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Notation

Bold face capital letters (S) denote matrices. :Bold face snlali letters (s) represent
vectors. Matrices/vectors with a check (S/ §) represent the unknown processes. Matri-
ces/vectors with a Bar (§ /s) represent the perturbed version of the corresponding ma-
trix/vector. Matrices in boldface (S) with no accents represent the visible processes. Ma-
trices/vectors with a tilde (S /8) represent data with embedded information (watermarked).

And finally matrices/vectors with a hat S /8) represent watermarked data after an attack.

B;; Index denoting the structure order of sample s(i) compared with
sample s() of a time series

N Length of a time series

SO Structure order matrix of a time series

v(i)  sample whose co-ordinates are the rank order values of two time series
sq and sp, (ra(i),rp(i))

rec  Rank order of the spectrum of time series s

N.ue Number of clusters of estimated sources

corr  Correlation between two time series

w Independent component, row of W

g Threshold for n. n > &, cover work is destroyed

H Output of decision, m can/cannot be recovered from €
£ Perturbation applied to the set of observations

Pr Probability distribution
Real valued numbers
Perturbed observation matrix

Sources estimated from X as input

Estimated mixing matrix from X

R
X
S
w Estimated separating matrix from X
A
E Perturbation matrix

¢

A small perturbation of A
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Chapter 1

INTRODUCTION

This thesis addresses the issue of a technical solution towards the problem of patient .

privacy in the use of computerised biomedical records. The approach adopted m this the-
sis is based on watermarking. As defined in [47] watermarking extends the information
of the cover (data used to embed information). Bender [12] states that ‘data hiding, em-
bedding information into digital media for the purpose of identification, annotation and
copyright is a form of steganography (hiding information in plain sight)’. Cox et al [24]
state that ‘though the applications and requirements for steganography and watermarking
may be different, the actual techniques used for watermarking and steganography may
be very similar, or in some cases identical’. Based on these definitions the work pre-
sented in this thesis is termed as watermarking (data embedding) though the line between
steganography (data hiding) and watermarking is thin and overlap exists. Current security
protocols for EPHRs are designed based on Information Communication Technologies
(ICT) such as smart cards and logical deletion (the practice of marking data as being no
longer applicable [90]). In role based access systems wherein only parts of a health record
are available to the different personnel of a hospital, the cryptographic solution to hiding
patient-sensitive data is inherently insecure. Since the personal information has to be de-
crypted at some point to identify that the non-personal biomedical data is indeed related
to a particular patient, accidental leakage of data is possible.

The solution provided in this thesis is based on data embedding methods which are
complementary to cryptography. It will be shown how the novel data embedding approach
implemented in this thesis for EPHRs has the capability to provide a viable solution to a
host of problems impeding the implementation of EPHRs. Patient privacy is secured by
means of hiding the personal details of the patient in an EPHR. This is a steganographic
watermark. Cox et al [24] define a steganographic watemark as embedded information
that is related to the content but is hidden. The sensitive personal information is the secret
message. It relates a patient with a particular EPHR but it is intended for only authorised
health providers (clinicians in direct contact with the patient). Its existence is concealed
from the other health personnel such as those involved with billing and maintainance
whose work could be conducted by using an identifier. Additional information pertain-
ing to information about the EPHR (for example the hospital/clinician who conducted the
tests or, details of how the tests were conducted which could provide additional infor-
mation to the clinician for diagnostic purposes) will be embedded into the EPHR using

watermarking techniques. This information could be used to tag the EPHR such that
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researchers and adminstrative personnel can locate the. EPHR with the help of‘-ft?hi"s; tag if \ 

required. This information is defined as a non-steganographic watermark or Simp‘lyWaten
mark in [24]. In this thesis though some of the embedded information belongs to the class
of steganographic watermarks based on its use, for simplicity all the embedded data will
be referred to as watermarks and the data hiding technique for both steganographic and
non-steganographic watermarks will remain the same. The watermarking method will be
tested and validated as a possible solution to some of the drawbacks of the standard ICT
based security methods for EPHRs.

In this chapter the EPHR, its advantages and the issues impeding its rollout are dis-
cussed in section I. Watermarking methods are introduced in section II. And lastly a sum-
mary of the benefits that data embedding technologies could bring to EPHRs and help to

resolve the issues of patient privacy in the use of EPHRs is presented.

1.1 Electronic Patient Health Record (EPHR)

Computerised medical records and the advances in telecommunication infrastructure en-
able remote health care services, where treatment without the physical presence of a clin-
ician is possible. EPHRs, capable of providing personalised health care, are being investi-
gated and are in varying stages of implementation. Detailed descriptions of EPHR imple-
mentations can be found in [32, 85, 4, 22, 38, 17, 69]. The advantages of an EPHR include
remote health care, faster access to the health record resulting in quicker diagnosis and
efficient treatment in case of an emergency, better prescription services, and prevention
of duplicating medical tests. Researchers believe EPHRs can provide the infrastructure to
permit individualised treatment to every patient. This is possible by applying predictive
and decision support models to a Bioprofile (an electronic record of an individual’s health
progression from birth to death possibly including his/her genetic profile along with a per-
sonal identifier containing the name, sex, age, and address of the individual, which relates
the bioprofile to its owner), and studying the results of automated machine learning to
provide prognosis/diagnosis.

The above advantages can be fully gained only when all EPHRs/bioprofiles are cen-
trally accessible by clinicians and researchers for the purpose of diagnosis and study.
However a central database with every individual’s health record containing sensitive and

private information is highly vulnerable to abuse, increasing the risk of loss of privacy and



distress to the patient. This is evident from the reports on data loss from hospitals

These reports demonstrate the potential risk of psychological and material déﬁlage- to the
patient if personal details are easily accessible to anybody who gains access to the eHealth
network. A major bottleneck in implementing the EPHR fully comes from partially valid
patient fears on questions such as: ‘Could fund-raisers get details of individuals suffer-
ing from a particular disease to approach for donations? Could employers obtain private
health records to reduce their workers compensation costs, or identify employees who
may be costly in the future? Could computer hackers release the information onto the
Internet for everyone to see? How will patients be able to control access to, or find out
who has viewed their medical records?’

Secure and error-free storage and transmission of the EPHR/bioprofile has therefore
become vital to gain public confidence and acceptance of the eHealth system [52]. There
are two other major issues impeding the roll out of the EPHRs. One, there is no interop-
erability between different hospital networks and, two, no uniform standards for storing
different medical data exist.

The health care system depicted in Figure 1.1 is an example computerised healthcare
system. The different health care units are linked together by telecommunication net-
works. As can be seen from figure 1.1, patients registered in a local hospital but requiring
treatment in a large hospital need not repeat medical tests conducted in the local hospi-
tal. Since all the healthcare units are connected to each other and the EPHRs stored in a
central database, records from any healthcare unit can be accessed by any other health-
care unit in real time. The advantages of such health care units are significant so, in this
thesis a design of an eHealth system that can benefit from the advantages and simultane-
ously curtail the risks involved is presented. The security protocols implemented in most

clinical standards approved by governments of various countries include [30, 49]:

¢ Logging in to a health centre database with a smart card and Personal Identification

Number (PIN),

e Role based access (access to parts of the medical document depending on the role

of the health service professional),

e The right of patients to determine what medical reports and data are saved in the

medical document, and who is allowed to access the medical document,

e
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Figure 1.1: The design of an EPHR system from openEHR termed ‘community shared-
care context’. This picture depicts a fully connected healthcare services system on a
probable regional level.

e Encryption of the personal details by standard crytography such as RSA.

Some examples of eHealth systems and eHealth standards focussing on the security
measures implemented in them are presented in the next section. The drawbacks and
limitations of the above security measures and the need for a method based on data hiding

techniques to counter these issues is also discussed.

1.1.1 Examples of EPHR implementations

Though EPHRs are being tested and implemented in different countries as already men-
tioned, some examples of extensive deployment of EPHRs include the models in Taiwan
and Estonia.

Taiwan:
The Taiwanese smart card-based health IC card [22] is designed to be a mobile data carrier
held by the patient. Its personal information section carries the card number and date
of issuance in addition to the cardholder’s name, gender, date of birth, ID number and
photo. Its health insurance related information section further registers major diseases, the

number of visits and admissions to medical institutions, the last menstruation period and



Chapter 1 . INTRODUCTION

pregnancy examinations, along with the records of the cardholder’s insurance premium

and accumulated medical expenditures. Data stored on the smart card is encrypted [21] for
security purposes. A personal identification number (PIN) can be setup by the cardholder
to protect the information on the smart card. Data can be transferred to/from the card only
after a strict authorisation and mutual authentication process.

Estonia:
The National Identity Card which is compulsory for every Estonian has the usual person
identifying features - name, picture, date of birth and personal code [49, 86]. The security
of the information on the card is based on the personal identification code enabled in each
card and a certificate in the ID-card which enables digital signing.

These example eHealth systems rely on ICT based solutions for security. The health
IC card contains a complete description of an individual’s health which is personal and
sensitive. The security measures based on ICT have largely been tested for the banking
industry. Though these measures provide secure transactions between a single user and a
database, they have limitations when used in a multiuser federated database environment
such as an eHealth network. The drawbacks of ICT based security protocols for eHealth

systems is discussed in section 1.1.3

1.1.2 Examples of EPHR standards

Different standards are being developed for computerising medical records. Some of
the standards currently under use and development are DICOM, Health Level 7 (HL7)
Clinical Development Architecture (CDA)[HL7 CDA Release 2.0 2005], CEN EN 13606
EHRcom [CEN prEN 13606-1 2004], and openEHR , and have been described in [30].
Health networks of different countries and different hospitals in a country are designed
using different standards. The disadvantage of multiple standards is that there is little or
no interoperability. Also, some of the standards being proprietary impedes small hospitals
in using them, making interoperable national health networks difficult.

Two of the standards for EPHRs being used extensively are openEHR and the proto-
cols designed by ‘Integrating the Health Enterprise (IHE), a joint initiative by healthcare
professionals and industry to improve the way computer systems in healthcare share in-
formation’ [43]. The security measures implemented in these two standards are discussed

below with their disadvantages.
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The security policy of the openEHR standard [73] is as shown in figure 1.2. ,
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Figure 1.2: Security features of the openEHR depicting the separation of the personal and
medical information in an EPHR. It also shows the various frames in a probable EPHR.

The general features of the security policy of the openEHR mainly include indelibility,
audit trailing and anonymity. Since the information in a health record cannot be deleted,
access to parts of the health record by the different health personnel is achieved by mark-
ing the data in such a way as to make it appear deleted. Any access of a health record
by a health care professional is trailed with user identity, time-stamp, reason, optionally
digital signature and relevant version information. Another security feature implemented
in the openEHR is the separation of the personal and medical information in an EPHR as
depicted in figure 1.2. The eHealth system is configured such that theft of the EPHR does
not provide any clue to the identity of the patient. A cross-reference database protected
by means of encryption or other security mechanisms is used to relate the EPHR to a
demographic file.

Versioning in the openEHR is its most basic and important security related feature
for data integrity. All logical changes and deletions as well as additions are physically
implemented as new Versions rather than changes to existing information items. The
openEHR also states that there exists a possibility to digitally sign each Version. The
security mechanisms are left unspecified to be decided by the third party vendor who
implements the network.

The Cross-Enterprise Document Sharing framework (XDS) designed by the IHE [43]

to provide remote access 1o clinical documents is shown in figure 1.3. The hospital,
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denoted as the Document Source, generates a unique Electronic Patient Index GEPA.-:I,)"
for each patient’s medical document and the medical document stored in the\Do.cument
Repository. A Master Patient Index (MPI) number is generated independent of, andun-
known to the Document Source by the Patient Identity Source. The MPI and associated
EPA-I are stored in the Document Registry. The Document Consumer (hospital or clini-
cian) requiring access to a patient’s EPHR queries the Document Registry with knowledge
of the EPA-I to obtain the MPIL. The MPI is released after verification of the source re-
quiring access and the Document Consumer with knowledge of the MPI can access and

view the medical record.

PATIENT
IDENTITY
SOURCE

DOCUMENT
REGISTRY

J

DOCUMENT
CONSUMER

DOCUMENT
SOURCE

DOCUMENT
REPOSITORY

Integrated Document Source /Repository

Figure 1.3: An eHealth system framework designed by the IHE, ‘Cross enterprise docu-
ment sharing diagram’. Figure shows the centally accessible EPHR database contained
in document repository where each EPHR is identified by a ten digit index. The ten digit
index is generated independent of the hospital (document source) producing the EPHR by
the patient identity source. The document registry provides the link between the EPHR
stored and the identification number needed to access the EPHR.

The security policy of the openEHR standard is suitable to prevent unauthorised ac-
cess of the EPHR but it does not provide a mechanism to prevent accidental leakage of
information from the EPHR by authorised personnel. Secondly security protocols in the
openEHR based EPHR standard being implemented by the third party vendors creates a
bottleneck to fully connect health networks designed by different vendors. Similarly the

XDS framework based eHealth networks are protected from unauthorised access but not
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against loss of data by authorised personnel. The examples of computerised healthcare :

systems of Taiwan and Estonia denote a small selection of countries using smart card
based technologies for their respective EPHR systems. Similarly the list of the standards
for EPHRs is representative only. The use of smart cards for health and EPHRs are ad-
vantageous in the sense that they provide strict authorisation proéedures but the risk of
misuse also exist. One example is that of clinicians logging in, and leaving it open for
other clinicians to access records in busy A&E departments [1]. The argument in favour
of sharing smart cards is that ‘precious time is saved and patients can be treated more
efficiently, and the systems are placed in rooms with limited access’. This method is in-
secure in that health personnel such as adminstrators, maintainance and not necessarily

clinicians with access to the rooms could also access the health records.

1.1.3 Security loopholes in the EPHR standards

Security mechanisms utilising smart card technology as defined in the security policy
of standards such as openEHR have drawbacks when used in large-scale interconnected
networks with multiple users of the networks having the same access privileges to the
same set of data. It is also visible to a malicious attacker who can easily detach it and
attach new data to the medical record. This form of attack is difficult to notice and can
lead to complications for the patient.

If logging in each time is not mandatory, or smart cards are shared by clinicians in a
real time environment such as an Emergency Department of a hospital, patient identity and
security of the sensitive medical data can be heavily compromised. An intruder gaining
illegal access to patients’ records can neither be prevented nor traced. Secondly the patient
index or identifier is a set of characters and numbers. An erroneous entry of this identifier
cannot be identified at the receiving hospital. Lastly the identifier is a header attached to
the medical document. The link between medical data and patient details can occasionally
get mangled by protocol converters [54].

Complete anonymisation or deletion of the details such as name, address from med-
ical files, but inclusion of information such as age, gendér, ethnic origin, demographics
relevant for the study being conducted is the norm in research [3]. The probability of
relating an individual to a medical record or a particular group of individuals to a medical

condition is significant even in such ‘de-identified” databases as shown by [72]. Also this
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method of anonymisation is not suitable for medical records used for diagnostic purposes :,

in a health centre.

Hence security measures being left open to be implemented by third party vendors as
in the openEHR or any medical data standard may not be adequate: Security measures
built on security protocols mentioned above may thus result in deadlocks. In brief;:tech-
niques relying on smart cards and identifiers for privacy and security in EPHRs fail in that
they cannot ensure ‘the received medical data is both legally and medically appropriate’.

Therefore, an alternative perspective is needed which can address some of the legal
and ethical issues, but not suffer the weaknesses of current security implementations of

the EPHR.

1.2 Watermarking

In this section, an introduction to watermarking, its applications and the advantages data
hiding methods could provide to secure and protect the privacy of the patient in an EPHR
is presented. A demonstration of how watermarking principles could help in preventing
accidental leakage of patient sensitive information is given. It will also be shown how
the hidden information could help in linking a medical record to a particular patient and
provide a log of access (identify personnel who have accessed the EPHR) of the EPHR.

The need for secure communications and the tools used, cryptography (data encryp-
tion) and steganography (data hiding) can be traced back to a period between 600BC
and 400BC [23]. Cryptography renders messages unintelligible to unauthorised persons
who intercept them while steganography conceals the message itself from unauthorised
persons [78]. From [24] and the references within, paper watermarks were first created
around 1282. The purpose of the early watermarks is not known but by the eighteenth
century the use of watermarks as trademarks become common.

The use of watermarks as hidden messages about the content in which they are em-
bedded is the most general and popular definition of watermarks [24]. This property of
watermarking (concealing information which needs to be secured in other data) can pro-
vide both anonymity to the embedded information and authentication of the cover work
(data used to hide the information) [24].

One of the earliest examples of watermarking is a message hidden as the first let-

ter of each chapter of a book, Hypnerotomachia Poliphili, published in 1499 [24]. The

10
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process of modifying cover data representing images, audio or video to contain ,.h:id.c':ig,n‘
information is called watermarking [48]. Various watermarking or data hiding téehr_ﬁqués
for text, video, audio, image and 3D signals have been designed, attacked and countered
[26]. With the use of appropriate embedding/detecting techniques the hidden information
should be recoverable even if the host signal is compressed, edited or converted from dig-
ital to analog format and back. The embedded data can be used in applications requiring
authentication and tamper detection of the cover data at the receiver. From these observa-
tions the need for watermarking techniques becomes apparent with growing concerns of

digital piracy and authentication.

1.2.1 Data embedding techniques -applications in an eHealth scenario

Following is a brief list of some of the applications of digital data embedding methods
[24, 78] as applied to multimedia data. A modification and adapatation of these methods

to the biomedical domain is given below.

e Passive and active copyright protection: Digital watermarking provides a means to
identify the owner or distributor of digital data by embedding important control,
descriptive or reference information in a given work. This application is mainly

used to prevent the unauthorised copying of digital data via the internet.

The capability of the watermark to withstand changes as the cover is modified gives
a measure of its strength to survive further processing of the watermarked cover.
A watermark is said to be robust if it is distorted only when the cover work is
destroyed to a large extent. A fragile watermark is one which distorts when the
watermarked cover undergoes any slight changes while a semi-fragile watermark
can tolerate distortions to the cover due to unintentional attacks/signal processing
of the watermarked cover. Semi-fragile watermarks can also be used to detect non-
malacious/malicious tampering. Watermarks used for copyright protection need to

be robust against any combination of signal processing attacks.

In an EPHR where patient identification details should not be available to unautho-
rised accessors of the EPHR, the personal details of the patient take the preference
of a semi-fragile steganograhic watermark. The personal details are a means of
identifying the rightful owner of an EPHR. Hence they need to be robust against a

variety of unintentional signal processing transformations of the cover.

11




Chapter 1 - INTRODUCTION.

e Broadcast monitoring: A computer monitors broadcasts and compares the received

signals with a database of known works. Passive monitoring systems try to directly
recognise the content being broadcast while active monitoring systems rely on as-

sociated information (watermarks) that is broadcast along with the content.

EPHRSs contain sensitive information which when broadcast (or accessed indiscrim-
inately) have the potential to cause distress to the patient. A means of regulating
the access of the EPHR and logging the identities of the accessors is important.
The application of broadcast monitoring of digital works with the help of water-
marks can be modified to the eHealth domain. The identities of clinicians who have
viewed the EPHR can be embedded into the EPHR to maintain a log of access of
the EPHR. The addition of a watermark to a cover work distorts the cover work.
Addition of more watermarks increases the distortion. Hence the amount of data
that could possibly be embedded into the EPHR is limited. The watermarks can be
designed to contain a log of the last four/five health personnel who have viewed the

EPHR.

e Fingerprinting: Fingerprinting is of two types: (i) the owner of the work would
place a different watermark in each copy and record the recipient in each legal sale
or distribution of the work. If the work is illegally distributed, the owner could
find out who was responsible with the help of the watermark. (ii) a hash of the
audio/visual work is created which is unique to the work. This fingerprint of the
work helps track any manipulation and modification history within a signal without
creating an overhead history file. The watermark records the list of transactions that

have taken place in the history of the work in which the watermark is embedded.

In an eHealth scenario, the fingerprinting of the EPHR can provide an application
similar but not identical to that of fingerprinting multimedia content. One of the
aims of digitising medical records is to provide researchers with access to biomed-
ical data to further improve health in the community. Fingerprinting all the records
belonging to different patients suffering from a similar illness, for example, skin
cancer, with the same watermark can help researchers working on skin cancer to lo-
cate the required biomedical data easily. Second, embedding a unique fingerprint of
every researcher who has accessed a huge set of data into the data will help trace the

researcher responsible when large amounts of medical data are lost or distributed.

12
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e Tamper proofing: Securely hide a signed summary of the work in a larger copy of :

itself. This can be used to prevent or to detect unauthorised modifications. Since
the EPHR is used for purposes of diagnosis and research, any distortion to the cover
could lead to misdiagnosis. Hence the distortion to the embedded messages must
be minimum. Hiding a summary of the EPHR in the EPHR is not a viable solution.
Instead by embedding a random string unique to the EPHR/hospital throughout the
EPHR (in locations such that it distorts the EPHR to the minimum) a mechanism to
identify any tampering of the EPHR could be achieved. The watermarks used for

tamper proofing hence need to be semi-fragile/fragile.

e Provide different access levels to the data: By using different keys to embed the
watermark, different access levels to the embedded data can be established. Since
both embedding and decoding of the watermark depends on the key, knowledge of

“the key determines the amount of data that can be recovered at the receiver. For
example, an administrator may be able to retrieve only the identification details of
the patient while a clinician may be authorised to retrieve embedded information

related to the medical condition of the patient.

1.2.2 A generic watermarking system

Figure 1.4 depicts a basic watermarking process. The message m to be embedded is gen-
erated based on the cover work ¢ or independent of ¢, to fulfil the different requirements
of security and authentication. The derived message or watermark is usually transformed

to a binary format WM.
m— WM. (1.1)

Let F define the embedding technique used to embed the W M into ¢. The locations of
the samples of ¢ used to carry the WM is represented by k and is referred to as the secret
key. The length of k is dependent on the length of W M and ¥ . The watermarked cover ¢

is obtained as

T (e(k), WM) — & (1.2)

The watermarked document € is subjected to different common signal processing dis-

tortions M (assumed additive) during transmission resulting in an attacked watermarked

13
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Figure 1.4: Block diagram of a generic watermarking system showing the process of wa-
termark generation, embedding and transmission at the transmitter. The inverse technique
of the watermark embedding and generation method is applied at the decoder to retrieve
an estimate of the embedded watermark.

cover C,

E4m— e (1.3)

The inverse of the W M insertion and W M generation process is applied sequentially to €
at the decoder to obtain an estimate of the embedded W M, WM which in turn leads to the

estimate of the embedded message m,
F &, k) —» WM — n. (1.4)

Applying prior knowledge of m even in the absence of ¢, to m, authentication of the orig-
inality of ¢ and retrieval of the hidden message can be achieved. The Hamming distance
between WM and WM when W M is known at the decoder provides a measure of the at-
tack 1. Hamming distance between two binary signals of equal length is defined as the
sum of the bit positions where the two binary signals differ. This is obtained as the count

of the number of ones in the XOR difference between the two signals.
dist( WM, WM) => (WMo WM). (1.5)

In the absence of any knowledge of m at the decoder a predetermined threshold value can

be used to determine the presence of m.

14
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1.2.3 Classification of watermarks

Watermarking techniques are based on ideas and concepts developed in cryptograp,hy,
communication théory, algorithm design and signal processing. Embedding data into
other digital data has been possible due to the limitations of the human auditory and visual
systems (HA/VS) [45]. Watermarks are mainly classified based on the application of the
watermark. They can be further classified on the embedding and decoding techniques
used. One of the classifications based on the embedding method is shown in Figure 1.5

[84]:

Types of WMs

\ \
Spatial Spectral

. ‘.' v
Visible Invisible

]
Vo 1

Fragile Semi-fragile Robust

Figure 1.5: Classification of watermarks. This classification is based on the method of
embedding and the application of the watermarks.

If the watermarks are embedded in the time domain representation of the host signal,
the watermarks are referred to as spatial watermarks and if they are embedded in a trans-
formed space of ¢ the watermarks are known as spectral watermarks. Both spatial and
spectral watermarks can be further classified as visible and invisible watermarks. Visible
watermarks may be visual patterns (eg., a company logo or copyright sign) overlaid on
digital images. They are designed to identify the owner and can be seen by every user
of the data. The watermark cannot be removed from the original. Watermarks which are

embedded in ¢ and are perceptually transparent are called invisible watermarks. Invisi-

15
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ble watermarks can be further classified as fragile - watermarks which are distorted due

to slight alterations to &, semi-fragile - watermarks which are distorted when 1 is large :
and exceeds a threshold value. The threshold is usually set by the owner of ¢. Invisible
watermarks which survive severe manipulation or tampering of € are-known as robust
watermarks.

The watermarks can also be classified as private or public (oblivious) when the de-
coding method requires the original or reference data for watermark detection or does not
require the original data.

Since the watermarks used in the biomedical domain need to be secure and indistin-
guishable and robust to compression, they will usually be of the invisible type, robust
and public. The watermarks used for authentication will also be invisible but fragile and

public.

1.2.4 Characteristics of watermarks

The desired properties of every watermark vary with the application of the work (video,
audio, images, text etc.,). These characteristics though defined by the application are
limited by the embedding and decoding techniques, the communication system used, and
the type of attacks they might face. Some fundamental characteristics of a watermark [77]

are imperceptibility, rate of information, robustness and security.

Perceptual transparency:

The watermark must be embedded without affecting the perceptual quality of the under-
lying host signal. The procedure is imperceptible if the Human Audio/Visual System
(HA/VS) cannot differentiate between the original host signal and a host signal with in-
serted data. Imperceptibility is usually determined by blind testing of the watermarked
data. One such example test procedure used to measure perceptual phenomena is the
two alternative, forced choice (2AFC) [36]. Observers are randomly presented with sig-
nals with and without embedded data and asked to determine the higher quality signal.
If 50% of the observers correctly identify the watermarked content the imperceptibility
is termed as zero just noticeable difference (JND). JND is a measurement unit used for
psychophysics studies and it represents a level of distortion that can be perceived in 50%

of the experimental trials. If 75% of the observers correctly identify the watermarked
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content then the watemarked content is said to have one JND and it is indicative of the
existence of the WM. The main criterion of data embedding is that it should not prod’uce
perceptually dissimilar artifacts. It must also take care of typical modifications that the
signal may undergo. e.g., digital pictures typically undergo sharpening or high pass fil-
tering. The distortion to the cover work due to the embedded watermark Dg,, 1s given
by

DEmb = € — ¢ (1.6)

¢; and ¢; represent the individual elements of the watermarked and original work respec-
tively with 1 </ < Nsamp where Nsamp is the total number of samples/ pixels of the
cover work. Based on the application, an acceptable level of Dg,,,, O 1s decided upon at
the watermark embedder. Imperceptibility is therefore not defined by the value of Dg,pp

but by the maximum value that it can assume for a given application.
Demp < . (1 7)

Evaluation of imperceptibility of a W M:

Perceptibility is a characteristic based on the HVS and is applicable to images or any form
of data that can be visualised. The HVS [28] has a limited sensitivity, it does not react to
small stimuli and is not able to discriminate between signals with an infinite precision. It
also presents saturation effects. Since watermarking is the capability of the host signal to
hide another signal, it can be termed as masking. Different masking phenomena exist for
different stages of the HVS. The most common types of masking used in image processing
include spatial masking (edges in images can mask signals of much greater amplitude than
region of near-constant intensity) and contrast or pattern masking.

Image watermarking is based on the concepts studied in image processing. The ability
of the cover image to hide the secret message is measured in terms of the visibility of the
message. These perceptibility measurement terms are explained as applied to images, but
they can also be used with time series data such as EEG and ECG, as the clinician views
the ECG and EEG to make a diagnosis.

A list of selected measures to characterise watermarked systems are listed [79]:

e Relative entropy or the Kullback-Leibler divergence:

Relative entropy, or the Kullback-Leibler divergence X L, normalises the entropy

17
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of a watermarked signal €, with respect to a reference signal ¢.

KL =Ypilog (2) (R

i
where p and q are the probability distributions of € and ¢ respectively, over all
sample values /. This is a measure of dissimilarity and used to represent mutual
information. It is zero iff the two probability densities are zero. The larger the
value of the mutual information, the more similar the two signals are to each other

and vice versa.

Peak Signal-to-Noise Ratio (PSNR):

where B is the largest possible value of the signal or the bandwidth and rms is the
root mean square difference between the two signals. If the value of PSNR is large

it indicates that the noise or distortion due to the embedded W M is very small.

Mean Square Error (MSE):

Compares two signals on a sample by sample basis.

MSE Z||c,—c,|1 (1.10)

Nsamp

where both the signals, the reference signal ¢; and actual image €; contain Nsamp
samples. For the WM to be imperceptible the MSE or difference between the two
signals must be relatively small. There are obvious disadvantages in using MSE

unless relative phase is known exactly.

Rate of information of the embedding algorithm:

The rate of information & _is defined as the ratio of the length of a watermark to the length

of ¢. R typically depends on the application of ¢ and the embedded watermark. Fraud de-

tection applications require small amounts of information (insertion of serial number, au-

thor identification) incorporated repeatedly into the host signal, but embedding a smaller

image into a larger image or multiple speech signals into a video requires a lot of band-

width [93]. The data embedded can be a significant portion of the data in the host signal.

Therefore the amount of data embedded depends critically on the embedding algorithm,
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the underlying host signal and most importantly the application of the watermark.

_|WM|(bits)

R =Tl irs) (1.11)

' Robustness:

This is the ability of the embedded watermark to withstand distortions to €. Unintentional
distortions are due to common signal processing operations. Most applications use lossy
coding operations to reduce bit rates and increase efficiency during storage and transmis-
sion. Also digital data can be easily modified and manipulated. A damaged host signal
results in damaged embedded data. Malicious or purposeful modification/removal of the
host signal is done to thwart the detection of the embedded data. Additional watermarks
may also be embedded by malicious attackers to cause ambiguity in copyright applica-
tions. Hence watermarks that can be retrieved after common signal processing operations
and malicious attacks are said to have a high level of robustness.

Evaluation of robustness of a watermark: Robustness of a watermark defines the ca-
pacity of a watermark to remain unchanged under any form of intentional/unintentional
change to the watermarked cover. The various levels of robustness based on the type of

attack are listed as follows [77]:

e Level zero: No special robustness features have been added except the ones needed

to fulfil the purpose and operational environment of the scheme.

e Low level: Robustness features added to the watermarking technique but which can
be circumvented using simple and cheap tools available publicly. These features
are added to prevent “honest" people from disabling the mark during normal use of

the work.

e Moderate robustness: Expensive tools are required as well as some basic knowledge

on watermarking to disable the watermark.

e Moderately high: Tools are available but special skills and knowledge are required
and attempts to distort the watermark may be unsuccessful. Several attempts and

operations may be required and one may have to work on the approach.
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e High robustness: All known attempts have been unsuccessful. Some research by a
team of specialists is necessary. The cost of the attempt may be much higher than

what it is worth and its success is uncertain.

e Provable robustness: It means it should be computationally (or even more stringent:

theoretically) infeasible for a willful opponent to disable the watermark.

The multiple watermarks denoting the personal information and added information,
embedded into the EPHR are characterised based on the level of robustness required by

each watermark. This will be discussed in more detail in chapter 4.

Security:

The embedding procedure must be secure in that an unauthorised user must not be able
to detect the presence of embedded data nor remove the embedded data [50]. A data
embedding procedure is said to be secure if knowing the exact algorithm for embedding
the data, does not help an unauthorised party to detect the presence of the embedded data.
This is because the unauthorised user does not have access to the secret key that controls
the insertion of the data in the host signal.

The information that needs to be embedded can be further secured by first encrypting
the information and then embedding into the cover. A detailed discussion of this approach
will be presented in chapter 3, section 3.2 (This work was presented in [56, 57].

Some additional desired properties are fast information embedding and/or retrieval,
compressed domain processing, statistical undetectability.

The first three characteristics of imperceptibility, capacity and robustness are trade-
offs against each other and can be represented as a triangle as shown in Figure 1.6. The
trade-off is obtained based on the requirements of the problem domain.

Since biomedical data is mainly used for diagnosis, the imperceptibility of the water-
mark should be as high as possible. Distortions to the original due to the watermark may
result in wrong interpretation of the data. Also malicious attacks to distort or completely
remove the watermark are not expected. If the embedded data is robust to simple signal
processing techniques necessary for efficient transmission, it is sufficient [79].

Hence in figure 1.6, the preferred location of the Biomedical Watermarking in the

trade-off triangle is as shown, but this is not a fixed position. Some specialist applications
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Figure 1.6: Characteristics of a watermark; Trade-off Triangle

of the medical data might require a different level of robustness, in which case this posi-
tion might vary. The methods considered in this thesis need to be flexible enough to meet

these criteria in the trade-off triangle.

1.2.5 Watermark embedding techniques

Watermark embedding techniques are of two types, blind and informed [65]. The classi-
fication here is based on the method of generating the message. In the blind embedding
technique, the watermark is generated independently of the cover work in which the wa-
termark is to be hidden. The watermark message is chosen from a set of messages based
on a key k. This type of watermark may cause huge distortions to the cover work and have
a low level of imperceptibility. Hence appropriate scaling of the watermark is required
to make it imperceptible. In the informed embedding technique, the watermark is cho-
sen based on the type of cover work. Hence the watermark does not distort the original
significantly.

The different embedding techniques are distinguished based on the information rate,
selection of the location in the cover where the message is embedded and types of mes-
sages embedded [78]. Since the EPHR cannot be altered to suit the embedded message,
the embedding of watermarks cannot be based on the principle of security through obscu-
rity. Also the EPHR is mainly used for diagnostic purposes and as already mentioned, the

value of Dg,,» should be minimum. Spreading the hidden information, increases Dg s,

21



Chapter 1 . INTRODUCTION

hence it is not applicable to watermarking EPHRs:. The EPHR can be wat,e_rmarke;,c;l_,,i;sﬁ
ing a combination of the other embedding methods namely camouflage and hidiﬁg, the
location of the hidden information [78]. Watermarking techniques that enable the use of
automated verification would also be useful in the authentication of the EPHR. The un-
watermarked cover or the embedded information cannot be transmitted to the watermark
detector as the security of the embedded information will be compromised. The work
presented in [44] proposed a method for the verification of the received data by using a
local average scheme. In this method the image data is segmented into blocks and an
average of each block and the size of each block are transmitted. The watermark detector
divides the received image into similar blocks and determines the average of each block.
The average values obtained by the watermark detector are compared with the average
values received from the watermark embedder. The differences obtained as a result of
the comparison are used to detect minor changes and also localise the distortions to the

waterked cover during transmission.

.2.6 Attacks on watermarking schemes

The types of attacks on watermarking schemes are based on the level of distortion caused

to the watermark and the intent of the attacker [93, 26]. These can be classified as:

e Robustness attacks:
Robustness attacks are malicious attacks which attempt to completely destroy or
remove the watermark without considerable damage to the original data. This type
of attack may occur when the embedded watermarks are used as a log of access of

the EPHR.

e Presentation attacks:
The watermark is changed in such a way that the detector will not be able to find
it. Complete removal of the watermark is not the aim of these attacks. This class of
attacks is similar to robustness attacks and in an eHealth scenario these attacks may
be utilised by an unauthorised accessor of the EPHR to delete any record of their

access of the EPHR.

e Collusion attacks:

In this type of attack, the attacker obtains multiple copies of the cover wherein each
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cover is embedded with a different' watermark: The attacker combines the various

covers with different watermarks and constructs a single cover with no watermark.

e Interpretation attacks:
These attacks seek to confuse the decoder by embedding different watermarks in
an already watermarked cover. This leads to ambiguous decisions and deadlock
in case of ownership disputes. Interpretation attacks in an eHealth scenario could
occur when an attacker requires another individual’s EPHR to lay claim to certain

benefits for example buying insurance, applying for certain jobs.

e [egal attacks:
‘Legal attacks take advantage of existing copyright laws to create doubts on water-
marking schemes. This form of attack is usually seen in copyright disputes of work.

The possibility of legal attacks in an eHealth scenario is minimal.

Since the embedded watermark is typically expected to be the personal information of
the patient to whom the EPHR belongs, obtaining the exact embedded message will be the
aim of the attacker. Without the knowledge of the personal information, every EPHR is
similar to every other EPHR in terms of usefulness to the attacker. Watermark embedding
must therefore be robust to most signal processing techniques that might be applied to an
EPHR in order to store it in a compact format and still render it meaningful for diagnostic
purposes. Hence ensuring that it is robust to most of the modifications mentioned above

IS necessary.

.2.7 Watermark extraction

Watermark extraction is of two types, blind and informed [24]. The classification is de-
fined on the availability of the original cover at the detector. In the blind form of ex-
traction, the original cover is not available for watermark detection as in the case of the
EPHR, whereas in the informed extraction process the original is available for extraction.
In multimedia applications such as copy tracking, copyright protection etc., data extrac-
tion algorithms have the provision to use the original signal. When the received signal
can be compared with the original to obtain the embedded data, any distortions to the wa-
termarked signal can be easily determined. Hence techniques that use the original signal

are robust to a larger assortment of distortions.
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But in most other applications as in the biomedical domain there is no access to the
original unwatermarked signal while extracting embedded data. As already mentioned,
in an EPHR the value of Dg, should be minimum. This criterion limits the data-that
can be embedded, and as the watermark extraction is blind it makes the extraction of
the embedded message difficult. This problem is intensified when the embedded data
or information on the communication channel is corrupted by strong interference and

channe] effects.

.2.8 Evaluation of watermarking techniques

Watermarking techniques are evaluated on the reliability of the decoder in the presence
of attacks, ie the number of false positives, and false negatives. False positive is when
the decoder detects a watermark in the received data in the absence of any embedded data
and false negative is when the decoder cannot detect a watermark in the received data
though a watermark is present. A high rate of false positive/false negative indicates that
the performance of the watermarking technique is very low.

Watermarking applications in the biomedical domain require the detector to not only
detect the presence of the watermark but also decode it, in the presence of noise (addi-
tional embedded watermarks, common signal processing techniques such as compression,
scaling, A/D, D/A conversions, malicious attacks). Estimation of the correctness of the
retrieved watermark can be assessed by different methods, some of which are mentioned

below.

e Linear correlation(LC): Correlation of the estimated watermark, W M with the orig-
inal watermark, WM either in informed or blind detection is the most commonly
used decoding method in most of the watermarking applications [24]. WM is cor-
related bit by bit with the original message W M and the resulting Hamming distance

dist is compared to a threshold p.

The output of the decoder, say y, is as follows:

1, ifdist>p
y= (1.12)
0, ifdist <p,

where a ‘1’ indicates the presence of a WM and a ‘0’ an absence of WM.
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e Similarity metric: This evaluation method was described by Cox et.al [25] to es-
tablish that a false positive judgement is highly unlikely. The authors based their
argument on the rare chance of m being identical to the original ' m. The similarity

between m and m is measured as

Sim(m, i) = (’"m> (1.13)

m.m
If an attacker distorts the watermarked cover ¢ to produce ¢ without any access to
the original unwatermarked data ¢, then even with a fixed value of m, each sam-
ple &(k) representing m will be independently distributed according to AL(0,1).
Hence sim(m,rh) will also be distributed according to AL(0, 1). Then according to
standard significance tests for the normal distribution, it is extremely unlikely that

sim(m,m) > 6 on a scale of 1 to 10.

Though the original embedded message is not available at the decoder in the biomed-
ical domain since the WM refers to the personal information in the EPHR and is known
only at the embedder, the LC method of evaluating the watermarking technique and ro-
bustness of the embedded W M will be used. This is because it is the simplest method to

test the design of a watermarking system which is suitable for the biomedical domain.

1.3 Use of Watermarking Principles in an eHealth System

In this chapter a discussion of the issues involving EPHRs and reasons why they can-
not be resolved with the use of smart cards or role-based access networks only was
presented. The advantages and properties of watermarks (both steganographic and non-
steganographic) that help design a mechanism to secure patient privacy is also given,
since embedding patient details in a bioprofile has the advantage that the embedded data
is imperceptible and robust to attacks. The embedded data cannot be removed or dis-
torted separately from the cover [24]. Also extra security can be provided to the data by
encrypting it before embedding it.

Since the patient’s details are embedded in the bioprofile, the bandwidth of the infor-
mation transmitted is less than the information in which the patient’s details are encrypted.
When data is encrypted it is extra to the actual medical recordings as it is attached as a

header to the medical record. Ifinstead this header is embedded inside the medical record,
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the data that is actually transmitted is the medical recording only. In the medical domain
where quality of service (quick access to the EPHR) impacts on life-critical decisions,
real-time access and continuous availability of bulk data (EPHR) are required. Large

waiting times thus can be critical to a patient’s life.

1.4 Summary and Thesis Overview

In this Introduction the requirements of privacy in the EPHR, and basic properties of in-
formation hiding principles and advantages were surveyed. The conclusion arrived at is
that, embedding EPHRs with the personal information in the medical record is the best
possible solution available currently to protecting patient privacy. This thesis discusses
the design of a new data embedding technique capable of being implemented in a secure
eHealth network (chapter 2). It will be shown how the data hiding approach has an in-
built defence against data snooping (chapter 3). In addition, it will be revealed how the
framework can be extended to multiple watermarks of similar/dissimilar characteristics.
The multiple watermarks will be embedded into a one-dimensional cover to demonstrate
the capability of the new method (chapters 4, 5). In chapter 6 a mathematical discussion
of the security of the new data hiding approach is presented.

The thesis focusses on one-dimensional biomedical data. This is because the low
dimensionality and reduced redundancy poses greater challenges to watermarking than
the typical image processing domain usually considered. However, the approach in this
thesis can be extended to higher dimensional biomedical signals. The thesis is the work
of the author but parts of it have appeared in the public domain. A list of publications has

been presented at the end of the thesis.

26



WATERMARKING SINGLE

CHANNEL TIME-SERIES DATA

CONTENTS
2.1 Transform Domain Watermarking Methods . . . . ... ... ... 29
2.1.1 Discrete Fourier transform . . . . . . ... ... ... ... .. 30
2.1.2 Discrete cosine transform . . . . . ... ..o 32
2.1.3 Discrete wavelet transform . . . . . . . ... 33
2.1.4 Principal component analysis . . . . . .. ... ... ... .. 36
2.1.5 Independent component analysis . . . . . . ... ... ... .. 38
2.2 Watermark Embedding Techniques . . . .. ... .......... 46
2.2.1 Quantisationmethod . . . . . .. ... .o 47
2.3 Preliminary Experiments and Results . . . . .. ........... 48
2.4 Conclusion . . . . . . i i e e e e e e e e e e e 57

27
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The issues of patiént privacy and security of personal information in medical records
and the lack of correct security protocols in EPHR standards that are currently being
implemented and tested were discussed in the previous chapter. The applications of wa-
termarking for multimedia data and their relative success discussed in the last chapter
indicated that watermarking of EPHRs could help resolve the security issues of EPHRs.
The potential advantages watermarking methods can provide complementary to crypto-
graphic and ICT based security protocols was discussed. In this chapter the development
of watermarking in the context of the EPHR is implemented.

Some commonly used watermarking techniques for medical data have been demon-
strated in the following transform domains: Discrete Fourier Transform (DFT), Discrete
Cosine Transform (DCT) [70], Discrete Wavelet Transform (DWT) [33], Principal Com-
ponent Analysis (PCA) [96]. Other preliminary research into the securing of privacy and
prevention of tampering, of medical records by watermarking them has been presented in
(6, 100,27, 19, 80, 80, 64, 9, 37, 102].

Préliminary research into watermarking biomedical data has mainly concentrated on
biomedical images since a large portion of medical data is in the form of images. All of
the above references except the work by Toch et al [96] is based on medical image data.
However, techniques developed for images do not transpose well to other data modalities.
Embedding data in a single channel time series which has a low redundancy is much
more difficult due to the reduced redundancy limiting possibilities of hiding data and has
not been investigated. Time series medical data such as EEG and ECG are important
in helping diagnose a large number of health problems and conditions. ldentifying an
EPHR standard that performs equally for any input data format (image, time series) is
necessary. Secondly, different messages including patient identity, doctors’ notes, record
of clinicians who have accessed the medical record require different levels of security.
A watermarking system capable of identifying different robustness zones to embed the
different watermarks hierarchically is needed. .

Hence, the aim of this chapter is to consider appropriate efficient watermarking algo-
rithms suitable for single channel time series data and also capable of providing signals
with differing levels of robustness for embedding multiple watermarks. The signal pro-
cessing aspects of a frame-based approach of expanding signals using a nonorthogonal
basis derived from the data is exploited, and the consequences of applying the framework

to different dimensionality biopatterns is investigated. A study of transform domain meth-
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ods as opposed to time domain methods is conducted, as obtaining a hierarchical system
such as mentioned above is not possible in the time domain of the data. The time domain
of the data gives a continuous description of the data for different instances of time. It
does not define regions of the data that are robust to specific attacks such as filtering and
compression. Transforming the given data from the spatial domain to a ﬁ'équency domain
helps identify specific regions of the transform domain which are robust against different
levels of filtering and compression. Peining et al [94] also observe that for image water-
marking systems ’in general, the systems that embed the watermark in the pixel domain
are less robust to image manipulations, and semi-blind and blind systems are more prone
to false positives (detecting the watermark in an unmarked image) and false negatives (not
detecting the watermark in a marked image)’. This is true of all watermarking systems
including time series watermarking systems.

The integrity of the hidden message for different attacks such as sampling rate, low
pass filtering, addition of Gaussian noise and compression is investigated. Finding a
transform suitable for designing a hierarchical multiple watermarking system robust under

compression is the main motivation of this chapter.

2.1 Transform Domain Watermarking Methods

Embedding watermarks in ¢ requires replication of the watermarks and spreading of the
watermarks to cover the entire length of ¢ applying spread spectrum based techniques
[25]. The watermark signal is of low intensity compared to the strength of ¢. This is to
ensure that the value of Dg,,p 1s minimum and the watermark is robust against various
signal processing attacks, mainly compression. Orthogonal transforms such as the DFT,
DCT, DWT and PCA instead decorrelate the components of ¢ and redistribute the energy
of ¢ such that it is contained in a few components. Compression of a given data is achieved
by first transforming the data using one of the above mentioned transforms. The original
signal is reconstructed using only those components of the transformed representation
containing the maximum energy. By embedding the watermarks in these components
containing a significant amount of energy of ¢ thus ensures that the watermarks are robust
to compression. Though many different transform domain techniques exist and have been
studied, five transforms which provide a good transformation into the spectral domain

of ¢ or translation into different representations of ¢ will be further investigated in this
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thesis. The transforms studied are DFT, DCT, DWT, PCA and ICA. DET and DCT give

the spectral representation of ¢ while DWT, PCA and ICA transform the input ¢ into
projections onto basis vectors. Each method derives the basis vectors differently, hence
the projections obtained for each method vary, have different characteristics and can be

applied differently.

2.1.1 Discrete Fourier transform

The Fourier transform of a continuous time, aperiodic signal gives the frequency analysis

of the signal [82]. The Fourier transform of ¢ represented over time 7 is given by C(F).
C(F)= / c(t)e 2 dr. 2.1)

Identifying the frequency spectrum of a noisy signal which is a composite of multiple
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Figure 2.1: Time domain representation of the EEG.

signals of differing frequencies is not possible by studying the time domain representation
of the signal (see figure 2.1).
The spectrogram showing the amplitude of a given frequency calculated over a period
of time is shown in figure 2.2. This figure illustrates the complexity of the EEG signal.
Filtering attacks usually filter out the high frequency noise to obtain a better represen-

tation of the data under observation. Hence embedding information in the low and middle
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Figure 2.3 shows the long term power spectrum of ¢, |C(F)|?. This figure gives the
power content of ¢ at a particular frequency. A random selection of samples k equal to
the length of the watermark are chosen from C(F) such that they represent the middle
frequency components of ¢. The watermark is embedded in C(F)(k) samples using F
to obtain C(F). Applying the inverse of the Fourier transform to C(F), the watermarked

cover ¢ 1s obtained.

2.1.2 Discrete cosine transform

The discrete cosine transform converts the given input signal in terms of a sum of cosine
functions of different frequencies. The DCT is a specialisation of the DFT and is the
most commonly used technique for lossy compression of audio and images. Most of
the watermarking and compression methods were mainly developed for images. Image
compression is obtained by dividing the image into blocks and compressing each block.
The DCT produces less blocking effects in the decompressed image compared to the DFT.
Where compression is obtained over finite sections of an infinite signal, the DCT produces
less discontinuities at the boundaries compared to the DFT. When a signal is transformed
using the DCT, the original signal can be effectively reconstructed using a small number
of its DCT co-efficients. Hence DCT based watermarking methods are studied though
they are similar to the DFT based methods. The DCT co-efficients of ¢(¢) (see figure 2.4)

are derived as

Niamp - u-
Clu) = a(u) ’2 c(f)C'Oé‘(n(2f2Ni~()u<np :

=]

) (2.2)
where u = 1 to Ny, and

|
foru=1
(X(H) — \/ N.mm/) (23)

2 :
N.mmp for 2 S u S N.s'amp

Nyamp is of the length of ¢ and, ¢ and C are the same length.

The magnitude of the cosine function gives the measure of information content of ¢
represented by the cosine transform. A large magnitude value of C(u) represents the low
frequency component of the signal and hence contains a large amount of information of
c.

The cosine transform being similar to the DFT (gives a spectral representation of the

signal, see figure 2.4), modifying the samples of C of large magnitude ensures that the
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Figure 2.4: DCT values of the EEG.

embedded watermark is robust to compression but the distortion to ¢ is higher. Hence k
denotes the samples of C representing the middle frequency components of ¢. Applying

the inverse of the cosine transform to C(u), the watermarked cover € is obtained.

2.1.3 Discrete wavelet transform

The DFT and DCT transforms provide representations of the amplitude of the frequencies
in c. In certain applications obtaining a time-frequency plot of the signal is advantageous.
The spectrogram based short-time Fourier transform (figure 2.2) and DWT are used to
obtain time-frequency analyses of a signal. While the spectrogram provides information
about all the frequencies for different periods of time, the DWT provides a good time-
frequency localisation of the data by scaling the length of, and shifting the mother wavelet
over the signal under consideration [71]. The wavelets’ capability of providing good time
resolution at high frequencies and good frequency resolution at low frequencies has made
it a popular tool for medical signal processing [95] and compression algorithms. Em-
bedding a digital watermark in the wavelet transform domain of digital images has been
presented in various works. Listing all the publications and their contributions is beyond
the scope of this thesis. Hence a sample of works presented on watermark embedding

in multilevel wavelet decomposition [41, 98] of the host data and their contributions are
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mentioned. [98] discuss a watermark embedding method based on'the wavelet transform
which is resilient to collusion attacks. The work presented in [41] shows how an image
representing a watermark can be embedded into a host image, by utilising the properties
of the wavelet co-efficients obtained for multilevel wavelet decomposition of the host im-
age. They show that the watermark embedding method is robust to a variety of signal
processing distoritions (including JPEG, image cropping, sharpening, median filtering)
of the watermarked host image.

Each wavelet decomposition of the original signal halves the frequency and length of

the signal. The Haar wavelet function is defined as

1 for0<t< 1/2,
y()=<¢ —1 forl2<t<l, (2.4)

0 otherwise.

The filter co-efficients for the Haar function are shown in figure 2.5.
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Figure 2.5: The decomposition and reconstruction filters’ co-efficients of the Haar wavelet
y(r) defined above. a.Decomposition co-efficients of low pass filter b.Decomposition
co-efficients of high pass filter c.Reconstruction co-efficients of low pass filter
d.Reconstruction co-efficients of high pass filter.

The Haar function is a common choice to generate wavelets from time series data [74].
For time series data with continuous random changes the Haar wavelet is more suitable

for fast changing time-series such as an EEG compared to Daubechies wavelets, Mexican

34



Chapter 2 WATERMARKING SINGLE CHANNEL TIME-SERIES DATA

Hat wavelets and Morlet wavelets. The Daubechies; Mexican Hat and Morlet wavelet
algorithms are better suited for smoothly changing time series. The Haar wavelet is‘also
simple, fast and exactly reversible.

The Haar function y used as the mother wavelet generates a set of wavelets

Cap =2, c()Wap(t). (2.5)
N.mmp
where
1 r—7
Van(t) = "*\EW(T)» (2.6)

where a denotes the dilation index, b the translation index, s the scale factor and 7 the
displacement, and a and b are integers. The DWT is basically the application of a set of
filters (figure 2.5 (a) and (b)) to ¢ (figure 2.1) resulting in an approximate (,, and fine

detailed (, representation of c.
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Figure 2.6: Frequency content of the approximate and detail co-efficients.

Let (,,, denote the resulting signal obtained by the application of the filter shown
in figure 2.6 (a) to ¢. The filter is applied to each pair of samples of ¢, [¢;,¢;1] where
i € [1,Ngump|. Cu is the signal obtained by the downsampling of (,,, by a factor of 2.
Similarly, let G, . denote the resulting signal obtained by the application of the filter
shown in figure 2.6 (b) to ¢. As in the case of (,, the filter is applied to each pair of

samples of ¢. Alternate samples of (. . are used to obtain the signal (.

init
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Figure 2.6 gives the frequency spectrum of C, (top) and the frequency spectrum of
C» (below). These spectra are obtained by applying the Fourier transform to C, and G
respectively. The plots of figure 2.6 give an indication of the spectra of (; and (j but do
not identify the exact samples of ¢, and (, which correspond to a particular frequency
range. Hence in order to maintain a low distortion rate, k in the DWT method represents
a selection of samples of the detail co-efficients. Though the detail co-efficients are ba-
sically noise components, the main restriction for watermarking biomedical data, is to
maintain a very low distortion to ¢, hence the detail co-efficients and not the approximate
co-efficients are used to embed the watermark. The middle frequency components of the
signal can be obtained by successive application of the DWT transform which will be
explored in the next chapter. Applying the inverse of the wavelet transform (filters shown

in figure 2.5 (¢) and (d))to C» and C,, the watermarked cover € is obtained.

2.1.4 Principal component analysis

PCA is one of the most commonly used techniques in statistical data analysis, feature
extraction and data compression applications [42]. It is mathematically defined as an or-
thogonal linear transformation that transforms the data to a new coordinate system. The
first principal component gives the projection of the data with the largest variance. The
second greatest variance on the second coordinate, and so on. PCA is theoretically the
optimum transform for a given data in least square terms. A high dimensional data set is
transformed into a low dimensional data set which can be easily visualised by only retain-
ing a few components. PCA utilises the first and second order statistics of the data. The
redundancy of each variable of the input data is measured by calculating the covariance
matrix of the input data.

PCA of a given data set is based on the following assumption:
e Assumption on Linearity.
e Assumption on the statistical importance of mean and covariance.

Given a one-dimensional observation ¢ of length Ny, the data matrix Xpxn,,, is

constructed as follows. Let each row of X, x; represent an observation of length Nyq,.

X; = ¢[(i % Npow) + 1, .., (i = 1) % Npou ). (2.7)
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Figure 2.7: Percentage variance of each principal component of X.

where i=0,...,p— 1.
X =[xi5%2;5.. 5%, (2.8)

X with it’s mean subtracted is input to the PCA. Y represents the eigenvectors of
the covariance matrix XX, and C is the representation of X in the principal component

space.

C=YX. (2.9)

The eigenvectors with the largest eigenvalues correspond to the dimensions that have the
strongest correlations in the data set.

Figure 2.7 is the plot of the percentage variance of each principal component of X.
The first five principal components contain nearly 60% of the total variance of the input
data. Hence embedding the watermark in any of these five principal components preserves
the watermark after a compression attack. The 3’ principal component is chosen as it is
robust against compression and it does not contain the maximum information of ¢. Any
distortions to ¢ along this direction leads to an acceptable value of Dg,. k is hence
chosen from the representation of ¢ over the 3’ principal component. Figure 2.8 is the
spectra of the third principal component. It contains a large power in the low frequency
range supporting our argument that it is resilient to compression which typically removes

high frequency components.
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Figure 2.8: Frequency content of the 3" principal component.

The watermarked cover € can be obtained from the watermarked principal components

as

Y 'C—& (2.10)

At the decoder let us assume the principal components of X are derived by applying the

PCA to X derived from ¢&.

X @2.11)

The principal components thus obtained are, C where C 5 C. The embedded watermark
is thus lost. In order to retrieve the embedded watermark the basis vectors Y derived at

the encoder are required at the decoder.

2.1.5 Independent component analysis

ICA is a simple linear transformation [42]. Given p observation vectors
X = [x1;%X2;.. 5 Xp) (2.12)
the ICA estimates / statistically independent source vectors.

S=1Is;;80;..;8) (2.13)
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and the mixing matrix A ,y; where / < p, such that
X = AS. (2.14)

As a watermarking principle, the message is embedded in one, or several of the in-
dependent sources treated as basis vectors spanning the space. Bounkong et al. in their
paper [16] summarise the advantages of ICA compared to other transforms for water-

marking applications.
e Statistical independence of the resulting sources.
e Estimates of one source provides no information of other sources.

They underline two reasons why using independent components is favourable for wa-
termarking: the first is that the same framework may be applied to D = 1,2, 3-dimensional
covertexts (medical data), and so the same approach can be applied across different data |
modalities; The second is that in the context of watermarking, ICA allows the maximiza-
tion of the information content and minimization of the induced distortion by decompos-
ing the covertext into statistically independent sources. Information theoretical analysis
presented in [67] also shows that the information hiding capacity of statistically indepen-
dent sources is maximal.

Let S represent the / unknown independent sources and A the unknown random mix-
ing matrix such that X = AS. For the ICA to obtain a good estimate of Sand A, S and
A respectively, the rows of X representing the number of observation signals p > /. With
a one-dimensional observation ¢ of length Ny, this condition is not satisfied. X can be

constructed in one of two methods from ¢ described below.

e Non-overlapping segments of ¢ of length N,
X; = C[(i% Nugw) + 1,0, (i = 1) % Npgy | (2.15)
where i=0,...,p— 1.

e Delay Embedding of ¢ with delay of one sample between two successive delay

vectors, d; and d;;, embedding window size p,
d) =c¢[1,2,...,p], (2.16)
di=cli,....,p+i—1], (2.17)
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Figure 2.9: Synthetic data representing three independent sources.
where i = 2,...,N,,. The number of delay vectors N,,, = N, — EmbWin + 1.

X = {d];dz;...;d/\/m,]/. (2.18)

ICA applied to synthetic data

A demonstration with the help of synthetic data is provided to depict the result of ap-
plying ICA to an input matrix generated from a one-dimensional signal using equal non-‘
overlapping segments and, equal overlapping segments obtained using the delay embed-
ding method [101].

Figure 2.9 is an example set of three signals generated independently. Source ! is a
Gaussian pulse overlapped with a sine wave of 80Hz, source 2, a sine wave of 12.5Hz and
source 3, a low power random noise signal. These'signals are mixed using a 3x3 matrix of
random values to obtain three mixed signals called observations. One of the observations
is shown in figure 2.10. The frequency spectra of the observation signal and the three

independent signals are shown in figure 2.11 (anticlockwise from lower right). )
In order to obtain a comparison between the two methods of constructing the input

matrix X the size of the embedding window EmbWin was calculated. The window size

should be at least as large as the slowest frequency signal for the ICA to capture the
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Figure 2.10: One of the mixed observation signals.

underlying dynamics. Let f be the smallest frequency signal of the one-dimensional

observation, in this case 12.5Hz and f; the sampling frequency of the observation, 250Hz.
. [
EmbWin = ? * fy. . (2.19)

The value of EmbWin thus obtained is 20. The observation signal of length 2500 samples
when segmented using a window length of 20 gives 125 segments. Thus the input matrix
to the ICA 1s Xp0x125. The estimated sources are as shown in figure 2.12. Comparing
with the figure 2.9 it can be seen that the estimated sources do not represent the actual
sources.

The sources shown in figure 2.13 are obtained by applying the ICA to an input ma-
trix generated from ¢ using the delay embedding method, with a delay of 1 sample and
EmbWin=20. It can be observed that the estimated sources are a close approximation of
the underlying sources though some of the sources are replicated.

The delay embedding method of estimating sources is hence a better technique of

estimating the underlying sources.

ICA applied to single channel EEG data

The delay embedding method of creating the input matrix X from one-dimensional EEG,

cis used. The ICA is applied to X to estimate the sources and the probable mixing matrix.
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Figure 2.11: Frequency spectrum of the observation signal and the three sources respec-
tively (anticlockwise from lower right).
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Figure 2.12: Sources estimated by the [CA when the input matrix is constructed from
non-overlapping segments.

The separating matrix W is the inverse of the mixing matrix A.

EAVIEED (2.20)
W = inv(A). (2.21)

The rows of W represent the independent components. S is the projection of X over this
independent component space. One of the sources which represents the low and middle
frequency components of ¢ (see figure 2.14), s,,, is used and k is chosen randomly from

samples of s,,,, to embed the watermark.
?—m(swm(k): WM) — Sym- (222)

Multiplying A with the matrix containing the watermarked source §,,,, and the remaining
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Figure 2.13: Sources estimated by the ICA when the input matrix 1s constructed from
overlapping segments.

unwatermarked sources §, X is obtained.
X =AxS. (2.23)

Reconstructing the one-dimensional ¢ from X requires careful reordering of the sam-
ples. In the delay embedding method with a delay of one element, the elements of X on the
diagonal connecting from top right to bottom left are numerically the same. This remains
true for X except the values on columns represented by k. Hence & can be reconstructed

from X in one of two methods described below.

e Reconstruction of ¢: Method 1

¢ fori# [wm+k-1], (2.24)

o
Il

Xowm, fori=[wm+k-1].
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Figure 2.14: Frequency Content of One of the Estimated Sources.

This method demonstrates the advantages of the ICA mentioned above. Recovery
of the embedded watermark is possible only when the ICA estimates statistically
independent sources and the watermark is embedded in one such source. But the
ICA does not estimate statistically independent sources from every one-dimensional
time series data. This is because in most of the one-dimensional data (EEG) the
actual number of the underlying independent sources is unknown. Secondly, the
contribution of each independent source to ¢ might not be equal. Lastly the amount
of noise in the observation signal is not known. The ICA in most cases estimates

interesting components and not necessarily statistically independent components.

This method of reconstruction provides a low value of D, but does not always

result in zero reconstruction error of the watermark at the decoder.

e Reconstruction of ¢: Method 2
Since the sources are not statistically independent in most cases but merely interest-
ing, modification of one source disturbs the other sources. Secondly all the elements
across the diagonals connecting from top right to bottom left are the same so only
one element across each such diagonal may be modified. When more than one ele-

ment across the diagonal is watermarked parts of the embedded watermark will be
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lost at the embedder itself.

To maintain zero error reconstruction of the watermark at the decoder when the
attack =0, the following procedure is followed: S is divided into blocks of p
columns each. Let Npg represent the number of blocks of S. If p is a factor of

Ny, Nps = Ny / p else Nps = (Now)/p+ 1.
S=[S(1:p,1:p)S(1:p,p+1:2p)...S(1: p,Noy—p+1:Noy)] (2.25)

Let kg represent the elements of s,,,, that could be watermarked. One element of kg
is chosen from one of the blocks of S such that kg, — ks, , = p. k is chosen from K
and is therefore limited by the number of blocks. prN is reconstructed from S

v

watermarked as mentioned above. &; is obtained from X, as follows.

ov

X=[X(1:p,1:p)X(1:p,p+1:2p)...X(1:p,Noy—p+1:Np)]  (2.26)

¢n+(0:p—1)=X(1:p,n) (2.27)
where n =1,2,...,Nps.

This method of reconstruction provides a low &_as all the samples of s,,,,, cannot be
watermarked, and the value of Dg,,; is higher than in the reconstruction method 1
but the watermark can be retrieved at the decoder with zero error for limited 1. This
method satisfies the criteria of a biomedical watermarking system to a compared to
method 1 in terms of watermark retrieval with no error. Hence all the experiments

are conducted using this method.

As in the case of PCA, W is data dependent. Hence the same W is required at the decoder

to retrieve the embedded watermark [35].

2.2 Watermark Embedding Techniques

Though many different empirical and standard methods of watermark embedding exist

one watermark embedding technique, utilising lattice structures, Quantisation Index Mod-

ulation (QIM) based embedding technique is one of the most popular [2]. The watermark

embedding process is depicted in figure 2.15.
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Figure 2.15: Block diagram of a generic watermark embedding system.

2.2.1 Quantisation method

‘QIM’ refers to embedding information by first modulating an index or sequence of in-
dices with the embedded information and then quantising the host signal with the asso-
ciated quantiser or sequence of quantisers [20]. Quantisers are defined as a class of dis-
continuous, approximate-identity functions. 6 defines a quantisation index representing a
scalar quantiser.

For a binary watermark W M, QIM generates the watermarked host data ¢ as

_ ON,, IftWM; =0
&(ki) = (2.28)

SN,, if WM =1
where N, and N, are respectively even and odd integers and ¢(k;) is quantised to the
nearest ON, or dN,. In QIM based watermark embedding the parameter § defines the
position of the watermark on the trade-off triangle. For the embedded watermark to be

robust against an attack the value of & should be large and to comply with the distortion

constraint for D, the function 7, should be close to identity. At the decoder the nearest
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level decoding method is adopted to estimate the probable W M.

__ 0, if¥~0,
WM; = | (2.29)
I, if%~1.

2.3 Preliminary Experiments and Results

The EEG segments were drawn from 3 different datasets. One EEG showed no abnor-
malities. One EEG represented photosensitive epilepsy and the other was recorded for
a patient undergoing epileptic seizures (cause was not specified). A total of 70 different
one-dimensional EEG signals were used to conduct each of the experiments. Since each
EEG signal contained different band limited signals, to maintain uniformity the number
of quantisation levels used for QIM embedding and the number of watermark bits embed-
ded were kept constant. The bit error rate, dist and the distortion varied for each EEG.
The difference in the bit error rates were less than 5% and the distortion around 1% of the
dynamic range of the EEG signal.

Each EEG segment considered is of 100s duration, sampled at 250Hz with each sam-
ple represented as a 16bit unsigned integer. The various transforms of DFT, DCT, DWT,
PCA and ICA are applied to the single channel EEG. For the transforms of DFT, DCT
and DWT, ¢ is the one~-dimensional EEG of 100s. For PCA and ICA the one-dimensional
EEG is transformed into a matrix. As explained in [96] the EEG is segmented into non-
overlapping segments to form an input matrix for the PCA. In the case of ICA, since
non-overlapping segments constituting the input matrix do not result in sources which are
approximately close to the actual sources, the dynamical embedding method is applied.
The transformed co-efficients are watermarked as explained in the respective sections on
each transform for different rates of &. The value of 6 used is maintained constant. The
values of C obtained for each transform have different dynamic ranges. Therefore for
experimental purposes and to obtain a comparison of the different methods 6 is chosen
based on a fixed number of quantisation levels equal to 195. The watermark detection is
as shown in figure 2.16.

Medical signals are not likely to be subject to the same type of malicious attack as,
say, downloaded music or video files. However attacks such as pre-signal processing, or
downsampling of large data files to allow more efficient data transmission could be an

issue. The robustness of the watermark is verified against different attacks such as low
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Figure 2.16: Block diagram of a generic watermark detection system.

pass filtering, addition of Gaussian noise, different sampling rates and compression. The
decoding for each watermarking technique is conducted as explained in the section on
QIM and the resulting value of the bit error rate, dist is plotted for each method.

Figure 2.17 is a plot of dist versus & of the embedded WM. This value of R is a
percentage of the total length of C available to embed the WM.

The message can be reconstructed without error in the case of DFT and DCT since
these transforms provide the spectral information of ¢ and the samples of k chosen for
these methods are clearly within the passband of the filter used as an attack. C in the
PCA method has a wide-band frequency representation but has more low frequency com-
ponents compared to the value of C obtained in the DWT and ICA methods. Though
the DWT and the ICA method do not provide the spectral information of ¢ leading to a
higher dist compared to the DFT and DCT methods they are advantageous in an eHealth
system application. The DWT and ICA methods produce mutliple non-interfering signals
required to embed multiple watermarks. This feature cannot be obtained by applying the
DFT or the DCT transform to a one-dimensional signal.

Figures 2.18, 2.19, 2.20, 2.22 show the bit error rates of the retrieved watermarks (5
watermarks are embedded using DFT, DCT, DWT, PCA and ICA based methods) for

different sampling rates, low pass filtering, addition of Gaussian noise and compression
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Figure 2.17: Comparison of robustness of W M embedding methods (DFT, DCT, DWT,
PCA and ICA) for different &_against a filter attack.

attacks respectively. The x-axis represents the ratio of the watermark signal to the strength
of the attack. It is given by z%% It is represented as watermark to noise ratio. The y-axis
is the bit error rate defined as dist. It can be seen that the bit error rate is less than
15% for the sampling, compression and noise attacks. This error rate could be corrected
with the use of error correcting codes [53]. Applying error correction and verifying the
best error correcting code is beyond the work produced in this thesis and is therefore not
investigated. The performance of the PCA and ICA methods is greater than 15% for the
low pass filter attack.

The EEG signals used for the experiments were encoded using 16 bit unsigned integer
format. The watermarked EEG was requantised such the number of bits per sample varied
from 6 to 14. The result of this decreasing encoding rate on the embedded watermark was
verified. The results are shown in figure 2.18. The bit error rate was plotted against the
watermark to noise ratio (noise here represents the distortion to the watermarked EEG

being encoded using a lower number of bits). It can be seen that the performance of all
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the transform based methods is nearly the same.
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Figure 2.18: Comparison of robustness of WM embedding methods (DFT, DCT, DWT,
PCA and ICA) for different sampling rates.

The low pass filter used is a Butterworth filter of order 4. The Butterworth filter was
used as it has a good allround performance and better rate of attenuation [82]. The order
of the filter was varied from 2 to 10 and the results noted. There was a difference of less
than 5% in the bit error rate obtained for different order filters. Since the samples used
to embed the watermark are chosen randomly, different iterations give slightly varying
results but as the difference is less than 5%, it has been ignored. The results (figure 2.19)
presented in this chapter are for a Butterworth filter of order 7. The performances of
the DFT, DCT and DWT based methods are similar. This is because the transform co-
efficients of these three methods contained similar spectra. The performance of the the
ICA and PCA based methods is worser because the spectra of the co-efficients used to
embed the watermark in these methods contained higher frequencies.

Additive Gaussian noise is also added to the watermarked EEG to test the robustness

of the embedded watermark. The variance of the Gaussian noise is increased from 0 to
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Figure 2.19: Comparison of robustness of WM embedding methods (DFT, DCT, DWT,

PCA and ICA)against low pass filtering attack for different cut-off frequencies of a low
pass Butterworth filter.

3.5. From figure 2.20 it can be seen that the performance of the DFT based method is
comparatively worser. This is due to the spectra of the DFT co-efficients used to embed
the watermark having lower frequencies compared to the co-efficients obtained for the
DCT, DWT, PCA and ICA based methods.

EEG compression techniques have been described in [5, 14, 63]. Hence in order to
study the effects of compression, the single channel EEG embedded with the watermarks
is modelled as an AR process of different orders from 1 to 6. Let N represent the order of
the AR process. The Levinson-Durbin method of recursion, LPC [7] is used to compute an
N-th order forward linear prediction polynomial represented by A. ‘The Levinson-Durbin
method provides a big saving in the number of operations (multiplications or divisions)
and storage locations compared to other standard methods such as the Gauss elimination
method’ [39]. Hence we use the Levinsion-Durbin method of representing the EEG as an
AR process.

AL & (2.30)
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Figure 2.20: Comparison of robustness of WM embedding methods (DFT, DCT, DWT,
PCA and ICA) for different levels of additive noise.

Let €, represent the n-th predicted future value of ¢(1,...,n—1). Given polynomial A

and N samples of ¢(1,...,n— 1), €,(n) is obtained as follows.
Ep(n) = —AQ2)xE(n—1)=A(3)*E(n—2) — ... —A(N+1)*&(n—N). (2.31)
Let e, represent the predicted error
ep(n) =¢&(n) —¢p(n). (2.32)

The high valued 16 bits per sample & was converted to a representation of the low valued,
variable length format e,, obtained from the AR process to obtain a saving in length.
Figure 2.21 shows the bit error rate obtained when the watermarked EEG is com-
pressed by modelling it as an AR process of orders 1 to 10. The EEG signal was water-
marked using the DWT based method (other transform based domain methods were also
tested). The order of the AR process did not change the bit error rate significantly nor

was there a particular order to the bit error rates. This is due the random selection of the
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samples used to embed the watermark. So the attack on the watermarked content was

designed by representing the error co-efficients using different bit rates.
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Figure 2.21: Comparison of robustness of WM embedding methods (DWT) for different
levels of compression using LPC of different orders.

The error co-efficients were represented using different rates from 6 bits to 14 bits
giving a compression of 37% to 87%. Since the compression obtained is based on the
number of bits used to encode each sample of the error co-efficients, the order of the AR
process used was 6. The bit error rate is obtained for different compression rates and is
represented as the watermark to noise (noise here is the compression) ratio.

Figure 2.23 is the distortion to ¢ due to the embedded WM. This distortion is plot-
ted for the value of R of the WM recovered with smallest error rate. The distortion is
calculated using the mean square error (discussed in chapter 1) between ¢ and €. The
fidelity remains high for message embedding data rates of a few bits per second, and this
translates to an insignificant perceptual change of the observed transmitted signal when
reviewed by the clinician. The maximum distortion for any given transform equates to a

few microvolts. Typical magnitudes of recorded EEG are in the range of tens-hundreds
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Figure 2.22: Comparison of robustness of WM embedding methods (DFT, DCT, DWT,
PCA and ICA) for different levels of compression.

of microvolts.

Figure 2.24 depicts a histogram showing the distribution of the mean absolute devi-
ation induced by running the watermarking process (ICA method) one thousand times.
Again, this figure confirms that the distortion over a wide range of embeddings is re-

stricted to a few microvolts.
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2.4 Conclusion

From figures 2.17, 2.18, 2.19, 2.20, 2.22, and 2.23, the trade-off between the three char-
acteristics of robustness, imperceptibility and data rate are obvious. As the value of & is
increased the robustness decreases. If the robustness of a method is high, the impercepti-
bility is low. From the discussion on the derivation of C using the various transforms it is
realised that the possibility of embedding multiple watermarks of differing requirements
of robustness and security in a single channel time series data is possible by using the
DWT, PCA and ICA methods. The DFT and DCT methods provide a one-dimensional C
for a one-dimensional ¢. Embedding multiple watermarks in these domains needs careful
segmentation of C so as to ensure that the multiple watermarks are not overwritten by one
another. This problem does not exist in the embedding methods based on DWT, PCA and
ICA as they provide multiple orthogonal/independent channels as output.

The transform co-efficients of DWT are fixed and independent of the data while both
PCA and ICA are data dependent. The advantage of ICA over PCA is, the output of
the ICA, the estimated sources are independent of each other and hence non-interfering.
Embedding information in one of the source will not modify or distort the information
content of the other sources.

In the next chapter the security of QIM based watermark embedding techniques (scalar
and dither modulation(DM)-QIM) is investigated for watermarks embedded in the DWT

and ICA based watermarking systems.
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Chapter 3 SECURITY OF SCALAR QIM AND DM-QIM

In this chapter the established notion in watermarking literature, that the commonly
used QIM based watermark embedding method is secure, will be challenged. In chapter
2, different signal processing techniques were applied on the watermarked cover, ¢ to
verify the robustness of the message. The robustness of the watermark is measured by
applying an attack, m}, which represents a signal processing technique applied to €. The
characteristics of the embedding function, Fy, is measured on the trade-off between the
three properties of robustness, imperceptibility and data rate but the security offered by
Fon to the embedded message, m has rarely been explored in many works.

It was seen in chapter 2 that unlike the DFT, DCT and DWT where the transform
coefficients are fixed, the PCA and ICA methods derive their basis vectors from the input
data. In an information hiding application the hidden message, m distorts the cover work,
¢. Therefore, the distortion to the cover work Dgp 18 maintained to be under a threshold
value. This threshold is defined based on the application of the watermark. The basis
vectors derived in the PCA and ICA methods from ¢ and the attacked watermarked cover,
¢ differ to an extent that the watermark retrieved at the decoder m 4 m. Hence the basis
vectors used at the embedder are required at the decoder to retrieve an estimate of the em-
bedded message such that m ~ m. This extra information which needs to be transmitted
securely to the decoder is an extra payload but this extra payload could prevent illegal
data snooping.

QIM is currently the most popular method of embedding information. There are
nearly 770 papers on watermark embedding utilising the basic/modified versions of QIM
techniques presented in the last 8 years [2]. The watermark embedding technique in chap-
ter 2 was based on QIM techniques. In this chapter the security of QIM based embedding
techniques to messages embedded in time series data is tested. We ask ‘How close can
an attacker get to recovering the message, given she knows the method and key factors
such as segmentation blocking?” An attacker who intercepts ¢ can use their knowledge of
similar ¢ to derive their own estimates of the basis vectors and obtain the projections of €
over these basis vectors. Assuming that the attacker knows Fm, she constructs my,, but
using her estimates of the projections. Will g, ~ m? How sensitive is the ICA method
to changes in ¢? Will this sensitivity allow the discovery of the message by a third party
having access to only &7

The main aim of this chapter is to investigate a secure method of providing patient

privacy in the EPHR. Watermarking of biomedical data with the personal information in a
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medical record is currently the best possible method to ensure that the sensitive personal
information is secure. Therefore assessing the security of the embedding method and
finding the answers to the above questions is critical to any system implementation.

The embedding of the watermark is achieved in the transform domain of the time
series data namely using DWT and ICA. Although a number of variants of the QIM
method exist, the security of the two most commonly used of them, scalar QIM and Dither
Modulation (DM) QIM are investigated. An investigation of the additional security of the
embedded message due to the sensitivity of the recovered messages to slight variations
in the structure of the independent components, or knowledge of which components have
been modified - a topic not previously considered, and which augments any cryptographic

approach for security will also be conducted.

3.1 Key Security

In an EPHR wherein the embedded messages (for example, details of personnel who have
accessed the record) are used as a log of access, an unauthorised person who has accessed
the record will attempt to delete her access details. Therefore finding the secret key used
in the embedding of the messages makes it possible to erase the hidden message (water-
mark) without distorting the watermarked content to a large extent. Since the personal
information relating an individual to an EPHR requires a high level of security, it can be
further secured by encrypting it using suitable encryption methods such as RSA [89]. In
the event, the attacker has gained access to the secret key used in the watermark embed-
ding method and has retrieved the embedded message without error, if the watermarks
were encrypted prior to the embedding then the unauthorised user (attacker) will need
extra keys to obtain the true hidden message. There exists considerable literature on cryp-
tography and exploring suitable encryption methods is beyond the scope of this thests,
hence we do not consider any encryption of the data.

The work presented in this chapter is based on the assumption that the cover data
contains embedded messages. The security of hidden data is provided by the use of secret
embedding keys. Kalker’s [50] definition of watermarking security which he explains as
the inability of unauthorised users to remove, detect and estimate, write or modify the
raw watermarking bits, forms the basis on which the security of QIM based watermark

embedding techniques are assessed in the work presented in this chapter. The concept
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of key security for QIM based watermarking has been investigated by various authors
[50, 40, 10, 18, 76, 31, 75].

Overwriting the information in the watermarked cover to partially or completely de-
stroy the original information is possible if %y, is known. Even if the exact k is not
known, it is possible to destroy m by randomly overwriting ¢ to a large extent. Cox et al
[25] claim that O( \/m) similar watermarks must be added to € to destroy the original
watermark. In the work presented by them k represents the number of most perceptually
significant frequency components of an image’s discrete cosine transform used to embed
the original watermark. The watermark used in their experiments is a sequence of real
numbers drawn from a Gaussian distribution. But this method has a serious disadvantage.
The possibility of the attacker’s message destroying the usability of ¢ increases. Any ben-
efit that the attacker may wish to gain will be lost. Hence a method of estimating k is
necessary in order to destroy or overwrite m and still maintain the viability of ¢ for use.
The security of the message content is considered to be assured since it lies hidden in the
host signal distributed randomly and the random distribution pattern is known only to the
owner of the host signal.

Cayre et. al. [18] state that it is possible to guess certain information about the secret
key from the watermarked content. They define this term as information leakage and show
that information leakage can be quantified by measures such as mutual information. Cayre
et al [ 18] grouped the attacks by using the Diffie and Hellman methodology for security of
cryptographic systems, on watermarked content as (1) Watermarked only attack (WOA)
- wherein the attacker has access to a set of watermarked host data. (2) Known-message
attack (KMA)- where the attacker has access to a set of watermarked content and the
associate messages. (3) Known-original attack (KOA), where the attacker has access to
both the watermarked content and the original unwatermarked content. Using tools from
information theory various measures to estimate information leakage about the secret key
from the observable data have also been discussed in the paper.

Cayre and Bas [31] state that ‘an embedding function is key secure if it is impossible
to estimate the secret key, even if the secret subspace to which the secret key belongs can
be estimated. Knowledge of the secret subspace reduces the uncertainty of the secret key
and therefore the security of the secret key is dependent on the number of possible keys
that can be obtained in the subspace’.

An in-depth estimation of the secret key for spread spectrum based watermarking
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methods for the WOA class of attacks can be found in ([31]). Pérez-Friere et al [75] have
presented an extensive analysis of lattice-based data hiding methods. The work presented
in ([76]) is based on the assumption that the attacker has access to several copies of the
data watermarked with the same secret key. For the DM-QIM watermarking technique,
Bas and Hurri ([10]) showed how, under some assumptions on image statistics and spar-
sity of coding, the watermarked pixel locations can be estimated for images by using
an independent component analysis approach. This latter method relies on the DM sig-
nal being independent of the image statistics and so an independent component analysis
should isolate the watermark in one of the independent components. This is probably one
of the most efficient current attacks. It relies on assumptions of independence of the DM
watermark embedding method from the natural image statistics, and hence can be circum-
vented by making the watermark embedding dependent on the image statistics. Though
sufficient literature exists on the importance of key security for lattice based watermark-
ing techniques, except for the work presented in [10], the work is theoritical. We could
not find any references related to the investigation of key security applied to time series
data.

The work presented by Giakoumaki et. al [33] uses this concept of the secret embed-
ding keys to show that the watermarking method adopted by them for biomedical images
is secure. We use the same embedding method to show how the DM-QIM watermark
embedding method is insecure.

Messages are embedded in time series data using the embedding method presented
in [33]. A method to find the secret embedding keys thus enabling the modification of
the watermarked samples is presented. The experiments are based on the well known
Kerckhoffs® principle that states that the security of the communication process is based
on the secret key. It is assumed that the attacker knows everything about the communi-
cation process. In this chapter an efficient distribution-independent approach to attacking
watermarks embedded using transform domain based approaches and DM-QIM embed-
ding techniques, using principles from information theory ([61]) and neural networks
([13, 68]) is proposed. It employs a method to estimate the probable location of the hid-
den information when only a single copy of the watermarked content, an extreme case of
the WOA class of attacks, for the discrete wavelet transform (DWT) domain and indepen-
dent component analysis based DM-QIM watermarking methods. The paper illustrates

the fallibility of DM-QIM for time series data. We show that the embedded method used
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in [33] is insecure.

3.2 Design of a Biomedical Watermarking System

The response of the Human Audio/ Visual System (HA/VS) is usually relied upon for ef-
ficient concealment of data (watermark) within other data (cover). Watermark embedding
is done such that it is imperceptible to the HA/VS but can be read by systems designed to
trace its presence and possibly retrieve it from a given cover work. A robust watermark
is one which tends to survive combinations of signal processing attacks while a fragile -
watermark is highly sensitive to any signal processing technique. In most cases, the ro-
bust watermark is used to prove ownership while the fragile watermark is used to prove
the extent of the attack. The robust watermark will therefore be embedded in locations
of the cover text which carry vital and significant information which result in low data
rate (length of the watermark). Any random attack to destroy the robust watermark will
automatically destroy the use of the cover work completely. Precise knowledge of the
location of the robust watermark in the cover work is hence necessary to destroy it and
maintain the quality of the cover work.

A watermarking system is thus designed by an appropriate choice of domain (time,
frequency) of the cover work, the transform used and the embedding technique for a given
range of attacks (compression, filtering, scaling, cropping, rotation, additive noise) based
on the application and use of the embedded information.

Figure 3.1 depicts a two-tier approach to designing a secure watermarking method.
Tier-1, the section denoting encryption of the message before embedding is optional. The
second part, tier Il shows a watermarking system. The watermark and the cover work
are input to the watermark embedder for watermark embedding. The watermarked cover
is transmitted wherein it is corrupted due to unintentional signal processing methods or
intentional attacks. The watermark decoder uses the secret keys to detect the embedded
message which could be decrypted (if it was encrypted before embedding). Chapter 2
demonstrated that the DWT, PCA and ICA provide non-interfering channels to embedding
multiple watermarks. Since PCA and ICA are both data dependent transforms and use
of ICA is advantageous compared to PCA (chapter 2), multiple watermarks embedding
using DWT and ICA methods and QIM based embedding techniques are investigated.

The design of the multiple watermarks embedding system using DWT or ICA was based
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Figure 3.1: Two Tier Approach of Providing
Security to Medical Records.

on the trade-off of the three properties of the watermark: robustness, imperceptibility and
data rate. Unlike audio/speech watermarking there exists no particular model to test for
the distortion to the medical data due to the embedded information. Since the results
of medical tests such as EEG, X-Ray images are viewed by the clinician to perform a
diagnosis, quantitative measures such as the mean square error discussed in chapter 1 will
be used to estimate the distortion. Security of the watermarking system is relied on the
secret keys used to embed the watermark. It will be shown that the secret key is vulnerable

to estimation attacks and that an attacker could rewrite the entire embedded watermark.

3.21 Watermark embedding

The host signal/cover ¢ is converted from the spatial domain to a transform domain repre-
sentation ( using a suitable transform denoted by 7. Given ¢ of length N, the length

of C is given by N, where N, is defined by 7" and N.. < Nygp),.
T(c)— C. (3.1)

The transforms applied to the data include DWT and ICA in this chapter. The watermark

embedding is as shown in figure 2.15. A watermark used for copyright purposes requires
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the highest level of robustness against any further signal processing. It therefore needs to
be embedded in selected co-efficients of C that contain significant information of ¢. This
ensures that the embedded watermark is preserved after any compression of €.

In the DWT method the watermark is embedded in the detail co-efficients obtained
for the fourth level of decomposition for the time series data. Since the work presented in
this chapter is an analysis of the key security of the watermarking algorithm presented in
[33], the choice of wavelets and the watermark embedding technique based on the DWT
method derived is the same as presented by Giakoumaki et. al. The authors provide
proof showing that the detail co-efficients chosen contain significant energy (information
content of ¢) to survive compression attacks. But these co-efficients do not contain the
maximum information content of ¢ that any distortion to these components results in a
large Dg,,5. The method used to quantify the energy content was tested and the results
obtained for the choice of coefficients were similar to that presented by Giakoumaki et.
al. More details of the experiments and the results are presented in the results section.

In the ICA method the watermark is embedded in the samples of one of the sources
estimated from the cover work (time series) which represents a broadband though infor-

mative source of ¢.

3.2.2 Watermark generation, QIM and Watermark embedding using QIM

The embedded watermark in the following experiments is a binary string of length Ny s <
N, generated randomly by the owner of ¢ or the binary representation of textual informa-
tion. Each bit of this binary string is used to modulate one sample of C. Let K represent

a set of elements of C which are robust to a defined attack, such as compression. Let

The WM is embedded in one of the subsets chosen randomly, referred to as k. This vector
representing the location of the chosen samples is the secret embedding key.

The QIM method of WM embedding has already been defined in previous chapters.
‘QIM’ refers to embedding information by first modulating an index or sequence of in-
dices with the embedded information and then quantising the host signal with the associ-
ated quantiser or sequence of quantisers [20]. Quantisation index modulation generates

the watermarked ¢, C.
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Applying the inverse of 7 to C the watermarked host signal is obtained.
T ) =&, (3.2)

where € is the watermarked host signal. Dither Modulation (DM) QIM adds a dither
signal o to C(k) to further secure m. The distortion to ¢ due to the W M represented as
Db 1s obtained as

Dgmp = € —C. (33)

The security of the watermarking system is largely dependent on k as mentioned ear-
lier, since an estimation of even 75% of k can lead to loss of copyright as the attacker can
overwrite the embedded WM.

All the following experiments are based on the assumption that the attacker knows
everything about the system except the keys which are k and 8. The attacker’s challenge

is to estimate k and & sufficiently close to allow isolation of m.

3.2.3 Data and experiment

The data used is a one-dimensional time series data (single channel EEG sampled at
250Hz as shown in figure 3.2(top)) . The example data (time series) was transformed us-
ing both DWT and ICA approaches. The co-efficients obtained after transformation were
watermarked by a random binary signal. The watermarked data was tested for robust-
ness and imperceptibility for different values of 8 against compression, low pass filtering,
noise and varying sampling rates.

The data from the attacked watermarked cover, figure 3.2 (middle), ¢ is used for fur-
ther experiments on testing the security of the QIM based embedding techniques. fig-
ure 3.2 shows the difference between the original EEG and the attacked watermarked
EEG, the attack shown is a compression of the EEG signal. It can be seen that the distor-
tion to the original EEG due to the watermark and the attack is minimal. The distortion
due to the various attacks has been discussed in chapter 2, hence it has not been repeated.
First the security of the DWT method using QIM based embedding will be examined,
since, the transform co-efficients in the DWT Tpwr are fixed. ¢ Towr C. ‘Ipwr need
not be stored or transmitted to the decoder unlike the ICA method where the exact W

estimated at the embedder is required at the decoder for m ~ m when 1 is zero.
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Figure 3.2: Single channel EEG (above), watermarked EEG after compression (below).
3.3 Estimation of the Secret Embedding Key, k

Estimation of the indices of the samples of  used to embed the watermark is dependent
on the estimation of d. This is because the watermarked samples lie on quantiser levels
represented by multiples of . By estimating d, the quantiser levels can be generated

which in turn help estimate k.

3.3.1 Finding the quantisation index, o

The robustness provided by the embedding technique based on QIM to the embedded
WM is evaluated by subjecting ¢ to different signal processing attacks 1. We assume that

¢ is additively modified by n where the modification is represented by &.
¢+e.—C. (3.4)

The level of degradation of the estimated WM recovered from ¢ gives a measure of the
effectiveness of a particular embedding technique. While a large & provides more robust-
ness and increases Dg,,, to a higher extent, a small & decreases Dg,,, but makes the WM
fragile (figure 3.3).

Figure 3.3 is a plot of the measure of the bit error rate dist calculated with reference

to the WM retrieved from ¢ (time series data) subjected to two different signal processing
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Figure 3.3: Bit error rates of the reconstructed WM for different quantisation indices
against two different attacks.

attacks of differing filtering strengths. It can be seen from the results that for the mild
attack (LPC compression which allows signal components of most frequencies of ¢) a
smaller value of & is sufficient to reconstruct the message but for a severe attack (Butter-
worth low pass filter of order 7, and normalised cut-off frequency 0.75Hz) a larger value
of & is required to obtain dist = 0.

Figure 3.4 is the plot of the detail co-efficients obtained for the fourth level DWT
decomposition of the one-dimensional EEG signal. Let S be the size of each bin of the
histogram and B the total number of bins. Then the number of samples of C in each bin

represented by b is obtained as follows. So

c_ max(C) —min(C)
a B

(3.5)

and,

Nb:[n7in(C)+S*(b—l),..Jnin(C)-FS*b]. (3.6)

where b € {1,Ny}.
The figure 3.4 hence represents the distribution of the elements of C and not the
structure of the lattice of quantisers on which the elements of C lie.

Therefore they provide negligible information about the value of 3. Chandrashekar et
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Figure 3.4: Histogram of detail co-efficients of fourth level decomposition of one-
dimensional EEG.

al [91] commented that the co-efficients of a transform (they tested the DCT co-efficients
obtained for image data) lie centred around zero when they are not watermarked but when
they are watermarked they are centred around multiples of 8. By using a low data rate the
presence of the WM in a cover work can be disguised. Hiding watermarks by containing
the data rate is also discussed in [92]. They surmise that by limiting X a zero divergence
between the ¢ and ¢ can be achieved. Distinguishing ¢ from ¢ in such a case is not possible.
They conclude that for QIM based embedding in Gaussian covers watermarking a third
of the coefficients available to carry the watermark, result in zero divergence, for 90% of
¢. Johnson et al in their book on information hiding [47], also use histograms to detect
the presence of embedded messages in images. They use the differences of adjacent
histogram values to predict hidden content. It can be seen from these histograms the
distribution of  and probable clues about hidden information, but not probable values of
d.

Let A = [d1,d2,...] represent the spacing of the lattice on which all the elements of
C lie. Watermark embedding using QIM alters the structure of this A lattice. C(k) will
instead lie on a lattice defined by & and further randomised by o(k). Let I' denote the

combined lattice structure of A and 8, I' = [y1,V2,...]. Since access to ¢ and not ¢ is pro-
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vided, the histogram in figure 3.5 which depicts the representation of C on the 7 lattice is

derived as follows:

1. T(@)— C.

2. Sort the samples of C.

3..diff(j)=C(i+1)- C(i) where i = 1 to length(C) and j € {1,length(C) —1}.
4. Plot the histogram of dif f.

Similar to the histogram in figure 3.4 , let Sy be the size of each bin of the new his-
togram shown in figure 3.5. N, represents the number of elements of diff in each bin

by.
¥ 5, = max(diff) [; min(diff) ) (3.7)

Ny, = [min(dif f)+ Sy (b— 1),...,m}7n(diff)+SY*b]. (3.8)

The histograms observed in figures 3.4 and 3.5, vary largely because the two sets of plots
represent different characteristics of C for the time series data.
The changes in the histogram when Ny sy is varied are also distinct. When Ny is

more than 90% of N, the histogram resembles an impulse function. This is because

" ~ & and almost 90% of the elements in dif / will have the same value. The mean of the

elements of di ff in this case will be close to 6.

For ¢ to be viable for use, the value of D, + € must be as small as possible. Since
the value of 1 cannot be controlled, in QIM based watermark embedding the parame-
ter & defines the position of the watermark on the trade-off triangle. For the embedded
watermark to be robust against an attack the value of & should be large and to comply
with the distortion constraint for Dg,», the function F,, should be close to the identity
mapping implying & ~ A. The elements of C will therefore lic on the grid defined by
I = [y1,%2,...]. Therefore the histogram of diff (figure 3.5) can be used to obtain an
approximate estimation of 6 used at the embedder say 5.

Since ¢ is distorted by a value €, before and, during transmission C is also distorted.

Let us represent this distortion as €.

§ e =& (3.9)
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Figure 3.5: Histogram of differences between successive sorted detail co-efficients of
fourth level decomposition of one-dimensional EEG for different data rates.
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Cheqr=C. (3.10)
C(k) C(k) .
(T)S#(T)S- (3.11)

Separating a quantiser level defined by & from a quantiser level defined by A in I" and

calculating the effect of o (in case of DM-QIM) on a particular i}- is not possible. Hence
grids of & on C where 8= [0,...,0]. v defines the value of & beyond which the length of
k remains constant are applied. Quantifying the value of 1y and the resulting €. for each
¢; and consequently a/ is not possible. Hence k is an estimate of the samples of C which
lie in the range € of multiples of 5. € is defined to be a fraction of the dynamic range of
C. This is because € is estimated to be of a value that will not shift C(k) to adjascent
(incorrect) quantiser levels. A large € will estimate a large number of true positives and
false positives while a small € will estimate a small number of true positives and false
positives. A
R,,:[j:@ge], (3.12)
)
where  denotes an index € {1,Length(8)} and j € {1,Length(C)}. The length of ki,

varies as follows:
I Ifd< 86— length of k, spans the length of C.

2. 1f the value of & increases the length of k, decreases. This is because the number of

quantiser levels decreases.

3. When & ~ & the length of k,, increases. This is because C(K) will lie around the

lattice of 8. This is the estimated value of & represented as &.
4. As the value of & > & the length of k, decreases.

5. As the value of & > & the length of lA(“ tends to a constant. This value of & after

which the length of R,, does not change defines v.

This can be seen in figure 3.6 which is a plot of the the estimated k for each value of 3.

3.3.2 Estimation of the probable quantisation index, o
Method |

To estimate the probable value of & from figure 3.6, applying a baseline correction to the

contour of figure 3.6 is necessary. This is to nullify the effect of the value of & on the
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Figure 3.6: k for different values of 5.

estimation of k already mentioned. When & approaches the true value of 8, the number

of samples of C, satisfying the condition in equation ( 3.12) increases, thus increasing

the tength of k. As d diverges from the true value of 8, the number of samples of Cu

satisfying the condition in equation 3.12 decreases, in turn decreasing the length of k.

But the number of points at which the baseline is corrected will affect the estimation of .

An automated decision on the number of baseline correction points is not possible. Hence

the area of each peak is calculated instead. This is done as follows:

Consider the contour of the plot denoting the estimated k for different values of 8.
The contour of the plot in figure 3.6 decreases with increasing § as explained above

with peaks observed for certain values of & Figure 3.7 (a).

Since there exist multiple peaks, estimating the total number of peaks and the largest
peak (which indicates the probable value of &) among them is required to estimate
the value of . This is done by finding all the minima of the contour plot of figure

3.7 (b). A peak is defined as the largest value of k between two consecutive minima.

To estimate the largest peak among all the peaks identified, the area between each
pair of consecutive minima is calculated. Baseline correction is achieved by inter-
polating the x-axis representing the distance between the minimal points. That is,
straight lines are drawn to connect each pair of consecutive minima as shown in

figure 3.7 (c).

73




Chapter 3

SECURITY OF SCALAR QIM AND DM-QIM

e The area between each pair of consecutive minima is calculated figure 3.7(d).
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Figure 3.7: Estimation of & and k.

The curve with the highest area denotes the value of & closest to 8, 8. From figure 3.7,
§ is 30.2. The value of & used at the embedder is 30.27. The quantised samples were

randomised using a dither signal of A/(0,1).

Method Hi

To automate the process of detecting the likely value of & used, we seek a maximum-
likelihood-estimator. We use a simple model of a Cauchy-Lorentz distribution for the
local distortions induced by the hidden message which is optimised assuming the data
samples are i.i.d. aThe location parameter that maximises the likelihood of the data being
represented by a Cauchy distribution indicates the most likely value of d.

b(d) is the plot shown in figure 3.6. b(9) arises from the reciprocal nature of the level
spacing and the distribution of signal values and distorts the structure due to the hidden

message. Therefore in the automated process this baseline effect is first removed before
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the distribution modelling is performed. We use a thin-plate spline approach using knots
determined by locally minimum values so as not to interpolate the structure. Once the
background has been removed, the resulting distribution is analysed automatically for a
point estimator of the most likely 6.

Specifically, we assume that the likelihood of the sampled data K = {k(i),i=1,...,N}
P(K|8) given the the parameter set 8 = (d,I) (in the case of the Cauchy distribution
assumed here, this equates to the location parameter d and a halfwidth parameter I') is
simply [T, P(k:]0).

Assuming a functional form for P(k;|0) as a Cauchy distribution parameterised by
location d and width T, gradient optimisation of the likelihood based on the data can be
performed to return the most likely parameter choice of location d and hence an estimate
of &.

This approach has no prior information on the distribution of the parameters, and so it
assumes P(0) = 1, which is of course generally incorrect since we often know something
about the location and the width parameters. If we have some knowledge on these param-

eters then we can consider estimating the posterior distribution of the model parameters

given the data.

P(B|K) = P(K|0)P(8)/P(K) (3.13)

Since the prior over the data P(K) does not depend on the model, it can be neglected in the

optimisation process. So, although we can extend the method to consider a more Bayesian
approach to estimating § if we have additional knowledge on the parameter priors, for the
problem considered here across many signal examples we have found that the direct MLE
approach provides a simple and robust point estimate of the useful 8.

Figure 3.8 shows the result of the estimation of the probable quantisation index S using
the MLE method. The value of & is estimated by the & at which the peak is obtained.

For the example file shown in Figure 3.6 for illustration, and from Figure 3.8, §is30.2.
The value of & used at the embedder for this case was 30.27. The guantised samples were
also randomised using a dither signal of AL(0,1). It can be seen that both the estimation

methods result in the same value of probable quantisation index.
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50

Figure 3.8: Estimation of & and k.

3.4 Estimation of the Secret Key, k, DWT Based Approach

In this section the evidence of how to determine k is presented based on the theory dis-

cussed in section 3.3.

3.4.1 Watermark embedding using DWT

The aim is to estimate k from &, watermarked to contain a single watermark requiring a
high level of robustness against a compression attack.

The detail co-efficients of the fourth level decomposition of the DWT applied to the
EEG represent K in this experiment. k € K are used to embed the WM. The DWT trans-
form is applied to ¢ to obtain the first level decomposition, the approximate co-efficients
C, and the detail co-efficients G of ¢. The application of the wavelet filters to obtain a

multiple level decomposition of ¢ has been discussed in chapter 2.

3.4.2 Watermark detection

The watermarked time series data is subjected to compression attacks as mentioned in
section 3.2.3. ¢ obtained in each case is processed to obtain the corresponding C. The

experiments detailed in section 3.3 are conducted on the derived C to find §. An estimate
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of the probable watermarked samples k is the k obtained for 8.

o«»] oy

k=[j: < <e. (3.14)

3.4.3 Results

The histogram of  is obtained for the time series data as explained in section 3.3. The

histogram provides the possible range of & to be applied to ( to estimate & and k.

Scalar QIM

& is varied from zero to the value representing the significant range of the histogram
shown in figure 3.5 for the time series data. Estimation of & and k is conducted for two
different values of €. € = 0.01 % == '"w( ) and £ = 0.02 x 21E) "m‘( ) The accuracy of the detection

min(C) min(C)
mechanism is tested by the numbel of samples in the 1ntelsection of the two sets k and k.

Figure 3.9(a) is obtained for the watermarked time series data when the range of &

used is zero to 42 with an incremental step of 0.01 (the output is shown for § =10 to 42).

It can be seen that the output obtained changes for certain values of §. When & ~ & there
is a sudden peak. Peaks are also observed for & values which have common factors with
the & used to embed the WM. The & used to embed the WM is 30.27 which has common
factors with 10.09, 15.135 and 20.18. It can be observed that at these values of § the

characteristics of the plot deviates. The higher the common factor the larger the number

of samples in k.
The two subplots of figure 3.9 (b) and (c) denote the samples estimated with the 8

where the largest peak is observed. As mentioned earlier, the light colour bar represents

the samples of k and the darker shaded region of the plots, the number of samples obtained
for kN k. The star represents the length of the embedded W M. Figure 3.9(b) is estimated ;
for e = 0.001 = dyrzamicrange(@) while figure 3.9(c) represents the estimation for € = |
0.002 « dynamicrange(C).

To summarise these experiments on scalar QIM, it was noted that it is possible for an

attacker to effectively compensate for the QIM method and overwrite the message.
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Figure 3.9: a) Estimation of Kk for time series data using DWT where & used for WM
embedding = 30.27 and € is 0.001 times the dynamic range of C. b) Estimated samples
of k for & around the largest peak detected (light colour) and k Nk (darker colour), € is
0.001 times the dynamic range of C. The star represents the number of true watermarked
samples. ¢) Estimated samples of k for & around the largest peak detected (light colour)
and k Nk (darker colour), € is 0.002 the dynamic range of C. The star represents the
number of true watermarked samples.
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DM-QIM

In DM-QIM, the security is still dependent on the two factors k and .
Cf S ~
(g) +o;— (; (3.15)

where j spans the length of k and o is a random sequence of values of A0, ) distribution.
The watermarked samples of ( are a multiple of § shifted by o. Estimation of k in the case
of DM-QIM therefore is similar to the estimation in the case of scalar QIM and follows

the principle detailed in section 3.3.
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Figure 3.10: a) Estimation of k for time series data using DWT where & used for WM
embedding = 30.27 and randomised by adding a dither signal of A_(0,1). b) Estimation
of k for time series data using DWT where & used for WM embedding = 30.27 aand ran-
domised by adding a dither signal of A((0,5). c) Estimated samples of k for & around
the largest peak detected (light colour) and k Nk (darker colour), the dither signal used to
embed the WA is A[(0, 1). The star represents the number of true watermarked samples.
d) Estimated samples of k for § around the largest peak detected (light colour) and kN k
(darker colour), the dither signal used to embed the WM is A\(0,5). The star represents
the number of true watermarked samples.

Figure 3.10(a) denote the samples of C which have been actually watermarked (dark
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shade) and the estimate of the samples for different values of § (light shade) using DM-
QIM. The samples of C were quantised using & = 30.27 and a'dither signal A((0,1) at
the encoder. Unlike the detection results in the case of scalar QIM, a large number of
samples for most values of & were estimated. But as can be seen from figure 3.10(a), the
distribution of the estimated samples changes when § approaches the true value of § as in
figure 3.9. The detection method described in section 3.3 is applied to obtain § and k.
By concentrating on the values around this § value, the results shown in figure 3.10(c) are
obtained. When & ~ & most of the samples of k were estimated and the number of false
positives is less than one third the value of &.

The figure 3.10(d) is obtained when ( is watermarked using a dither signal with a large
variance. The dither signal used is A(0,5). This large variance dither signals showed
small changes in the structure (figure 3.10(b)). The detection mechanism identified the
maximum peak at 30.3 for the time series data. Dither signals with a variance almost
equal to the & value will not be used in practice as it has been observed that they increase
the distortion of the cover data significantly. However as a test the WM for this high
variance was embedded. The number of false positives is quite high but all the values of
k are estimated correctly.

DM-QIM offers a slightly better security compared to scalar QIM but as can be seen
both the embedding techniques are insecure. It is possible to overwrite the embedded

message to a large extent without destroying c.

3.5 Estimation of the Secret Key, k, ICA Based Approach

The Independent Component Analysis (ICA) estimates underlying sources from a set of

mixed observations [42]. Given p observation vectors

X:[x;x2X3...x,,]' (3.16)
the ICA estimates / statistically independent source vectors

S =[s;s283...81] (3.17)
and the mixing matrix A where / < p,

X = AS. (3.18)
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The security of the embedding method in the ICA transform domain is now presented.

The application of the ICA algorithm to a single channel EEG signal to obtain an
estimate of the underlying sources has been discussed in chapter 2. The delay embedding
method is used to construct a matrix from a single channel EEG explained in chapter 2
for experiments using the ICA method in this chapter.

Some concepts explaining the construction of the input matrix to the ICA are repeated
here. The one-dimensional EEG is recorded from an alert adult. It is sampled at 250Hz
and each sample is represented as a 16 bit unsigned integer. The slowest signal component
1s assumed to be 3Hz and a delay of 1 sample between two successive vectors is used. The
required required embedding window thus calculated EmbWin is 83. EmbWin sets the
upper bound on the total number of sources p that can be estimated from the EEG. The

number of delay vectors N,, for a one-dimensional signal ¢ of length N, is given as
N,y =N, — EmbWin + 1. (3.19)

The matrix X is derived from the single channel ¢ as follows:
delay embedding of ¢ with delay of one sample between two successive delay vectors, d;

and d;+;, EmbWin = p

di =c(1,...,p). (3.20)
di=c(i,....,p+i—1), (3.21)
where i =2,...,N,,.
X =[d};da;...;dy,]" (3.22)
The input to the ICA is X,xn,,
S, W] < x. (3.23)

As already seen with the experiments on the synthetic data in the previous chapter, the
delay embedding method of estimating signals from a one dimensional signal has been
shown to extract good estimates of underlying sources. As the input to the ICA contains
vectors delayed by one sample Ny is severely constrained. Only one sample across each
diagonal of the matrix representing all the estimated sources can be watermarked.
Watermarks embedded in low-middle frequencies of ¢ are robust to compression at-
tacks. Hence the samples of one the sources, S, obtained from the ICA transform rep-

resenting the low frequency component of ¢ represent K. A random selection of samples
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representing k € K is chosen equal to the length of the watermark to be quantised.
g'—m(swm(k)a W]M) — Sym- (324)

S is modified to S in the sense that one of the sources (rows) represented by s, is wa-
termarked. The watermarked matrix representing the set of observations is obtained by

multiplying S by the inverse of W, A.

X =A=xS. (3.25)

3.51 Construction of the one-dimensional watermarked cover from

the watermarked data matrix

For the time series data a one-dimensional & needs to be reconstructed from X. Xisa
matrix whose diagonals from top right to bottom left contain the same element except for
certain values which are altered due the embedded watermark. Hence careful re-ordering

of the samples is required to prevent loss of the embedded information at the embedding

stage itself. This has been discussed in chapter 2. Method 2 of the reconstruction of the

one-dimensional ¢ from X discussed in chapter 2 is adopted.

3.5.2 Estimation of the secret key, k and the probable quantisation in-

dex, O

The watermarked EEG data € is subjected to a compression attack m.
t+n— ¢ (3.26)

In order to estimate the probable & and k an estimate of the probable sources will need
to be obtained. Hence X is constructed from € as in the watermark embedding process.

Two different experiments were conducted. One, given the separating matrix W used
at the embedder to transform the EEG to the estimated sources, is it possible to find the
watermarked source and, & and k? Experiment two answers the question ‘How close can
an attacker get to recovering the message, given she knows the method and key factors

such as segmentation blocking?’.
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Estimation of the secret key, k, sources estimated using the basis vectors used at the

embedder

An estimate of the probable sources is obtained as the projection of X onto the indepen-

dent components, rows of W.

~

S=WX. (3.27)
The histogram for the time series data is shown in figure 3.11. This histogram is obtained
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Figure 3.11: Histogram of difference between sorted samples of the estimated source,
time series data.

as explained in section 3.3 and provides a possible range for §. The source whose his-
togram is plotted is chosen randomly but the histograms of all the sources obtained, as
explained in section 3.3, are nearly the same. The estimation of k and & was conducted
similar to that explained in the section 3.3.

Figure 3.12 is the output of the estimation of k for the watermarked source (time
series). It is assumed that the attacker has no knowledge of the identity of §,,,, in the set of
p sources. Therefore the estimation of & and Kk is conducted on all the estimated sources.
§ takes values from zero to 0.2.

The estimation method described in section 3.3 is applied to find the probable values
of & and k. A change in the envelope of the output at a particular value of & (hgure
3.12, upper subplot) was noticeable. Further experiments concentrating around the peak
(figure 3.12, lower plot) show that k estimated for & contain a large number of samples
corresponding to k.

Figure 3.13 is the estimation result obtained for s # s,,,;. Unlike the results obtained
for s,,m, there is no distinctive peak and the output is varying randomly. Similar outputs

to figure 3.13 were observed Vs;;i 7= wm. Also the length of k, estimated for different S
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Figure 3.12: Above: Estimation of k for ICA where & = 0.12 is used for WM embedding
and the sources are obtained from the watermarked EEG using the same separating matrix
used by the embedder. The result shown is for the source which has been watermarked.
Below: Estimated samples of k for & around the largest peak detected (light colour) and
kN k (darker colour). The star represents the true length of the watermarked samples.

in the case of s # s,,,, is smaller compared with ﬁu estimated for different o in the case of
Sypim- lA(u estimated for different & in the case of swm also has a distinctive peak compared

to k,, estimated for different § for the unwatermarked sources.

Estimation of the secret key, k, sources estimated by applying ICA to the attacked

watermarked cover

The sources in this experiment were derived by applying the ICA to X. The independent
components (the separating matrix W) are derived from the input data. The input at
this stage is X the noise contaminated version of X. Hence the independent components
obtained from this input are denoted by W. Let the sources estimated as projections of X

on these independent components be represented as Sa,,.

~ A

ICA(X) = [Sar, W], (3.28)

A Ao . .a Y
Sart = (81,8205 3 Swmans -+ 381t - (3.29)

The estimation of & and k is conducted as explained in section 3.3 and the results are

shown in figure 3.14. All the estimated sources (rows of S.u) are sampled for different
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Figure 3.13: Estimation of k for [CA where 8 = 0.12 is used for W M embedding and the
sources are obtained from the watermarked EEG using the same separating matrix used
by the embedder. The result shown is for the source which is not watermarked.
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Figure 3.14: Estimation of k for ICA method where & = 0.12 is used for W M embedding
and the sources are obtained using the separating matrix estimated from the compressed
watermarked EEG. The result shown is for a source chosen randomly as the result for all
the sources was similar.
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values of d starting from zero to 0.2. Figure 3.14 is the result of the estimation mechanism
for k for one of the sources estimated by applying the ICA to the EEG data.

It can be seen that no value of & positively identifies the actual & used at the embedder.
This result was observed for all the sources estimated. We conclude that an attacker
applying the ICA to ¢ will not be able to estimate k and hence will be unable to destroy

the embedded W M significantly without destroying the cover.

3.6 Summary of the Results

The estimation of § and k was conducted for 45 different EEG signals taken from different
data sets (no epileptic activity, epileptic activity). Each one-dimensional signal was wa-
termarked using a different value of 6 and k using both DWT and ICA based approaches.
The watermarked EEG signals were applied various attacks such as differing encoding
rates, low pass filtering, addition of Gaussian noise and compression. The results ob-
tained are summarised in Table 1. Correct detection refers to the result obtained when
the peak obtained for k was distinctive. Partial detection is the result when more than
one peak was estimated. The estimated k for the true value of § (used at the embedder)
contained almost 50% of the total number of samples used to embed the watermark while
the second largest peak contained 50% of the total number of samples used to embed the

watermark. When no peaks were identified the result is termed as, No detection.

Correct detection | Partial detection | No detection

DWT | 45 0 0

ICA 38 2 5

Table 3.1: Result of estimation of k and .

Note that our approach is based on a pdf estimation of differenced watermarked trans-
form domain, and so enjoys the benefits of being algorithmically simple and not reliant
on assumptions about the distributions of covertext or watermark values.

It suffers when pdf estimation of high dimensional multivariate distributions is needed.
However, for most applications this is limited to one or two dimensional pdfs and so is
computationally tractable. Our method failed when the strength of the attack applied to

the watermarked signal resulted in a bit error rate of 30%.
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3.7 Conclusion

In this chapter the claim that QIM and DM-QIM are secure embedding techniques were
examined by investigating the likely estimation of the unknown & and k. The experiments
were conducted for two transform domain methods DWT and ICA. The results obtained
show that the QIM method of embedding is not generally secure as has been claimed.
Though retrieval of the exact message is not possible, deleting the existing message or
embedding another message which destroys the original WM is possible. The results
using the ICA method are not as precise as the results obtained for the DWT method.
We believe this is due to the way the two transforms derive their basis vectors. In the
case of the DWT the transformation of ¢ to wavelets is obtained by applying an averaging
filter having a small number of co-efficients whereas in the case of ICA it involves matrix
multiplication and hence minor changes to € result in completely obscuring the distortion
to ¢ due to watermark embedding using quantisation.

It was verified that the use of ICA for watermarking has the benefit of an in built
sensitivity to data snooping. This chapter was an attempt to verify the security of one of
the most commonly used watermark embedding techniques. Scalar QIM is shown to be
the least secure and DM-QIM performs only slightly better in comparison. It was also
shown that the assumption ‘QIM based embedding techniques are secure due the random
selection of k and &’ is not generally correct. Using QIM and DM-QIM in the wavelet
transform domain still allows a reasonable estimation of & and k permitting overwriting of
the embedded message without overly increasing the distortion of the cover. The results
obtained for the ICA method show that the estimation of k is more complicated due to
the sensitivity of the ICA. The ICA algorithm being data dependent, slight changes to the
input data resulted in changed transform co-efficients and estimated sources. At this stage
we conclude that in QIM based embedding methods, the use of the dither signal does
not provide adequate security. Without a pragmatic approach to information hiding and
privacy protection, the widespread deployment of the EPHR is likely to be compromised
due to lack of public acceptance.

This chapter verified the security of the DM-QIM based watermark embedding tech-
niques illustrated on time series data. As we have already verified that the ICA method is
capable of providing multiple channels to embed multiple hierarchical W Ms and the sen-

sitivity of the ICA provides an inbuilt security, in the following chapters we will study if
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the ICA method provides a mechanism to embed multiple watermarks and find the order
of the embedded watermarks at the decoder. The results summarised in this chapter were

presented in [60].
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In the previous chapters the different transform domain steganographic methods in-
cluding DFT, DCT, DWT, PCA and ICA were discussed. It was noted that the ICA
method has an in built security mechanism in chapter 3. It was noted that only three of
the transforms DWT, PCA and ICA provide a convenient mechanism to embed multiple
watermarks which can be recovered without error at the decoder. Multiple watermarks
can also be embedded in the the DFT and DCT domains provided the samples of k cho-
sen for each watermark do not overlap. This is because the output of the DFT and DCT
transform of a one-dimensional signal is also a one-dimensional signal and both the input
and output are of equal lengths.

In the case of the DWT method, the output signal is of the same length as the input
signal but by successively applying the DWT transform to the low frequency components
obtained at each level the input signal can be further decomposed into more detailed
and coarse representations. In PCA and ICA methods, the input to the transform is al-
ways a matrix and the one-dimensional signal is transformed into a matrix using the non-
overlapping segments or the delay embedding method. The output of these transforms is
also a matrix where each vector gives a different representation of the signal ¢ with dif-
fering characteristics. Since PCA uses the second order characteristics of the input sighal
and output signals are merely decorrelated, compared to the ICA which estimates signals
which are independent. The PCA method provides multiple non-orthogonal channels to
embed multiple watermarks. Similarly the DWT method also provides multiple orthog-
onal channels to embed multiple watermarks. In this chapter the DWT (an example of
a non-orthogonal transform) and the ICA (transform providing statistically independent
channels) will be evaluated for multiple watermark embedding to assess the method which
can provide a better trade-off of the principal characteristics of a watermark compared to

watermarking in the spatial domain.

4.1 Multiple Watermarks

Embedding multiple watermarks has been actively investigated in papers from Mintzer
and Braudaway’s ‘If one watermark is good, are more better?’ [66] to Sencar and Memon’s
‘selective detection of embedded watermarks to confuse the attacker’ [87]. Current em-
bedding methods have been proposed for multimedia data and in the biomedical domain

to medical images. Tao et al [94] discuss the embedding of multiple watermarks in the
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DWT domain for image data. They show that the robustness of the watermarks embedded
in different levels of the wavelet decomposition of an image is varied based on the type of
attack. Wong et al [99] propose a method of embedding multiple watermarks into a cover
containing multiple watermarks. The new watermarks are embedded in locations orthog-
onal to the watermarked locations. Jin et al [46] present a multiple watermarking method
using both the DWT and ICA. The multiple watermarks are mixed and demixed using
the ICA and are embedded in the wavelet transform domain of ¢. However as seen in
the previous chapter very little work exists on watermarking time series biomedical data.
A more detailed study of the two techniques (DWT and ICA) for such single channel

time series data (EEG and ECG) which have lower redundancy than images is important

to derive a data independent, secure standard for an eHealth system. In this chapter a
comparison the effectiveness of the DWT and ICA approaches in providing authentica-
tion and security to such time series data for the embedding of multiple watermarks. In
[62], two visual watermarks are embedded in the DWT domain through modification of
both low and high frequency coefficients. Watermark data inserted into low frequencies
is more robust to image distortions that have low pass characteristics like filtering, lossy
compression, and geometric manipulations but less robust to changes of the histogram
such as contrast/brightness adjustment, gamma correction, and cropping. On the other
hand, watermark data inserted into middle and high frequencies is typically less robust
to low-pass filtering, lossy compression, and small geometric deformations of the image
but extremely robust with respect to noise adding, and nonlinear deformations of the gray
scale. Since the advantages and disadvantages of low and middle-to-high frequency wa-
termarks are complementary, embedding multiple watermarks in an image (namely, one
in lower frequencies and the other in higher frequencies) would result in a scheme that is
highly robust with respect to a large spectrum of image processing operations.

Sheppard et al [88] present three different algorithms for embedding multiple water-
marks, Re-watermarking, Segmented watermarking and Composite watermarking. Re-
watermarking method of embedding multiple watermarks is defined as adding water-
marks one after another to a watermarked cover. Segmented watermarking is obtained
when the cover work is divided into segments. Each segment is used to carry one water-
mark. This method of watermarking is necessary when embedding multiple watermarks
of dissimilar characteristics into a one-dimensional ¢ and the transform applied derives

a one-dimensional C. The DFT and DCT transforms are examples of this method as

91




Chapter 4 MULTIPLE WATERMARK EMBEDDING

mentioned previously. Composite watermarking is defined as the method wherein a sin-
gle composite watermark is derived by combining multiple watermarks. The compos-
ite watermark is embedded in ¢. The embedding of multiple watermarks in our exper-
iments in the DWT/ICA transforms of ¢ does not use any of the three algorithms. In
this thesis the multiple watermarks are embedded simultaneously in ¢ in multiple non-

orthogonal/independent signal components derived from e.

4.2 Characteristics of Each of the Multiple Watermarks

Multiple messages (text, audio, image) or different types of m are generated, to fulfil the

different requirements of security and authentication. These include:

e Tamper Detection, m;: A random binary string embedded randomly across the
entire length of ¢ to provide tamper detection. This has to be known by the decoder

at the receiving end.

e Diagnostic Information, mj: Textual details including specification of medical tests,
diagnosis results, doctors’ notes. m; may be used at the decoder for further pro-

cessing of the medical data.

e Data Provider Identification, m3: Clinician’s name or identification to be used as

record of source identification.

e Patient Privacy, my: Patient’s personal details embedded to prevent identification

of the ownership of a medical record by unauthorised users of the patient data.

As m is a binary string, the derived messages m;, 1 = 2 to 4 are converted to binary format
WM. .

The W M, representing personal details requires a high level of robustness to remain hid-
den/unaltered from malicious attacks, while W M) is used to estimate the level of attack,
and hence needs to be fragile and be destroyed when the cover work ¢ undergoes any
transformation. Hence our requirements list reflects a hierarchy from fragile to robust

watermarking.
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The different watermarks are embedded in the transformed domain of the EEG ¢ using
a suitable embedding technique (for example QIM). The DWT and ICA transforms will

be used to convert the EEG to wavelets and independent sources respectively.

4.3 Data and Experiment

The single channel EEG considered for the experiments in this chapter is one of a 22
channel EEG recording sampled at 250Hz, and each sample is encoded using signed
16 bit integer format. A one hour recording of this 22 channel EEG needs a storage
space greater than 1Gb. Even with existing low cost memory devices and high speed
transmission networks, the amount of storage space and processing power required by
the database to serve multiple users accessing the network fo store and retrieve dala is
not scalable. Therefore a mechanism to embed multiple messages of differing security
requirements into a one-dimensional signal which is also robust to storing in a compressed
format is implemented.

The following procedure (shown in figure 4.1) has been tested in the experiments:
1 . An EEG signal of 100s, ¢ is transformed using DWT/ICA, 7.
2 . WMs 1 to4 are embedded in the selected transform domain components of ¢, C.

3 . The signal with the embedded data € is reconstructed by applying the inverse of

the applied transform, 7" to the watermarked C, C.
4 . As a compression attack, ¢ is modelled as an autoregressive process of order six.
The compression method based on the AR process has been discussed in chapter 3.
5 . The attacked watermarked EEG signal, ¢ is reconstructed at the receiver using the

prediction co-efficients polynomial A, the N initial co-efficients of € and the error

co-efficients ep.

6 . Recovery of the embedded message for both the DWT and ICA methods is at-
tempted. The bit error rate dis/ is calculated for each of the embedded messages to

find the corresponding bit error rate.

7 . Steps 2 1o 6 are repeated a hundred times and the mean bit error rate is calculated

for each message. The mean bit error rate is used to verify the suitability of each
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technique in an eHealth system.
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Figure 4.1: Block diagram of watermarking system.

4.4 Deriving Multiple Channels to Embed Multiple Water-
marks

In order to embed the four watermarks of differing security requirements, four channels
with matching characteristics are to be derived from the one-dimensional EEG. Tt will
be shown how the two methods DWT and ICA provide different channels of different

properties.

oy
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4.41 DWT based method of deriving multiple channels

In chapter 2 a discussion of how multiple level wavelet decompositions of a one-dimensional
¢ are derived is provided. The wavelet transform of a one-dimensional signal generates
two wavelets d, representing the scale co-efficients of ¢ and o, the translation co-efficients
of e. The two wavelets are derived using a suitable mother wavelet .  here denotes the
Haar wavelet. A detailed description of the wavelet decomposition of ¢ using the Haar
wavelet has been discussed in chapters 2 and 3. (.., and (,,, are obtained by applying

the DWT transform to ;.
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Figure 4.2: Four level wavelet decomposition of one-dimensional EEG signal and corre-
sponding spectra.

(. represent the slow moving components of the signal (the low frequency content)
while (, represent the high frequency components. (, for each increasing level of de-
composition represent signals of decreasing frequency.

Figure 4.2 depicts the detail coeflicients obtained for each decomposition level ane to
four from top to boitom (left) with the corresponding frequency spectrum shown right. 1t

is noticed the decreasing frequency content of ( as the depth of decampaosition increases.
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It has to be noted that the EEG is being used as a cover for hiding sensitive patient re-
lated information. The transformation to the wavelets is done to obtain low frequency
representations of the signal which are more robust to compression techniques and are
preserved after compression. The application of DWT on ¢ is not applied to derive the
characteristics of ¢. Four levels of decomposition of ¢ are obtained to embed the four
watermarks.

Table 4.1 represents the energy content of the detail co-efficients at each decomposi-

tion level. The energy is calculated as

2
ngfiv C;) Z (+2)

¥

where | represents the decomposition level,

Jje{l,Length(C,)}- (4.3)
Level Energy
1 1.44¢+04
2 7.04¢+04
3 2.37e+05
4 1.00e+06

Table 4.1: Energy content of detail co-efficients.

From the table it is noted that ¢, obtained for higher levels of decomposition have
more energy compared to , obtained lower levels of decomposition. Since coefficients
containing more energy are preserved after compression compared to the coefficients with
lower energy content, the watermarks (semi-fragile watermarks) which need ta be pre-
served after compression need to be embedded in the coefficients with higher energy con-
tent. my is embedded in the detail coefficients containing the maximum energy. Messages
m3, mo, m; are ordered in decreasing requirements of robustness and are therefore em-
bedded in the detail coefficients obtained for decomposition levels 3, 2 and 1 respectively

(with decreasing energy content).
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4.4.2 ICA based method of deriving multiple channels

The one-dimensional EEG signal ¢ used for the experiments in this chapter is taken from
the 64 channel EEG recording used for the experiments in chapters 2 and 3. ¢ in the ICA
based watermarking method is transformed into an embedding data matrix X using delay
embedding discussed in chapters 2 and 3. The minimum embedding window EmbWin =
83 sets the limit on the total number of sources p that can be estimated from the EEG.

s, w] & x. (4.4)

The rows of § represent the estimated independent sources and rows of W represent the
independent components. Four sources Simis Swmi> Swiy; ANd Sy, are chosen from the /
sources based on the spectrum of each source. A low [requency spectrum source contains
a high information content of ¢. The source with a high information content is more robust
lo compression compared to the source with a low information content. Sionts Qs Sremg
and s, are ordered in terms of increasing information content represented as $,.,, where
i=[1, 10 4]. For each watermark  M;, K; is the sel of samples representing one of the four
selected sources. k; € K; is randomly selected to embed the watermarks. The length of k;
is equal to W M;.

[t was shown how the delay embedding method is capable of extracting good estimates
of the underlying sources s; from a one-dimensional observation vector for biomedical
signal analysis in chapters 2 and 3. Those four sources s, used to embed the four wa-
termarks and their corresponding frequency spectra are shown in figure 4.3. The order
and scale of the derived sources from the ICA do not bear any imporiance either on the
rank of independence or frequency content of the estimated sources. The four watermarks
require different levels of robustness to various forms of attacks. Differentiating between
the various sources to estimate the capability of a source to survive an attack is therefore
necessary. It was noted that the energy content of all the sources is normalised 1o one
due to the whitening of the input to the ICA. Hence the energy content is not used as a
distinguishing feature. The p sources were clustered into four different groups based on
distances between the frequency spectra to distinguish the effect of embedding informa-
tion in a particular source on the watermarked EEG.

The sources in each cluster have different spectra, hence the effect of a compression
attack on a source in one cluster is different from the effect of compression on a source in

a different cluster.
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Figure 4.3: Estimated sources from one-dimensional EEG and their corresponding spec-

tra.

Figure 4.4 is a dendrogram showing the four different groups of sources. The Eu-

clidean distance between the spectra of sources was used as the separating factor. Since

the EEG is a noisy data set, most of the derived sources have wide band spectra (repre-

senting noise) which is why cluster I has most of the sources. The sources in the other

clusters are band limited as seen in figure 4.3. A representative of each cluster was used

to embed each of the four watermarks.

4.5 Watermark Generation, Embedding, Transmission and

4.51 Watermark generation

Decoding

Four different watermarks of varying levels of robustness requirement were generaied

as in [33]. The characteristics of each watermark in our case is different as we believe

e
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Figure 4.4 Dendrogram showing clustering of estimated sources.

that the personal details of the patient require the highest security. Any attempt by an
intruder with the best possible resources and knowledge of the watermarking technique
must not result in the personal details being recovered correctly. This was arrived at
after discussion with various partners in Biopattern. A working document [29] which
emphasises the importance of patient privacy was also produced after studying various
legal cases that arised due to the implementation and use of medical databases. Details of
the medical databases and the legal and ethical issues can be obtained from the reference
within [29]. The four watermarks are ordered in increasing order of privacy and security
requirement with W M4 requiring the highest security.

As mentioned earlier, the embedded information distorts the cover work. The three
characteristics of robustness, imperceptibility (capability of embedded information to re-
main indistinguishable from ¢) and data rate (length of the watermark) are a trade-off
against each other. Figure 4.5 shows the desired trade-off location for each watermark.
The maximum length of each watermark is restricted to 301 bits. Due to the delay embed-
ding of the one-dimensional EEG to construct the input matrix to the ICA (with a delay of
one sample between two consecutive delay vectors), all the elements of an anti-diagonal
are equal. In order to reconstruct the one-dimensional signal from the delay vectors only

one element from each anti-diagonal is to be considered. Hence only ane element on
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Robustness

Data Rate Imperceptibility

Figure 4.5: Desired characteristics of each watermark.

an anti-diagonal can be watermarked. This constrains the length of each watermark to a
maximum of 301 values. Based on the position of each watermark in the trade-off triangle
(defined by required robustness and imperceptibility) W M| has the maximum length and
W My has the minimum length. The length of the four watermarks is WM, = 300 bits,
WM, = 150 bits, WM; =75 bits, W My = 37 bits. The length of WM, was limited by the
ICA method. The estimated sources are of unit energy and equal length, but the energy
level of the detail co-efficients obtained in the wavelets almost double with the depth of
decomposition (Table 4.1) while the number of detail co-efficients is halved. The length

of WM, 3 4 was decided on the halving of the length of the wavelets.

4.5.2 Watermark embedding

As mentioned in chapters 2 and 3 the characteristics of the embedded watermark can be
controlled in the ‘QIM’ method of embedding information by altering the value of 6, The
watermark embedding function 7 is based on QIM which has been discussed in chapters
2 and 3. All the experiments are based on the fundamental concept that the information
embedded in the low frequency components is capable of surviving compression attacks
while it distorts the cover work ¢ significantly. The number of quantisation levels were

thus chosen to depict the robustness of the DWT/ ICA method under a compression attack.
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DWT

In the DWT based watermarking method the watermarks embedded in C;); where / repre-
sents a higher level of decomposition are more robust to compression attacks compared
to watermarks embedded in Cp, where 7 represents a consequently lower level of decom-
position. From table 4.1 it is noticeable that , of the fourth level decomposition have a
higher energy compared to (, of the other decomposition levels. Hence Gy, is more suited
to carry the message requiring the highest level of privacy and protection W Mj.

W M; is therefore embedded in the translation co-efficients of Cy,» where =[] to 4].
C», represents the corresponding K;. k; € K; are chosen randomly to embed WM. The
length of k; is equal to the length of W M;. The watermarked wavelet co-efficients C~/),. are
obtained as follows:

F (WM, Gy ki) = o (4.5)

Applying the inverse of the DWT decomposition to the scale and translation co-efficients

starting from the last level of decomposition to the first & is obtained.
DWT N (Cai Coy) = Cuy,- (4.6)

where / takes values in the decreasing order starting from the highest decomposition level

(for example in our experiments, decomposition level 4).

DWT N Ca, G,) — & 4.7

ICA

The source containing signals of low frequency (see figure 4.3), was used to embed
the W My which requires the highest robustness to attack. The source containing higher
frequency distribution was used to embed the fragile W M,.

The embedding of the watermarks in each s, is conducted using QIM as in the DWT

based method to obtain the watermarked source &,
T(M/Miagwm(s k/) — gwm,'v (48)

The watermarked estimated sources matrix § contains the four watermarked sources &y,

and the / — 4 unwatermarked sources. Applying W' 10 §, X is obtained,
X=W'«§ (4.9)
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The limitations of this method when used in a data hiding application have also been
discussed in chapter 2. This is because data hiding applications require that & ~ ¢, The
problem of the delay embedding method of constructing X when used in a data hiding
application is revisited with a numerical example.

Numerical example:

Input to ICA = X,
Separating matrix = W, (4.10)
Mixing matrix = A.

One-dimensional cover ¢ =[1 23 45 6];

X is constructed from ¢ using the delay embedding technique with a delay of 1 sample.

1 23 45
X= . 4.11)
2 3 456

The 1CA method estimates the underlying sources S the separating matrix W and the

mixing matrix A which is the inverse of W.

S 0.4390 2.3645 4.2900 6.2155 8.1410 (@.12)
9.4939 24.1182 38.7425 53.3669 67.9912 ’ .

34120 —1.4865
W = , (4.13)
19,7548 —5.1305

—~0.4326 0.1253
A= . (4.14)
—1.6656 0.2877
L et the watermarked sample be the 3rd sample in the first row and the watermarked

sources S

N 0.4390 23645 432 6.2155 8.1410
§ = . (4.15)
94930 24.1182 38.7425 53.3669 67.9912

The watermarked input matrix is obtained as X = AS

. 1.0000 2.0000 2.9870 4.0000 5.0000
X = : (4.16)
2.0000 3.0000 3.9500 5.0000 6.0000

Only one sample across all the sources in a diagonal can be altered (o carry a sample

of the watermark since during reconstruction only one sample from each diagonal (top
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right to bottom left) of X is used to reconstruct the one-dimensional &. Recanstructing
the original signal from the overlapping segments therefore requires careful re-ordering
(constructing ¢ with the watermark modified samples) as mentioned in chapter 3. Hence
method 2 of the reconstruction of the one-dimensional & from X discussed in chapter 2 is

adopted.

4.5.3 Watermark transmission

The watermarked document € is corrupted during transmission due to intentional/common

signal processing distortions 1), resulting in an attacked watermarked document ¢.
¢+1n— ¢ 4.17)

N in the experiments mentioned in this chapler refers to different signal processing
attacks (compression, low pass filtering, addition of Gaussian noise and encoding using
different number of bits). Figure 4.6 depicts the various parameters that are transmitied
to the decoder in the two watermarking methods based on DWT and ICA.

ICA and DWT

n
Watermarked Attacked
Document _ Document
= > PUBLIC CHANNEL i >
ICA
W k,6 W k&
— - PRIVATE KEYS ! &
DWT
k, 8 k,&
: = PRIVATE KEYS : -

Figure 4.6: Transmission parameters for [CA and DWT watermarking systems.
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The security of the embedded message in the DWT based method and the ICA based
method has been discussed in chapter 3. The ICA based method requires the exact sép~
arating matrix W used by the encoder at the decoder to decompose the received ¢ into
estimated sources [55].

It has been shown in chapter 3 how W acts as a key and prevents illegal estimation
of the embedded information. This indicates that the level of security for the embedded
watermarks is higher in the ICA compared to the DWT. Hence, though the data required
by the decoder to reconstruct the embedded message (figure 4.6) in the case of the ICA
based method is larger than the DWT, privacy and security to the embedded information

is higher in the ICA approach.

4.5.4 Watermark decoding

¢ is transformed using DWT or ICA to obtain the wavelet decomposition/estimaied sources
respectively. By applying the nearest integer level decoding technique (even for zero, odd
for one) explained in chapter | an estimate of the embedded message is obtained.

The inverse of the watermark insertion and watermark generation process is applied

sequentially to ¢ to obtain estimates of the embedded messages, ;.

TR) = C. (4.18)
FCK) — WM. (4.19)
WM — . (4.20)

In the absence of the original unwatermarked ¢ and the embedded messages m; at the
decoder, some prior knowledge about the type of my; is required to assess the validity
of the decoded message m;. Since the embedded messages are mostly textual (denating
patient name, address etc.,) in the biomedical domain, retrieval of an intelligible hidden
message is sufficient to provide authentication of the originality of €.

As discussed in chapter 2 the verification of the decoding process is conducted by
calculating the Hamming distance, dist between the binary watermarks embedded in ¢

and the estimated watermarks from &.
dist =y (WM& WM). (4.21)

The larger the difference (value of dist ), the greater the atiack.
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The transmission parameters the watermarked EEG signal, the coefficients of W were
tested for various attacks. The attacks on the watermarked EEG signal constituted com-
pression, low pass filtering, quantisation using differing number of bins and encoding
using different bit rates and, addition of Gaussian noise. The attack on the parameter W
constituted and estimation of the values of W by applying the ICA to different input ma-
trices. The input matrices were constructed from different EEG signals using the delay
embedding method (the construction of the input matrix has been discussed in chapter 1).

Figure 4.7 shows the result of using different W at the watermark detector fo retrieve
the embedded watermark. It can be seen that the watermark retrieved using the W used
at the watermark embedder goes to zero while the bit error rate for the retrieved water-
mark using the estimated W remains around 50%. Hence we conclude that the true W is

required to retrieve the embedded message and therefore forms a secret key.
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Figure 4.7: Bit error rate for watermarks retrieved by using different separating matrices.

4.6 Results

Figure 4.8 denotes the distortion due to the four watermarks embedded using the DWT

based approach and the ICA based approach. It is a plot of the ¢, the recarded Dy, due ta
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the embedding of the four watermarks W M; where i=[1 to 4] in'¢ using the DWT approach
followed by the Dg,p, due to the ICA method respectively. Dg,yy is relatively insignificant
compared to the dynamic range of ¢. It shows that the embedded watermarks should not
influence the decision of the clinician viewing €. The signal (¢) to noise (Dg,p) ratio of &
using the ICA technique was 42.86dB and in the DWT method 48.79dB. This SNR was
calculated for the largest value of & required to decode the watermarks with zero error.
The DWT method has a lower value compared to the ICA but the distortion due to both
the approaches is less than 0.05% of the dynamic range of the unwatermarked signal. This
is due to the ratio of number of samples available to carry the watermark fo the number of
bits of the watermark. The ratio in the case of DWT is higher compared to the ICA. The
performance of both the ICA and DW'T in terms of impercepiibility can be regarded to be

acceptable.
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Figure 4.8: Unwatermarked EEG and distortion due to embedding multiple messages.

The results obtained for the various attacks on watermarked signal are shown in fig-
ures 4.9, 4.11, 4.13, 4.15 for the watermarks embedded using the DWT based method for
different attacks such as compression, encoding with different bit rates, low pass filtering
and addition of noise respectively. Similarly figures 4.10, 4.12, 4.14, 4.16 for the water-
marks embedded using the ICA based method for different atiacks such as compression,

encoding with different bit rates, low pass filtering and addition of noise respectively.
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The value of ®_in both the methods of embedding information remaining equal totalling
5.62 bits per second of the EEG, the number of quantisation levels for both the DWT and
the ICA are maintained the same. The watermark reconstruction error is calculated by
comparing the retrieved watermarks at the decoder to the original embedded watermarks.
The Hamming distance between the watermark retrieved and the watermark embedded
represents the bit error rate. From figures 4.9, 4.10 4.11, 4.12, 4.13, 4.14, 4.15, 4.16
the bit error rates in the DWT based approach show that the watermarks are recovered in
an incorrect order differing widely from the assumptions of robustness and security used
during embedding the information. In the case of the ICA based method all the four wa-
termarks are recovered in the correct order or as per the assumptions of robustness used

at the watermark embedder.
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Figure 4.9: Decoded error for each watermark using DWT for compression attack. It
should be noted that the robustness of the watemark four against an attack is larger than
that of the fragile watermark one but watermark one is robust compared to watermark two
and three. This shows that watermark one which should be the least robust among all the
four watermarks is more robust compared to watermark two and three.

The experiments were conducted for 22 EEG signals taken from different data sefs
(EEG from patients undergoing seizures and EEG with no abnormal activity). Since the
EEG contains multiple sources, in the case of EEG recordings with no abnarmality we
observed that there were no correlation between the signals recorded at different nades. n

case of an EEG recording with epileptic events there was a huge correlation hetween the
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Figure 4.10: Decoded error for each watermark using 1CA for compression attack. It
should be noted that the robustness of the watemark four against an attack is larger than
that of the all the other three watermarks and watermark one is the most fragile.
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Figure 4.11: Decoded error for each watermark using DWT for requantisation attack. It
should be noted that the four watermarks are not retrieved according to the design( in the
order of robustness).
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Figure 4.12: Decoded error for each watermark using 1CA for requantisation atiack. The
watermark four has more robusiness compared with the other watermarks. The four wa-

termarks are retrieved in increasing order of robustness as designed.
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Figure 4.13: Decoded error for each watermark using DWT low pass filtering attack. All

the four watermarks are retrieved in the correct order of robustness.
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Figure 4.14: Decoded error for each watermark using ICA for low pass filtering attack. 1t
should be noted that the robustness of the watemark four against an attack is larger than
that of the all the other three watermarks and watermark one is the most fragile.

0.05 T T T T T T g
s WA
g W2
004 :g: w3 [
|G- W4
003} E
0.02}

001}

&
'l
D'
_
g8 o p—b—% 4 & ' 4 L 4
w
=
@ -001 B
-002f
-003F
-004}
-0 05; i 1 L L e
5 10 15 20 25 30 38 40

Watermark to Noise Ratio (dB)

Figure 4.15: Decoded error for each watermark using DW'T for additive noise. The wa-
termarks embedded are more robust (o additive noise compared with the ICA based ap-
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Figure 4.16: Decoded error for each watermark using ICA for additive noise. It should be
noted that the robustness of the watemark four against an attack is larger than that of the
all the other three watermarks and watermark one is the most {ragile.

signals recorded at different nodes. Since in our experiments the recording taken at each
node (one-dimensional EEG) is considered as an individual cover text, the correlations or
abnormalities did not affect the actual watermark embedding/decoding method, or results.
Variations in the bit error rates were observed for different one-dimensional EEG signals
but the difference was less than 10%. It should be noted that by altering the quantisation
index, this difference could be altered.

Designing embedding methods suitable for every type of attack is not possible. And
embedding techniques robust to severe attacks is not required for medical applications. If
the attack is severe ¢ (such as the EEG in our example) will be compromised which ren-
ders it useless for diagnosis. As privacy of personal data in the medical record is the main
concern in rolling out the EPHR, an approach which requires more information to retrieve
the embedded information (see result of figure 4.7) is better suited. As shown from our
experiments, the ICA approach provides more control over security and distortion for a

given dala rate.
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4.7 Conclusion

From the experiments and the results obtained it can be seen that embedding of multi-
ple watermarks of differing characteristics into a one dimensional cover is possible using
both the DWT and the ICA based approach. In terms of the trade-off obtained between the
two methods of DWT and ICA, the ICA performs slightly better, privacy of the sensitive
personal information in the EPHR being the main concern, the ICA is advantageous. The
ICA based method is better in providing security and privacy to personal data in a medical
record due to the amount of information required to enable correct decading of the em-
bedded information. The transform co-efficients being fixed in the DWT based method
an attacker can erase the embedded information if the watermark embedding method is
known. This is not possible in the case of the ICA based method. An attacker cannot
erase the embedded information even if she has knowledge about the exact watermarking
method. The original unwatermarked cover is required to obtain the exact transform co-
efRcients. This is the advantage of the ICA method over the DWT. The work presented in
this chapter was part of the proceedings of a conference on artifical neural networks [59].

The next chapter considers embedding multiple watermarks of similar characteristics
as opposed to the embedding of dissimilar characteristics watermarks. This is required if
multiple watermarks are used as a log of access of the medical record. The information
provided by each watermark is the same. The problem in such watermarking applications
lies in deriving the order of the embedded watermarks. This problem of ordering of the

multiple embedded watermarks at the decoder is considered in the next chapter.
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Embedding messages such as the personal details of a patient into biomedical data to
protect the privacy of the individual has been presented in the previous chapters. It was
also shown that the ICA performs better compared to the DWT in terms of security. The
multiple watermarks m), my, m3, my embedded in chapter 4 had differing requirements
of robustness and security. In this chapter it will be shown how similar characteristic mul-
tiple watermarks Migip, , Wgip, , Mg, , Mg, being embedded in an EPHR could provide a
tracing mechanism. One benefit of embedding multiple watermarks of similar robustness
that this chapter will demonstrate, would be to serve as a temporal log of recent activity
onan EPHR. A log of the clinicians who have accessed the medical record is an important
requirement in an EPHR. It promotes confidence among the members of the public that
their confidential records are not being accessed by unauthorised persannel. This chapter
reveals how such an access mechanism log can arise from our data hiding algorithm which
is currently not possible by most other data hiding techniques. To achieve this requires
the order of sequence in which each watermark is embedded, to infer whose watermark
was embedded last, for example. This property is hard in the hierarchy of data hiding
algorithm.

To determine the sequence in which multiple watermarks have been embedded re-
quires an asymmetry in the temporal embedding process. The one-dimensional EEG
signal is decomposed into a plurality of components and the different watermarks are em-
bedded at different instants of time. It is necessary to determine which signal components
are likely to be substantially unaffected by the expected degradations due to the various
signal processing applications during the embedding of each of the watermark. It is also
necessary to identify the signal components which are independent of each other such
that altering one of the signal components does not affect the other signal components.
In the absence of asymmetry (when different signal components are not statistically in-
dependent), obtaining the sequence is not possible as embedding a second message into
a watermarked cover could destroy the first message. In the case of all the watermarks
being largely recovered correctly a mechanism to establish the order of the watermark
embedding is required.

In the event of embedded messages (details of personnel who have accessed the
record) being used as a log of access, an unauthorised person who has accessed the record
will attempt to delete her details. This corruption of the embedded message is possible

by overwriting the information by embedding more information or destroying € (o a large
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extent as already noted in the chapter 3. The problem with watermarked systems arises
in the presence of a capable, determined attacker equipped with the necessary taols and
knowledge required to detect the presence of, or destroy the embedded information. This
attacker may want to erase any trace of unauthorised access. But as seen in chapter 3, the
ICA method with its sensitivity to input data creates a barrier to unauthorised deletion of
the embedded watermark without major distortion of €.

This chapter investigates whether multiple watermarks can be embedded into a cover
work at different instants of time, and recovered in sequence. The ICA method of es-
timating independent sources described in chapter 2 will be utilised to embed multiple
watermarks (one watermark in one source). It will be shown that by selecting the sources
based on certain criteria the multiple embedded messages can be retrieved and the order
of embedding established. This ability is acknowledged to be extremely difficult ([15] and
references within), and no other equivalent successful method for watermark sequencing

exists in the literature.

5.1 Embedding Multiple Watermarks

As noted in the previous chapters a watermarking system is designed by an appropriate
choice of domain (time, frequency) of ¢, 7 used and # for a given range of 1 (compres-
sion, filtering, scaling, cropping, rotation, additive noise) based on the application and
use of m. All the watermarks used as a log of access are equally important as they repre-
sent the record of people who have accessed the EPHR. Hence the watermarking system
should be ideally capable of providing multiple channels (to carry multiple messages)
bearing the same properties (robustness and capacity). The data hiding method derived in
this thesis based on the independent components is the most suitable of all transform do-
main based data hiding techniques since it derives multiple groups of sources for a given
set of observations (see chapter 2) with specific useful properties. The derived sources
can be easily clustered to obtain a set of channels to carry multiple watermarks of equal
robustness and capacity. The data used as an examplar is a single channel EEG signal
which is transformed into independent sources o obtain multiple potential embedding
components. Cox et al [24] argue that binary watermarks are comparatively easy to mo-
ify compared to watermarks derived from A/(0, 1) under an attack. For example il 7 is

based on QIM, distorting C(k); by 8/2 will reverse the embedded bit value. This prop-
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i % s
erty of binary watermarks embedded using QIM based techniques is utilised to derive the

fragility of a message when it is attacked by the addition of more messages into the cover.

5.2 Embedding Information in a Single Channel EEG Using
ICA

The application of the independent component approach to a single channel EEG signal
has been discussed in chapter 2. The EEG used for the experiments in this chapter is taken
from an EEG recording of 64 channels. The EEG is sampled at a frequency of 250Hz
and each sample represented by a 16bit unsigned integer. The delay embedding method
of constructing the input matrix X from a one-dimensional ¢ described in chapter 2 is
implemented. Given a delay of one sample between two successive vectors, the size of the
embedding window is calculated at the ratio of the sampling frequency to the frequency
of the slowest signal component. This results in EmbWin = 83. This embedding window
defines the upper bound on the number of sources s. Embedding multiple watermarks of
varied characteristics my, my, ms, my in different SOUCes Sy, Sy, Swary and Sy, and
the requirements for the choice of a source §,,,, was discussed in chapter 4.

Figure 5.1 shows a selection of six sources from the 83 sources with different spectra.
The remaining sources are spectrally equivalent replicas of one of the six sources shown
in figure 5.1. The value of EmbWin is based on the knowledge of the characteristics of
the probable underlying sources mixed linearly to obtain ¢. EmbWin is not defined by
a knowledge of the actual number of underlying sources. The delay embedding method
hence results in estimates of clusters of sources with distinct spectra. In particular, fig-
ure 5.1 shows that all the sources obtained are not identical time-delayed versions of each
other. Compression attacks based on filtering usually filter out the noise to obtain a better
representation of the data under observation. Hence embedding information in the low
and middle frequencies of a signal preserves the embedded message afier compression.
But embedding information in the low frequency regions of ¢ increases the value of Dgyp.
This is because the low frequency components of the signal contain most of the informa-
tion of the signal and hence have a high power content. Instead embedding information
in the middle frequency representations of ¢ reduces the value of D, and also survives

compression attacks. Since each of the sources has a distinct spectra, each of the source
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provides a different level of robustness against different attacks and distortion,
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Figure 5.1: Six sources with different spectra.

5.3 Source Clustering

Extraction of independent sources s from a time series ¢ by the embedding method is a
redundant problem in that multiple solutions exist. This leads to the extraction of triv-
ially distinct sources (such as differing in phase only for example). Therefore, clustering
of functionally equivalent sources will need to be considered. The characteristics of the
source determine the fidelity and robustness of the embedded watermark in that source.
Therefore obtaining appropriate clustering is important when embedding multiple water-
marks in a single channel signal.

Since the single channel signal does not provide information about the probable nums-
ber of sources s and their characteristics to the watermark encader or decader, finding

the number of clusters, N, is a blind operation. When the number of watermarks are
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known and are different in characteristics, the number of clusters can be decided based on
the number of watermarks as in chapter 4. But ‘if” the characteristics of all the watermarks
are the same, then the choice of the number of clusters does not depend on the number
of the watermarks. This is because the sources in each cluster will have similar spectra
or power, but not exactly the same. These minor differences in the spectra/power of the

different sources in a cluster could lead to differing levels of robustness of the embedded

watermarks.

5.3.1 Similarity of time series data

Time series data are a necessary form of data in a multitude of applications for example
weather forecasting and financial forecasting. Deriving the similarity between time series
hence is important for many applications and not just biomedical data. Obtaining exact
matching between two time series is not a practical proposition. Differences between
time series could arise from measurement defects to differences in scale and time shifts,
to differences in generative nosie sequences.

Distance metrics are defined to be non-negative, symmetric and obey the triangle in-
equality [34). ldentifying and clustering of sources using their time-domain representa-
tion is non-trivial and time-consuming due to the unspecified length of each source (being
a time series) and non-availability of a proper distance measure. Some of the sources
obtained from the ICA, though similar in terms of their frequency content or information
content, may be scaled differently, rotated or shifted in time and so are trivially dissimilar.

Let us define a simple distance measure, d(sq,$5) given by the average of the differ-

ence between two time series s, and s, of equivalent length, Nis:

_ Z(sa =) »
d= N . (5.1)

d(s,,sp) is positive d(s,,8,) > 0 and symmetric; d(s,,s,) = d(s,,s,) From Parseval’s the-
orem, the energy of a signal in the time domain is equal to the energy in the frequency
domain. The mean energy of a signal in the time domain is equal to the mean energy
of the signal in the frequency domain. Let E represent the mean of a signal. Hence the
distance between two time series in the time domain is the same as their distance in the

frequency domain. Let f;, (w), f;, (w) represent the spectrum of the time series 8, &

d(gmﬁlﬁ) = E[lgu — 8} } = ]EHQ/) - ga” = d(ﬁ',,(1"))5]/.;';)("‘)))‘ (5.2)
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(83] used the Fourier transform domain representation of the time series to derive the gim-~
ilarity between two time series data. Popivanov et al [81] apply the wavelet transform to
the time series and select a subset of the wavelet coefficients which represent the feature
space of the time series to estimate the similarity. These methods are mainly utilised in
data mining applications. Based on Parseval’s theorem the similarity between the fre-
quency spectra of the sources is used as an identifying mechanism to separate the sources
into clusters.

Visual inspection and classification of the estimated sources is the mosi commonly
used technigue when the ICA is used as a signal analysis tool. But it is a tedious and
uneconomical method. Various clustering algorithms exist which group the estimated
sources into distinct clusters using different distance measures. One of the commonly
known and used metrics is the Euclidean distance measure. The main disadvantage of
clustering methods using Euclidean distance is their inability to classify delayed versions
of the same signal as being similar. Ordinal analysis methods based on rank order and
structure order of the time series override the problems in the classification of a set of
signals containing subsets of time and scale shified versions of the same signal.

Ordinal analysis of time series data has been studied by [8] to define the structure, ob-
tain characteristic frequencies, and identify the time-dependence of future sample values
of a time series. The rank order of a sample of a time series s of length Nis at a given
time 7, s(r) is the number of samples of s that are lesser in value to (7). The ordinal
series derived from a time series hence provides an alternate approach in determining the
relationship of different sample values obtained at different instants of time. The distance
measures based on ordinal series will provide a different and probably better clustering of
the estimated sources compared with the Euclidean distance measures, where the samples
of two time series at the same time instant are compared.

In this chapter the given st of estimated sources are grouped using hierarchical clus-
tering based on the Euclidean distance measure and grouped using ordinal methods. A

comparison of the clustering due to the two methods is presented in the following sections.

5.3.2 Clustering using hierarchical classifier

The hierarchical classifier derives clusters based on the spectral distance measured be-

iween each pair of sources. The hierarchical clustering algorithm is used as it finds suc-
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o
cessive clusters based on previously established clusters. The hierarchical clustering re-
sults in a tree structure with each leaf representing an individual source. It does not require
the number of clusters to be specified unlike partional clustering algorithms. This is ad-
vantageous as the underlying structure and the exact number of statistically independent
sources (number of clusters) in an one-dimensional EEG are unknown. The clustering al-
gorithm can be conditioned to cluster the sources based on whether the sources belonging
to a cluster have a small distance between them or a large distance between them. The
sources used to embed the watermarks in experiments implemented in this chapter are
clustered such that the closer the sources are in the frequency domain the more probable
they are in the same cluster.

Given a data matrix S,,x,,, With row vectors [81,82,83...] the Euclidean distance d

between two vectors s; and §; is given as

CI2 = (S,‘~SJ,’)(S,‘~*S/)/. (5‘3)

5.3.3 Clustering based on ordinal analysis

In this subsection, a new method of clustering (designed by us), based on ordinal analysis
of time series is described.

Ordinal analysis of time series data is based on the two properties of rank order and
structure order. The definitions of rank order and structure order of a given time series §

of length Ny is given below [8].

Rank order: The rank r(i) of sample s(i) is given by the number of samples of s which

are less than s(/) where i spans the length of's.

Nis
r(i) = Z O(s(i) —s(j));where i € {1, Ny} &) #i (5.4)
J=1
0 < r(i) < NiVi (5.5)
I, ifx>0
Ox) = (5.6)
0, ifx<O

Structure Order matirix: The elements of the Structure Order matrix SO are the indi-

cator functions comparing elements of .

hij = B(s(1) —s(/)). (5.7)
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The correlation coefficient between the rank order and structure order matrices of
each time series s; with every other time series s;, where i and j take yalu@s {1,83} is
calculated. The correlation coefficient is thresholded and the time series whose carrelation

coefficients are greater than the threshold are grouped together.

Rank order clustering:

Consider two time series s, and s, of equal length Nis. Let v, and 1 represent the rank
order of s, and s, respectively. Let v(i) represent the sample whose co-ordinates are
(va(i), rp(i)). v denotes the spread of v,(i) from r(7) on a square area defined by the XV
axis.

r(i) of each s(i) is derived based on all s(j) where j # i. Therefore v is not affected
due (o a time-shift or scaling difference between s, and sp. Lel x,y € R and ¢ represent a
constant. The correlation factor, corr between r, and v, will be one when r, and vy are
identical and v is linear as described in [8]. The correlation factor, corr between ry and
r, will be zero when v, and i, are orthogonal and v is uniformly spread across the square
area.

I, ity = {(ro(i), rp(i))|xra(i) + yrp(i) = c}
corr = (5.8)
0, ifv={(ra(i),rs(i))|xra(i)-+yrs(i) # c}
Let rj; i € {1,83} represent the rank order of all 83 sources. Figure 5.2 (a) is the plot of
v(ry,ri). Itis a straight line. It verifies that sy is highly correlated with itself. Figure 5.2
(b), (¢) and (d) are the plots of v(ry,r2), v(ry,r2), v(ry,r3) respectively. The distribution
of the values in the rank order in the subplots (b), (¢) and (d), is uniform indicating that
s9, 83, 84 are uncorrelated with ;. This absence of correlation was noticed for each pair
of sources s, 8, where a # b. Visual inspection of s; Vi € {1,83} showed that there
exists groups of sources which are similar in structure. The sources in a group are time
shifted versions of each other but this was not identified by correlating the rank order of
the sources. Hence the frequency spectra of all s; were considered instead of the time-
structure.

Let f; (w) denote the spectrum of s; and v, the rank order of f;, (w). Figure 5.3 is the
comparison of the r of different pairs f;, (w), fs,(w) where a # b. Each subplot showa
the comparison of the r 7 of the two sources with the values of @ and b, and the carrelation

corr between f;, (w), fi, (w) mentioned above. corr € {0,1}. The closer the value of carr
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Figure 5.2: Rank order of source one compared with rank order of sources one to four
in the time domain. It can be seen that the comparison of rank order of source one with
itsell is linear indicating that it is fully correlated. The comparison of the rank order of
source one with rank order of sources two to four is spread in the square area whose axis
represent the length of the sources. This shows that source one is independent of sourees
two, three and four.
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Figure 5.3: Comparison of the rank order of different pairs of spectra of the estimated
sources. The correlation coefficient for each pair of spectra is shown above each plot.
The plots have been arranged in decreasing order of correlation coefficients. It can be
seen that the higher the correlation coefficient the closer the spread of the comparison to
a linear plot. As the correlation coefficient decreases, the spread of the comparisan of
the rank order of the spectra, tends to become uniform in the square area whose sides are
equal to the length of the time series.

to 1, the higher the dependence between the frequency spectra of fy, (w) and Je, (w) and

the less the spread in the rank order matrix.
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Figure 5.4 is the plot of the values of corr of f,(w) of all the 83 sources against
each other using ry. A value of one indicates similarity (obtained for evc}r}} Js:(w)-com-
pared with itself) and a value of zero for two sources being uncorrelated in spectra and
dissimilar. Since the values of corr are continuous values between zero and one, identi-
fying clusters using this matrix is non trivial. Also certain applications require clusters
of sources wherein the sources in a particular cluster are correlated to a percentage of
the maximum correlation. In order to derive this clustering, the correlation matrix was

reconfigured by thresholding the correlation index.

Source 1
correlated |3 q —
with 1 md|cate(ajs
source 1 co.rre.tate ,
‘ 0.8 0 indicates
no
0.8 correlatian
’ and a value
hatween 0
0.4 and 1
indicates
partial
0.2 correlation
0
Source 1 \
c_c:rr]related Source 83
w with
source 83 source 83

Figure 5.4: Correlation matrix obtained by comparing the spectrum of each source with
the spectrum of all the other sources including itself. Each correlation coefficient repre-
sents a sample. A correlation coefficient of value one is shown as a white sqare and a
correlation coeflicient of value zero is shown as a black square. The correlation coeffi-
cient obtained for the comparison of the spectrum of each source with itself is a white
square and represents the diagonal.

The subplots in figure 5.5 show the thresholded correlation matrices obtained for v,
of each of the estimated 83 f;,(w) against r, of every other f;,(w) where i € {1,83}. The
thresholded value of corr, correy, is printed above each plot. Pairs of f (w), f;, (w) where
a,b € {1,83} which are correlated > corry, mentioned are representied as one while the
other pairs of f;,(w), fs,(w) are represented as zero. It can be seen that the higher the
value of corry,, the less the number of pairs of f;, (w), f;, (w) sources which are similar o
each other and vice versa. Using the plots in this figure helps find clusters of sources. For
a low value of correy, (< 0.6) the represention of corr has a large number of zeros and

for corrsy, = 0.8, corr has a large number of ones. For corry, = 0.7 diagonal bars of zero
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are represented as one while the other pairs of f;, (w), f;, (i) are represented as zero as
already mentioned. Also similar to the results in figure 5.5, it can be seen that the higher
the value of corr, the less the number of pairs of s,, s, which are similar to each other.
The correlation plots using SO show a lower level of correlation compared to that obtained
using the r 7. This is due to the fact which has already been mentioned above. vy is a vector
obtained using the sum of comparison of £;(i) with all f;(j); j # i while SO is obtained
by comparing each fi(i), f;(/) where i, € {1,83}. As already mentioned for rank order
clustering definite and individual clusters can be obtained. But the any correlation factor
required in the case SO a value of corr > 0.5 is sufficient to identify the clusters. The

correlation matrix defined for a value of corr > 0.5 was considered to derive the clusters.

5.4 Comparison of Clustering Using the Euclidean Distance

Measure and Ordinal Analysis

~

A clustering method requires a distance and an algorithm. Some of the resulis of the clus-
tering method using the correlation matrix derived for corr > 0.5, from the comparison
of SO of the 83 sources are shown below.

In order to derive a comparison with the most commonly known and used method of
Euclidean distance measure of separating different sets of data c/,zl = (si—s;)(si —s;),
the following procedure was followed. A total of 23 independent clusters were identified
using the correlation matrix mentioned above and this defined the value of Ny, .

In the case of the clustering using the Euclidean distance the Euclidean distance
measure obtained for each pair of spectra of the 83 sources was normalised. Sources
whose Euclidean distance was < 0.5 of the maximum distance between all pairs of s;,
sj; i,/ € {1,83} were grouped together in a cluster. This resulted in 83 clusters with one
source in one cluster. The Euclidean distance measure thus identified all the sources as
being independent of each other. Hence to obtain a viable comparison the same value of
Nerug was used to derive clusters using the Euclidean distance.

Of the 23 independent clusters identified independently by clustering using the Eu-
clidean distance measure and the structure order matrix method, the clusters which are
similar to each other in characteristics (one identified using the Euclidean distance and

the other using the structure order matrix method) are shown in figures 5.8 and 5.9, Of



Chapter 5 SEQUENCING WATERMARKS

s;i € {1,83} estimated in no particular order of independence or information content, the
Euclidean distance measure clustered sources sg7, S68, $70 and s71 to have a similar spectra
and thus belonging to one cluster. The ordinal analysis method (baséd on the correlation
of SO) grouped sources sgg, $70, 871, 78 and sgo as being similar and of one group. It can
be observed that while the Euclidean distance grouped the sources based on the similarity
in the power of the spectra of the sources across the frequency scale, the ordinal analysis

method grouped the sources based on the power content of the sources.

Euclidean distance basgg clustering

20

20

10 i5 20

Power

10 15 20

Frequency (Hz)

Figure 5.8: Example of a cluster of band limited sources - Euclidean distance measure.

Figure 5.10 shows the spectra of two sources 877, $79 which have been grouped in one
cluster by the ordinal analysis method but §77 and s79 were grouped as being independent
and in separate clusters by the Euclidean distance method. As already mentioned the
two sources s77 and s7o are different in terms of the power content at each step of the
frequency scale but the total power content of the two sources is nearly equal leading to
the classification as similar by the ordinal analysis method,

The Euclidean distance measure fails to differentiate between two similar signals
shified slightly or as shown in the example in our experiments (containing the same band-
width and total power but vary slightly in the power conient atl each frequency). The
Euclidean distance measure also fails in that it does not give any differentiating factor
(o identify individual clusters. These shortcomings in the Euclidean distance measures

can be overcame by using the ordinal analysis methods which might be useful for certain
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Figure 5.9: Example of a cluster of band limited sources - ordinal analysis method.

Figure 5.10: Example of a wide band cluster using Euclidean distance measure.
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st
applications. Hence in the embedding of multiple watermarks of similar characteristics
the clustering based on the two methods, Euclidean distance measure clustering and or-
dinal analysis method of clustering is used. The results of the two clustering methods is
compared by calculating the bit error rate, dist for each of the four watermarks retrieved

at the decoder.

5.5 Choice of Cluster

Figures 5.11, 5.12 show the spectra of the four sources used to embed the four water-
marks Mg, , Myimy, Mgy, W, for the two methods heirarchical clustering and cluster
based on ordinal analysis. Each watermark represents the identity of the individual who
has accessed the medical record. As mentioned previously all the watermarks require the
same level of security and robustness, hence four sources whose spectra are similar are
required. The four sources whose spectra are shown in figure 5.11 are clustered tfogether
by the Euclidean distance based clustering algorithm. Sources 71, 70, 68 and 67 are used
to embed the four watermarks Wiyp,, Wyiny, Mgy, Wi, sequentially. Similarly the four
sources shown in figure 5.12 are clustered together using the ordinal analysis based clus-
tering algorithm. Sources 80, 70, 68 and 78 are used to embed the four watermarks my;p,,

M ginry s Mgjmy, Mgim, Sequemlﬂ”y-

Souice 67 Sourco 68
20
15
101},
5
g
o
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o
o

50 100 160
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Figure 5.11: Four similar source spectra clustered using the Euclidean distance measure.

128

I
|
%



Chapter 5 SEQUENCING WATERMARKS

Source 78 Source 68
25 20
20 15
15
10
10
5
5
5 0 L ° i o
ES 0 50 100 0 50 100
Q
Source 70 Source 81
25 50
20 40
15 30
10 20
5 10
0 0
0 50 100 0 50 100

Freauencv (Hz)

Figure 5.12: Four similar source spectra clustered using the ordinal analysis method.

Figure 5.1 depicts six sources which have distinct spectra. This shows that the delay
embedding method can estimate s which are distinct and relatively independent from one-
dimensional c.

For a watermark to be robust as mentioned in the previous chapters, it must be em-
bedded in the informative domain of ¢ which typically means low to middle frequency
components of ¢. Therefore the cluster chosen should contain sources s which are rep-
resentative of this spectra. One major problem with embedding multiple watermarks of
similar properties is that the transformation of ¢ into S might not result in a cluster con-
taining the same number of sources, s as the number of watermarks. Hence the number
of watermarks embedded is upper bounded by the cluster chosen and the number of dis-
tinct sources s in the cluster. Alternately in the case of the number of watermarks being
fixed, a cluster can be chosen with the required number of sources s. This cluster can
contain sources s containing higher or lower spectra thus affecting the characteristics of
the embedded watermarks. Hence the practical implementation of our proposed method

will entail compromise.
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5.6 Embedding Multiple Watermarks of Similar character-
istics

The cover work ¢ is to be embedded with different watermarks at different instants of time.
Every successive watermark is embedded in the currently available €. Neither the choice
of the cluster nor the identity of source/sources previously watermarked is stored. Hence
when embedding a new watermark, the selection of an unwatermarked source and also
the identical cluster used for embedding previous watermarks is necessary. Embedding of
a watermark in a one-dimensional ¢ using the ICA method discussed in chapters 3 and 4
is used for the experiments in this chapter. Let &y, represent a compressed watermarked

cover and the value of i represent the number of watermarks embedded.

e Consider four watermarks Mgy, , Mgy, Myip,, My, that are to be embedded in ¢

sequentially at different instants of time.

e For watermark 1:

The delay embedding method to obtain X from ¢ is used.

¢— X (5.9)
s, w) < x (5.10)

Cluster the sources using Euclidean distance.
Select the cluster with the required properties.

Embed my;,,, in one of the sources from the selected cluster to obtain S.

imv(W)§ — X (5.11)

The reconstruction method II described in chapter 2 is used to obtain ¢ from X.
X — ¢ (5.12)
¢+1N — Cim, - (5.13)
e For watermarks 2, 3 and 4;1=2, 3 and 4:
&sim, — Kim;. (5.14)
Ssim; = WX, (5.15)
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Cluster the sources using Euclidean distance.
Select the cluster with the required properties.
The selection of the unwatermarked source from the chosen cluster was based on
the experiments discussed in chapter 3, section 3.3. An estimate of k, for each

source in the cluster is obtained.

RI,:[J':Qge]. (5.16)

by
This step is required since the specific cluster and source chosen are not stored.
The maximum value of k,, for each source, K, is calculated. The source with the
smallest value of K, is used to embed the next watermark. Let the watermarked

sources with the i watermarks be represented as Sy,

inv(w)sxim; - X.\'im,~ (517)

The reconstruction method II described in chapter 2 is used to obtain &gy, from

Xsim,w
Xsimi - Esim,w (518)
E.s‘im,- +n— ésim,-- (5 1 9)

The experiments conducted are realised on the same clustering of sources for each
new watermark. Since the identities of the sources in each cluster is not saved, the clus-
tering of the sources is conducted when each new watermark needs to be embedded. The
watermarked cover is subjected to different signal processing attacks such as compres-
sion, filtering. The clustering algorithm resulted in the same clusters of sources from
the attacked watermarked cover ¢. The same clusters of sources were not obtained from ¢
when it was filtered to contain a frequency composition less than 40% of the spectra of the
unwatermarked cover. A filter operation of such magnitude destroys the cover to a large
extent rendering it unuseable for any application. Hence such severe signal processing

operations on ¢ are not valid and so are ignored.

5.7 Results

Four watermarks Mgy, , Mgimy, Mgimy, Mgim, are embedded in four sources Sgipm,, Ssim»
Ssims» Ssims sequentially. If no attack is applied and €y, is embedded with my;,,., sequen-

tially as explained above in section 5.6, all the four watermarks can be recovered with
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only very slight distortion as shown in figures 5.13, 5.14. This is the benefit of the ICA

approach which aims for independent sources.
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Figure 5.13: Four embedded watermarks in the absence of an attack, Euclidean distance
measure.

When the watermarked content is not processed further and €, is embedded with
my;,, , sequentially as explained above in section 5.6, It can be seen that the watermarks
degrade in the sequence they were embedded.

Figures 5.15, 5.17, 5.19, 5.21 depict the error rate in recovering the four watermarks
after compression, requantisation, low pass filtering and noise addition respectively for
the sources clustered using Euclidean distance measure. Figures 5.16, 5.18, 5.20 5.22
depict the error rate in recovering the four watermarks after compression, requantisation,
low pass filtering and noise addition respectively for the sources clustered using Ordinal
distance measure. It can seen that the results in the case of the Euclidean distance measure
clustering the order of the sequence cannot be retrieved in the absence of an attack as the
bit error rate is zero for all the watermarks. Similarly the four watermarks embedded
in the cluster obtained from Ordinal analysis based clustering are also recovered with
zero bit error rate (one of the watermarks is recovered with an error of 0.02 which is
negligible). In the case of an attack, the watermarks embedded in clusters obtained using
both Euclidean based clustering and Ordinal analysis can be recovered in the sequence
they were embedded when the bit error rates are above 10% (which is negligible) and

less than 50% (the attack on the cover work is large which means the cover work is also
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Figure 5.14: Four embedded watermarks in the absence of an attack, ordinal analysis

method.
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Figure 5.15: Four embedded watermarks recovered after a compression attack, Euclidean
distance measure. Note that the order of degradation of the messages follows the sequence

of message hiding.

134



Chapter 5 SEQUENCING WATERMARKS

0.6~ T T T v T T T
_e_WM
——
R , e WM
0.5 - R B WM

PSR e e

Bit Error Rate
o
w
:
)

ot L I ' L :
45 50 55 60 65 70 75 80 85

Compression Rate (%)

¥ a0

Figure 5.16: Four embedded watermarks after a compression attack, ordinal analysis
method. Note that the order of degradation of the messages follows the sequence of
message hiding. This shows that the four watermarks can be recovered in the sequence in
which they were embedded in the presence of an attack.
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Figure 5.17: Four embedded watermarks recovered after a requantisation attack, Eu-
clidean distance measure. Note that the order of degradation of the messages follows
the sequence of message hiding.
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Figure 5.18: Four embedded watermarks after a requantisation attack, ordinal analysis
method. Note that the order of degradation of the messages follows the sequence of
message hiding.
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Figure 5.19: Four embedded watermarks recovered after a low pass filtering attack, Eu-
clidean distance measure. Note that the order of degradation of the messages follows the
sequence of message hiding.
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Figure 5.20: Four embedded watermarks in the absence of a low pass filtering attack,
ordinal analysis method. Note that the order of degradation of the messages follows the

sequence of message hiding.
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Figure 5.21: Four embedded watermarks recovered after an additive noise attack, Eu-
clidean distance measure. Note that the order of degradation of the messages follows the

sequence of message hiding.
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Figure 5.22: Four embedded watermarks after an additive noise attack, ordinal analysis
method. Note that the order of degradation of the messages follows the sequence of
message hiding.

destroyed).

The experiments were conducted on 22 EEG signals taken from different data sets
(EEG from patients undergoing seizures and EEG with no abnormal activity). As dis-
cussed in chapter 4, section 4.7, since in our experiments the recording taken at each
node (one-dimensional EEG) is considered as an individual cover text, the correlations or

abnormalities did not affect the actual watermark embedding/decoding method, or results.

5.8 Conclusion

It was shown that by using the ICA method, numerous sources of equal robustness can
be obtained. By embedding multiple watermarks in these sources not only were all the
embedded watermarks recovered but by applying three different attacks (compression,
low pass filtering, addition of noise), the order of the embedded watermarks was also
determined. This is particularly useful if a record of the people who have accessed a
medical record is to be maintained securely.
The multiple watermarks of similar characteristics were embedded into sources grouped

using two different methods of classification, Euclidean distance measure and ordinal
analysis. From the results obtained the group of sources clustered using ordinal analysis

provide a stable sequencing of the watermarks both in the presence and absence of an
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N s

attack. Hence we conclude that ordinal analysis based methods provide a better classifi-
cation of sources for embedding multiple watermarks of similar characteristics.

In the next chapter the sensitivity of the ICA method to the input data is studied. It will
be shown how this sensitivity of the ICA can be succesfully used to secure the embedded

data in watermarking applications.
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This thesis has used the properties of an independent component analysis as a basis for
watermarking. Amongst the characteristics noted, was a sensitivity to signal reconsruc-
tion due to small perturbations in the sources because of data embedding. In this chapter
a demonstration of how this sensitivity of the ICA, can be successfully used to secure the

embedded data in watermarking applications, is provided.

6.1 Introduction

Blind Source Separation (BSS) is a well known signal processing technique used in
analysing a mixed set of data generated from multiple sources. The application of one
of the popular BSS techniques, the ICA method, for watermarking applications has been
presented in [16, 46]. The sensitivity of the ICA method to the input data has not been
explicitly defined as an advantage in watermarking applications in work using the ICA for
watermarking. The sensitivity of the ICA and its application in the watermarking scenario
was first mentioned in [97]. An analysis of this sensitivity was conducted and presented
in [55]. In the following sections the ICA and the sensitivity issue is explained in more
detail.

The ICA [42] method for blind source separation extracts a set of basis vectors W =
{w;;i=1,...,n} from the given set of mixed observations X. The set of observation vec-
tors X is projected onto W. These projections being statistically independent, represent

the underlying sources S which generated the mixed observations,
WX — S. (6.1)

The ICA method is stable in extracting the underlying sources for slight perturbations in
the input data but it is sensitive in that slight changes in the input set of mixed observations
above a threshold result in differing values of the independent components. The final
projections or the estimated sources S from the perturbed set of observations X are altered
such that the embedded information is lost but the physical characteristics of the sources
are not changed.

Embedding a message m into a cover work ¢ distorts ¢ to a degree that is perceptually

invisible. Hence the watermark is nothing but the distortion to ¢, Dg .

¢+ Dy — & (6.2)
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The watermarked cover € is usually subjected to intentional/malicious signal processing

attacks, 1 during transmission thus increasing Dg .
¢+m— ¢ (6.3)
As already defined in chapter 2, let the distortion to ¢ be represented as €,
€ = Drpp + M. (6.4)

Retrieving an estimate of m, m from ¢ therefore depends on €. The larger the value
of g the less the probability of recovering the embedded m. Let £ define a threshold for
M. The value of  is not fixed and varies with the type of ¢, the watermark embedding

method F, the type of attack(s) 1 and the strength of the attack(s).

5 = 1, ife. <, (6.5)
0, ifec >0
He, equal to one indicates that m is recovered with no error and %, equal to zero
indicates that m 7 m. .
In most of the ICA based watermarking techniques the set of mixed observations X
are taken from ¢, and W is used as the key to obtain a transformed set of vectors from
X, S. S is used as the embedding space for m. ¥ defining the embedding function, k

samples of S are selected as the probable embedding locations of m. The selection of k is

based on the application of ¢ and m.
F(S(k),m) — S. (6.6)

At the decoder the modified source S + g is used to retrieve an estimate of m, .
This chapter demonstrates how small perturbations to X can result in large perturba-
tions in the estimation of W. It is shown how the relationship between the perturbations

in X and W provides a security mechanism for watermarking applications.

6.2 Sensitivity of the ICA

Given observations X, the ICA algorithm estimates the separating matrix W and the prob-
able statistically independent sources S. Assume S is a set of statistically independent

sources which are not observable,
SpXNf:{élz"wgp]: (67)
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Pr(n2_,S) =TT Pr(S). (6.8)

Let A € RP*P, such that
X = AS, (6.9)

where A is the unknown mixing matrix.

6.2.1 Sensitivity problem

As already mentioned W is derived from X. The estimated W by the ICA algorithm is the-

oretically the inverse of the unknown A. Let & represent the threshold of the perturbation

of X.
X+E—X. (6.10)
X < ws. (6.11)
X “'ws. (6.12)

It was shown in [97] that ifS—S=¢and
Dgmb + € > C (6.13)

then H, = 0.
The sensitivity problem in this thesis is therefore defined as ‘the problem of defining

bounds for & which in turn will define the bounds for . which will affect the decision

3
€¢ ¢

The eigenvalues of a fixed matrix give an understanding of the underlying structure
of the matrix, but the eigenvalues of sample covariance matrices give information about
the underlying distribution. This concept of the eigenvalues and the covariance matrices
is exploited in data analysis methods such as the PCA and ICA. Hence the covariance of
X is the fundamental starting point used by the ICA to estimate W and we rely on the
condition number of the covariance to provide an understanding of the sensitivity issue.

Therefore to illustrate the effect of the perturbations on the retrieval of the embedded

watermark the following experiment was conducted.

1. A one-dimensional EEG signal ¢ of twenty seconds is considered as the cover work.
The EEG is transformed into a matrix of observation vectors, X using the dynamical

embedding method described in chapter 2.
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(8]

13.

. The ICA approach is used to retrieve probable independent sources S and a sepa-

rating matrix W. W is used as one of the keys to retrieve the watermark.

. One of the sources, S, thus obtained is watermarked using the QIM method of

message embedding. Let §,,, represent the watermarked source. S represents the

watermarked source matrix.

The watermarked EEG € is reconstructed from X which is obtained by applying the

inverse of the separating matrix, A to S.

To estimate the sensitivity of the ICA method ¢ is perturbed by a zero mean random
noise signal, 1 to obtain ¢. The variance of the noise signal represents & and is

varied from 0.01 to 0.04.

. ¢; obtained for each value of €. is transformed into a matrix of observation vectors,

X; where i indexes the different noise levels.

. The condition number of the covariance of X and each X; is calculated.
. The norm of the difference between X and its perturbed version X, & is calculated.

. The ICA is applied to each i,- to obtain §i and \X/','. The ICA is initialised using

the eigen vectors of the covariance of X in order to obtain the same order of the

estimated sources.

The condition number of the covariance of W and each W; is calculated.

. The norm of the difference between W and its perturbed version W; is calculated.

An estimate of the sources S,,, S; is obtained by applying W and each W; respec-
tively to X. An estimate of the embedded message is retrieved from §,,,, of S,, and

each §,-.

The Hamming distance between the original embedded watermark and the esti-

mated watermark is noted.
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Figure 6.1: Schematic diagram illustrating part of the experiment.
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Figure 6.2: Schematic diagram illustrating part of the experiment.

6.3 The Application of the Sensitivity of the ICA Method in
a Watermarking Application

Figure 6.3 is the condition number of the covariance of the observation matrix, X and
its perturbed versions X plotted against an increasing value of €. As the value of g
increases the condition number varies randomly. This is because € is derived from a
noise signal which has a normal distribution but the specific samples values of the noise
do not conform to any particular order (increasing/decreasing). Hence the effect of the
noise signal on each value of the EEG signal varies even though the variance of the noise
signal is increasing.

Figure 6.4 is the condition number of the estimated separating matrix W for X and the
estimated separating matrices W; for each perturbation of X. The plot of this condition
number is similar to the plot of figure 6.3. This shows that any perturbation of the input
matrix X results in an equivalent perturbation of the estimated independent components
W. Since W is used as one of the keys in the retrieval of the embedded message, pertur-
bations of W will influence the estimate of the embedded message. Figure 6.5 is a plot
of the norm of the original observation matrix and its perturbed version for an increasing
value of €.. This norm represents &. It has to be noted that ¢ and € have a monotonic
relationship. & increases with increasing value of € but this phenomenon is not observed

in the case of W derived from X. Figure 6.6 is the norm of the difference between the
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Figure 6.3: Condition number of the covariance of the observation matrix, X and its
perturbed versions X. It is to be noted that the condition number fluctuates as the noise
sample fluctuates.
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Figure 6.4: Condition number of the covariance of the observation matrix, W and its

perturbed versions W. It is to be noted that the condition number fluctuates. The variation

in the condition number of W and each W; follows the changes in the condition number

of the respective observation data matrix.
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Figure 6.5: Plot of the norm of difference between the observation data and its perturbed
version, . As the variation of the perturbation signal, the random noise signal, increases
the value of € also increases correspondingly and smoothly.
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Figure 6.6: Plot of the norm of difference between the separating matrix obtained for the
original observation data and the separating matrix obtained for the perturbed version of
the observation data. The variation of the norm changes for certain values of the perturba-
tion but for a perturbation signal of large variance the value of the norm is large compared
to the initial value.
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separating matrix W and W, for differing perturbations applied to X. The perturbation
of W is minimal for small values of €, but it changes rapidly for larger values of €. An
exact value of ¢ for which this change is observed cannot be estimated. This is because
gc is derived from a noise signal generated randomly at each instant.

Figure 6.7 is the bit error rate in the estimated watermark for each value of g¢. It can
be seen that the bit error rate is zero for small changes in W but increases to 50% of the
embedded message for large changes in W. It has to be noted that the changes in the

bit error rate are similar to the changes in the estimated W. In order to demonstrate the
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06r i

05F g

04r .

01r 4

Bit error rate of recovered watermark

0 001 002 003 004 005 006 007 008 009 01
Variance of perturbation signal

Figure 6.7: Bit error rate of the retrieved watermark. It should be noted that the error
rate follows the changes in the norm of the separating matrix. As the norm of the dif-
ference between the separating matrix obtained for the original observation data and the
separating matrix obtained for the perturbed version of the observation data increases the
bit error rate also increases. This shows that the embedded information is lost.

relationship between the sensitivity of the ICA, the effect of one of the keys W and the
embedded message the results shown in figures 6.6 and 6.7 are rearranged. The values of
the norm of the difference betweeen W and \X/i obtained for different perturbation levels
is sorted in the ascending order. Similarly the bit error rate is also ordered. The ordered
norms of the difference in the separating matrices and the bit error rate are shown in
figure 6.8. It can be observed that when the norm of the difference in W and V—V,- increases
beyond a threshold the bit error rate increases but for small values of the norm of the

difference (below a threshold) the bit error rate is zero.
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Bit error rate in the reconstructed watermark
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Figure 6.8: Bit error rate of the retrieved watermark sorted in ascending order and sorted
norm of the separating matrix shown in figure 6.6. As the norm of the difference between
the separating matrix obtained for the original observation data and the separating matrix
obtained for the perturbed version of the observation data deviates to a large extent the
bit error rate also increases. But for small variations in the norm of the separating matrix
the bit error rate is zero. This shows that the embedded information is lost when the input
observation data is perturbed beyond a threshold value.

6.4 Conclusion

In this chapter the sensitivity of the ICA to the input data was demonstated. The changes
in the estimates of W were observed for a simple attack, a random noise signal. It was
shown how this sensitivity could provide a solution to the issue of security of the embed-
ded message. The bit error rate in the estimated watermark is high when the perturbation
of the observation data increases beyond a threshold. It was also shown how the retrieval
of the message is dependent on the usage of the key, W. A demonstration of this sensitiv-

ity in the watermarking of EPHRs was also given. This work was presented in [58].
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Chapter 7 ' CONCLUSION

This thesis provides a partial solution to the problem of patient privacy and security
of medical records in the fully connected computerised health care system. In this'thesis
techniques based on data hiding methods were developed to show that they can provide a
parallel security mechanism to the traditional cryptography based 1CT methods of secu-
rity.

The data hiding based security mechanism is shown to resolve some of the problems

in the implementation of EPHRs. It is also shown to provide added benefits to the EPHR.

7.1 Embedding Watermarks in One-Dimensional Time Se-
ries Data

In chapter 2 as an exercise into understanding the fundamentals of data hiding techniques
and their possible application to EPHRs various transform domain based watermark-
ing techniques were implemented. The experiments were conducted on single channel
biomedical time series data (for example EEG). The redundancy in a one-dimensional sig-
nal is less compared to an image. A watermarking technique which performs efficiently
on a one-dimensional signal will perform at least as effectively on a higher dimensional
data. These experiments were aimed to provide a solution for the privacy and security
issues which work consistently independent of the data type.

In order to provide added value and confidence in the EPHR it was realised that it
is important to not only provide a secure channel to store/transmit the personal data but
also add extra information. This extra information could possibly be in the form of data
related to the genetic composition of the patient, documentation of any diagnoses made, a
mechanism to authenticate the medical data, and a log of people (authorised/unauthorised)
who have accessed the data.

In chapter 2 the DWT, PCA and ICA based data hiding methods were implemented.
It was shown that the various transform domain based watermarking methods provide
multiple channels capable of carrying multiple dissimilar characteristics watermarks but
only the ICA based data hiding method provided a mechanism to embed multiple simi-
lar characteristics watermarks. Though the DFT and DCT based watermarking methods
could also be used to embed multiple watermarks, these methods require careful selection

of the secret key, k for each of the watermarks.
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It was also realised that the ICA extracts interesting components and not necessarily
independent components from a one-dimensional signal. This resulted in the loss of the
embedded data at the embedder itself unless a fixed embedding and reconstruction method
was implemented. Hence a new method of embedding information and reconstructing the

watermarked one-dimensional signal without loss of the embedded data was designed.

7.2 Security of the Embedded Message, m

The watermark embedding mechanism using the ICA based method of obtaining channels
to carry the secret information was based on the QIM method. Every watermark has three
main characteristics, imperceptibility, robustness and rate of information. These three
characteristics are a trade-off against each other. In the QIM based embedding this trade-
off can be controlled by varying the size of the quantisation index 8. Also the locations
of the samples k of the carrier modified to embed the watermark are secret. An illegal
attacker who accesses the EPHR has to estimate the true value of & and k inorder to
retrieve the watermark.

In chapter 3 the claim that scalar QIM and DM-QIM are secure embedding techniques
because the value of the & and k are unknown to illegal intruders was examined. [t was
demonstrated how this concept can be thwarted in the case of the DWT based method
but upheld in the case of the ICA based technique. The ICA based watermarking method
proved to be capable of providing a secure channel to transmit hidden information com-
pared to the DWT based method. It was shown that the a better security mechanism can
be designed with the use of extra keys than relying on the embedding technique only as

in QIM based embedding methods.

7.3 Enhancing the Value of the EPHR

Embedding a single watermark for copyright or authentication purposes is the norm in
multimedia applications. Whereas in this thesis watermarking techniques are applied to
an EPHR to not only provide a secure mechanism to store and transmit sensitive patient
data but also enhance the value of the EPHR. This is to provide confidence in the use of
the EPHR by the public.

In order to enhance the value of the EPHR multiple messages of similar and dissim-
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ilar characteristics need to be embedded in the EPHR. In chapter 4 multiple watemarks
of dissimilar characteristics are embedded. The multiple watermarks have different re-
quirements of imperceptibility, robustness and rate of information. The first watermark
representing patient information requires a high level of robustness, imperceptibility, se-
curity but a low data rate. The watermarks representing doctor’s notes and identity of
clinician/hospital to authenticate the source of the data require moderate to low level of
robustness, imperceptibility and security, but they require a higher data rate compared to
the first watemark. The last of the watermarks is a fragile watermark used to authenticate
the originality of the EPHR and to provide an estimate of the attack m. This watermark
requires a low level of robustness, imperceptibility and security. It is fragile in the sense
it disintegrates when the EPHR undergoes an attack. Embedding of multiple dissimilar
watermarks was conducted using the two transform domain based methods, DWT and
ICA.

Though in terms of the trade-off obtained between the two methods of DWT and
ICA, the ICA performs slightly better, privacy of the sensitive personal information in
the EPHR being the main concern, the ICA is advantageous. This is because the ICA
based approach requires extra information in the form of a separating matrix W to enable
correct decoding of the embedded information.

In chapter 5 multiple watermarks of similar characteristics as opposed to dissimilar
characteristics watermarks are embedded. If multiple watermarks are used as a log of
access of the medical record, the information provided by each watermark is the same.
The problem in such watermarking applications lies in deriving the order of the embed-
ded watermarks. A mechanism of sequencing the multiple embedded watermarks at the
decoder has been derived in this chapter.

In the ICA method numerous channels of equal robustness can be obtained. By em-
bedding multiple watermarks in these channels not only all the embedded watermarks can
be recovered in the absence of an attack but in the presence of an attack, the order of the
embedded watermarks can also be determined. This is particularly useful if a record of

the people who have accessed a medical record is to be maintained securely.
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Chapter 7 CONCLUSION

7.4 Mathematical Explanation of the In Built Security of the
ICA

In the final chapter of this thesis the sensitivity of the ICA method to the input data was
analysed. An éxample of how this sensitivity of the ICA can be successfully used to
secure the embedded data in watermarking applications was also presented.

The experiments conducted showed that the ICA is a stable algorithm in the sense that
for a given set of observations and slightly perturbed versions of the same observations,
the resulting estimated sources are structurally the same. It was observed that the ICA
was sensitive to slight perturbations of the input observations outside a threshold, in that,
the independent components estimated for an observation set and its perturbed version
vary. This sensitivity provides an in-built security mechanism. A simple example was

used and shown how this sensitivity can be exploited in the watermarking of the EPHRs.

7.5 Future Work

The watermarking of one-dimensional ¢ and the reconstruction of the watermarked ¢, ¢
derived in this thesis is novel. Improvements in the trade off characteristics of the embed-
ded watermarks could be enhanced by deriving a better method of estimating statistically
independent sources from a one-dimensional time series signal. One such ICA method
based on ordinal analysis ‘SWICA’ has been published recently in [S1]. This method of
estimating sources proved to be slow as claimed by the authors. Since the embedding
window size, 83 in most of the experiments is large, the SWICA method was unsuccess-
ful in estimating the sources. Hence a comparison of the original results with the new
method could not be obtained.

As discussed in chapter one most of the current EPHR standards leave the security
protocols to be implemented by third party users. Our recommendation is to build the
security protocols within the standard thus maintaining uniformity in both implementation
and usage.

We conclude that unless problems involving the security issues and lack of confidence
in the use of the EPHR by the general population are not resolved implementation and use
of a centralised eHealth system cannot be achieved. This thesis has provided a practical

and simple method of partially resolving these issues.
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