that exceed some
threshold (the threshold represents capacity of the links for example). Such an exami-
nation could be beneficial from the design point of view. Both individual characteristics
of network elements and network structure may need adjustments for the required flow
of currents in the system, or for the existing networks, safe levels of distribution may be
obtained.

Finally, if load criticality is the main interest, one may chose to concentrate on the

load per node distributions.

3.5 Case 2: Finite link capacity (FC model)

In this section we will consider modification of the (IC) model with a limit on the capacity
of links. The maximum capacity is defined in terms of the maximum current that can be
passed through the link. We refer to this model as the Finite Capacity model (FC).

Unlike the case of harmonic interactions the full functional approach must be applied
to find a solution of equations (3.44)-(3.47).

With added local capacity constraint, the problem becomes an optimisation problem.
It can be clearly seen that the system becomes spin glass like, in the sense that it shows
frustration. Indeed, while in the harmonic case the local distribution constraints could be
easily satisfied, the ground state energy corresponds to the minimum of dissipation in the
system. However, with introduced limits on the link’s capacity the global requirement of
minimum dissipation of energy and the local distribution constraints are in direct conflict.
At some stage (at some level of demand that passed from producers to receivers) it 1s
likely that current distribution at nodes can not satisfy both requirements simultaneously.

The global constraint which tries to split currents might be prevented from doing so by

capacity constraint. Similarly, locally optimal flow might not be optimal for the whole

system.

In spin glasses and systems that can be viewed as spin glasses frustration prevents

findine true minima. As in the SK model one can observe either the spin glass phase or the
o
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true ferromagnetic phase. In the SK model the current phase depends on the temperature

and disorder and frustration in the system. While the ferromagnetic phase is characterised

by a single ground state, the spin glass phase is usually associated with a large number of
metastable states.

A qualitatively similar situation is found in hard optimisation problems. The large
number of parameters and constraints in these problems can be thought of as disorder and
frustration, and makes finding the true ground state a difficult task.

The practical approach usually followed in problems like TSP and satisfiability prob-

lems is to start with some initial configuration, and make small moves by flipping a single

[
[
i

|

|

spin and see if it results in a better configuration [39, 62]. The better configuration is

determined by some global cost function. The problem in this approach is the large num-
ber of local minima. Small moves prevent the system from overcoming barriers of locally
confined minima. In the spin glasses the difficulty is mainly in the low temperature region,
as the number of metastable states increases when the system gets frozen. However, for
many optimisation problems the variations of the algorithm described before find near-
optimal solutions. The typical procedure is to decrease the temperature slowly, in order to
allow the system to settle. The ground state is then hopefully found at zero temperature.
For the optimisation problem this would correspond to the true minima of cost function.

For the present model one might also consider an approach used in the harmonic case.
The single-replica function might be represented as an expansion over a complete set of
basis function. The saddle point equations are then transformed to a set of equations
for the coefficients of the expansions. An approximation is achieved by truncating the
function basis to a suitable size. Applied to glassy systems at finite temperature this
procedure should lead to a sufficient description of the order parameters. However, one
must make sure that the set of basis functions is well adapted to the problem studied [72].
Given that such truncated representation is coupled with the RS assumption, the quality
of the solution must be checked carefully.

Therefore, we decided to adopt a full functional approach. Some care should be taken

with the initialisation of single-replica functions. The form of these functions is naturally

expected to be similar to the form used in the harmonic case. Initially we assume a
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quadratic form, the final form is determined by population dynamics.

As in the case of the IC model we obtain distributions of currents in each subnetwork.

To the existing statistical measures of these distributions we add another one - the fraction

of critical currents f,,, in the network. By monitoring (i, fhax, we are able to

a )
max

analyse development of critical currents in the system. By monitoring the mean and

standard deviation of distributions we can compare the IC and FC models.

3.5.1 Calculation of integrals and population dynamics

The following calculations rely on obtaining value of integral in the large limit B through

the constrained optimisation procedure. This procedure follows the same ideas as the

saddle point method. We calculate the integral of an exponentially growing (decreasing)
function that has unique global maximum (minimum). The value of the integral is esti-
mated from the contribution at the optimal point (optimal single-replica functions), as the
contribution of the single-replica functions that are far away from optimal point decays
exponentially.

In (3.44) and (3.45) we perform an update of the conjugate single-replica functions.
The trace over currents in the link weights and following updates as prescribed by (3.44)
and (3.45) are accomplished in the following steps. Firstly, we calculate the most in-
ner integral, by Gaussian integration for example. The capacity restriction is introduced

through the integration limits. We assume the unit capacity of every link.

8 .
o~ B/ ixg) — / d/ije_B(R'j]"zfﬂ(x"ﬁxj)]ij)~ (3.62)
-1

In (3.62) we use the fact that the difference i(x; —x;) is the voltage drop between two

nodes. Therefore, the finite link capacity requirement / € [~1,1] implies the following

constraint:

be; — x| < 2R (3.63)
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Bl _ / I e BV ~B7 5 (3.64)
Xj=2R;j

(3.64) is solved by maximisation of exponents inside integral. The optimal point (x})
of the integral is found for each point x;. The correct solution is obtained inside the
interval [—2R;;,2R;;] or on the boundaries, as the (3.63) is KKT (Karush-Kuhn-Tucker)
condition for this problem. Note that the limits of integration are dependent on the current
point. Updates (3.64) are performed pointwise. The ll'epetition of this procedure for each
point x; yields single update of single-replica function {(x).

Population dynamics updates (3.46)-(3.47) are also performed pointwise

L
v(x;) = Z \(x;), for distributors, (3.65)
I=1
yix;) = Z W (x;)+V(x;), forreceivers. (3.66)

=1

Due to pointwise updates of functions in population dynamics, the accuracy of the
algorithm depends on the density and range of the grid, as well as population size in
population dynamics. In order to improve speed in the (3.64) the quadratic interpolation

has been used to find the critical point.

3.5.2 Calculation of observables

Calculation of the currents is done along the lines described in (3.62) and (3.64) . With

added capacity restrictions the expression for Za[Wi, y, U%) becomes

ij;—ZR .
U B+ ) / dfyje PESTHE=l) (3,67
[wl:wj’ / /~7R < ( )

Here we perform integration twice over X; and x;. The value of Z; is calculated at the

optimal point (X}, /> To obtain distributions of currents we follow (3.50)-(3.55).

In simulations two outer integrals are calculated via the minimisation procedure on

the grid. The size of the grid and the stepsize have been chosen in a way to yield a good
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accuracy and speed.

3.5.3 Results

We solve saddle point equations (3.44)-(3.45) at zero temperature for various models of
connectivities and distributions of the parameters R;; and /. using a population dynamics
algorithm. The sise of populations in population dynamics is 1000 (single-replica func-
tions). Once the stable distributions of the ’s and *’s have been obtained, we calculated

I,

relevant physical quantities: the distribution of currents (g, Zs,

ap>1gs, 1) and distribution of the

node loads (/,/;,1,). In the figures, currents in the producer network are non-negative,
in the distribution network are both positive and negative and in the receiver network are
mainly non-positive?.

We discuss results in terms of phase digrams in the space (c,,c,,¢q, /). We find
that presentation of two dimensional diagrams in the plane (cp,/,) is sufficient for the

qualitative analysis.

Results of the experiments with the following configurations of network parameters

are presented

e ¢, =1,c4 =3(2), ¢, = 1, see figures (3.28) and (3.29).

o ¢, =1,c,=3(2), cr =2, see figures (3.30) and (3.31).

o ¢, =2,c=3(2),cr=1,see figures (3.32) and (3.33).

e c,=2,c5= 3(2), ¢, = 2, see figures (3.25), (3.26), (3.27), (3.34) and (3.35).
o cg=3(2),cr=1,sec figure (3.36).

e ¢y, =3(2),cr=2,5sec figure (3.37).

o ¢y =5(2),¢cr=2,5¢¢ figure (3.38).

e ¢, =5(3),cr=2,8¢¢ figure (3.39).

o cg=3(2),¢cr= 3, see figure (3.40).

4In some cases both positive and negative currents are shown to be present in the receiver network, but

this is due to round-off error as well as short equilibrating runs. We discuss this issue later in this section.
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We obtain phase diagrams for any subnetwork, by monitoring the fraction of extreme
currents in subnetworks. For relatively low levels of consumption we do not observe
maximal currents, while for relatively high levels we detect a large number of maximal
currents (see figures (3.25)- (3.27)). Therefore, we identify the point when the level of
consumption triggers first maximal currents (see figures (3.28), (3.30), (3.32) and (3.34)).

In the phase diagram we plot a line - the critical level of consumption for each con-
figuration of network parameters. The presence of maximal currents signals that some
parts of the network reached their capacities, effectively indicating onset of the critical
state. Further increase in levels of consumption just increases the strain on the network
(see figures (3.36), (3.37), (3.38), (3.39) and (3.40)).

To produce a phase diagram for the whole network, we combine phase diagrams for

each subnetwork. The region that lies below all lines is an operational region (O), while

the rest may be classified as a critical region (C).

In some cases the subclassification of critical phase is possible. Indeed the boundary
between the operational and critical states might be constructed from two lines that depict
phase boundaries in subnetworks. In these cases we divide the critical region in two
subcritical regions. Depending on which subnetwork develops extreme currents first we
identify P-critical, D-critical and R-critical regions.

In cases where more than one critical region was found we can determine a point
where phase boundaries of the corresponding subnetworks cross. This point indicates that
both subnetworks develop extreme currents at the same level of consumption. Moving in
either way from this point makes one of the subnetworks develop maximal currents before
the others.

We have never found more than two different critical regions. Typically, for the unit
link capacity in all subnetworks, we found P-critical and R-critical phases. By choosing

different capacities in each subnetwork we can obtain all combinations of subdivision of
critical phase.
We also monitor the mean and standard deviation of current distributions (see figures

(3.29), (3.31), (3.33) and (3.35)). We observe in the operational phase (O) both statistical

measures grow linearly with an increase of the level of consumption. In fact, we achieve
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agreement with the corresponding measures in the IC model.

Going into the critical phase we observe nonlinear changes in both the mean and
standard deviations of distributions of currents. In the critical phase the redistribution
constraints are not observed as well, which indicates that replica symmetry does not hold
in this region. Here, we can draw an analogy with spin glasses. Namely, the solution
of the SK model does not yield physical properties of a material in the spin glass phase,
while the solutions in magnetic phases is physical.

For the analysis of network stability against overloading, the classification in terms of
operational (O) and critical (C) phases seems to be sufficient. The solutions that corre-
sponds to the operational state satisfies all constraints, while the boundary between phases
indicates the onset of instability.

As in the IC model we observe a beneficial role of redundancy. An increase of con-
nectivity in any of subnetworks results in narrower distributions of currents in all subnet-
works. Correspondingly, a wider spread of resistances or levels of consumption results in

wider distributions of currents.
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Figure 3.23: Population dynamics updates for three distributions of currents in the net-

work. Average currents. The case ¢, = I, ¢ = 3(2), ¢, = | and the level of demand
is [, = 0.02. Algorithm exhibits good convergence. The measurements are taken in the

shaded area only.
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Figure 3.24: Population dynamics updates for three distributions of currents in the net-
work. Average currents. The case ¢, = I, ¢y = 3(2), ¢, = | and the level of demand
is 1. = 0.1. Algorithm exhibits good convergence. The measurements are taken in the
shaded area only.
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Figure 3.25: Distribution of currents in producer network. The case ¢, =2, ¢y = 3,¢,=2
and the level of demand is 0.5 and 0.9 respectively .
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Figure 3.26: Distribution of currents in distribution network. The case ¢, =2, ¢; = 3,
¢, = 2 and the level of demand is 0.5 and 0.9 respectively .
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Figure 3.27: Distribution of currents in receiver network. The case ¢, =2,¢, =3, ¢, =2
and the level of demand is 0.5 and 0.9 respectively .
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Figure 3.28: Fraction of critical currents (f¢""yvs. demand level (1,) for each subnetwork,
with ¢, = 1, ¢; = 3(2) and ¢, = I. Fraction of critical currents in producer network (),
in distributor network (/) and in receiver network (/). By monitoring fraction of critical
currents we calculate critical level of demand (/; the vertical yellow line). Below the crit-
ical level of demand we do not find any critical currents in the network, above the critical
level of demand (shaded area) we observe occurrence of critical currents. Consequently
we classify two intervals of levels of demand (J,) as operational and critical (below shaded

area).
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Figure 3.29: The mean and standard deviation of distributions of currents of each sub-
network, with ¢, =1, ¢, = 3(2) and ¢, = 1. The left plane: the mean of distributions
of currents in producer network (mean(Jg),), in distributor network (mean(/y,)) and in re-
ceiver network (mean(/,)) . The right plane: the standard deviation of distributions of
currents in producer network (std(/,p), in distributor network (std(/ys)) and in receiver
network (std(/,,)). The border between operational and critical phases is determined by
first occurrences of critical currents in the network. Both statistics exhibit linear depen-
dence on level of demand (J,) in the operational phase. In the critical phase both statistics
are nonlinear on level of demand (J,). The negative average of currents in receiver network

is due to current’s definition.
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Figure 3.30: Fraction of critical currents (f¢'"y vs. demand level (/) for cach subnet-
work, with ¢, =1, ¢, =3 and ¢, = 2. Fraction of critical currents in producer network
(fp) in distributor network (/) and in receiver network (/). By monitoring fraction of
critical currents we calculate critical level of demand (/) the vertical yellow line). Below
the critical level of demand we do not find any critical currents in the network, above the
critical level of demand (shaded area) we observe occurrence of critical currents. Com-
pared to 3.28 critical level of demand is higher due to the increase of the connectivity in

the receiver network.
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Figure 3.31: The mean and standard deviation of distributions of currents of each sub-
network, with ¢, =1, ¢, = 3(2) and ¢, = 2. The left plane: the mean of distributions
of currents in producer network (mean(/y), in distributor network (mean(/y,)) and in re-
ceiver network (mean(/)) . The right plane: the standard deviation of distributions of
currents in producer network (std(/yp), in distributor network (std(/ys)) and in receiver
network (std(/,)). The border between operational and critical phases is determined by
first occurrences of critical currents in the network. Both statistics exhibit linear depen-
dence on level of demand (/,) in the operational phase. In the critical phase both statistics
are nonlinear on level of demand (/). The negative average of currents in receiver network

is due to current’s definition.
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Figure 3.32: Fraction of critical currents (7¢"y vs. demand level (/) for each subnetwork,
with ¢, =2,¢,=3and ¢, = 1. Fraction of critical currents in producer network (f,), in
distributor network (f,) and in receiver network (). By monitoring fraction of critical
currents we calculate critical level of demand (/) the vertical yellow line). Below the crit-
ical level of demand we do not find any critical currents in the network, above the critical
level of demand (shaded area) we observe occurrence of critical currents. Compared to
398 critical level of demand is higher due to the increase in the connectivity in the dis-
tributor network. Compared to 3.30 critical level of demand is lower. This means that the
increase of connectivity in the distributor network is less beneficial than the increase of

connectivity in the receiver network.
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Figure 3.33: The mean and standard deviation of distributions of currents of each sub-
network, with ¢, =2, ¢, = 3(2) and ¢, = 1. The left plane: the mean of distributions
of currents in producer network (mean(/yp), in distributor network (mean(/y)) and in re-
ceiver network (mean(/y,)) . The right plane: the standard deviation of distributions of
currents in producer network (std(/;p), in distributor network (std(/,s)) and in receiver
network (std(/;)). The border between operational and critical phases is determined by
first occurrences of critical currents in the network. Both statistics exhibit linear depen-
dence on level of demand (/,) in the operational phase. In the critical phase both statistics
are nonlinear on level of demand (/,). The negative average of currents in receiver network

is due to current’s definition.
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Figure 3.34: Fraction of critical currents (A/"'”") vs. demand level (/) for each subnet-

work, with ¢, =2, ¢4 = 3(2) and ¢, = 2. Fraction of critical currents in producer network

(f»), in distributor network (f,) and in receiver network (/). By monitoring fraction of

critical currents we calculate critical level of demand (/ the vertical yellow line). Below

the critical level of demand we do not find any critical currents in the network, above the
critical level of demand (shaded area) we observe occurrence of critical currents. Com-
pared to 3.28 critical level of demand is higher due the increase of the connectivity in the

distributor and receiver networks.
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Figure 3.35: The mean and standard deviation of distributions of currents of each sub-
network, with ¢, = 2, ¢, = 3(2) and ¢, = 2. The left plane: the mean of distributions
of currents in producer network (mean(/,,), in distributor network (mean(/y,)) and in re-
ceiver network (mean(/y)) . The right plane: the standard deviation of distributions of
currents in producer network (std(/,,), in distributor network (std(/ys)) and in receiver
network (std(/,)). The border between operational and critical phases is determined by
first occurrences of critical currents in the network. Both statistics exhibit linear depen-
dence on level of demand (J,) in the operational phase. In the critical phase both statistics
are nonlinear on level of demand (/). The negative average of currents in receiver network

is due to current’s definition.
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Figure 3.36: Phase diagram with ¢, = 3(2), ¢, = 1, R = 1. Lines depict onset of the crit-
ical phase for each subnetwork. The lowest line indicates transition between operational
and critical phases (shaded area). Only P-critical phase found.
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Figure 3.37: Phase diagram with ¢, = 3(2), ¢, =2, R =1 . Lines depict onset of the
critical phase for each subnetwork. Compared to 3.36 we see that the P-critical and the
R-critical phases have been found. For Cp < 3.6the increase in consumption triggers
overload in the producer network, while for C,, > 3.6 the increase in consumption causes
overload in the receiver network. Also, compared to 3.36 we observe higher threshold
for consumption that triggers overload in the system due to increased connectivity in the

receiver subnetwork.
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Figure 3.38: Phase diagram with ¢, = 5(2), ¢, =2, R =1 . Lines depict onset of the
critical phase for each subnetwork. We see that the P-critical and the R-critical phases
have been found. For C, < 3 the increase in consumption triggers overload in the pro-
ducer network, while for C,, > 3 the increase in consumption causes overload in the re-
ceiver network. Also, compared to 3.37 we observe higher threshold for consumption that
1e system due to increased connectivity in the distributor network.

triggers overload in tI
between critical phases has been shifted. This reduces P-critical

Moreover, the border
region and increases R-critical region.
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Figure 3.39: Phase diagram with ¢, = 5(3), ¢, =2, R =1. Lines depict onset of the crit-
ical phase for each subnetwork. We see that the P-critical and the R-critical phases have
been found. For C), < 3.4 the increase in consumption triggers overload in the producer
network, while for Cj, > 3.4 the increase in consumption causes overload in the receiver
network. Also, compared to 3.38 we observe slightly higher threshold for consumption
that triggers overload in the system due to increased regularity in the distributor network.
Moreover, the border between critical phases has been shifted. This reduces R-critical

region and increases P-critical region.
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Figure 3.40: Phase diagram with ¢y = 3(2), ¢, =3, R=1. Lines depict onset of the critical
phase for each subnetwork. As in 3.36 we found only P-critical phase. Compared to 3.37

we observe the only critical phase, for the current range of ¢, values due to increased

connectivity in the receiver network.
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3.5.4 Discussion and Conclusions

The FC model is an extension of the IC model described in the current section earlier. The
novelty comes from the introduction of the link capacity, i. e. the maximum current that
can go through the link. Such a restriction acts at the local level of individual links and
adds complexity in finding the balance between global minimal dissipation requirement
and local distribution constraints. In order to find an optimal flow of currents in the system
the low temperature region is considered.

The global properties of interest are the distributions of currents in each subnetwork
and the distributions of the node loads. We analyse these distributions and dependen-
cies on the system macroparameters. The key macroparameters are the connectivities of
subnetworks, the distribution of link resistances and the distribution of levels of demand.

We analyse network stability in terms of a phase diagram. We divided parameter space
into operational (O) and critical (C) phases, depending on the fraction of critical currents
in the network. We observe that the RS assumptions hold in the operational region, while
in the critical region we do not expect RS to hold. Indeed, the solution that corresponds
to the operational (O) region yields physical properties, while the solution in the critical
region is not a true solution, i.e. distributions of currents in the critical region violate local
constraints.

Moreover, the critical phase may be subdivided, depending on which subnetwork de-

velops experience overload first. Such a classification allows the detection of the subnet-

work that will experience overload first. Also, it is possible to detect a point when two

subnetworks develop maximal currents at the same time.

We also assess the influence of redundancy, resistance and levels of demand. We

confirm the beneficial role of redundancy. Higher connectivity of any subnetwork results

in narrower distributions of currents in all subnetworks. Similarly, narrower distributions

of resistances and levels of consumption lead to the narrower distributions of currents in

all subnetworks.

In the presented phase diagrams we observe only P-critical and R-critical phases. The

absence of a D-critical phase can be understood from the organisation of the network.
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The distribution nodes can be connected to both producers and receivers. Consequently,
even in case of a highly connected producer and receiver nodes and small connectivity in
the distribution subnetwork we observe first extreme currents in either of the side subnet-
works, but never in the distribution network. The D-criticality may be observed by either
changing the structure of the network (adding an additional layer of distributors for ex-
ample) or by modification of link resistances (relatively small resistances in distribution

network should be sufficient).

3.6 Comparison and Conclusions

In this chapter we analysed the stability of distribution networks with respect to the link
overload. We introduced a physical model of the direct current distribution network. We
nominated specialised producers, distributors and receivers; and described the system in
terms of flow of the currents in such networks. To isolate some effects of connectivity
we imposed constraints about interlinks between functionally different nodes, it resulted

in the separation of the initial network into three independent (in terms of connectivity)

subnetworks.

We have analysed two models of distribution networks. Firstly, we proposed the infi-
nite capacity (JC) model of distribution networks. Here we assume that the capacity of

all links is unlimited. Secondly, we studied a model with limited capacity. We refer to

this model as the finite capacity (FC) model.

In order to estimate the system’s properties we use distributions of current and of load

per node. We rely on monitoring the mean and standard deviation of distributions, but

higher order moments may be generated if needed. In addition, in the case of the FC

model we check the fraction of critical currents in the network for each subnetwork.

Both IC and FC models were analysed using equilibrium statistical mechanics meth-

ods and techniques. The spirit of the methods in both cases is exactly the same, but some

subtle changes had to be made in the FC model due to additional constraints. However,

despite many similarities the qualitative differences are significant.
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3.6.1 IC Model

A description of the system without limits on the link capacity turns out to result in har-
monic interactions between connected nodes. The models of this type are known to have

certain properties, 1.e. we found that the calculation of single-replica functions can be

performed at finite temperature. As we apply the replica method we expect the RS ap-
proximation to be exact. From the numerical point of view, this form of interaction is
advantageous and allows a compact representation of single-replica functions which leads
to rapid performance of the population dynamics updates.

In this case we actually managed to obtain observable properties of the system at

finite temperature. The optimal current flow exhibited a linear dependence on the level

of demand. We also observed a positive influence of redundancy and uniform spread of
resources on global properties of the system.

In the IC model we do not have any restrictions on link capacities. Consequently we
obtain a solution for the , arguably unrealistic, network set up. However, the solutions,
in terms of the distributions of currents in the network, turns out to be a good indicator
of the onset of the critical phase in the system, when it is compared to the FC model.
By predicting critical currents we can estimate the properties of the network, both of the

individual elements and of connectedness in the network, that need to be adjusted.

i

3.6.2 FC Model

The FC model incorporates an additional restriction - finite link capacity. Inclusion of

this constraint introduces significant changes. Indeed the harmonic form of interactions

in this case is broken, so to obtain a solution the full functional approach is adopted in

population dynamics updates. Moreover, the optimal flow is dependent on the temperature

in this case. This is an important feature of this case, as now the optimal flow needs to be

computed in the low temperature region.

We managed to classify operational and critical regions of the parameter space, pre-

sented in phase diagrams. Existence of two phases in FC model indicates qualitative

difference from the IC model, IC model has only operational phase. However, the op-
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erational phase is found to qualitatively correspond to the space of solutions of the IC

model, e.g. the results of both models match exactly. The critical phase and the boundary
between (O) and (C) phases is unique feature of this model.

The qualitative difference between two phases is also marked by the following con-
sideration. The RS assumption holds in the operational region (correct solution), while it

is not expected to hold in the critical region (incorrect solution). However, for the stabil-

ity analysis of networks, it is sufficient to obtain the operational region and the boundary

between two phases. The boundary between operational and critical regions yields good

predictions of the onset of instability in the system.

‘Also, the FC model produces subdivision of critical phase that may be insightful.

Different types of critical phases indicate subnetworks that develop critical currents before

ST

other subnetworks. Such knowledge may be very useful in understanding strong and weak

parts of the network, and is desirable for analysis of existing networks, or in design of new
complex networks.
Furthermore, the indication of the “weakest link” may be used for tracking overload-

ing failures at the subnetwork level. Note we can not study the spread of individual

‘

failures, but we can identify the spread between subnetworks. This could also be used in

analysis of the networks , and influence design decisions in modernisation and construc-
tion of the networks.
|
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In this Thesis we have presented a stability analysis of complex distribution networks.

We considered two main types of failures in the networks. The first type of failure is
random failure, associated with the reliability of network components [50, 24, 22]. The
second type is of overloading failures. Such failures occur due to finite capacity of net-
work elements [70, 25, 28].

In both cases we are interested in the implications of occurrences of failures for the
whole network, as well as in investigating the conditions for the occurrences of failures in
the first place. In doing so, we managed to express network stability in simple observable
physical properties, connected to a comparatively low number of descriptive macropa-
rameters. In both cases we adopted a statistical mechanics approach that enabled to take
into account both macro- and microscopic descriptions of the system[32, 58].

In each case we managed to obtain the physical properties that quantify the stability
of the system. We are also able to gain a qualitative understanding in the development
of a large spread of failures in complex distribution networks. In the case of random
failures we observed a phase transition between operational and non-operational phases,
as well as a metastable region where system states coexist. This has big implications for
the stability of the system, as in this region the working system might experience a sudden
collapse of large parts of the network without any prior indications.

In case of failures induced by extreme loads we also observed different phases of the
system. For the stability analysis we were only interested in the operational phase and
the boundary between operational and critical phases. Moreover, we analysed the robust-
ness of the subnetworks against overloading failures by producing a subclassification of

the critical region. This could be very important in understanding the development and

propagation of the failures through the system.

41 Stability analysis against random failures

In Chapter 2 we addressed stability issues of distribution networks [51]. The main aim

of this work was to understand the functioning of the distribution network under random

failures. Also we were interested in the spread of failures through the network that could
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lead to major blackouts.

We proposed a model that combines a graphical view of the system with quantitative
characteristics of network components. Indeed, the model is based on the graphical model
of the network with associated variables that represent the state of a given object. The
model is based on an existing model of operational research that describes interactions
in economic sectors [60]. The feature of that model is the dynamical nature of variables
associated with the model entities. The introduction of dynamical variables yields non-
trivial system behaviour.

In addition to the dynamical variables associated with nodes in the graph we intro-
duced dynamical links. We considered binary dynamical variables that represents on/off
states. Finally, we introduced additional dynamics in the form of a support between net-
work elements.

The method which we use to study this model is inspired by the physics of amorphous
materials, namely, spin-glasses. The theoretical analysis which is based on the concepts of
statistical mechanics, with the replica method playing a major role. The replica treatment
of the system relates a microscopic description with global properties [31, 44, 64].

The model exhibits rich behaviour; we produced phase diagrams that demonstrated
a first order phase transition between operational and non-operational phases. Moreover,
the intermediate regions has been identified - a coexistence region - which is characterised

by coexistence of both operational and non-operational phases. The region is bounded by

two dynamical transitions. The lines that represent the boundaries of the coexistence

region are spinodals, and they meet at the critical point.

From the stability analysis perspective, the coexistence region is of primary interest.

The spinodal lines indicate dynamical transitions from a stable state (the only solution)

to a metastable state (two solutions). Once in the metastable region, the transition from

one phase to another can not really be noticed, 1.e. say initially the operational network

moves towards a coexistence region. Once it crosses the spinodal line the state of the

system is unstable. Even without moving towards the lower end of the coexistence region

the stability of the current state might be affected by random disturbances in the network.

The phase transition i1 the model points towards a cascading failures phenomenon.
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The existence of a phase transition and its characteristics provide a qualitative and quan-
titative description of the cascading failures propagation.

From the topological prospective we analysed three models of random graphs: expo-
nential random graphs, regular random graphs and scale-free graphs [42, 12]. We reported
a qualitative differences between homogeneous structures like the first two and heteroge-
neous scale-free networks. The first two type of graphs exhibit critical behaviour for
systems with average connectivity above the percolation threshold. In contrast, we found
that only some of the scale-free structures produced similar behaviour, while others do
not exhibit a phase transition at all. For all types of networks we observe a beneficial role

of higher connectivities and homogeneous interactions.

4.2 Stability analysis against overload

In Chapter 3 of the thesis we analysed the stability of networks against overload. We
aimed to understand what effect the physical limitations of network elements have on local
and global properties of the network. We investigated conditions that trigger overloading
failures, detectability of critical network load and spreading of load induced failures. The
critical load of the network in this context may‘be referred to as network capacity.

Firstly we introduced a model of direct current in the distribution network. The flow is

managed at the nodes by distribution rules, e.g. Kirchhoff’s law. We order the nodes into

three classes : producers, distributors and receivers. We also specified particular require-

ments on the inter-class interactions. Only distributor nodes are able to connect to any

nodes. The flow in the network is driven by consumption demand at the receiver nodes,

and propagated over the network through the above mentioned distribution constraints.

The optimality of the flow is ensured by a global optimisation requirement of minimal

dissipation of the energy. In our model we have chosen to take a quadratic form of the

cost function, i.e. a contribution proportional to the resistance of a link and to the square
of current that goes through the link.

The microscopic description of the system was formulated via the usual methods of

statistical mechanics. The global characteristics are distributions of currents in the net-
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work and distributions of node loads. In our analysis we considered two principal cases
of networks: those with infinite link capacity (IC) and those with finite link capacity (FC).

The introduction of finite capacity proved to be a critical difference between models.
In the IC case our analysis showed the only phase of the system to be an operational
one. This operational phase was identified, and its key characteristics (average currents,
standard deviation) exhibit linear dependence on the consumption levels.

In contrast, the FC model exhibited non-trivial behaviour. We observed two phases of
the system state: operational and critical. This classification is based on the measurable
properties of distributions of currents. We monitored a fraction of critical currents in the
network, and on that basis classified our system’s phases. The operational state corre-
sponded to the lowest level of consumption and is characterised by the absence of critical
currents. The standard deviation of the distributions of currents depended linearly on the
demand. Both the IC and the FC models can described an operational phase. The critical
phase was characterised by presence of critical currents.

For the stability analysis against load induced failures we were interested only in the
operational phase and its boundary with the critical phase. As we noticed both the IC
and the FC models can exhibit an operational phase. However, due to the harmonicity
of the couplings in the former model, and consequently, its much better computational
performance, one may prefer to use the IC model. Even without complete knowledge

of operational and critical phases the IC model produced a fairly good prediction of the

boundary between two phases.

Another important feature of the FC model is its ability to indicate which of the sub-

networks represented the «weakest link”. Knowledge of not only the criticality of currents

in the network, but also of criticality in particular parts of network could be useful for the

analysis of existing and expanding networks, as well as at the earliest planning stages of
new networks.

Finally, the FC model enabled us the monitoring of the spread of the overloading

failures in the network at the level of the distributions of currents. The overload failures

developed in one part of the system, spread through the network, triggering overloads

in the rest of the system. The mechanism of such failure spreading is understood to be
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connected to the capacity of network elements. Strained parts of the network shed the
load and trigger overload in the adjacent parts, and so on. The observables we calculated
do not allow for a tracking of individual currents, however at the level of subnetworks we
can observe such a spread and we can quantify robustness of the network against overload
failures.

We should also note that the distribution of currents could be substituted for distribu-
tion of loads. Then we may analyse overload failures associated with nodes. Alternatively
both of these characteristics could be monitored to identify node and link overload fail-
ures.

Also, in the presented work we focused on one specific organisation of network
namely, that there is one group of producers, one of distributors, one of receivers and
certain constraints on internetwork connections. Such an organisation may not be suffi-
cient in the analysis of complex networks'. However, our model can easily be adapted to

analyse a network of arbitrary complexity.

'The lack of D-critical phases in phase diagrams is a consequence of this particular organisation.
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Mathematical tools

A number of transformations are required in replica calculations. Many of these trans-
formations allow analytic continuations of discrete quantities, which is essential to the

replica method. We provide a brief overview of transformations we used in our calcula-

tions.

A.1 Delta function

We extensively use the Dirac and Kronecker delta functions to enforce constraints in the

problems. We often used integral representations of both functions. The Fourier transform
of the Dirac delta function is

§(x—y) = 2—%/:; exp [—is(x —y)] ds. (A1)

Constraints on discrete variables can be enforced by the Kronecker delta function. In
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the replica method we use constraints on integer quantities and use the Cauchy integral

formula

dZ K_
Ok, = jé mz( L, (A.2)

where K, L are integer numbers and the path Cis an arbitrary contour in the complex plane

about the point 0. We also use the property

&z, 132
éﬂz f(z)_ﬁ ozL

z=0
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Stability of distribution

networks against random

failures

In the Chapter 2 we considered a spin model on graphs with finite connectivity. Here, we

present details of steps taken to perform connectivity averages, details of replica method

and the replica symmetry ansatz.

B.1 Detailed balance

Here, we show that under the conditions stated in equations (2.24)-(2.26), the dynamics

(2.18)~(2.18) satisfies detailed balance with respect to the Gibbs-Boltzmann distribution

with Hamiltonian (2.27). We first consider transition {v,{} — {v,{}/ withv; =0, v; =1

and"j:"}alj‘:l} ¥ j(s#k), for which

Prob({n1}) = W ({n1)'[{1}) = b (k). (B.1)

137




Appendix B STABILITY OF DISTRIBUTION NETWORKS AGAINST RANDOM FAILURES

/ / : o
where W ({v,1}'|{v,1}) is the transition probability and 4; = h({v,/}) is the node support

(2.11) for node i in the state {v, /).
For the reverse transition {v,/} — {w1} we have that W ({»1}|{n1}') = bp(—1i),

with the node support 4; unchanged, as it is independent of v;. Hence

A I
W({VJ}HVJ}I) - q)B('_hi)

= P = o BUH (W) -H({w1}) (B.2)
1.e. the ratio of the equilibrium distributions of the states {v,/} and {v,1}'. This establishes

detailed balance for all transitions involving node variables.

ll;and v =v. V ily=

Next, we consider transition {v,/} — {v,/}' with /;; =0, [];

I, (kI) # (ij). Using the symmetry conditions (2.24)-(2.26), we obtain the correspond-

ing ratio of transition probabilities.

/ ..
W) _ 98l) k) -H(a))

w{nY)  op(—hy) ) (B.3)

where /;; is the link support (2.12) which is independent of /;;. This establishes detailed

balance for all transitions involving link variables.

B.2 Averaging the replicated partition function

The underlying network is fully described by the connectivity matrix ¢ = {c;;}. We con-

sider ensemble of graphs which have degree distribution Pc(L), where C is the average
connectivity and L is a node coordination number.

The degree distribution is

Pell) = 5 3.8 (B4)

and the compatibility with the average connectivity is ensured by

C C
peleij) = (1 - ﬁ) Oc;j0+ N5c,-,,1. (B.5)

Now, given the distribution of connectivity matrices, the average (2.28) of the repli-
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cated partition function has the following structure

Z| =

where

T = Tr Tr Tr (eBzu)CuzQ if ajvdy +b,*j(v?+v0.‘)+dij)+|32i2aﬂi‘,;1>
{ei} ({15} ’ x (B.6)

<Tlovs [kles(z% Lk)

#k)

N = Tr 6p H (2% Lk> (B.7)
L (#k)

C,J L

1
SPC(L) = & <PC(L) — NZSL’L’) (B.8)

We start with the calculations of all possible configurations (N):

EL_/«> (e‘zi(#k)(ﬁkﬂ“ﬁ/)vu) (e—iz,‘[:k[,k>
2T

_ Al iz Libe | T DY IN(I LY
= I;ISPC(L) }Df <IkI me o >{cijr.}(Ii;I) ' >
de oL Lka> _c P50 (LerLy)
= J]8x~ }{ ¢ [Tt +
dly _iv,i ¢ 12 (4 Lt B
= HBPC(L)% (H_z_nii‘e IZ/(L/«L&>H<]—V~ (e % a0 (LatL) l>—| l>
L k (i)
substitution

Tk = giij(#k)@”if) -1
=

139




e

e ——————— AT

Appendix B STABILITY OF DISTRIBUTION NETWORKS AGAINST RANDOM FAILURES

(k)

[1 (1 + %ij) = "My

(1+f2) = 2t (1 i) o e2(k)) N Xkj

N = HSPC(L)% <Hd_zke—izk1:k1,k> eﬁ):(kj)(ei(ik+1:j)_i)

" 211

27

L k

= HSPC(L)% <H &e’*izkiﬂ,k> eﬁrzkzj(ei(l:k—l-i}-)_i)

dz i f C i-.,ii«‘ ¢
= HSPC(U?'{(H“%J&%) e
L

p 2mi

= |z= eiz",dz = ieiz"df,k| =

d

c i, il ¢ 1 ;
= IZISPC(L)% (H?ZZ_L") eWkajeike J__2_N8 (po_ —N_gezk>

k

& zZ

dz__ 1 o eN(32_ 3 _3, el
N HSP”(L)?{<H_EZ Lk) (27t)N /D(P,Po)fﬁ(p@ ) Voo = Tk o™
L

1

eV

to find pp and po, we use sadd

with respect to p and Po:

= HSPC(L)/D(p,Po)

] pLk N (2 .
= %Hﬁpc(L)/D(P:ﬁo)% (];I (%)) (e‘ <Po—‘)+NPoPO>

! /D(p . eN(%(pé—1)—¢opo+zLPc(L>ln(f%)>
» PO

o

Ly

ZkSL,LkZLlll<;§)—!—) s

——_l 0 k 1)-+Npop

= /D(P;PO) HSPC(L)e (eT(Po )+Npo o>
L

L
b k
L

NZ/,PC(L)5L,L;<‘"<J’T> N (02 _1)4Nb
1 . k & (p2—1)+Npopo
= N/D<p,po> e (e¥08 )

5L

le point method. This involves taking the derivatives
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dN o X
oo = P =Py,
dN 0 .
o = poPo=c, (B.9)
and we obtain a solution
po = 1
Po = ¢
and

N ~ eN(ZLPL.(L) ln(gi;) —c)

For the nominator T we proceed in a similar way:
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T = Tr Tr Tr} (eBz(U)Cffzfl15‘(aij"?"?%i;(vﬁvj?)+dfg)+52z2a/l;v?) >

{ei} OFH(I
<8y IT8( 3 oy ~Lk)
g LRAV((2)

= Tr Tr Tr <eB>i<v>CuZa15(auv by (e )+d,-,-)+Bz,->:W?>

{ei} DG X

x HSP 7{ <H de) e~ IeHL T g oy
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- IZIBPC(” <{Tf}7{ <rkI 2nli(> eﬂLkLkeBZWk) ’
_ BZa (ak ,Vu-l—b/‘ (v +vY )4 dy; ) i(]i,.}.ﬁj.)
X H <<1 ) ({};r}e J ! j k
= HBP L Tr % H gé_k e_iikLkeB):alf'ng H <1 + E_X/ )
O\ pey S \ L 2mi N

L (kj)

where

T oBTal(afvi by (f0)) ) ikt L)) | (B.10)

Akj =
SRS

We can transform H(kj) (1 + ﬁ,ij)i
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C
H <1 + NX/C]) — elnn(’\’j)(l+)%ij) — ez(kj)]n(]—l—/—fl-xkj)

i = ~ N L) X

c
— Bza a; v Vi -rb yo 0 T S
o (5 (et )

c
<§N 2 < Ir P2ty (47 ) it 1>>
c
= exp <2N ZZ < (Le+L) H <1 +eBEalgj(ak,v?vkaj(vg+vj¥)+dkj))> _ cN) .
(04

2

li

H

The exponent can be transformed :

WET (A 14 ettt a))) o) = 5 Tt

_ Zekazele Tl 855, Tl Swv H< +eB(akj\7u7+b1.-j(\7+s5)+dkj)> TTrf(n,w)p(V)p(w)
k J ’

o Vv ow

Incorporating transformitions and substituting traces for integrals, we obtain
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T = /D(p) o T'jz{ %A"f —ilyLy e
( ILT rw | d5 ¢\ LT3 | e e mane

g§ TI‘\TT W \TW v Wwi— s
2 (TraTra f(mm)p()p( g (NP(Q_ZEIL"SJ,;,-)
k

1

- D p 3 dzk _iA' Y o MV

k
cN . N . .
x 2 01(P) =N Trop()p(7) , Trip () By, )

1 A
_ AN N($Gi(p) =G H HdL, o o Ay il
N (27E)N/D(p’p)e ($G0)-Cub) or (51.7{ < k A> e kbk BRa vy ep(W()g“>

1 X . - 7

= ) /D(p>P)eN(zG/(P) G’”{p])H6Pc{L) exp (2111 <T"j4i—i}fe""“"*eﬁEaf’k"?‘ef’("k)@"‘*>>
L k Vi 1

! AL

— D(p. 5)e(5G1(P)=GCulel) s PO
(27'C)N / (pap)e IZISPC(L) exp Ek:ln 1_;16 k L

_ 1 A N($Gi(p)) =G ap(m)t
()Y /D(p’p)e (56102)=6nlPl exp <N§6PC(L)1n (I;reﬁz“”’” L >
= [ D N{ZGi(p)-G 5 i [T eburli 0"
= (27’[)N D;P)exp 5 l(p)— m[p] 4‘; Py \7/‘1@ = '

Now, functionals are given as

Glp) = T [LUGROR (B.11)

Gulp) = ~Trlp(P()], (B.12)

Glp] = ZPC(L)lnIreB/”Mﬂgﬁ. (B.13)
L Y

B.3 Replica symmetry

In our next step we introduce RS ansatz in the form:

.

” Mo <" B.14
x/o asmle) 7% (B.14)

A [T . Haxna
f)(@ = 7\,/0 dxn(X)(1+x)n7

©
=
Il

(B.15)
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where 7t(x) and f(x) are normalised. We then express functionals (B.12)-(B.13) in

terms of 71(x) and (x) to the first order in 1 using RS ansatz (B.14) and (B.15):

32 -
Gin] = X —I—n/o dn(X1)d7r(x2)(111[C0+C1(xl+x2)+clex2}>a’b}d)

Gulms®] = Adtn /0 ()R (E) In[1 -+ 1], (B.16)
R XL o
Gs[ﬂ:] = ;PC(L) {ln (E) +)7/O {df[()f[)}L In [I -f—eBlJ{.f}Lu .

Here we used shorthands
Co=1+ePU, €y =1+4Plutds) ¢y = | 1 Blay+2bytdy), (B.17)

We solve the saddle-point equations to O(1) in », and we obtain the prefactors A = 1 and
A = C. This leads to a cancellation of the O(n°) contributions to T with N. Finally, the

partition function can be expressed in terms of functionals (2.38).

(B.18)

) C -
(ZMp, ¢~ /Dancexp nN{EG;[n] ~CG,,,[n,ft]+ZPC(L)GS[TE}}
: L

B.4 Calculation of observable properties

From the free energy we can obtain physically relevant quantities.

F= —% (gG,[n] — CGplm, 7]+ Gs[fc]> . (B.19)

The fraction m,, of working nodes is given

Bugz
. ST IV B.20
=g, ZEL;PC(L)/O {dn(xz)}L<1+eB#{£1}L>/ B

the fraction m; of working links,

N M0+M1(X1+x2)+M2x‘x2> , (B.21)
me:'é)‘a”:/o dre(x1)dn(x2) Co+C1(x1 +x2) +Cox1%2 [ apa
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in which M; = C; 1, C; are given in (2.34) and (2.35). The internal energy is given

C re ! -
U = —E/ dTE(X])dTE(X.z) <@M
0 C0+C1(x1+.>C2)+C2x1x2 abd

- ;PC(L) /Om{dﬁ(fz)h <M> ,

1+eB.U{)el}L

with Eg = dePd E| = (b+d)ePb+d) and Ey = (a+2b+ d)eblat2bta),
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Capacity of Power Grids

In Chapter 3 we worked with the distribution network which has specific constraints on
structure. Recall that the structure of the network is specialised, so the distributor nodes
can be connected to any type of nodes, while both producers and receivers can not be

directly connected either between these two groups or inside each group.

C.1 Averaging the replicated partition function

To work with the replicated partition function on such a structure we write the average

over connectivities. This is very similar to the strategy we used for performing averages

in Chapter 2 and appendix B. In fact the only major difference is the presence of three

subnetworks and consequent factorisation of the partition function.

T (C.1)
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where N is the normalisation constant and given by
o

N = Tr
gcqp pcP(CQP)Squlcpq l;[SLp,ch,}pjl

X Tr Cys)0
(1;[)&]: _p Cfl( ‘”) CasiCsq 1;[61‘(]’&(#) Cﬂ“}
X Hch Pcr(cq}')SCq,-,crqHSL,Z ¢ }
gr " L r e

Here we achieved factorisation as three subnetworks are independent. The distribu-

tions that ensure compatibility withe given average connectivity are

_ ‘p
pCp(CQP> - <1 - NC]> 601;/)0 + NQSC(;p,!’
Cq C
pc{/ (CqS) = (1 - N&> 6[«'(].;,() + N_qqacqx,l 3

Cy C
pCr(qu) = <1 - N~’q> 6qu,() + ﬁr&&cqnli

and the average connectivities ¢, and ¢, are defined on the producer and receiver sides re-
spectively. Also the coordination numbers {Lp,Lq, L} are drawn from the corresponding

degree distribution P, (L). The general strategy is to express N in terms of a path integral

and use saddle-point method. First, we use the integral representation of the Kronecker

delta function (2?) expressing constraints on the local coordination numbers L;.

The N is then transformed exactly as in (??) and we obtain
dppdpp

by
N,D {CP(P?)PS ) pppp+2 Lp ( ) }ji
dpodp — 0.0 P Pr
. exp Nr Cl‘(prpq p) pr+2 Cr L

———=exp

w(E))] e

0o T (s (39"
%exp Nq{—f((pg)z ) = PPyt LA " ( )H

21/ Ny

X
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In the saddle point we obtain

Pp=pr=p=1,

exp <N >\ Pe,(L)In (
] L

cated vector X = (x!,...,x"). Also, it is useful to introduce replica link weights
U (%,) = Trexp|-BY, (qul(‘;j + ixglg})ﬂ
I L«
- , |
UT(%,,%) = "l;rexp By (Rq,J;;; +i (¥ = xp) 1(7)}
L L o4
[ 2 b 3 4
U%(%,,%) = Trexp B> (Rqsz’g‘s +i (xg'—xf) 1%)} A
! L«

In our next step we introduce replica density functions

1 .
o (%) ]%;zrsa-m, p1(5)= 5 TaabE %)

. o, . . . 5 ] A ’S.
and obtain a representation of a replicated partition function in terms of p’s and p

(Z" g = / DpDpexp (¥ (Gilp] — Gnlo:0)+ GslP])}
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(C3)
A0~ A0 A
Pp “‘CP’pr = 1‘>92:Cq, (C.4)
and have
_ o
N ~ Jlexp N;PCP(L) In L—’;)) —Cp}
X |exp (NZPC,(L)m( )) —c,} (C.5)
i L

Before we proceed to the calculation of T we introduce shorthand notation for a repli-

(C.6)

(C.7)
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where

Gl = ACoGE 114G, 1] 1, S

(C.8)
Gulp,p] = —AGpp",p"] - ?»GZ,[p,f)‘f], (C.9)
Glpl = ;Pc,.(L) ZPc Gy P (C.10)
C.2 Replica symmetry
In the next step , we introduce the RS ansatz in the form
—Bw( %) ~Bu)
/ Dyr’ N R ) | S CAr
EOR 1=z
B [ w50 = ol [ Dol [ e
p X)) = / T = LN
Z8] Pq | PRI

The functionals in RHS in (C.8)-(C.10) can be expressed in terms of functionals 7’s

and 7U’s.

Gy [nT] ~ p2p2+n/anf < (Z‘[;"[qw;qp}»]e, (C.13)

} S')U(]X
Gi[nd] ~ (p2)2+n/Dn‘/[uﬂ]an[uf‘]<ln (%)%, (C.15)

' » D Zly + V]
Gl ]~ p9p9+n/Dn In <7[\u ]Z[w]> (C.16)
Zly? + )
G[nd, 7] ~ pgﬁg—l-n / DA < Zhv] Z[wﬂ) (C.17)

ZISr 4 V]
- g )
L

2[5+
ey ~ (w2 BRI )

150



. CAPACITY OF POWER GRIDS
Appendix C

Firstly , we solve the saddle-point equations to O(1) in n. The saddle point is
1T >

pp=pl=pl=1, (C.20)

p=Cp Pr=C, pl=C, C21)

This ensures that O(HO) contributions to T cancels with N, Then we obtain
his e

(Z"\p,e ~ /Dantexp nN{GZ[n} — G|m, 7] +§PC(L>GS’L[TAE]H (C22)

where functionals over 1U’s and 7t’s are given in (3.37, 3.38 amd 3.39).
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