

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our <u>Takedown Policy</u> and <u>contact the service</u> immediately

THE STRUCTURE AND CONSTITUTION OF ARCHAEOLOGICAL FERROUS PROCESS SLAGS

Volume 2 of 2 : Tables, Figures and Appendices

Stephanie Fells

Ph.D.

University of Aston in Birmingham

CONTENTS

CHAPTER 2 - INVESTIGATED SITES : GEOLOGY AND ARCHAEOLOGY

Table 2.1

Figures 2.1 to 2.14

CHAPTER 3 - REDUCTION OF IRON ORE IN BLOOMERY FURNACES

Figures 3.1 to 3.3

CHAPTER 4 - SLAG PETROLOGY

Tables 4.1 to 4.7

Figures 4.1 to 4.39

CHAPTER 5 - ORE PROVENANCING

Tables 5.1 to 5.7

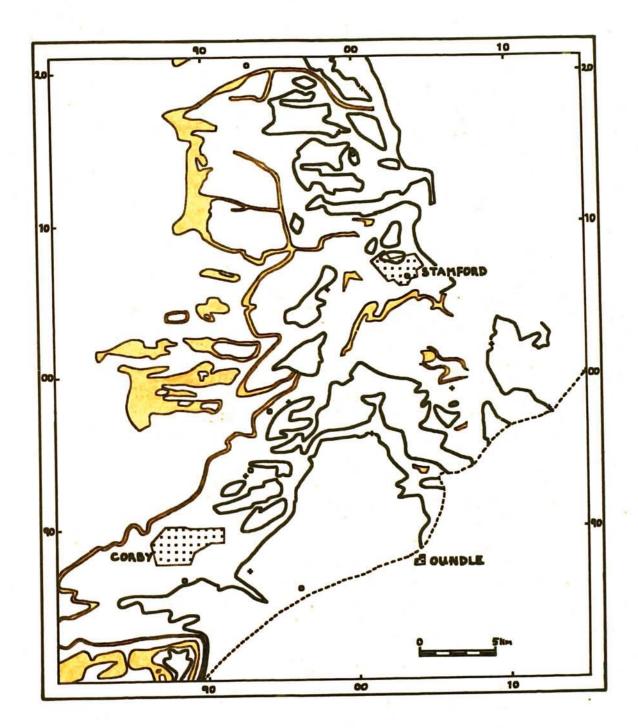
Figures 5.1 to 5.36

APPENDIX A - List of localities from which samples were obtained, with code numbers used for individual samples

APPENDIX B - Electron probe micro-analyses of individual phases within slags

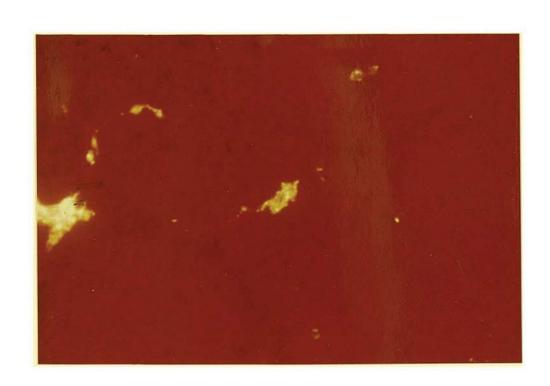
APPENDIX C - X-ray fluorescence analyses

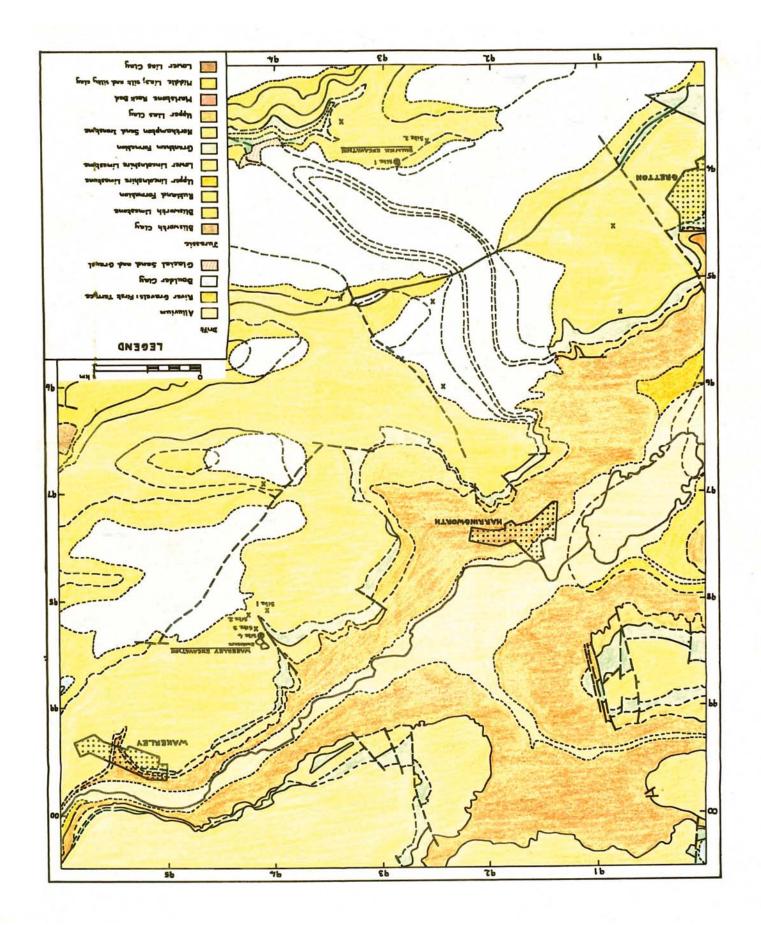
Page removed for copyright restrictions.

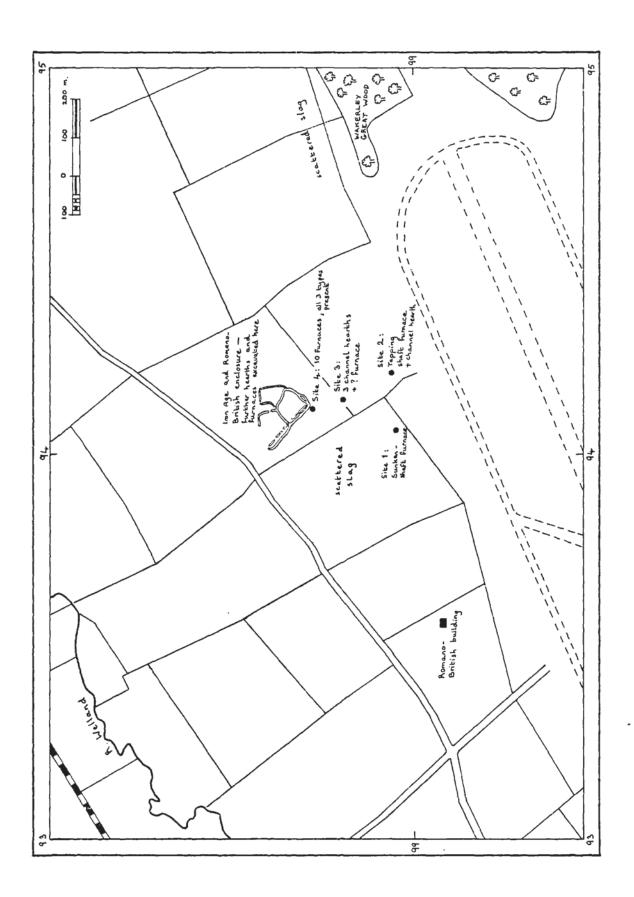

Photograph of Wellingborough Middle Quarry, Finedon, showing the Northampton Sand Ironstone in situ. This quarry is located south of the Lincolnshire Limestone's margin, hence the Grantham Formation and Lincolnshire Limestone are absent, the ironstone being directly overlain by the Rutland Formation.

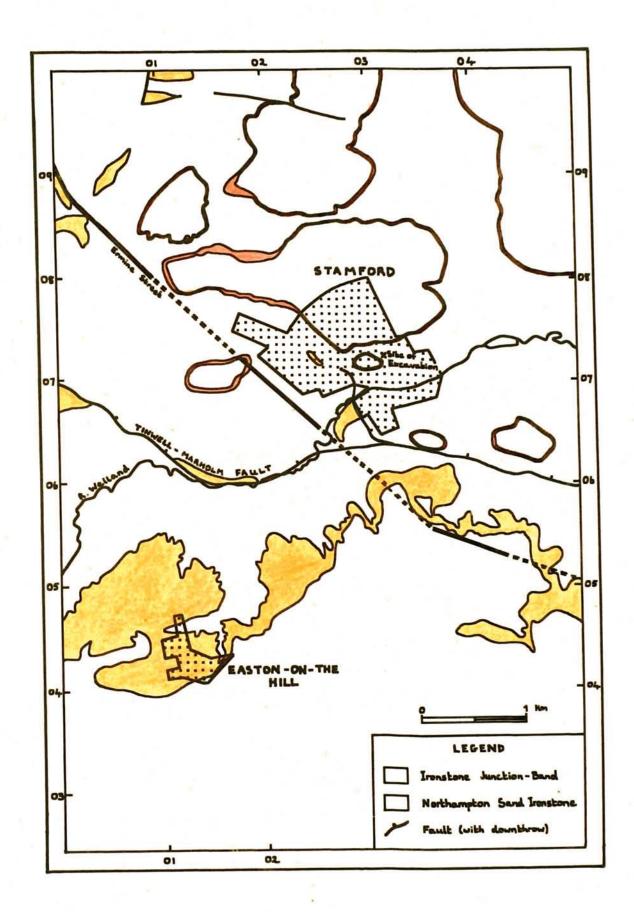
Idealised stratigraphic column for North-east Northamptonshire

netres	اجليا	
1	1711	P. L. C. 10 P. T. L. L. L. C. T. C. L. T. C. T.
60-I		BLISWORTH LIMESTONE
口		Shelly limestones, mostly micritic
2		
Ĭ.	<u>123</u>	
55-		Shelly mudstones with
<u> </u>	<u> </u>	prominent impure limestone
12/	<u>-λ-λ-</u>	or calcitic sandstone RUTLAND
= 2	ينج. ن	
50-1-	72:-72	FORMATION
	E=E=	Stamford Member
Ţ.: <u>.</u>		Rootletted fining upward sequence
	Ironstone	from pale grey silks to
45-		
19	0 0	
0	1318	
40-1	7 9	•
Ĭ	1910	
h	111	
35		
	0 0	
Ī	0 0	
1		LINCOLNSHIRE LIMESTONE
30-		
H	, 6 1 9	Variably politic and bioclastic limestones.
	0 0 0	Lower park mainly micritic, upper part sparitic.
口		, , , , , , , , , , , , , , , , , , , ,
25		
F		
	000	
H	0 0 0	
20-		
F	9 0	
	IOI	
15-		9
	: [: [:	
	-	
10-	1-11-1-1	GRANTHAM FORMATION
[=		Grey fine to very fine sandstones overlain
(:		by intercalated mudstones, siltstones, sandstones
	ವಾತಾದ –	and rare coals.
5-2		NORTHAMPTON SAND IRONSTONE
Þ		shelly, variably politic, chamositic + sideritic
		chamosite solite, locally sandy, with some calcitic
F	<u> </u>	UPPER LIAS CLAYS
		Park blue-grey laminated clays


Map of the 'Northamptonshire area', comprising
North-east Northamptonshire with parts of
Leicestershire and Lincolnshire. The distribution
of the outcrops of the Northampton Sand Ironstone
are shown in orange and those of the Ironstone
Junction-Band are shown in black. Localities from
which ironstone samples were obtained are shown by
a cross, whilst the archaeological sites from which
slags were obtained are circled.


Photograph of an Ironstone Junction-Band nodule $\underline{\text{in }}$ $\underline{\text{situ}}$.


Sample of Ironstone Junction-Band from the Wakerley site showing a spherulitic texture. Speruliths are 1-2 mm across. Transmitted light, plane polarized.

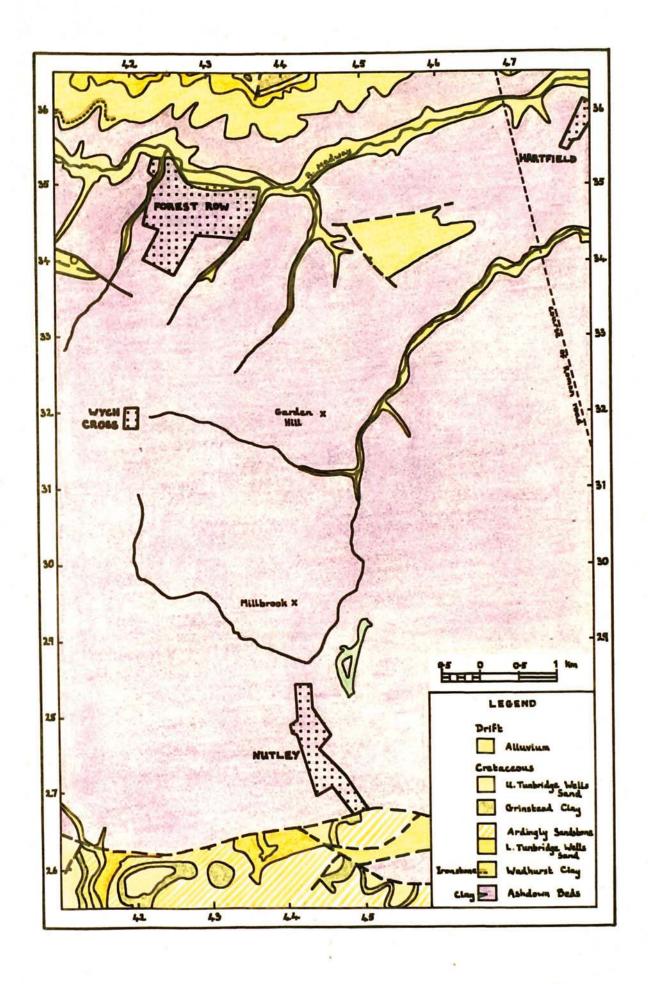

Map showing detailed geology of the area around Wakerley and Bulwick. The investigated sites are shown as circled crosses and other known or probable ironworking sites (see Jackson³²) are shown by crosses.

Map of Wakerley site, adapted from Jackson and Ambrose.

Map of the Stamford district showing the outcrops of Northampton Sand Ironstone (coloured orange) and Ironstone Junction-Band (coloured red). Adapted from Mahany et al.

	metres.		
			WEALD CLAY
			Silty mudstones and silts with some clay ironstones
	400—		UPPER TUNBRIDGE WELLS SAND Predominantly silkstones with fine grained sandstones, subordinate mudstones and thin impersistent clay ironstones
S		=======================================	ickfield GRINSTEAD CLAY stone Mudstones, with subordinate thin sillstones, clay ironstones and shelly limestones
			stone Mudstones, with subordinate thin siltstones, clay ironstones and shelly limestones
			Ardingley Sandstone LOWER TUNBRIDGE WELLS SAND
Ш			Sandstones, silkstones and mudstones. Lower part intercalated fine silky sandstones and silkstones, upper part massive sandstone.
~			
A	300-		WADHURST CLAY
			Mudstones with subordinate siltstones, sandsbones, shelly
			limestones and day ironstones
•			
S			
ტ			
O			
Z	100-		
_		BARAS.	
H			
S			A SHOWN BEDS
0,			Fine grained sandstones and siltstones with subordinate argillaceous intervals. Locally more
\triangleleft			clayey towards the base. Pebble bed at top.
エ	100		
			· ·
)#S		
		-	UPPER PURBECK
			Mudstones with limestones and subordinate sandstones

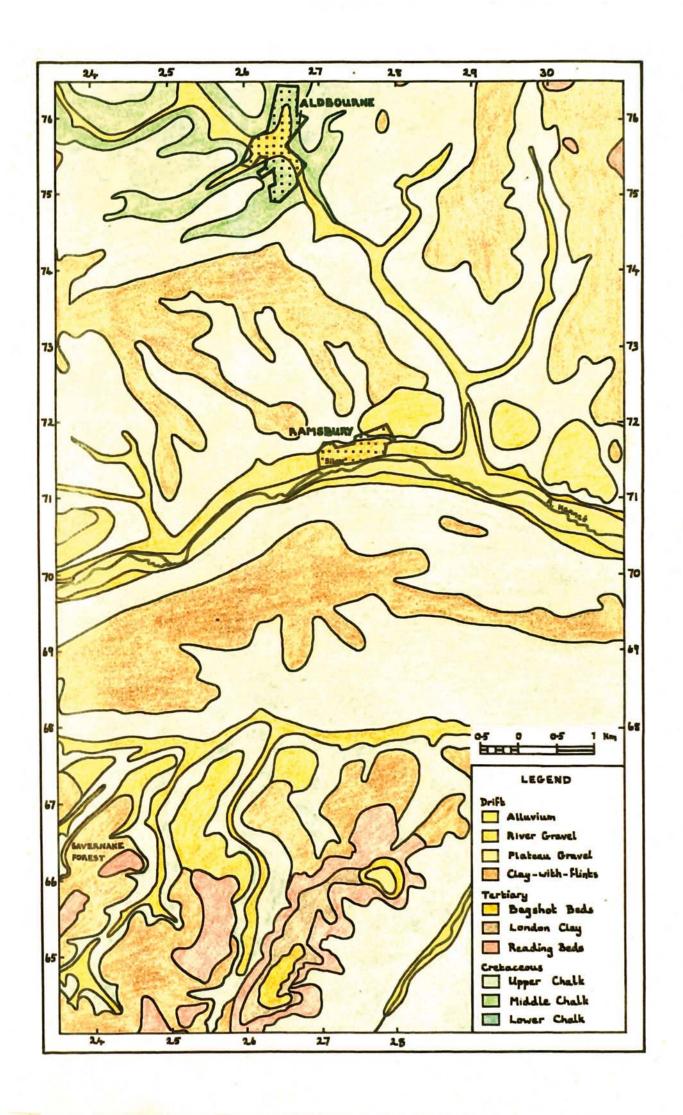
Idealised stratigraphic column for the western part of the High Weald.


(a) Photograph of Wadhurst Clay Ironstone in situ, Sharpthorne Brickworks, near West Hoathly. By courtesy of C.F. Tebbutt. Pole is 2 m long.

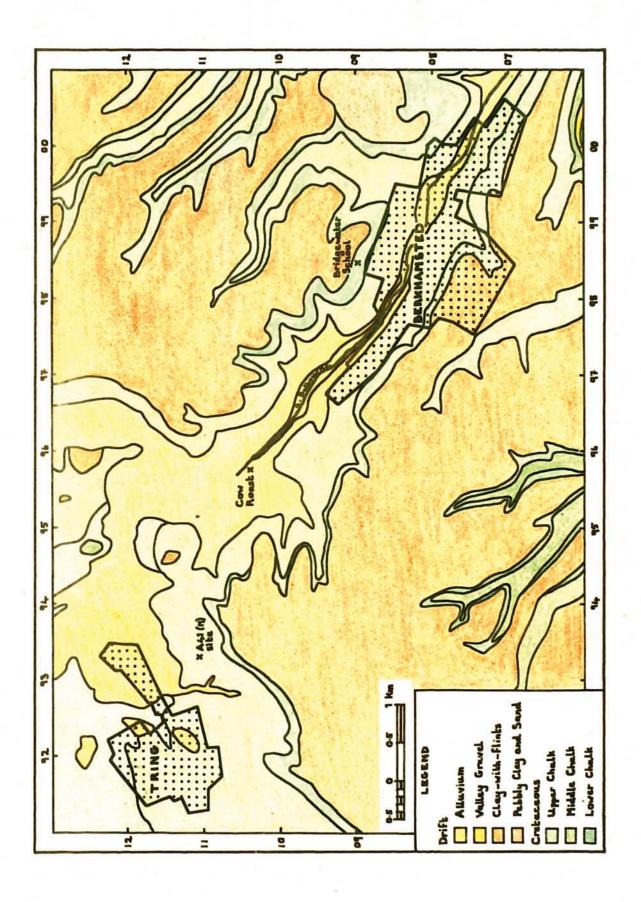
(b) Photograph of section through an old minepit exposed in the quarry face of Sharpthorne Brickworks, near West Hoathly. By courtesy of C.F. Tebbutt. Pole is 2 m long.

Page removed for copyright restrictions.

Map showing detailed geology of the area around the Garden Hill and Millbrook sites.

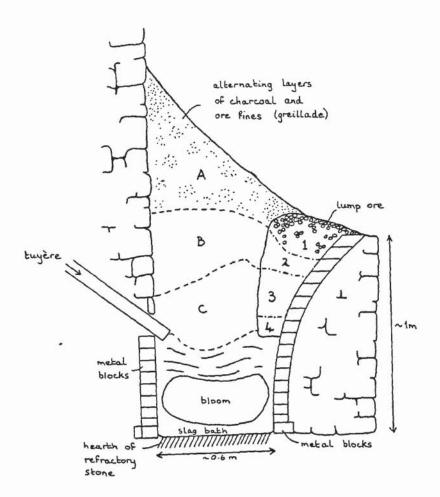


Photograph of shaft furnace reconstruction built by R. Adams. By courtesy of M. Darby.



Page removed for copyright restrictions.

Map showing detailed geology of the Ramsbury district



Map showing detailed geology of the Bulbourne Valley

Figure 3.1

Sketch of the Catalan furnace showing the different zones designated by Francois.

Figure 3.2

Wakerley slag WK-AV in reflected light showing branching grains of metallic iron. Field of view is 0.36 mm wide.

Figure 3.3

Bowl furnace reconstruction slag RR2 in reflected light showing metallic iron at the boundary between slag and charcoal, indicating the reduction of slag by solid carbon. Field of view is 0.725 mm wide.

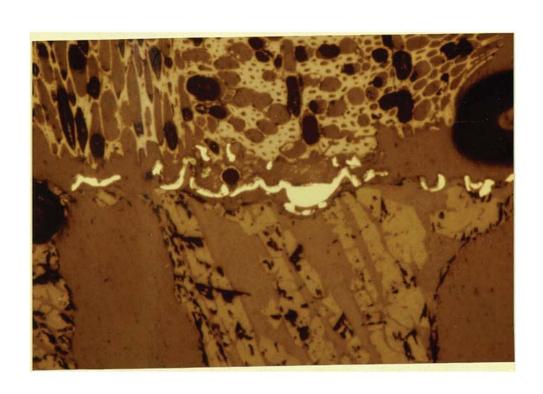


Table 4.1
Brief descriptions of slag petrography

Samples	Fayalite	Wustite	Hercynite	Leucite	Others	Glass
Great Oakley						
G03	70% massive, wust. exsoln	15% short dendrites	5-7% euhedral + intergrowths	5% rounded patches		3%
G04	60% massive wust. exsoln	20% dendrites	5-10% euhedral + intergrowths	7% irregular patches		3% + crystal- lites
GO 792017	60% skeletal laths	20% dendrites + film at C.S.	2% euhedral + inter- growths	2%		15% + minute crystal- lites
Wakerley	!	1	j		ac 0.5.	
WAK	50-55% laths skeletal to massive	35% fine dendrites + films at C.S.	5% euhedral + inter- growths	-	metallic iron magnetite + Fe-rich spinel	5%
WAK 48A	60% laths, some wustite exsolution	15-20% long dendrites	10-15% large euhedral	IZ rounded patches	metallic iron grains	l-2% + crystal- lites
WK-AV	50% laths	40% v. long fine dendrites + film at C.S.	3% inter- growths	Ε	metallic iron magnetic + Fe-rich spinel	5%
WK K 4	60% laths to equant, some wust. exsoln	15% short dendrites + film at C.S.	10% intergrowths	7% patches + inter- growths	magnetite, Fe-rich spinel + Ca-p phase	2% + crystal- lites
WK K 4 2	60% ring laths	rare tiny dendrites	-	-	some metallic iron grains	40% + crystal- lites
WGW	60% laths to massive	35% dendrites + film at C.S.	2-3% euhedral + intergrowths	1-2% patches near C.S.	metallic iron grains	2% + crystal- lites
Garden Hill	•	l				
GH1	40% laths some equant	50% dendrites long to short	localized euthedral + intergrowths	1% localized patches	Iron grains + furnace wall inclusion	7.5% + crystal- lites
GH2	55% skeletal laths + some equant	30% dendrites	-	-	metallic iron grains	l5Z + crystal- lites
GH671	75% laths wust exsoln	2% dendrites	3-5% intergrowths	7-10% irreg	iron growth	
GH653	45% skel- etal laths	35% den- drites to globular	-	2% inter- growths	iron grains ca-p phase	15-20% + crystallites
GH 6536	50% laths to equant	20% dendrites	1-2% euhedral + intergrowths	그리는 기계에 하다지면서는 나는 아이들이 아이를 하였다.		25% + crystallite
GHE I	60-65% massive	1% mostly globular	15% euthdral + intergrowths		s localised ths magnetite	

Table 4.1 continued
Brief descriptions of slag petrography

Sample	Fayalite	Wustite	Hercynite	Leucite	Others	Glass
Bulbourne Valley						
BCR 1	65-70% laths some wustite exsolution	dendrites + films at chilled surfs	2% fine intergrowths	7% near chilled surfs	- /	7% + some crystallites
BCR 2	90% long laths, much wust. exsoln	3% dendrites + film at C.S.		-	euhedral magnetite at C.S.	7% + crystallites
BCR 3	70% mostly massive, wust. exsolution	20% long dendrites	5% intergrowths	1-3% mostly intergrowths	inclusions of lining and char- coal	1-3% abundant crystallites
BBS	85% laths some skeletal	1-2% tiny dendrites + films at C.S.	-	-	magnetic + Fe-rich spinel	12-15% crystallites
NOR 1	70-75% laths most skeletal	-	-	-	5% magnetic	20-25% crystallites
NOR 2	85% laths sust. exsoln	1-2% dendrites films at C.S.		_	iron grains magnetite	7-10% + some crystallites
Brigstock	40% laths to massive	30% dendritic to globular	10-15% large euhedral	5-7% inter- growths	-	5%
Bulwich	80% laths most skeletal wust exsoln	5% small dendrites + films at C.S.	10Z euthdral + inter- growths	-	Fe-rich spinel near C.S.	5%
Caerwent						
697096	55-60% laths to equant most skeleted	35% dendrite to globular + films at C.S.	-	-	-	5-10% + some crystallites
697275B	45% skeletal laths, some wust. exsoln	30% dendrites	-	-	some metallic iron grains	20-25% + som crystallites
Blind Eye Quarry						
BEQ1	80-85% laths wust. exsoln	Few primary dendrites + films at C.S.	5-10% inter- growths	-	some magnetite at C.S.	5% and few crystallites
BEQ2	70-75% laths wust. exsoln	5-7% dendrites films at C.S.	5-7% mostly euhedral	A little near chilled surfs	-	10%

Table 4.1 continued

Sample	Fayalite	Wustite	Hercynite	Leucite	Others	Glass
Ramsbury						
RAM	55-60% laths to massive	10% dendrites	2-3% mostly euhedral	15% patches + inter- growths	Ca-p phase	10% + crystallites
RAM 5	55% laths to massive some wust exsoln	15-20% mostly dend- drites	2-3% euhedral + inter- growths	10% patches + inter- growths	some metallic iron grains	7-10% + crystallites
RAM 6	55% laths to equant mostly skeletal	25% fine dendrites + film at C.S.	5% fine inter- growth	5% in glass	iron grains + mag- netite at skil- led surf	10% + crystallites
Millbrook						
D	55% laths to equant	3-5% tiny dendrites	7% some euhedral	-	-	30-35% + crystallites
E	30%	50% den- dritic to glo- bular	15% inter- growths	3% in glass	-	2%
E ₂	30%	60%	5% inter-growths	3%	magnetite in leu- cite	2%
F	35%	40% dendritic to glo- bular	15% inter- growths	-	iron grains	10%
С	40% mostly equant	25% fine dendrites	-	-	-	35% + many crystallites
Stamford						
700128	55-60% laths most skeletal some wust ex.	15-20% fire dendrites + films at C.S.	-	7	some metallic iron grains	25%
700 130	50% skeletal laths	25% fine dendrites + films at C.S.	3-5% inter-growths	some patches near C.S.	iron grains Fe-rich spinel	15% + some crystallites
630532	50-55% laths to massive	dendritic to glo- bular + films at C.S.	10-15% mostly inter-growths	some patches near C.S.	iron grains magnetite : + Fe-rich spinel	7% + some crystallites
S. Witham	75% laths part skeletal	15% fine dend- drites + films at C.S.	5% mostly euhedral	some patches near C.S.	iron grains Fe-rich spinel + magnetite	2-5% + crystallites
			(4)			

Table 4.1 continued

Sample	Fayalite	Wustite	Hercynite	Leucite	Others	Glass
Reconstruc- tions						
GHR 1	50% skeletal laths	-	-	-	10% skeletal magnetite	40% + crystallite
GHR4	45% skeletal laths to equant	-	tiny crystals in glass	-	15% skeletal magnetite + iron grains	40% + crystallites
GHR 10	50% large skeletal laths	v. rare tiny dendrites	tiny crystals in glass		15% skeletal magnetite iron sponge	
RR!	60% long skeletal laths	-	-	some 'arcs' + inter- growths	5-10% mag. skeletal + film at CS Fe-rich spinel + iron grains	30-35%
RR2	45% skeletal laths	-	-	5% euhedral + patches	magnetite euhedral + films at C.S. iron sponge	35%

Table 4.2

Results of X-ray diffraction analyses of slags

Sample Sample		Fayalite	Wistite	Magnetite	Hercynite
Great Oakley	G04 G07	++ ++	+++		?
Wakerley	WAK 48A WK/AV WK K4 WGW	++ ++ ++ ++	++ ++ ++ +		+ ?
Garden Hill	GH1 GH2	++	++		
Bulbourne Valley	NOR 1* NOR 2	++	+	+	
Blind Eye Quarry	BEQ1 BEQ2	++	+ **		+
Bulwick	BUL	++	+		?
Brigstock	BRIG	++	++	(5)	+
Caerwent	CAER	++	++		
Ramsbury	RAM 5	++	+		
Millbrook	Bulk D E*	++ ++ ++	++ + ++	+ ?	?
Stamford	700130 630532	++ ++	++		?
Reconstructions	RR1 RR2 GHR1 GHR4 GHR10 GHR11	++ ++ ++ ++ ++		+	

⁺⁺ major constituent, + minor constituent, ? possibly present

^{*} quartz also detected; NOR 1 contained pockets of quartz sand and Millbrook E probably contained inclusions of flint

Table 4.3

Miller Indices	d-spacing (R)		
	Magnetite	Spinel in WAK 48A	Spinel in Brigstock	Hercynite
311	2.532100	2.47100	2.467	2.45100
400	2.09920	2.045	n.d.	2.0280
440	1.48550	1.447	1.445	1.4380
220	2.96730	2.89	2.89	2.8760
511	1.61630	n.d.	1.570	1.5640

n.d. = not detected

subscripts indicate relative intensities published in powder difraction file

Table 4.4

Comparison of the proportions of hercynite and leucite in slags with the ${\rm Al}_2{\rm O}_3$ and ${\rm K}_2{\rm O}$ contents of the ores

Site	% hercynite	% leucite	Average $Al_2^{0_3}$ in slag wt %	Average $A1_2^{0_3}$ in ore wt %	Average K ₂ 0 in slag wt %	Average K_2^0 in ore wt 2	Average 'Fe ₂ 0 ₃ in ore wt %
Wakerley	2-15	0-7	6.14	2.63	0.56	0.08	73.3
Bulwick	10	1	67.9	2.66	0.49	80.0	71.3
Great Oakley	2-10	2-7	4.05	3.07	0.42	90.0	76.4
Stamford	0-15	0-1	6.38	3.92	0.94	0.53	9.69
Ramsbury	2-5	5-15	5.51	2.07	1.74	0.27	*68
Garden Hill	0-5	0-10	4.90	3.54	0.68	0.56	52.3
Reconstruction, shaft	0-0.5	1	5.91	3.54	1.05	0.56	52.3
Reconstruction, bowl	+0	1–5	7.2	3.54	2.1	0.56	52.3

* Average 'Fe₂0₃' in roasted ore

⁺ Spinel is a titaniferous magnetite

Table 4.5

Calculation of late liquid compositions

Example A : Slag RAM 5

Estimated Volof Minerals	ume Specific gravity of phases	Weight % Minerals*	Idealised Formula	Molecular Weight	Moles
Fayalite	55 4.4	56	2FeO.SiO ₂	203.8	0.275
Wüstite	20 5.7	27	Fe0	71.85	0.378
Hercynite	3 4.4	3	Fe0.A1 ₂ 0 ₃	173.8	0.017
Leucite	12 2.5	7	K20.A1203.4Si02	436.5	0.016
1	00	100			# · · · · · · · · · · · · · · · · · · ·
_					

If all fayalite, wistite and hercynite is assumed to have crystallised, total number of moles used

FeO = 2 x 0.275 + 0.376 + 0.017 = 0.943 = 67.8 wt
$$\%$$

 $SiO_2 = 0.275 = 16.5$ wt $\%$
 $Al_2O_3 = 0.017 = 1.7$ wt $\%$

XRF analysis:

Total FeO already accounted for apparently exceeds that actually present, but this is because other oxides substitute for FeO in the phases. If it is assumed that MnO, MgO and some CaO substitutes for FeO in fayalite and ${\rm TiO}_2$ and ${\rm V_2O}_5$ substitute in hercynite, probable liquid composition after crystallization of fayalite, wlistite and hercynite can be calculated as below

Oxides remaining (%) Liquid composition (%)

FeO	2	10
sio_2	9.5	49
A1 ₂ 0 ₃	3.8	19
Ca0	1.5	8
P205	0.95	5
к20	1.74	. 9
	19.49	100

(continued)

Example B : Slag GO4

Estimated Vo	1ume (%)	Specific gravity of phases	Weight % Minerals	Moles
Fayalite	60	4.4	59	0.290
Wüstite	20	5.7	26	0.362
Hercynite	7	4.4	7	0.040
Leucite	10	2.5	6	0.014
Glass	3	3.0	2	
	100		100	

If all fayalite, wilstite and hercynite is assumed to have crystallised, total number of moles used

FeO = 2 x 0.290 + 0.362 + 0.04 = 0.982 = 70.5 wt
$$\%$$

 $SiO_2 = 0.290 = 17.4$ wt $\%$
 $Al_2O_3 = 0.040 = 4.1$ wt $\%$

XRF analysis:

Fe0	sio_2	A12 ⁰ 3	CaO	MnO	MgO	$^{\text{TiO}}_{2}$	V2O5	P2O5	K20
63.7	22.3	4.16	0.78	0.47	0.25	0.27	0.05	0.42	0.65

Following similar arguments to those used for Example A,

Oxides re	maining (%)	Liquid composition (%)
Fe0	2	22
sio_2	4.9	54
A1 ₂ 0 ₃	0.5	6
Ca0	0.5	6
K20	0.42	5
P205	0.65	7
		
	8.97	100

Table 4.6

Minor oxide content of fayalite and probable ores, averages and variation

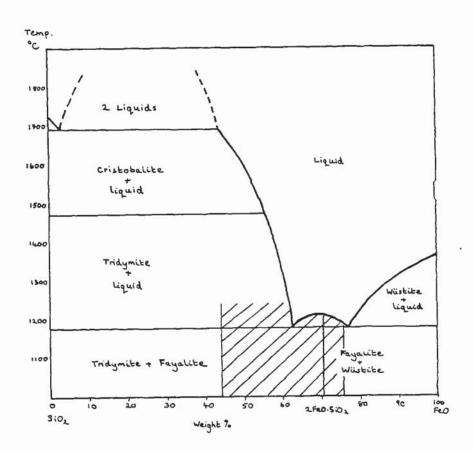
		Mean,	Sample std deviation, n-1	Number of analyses, n
_	in fayalite in fayalite, Weald*	1.12 1.48	1.02 1.06	62 32
	in fayalite, Weard in fayalite, Northamptonshire		0.30	17
_	in Wealden ores*	1.04	0.68	6
Mg0	in Northamptonshire ores*	0.12	0.07	20
MnO	in fayalite	2.09	1.20	62
	in fayalite, Weald	2.95	0.83	32
	in fayalite, Northamptonshire	1.16	0.61	17
MnO	in Wealden Ores	2.41	0.29	6
MnO	in Northamptonshire ores	0.55	0.42	20
Ca0	in fayalite	0.97	1.06	62
	in fayalite, Weald	1.24	1.34	32
	in fayalite, Northamptonshire	0.71	0.62	17
	in Wealden ores	2.19	1.22	6
CaO	in Northamptonshire ores	1.17	1.84	20

^{*} For the purposes of this comparison, the Wealden ores are represented entirely by analyses of Wadhurst Clay Ironstone and the Wealden slags are all those, including material from present-day furnace reconstructions, which are known to have been or were probably produced from the smelting of Wadhurst Clay Ironstone. The Northamptonshire ores are represented by analyses of the Ironstone Junction-Band only and the slags are from the Wakerley, Great Oakley and Bulwick sites where there is good evidence that the above ironstone was used (see Section 4).

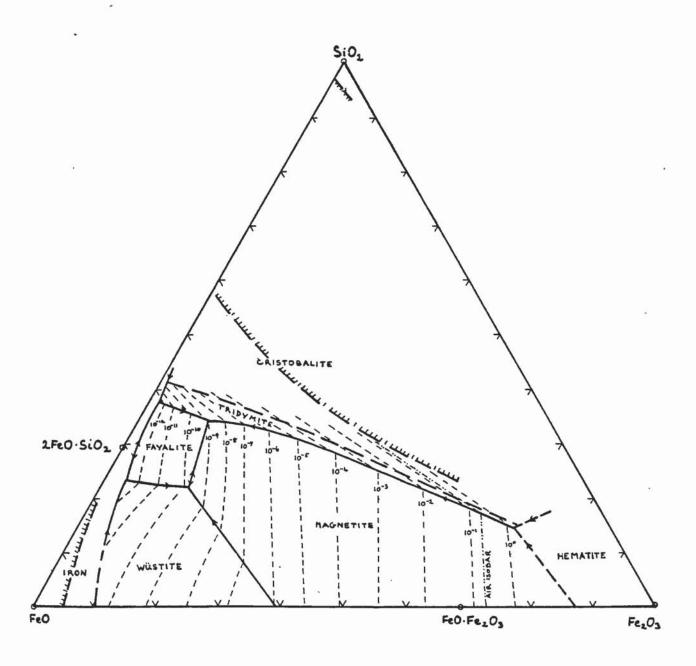
Table 4.7

Calculation of chemical formulae from spinel analyses

Example 1 : spinel in GO4


	wt % oxides	molecular proportions of oxides	atomic props. of oxygen from each mol.	Nos. of anions on basis of 32 (0)		Nos. of ions in formula	
MnO	0.38	0.005	0.005	0.076	0.1	0.1	
Mg0	-	_	: -	-	-	-	8.0
FeO	51.23	0.713	0.713	10.793	10.8	7.9 2.9	
A1203	45.87	0.450	1.350	20.435	13.6	13.6	
SiO ₂	0.35	0.006	0.012	0.182	0.1	0.1	17.1
TiO ₂	0.94	0.012	0.024	0.363	0.4	0.4	
V ₂ O ₅	0.40	0.002	0.010	0.151	0.1	0.1	
			2.114				

Example 2 : spinel in RR2 (columns as above)


MnO	1.26	0.018	0.018	0.33	0.3	0.3	Na. 1000
MgO	0.22	0.005	0.005	0.09	0.1	0.1	8.0
Fe0	72.52	1.009	1.009	18.43	18.4	7.6 10.8	
A1 ₂ 0 ₃	11.80	0.116	0.348	6.36	4.2	4.2	
SiO ₂	1.00	0.017	0.034	0.62	0.3	0.3	18.3
TiO ₂	11.50	0.144	0.288	5.26	2.6	2.6	
V ₂ O ₅	1.76	0.010	0.050	0.91	0.4	0.4	
2 3							
			1.752				

Each spinel should contain 8 di-valent and 16 tri-valent cations, the slight discrepancies are a result of having to assume initially that all iron is in the di-valent state.

Phase relations in the system FeO-SiO₂, after Bowen and Schairer. The system is not a true binCary. The range in composition of the slags investigated is cross-hatched.

Projection of the liquidus surface of the system ${\rm Fe0^-Fe_20_3^-Si0_2}$, after Muan and Osborn. Fine dashed lines are oxygen isobars.

Perspective drawing of tetrahedron representing the system FeO-Fe₂O₃-Al₂O₃-SiO₂, showing phase relations at liquidus temperatures. After Muan and Osborn.

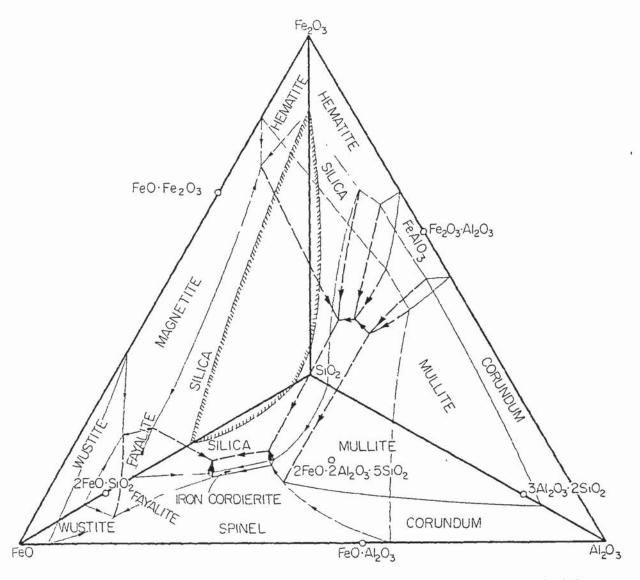
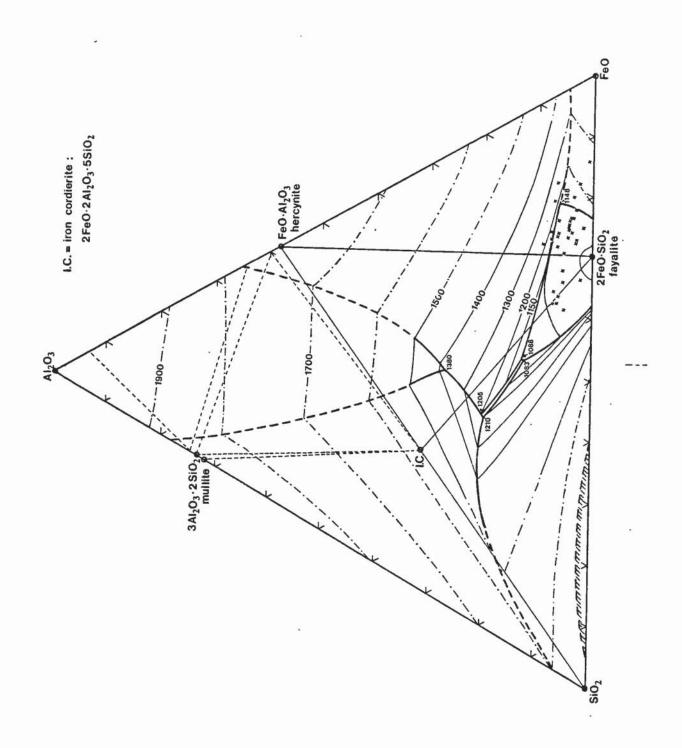
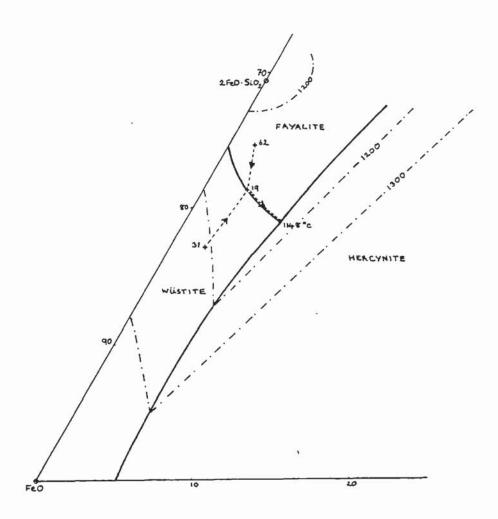
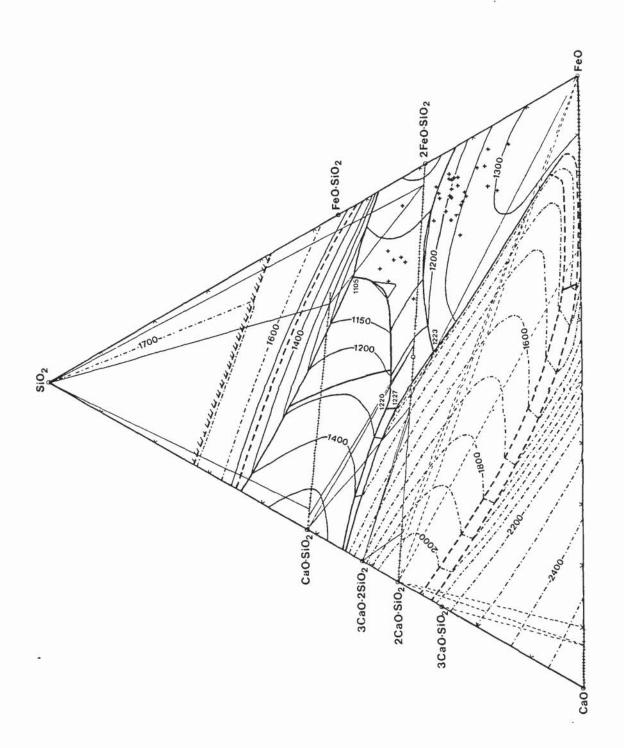
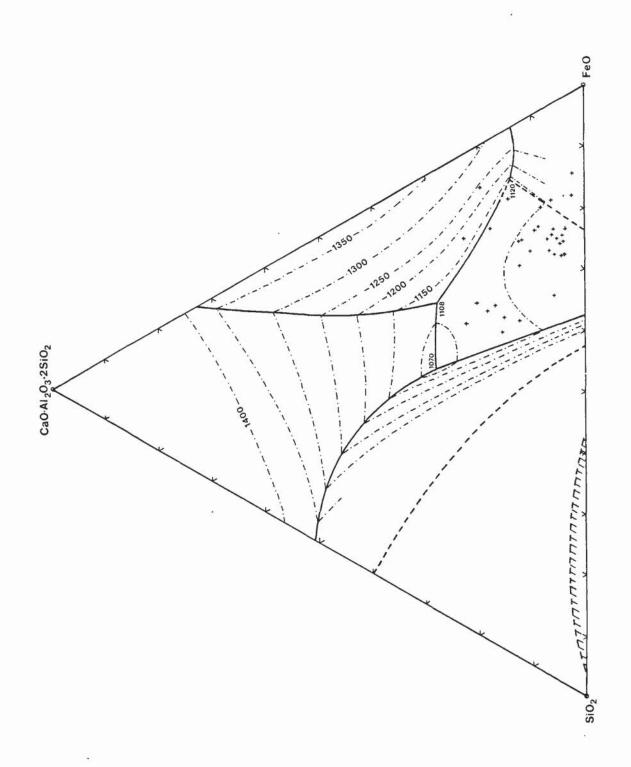
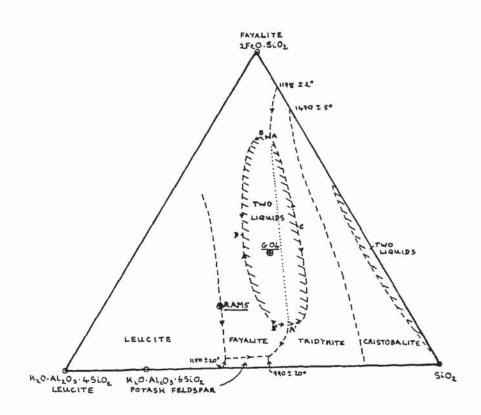




Fig. 97. Perspective drawing of tetrahedron representing the system FeO-Fe₂O₃-Al₂O₃-SiO₂ and showing phase relations at liquidus temperatures, after Muan. (279)


Phase relations in the system FeO-Al₂0₃-Si0₂ in contact with metallic iron, after Muan and Osborn. The system is not a true ternary. (Compositions of condensed phases have been projected along oxygen reaction lines onto the plane ${\rm Fe0-Al_20_3-Si0_2.}$) In order to include minor oxides, molar proportions of ${\rm Ca0}$, MgO, MnO, ${\rm Ti0_2}$ were added to ${\rm FeO}$ and molar proportions of ${\rm P_20_5}$ were added to ${\rm Si0_2}$ before rounding to ${\rm 100}$ wt 7.

FeO apex of FeO-Al₂O₃-SiO₂ system, showing the liquid paths of slags 19, 31 and 62 in equilibrium conditions. 19 and 62 both crystallize fayalite initially and their liquid compositions move directly away from the fayalite composition. 19 precipitates only a very small amount of fayalite (62 precipitates a much larger proportion) before the cotectic (boundary curve) is reached, when wistite and fayalite crystallize together and the liquid composition moves down the cotectic with falling temperature towards the ternary eutectic of fayalite + hercynite + wustite. At 1148°C the eutectic is reached and the remaining liquid crystallizes to a mixture of these three phases. Slag 31 precipitates wistite initially, then on reaching the wistitefayalite cotectic, the crystallization sequence is as above. The presence of glass in these three slags indicates that the liquid solidified before the ternary eutectic was reached.




Phase relations in the system CaO-FeO-SiO₂ in contact with metallic iron, after Muan and Osborn. The system is not a true ternary. The slags of this investigation have been plotted after the method of Sperl. \$5

Phase relations in the system Anorthite (CaO.Al203.2SiO2)-SiO2-FeO.

The slags of this investigation have been plotted after the method of Morton and Wingrove.*

AA' 1153 ± 2°C

88' 41155°C

C ~1270°C

D < 1100°C

Approximate phase relations in the system leucite $(K_2^0,Al_2^0,4Si0_2)$ -fayalite $(2Fe0.Si0_2)$ -Si0₂, in contact with metallic iron, after Roedder. The calculated compositions of late liquids in RAM 5 and GO4 (see Table 4.5) are plotted.

Figure 4.9(a)

Phase relations in the system CaO-P₂O₅-FeO in contact with metallic iron, after Muan and Osborn. The system is not a true ternary. The calculated compositions of late liquids in RAM 5 and GO4 (see Table 4.5) are plotted.

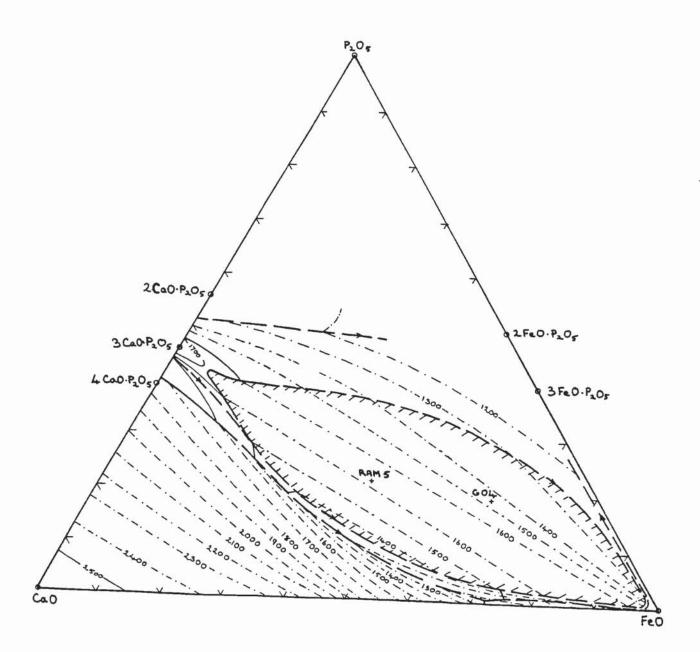
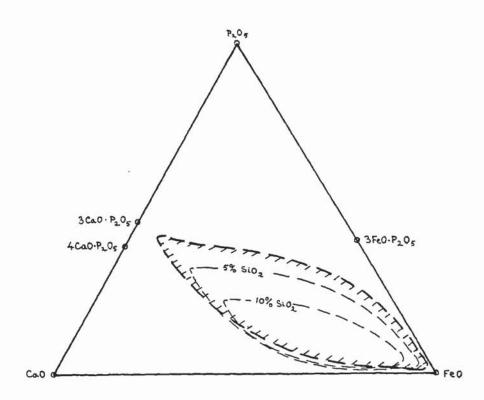
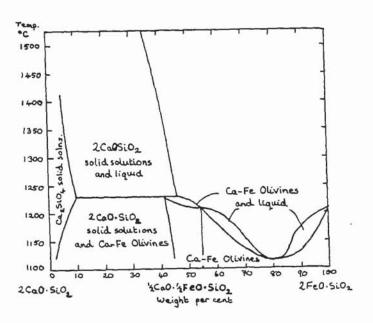
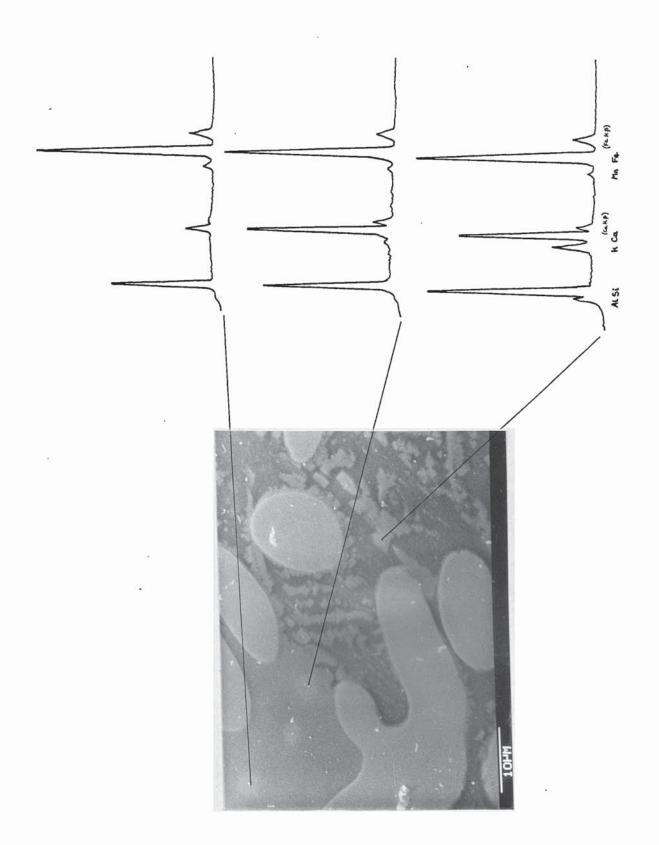
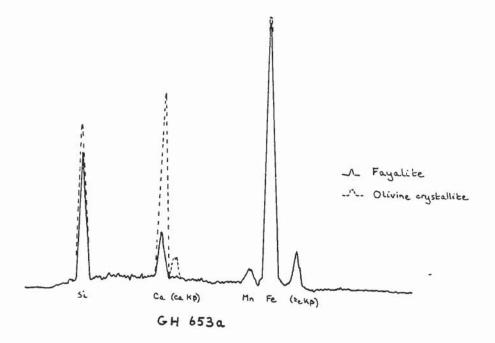
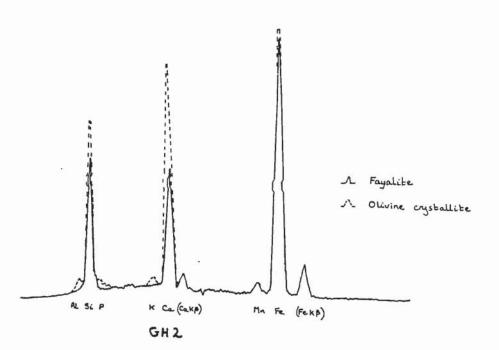




Figure 4.9(b)


Sketch showing estimated effect of SiO, on the liquid immiscibility field of the system CaO-P₂O₅-FeO in contact with metallic iron, after Oelsen and Maetz.

Equilibrium diagram of the system Ca_2Si0_4 -Fe_2Si0_4, after Bowen et al.




SEM photograph of GH 653a with Kevex traces to show changing composition of the large fayalite crystal and the composition of the crystallites in the glass. The paler, rounded phase is wistite. Note how the crystallites have nucleated on the wistite.

.

Kevex traces comparing the compositions of large, primary olivines and olivine-type crystallites in the glass. Because of the small size of the crystallites, the beam has in some cases penetrated through into the surrounding glass resulting in anomalous peaks (e.g. for K). The large fayalite crystal in GH2 appears highly calcic, but this analysis was probably made towards the edge, rather than at the centre.

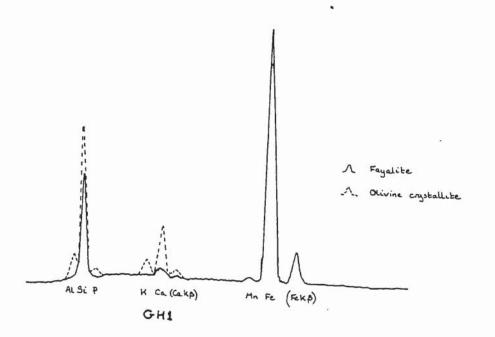
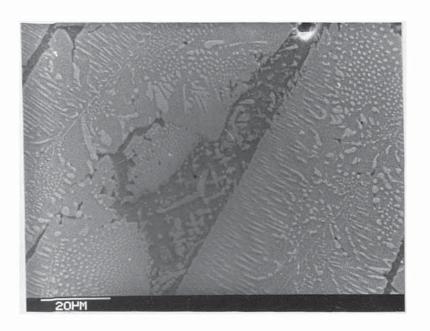
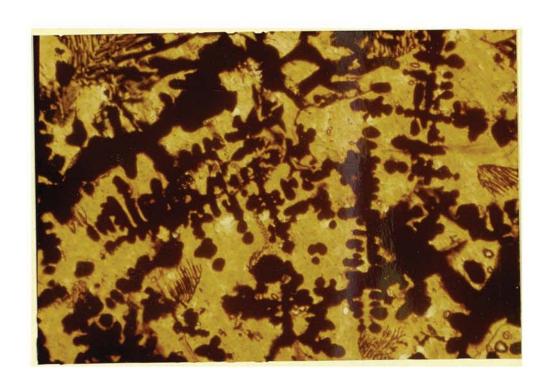
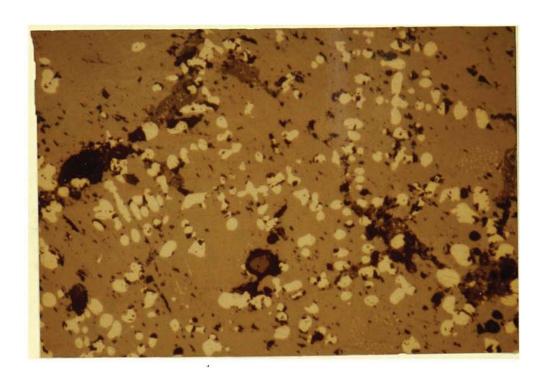
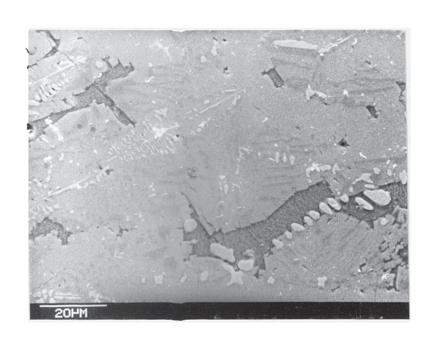
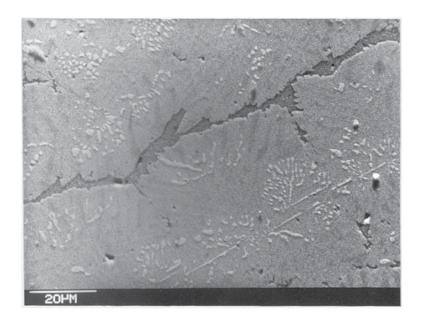





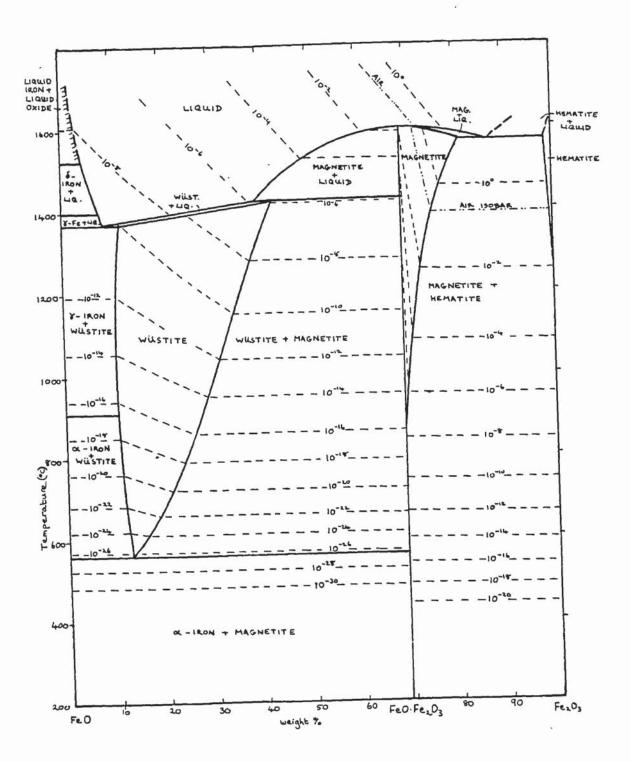
Figure 4.13(a)

SEM photograph of fayalite laths (medium grey) in NOR 2 showing wilstite exsolution.


Figure 4.13(b)

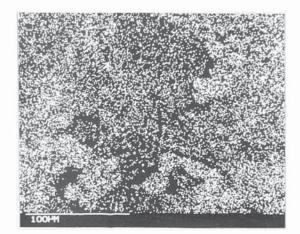

(i) GO3 in transmitted light showing comb-like form of w\u00e4stite. Crossed polars. Field of view 0.89 mm wide.

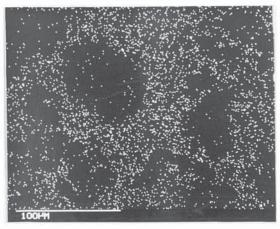
(ii) Same area in reflected light.


(a) SEM photograph of slag from Bulwick showing wilstite exsolution along central part of fayalite lath.

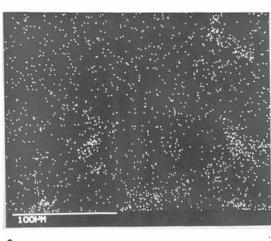
(b) SEM photograph of slag from Bulwick showing some additional wilstite exsolution in areas of fayalite/hercynite intergrowth.

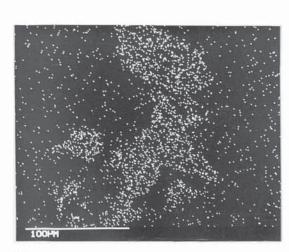
Phase relations in the system FeO-Fe₂O₃, after Muan and Osborn. Fine dashed lines are oxygen isobars.

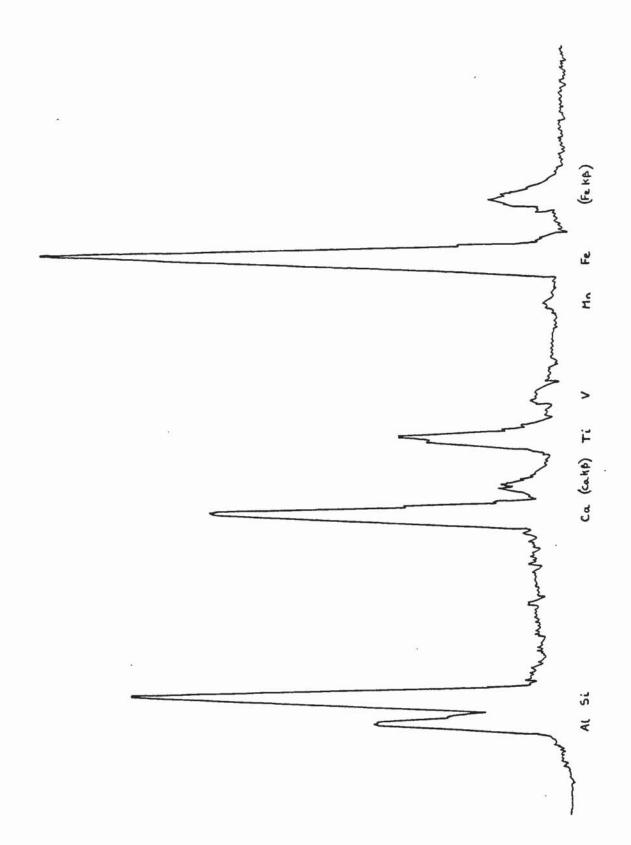


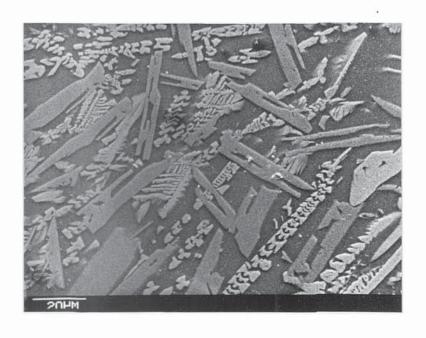

Stamford slag 630532 in reflected light showing compositionally zoned spinels. The paler bands are richer in iron. Field of view 0.30 mm wide.

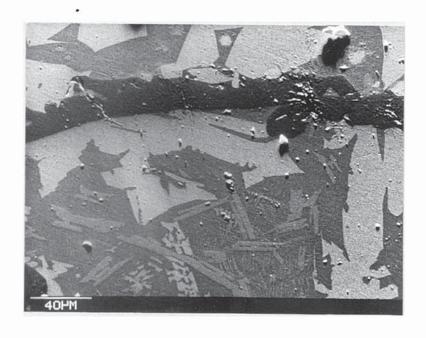
SEM photograph of WAK 48A showing typical habit of leucite. Example shows abundant exsolution of wilstite rods. Also present are hercynite (mid grey, angular), fayalite (pale grey) and primary wilstite dendrites. X-ray maps show distribution of main constituent oxides.

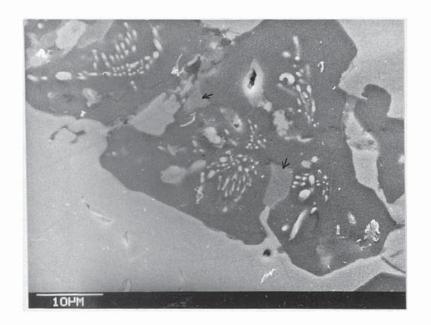


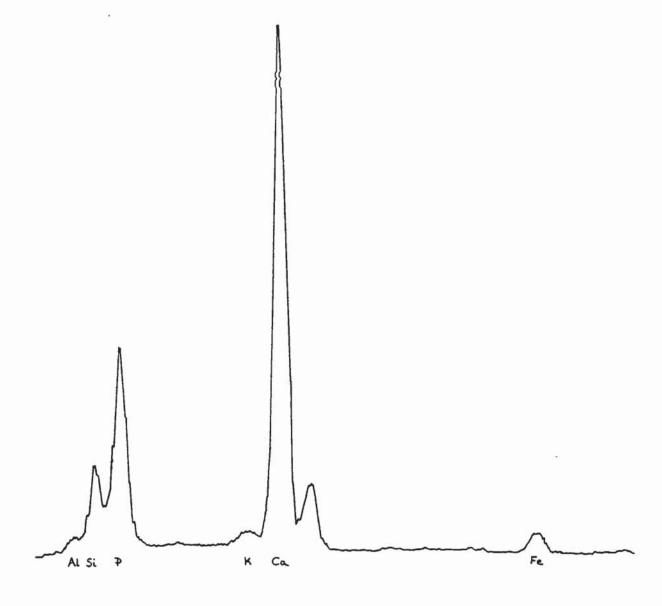


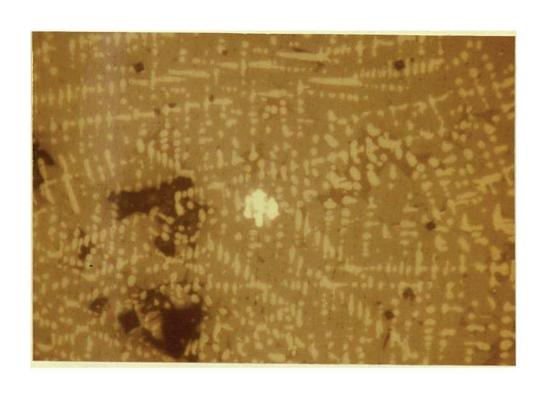

Si Αι


K


Kevex trace of crystallite in GH 631


Figure 4.19(a) and (b)

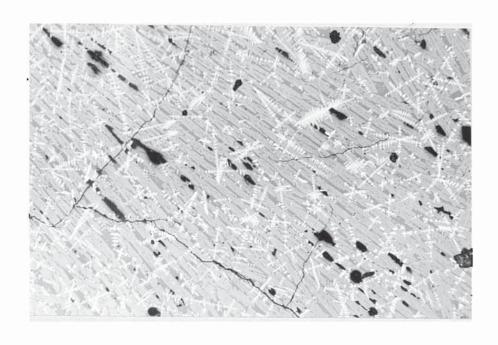

SEM photographs of crystallites in RR1, (a) normal image, (b) backscattered electron image. In both cases pale grey phase is fayalite and glass is medium grey. In (b), the dark arc-like area is leucite.

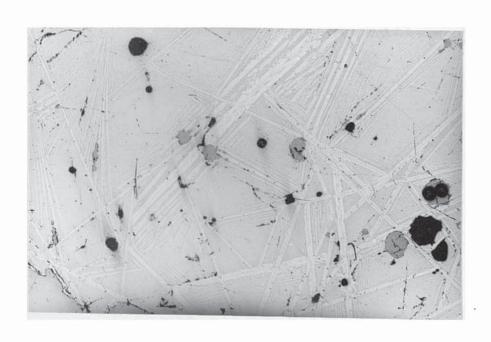


SEM photograph of GH 671 showing patch of leucite (dark grey) containing tiny crystals of a calcium phosphate phase (arrowed). Accompanying Kevex trace shows the phase's composition.

Slag WK-AV in reflected light showing metallic iron enclosing wlistite, indicating that the iron was molten when crystallization commenced.

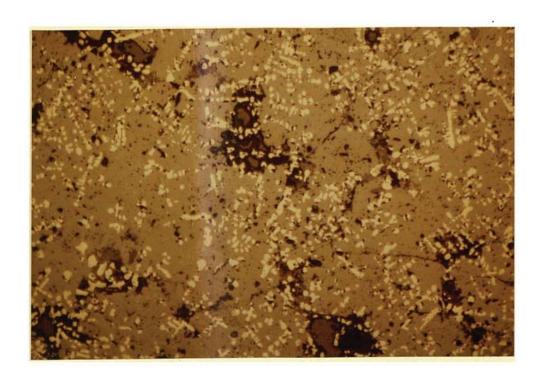
(a) Caerwent slag 697096 in transmitted light showing skeletal equant fayalite. Crossed polars. Field of view is 3.4 mm wide.

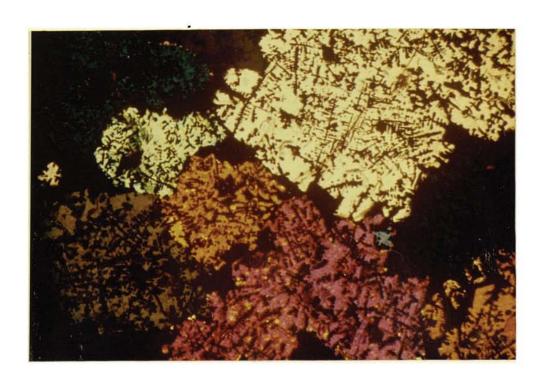

(b) Bowl furnace reconstruction slag RR2 in reflected light showing skeletal fayalite laths. Note also the tiny angular dendrites of magnetite. Field of view is 2.4 mm wide.



(a) Stamford slag 700128 in reflected light showing parallel oriented skeletal fayalite laths. Field of view is 1.2 mm wide.

(b) Bowl furnace reconstruction slag RR1 in reflected light showing large randomly oriented skeletal fayalite laths with smaller laths arranged parallel to them. Field of view is 3.9 mm wide.

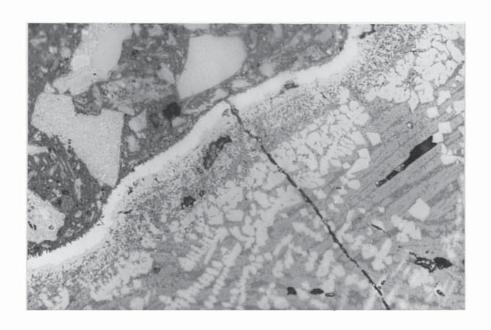



Great Oakley slag GO4 in reflected light showing massive fayalite. The distribution of the exsolved wilstite indicates the positions of the first-formed fayalite laths which subsequently grew widthways and coalesced. Field of view 1.125 mm wide.

(a) Great Oakley slag GO3 in reflected light showing massive fayalite. Field of view is 2.22 mm wide.

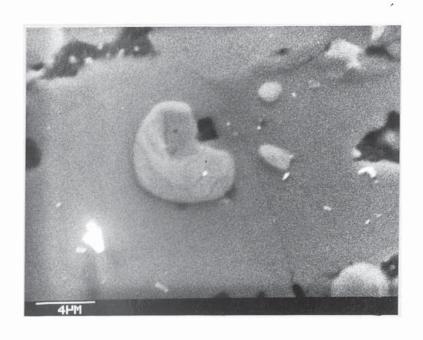
(b) Same area in transmitted light illustrating anhedral nature of fayalite. Crossed polars. Field of view is 3.4 mm wide.

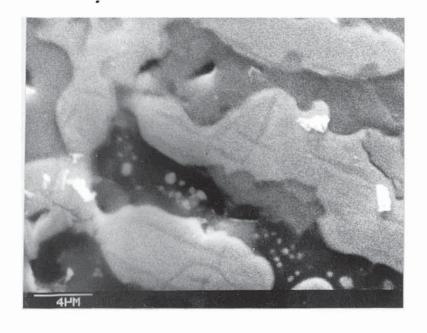
Garden Hill slag GH 653a in reflected light showing a typical texture with randomly oriented wllstite dendrites cross-cutting the fayalite, which here is in the form of skeletal laths. Field of view is 1.9 mm wide.


SEM photograph of slag from Santa Eulalia de Boveda, Spain, showing fayalite which neucleated on the first-formed wlistite dendrites and now surrounds them.

(a) Stamford slag 700130 in reflected light showing tiny angular dendrites of skeletal magnetite beneath a chilled surface (marked by densely-packed layer of wistite globules), giving way to rounded dendrites of wistite in lower third of photograph. Note also the larger compositionally zoned spinels and leucite (dark grey) in an unusual dendritic habit. Field of view is 3.1 mm high.

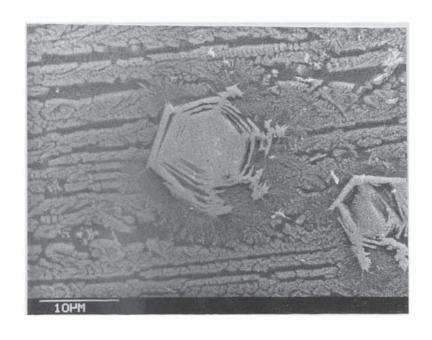
(b) Stamford slag 630532 in reflected light showing oxidation of wlistite layer at chilled surface to magnetite (white). Also present are wlistite and euhedral spinel (both pale grey), skeletal fayalite laths and glass (speckled). Field of view is 0.24 mm wide.

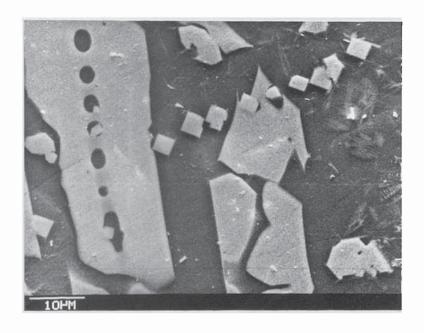


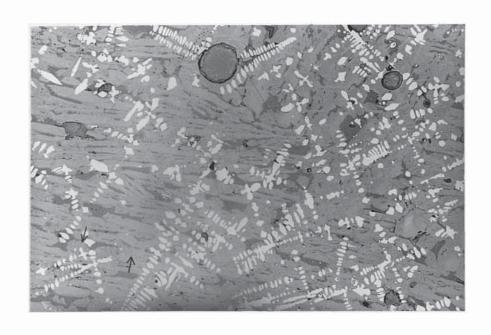


(a) SEM photograph of Wakerley slag WK K4 showing a tiny globule of wilstite with an area of magnetite (darker) at the top right.

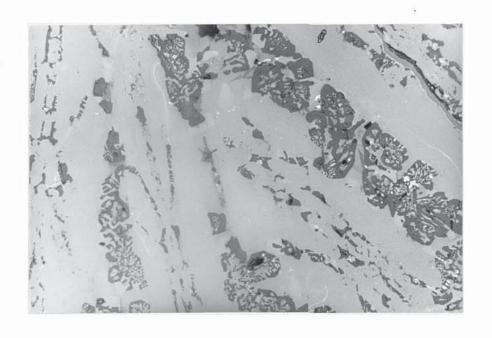
(b) Different area of same slag showing magnetite 'veins' in the lobes of wlstite dendrites.

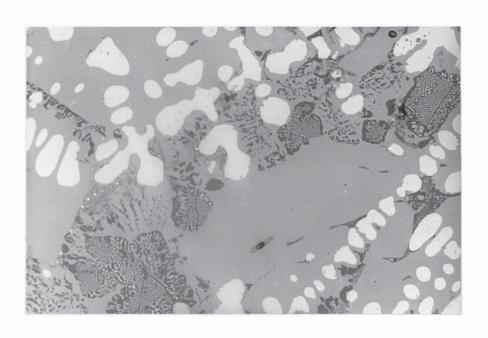

Larger patches of magnetite also occur at the edges of the lobes and this is particularly clearly seen in the top right of the photograph.



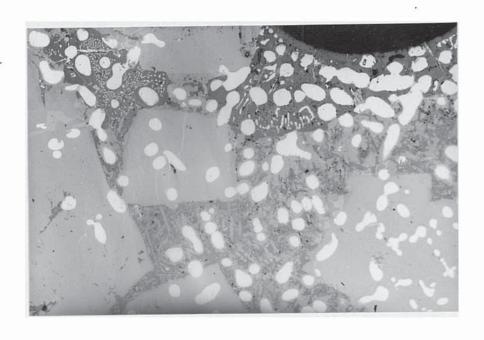

(a) SEM photograph of shaft furnace reconstruction slag GHR 4 showing skeletal magnetite.

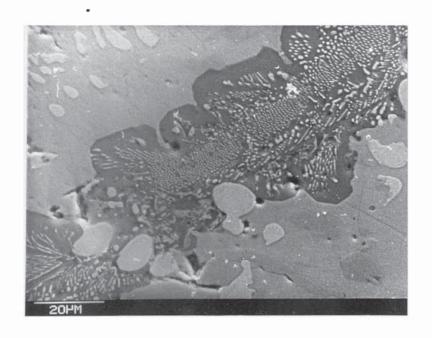
(b) SEM photograph of bowl furnace reconstruction slag RRl showing tiny euhedral cyrstals (cubic) of titaniferous magnetite.




Stamford slag 700130 in reflected light showing skeletal fayalite laths with lobe-like projections consisting of fayalite/hercynite intergrowth (example arrowed). Field of view 7.5 mm wide.

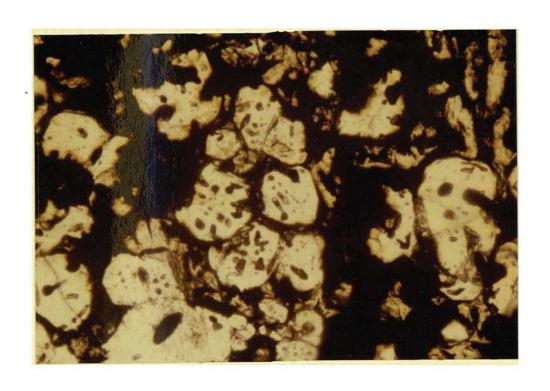
(a) Ramsbury slag RAM 5 in reflected light showing skeletal fayalite laths with rounded patches of leucite or leucite/fayalite intergrowths between. Leucite also fills the holes in the fayalite 'skeleton'. Some hercynite (paler grey, angular) is also present. Field of view is 0.24 mm wide.

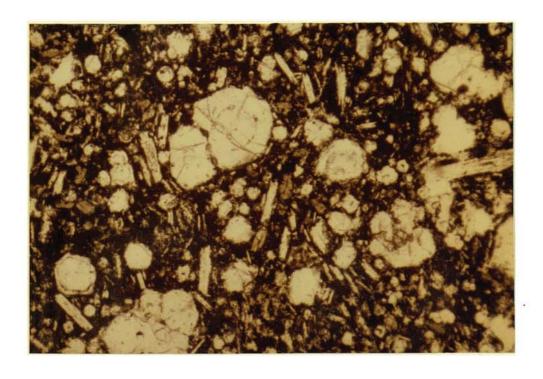

(b) Ramsbury slag RAM 5 in reflected light showing areas between fayalite crystals occupied by large rounded patches of leucite, with abundant wistite exsolution, and by fine leucite/fayalite intergrowths. Field of view is 0.37 mm wide.



(a) Garden Hill slag GH 653b in reflected light showing rounded patches of leucite (dark grey) in glass, which here contains abundant fayalite cyrstallites. Field of view is 0.37 mm wide.

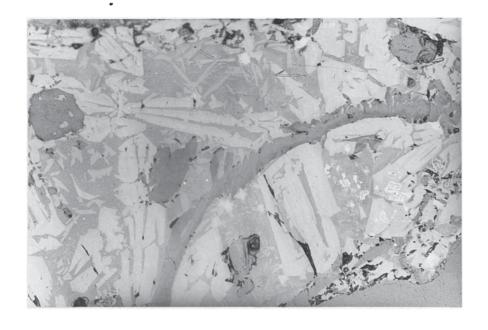
(b) SEM photograph of Garden Hill slag GH 671 showing leucite between fayalite laths. The concave edges of the fayalite crystals result from the interference during growth by the leucite, which must have been crystallizing at the same time.



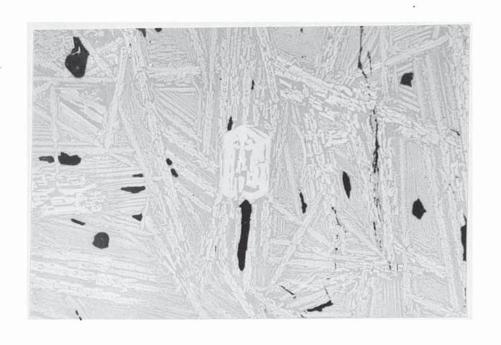

Ramsbury slag RAM 5 in reflected light showing transition from normal glass to interstitial leucite.

(a) Bowl furnace reconstruction slag RR2 in transmitted light showing primary leucite. Plane polarized light. Field of view is 0.57 mm wide.


(b) Leucite in a leucite tephroite from Vesuvius for comparison. Plane polarized light. Field of view is 2.2 mm wide.



(a) Ramsbury slag RAM 5 in reflected light. The pore in the top right hand corner (filled with bake lite) is rimmed by leucite. Note the absence of wistite exsolution in the leucite immediately adjacent to the pore, and its abundance in the other patches of leucite. This photograph also illustrates the typical relationships of fayalite, leucite and glass. Field of view is 1.2 mm wide.


(b) Bowl furnace reconstruction slag RR2 in reflected light. Here the leucite is in the form of an arc within slag showing otherwise 'normal' texture. Note also the euhedral crystal of leucite in the top left, with a zone of ?glassy inclusions. Fayalite laths (pale grey) are set in glass containing some crystallites of a phase rich in calcium (slightly darker than fayalite) and a few grains of skeletal magnetite are also visible in the bottom right. Field of view is 0.60 mm wide.

Stamford slag 700130 in transmitted light showing bundles of long fayalite laths radiating down from a chilled surface, with short laths (in the next 'flow') radiating upwards from it. Crossed polars; the section is rather thin and the interference colours are therefore of a lower order than they should be. Field of view is 3.4 mm wide.

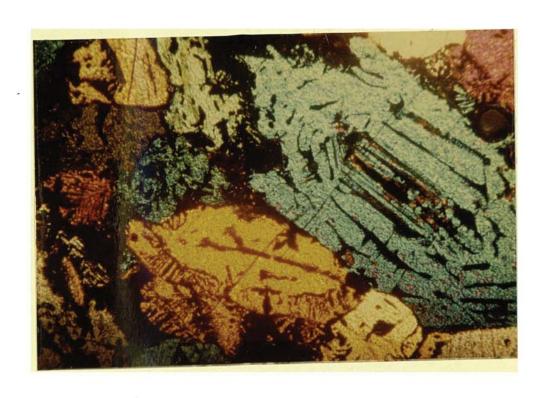


Figure 4.39(a) and (b)

Great Oakley slag GO3 showing euhedral fayalite crystal with concentric zones of hercynite inclusions. In the outer part of the crystal a little wistite accompanies the hercynite. Contrast this with the fayalite/hercynite intergrowth at the bottom left. (a) Transmitted light, crossed polars. (b) Reflected light. Crystal is 0. mm long.

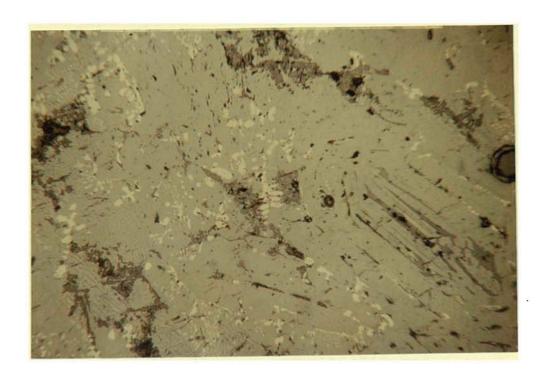


Table 5.1 Mean (\bar{x}) , standard deviation (), and coefficient of variation (c.v.)* of oxide ratios for the three main ironstones investigated

Ratio		Ironstone Junction-Band (No. of samples = 17)	Northampton (No. of samples	Sand Ironstone (No. of samples	(No. of samples	(No. of samples
			= 9)	= 15)	= 6)	= 10)
11.0	-	24.5	35.7	37.3	1.5	3.1
A1203	^	60.1	8.3	15.7	0.21	3.6
MnO	2.22	245%	23%	42%	147	117%
PINO	c.v.	245%	234	42.0		11/4
Al _a O _a	x	13.6	21.5	22.6	9.39	15.1
A1203		7.6	1.4	7.3	0.58	13.0
TiO ₂	c.v.	56%	7%	32%	6%	86%
	-x	75 1	46.2	50.2	134	
A1203	x	75.1	46.2	59.2	36.9	No data
		27.8	2.5	25.5	28%	NO data
$\frac{^{A1}2^{0}3}{^{V}2^{0}5}$	c.v.	73%	5%	43%	20%	
	x	4.1	0.63	0.91	6.4	6.5
TiO ₂	~	5.0	0.15	0.95	1.04	2.2
2	o 11	122%	24%	104%	16%	342
	c.v.	1114	2476	104%	2010	5 4.4
MnO	×	16.9	1.35	2.26	87.9	
Wn0 V205		16.4	0.29	2.48	25.4	No data
2-5	c.v.	97%	22%	110%	29%	
TiO.	ī	6.7	2.2	2.4	14.4	
TiO ₂	^	4.3	0.20	0.81	4.49	No data
		64%	9%	34%	31%	
^V 2 ^O 5	c.v.		· · ·	54%		
A1.0.	×	40.7	7.9	6.4	5.89	9.1
A1203		47.0	9.9	7.8	2.94	9.8
1g0	c.v.	116%	125%	122%	50%	108%
	-	F 0	0.22	0.24	3.32	2.7
tn0	x	5.0 3.2	0.23 0.26	0.30	2.25	1.92
Mg0				125%	68%	70%
	c.v.	64%	113%	123%	00%	70%
1gO	ž	0.78	6.2	7.4	3.18	4.0
1g0 TiO ₂		0.37	4.1	5.0	3.43	3.8
2	c.v.	942	66%	63%	1087	947
W-0	-	3 24	13.8	16.8	37.4	
480	х	3.24	9.7	9.8	23.5	No data
205	10000000	2.01			63%	no data
	c.v.	62%	70%	58%	03%	

^{*} coefficient of variation, c.v. = $\frac{}{\bar{x}}$ x 100%

Table 5.2

Results of discriminant analysis performed on material from Northamptonshire

The three groups were defined using only those ironstone samples collected at outcrop; supposed ore fragments from archaeological sites were included with the slags as unknowns to be identified

'Unknown'	Probability of belonging to Ironstone Junction-Band Group	Probability of belonging to Northampton Sand Ironstone Group	Probability of belonging to Boulder Clay nodule group
GO6: ironstone fragments, Great Oakley	0.893	0.000	0.107
WAK 01: roasted ?ore fragment, Wakerley	1.000	0.000	0.000
WAK: roasted ?ore fragment, Wakerley	1.000	0.000	0.000
STAM roasted: ?ore, Stamford	0.601	0.083	0.316
STAM raw: ?ore, Stamford	0.308	0.535	0.157
WK/AV: furnace slag, Wakerley	0.606	0.001	0.393
WK K(4): furnace . slag, Wakerley	0.975	0.000	0.025
WAK 48A: furnace slag, Wakerley	0.734	0.000	0.266
WGW: tap slag, Wakerley Great Wood	0.976	0.000	0.024
GO4: furnace slag, Great Oakley	0.553	0.003	0.445
GO7: furnace slag (bulk) Great Oakley	0.750	0.001	0.249
BEQ1: tap slag, Blind Eye Quarry	1.000	0.000	0.000
BEQ2: tap slag, Blind Eye Quarry	1.000	0.000	0.000
Brigstock: furnace slag, Brigstock	0.035	0.957	0.009
STAM 700130: tap slag, Stamford	0.098	0.844	0.059
STAM 630532: tap slag, Stamford	0.397	0.086	0.517
Bulwick: tap slag, near Bulwick	0.960	0.000	0.040
S. Witham: tap slag, South Witham	0.005	0.995	0.000

Table 5.3

Application of multiple regression equations to slags from Berkhamsted, Caerwent and Blind Eye Quarry

	Fe ₂ O ₃ *	SiO ₂	A1 ₂ 0 ₃	MnO	MgO	TiO ₂	^V 2 ^O 5
Berkhamsted slag (bulk) Predicted roasted ore	74.6	26.4	3.32 12.5 +0.9	1.1	0.0	0.15 0.02 +0.20	0.12
Ironstone, L. Greensand nr Leighton Buzzard (after ignition)			1.41 1.76	0.11	0.17		
Marcasite nodules, excavated with slag (after ignition)			0.22	0.01	0.04	0.00	0.02
Caerwent slag Predicted roasted ore	83.9	16.5	2.46 -8.1 +0.9	0.0	0.3		0.03
Forest of Dean hematite (from Groves) calculated as roasted			2.74	0.09 0.11 0.06	4.00	0.08	-
Bristol district hematite (from Groves) .			1.84 0.76		0.33 0.24		
Blind Eye Quarry slag Predicted roasted ore	75.6	23.5	4.10 4.4 +0.9	0.5	-0.1	0.25	
Ironstone Junction-Band, Clipsham (average of rich and poor nodules, all calculated as roasted)			4.79	1.24	0.18	0.36	0.05
Northampton Sand Ironston Stamford (average, calculas roasted)			4.32	0.31	0.18	0.24	0.09

^{*} all iron calculated as $Fe_2^0_3$

Table 5.4

Means and standard deviations of oxides in the Ironstone Junction-Band and Northampton Sand Ironstone

IRO	NSTONE JUNCTION BAN		Fe ₂ 0 ₃	sio ₂	A1203	CuO	MnO	MgO	TiO ₂	. ^V 2 ^O 5	P ₂ O ₅	к20
1.	Ketton Quarry (4 samples)											
	Mean, Std dev.,		74.6 13.3	7.5 8.3	3.01 3.13		0.38 0.27			0.05 0.03		0.08 0.05
2.	Wakerley Great Wood (4 samples	s)			190							
		х σ		14.0 11.4	4.14 1.80					0.07 0.02		0.13 0.05
3.	Average: represents 10 localities (17 samples)											
		x σ	71.2 11.8	12.5 11.5	3.28 1.95		0.55 0.44		0.27 0.18	0.04 0.02	0.05 0.02	
	THAMPTON SAND		×									
1.	Brookfield Cottage Pit (8 samples)		S I									
		x σ	54.0 5.6	9.8 1.9	6.38 1.62				0.30 0.06	0.14 0.03	1.41 0.42	
2.	Stanion Lane Pit* (5 samples)											
		x o	51.9 12.3	11.9 5.3	5.40 1.59		0.22 0.17			0.09 0.04		0.04 ¹ 0.02
3.	Average ² : represents 4 localities (15 samples)											
		x o	53.6 9.3	10.3	5.9 1.5	5.7 4.6		1.71 1.05		0.11	1.42 0.45	

^{*} From Riley 11

¹ Includes Na₂0

² Includes analyses published by Riley 11

Table 5.5

Weathering effect on Northampton Sand Ironstone and Wadhurst Clay Ironstone

The analyses have been recalculated to eliminate the effect of variable

The analyses have been recalculated to eliminate the effect of variable volatiles content, i.e. loss on ignition subtracted and oxides rounded up to 100%

Cast	Fe ₂ 0 ₃	SiO ₂	^{A1} 2 ⁰ 3	Ca0	MnO	MgO	TiO ₂	^V 2 ^O 5	P ₂ O ₅	к ₂ 0
Raw NSI (boxwall only), Stamford excavation	80.0	11.9	4.14	1.00	0.23	0.17	0.23	0.09	1.76	0.50
Roasted NSI (mainly boxwall, some core), Stamford excavation	73.5	18.6	4.50	0.78	0.38	0.18	0.24	0.08	1.07	0.66
Raw NSI (boxwall, BC8) Brookfield Cottage Pit	69.3	15.2	10.42	0.95	0.23	0.32	0.45	0.23	2.37	0.60
Raw NSI (core, BC8) Brookfield Cottage Pit	66.8	13.2	10.2	3.36	0.28	1.74	0.45	0.20	2.61	0.59
Raw NSI (boxwall, BC6) Brookfield Cottage Pit	75.2	9.1	5.86	6.28	0.18	0.85	0.27	0.13	1.67	0.44
Raw NSI (core, BC6) Brookfield Cottage Pit	72.1	9.5	6.54	6.42	0.21	2.73	0.29	0.14	1.62	0.43
Raw WCI (boxwall, GHR3), W. Hoathly Pit	73.7	18.2	4.45	0.46	2.83	0.38	0.45	0.03	1.02	0.71
Raw WCI (core, GHR3) W. Hoathly Pit	62.2	20.6	5.15	3.71	3.73	1.34	0.59	0.03	0.90	0.83

Table 5.6

Compositions of charcoal and wood ash (wt % oxide)*

	C1 ₂	so ₃	SiO ₂	P ₂ O ₅	Mn ₃ 0 ₄	Fe203	MgO	CaO	Na ₂ 0	K ₂ 0	
99.76	0.01	0.95	0.78	3.46	1	0.57	4.49	75.45	5.65	8.43	Oak (Q. robur) wood
99.63	1	1.05	3.07	3.59	ı	0.77	7.71	47.80	13.72	21.92	(U1mu:
99.78	1	1.05	3.07	3.59	1	0.54	3.19	72.70	10.09	2.2	Elm s campestris) d bark
99.25	1	3.36	2.57	9.63	ı	0.07	11.47	35.78	10.47	25.90	Wild Cherry (Cerasus avi
99.73	0.20	0.70	21.28	3.47	1	0.21	5.43	44.67	15.83	7.94	Wild Cherry (Cerasus avium) wood bark
99.53	0.07	1.35	1.46	2.28	1	0.84	11.28	63.58	2.87	15.80	Beech (Fagus sylvatica) wood
99.75	0.45	1.95	3.04	2.40	18.17	2.70	19.76	31.72	16.77		Pine (Pinus sylvestris) wood
99.30	0.28	1.71	3.60	2.82	13.51	2.83	24.50	27.05	7.76	15.24	Larch (Larix europoea) wood)
	1	ì	8.0	4.85	31.623	tr	7.64	24.96		$\int 22.0^2$	Beech ¹ (Fagus sp.) charcoal

^{*} All analyses are reported in Percy, except the beech charcoal, which is from Tylecote.

It is interesting to note that MnO and dolomite, $(Ca,Mg)CO_3$, were apparently being mined close to where the pine and larch grew

l Analysis includes $\mathrm{Al}_2\mathrm{O}_3$ 0.92 wt % and a trace of TiO_2

² Figure includes CO₂

³ Figure is MnO2, not Mn3O4

Table 5.7
Contribution of charcoal ash to slag

(a) Contribution of ash from charcoal used in smelting. With the exception of the last column, figures are per kilogram of ore.

	Smelt	Ore Type	Slag Produced (kg)	Amount of charcoal used in smelting (kg)	Weight of ash (assuming charcoal contains 3% ash) (kg)	Ash weight as a percentage of slag weight
1.	Smelt 12*	W. Lothian siderite	0.30	2	0.06	20
2.	Smelt 14*	Northamptonshire Sand Ironstone	0.30	2	0.06	20
3.	Smelt 18	Northamptonshire Sand Ironstone	0.66	0.75	0.02	3
4.	Smelt 17	Northamptonshire Sand Ironstone	0.53	0.75	0.02	3.8
5.	Smelt 19	Northamptonshire Sand Ironstone	0.60	0.50	0.015	2.5
6.	Smelt 20	Northamptonshire Sand Ironstone	0.73	0.25	0.008	1.1
7.	Dimi	Limonite or magnetite	0.61	0.22	0.007	1.2
8.	Chandghur	Unknown	0.61	1.10	0.033	. 5.5
9.	Tendekura	Unknown	0.61	1.09	0.033	5.5
10.	Catalan process	?Limonite	0.52	1.12	0.034	6.8

(b) Contribution of ash from all charcoal consumed.

	Smelt	Ore Type	Total amount or slag produced (kg)	consumption (kg)	(assuming charcoal contains 3% ash)	a percentage of slag weight
1.	Smelt 12*	WLS	2.19	80	2.4	-
2.	Smelt 14*	NSI	2.19	92	2.76	-
3.	Smelt 18	NSI	14.98	80	2.4	16.0
4.	Smelt 17	NSI	14.42	74	2.2	15.3
5.	Smelt 19	NSI	16.32	37	1.11	6.8
6.	Smelt 20	NSI	10.59	33	0.99	8.5

Figures are from Tylecote et al. (1-6), Todd (7) and Percy (8-10)

^{*} Cast iron produced

¹ Estimate based on Smelts 17, 19 and 20 of Tylecote $\underline{\text{et}}$ $\underline{\text{al}}$.

² Estimate based on figures obtained by Richard and quoted by Percy

Figure 5.1(a)

Hedges and Salter's 23 graphical representation of their analytical data. The scale is logarithmic and each point represents a single inclusion. Inclusions from the three hoards are grouped in separate columns, in the order Danebury, Gretton, Beckford.

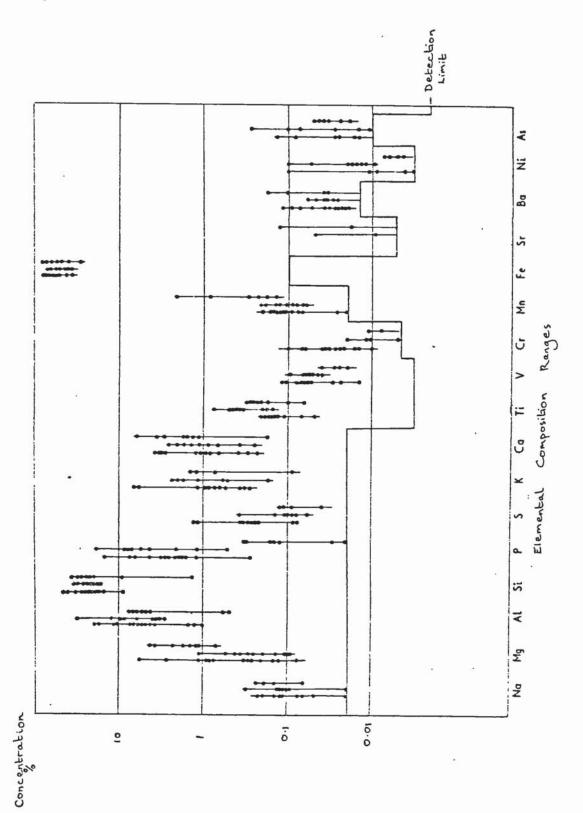


Figure 5.1(b)

Hedges and Salter's 23 representation of the results of the linear discriminant analysis performed on their data. The two axes are linear combinations of elemental concentrations selected from the set of 17 such orthogonal axes to display the maximum discrimination.

Figure 5.2

Plot of MnO vs ${\rm Al}_2^{0.3}$ for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.

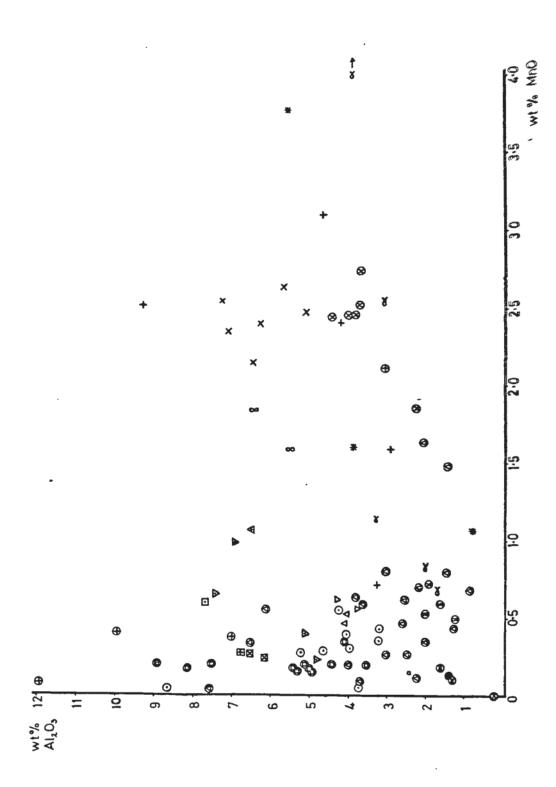
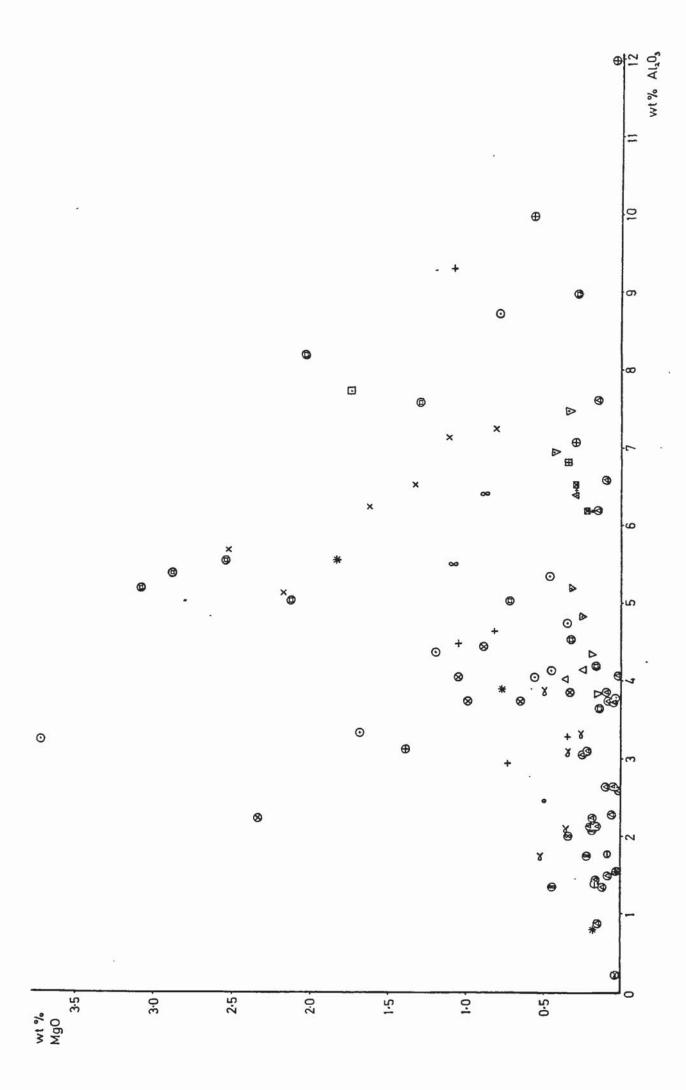
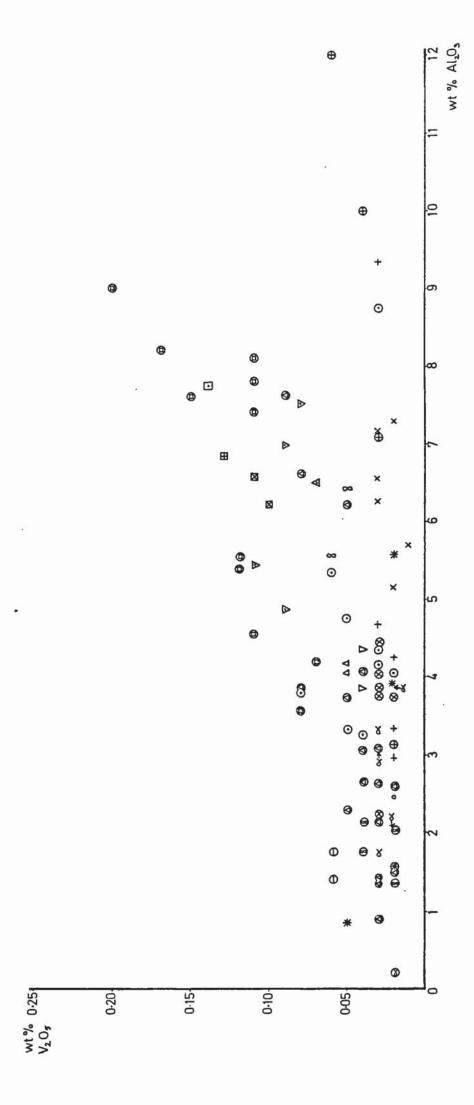
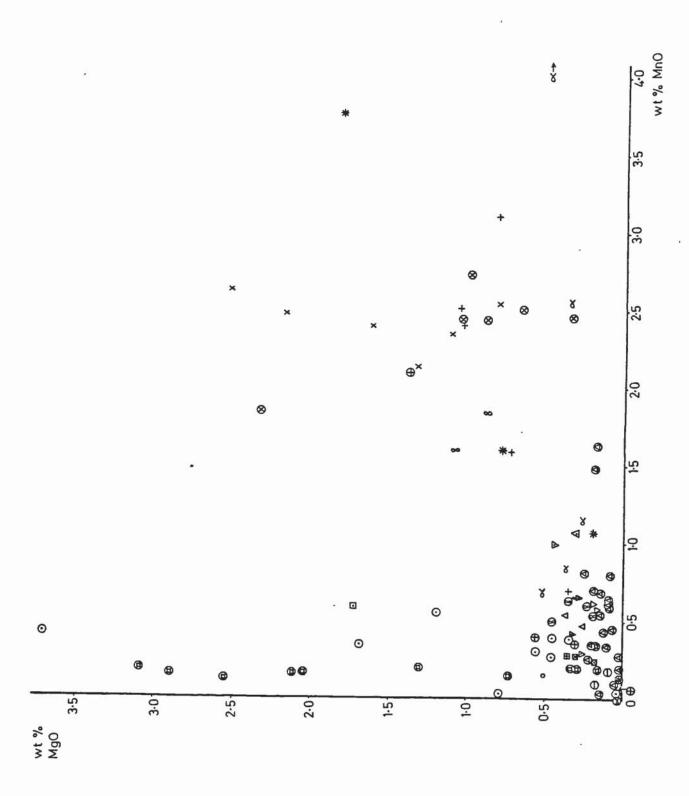
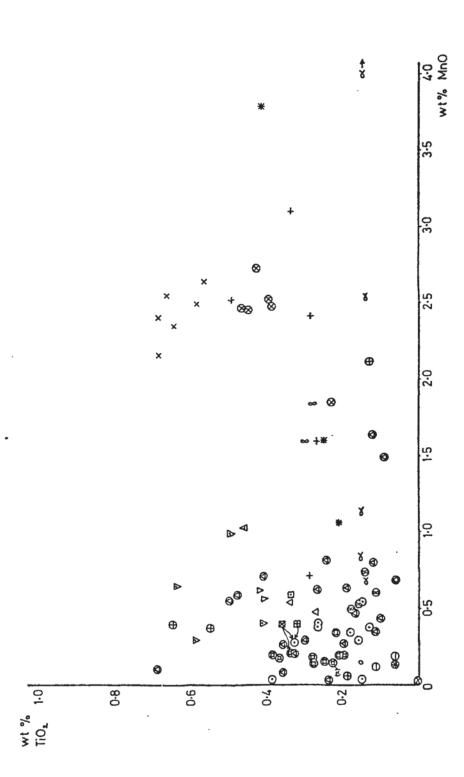
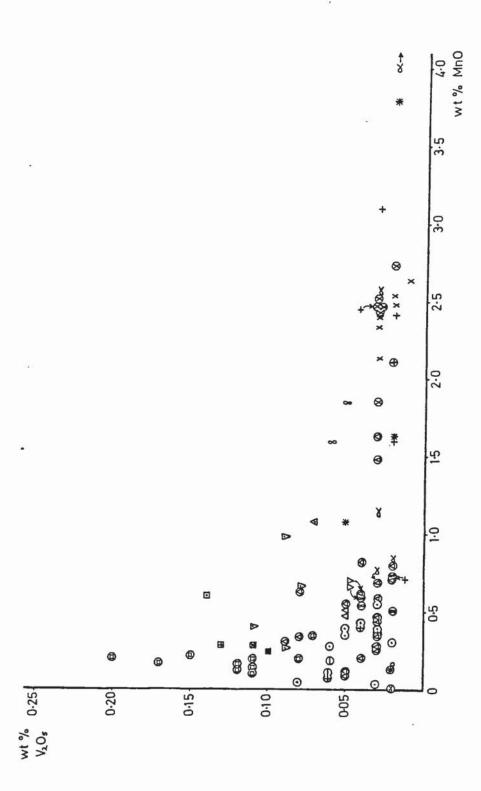



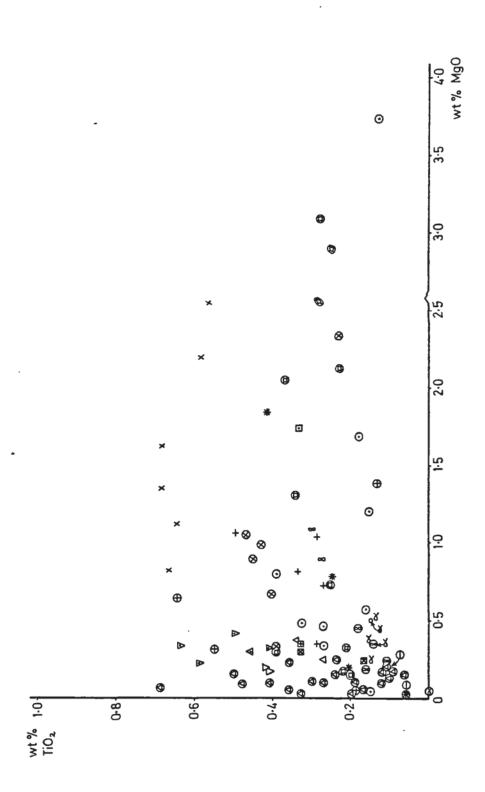

Figure 5.3

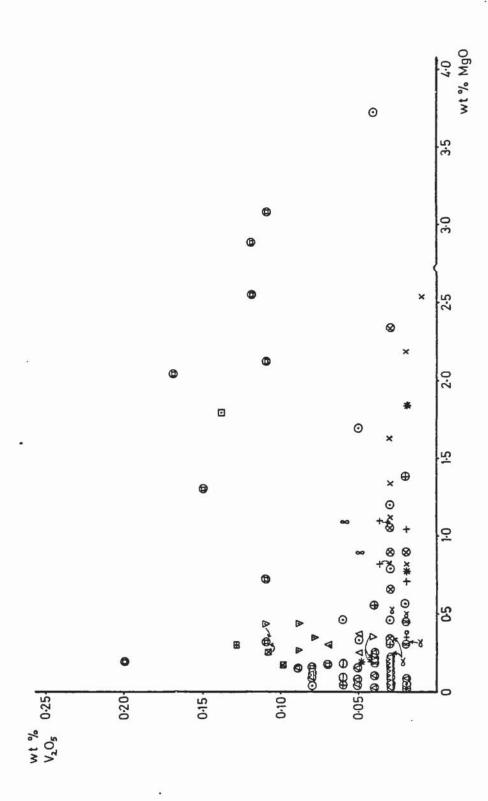

Plot of $\mathrm{Al_2^20_3}$ vs MgO for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.

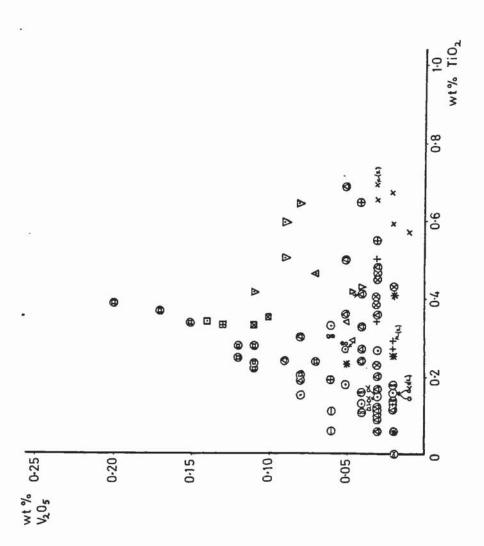

Plot of $\mathrm{Al_2}_2^{0}$ vs $\mathrm{TiO_2}$ for the ironstones and slags investigated. Fold-out key is located after Figure $^35.12$.

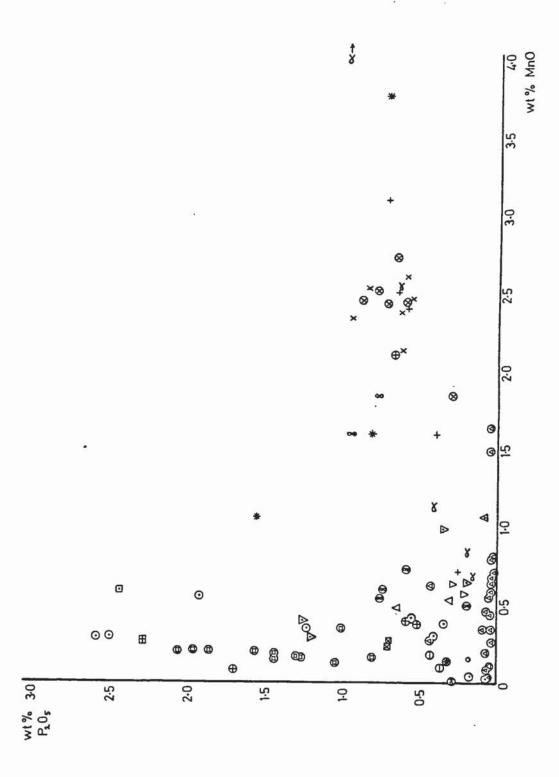

Plot of ${\rm Al_2^20_3}~{\rm vs}~{\rm V_2^0_5}$ for the ironstones and slags investigated. Fold-out key is located after Figure $^{5.12.2}$


Plot of MnO vs MgO for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.


Plot of MnO vs TiO_2 for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.

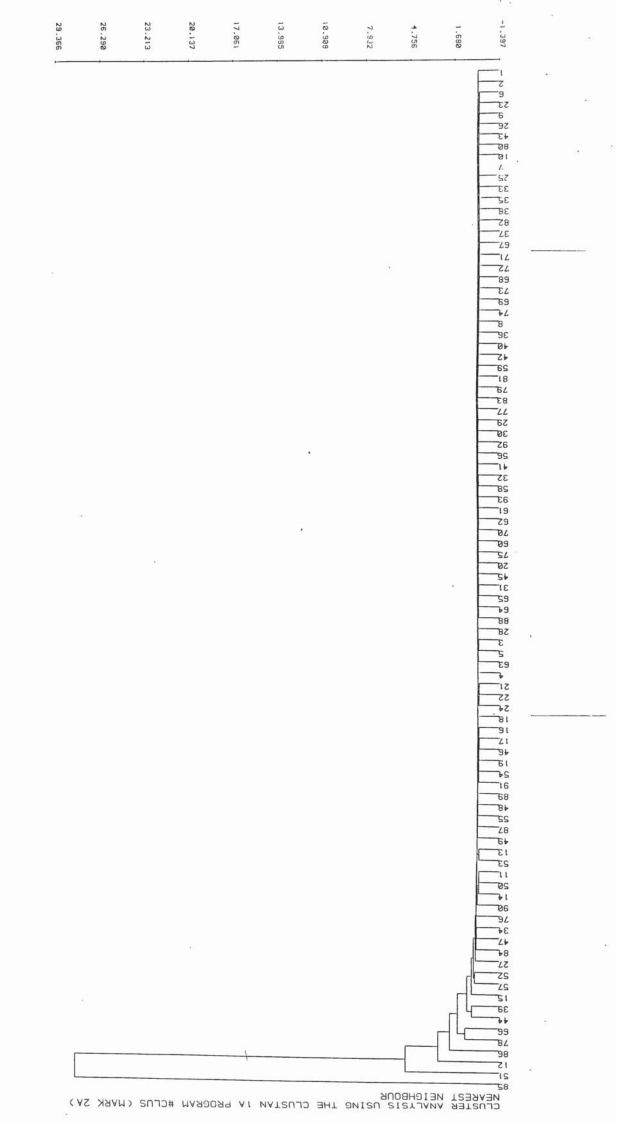

Plot of MnO vs $\rm V_2^{20}$ for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.


Plot of MgO vs TiO_2 for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.

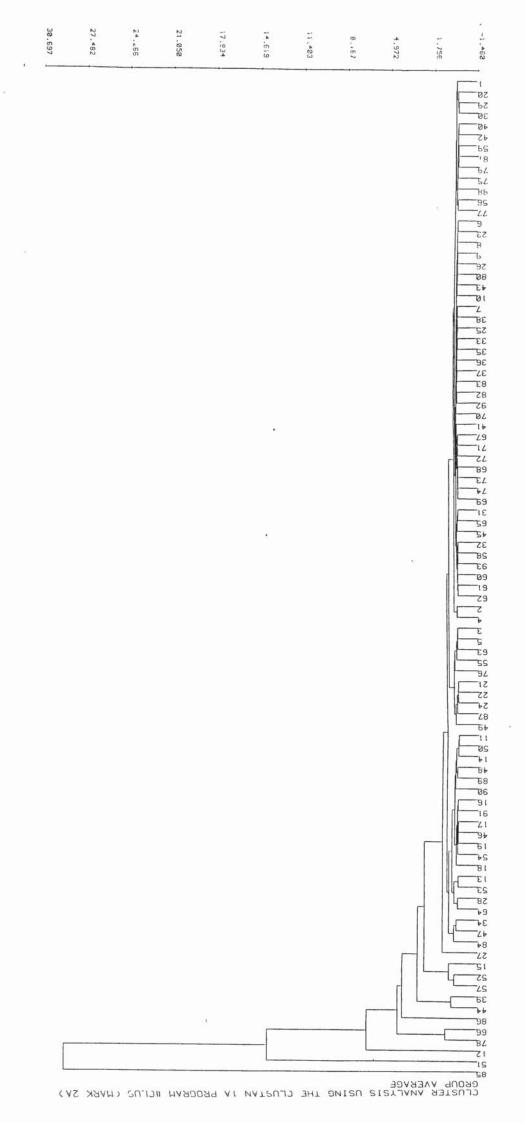

Plot of MgO vs 1 V₀ for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.

Plot of TiO vs $\rm V_2O_5$ for the ironstones and slags investigated. Fold-out key is located after Figure 5.12.

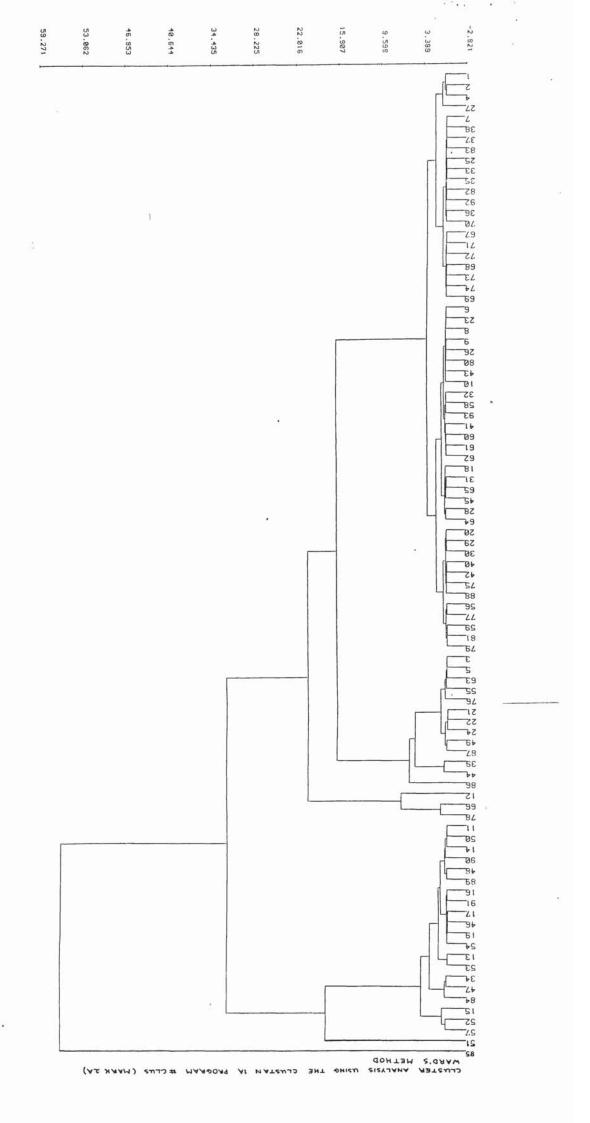
Plot of MnO vs $^{\rm P}_{\rm 2}{}^{\rm O}_{\rm 5}$ for the ironstones and slags investigated. Fold-out key is on following page.



Key to symbols used on two-component plots (Figures 5.2 to 5.12)

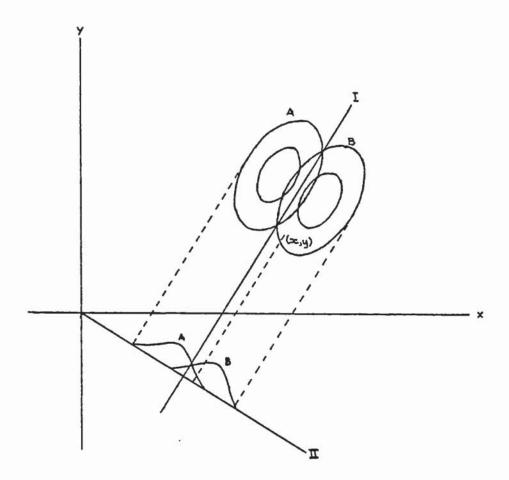
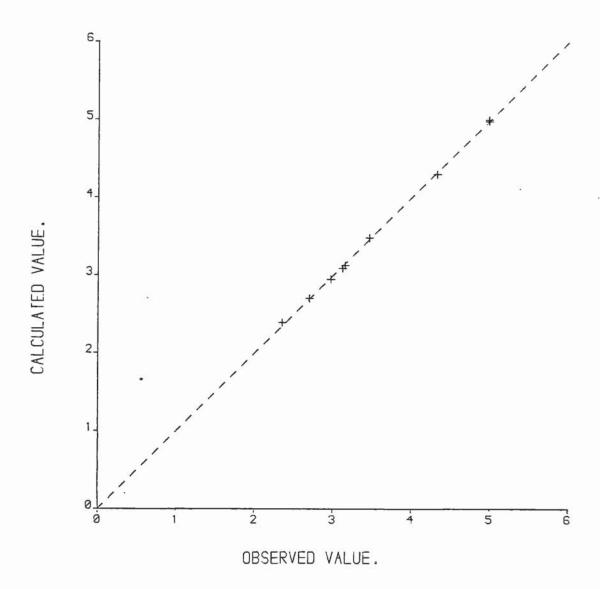

	Slags		Ores
⊳	Wakerley	₽	Ironstone Junction-Band
\triangleright	Great Oakley	€	Northampton Sand Ironstone
٥	Blind Eye Quarry	0	Boulder Clay Nodules
\triangleright	Bulwick	8	Wadhurst Clay Ironstone
田	Brigstock	#	Garden Hill Ores
Ø	Stamford	₩	Millbrook Limonite
回	South Witham	⊗	Ramsbury Ores
+	Garden Hill	Φ	Upper Greensand
*	Millbrook	©	Marcasite
×	Reconstructions	Groups	
		NSI - Northampton Sand Ironstone	onstone W - Weald
8	Ramsbury	IJB - Ironstone Junction-Band	·Band R - Ramsbury
R	Bulbourne Valley	BC - Boulder Clay	B - Bulbourne Valley

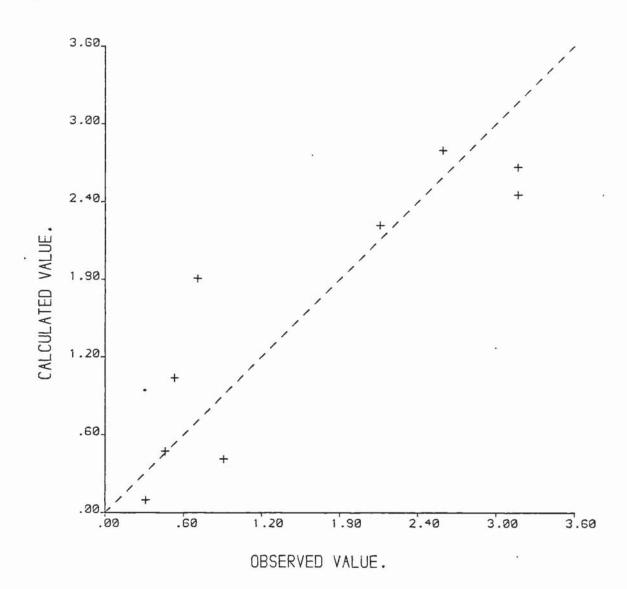
Caerwent


Dendrogram showing the results of the application of cluster analysis to the data. Nearest neighbour (single linkage) method.

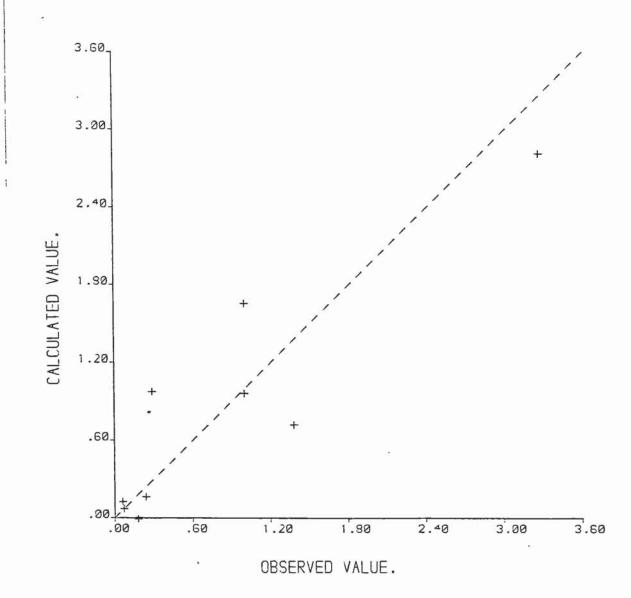
Dendrogram showing the results of the application of cluster analysis to the data. Group average (average linkage) method.

Dendrogram showing the results of the application of cluster analysis to the data. Ward's method.

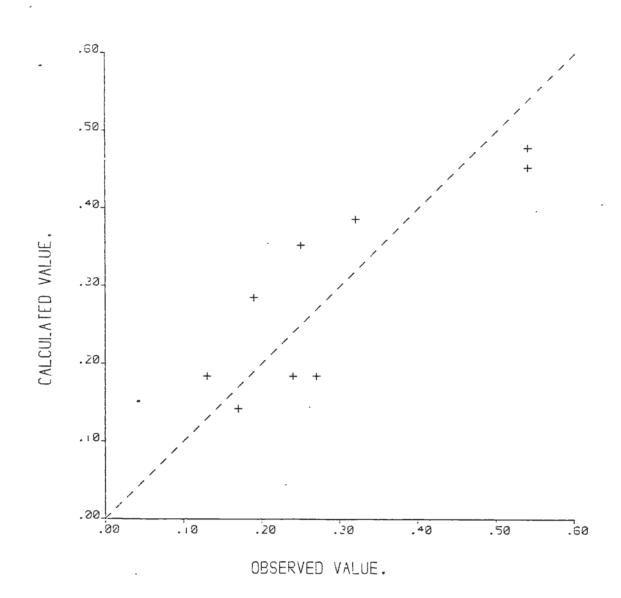




Diagram illustrating the principle of discriminant analysis. For explanation see text.

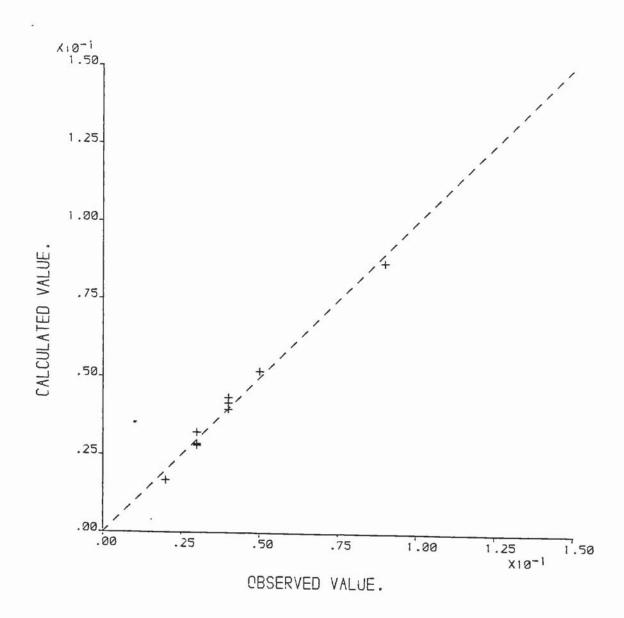
Results of multiple regression analysis of the data: graph shows the observed ${\rm Al}_2{\rm O}_3$ content of the ores versus the calculated content.


OBSERVED V CALCULATED _ AL2O3

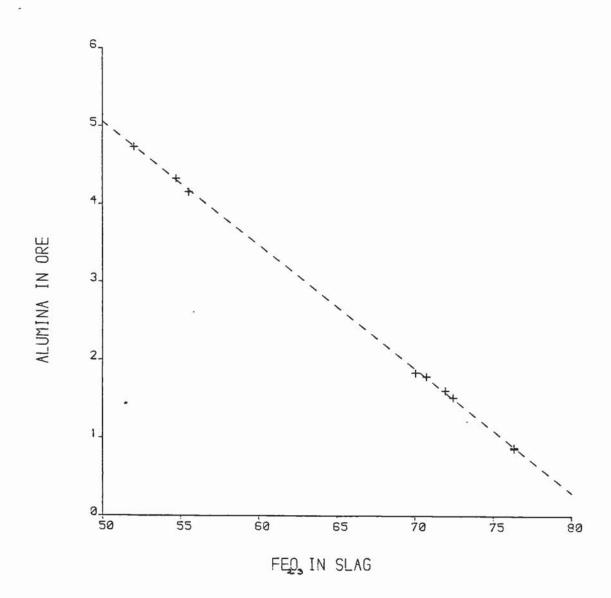
Results of multiple regression analysis of the data: graph shows the observed MnO content of the ores versus the calculated content.


OBSERVED V CALCULATED _ Mn0

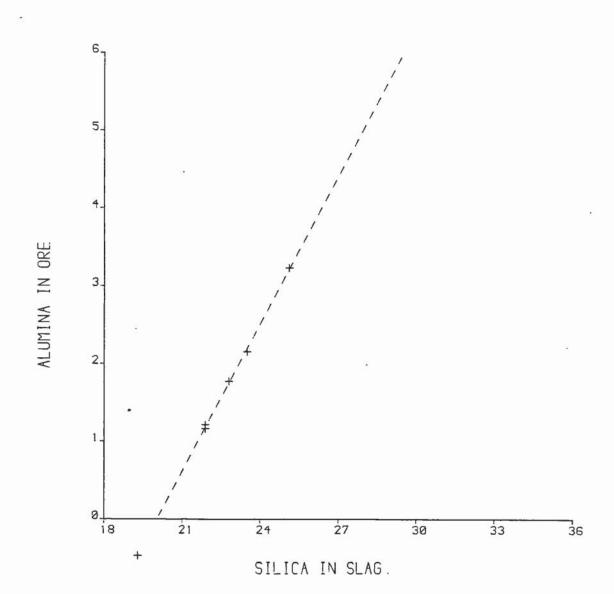
Results of multiple regression analysis of the data: graph shows the observed MgO content of the ores versus the calculated content.


ØBSERVED V CALCULATED _ M30

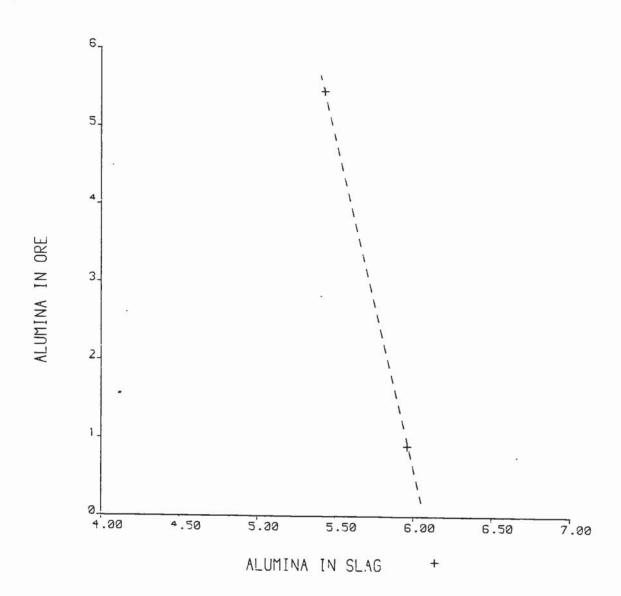
Results of multiple regression analysis of the data: graph shows the observed TiO, content of the ores versus the calculated content.


OBSERVED V CALCULATED _ TiO2

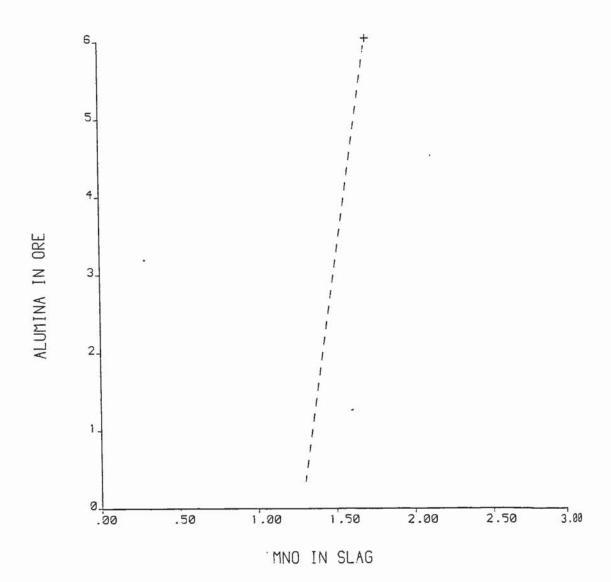
Results of multiple regression analysis of the data: graph shows the observed $\rm V_2O_5$ content of the ores versus the calculated content.


ØBSERVED V CALCULATED _ V205

Plot of the partially corrected values for ${\rm Al}_2{\rm O}_3$ in the ore against the ${\rm Fe}_2{\rm O}_3$ contents of the slag, all other independent variables being held at their average value.


ALO, IN ORE V FEO, IN SLAG

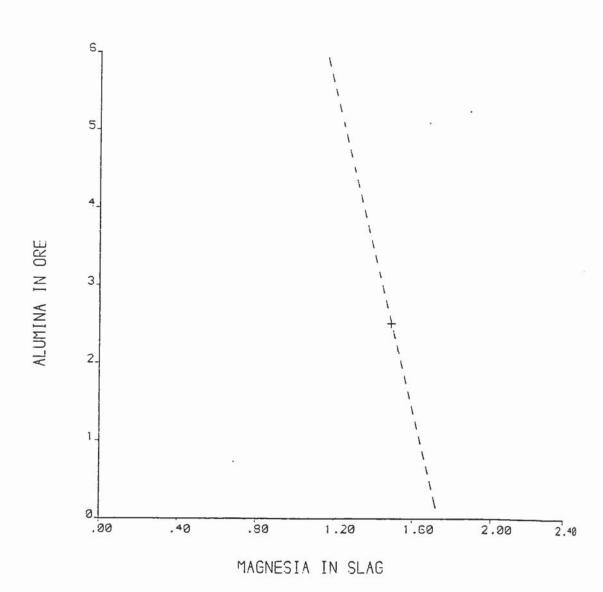
Plot of the partially corrected values for ${\rm Al}_2{\rm O}_3$ in the ores against the SiO, content of the slags, all other independent variables being held at their average value.



ALUMINA IN ORE V SILICA IN SLAG

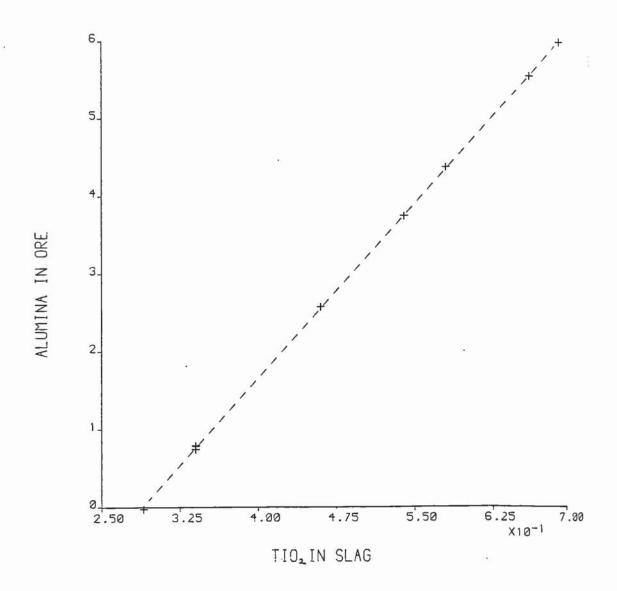
Plot of the partially corrected values for ${\rm Al}_2{\rm O}_3$ in the ores against the ${\rm Al}_2{\rm O}_3$ content of the slags, all other independent variables being held at their average values.

ALUMINA IN ORE V ALUMINA IN SLAG

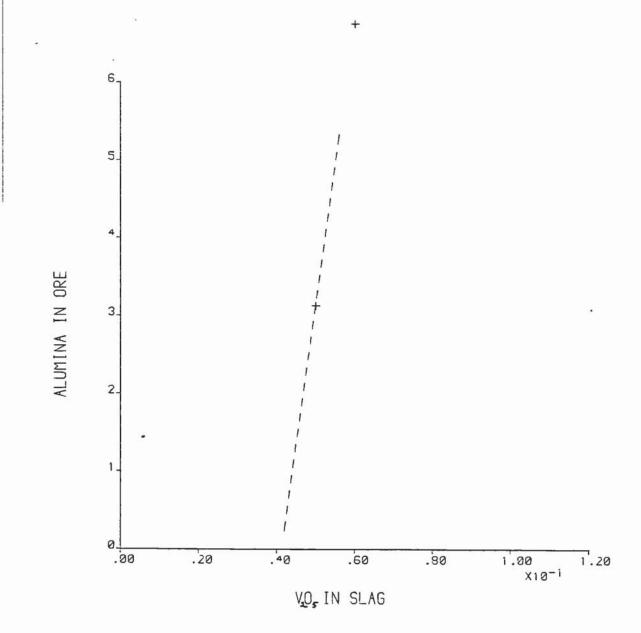


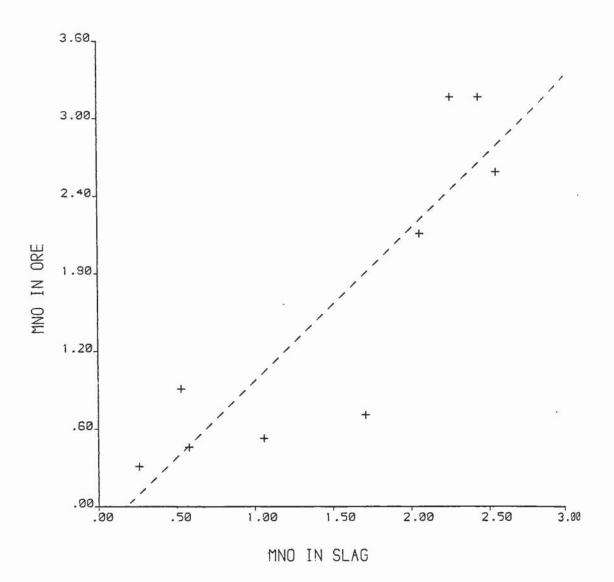
ALO, IN ORE V MNO IN SLAG

+


Plot of the partially corrected values for $^{A1}_{2}^{0}_{3}$ in the ores against the MnO content of the slags, all other independent variables being held at their average values.

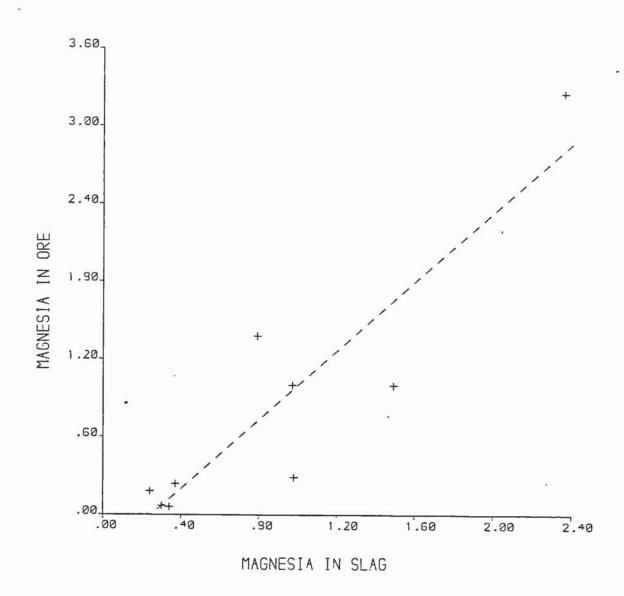
ALUMINA IN ORE V MAGNESIA IN SLAG

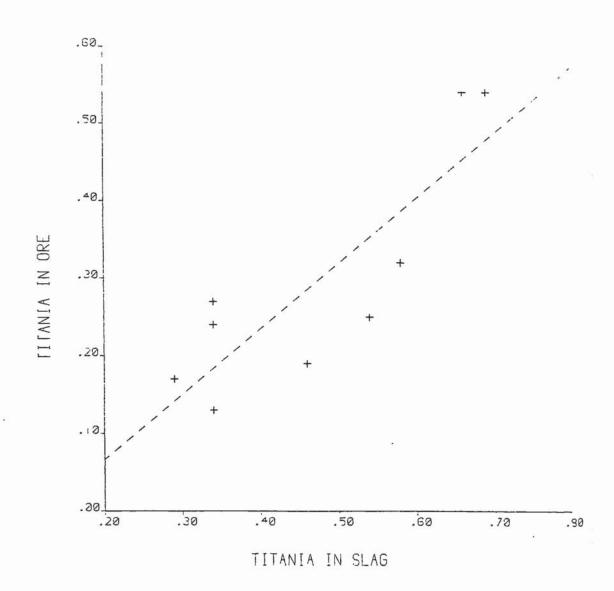

Plot of the partially corrected values for $^{A1}2^{0}3$ in the ores against the MgO content of the slags, all other independent variables being held at their average values.


ALO, IN ORE V TIO, IN SLAG

Plot of the partially corrected values for Al₂O₃ in the ores against the TiO₂ content of the slags, all other independent variables being held at their average value.

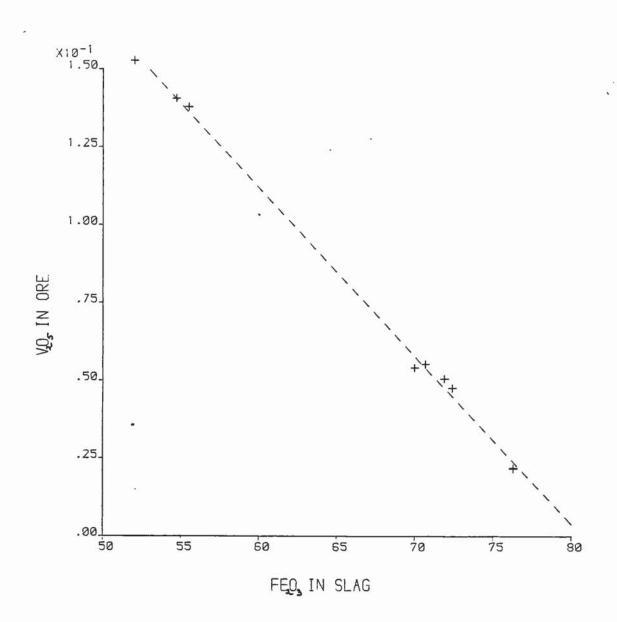
Plot of the partially corrected values for ${\rm Al}_2{\rm O}_3$ in the ores against the ${\rm V}_2{\rm O}_5$ content of the slags, all other independent variables being held at their average value.


ALO, IN ORE V VO, IN SLAG

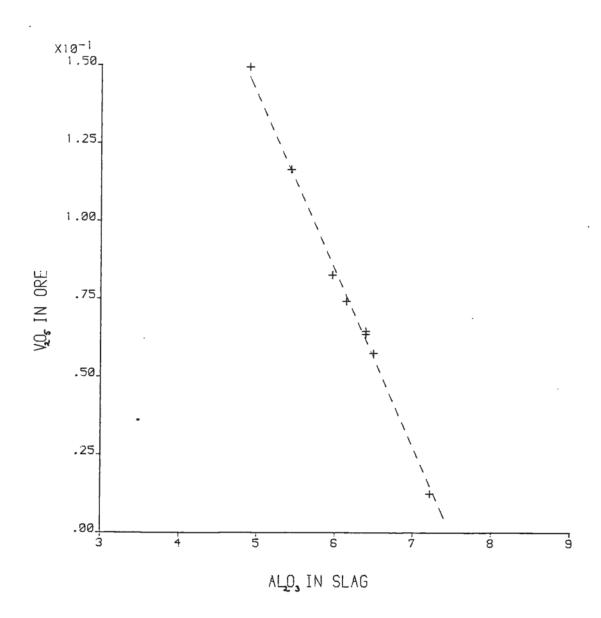

MNO IN ORE V MNO IN SLAG

Plot of the calculated values for MnO in the ores against the MnO content of the slags.

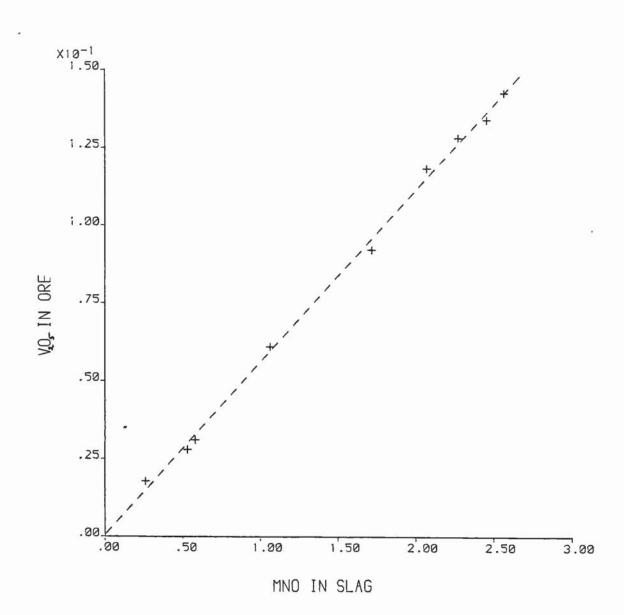
Plot of the calculated values for MgO in the ores against the MgO content of the slags.


MAGNESIA IN ORE V MAGNESIA IN SLAG

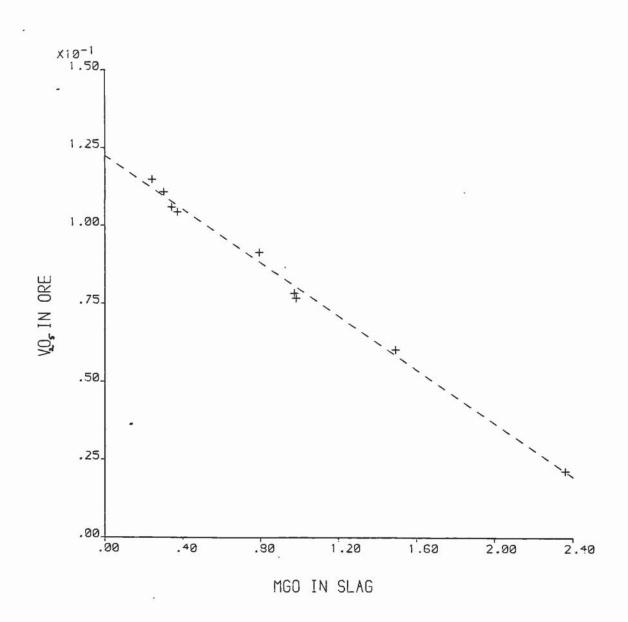
TITANIA IN ORE V TITANIA IN SLAG


Plot of the calculated values for ${\rm TiO}_2$ in the ores against the ${\rm TiO}_2$ content of the slags.

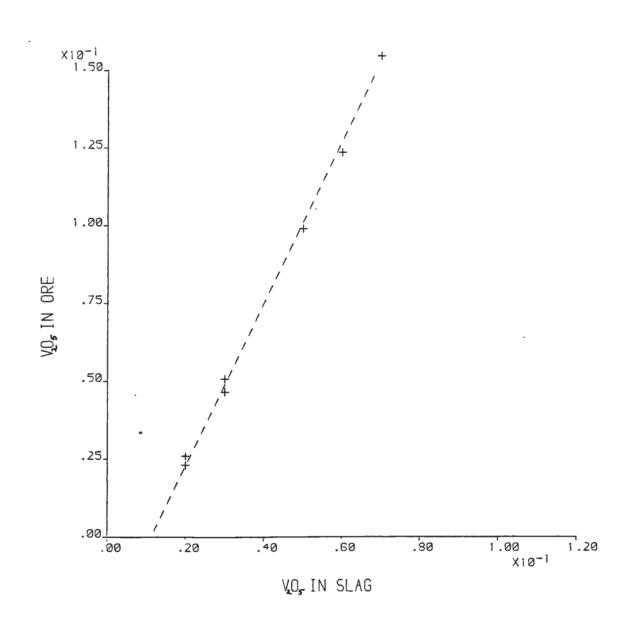
Plot of the partially corrected values for V_2O_5 in the ores against the Fe $_2O_3$ contents of the slags, all other independent variables being held at their average values.


VO, IN ORE V FEO, IN SLAG

Plot of the partially corrected values for $\rm V_2O_5$ in the ores against the $\rm Al_2O_3$ contents of the slags, all other independent variables being held at their average values.


VO, IN ORE V ALO, IN SLAG

Plot of the partially corrected values for V_2^{0} , in the ores against the MnO contents of the slags, all other independent variables being held at their average values.


VO, IN ORE V MNO IN SLAG

Plot of the partially corrected values for V_2O_5 in the ores against the MgO contents of the slags, all other independent variables being held at their average values.

VO, IN ORE V MGO IN SLAG

Plot of the partially corrected values for V_2O_5 in the ores against the V_2O_5 contents of the slags, all other independent variables being held at their average values.

VO, IN ORE V VO, IN SLAG

APPENDIX A

List of localities from which samples were obtained, with code numbers used for individual samples.

LOCALITY	SAMPLE	FURNACE	A.M. LAB	EXCAVATOR'S		
AND DATE		TYPE	NUMBER	NUMBER	THIS THESIS	
GREAT OAKLEY 800 BC						
Stream Course Feature 1 Pit F22	Slag Slag Slag Slag Slag Slag ore	? ? ? ?	GO 792017	from F1 from F22	G03 G04 G07 G0 792017 from F1 from F22 G06	26 43 - - - 42
WAKERLEY 1st BC to 3rd AD Ditch C Ditch B	Slag Slag	? ?	-	Tr. 1 (9) Tr. B VII (1)	WAK WAK 48A	- 9
Furnace 4, Site 4	Slag	bow1/	7312610	WK/BK K4	WKK4	8
Furnace 2, Site 4	Slag	domed sunken	7312607	WK/AV	WK AV	7
Ditch B	ore	shaft -	-	Tr. BVII (1	WAK 01 WAK 02	5
Ditch B Field brash	ore ore Slag	- Tapping	-	Tr. Bx(1)	wgw	39 10
BLIND EYE QUARRY						
Ziid AD	Slag	Shaft Tapping	610135	_	BEQ 1	29
	Slag	Shaft Tapping	610134	-	BEQ2	30
BRIGSTOCK PRE 2nd/3rd AD	Slag			BK 479		33
BULWICK ROMANO-BRITISH	Slag	Shaft Tapping	-	-	BUL.	40
BULBORNE VALLEY I.A. and R.B. Northchurch	Slag Slag	Tapping Tapping	740451 740451	T8 (26)(58) T5 (68)(215	NOR 2	32 62
Bridgewater School	Slag	shaft tapping	-	-	BBSI	87
Cow Roast Marina Site	Slag	tapping	-	-	BCR I	86
Cow Roast Orchard Site	Slag	tapping	-	-	BCR2	-
Cow Roast Esso Site (Bulk)	Slag Slag	tapping tapping	-	-	BCR3 Bulk slag	- 88
Cow Roast + School	? ore	-	-	_	Bulk ore	85

٠.

LOCALITY AND DATE	SAMPLE	FURNACE TYPE	A.M. LAB	EXCAVATOR'S	NO USED IN	REF NO
AND DATE		TIPE	NUMBER	NUMBER	THIS THESIS	NO
GARDEN HILL c50 BC-c35D AD Furnace 1, base	slag	shaft	_	SL346(F433)	GH I	18
	Siag	tapping		00040(1400)	on i	10
Furnace 1, pit	slag	shaft tapping		SL361(F431)	GH2	19
Furnace 2, base	slag	shaft tapping	_	SL357(F067)	GH3	-
Furnace on J4/5	slag	? domed	-	SL671(F773)		91
Furnace on J4/5 Rampart Quarry	slag slag	?domed ?	_	SL666(F773)	FH666 GH631	90
Rampart Quarry	slag	?	_		GH653	89
On L10/11	? ore	-	_	GE 130	GH4	-
Dump on L10	? ore	_	-	GE 132	GH5	13
Under Rampart	? ore	-	_	GE 126(L3,56)	Section 1997	53
Quarry on Site	? ore	-	-	GE 127	GH7	12
	ore	-	-	SL673(12(3))	GH673	84 .
PIPPINGFORD 1st AD	slag		_	-	GHE I	_
CAERWENT lst to 4th AD					607202	
	slag	tapping tapping	697282 697096	_	697282 CAER	31
	Stag	Lapping	057050		O L	
RAMSBURY						
c800 AD						
CHUKTORE WAS	slag	non-	-	-	RAM	-
		tapping			2116	
	slag	non-	-	-	RAM5	61
	.1	tapping		RA74/15	RAM6	93
(bulk roasted)	slag ore	tapping	_	KA/4/13	RAM1	58
(bulk raw)	ore	_	_	_	RAM2	59
(boxwall, raw)	ore	_	-	_	RAM3	81
(box core, raw)	ore	-	-	-	RAM4	60
MILLBROOK 9th AD						
,	Slag	non-	-	-	bulk	54
	Slag	tapping non-	-	-	Millbrook C	-
	slag	tapping non-	-	-	Millbrook D	57
	slag	tapping non-	-	-	Millbrook E))56
	slag	tapping non-		_	Millbrook E2	
	0100	tapping non-	_	_	Millbrook F	_
	slag	tapping				
	ore	-	-	-	limonite	55
L						

•

LOCALITY AND DATE	SAMPLE	FURNACE TYPE	A.M. LAB NUMBER	EXCAVATOR'S NUMBER	NO USED IN THIS THESIS	REF NO
STAMFORD CO-OP c.1000-1050 (bulk, raw) (bulk, roasted) SOUTH WITHAM c.1170-1225	slag slag slag ore ore ore	tapping tapping tapping - - - -	700128 700130 630532 700075 - -	- - - - -	700128 700130 630532 700075 STAM RAW STAM ROAST-ED	- 35 36 - 38 37
FURNACE RECONSTRUCTIONS	ore	-	753058	s.w. 1361		
Tapped	slag	shaft,	-	-	GHR 1	11
Furnace	slag	tapping shaft, tapping	-	-	GHR4	50
(roasted) (bulk raw) (boxwall, raw) (core, raw) (bulk, raw)	ore ore ore ore slag slag slag slag	small shaft non- tapping bowl bowl			GHR2 GHR3 GHR3 box GHR3 core WH3, Hustmonceux GHR10 GHR11 RR1 RR2	17 16 49 48 46 47 51 52 14 15

ORE TYPE	LOCALITY	SAMPLE NUMBER	NO. OF XEF ANALYSIS
Ironstone Junction Band	Creeton railway cutting	Creeton	44
	Cipsham New Quarry	Clipsham, rich Clipsham, poor	2 1 20
	Ketton Portland Cement Quarry	K 1 K2 K3 K4	77 78 79 80
	Field brash, w. of Wakerley Great Wood	WAK 03 WAK 04 WAK 05 WAK 06	1 2 3 4
	Adamix Refractories Quarry, Kings Cliffe	Adamix	24
	Woodside Quarry Wansford	Y 1 + 2	75
	Pipe trench, Castor	CAS 3	45
	Redland Aggregates Quarry, Southorpe	S 1 + 2	76
	Brookfield Cottage Pit	BC 1 + 2	63
Northampton	Cowthick Pit	Cowthick	22
Sand Ironstone	Wakerley Pit	WAK NS1	25
	Brookfield Cottage Pit	B.C.6 box B.C.6 core B.C.7 B.C.8 box B.C.8 core B.C.9 B.C.10 B.C.11	67 68 69 70 71 72 73 74

		1	
ORE TYPE	LOCALITY	SAMPLE NUMBER	NO. OF XEF ANALYSIS
Boulder Clay Nodules	Wakerley Pit	WAK 010 WAK B.C.	6 23
	Brookfield Cottage Pit	B.C. 3 + 4 B.C. 4 (2) B.C. 5	64 65 66
	Great Oakley Pit	GO1 (goeth) GO2 (carb) GO5 (bulk)	27 28 41
	Beeby's Sand Pit, Brigstock	Beeby's	34
Upper Green- Sand	Silica Sand Quarry Leighton Buzzard	LBA	82
	Arnold's Quarry Health and Reach	LBB	83
	2.€3		
	•		

APPENDIX B

Electron probe micro-analyses of individual phases within slags. Some raster analyses of ore samples are also included.

Standards used:

Apatite	37.45% 18.11% 55.56%	Ca P O
Alkali Feldspar	13.25% 9.79% 30.39% 0.40% 46.17%	
Wollastonite	34.32% 24.00% 0.30% 0.12% 41.26%	Ca Si Fe Mn O
A1203	52.91% 47.09%	$\frac{A1}{0}$
^V 2 ⁰ 5	56.00% 44.00%	$\frac{0}{\Lambda}$
- MgO	60.32% 39.68%	<u>Mg</u>
PbS	86.62% 13.38%	Pb S
Metallic	Fe, Ti	& Mn

- not detected n.d. not determined

Potassium loss under the probe beam has led to anomalously low values for this element in many of the leucite analyses. The SiO2 and Al2O3 values are also correspondingly high, the normal values for these oxides being of the order of 55 ut % and 22 ut % respectively, while K2O should be around 20 ut %. Some loss of potassium from the glass phase probably also occurred.

	Fayalite Area A	Fayalite Area B	Fayalite Area C	Wüstite Area A	Wüstite Area B	Wüstite Area C	Glass Area D
Fe0	65.96	68.03	69.11	95.93	98.66	96.96	36.09
SiO ₂	22.99	27.38	26.84	0.34	0.25.	0.39	41.41
CaO CaO	0.89	2.60	0.44	0.15	0.07	0.05	0.91
A1203	8.23	-	0.38	0.48	0.54	0.59	3.60
Mn0	0.62	0.73	0.98	0.17	0.24	0.28	0.12
MgO	0.10	0.20	0.56	-	0.04	0.04	0.21
K ₂ 0	-	0.02	0.01	0.05	0.02	0.06	0.47
P205	0.09	0.14	0.11	-	-	-	1.26
TiO2	0.36	0.08	0.06	1.48	1.12	1.16	0.10
v ₂ o ₅	0.08	0.02	-	0.30	0.24	0.28	0.02
, —, , , <u>—</u>	99.32	99.20	98.49	98.90	101.18	99.81	84.19
				·			
	Hercynite Area A	Hercynite Area B	Hercynite Area C		Leucite Area B*	Leucite Area C*	Glass Area D
Fe0	51.51	51.23	51.59	1.65	8.43	2.77	34.98
SiO ₂	0.43	0.35	0.43	48.88	47.42	52.14	46.21
CaO CaO	0.03	- 0.07	0.03	0.17	0.48	0.12	1.05
A1203	42.74	45.87	42.23	21.63	18.12	23.13	4.13
MnO	0.23	0.38	0.26	0.05	0.08	~	0.18
MgO	0.04	-	0.02	-	0.06	-	0.13
K20	0.01	-	-	11.09	4.51	18.10	0.60
P ₂ O ₅	-	0.02	-	0.09	0.32	0.04	1.24
TiO ₂	1.70	0.94	1.60	0.22	0.18	-	0.06
v ₂ 0 ₅	0.44	0.40	0.44	0.06	0.08	0.02	-
	97.13	99.26	96.60	83.84	79.68	96.32	88.58

	Fayalite Area l	Fayalite Area 2	Fayalite Area 3	Wüstite Area l	Wüstite Area 2	Wüstite Area 3	Leucite Area 1*
					8 5		
FeO	64.67	63.72	69.26	95.48	95.38	98.89	1.47
SiO ₂	28.09	27.43	27.21	0.32	0.64	0.39	60.77
CaO	0.66	1.75	1.15	0.04	0.15	0.10	0.01
A1203	0.15	0.21	0.11	0.63	0.93	0.43	25.76
MnO	2.30	2.13	2.17	0.81	0.60	0.65	0.03
MgO	1.53	0.30	0.42	0.10	0.02	0.06	_
K20	-	0.01	-	-	0.03	0.01	11.05
P205	0.05	0.09	0.02	0.02	0.02	0.02	0.02
TiO2	0.08	0.12	0.10	1.38	2.25	0.98	0.04
v ₂ o ₅	-	0.04	0.04	0.26	0.38	0.18	0.02
	97.53	95.80	100.48	99.04	100.40	101.71	99.17
	Leucite		Iron	Iron	Iron	Iron	Iron
	Area 3		Grain	Grain	Grain	Grain	Grain
Fe0	1.54		Fe 99.56	99.49	100.00	100.29	99.39
SiO ₂	61.83		Si -	0.09	0.03	0.02	0.03
CaO CaO	0.04		Ca 0.03	0.09	0.03	0.02	0.03
A1203	25.98		A1 -	-	-	0.02	-
MnO	0.10		Mn 0.09	-	-	-	0.06
MgO	0.02		Mg -	-	-	-	-
K20	11.49 *		K n.d	n.d	n.d	n.d	n.d
P205	0.70		P -	-	-	-	-
TiO2	0.04		T 0.05	0.08	0.06	0.08	0.04
v ₂ o ₅	_		∇ 0.02	0.02	0.01	0.03	-
2 3			S 0.03	-	_	-	_
	101.74						
			99.78	99.74	100.11	100.47	99.54

	Hercynite Area 1	Hercynite Area l	Hercynite Area 2	Hercynite Area 3	Glass Area l	Glass Area 2	Glass Area 3
FeO	47.07	48.80	48.80	49.52	22.28	25.61	14.99
SiO ₂	0.30	0.61	0.43	0.30	32.80	31.86	30.92
Ca0	0.01	0.05	0.03	0.04	12.48	12.22	15.87
A1203	44.66	44.40	44.33	45.48	14.04	15.91	14.83
MnO	0.71	0.75	0.72	0.78	0.30	0.42	0.19
MgO	0.61	0.70	0.68	0.74	0.59	-	0.02
к ₂ 0	-	-	-	0.01	5.35	3.03	5.60
P2O5	-	0.02	-	-	0.16	1.81	3.58
TiO ₂	0.92	0.80	0.80	0.74	0.84	0.08	0.36
v ₂ o ₅	0.57	0.46	0.57	0.53	0.04	_	-
T T							
	94.85	96.59	96.36	98.14	88.88	90.94	86.36
							s
	Fayalite	Fayalite	Fayalite	Glass	Glass	Glass	
	Area A	Area A	Area B	Area A	Area B	nr iron	nr iron
				,			
Fe0	35.20	67.52	74.76	40.85	39.86	36.03	27.62
SiO ₂	34.20	24.02	20.18	21.01	28.32	26.66	24.40
Ca0	0.40	0.35	0.65	10.39	7.48	9.13	15.26
A1203	23.07	3.70	1.02	8.11	9.61	12.53	12.42
MnO	0.49	0.76	0.65	0.33	0.43	0.18	0.12
MgO	0.21	0.54	0.12	0.08	-	-	0.02
K20	0.01	-	0.01	0.93	2.59	3.29	3.17
P2O5	0.64	0.64	0.57	9.17	5.04	7.47	12.33
TiO ₂	0.94	0.30	0.42	0.32	0.24	0.26	0.28
v ₂ o ₅	0.12	0.06	0.08	-	-	0.02	-
	95.08	97.89	98.46	01 10	02 57	05.57	05 63
	22.00	37.03	50.40	91.19	93.57	95.57	95.62

	Fayalite	Wüstite Area A	Wüstite Area B		Metal Area B	Iron Grain	Iron Grain
Fe0	66.86	91.51	97.27	Fe	99.73	98.81	99.35
SiO ₂	25.95	6.23	0.64	Si	0.02	0.05	0.03
CaO CaO	0.96	0.14	0.05	Ca	0.07	0.08	0.04
A1203	1.10	0.37	0.65	A1	0.06	-	_
MnO	0.70	0.46	0.40	Mn	0.14	0.08	-
MgO	0.52	0.21	0.08	Mg	0.01	_	_
к ₂ 0	0.11	-		K	-	0.05	0.03
P2O5	1.33	0.30	0.02	P	-	0.01	0.01
TiO ₂	0.18	0.80	0.94	Ti	0.06	0.06	0.04
v ₂ o ₅	0.04	0.30	0.34	٧	0.02	-	0.02
s	n.d.	n.d.	n.d.	S	n.d.	0.02	0.01
		100.00			100 11		
	97.75	100.32	100.37		100.11	99.16	99.53
		*	÷.				
	Iron Grain	Iron Grain	Iron Grain	Iron Grain	Iron Grain	Iron Grain	Iron Grain
Fe	99.16	98.96	99.10	98.37	100.00	98.49	98.87
Si	0.13	0.04	0.02	0.04	-	0.06	0.09
Ca	0.03	0.03	0.03	0.04	0.03	0.04	0.08
A1	_	-	-	-	-	0.03	0.03
Mn	-	-	-	-	-	-	-
Mg	-	0.01	_	-	-	-	0.01
K	0.01	0.01	0.01	0.01	0.01	0.05	0.02
P	0.01	0.01	0.01	0.01	0.01	0.01	-
Ti	0.05	0.02	0.01	0.02	0.07	0.05	0.16
V	0.01	0.02	-	-	0.01	-	0.02
	99.40	99.10	99.18	98.59	100.13	98.73	

K20

P2⁰5

TiO₂

V205

0.23

0.02

1.42

0.42

93.97

2.99

0.79

96.94

52								
	Fayalite Area A	Fayalite Area A	Fayalite Area B	Fayalite Area C		Wüstite Area A	Wüstite Area B	
Fe0	68.13	64.35	70.45	69.92	67.41	94.78	91.21	
SiO ₂	25.93	27.81	25.92	26.27	28.00	0.25	0.45	
CaO	0.71	0.35	0.41	0.38	0.42	0.20	0.10	
A1203	0.32	0.48	0.36	0.42	0.46	0.35	0.33	
MnO	0.64	0.85	0.64	0.70	0.56	0.32	0.25	
MgO	0.38	0.50	0.58	0.42	0.42	0.04	0.04	
к ₂ 0	0.16	0.01	-	-	0.01	0.07	0.04	
P205	0.32	0.57	0.50	0.41	0.41	0.05	0.02	
TiO2	n.d.	n.d.	0.08	0.18	0.12	n.d.	0.80	
V205	0.02	0.02	0.04	0.06	_	0.30	0.26	
2 3								
	96.61	94.97	98.98	98.76	97.81	96.37	93.50	
		-			-			
	Wüstite	Hercynite	Hercynite	Hercynite	Hercynite			
	Area C	Area B	Area D			Phase		
Fe0	90.16	51.95	50.43	55.07	53.07	8.34		
SiO ₂	0.79	0.45	0.43	0.53	0.40	0.68		
CaO	0.01	0.01	0.03	0.01	-	41.90		
A1203	0.65	40.33	43.49	41.24	41.52	0.11		
MnO	0.25	0.32	0.18	0.06	0.06	0.17		
MgO	0.02	0.10	0.10	0.08	0.08	0.08		
	1001 1000							

0.01

0.02

3.40

0.61

98.70

0.01

0.02

3.16

0.95

101.13

0.38

-

2.71

0.04

98.26

0.55

39.80

0.04

91.67

	Leucite Area C ★	Leucite*	Leucite *	Leucite*	Leucite* (raster)	Leucite*	Glass Area D Oxide
Fe0	4.31	2.29	1.07	1.58	1.76	1.52	12.82
sio,	53.45	55.11	54.02	57.39	50.81	59.56	46.61
CaO	0.25	0.04	0.01	0.01	0.03	-	10.95
A1203	23.69	22.82	19.71	23.13	23.22	26.01	13.42
Mn0	0.14	-	0.03	0.03	0.05	-	0.06
Mg0	0.02	0.02	-	-	-	-	0.06
K ₂ 0	5.45	19.37	18.74	19.20	19.04	7.84	1.99
P ₂ 0 ₅	0.34	0.11	0.50	0.25	0.11	0.12	6.97
TiO ₂	0.08	0.08	0.06	0.06	0.08	0.06	0.12
v ₂ 0 ₅	0.04	-	0.04	0.02	-	-	-
	89.77	99.84	94.23	101.67	95.1	95.51	93.05
	Glass Area B	Glass	Glass		Iron Grain	Iron Grain	Iron Grain
Fe0	8.43	4.43	30.10	Fe	95.05	98.28	99.07
SiO ₂	41.50	39.50	25.80	Si	-	-	0.04
Ca0	9.03	1.63	7.51	Ca	-	0.03	-
A1203	19.40	17.55	3.71	Al	-	-	-
MnO	0.11	-	0.05	Mn	-	0.04	-
Mg0	0.02	-	0.02	Mg	0.03	-	-
к ₂ 0	7.57	12.83	8.69	K	0.02	-	-
P205	9.42	8.25	6.03	P	0.01	-	0.05
TiO2	0.10	0.32	0.72	Ti	n.d.	0.06	
v ₂ 0 ₅	-	0.09	0.15	٧	0.02	=	-
	95.58	84.6	82.78		95.14	98.41	99.16
						 .	

	Area A	Area B	Area C	Area A	Area B	Area C
Fe ₂ 0 ₃	76.57	81.51	80.19	67.96	52.34	63.80
SiO,	2.88	2.33	2.15	12.36	19.43	16.48
CaO .	0.36	0.34	0.31	0.07	0.12	0.05
A1203	1.02	0.59	0.78	0.94	2.85	1.21
Mn0	0.51	0.35	0.29	0.16	0.14	0.05
MgO -	0.05	0.06	0.04	0.08	0.06	-
к ₂ 0	0.20	0.11	0.13	0.08	0.22	0.08
P205	0.05	0.02	0.05	-	0.05	0.02
TiO,	0.04	0.06	0.04	0.28	0.10	0.14
v ₂ 0 ₅	0.02	-	0.04	0.04	0.04	0.02
	81.70	85.36	84.02	81.97	75.35	81.85
	01.70	03.30	04.02	01.97	13.33	01.03

WEST HOATHLY ORE (roasted: A, B & C core, D, E, F, boxwall)

	Area A	Area B	Area C	Area D	Area E	Area F
	-					
Fe ₂ 0 ₃	57.00	58.25	55.84	49.46	42.52	52.34
SiO ₂	14.13	23.64	19.16	22.88	27.69	18.33
CaO CaO	1.92	3.18	3.24	2.30	2.02	2.50
A1203	4.33	5.35	5.78	6.53	7.66	7.05
MnO	1.27	2.21	2.27	1.83	1.75	1.91
MgO	1.51	1.68	1.57	1.74	1.80	1.97
K ₂ 0	0.50	0.77	0.97	0.99	1.07	0.01
P205	0.46	0.69	0.62	0.37	0.37	0.50
TiO2	0.28	0.44	0.74	1.06	0.60	0.96
v ₂ 0 ₅	0.06	0.08	0.08	0.12	0.12	0.10
	81.46	96.29	90.27	87.28	85.60	85.67

CH5	(unroasted	hovetone)
	(unit das Leu	DOVERDIE

GH6 (roasted boxstone)

	Area A	Area B	Area C	Area A	Area B	Area C
					7.5	
Fe ₂ 0 ₃	57.14	60.91	57.97	44.85	55.67	44.04
SiO ₂	28.20	23.54	22.42	27.19	18.16	25.03
Ca0	0.08	0.07	0.11	0.20	0.25	0.25
A1203	6.27	4.62	4.52	10.01	8.96	8.84
MnO	0.36	0.34	0.36	0.31	0.21	0.18
MgO	0.10	0.10	0.12	0.51	0.50	0.35
K ₂ 0	0.87	0.72	0.80	1.76	1.31	1.02
P205	0.66	0.64	0.64	0.55	0.71	0.50
TiO ₂	0.54	0.56	0.30	1.14	0.50	0.40
v ₂ 0 ₅	0.10	0.10	0.06	0.18	0.10	0.10
	94.32	91.65	87.30	86.69	86.37	80.71
	22		-	7.2	•	100000000000000000000000000000000000000

GH4 (Boxstone from sandstone)

	Area • A	Area B	Area C
Fe ₂ 0 ₃	16.56	10.42	17.70
SiO ₂	79.53	89.00	79.36
Ca0	0.07	0.03	0.08
A1203	2.63	2.58	1.08
Mn0	0.03	=	0.08
MgO	0.11	-	0.04
K20	0.13	0.08	0.08
P205	0.02	0.02	0.07
TiO ₂	0.14	0.08	0.14
v ₂ 0 ₅	0.06		0.02
	99.28	102.21	98.65

	Fayalite Area l	Fayalite Area 2	Fayalite Area 3	Wüstite Area 1	Wüstite Area 2	Wüstite Area 3
Fe0	67.99	68.25	67.52	97.72	97,13	98.88
SiO ₂	27.40	27.25	27.20	0.34	0.48	0.48
CaO .	1.04	1.22	3.00	0.09	0.10	0.26
A1203	0.21	0.25	0.17	0.52	0.33	0.48
MnO	1.11	1.21	0.86	0.43	0.40	0.24
MgO	0.62	0.52	0.28	0.06	0.08	0.02
K ₂ 0	_	0.01	001	0.02	0.01	0.07
P ₂ O ₅	0.12	0.18	0.12	0.02	_	0.02
TiO ₂	0.08	0.08	0.10	0.68	0.66	0.98
v ₂ 0 ₅	0.04	0.04	0.04	0.10	0.12	0.18
2 3				- 		
	98.61	97.55	99.30	99.98	99.31	101.61
	Glass	Glass	Glass	Glass	Glass	
	Area 1	Area 2	Area 3	nr clay	nr clay	
Fe0	27.67	26.53	31.28	25.02	29.82	
SiO ₂	33.15	35.02	34.26	42.56	40.93	
CaO	12.71	13.31	14.44	7.37	4.77	
A1203	18.23	17.33	12.30	14.55	12.98	
KnO	0.34	0.43	0.26	0.28	0.26	
MgO	0.04	0.06	0.04	0.08	0.11	
K ₂ 0	2.87	3.00	4.55	1.98	2.73	
P ₂ O ₅	1.35	1.28	1.60	0.76	0.62	
TiO ₂	0.22	0.18	0.42	1.10	1.10	
v ₂ 0 ₅	0.04	0.02	0.08	0.16	0.66	
127-1974 (1996)	05 62	07.16	00.00	02.06	02.00	
	95.62	97.16	99.23	93.86	93.98	
						-

	Fayalite Area l	Fayalite Area 2	Fayalite Area 3	Wüstite Area l	Wüstite Area 2	Wüstite Area 4
Fe0	61.30	61.89	62.13	91.07	93.03	93.83
SiO ₂	26.31	27.19	27.73	0.59	0.47	0.41
Ca0	2.46	2.23	3.14	0.07	0.41	0.12
A1202	0.11	0.06	0.13	0.69	0.48	0.93
Mn0	2.71	2.47	1.97	0.80	0.59	0.64
Mg0	2.21	1.67	2.18	0.08	-	0.06
K ₂ 0	-	0.03	1.04	-	0.05	-
P205	0.09	0.12	0.12	-	0.02	0.02
TiO,	0.06	0.08	0.04	0.74	0.90	0.78
v ₂ 0 ₅	0.02	0.02	-	0.16	0.16	0.16
	95.27	95.76	98.48	94.20	96.11	96.95
	Glass	Glass	Glass			
	Area 1	Area 2	Area 3			
Fe0	26.14	27.57	41.28			
SiO ₂	31.62	32.53	30.59			
Ca0	14.81	15.09	3.58			
A1203	15.42	12.16	10.30			
Mn0	0.71	0.77	0.90			
Mg0	0.04	0.02	0.08			
K ₂ 0	2.94	3.11	0.59			
P202	1.56	1.17	1.28			
TiO ₂	0.34	0.38	0.10			
v ₂ 0 ₅	0.08	0.04				
	93.66	92.84	88.70			

	Fayalite Area I	Fayalite Area 2	Fayalite Area 3	Wüstite Area 2	Wüstite Area 3	Hercynite Area	Hercynite Area 2
Fe0	65.25	61.73	67.19	95.26	98.12	43.76	46.93
SiO ₂	26.87	26.64	25.86	0.25	0.41	0.18	0.28
Ca0	0.36	1.99	0.62	0.06	0.17	0.03	0.01
A1203	0.19	0.84	0.23	0.09	0.35	48.69	44.99
Mn0	2:60	2.46	2.57	0.56	0.67	1.08	0.91
Mg0	0.84	1.47	0.82	0.02	-	1.67	1.30
K ₂ 0	-	0.02		0.04	0.03	-	-
P ₂ O ₅	0.21	0.16	0.34	-	-	-	0.02
TiO ₂	0.08	0.10	0.06	0.48	0.34	0.24	0.50
v ₂ 0 ₅	0.02	-	-	0.12	0.10	0.18	0.16
	96.42	95.41	97.69	96.88	100.19	96.03	95.10
	Hercynite Area 3	Leucite Area *	Leucite Area 3*		e Glass * Area l	Glass Area 2	Glass Area 4
Fe0	51.68	6.33	9.22	1.68	21.75	38.56	19.76
SiO ₂	0.18	52.20	45.89	60.11	30.65	32.53	37.90
Ca0	0.04	0.06	0.87	0.01	10.79	3.83	11.25
A1202	41.99	22.68	20.19	25.31	13.85	. 14.80	16.75
Mn0	0.79	0.03	0.13	0.05	0.89	0.32	0.59
Mg0	0.15	-	0.02		0.02	0.02	-
K ₂ 0	-	15.48	16.11	18.58	1.16	7.40	3.36
P205	0.02	0.14	1.63	0.09	1.13	0.21	3.35
TiO2	0.74	0.06	0.08	0.06	3.52	0.54	0.86
v ₂ 0,5	0.22	0.04	0.04	0.02	0.85	0.16	0.20
	95.81	97.02	94.18	105.91	84.81	98.37	94.20

	Fayalite Area A	Fayalite Area B	Wüstite Area A	Wüstite Area B	Hercynite Area A	Hercynite Area B
Fe0	63.28	61.55	95.78	89.23	51.90	50.12
SiO ₂	25.64	26.94	1.04	3.05	5.58	2.27
CaO	0.45	0.35	0.07	0.09	0.29	0.13
A1203	0.27	0.51	0.20	1.23	35.04	40.03
MnO	2.76	2.98	0.88	1.13	1.27	1.08
Mg0	0.28	0.62	0.02	0.04	0.10	0.15
K ₂ 0	0.01	0.02	0.08	0.04	0.01	0.01
P ₂ 0 ₅	0.23	0.39	0.02	0.16	0.07	0.05
TiO ₂	0.16	0.18	0.58	4.87	2.00	1.62
v ₂ 0 ₅	-	0.04	0.07	0.74	0.35	0.31
	93.08	93.91	98.74	100.61	96.61	95.87

	Leucite Area A*	Leucite Area B*	Ca-P Phase A	Ca-P Phase B
Fe0	2 50	2 02	25.76	10.71
	3.50	2.83	35.46	12.71
SiO ₂	57.10	56.26	18.74	5.13
Ca0	-	-	14.22	32.21
A1203	24.28	24.31	2.41	0.26
MnO	0.05	0.05	1.46	0.50
MgO	-	-	0.16	0.10
K20	16.85	17.55	0.33	0.42
P205	0.12	0.07	20.83	28.82
TiO ₂	0.02	-	0.06	0.06
v ₂ 0 ₅	0.02	0.02	-	0.02
	101.94	101.09	93.67	80.23

	Fayalite	Fayalite		Wüstite	Wüstite	Wüstite
	Area A	Area B	Area C	Area A	Area B	Area C
					3.	
Fe0	59.51	60.57	60.30	97.94	96.90	95.08
SiO ₂	28.41	28.71	27.85	0.30	0.43	0.32
Ca0	5.65	4.80	4.34	0.16	0.20	0.17
A1203	0.27	0.06	0.06	0.46	0.54	0.61
MnO	2.83	2.90	2.83	0.89	0.72	0.82
MgO	1.35	1.47	1.29	0.04	0.06	0.10
к ₂ 0	0.23	0.01	0.02	0.01	0.03	0.07
P205	0.09	0.09	0.09	i. — ;	-	-
TiO ₂	0.04	0.06	0.06	0.70	0.72	0.66
V205	-	-	-	0.10	0.10	0.10
	98.38	98.67	96.84	100.60	99.70	97.93
	Glass	Glass	Glass C		Iron	
	Area A	Area B	Area C		Area B	
Fe0	18.51	24.25	21.69	Fe	101.46	
SiO ₂	39.11	38.66	37.04	Si	0.03	
Ca0	9.82	10.45	9.81	Ca	0.11	
A1203	19.22	15.76	17.71	A1	-	
MnO	0.53	0.71	0.73	Mn	0.03	
Mg0	0.08	0.23	0.11	Mg	-	
K ₂ 0	5.55	7.95	7.04	K	0.03	
P205	1.90	1.56	2.09	P	_	
TiO ₂	0.14	0.12	0.16	Ti	0.02	
v ₂ 0 ₅	-	0.04	-	V	0.01	
जि. । जि.) 						
	94.86	99.73	96.38		101.69	*

	Fayalite Area A	Fayalite Area B		Wüstite Area A	Wüstite Area B	Wüstite Area C
Fe0	68.06	68.94	68.97	90.57	95.17	95.79
SiO ₂	26.69	26.49	26.36	4.89	1.34	1.56
CaO	0.41	0.74	0.44	0.25	0.23	0.09
A1203	0.25	0.23	0.25	0.67	0.63	0.61
Mn0	3.12	2.88	3.16	1.13	0.82	1.09
Mg0	1.83	1.12	1.43	0.39	0.04	0.06
K ₂ 0	0.01	-	0.01	10.0	0.01	0.26
P205	0.11	0.21	0.21	0.07	0.16	-
TiO ₂	0.08	0.10	0.10	1.62	1.02	0.72
v ₂ 0 ₅	0.02	0.04		0.24	0.16	0.14
	100.58	100.75	100.93	99.84	99.58	100.32
	Hercynite Area A	Hercynite Area B	e Hercynite Area C	Leucite Area A*	Glass Area B	Glass Area C
Fe0	51.66	48.94	51.76	5.56	33.54	45.02
SiO ₂	0.55	0.18	0.72	52.27	39.75	25.76
CaO CaO	0.01	0.04	0.04	-	0.30	2.65
A1203	40.95	42.14	38.47	24.71	15.51	9.98
MnO	1.12	1.08	1.15	0.18	0.05	1.94
Mg0	1.28	1.25	0.56	0.01	0.02	0.94
K ₂ 0	-	0.01	-	14.29	9.48	3.77
P205	-		0.02	0.21	0.07	1.19
TiO ₂	1.50	0.90	1.54	0.26	0.52	0.56
v ₂ o ₅		0 16	0.30		0 12	0.00
	0.49	0.46	0.30	-	0.12	0.08
	97.56	95.00	94.56	97.49	96.01	91.84

	Fayalite Area A	Fayalite Area B	Fayalite Area C	Fayalite Area D	Hercynite Area C	Hercynite Area C
Fe0	66.49	61.62	65.92	62.23	48.21	47.50
SiO ₂	27.01	27.29	26.83	27.86	0.43	0.40
CaO	0.26	0.12	0.26	0.12	0.03	0.03
A1203	0.17	0.13	0.17	0.11	42.52	44.51
MnO	2.41	3.73	2.54	3.68	-	1.01
MgO	0.32	1.18	0.52	1.78	0.44	0.21
K20	0.02	0.02	-	0.03	-	-
P205	0.25	0.21	0.14	0.12	0.02	0.02
TiO ₂	0.14	0.12	0.18	0.14	1.95	1.89
^v 2 ⁰ 5	0.08	0.06	-	0.02	0.34	0.28
	97.15	95.11	96.56	96.04	93.94	05.05
				90.04		95.85
	Leucite Area A *	Glass Area A	Glass Area B	Glass Area D		
FeO	2.06	54.60	12.31	12.68		
SiO ₂	58.54	8.40	57.48	52.39		
CaO	0.16	0.33	1.88	2.00		
A1203	23.75	9.76	15.97	19.52		
MnO	0.03	0.10	1.00	0.98		
MgO	_	_	0.18	0.37		
K ₂ 0	5.43	0.37	2.81	3.52		
P205	0.46	7.95	0.83	0.44		
TiO,	0.12	0.20	1.25	1.07		
v ₂ 0 ₅	0.08	0.04	0.16	0.18		
	90.63	81.75	93.87	93.15		3

	Fayalite Area A	Fayalite Area B	Wustite Area A	Wustite Area B	Glass Area A	Glass Area B
			20			
Fe0	66.51	67.67	93.66	93.62	22.76	18.54
SiO ₂	26.84	26.23	0.45	2.94	33.99	34.37
CaO	1.15	0.58	0.19	0.20	11.81	14.17
A1203	0.25	0.40	0.59	0.87	15.87	16.25
MnO	0.43	0.40	0.10	0.10	0.08	0.05
MgO	0.34	0.48	0.06	-	-	_
K ₂ 0	0.32	0.02	0.04	0.02	5.60	6.49
P205	0.35	0.37	0.02	0.07	3.03	5.02
TiO2	0.10	0.12	1.06	1.04	0.24	0.26
V205	0.04	0.04	0.48	0.42	0.06	0.06
s	n.d.	n.d.	n.d.	n.d.	n.d.	0.58
	96.33	96.31	96.75	99.28	93.44	95.79
	-					

	Iron	·Iron
	Area A	Area E
		•
Fe	97.69	97.57
Si	0.06	0.19
Ca	0.06	0.07
A1		-
Mn	0.05	-
Mg		_
K	-	0.01
P	-	0.01
Ti	0.04	0.02
٧	1,—12	0.01
S		0.01
	97.90	97.89
	-	-

	Fayalite Area A	Fayalite Area B	Fayalite Area C	Wüstite Area A	Wüstite Area B	Wüstite Area D
Fe0	64.80	64.41	65.17	96.04	96.80	97.46
SiO ₂	27.45	27.57	27.96	0.45	0.41	0.36
CaO	0.42	0.45	0.67	0.07	0.03	0.06
A1203	0.17	0.17	0.13	1.26	1.11	1.93
MnO	2.58	2.46	2.60	0.86	0.95	0.88
MgO	2.91	3.03	2.60	0.10	0.23	0.06
K ₂ O	0.01	0.01	0.03	-	0.09	0.01
P205	0.32	0.14	0.12	-	=	-
TiO ₂	0.06	0.02	0.08	0.80	0.76	0.92
v ₂ 0 ₅	0.02) = ;	0.04	0.44	0.40	0.48
	98.74	98.26	99.40	100.02	100.78	102.16
	Glass Area A	Glass Area B	Glass Area C	Hercynite Area B	Pale Ca-Phase	
Fe0	16.17	12.13	24.64	51.56	19.77	
SiO ₂	29.22	49.21	34.50	1.48	35.26·	
CaO	9.92	0.01	0.46	0.07	18.29	
A1203	23.25	21.55	29.16	43.03	12.56	
Mn0	0.33	0.16	0.34	0.93	0.53	
MgO	0.04	-	0.02	0.30	: , - , :	
K ₂ 0	9.10	14.26	9.87	0.01	0.99	
P205	8.13	0.09	0.14	-	2.02	
TiO ₂	0.48	0.12	1.80	1.66	0.40	
v ₂ 0 ₅	0.06	0.04	0.35	0.51	-	
	96.70	97.57	101.31	99.55	89.82	
						i.e.

	Fayalite	Wustite	G1ass	Pale Ca-Phase
Fe0	66.01	86.17	11.40	15.94
SiO ₂	26.79	4.86	51.52	18.50
CaO	0.72	0.37	0.66	35.65
A1203	0.19	0.67	21.14	10.76
MnO	2.31	1.25	0.13	0.44
Mg0	0.60	0.17	-	0.08
K ₂ 0	0.04	0.06	11.82	1.01
P205	0.23	0.05	0.23	7.70
TiO2	0.06	1.38	0.30	0.44
v ₂ 0 ₅	0.04	0.26	0.06	-
	96.99	95.24	97.26	90.52
	•			

	Fayalite Area A	Fayalite Area B	Fayalite Area C	Glass Area A	Glass Area B	Glass Area C
Fe0	67.59	67.08	55.72	30.91	27.81	28.86
SiO ₂	27.06	27.04	34.44	40.60	45.16	43.24
CaO .	0.49	0.71	1.84	7.13	11.99	10.03
A1203	0.02	0.13	3.46	8.97	8.54	8.90
MnO	1.15	1.04	0.80	0.35	0.26	0.29
MgO	0.28	0.10	0.02	0.04	-	0.02
K ₂ 0	0.01	0.02	1.79	4.31	1.86	2.73
P ₂ 0 ₅	0.07	0.14	0.30	0.96	0.85	0.87
TiO ₂	0.08	0.06	0.10	0.34	0.18	0.22
v ₂ 0 ₅	_	-	0.02	0.08	-	_
	96.75	96.32	98.49	93.69	96.65	95.16

	Magnetite Area A	Magnetite Area B	Magnetite Area C
Fe ₃ 0 ₄	90.74	87.88	79.84
SiO ₂	0.94	2.53	4.73
CaO	0.09	0.42	0.40
A1203	4.31	3.51	3.31
MnO	0.21	0.19	0.19
MgO	0.02		i – i
K ₂ 0	0.02	0.23	0.35
P ₂ 0 ₅	0.02	0.05	0.09
TiO ₂	3.19	2.83	2.11
v ₂ 0 ₅	0.55	0.53	0.38
	100.09	98.17	97.32

	Fayalite Area A	Fayalite Area B	Fayalite Area C	Fayalite Area D	Glass Area B	Glass Area C
Fe0	61.13	61.57	67.63	63.64	7.10	22.09
SiO ₂	28.20	28.05	27.87	25.59	66.32	51.16
Ca0	0.47	0.31	0.40	0.35	1.02	1.03
A1203	0.44	0.34	0.11	0.57	10.40	4.44
Mn0	0.22	0.34	0.44	0.44	0.10	0.11
Mg0	0.20	-	1.87	1.53	0.37	0.25
K ₂ 0	0.02	0.01	-	-	0.28	0.85
P2 ⁰ 5	-	0.07	0.02	0.02	0.75	1.31
TiO ₂	0.06	0.04	0.04	0.08	0.12	0.12
^v 2 ⁰ 5	-	-	0.02	0.02	0.02	0.02
	00.7/	00.72	00.70		06.10	
	90.74	90.73	98.40	92.24	86.48	84.38
	Wüstite Area A	Wüstite Area B	Wüstite Area C	Wüstite Area D		
Fe0	96.19	95.60	96.42	96.00		
sio_2	0.34	0.29	0.43	0.32		
CaO	0.04	0.04	0.04	0.04		
A1203	0.54	0.48	0.43	0.69		
MnO	0.13	0.15	0.27	0.13		
MgO	0.13	0.10	0.21	0.06		
к ₂ 0	-	0.01	0.04	-		
P205	-	-	-	-		
TiO ₂	0.28	0.28	0.32	0.26		
V205	0.06	0.06	0.06	0.06		
	97.71	97.11	98.22	97.56		

	Fayalite Area l	Fayalite Area 2	Fayalite Area 3				Wüstite Area 4
						ي .	
Fe0	64.61	68.94	69.56	68.15	90.41	83.53	86.01
SiO ₂	26.62	27.23	26.45	27.06	4.98	7.80	3.97
Ca0	0.41	0.29	0.31	0.26	0.41	1.96	1.31
A1203	0.44	0.40	0.51	0.25	1.36	3.66	1.38
MnO	1.15	1.63	1.54	1.55	0.32	0.23	0.30
MgO	0.48	0.50	0.46	0.38	-	-	0.08
к ₂ 0	0.02	0.01	0.01	-	0.34	0.98	0.44
P205	0.05	0.05	0.05	0.02	0.07	0.09	-
TiO2	0.10	0.14	0.10	0.08	1.58	1.50	1.20
v ₂ 0 ₅	0.04	0.02	0.04	0.02	0.18	0.18	0.10
	93.92	99.21	99.48	97.77	99.65	99.93	94.79
•		-					
	Glass	G1ass	Glass	Hercynit	e		
	Area 2	Area 3	Area 4	Area 5		2	
Fe0	27.43	26.93	32.23	53.33			
SiO,	33.92	34.17	44.03	0.50			
CaO Z	10.32	10.84	8.26	0.04			
A1203	15.56	13.97	13.92	43.27		$\frac{\chi}{2}$	
MnO MnO	0.25	0.25	0.31	0.57			
MgO	_	-	_	0.11			
K20	3.83	6.33	5.25	-			
P205	0.66	0.73	0.55	_		S	
TiO ₂	0.76	0.74	0.70	1.30			
v ₂ 0 ₅	-	-	-	0.73			
	92.73	93.96	105.25	98.85			

*Iron oxide figures are FeO for fayalite and glass and Fe_3^{04} for magnetite

	Fayalite Area A	Fayalite Area B	Fayalite Area D	Fayalite Area E	Magnetite Area A	Magnetite Area B	Magnetite Area C
FeO*	48.90	57.85	45.44	51.07	79.45	80.82	85.15
sio_2	38.45	27.12	35.24	33.49	1.41	0.44	0.71
Ca0	1.70	0.23	2.48	1.46	0.04	0.06	-
A1203	7.20	0.09	5.79	3.95	8.03	5.29	4.23
MnO	2.58	3.28	2.55	2.56	0.93	0.90	0.72
MgO	1.54	4:72	1.67	1.93	0.45	0.35	0.35
K ₂ 0	1.02	0.01	0.83	0.86	-	0.01	0.01
P205	0.69	0.28	0.60	0.50	0.02	0.02	0.02
TiO2	0.58	0.10	0.54	0.22	4.43	2.79	3.52
v ₂ 0 ₅	0.08	0.02	0.06	0.02	0.85	0.50	0.57
	102.74	93.70	95.20	96.06	101.51	97.17	95.28
		ž:					
	10.77	Magnetite	Glass	Glass	Glass	Glass	Glass
	Area D	Area E	Area A	Area B	Area C	Area D	Area E
		5		©i			
Fe0*	91.15	85.11	34.83	27.87	22.75	21.85	22.12
SiO ₂	0.34	2.53	38.84	44.90	45.15	48.02	46.08
Ca0	0.06	0.22	4.23	4.84	6.80	6.22	6.46
A1203	4.82	3.75	8.29	11.99	14.83	13.12	12.43
MnO	0.84	0.92	1.38	1.81	1.42	1.33	1.53
MgO	0.47	0.33	0.23	0.30	0.26	0.26	0.23
K ₂ 0	-	0.11	1.28	1.63	1.40	1.72	1.59
P ₂ O ₅	-	0.02	0.78	0.85	1.05	1.01	1.01
TiO ₂	1.79	3.21	0.84	0.68	1.45	1.01	0.16
V205	0.28	0.53	0.10	0.10	0.22	0.14	0.16
		-					
	99.75	96.73	90.80	94.97	95.33	94.68	92.80
				<u> </u>			

				*			
	Fayalite Area A	Fayalite Area B	Fayalite Area C	Fayalite Area D	Glass Area A	Glass Area C	Glass Area D
	2		22.02		00 00 5	50 8 8	
Fe0	61.61	57.35	63.42	59.59	26.64	21.23	18.08
SiO ₂	28.55	31.19	27.89	28.01	44.37	45.46	43.07
Ca0	0.72	0.79	0.35	0.73	6.75	7.06	6.66
A12 ⁰ 3	0.97	1.47	0.70	0.28	12.32	13.45	15.99
MnO	3.51	3.61	2.99	2.79	1.47	1.23	0.87
MgO	1.60	1.40	2.32	2.16	0.28	0.22	0.15
K20	0.15	0.31	0.04	0.15	2.05	2.79	2.64
P205	0.25	0.14	0.21	0.12	1.16	1.28	1.12
TiO ₂	0.08	0.12	0.18	0.04	0.70	0.44	-
v ₂ 0 ₅	0.00	0.02	0.04	0.08	0.10	0.06	0.20
	97.44	96.40	98.14	93.95	95.84	93.22	88.78
)
	Magnetite Area A	Magnetite Area B	Magnetite Area C	Magnetite Area D		Iron Area B	Iron
Fe ₃ 0 ₄	87.06	82.43	83.96	91.53	Fe	99.98	99.11
SiO ₂	1.95	9.31	2.09	-	Si	0.04	0.02
CaO	0.24	0.76	0.19	0.04	Ca	0.01	0.02
A12 ⁰ 3	5.38	4.63	3.45	5.14	A1	-	-
MnO	0.87	0.95	0.95	0.62	Mn	-	_
MgO	0.33	0.14	0.06	0.19	Mg	_	_
к20	0.10	0.40	0.10	0.03	K	0.02	_
P ₂ O ₅	0.02	0.09	0.07	-	P	0.26	0.47
TiO ₂	4.22	2.73	6.23	3.70	Ti	0.13	-
	0.59	0.40	1.01	0.69	v	- 0.13	_
^v 2 ⁰ 5			1.01	0.09	V	9 .7 8	_
	100.76	101.84	98.11	101.94		100.44	99.62

	Fayalite Area A	Fayalite Area B	Fayalite Area C	Fayalite Area D	Spinel Area B	Spinel Area C
Fe0	63.23	61.51	62.92	62.47	70.15	72.39
SiO ₂	26.85	27.81	27.33	27.61	0.40	1.44
CaO ·	1.44	1.16	1.75	1.02	0.15	0.33
A1203	0.08	0.06	0.13	0.04	12.75	12.31
MnO	3.33	3.60	3.40	3.81	1.15	0.94
MgO	0.66	2.81	0.98	2.42	0.18	0.12
K ₂ 0	0.04	0.02	0.01	0.04	0.01	0.02
P205	0.25	0.16	0.23	0.30	-	-
TiO ₂	0.16	0.10	-	0.10	11.11	10.80
v ₂ 0 ₅	0.06	-	-	-	2.18	1.67
	96.10	97.23	96.75	97.81	98.08	00.00
					90.00	99.08
	Leucite Area C *	Leucite Area D*	Glass Area A	Glass Area B	Glass Area C	Glass Area D
Fe0	0.97	1.43	21.27	20.15	20.28	21.02
SiO ₂	39.79	61.07	35.09	39.87	35.58	38.27
Ca0	0.06	0.06	16.07	13.56	14.80	13.27
A1203	40.12	24.74	16.61	15.09	16.80	16.49
Mn0	0.03	0.03	1.12	1.03	0.95	1.11
MgO	-	-	0.06	0.04	-	0.02
K ₂ 0	5.40	9.19	1.17	3.16	1.97	2.64
P ₂ 0 ₅	0.05	_	2.52	1.97	2.27	2.17
TiO ₂	-	0.04	1.36	0.90	1.64	1.16
v ₂ 0 ₅	0.04	٠-	0.20	0.12	0.24	0.14
	86.46	96.56	95.47	95.89	94.53	96.29

	Grey Lath, C	Grey Lath, D		Iron Area A	Iron Area A
Fe0	41.10	41.48	Fe	99.83	99.00
SiO ₂	23.73	23.81	Si	0.02	-
CaO CaO	12.08	11.77	Ca	0.02	0.02
A1203	11.93	13.23	A1	-	-
- MnO	0.90	0.88	Mn	-	-
MgO	0.20	0.23	Mg	0.03	0.01
K ₂ 0	0.14	0.04	K	0.01	-
P205	0.28	0.34	P	0.09	0.07
TiO ₂	4.21	6.27	Ti	0.02	-
v ₂ 0 ₅	0.61	0.91	٧	-	-
	95.18	98.96		100.02	99.10

	Fayalite Area A	Fayalite Area B	Fayalite Area C	Spinel Area B	Spinel Area C	Leucite Area C*	Leucite Area C*
Fe0	58.03	64.39	64.75	72.52	66.10	1.52	1.51
SiO ₂	28.29	26.98	27.78	1.00	2.68	62.11	63.12
Ca0	1.29	0.60	0.56	0.17	0.39	0.11	0.11
A1203	0.19	0.21	0.15	11.80	17.82	25.97	20.37
MnO	4.63	3.82	3.89	1.26	1.26	0.06	0.03
MgO	4.40	0.22	1.21	0.22	0.12	-	-
K20	-	0.03	0.02	0.07	0.11	8.87	9.84
P205	0.48	0.30	0.18	0.02	0.21	0.05	0.05
TiO ₂	0.10	0.26	0.24	11.50	11.10	0.12	0.08
v ₂ 0 ₅	-	0.04	0.04	1.76	1.69	0.02	-
	97.41	96.85	98.82	100.32	101.48	98.83	95.11
							The second
				3 .			
	Glass	Glass	Glass		Iron	Iron	Iron
	Area A	Area B	Area C		Area A	Area B	Area C
		- -					
Fe0	17.70	18.50	23.50	Fe	98.80	99.99	99.99
sio ₂	42.29	42.96	43.41	Si	0.13	-	0.01
Ca0	10.69	7.84	9.94	Ca	0.08	0.01	0.04
A12 ⁰ 3	16.52	17.87	16.59	A1	-	-	-
MnO	1.35	1.03	1.00	Mn	0.05	-	-
MgO	0.13	-	0.04	Mg	-	0.28	0.01
K20	3.60	3.07	3.33	K	-	 \	0.01
P205	1.77	1.54	1.83	P	_	_	0.01
TiO2	1.65	1.37	1.06	Ti	0.11	0.04	0.06
v ₂ 0 ₅	0.20	0.16	0.22	V	0.02	==	0.01
	95.90	94.34	100.92		99.19	100.32	100.14
						*	

$\label{eq:APPENDIX C} $$ X$-ray fluorescence analyses$

Analyses of slags and excavated ironstones are listed according to archaeological site. Other ironstones are listed according to geographical area and some published analyses are included for comparison. The proportions of FeO and Fe_2O_3 in the slags were determined by wet chemical analysis; iron in the ores is calculated as Fe_2O_3 . For samples 1-34, MgO content was determined by Atomic Absorption Spectrophotometry because the calibration curve was found to be poor, but good results were obtained for the remainder of the samples.

notdetermined
 LOI loss on ignition

Table Cl Wakerley, Northants, slags, ores and locally-available ironstones

Boulder Clay nodule WAK 010	ı	48.4	22.4	5.34	7.00	0.27	0.47	0.33	90.0	2.57	0.75	13.41	101.00
Boulder Clay nodule WAK BC	1	52.9	18.6	4.74	02.9	0.38	0.34	0.27	0.05	2.49	0.63	13.71	100.81
Northampton Sand Iron- stone WAK NSI	r.	6.69	8.1	4.56	2.34	0.20	0.32	0.21	0.11	1.85	0.32	14,49	102.40
1d-brash) WAK 06	ι	75.7	7.9	3.76	0.19	60.0	0.05	0.36	0.05	90.0	0.12	12.88	101.16
-Band(fie WAK 05	ı	75.2	6.3	3.87	2.83	0.63	0.10	0.19	0.08	0.03	0.07	13.51	102.81
Junction WAK 04	ı	7.69	11.1	6,61	0.20	0.34	0.11	0.30	0.08	0.03	0.14	15.22	103.53
Ironstone Junction-Band(field-brash) WAK 03 WAK 04 WAK 05 WAK 06		56.8	30.8	2.30	0.13	0.11	90.0	69.0	0.05	0.05	0.19	9.31	100.49
Roasted ore WAK 132	1	7.77	15.5	2.60	0.62	0.27	0.02	0.20	0.03	0.43	60.0	3.15	100.61
Roasted ore WAK 01	1	88.7	4.5	2.66	0.53	0.62	0.10	0.27	0.04	0.42	90.0	2.42	100.32
Tap slag WGW	59.59	4.92	23.3	7.50	1.15	0.65	0.34	0.64	0.08	0.18	0.63	1	98.98
Furnace slag WAK 48A	57.40	14.88	14.9	66.99	4.75	0.98	0.44	0.50	60.0	0,34	0.45	į	101.72
Furnace slag WK K4	50.31	15.78	22.0	4.86	1.86	0.28	0.26	0.59	60.0	1.20	0.65	1	97.88
Furnace slag WK-AV	64.04	90.6	17.0	5.22	1.20	0,40	0.32	0.41	0.11	1.25	0.50	1	99.51
	Fe0	Fe_20_3	Si0 ₂	$^{-}_{20_{3}}$	Ca0	MnO	MgO	TiO_2	V205	P ₂ 0 ₅	K ₂ 0	L.0.1.	Total

* Total Fe calculated as $\mathrm{Fe}_2\mathrm{O}_3$

Table C2

Great Oakley, Northants, slags and possible ores

Boulder Clay nodules, bulk GO5+	ì	55.6	13.1	3,33	5.35	0.35	1.69	0.18	0.05	1.22	97.0	19.47	100.80
Boulder Clay nodule GO2+1	1	31.3	11.2	4.04	23.00	0.30	0.56	0.16	0.02	0.40	0.57	12.91	84.46
Boulder Clay nodule GO1+	ı	55.4	28.8	3.80	0.15	0.04	0.04	0.15	0.08	0.17	0.47	13.04	102.14
Ironstone, found on site GO6+		76.4	6.4	3.07	1.41	0.81	0.21	0.24	0.04	0.03	90.0	13.48	102.15
Furnace slag, bulk GO7	59.94	9.31	21.9	4.05	1.14	0.53	0.37	0.34	0.05	0.31	0.42	1	98.37
Furnace slag GO4	59.13	9.29	22.30	4.16	0.78	0.47	0.25	0.27	0.05	0.65	0.42 .	ı	77.79
	FeO	$Fe_2^{0_3}$	\sin_2	$^{A1}_{2}^{0}_{3}$	Ca0	Mn0	MgO	TiO_2	v_{2}^{0}	P ₂ 05	K ₂ 0	LOI	Total

+ Total Fe calculated as Fe₂0₃ 1 Loss on ignition incomplete

Other Northamptonshire slags, ores and possible ores Table C3

		Stamford	ord		South Witham	Blind Eye Quarry	Quarry	Bulwick	Brigstock	Brookfield Cottage Pit	tage Pit	Beeby's Sand Pit
	Tap slag 700130	Tap slag 630532	Roasted ore, bulk	Raw ore, bulk	Tap slag 753058*	Tap slag BEQ 1	Tap slag BEQ 2	Tap slag	Furnace slag	sandy lithology	clayey noduţe	Boulder Clay nodule ⁺
Fe0	57,85	60.81	1	1	58.4	61.66	63.00	59.92	52,70	BC4 (2)	PC3	ī
$Fe_2^{0_3}$	6.58	5.76	9.89	9.07	,	7.13	5.48	4.25	15.28	59.5	21.9	42.6
\sin_2	22.8	22.8	17.4	10.5	21.1	23.8	23.0	25.1	15.8	20.8	29.8	8.5
$^{A1}_{2}^{0}_{3}$	6.57	6.20	4.20	3,65	7.72	3.84	4.35	6,49	6.81	4.16	8.75	3.27
Ca0	2.23	1.34	0.73	0.88	4.89	0.79	1.00	1.07	2.56	1.60	13.35	11.0
MnO	0.27	0.24	0.35	0.20	0.58	0.56	0.62	1.06	0.27	0.39	0.03	0.42
MgO	0.30	0.17	0.17	0.15	1.73	0.17	0.20	0.30	0.35	97.0	0.78	3.72
TiO_2	0.33	0,35	0.22	0.20	0.34	0.41	0.42	97.0	0,33	0.27	0.39	0.13
V205	0.11	0.10	0.07	90.0	0.14	0.04	0.04	0.07	0.13	0.03	0.03	0.04
P ₂ 0 ₅	0.70	0.71	1.00	1.55	2.43	0.22	0.29	60.0	2.27	0,33	0.07	0.55
K20	1,03	0.84	0.62	0.44	1.64	0.37	0.44	64.0	0.51	0.70	1,41	0.41
LOI Total	98.77	99.32	7.71	13.36	98.97	98.99	98.84	99.30	10.79	12.79	14.712	29.67
	D 000 1000 1000 1000 1000 1000 1000 100	9										

^{*} total Fe calculated as FeO + total Fe calculated as Fe₂0₃ 2 probably incomplete ignition

Ironstone nodules from Ironstone Junction-Band* Table C4

Creeton Quarry	1	75.9	8.0	4.08	0.16	0.20	0.02	0.33	0.04	0.07	0.10	12.57	
Clipsham New Quarry, rich	1	83.2	4.3	2.14	1.16	1.64	0.18	0.12	0.03	0.03	90.0	10.73	
Clipsham New Quarry, poor	1	63.2	16.2	6.22	0.81	0.55	0.15	0.50	0.05	0.05	0.14	13.37	
Castor CAS3	1	40.5	45.8	3.10	0.17	0.26	0.22	0.36	0.03	0.03	0,57	8.02	23.00
Ketton Quarry K4	ı	67.2	6.9	2.13	7.1	0.35	0.20	0.11	0.03	0.10	0.11	11.45	93.00
Ketton Quarry K3	ı	83.6	0.5	1.36	0.38	0.44	0.12	0.10	0.03	0.04	0.04	10.81	74.16
Ketton Quarry K2	ι	59.7	19.2	7.63	0.23	0.03	0.15	0.24	0.09	90.0	0.12	14.99	102.44
Ketton Quarry Kl	1	87.8	3.2	0.90	0.63	89.0	0.15	90.0	0.03	0.03	0.03	9.37	102.88
Southorpe Quarry S1+2	1	0.99	19.4	3.75	97.0	0.58	0.08	0.48	0.03	0.04	60.0	11.81	102.72
Woodside Qy, Wansford Y1+2	1	75.0	10.8	2.24	0.41	0.71	0.19	0.41	0,04	0.02	0.10	12.48	102.40
Adamix Refractories, King's Cliffe	1	84.1		1.50	0.55	0.80	0.09	0.12	0.02	0.03	90.0	11.91	102.78
Brookfield Cottage Pit BC1+2		71 3	7 7 7	7 66	0.23	0.47	90.0	0.17	0.03	0.07	0.08	11.34	100.81
Cowthick Pit	1	7 27	1.57	0.4	5.19	1.48	0.17	0.09	0.03	0.04	0.10	14.09	102.33
	+0	reo	re2 ⁰ 3	5102	A12 ⁰ 3	MnO	MaO	TiO	v 0	'2'5 P.0.	2.5 K,0	101	Total

* see also Table C1 + Total Fe calculated as ${\rm Fe}_2{}^0{}_3$

Northampton Sand Ironstone, Brookfield Cottage Pit

Table C5

BC6 box wall	BC6, core to boxstone	BC7	BC8 box wall	BC8, core to boxstone	BC9	BC10	BC11
.1	1	1.	T	ı	1	E	1
64.4	55.9	49.1	8.65	50.0	49.3	51.6	51.9
7.8	7.4	8.1	13.1	10.3	11.3	6.6	10.4
5.02	5.07	5.21	00.6	7.60	8.20	5.40	5.54
5,38	4.98	6.27	0.82	2.51	2.33	97.4	4.76
0.15	0.16	0.19	0.20	0.21	0.17	0.16	0.13
0.73	2.12	3.08	0.28	1.30	2.04	2.89	2.55
0.23	0.23	0.28	0.39	0.34	0.37	0.25	0.28
0.11	0.11	0.11	0.20	0.15	0.17	0.12	0.12
1.43	1.26	1.43	2.05	1.95	1.29	08.0	1.04
0.38	0.33	0,40	0.52	0.44	0,40	0.31	0.31
16.24	23.20	26.82	14.36	25.52	24.39	26.43	25.32

* Total Fe calculated as $Fe_2^{0_3}$

Table C6

Northampton Sand Ironstone, published analyses $^{\mathbf{x}}$

Rockingham	1	42.83	8.53	6.29	13.60	0.14	1.64	0.22	0.05	1.73	0.02	1
5 R	1.	99.09	13.47	3.21	1,10	0.51	0.50	0.12	0.05	0.47	0.01	1
4	1	36.17	8.23	4.75	17,10	0.10	2.90	0.15	0.11	1.13	0.05	ı
က	ı	42.75	10.14	7.50	10.21	0.10	3.25	0.24	0.14	1.70	0.02	ı
Lane 2	1	59.73	7.30	6,10	6.55	0.14	0.93	0.22	80.0	1.84	90.0	1
Stanion 1	1	24.60	20.35	5.46	3,25	0.27	1.19	0.20	0.05	1.01	0.05	1
Š	FeO	Fe203*		$^{A1}_{2}^{0}_{3}$	CuO	MnO	MgO	TiO_2	V ₂ 0 ₅	P ₂ 05	K ₂ 0	TOI

x From Riley, R.V. 1973 * Total Fe calculated as $\mathrm{Fe_2}^{0}$ 3 1 Figures are for $\mathrm{K_2O} + \mathrm{Na_2O}$

Table C7

Slags and ores from Garden Hill, Sussex

?spherulitic ironstone raw GH7	Ĺ	47.9	23.8	12.00	0.28	0.07	0.04	0.19	90.0	1.69	0.16	13.40	99.59
boxstone (wall+core) roasted GH 673 ³	1	8**8	8.0	3.12	1.68	2.11	1,38	0.13	0.02	0.67	0.43	ı	102.34
'boxwall' roasted GH6	Ĩ	50.8	31.6	10.0	0.03	0.40	0.56	0.65	0.04	0.58	1.70	3.22	99.58
'boxwall' raw GH5	1	40.1	42.8	7.08	0.05	0.37	0.31	0.55	0.03	0.51	1.04	9.24	102.08
furnace slag GH 653 ¹	63.17	ă	22.8	4.24	3.90	2.40	1.03	0.29	0.02	09.0	1,03	1	99.48
furnace slag GH 631	. 60.7	1	23.4	9.32	1.22	2.50	1.06	0.50	0.03	99*0	0.70	1	100.09
in situ furnace slag GH 671	62.1	1	24.3	99.4	1.88	3.09	0.81	0.34	0.03	0.73	0.85	ï	98.79
tap slag GH2	57.67	9.62	20.4	2.95	3.93	1.58	0.72	0.27	0.02	0.40	0.45	ī	98.01
in situ furnace slag GH1	62.92	10.37	18.5	3.32	1.56	0.81	0.35	0.29	0.02	0.26	0.37	1	98.67
	Fe0	$Fe_{j}0_{3}$	\sin_2	A1203	Ca0	Mn0	MgO	${ m Ti0}_2$	V205	P ₂ 0 ₅	K ₂ 0	LOI	Total

 $^{^1}$ Total Fe calculated as Fe0 2 Total Fe calculated as ${\rm Fe_2}^{0}_3$ 3 Analysis of material after ignition (loss on ignition was 18.89%)

Table C8
Millbrook slags and limonite nodule

	Furnace slag, bulk	Furnace slag, E [†]	Furnace slag,	Limonite nodule*
Fe0	50.70	74.2	45.0	-
Fe ₂ 0 ₃	14.00	-	-	83.0
sio ₂	20.9	12.5	29.8	3.0
A1203	3.90	0.81	5.56	1.54
Ca0	3.34	1.24	9.65	0.03
MnO	1.60	1.06	3.76	0.13
MgO	0.77	0.19	1.84	0.02
TiO ₂	0.25	0.21	0.42	0.06
v ₂ o ₅	0.02	0.05	0.02	0.02
P2 ⁰ 5	0.81	1.55	0.72	0.32
к20	0.66	0.15	0.93	0.08
LOI	1-1	—	(Party)	14.72
Total	96.95	91.96	97.70	102.92
Total	96.95	91.96	97.70	102.92

⁺ Total Fe calculated as FeO

^{*} Total Fe calculated as $Fe_2^{0}_{3}$

Table C9

Slags from furnace reconstructions

	Tap slag, 30 cm diam. slag-tapping shaft furnace GHR1*	Furnace slag, 30 cm diam. slag-tapping shaft furnace GHR4*1	Furnace slag, 23 cm diam. slag-tapping shaft furnace GHR10*	Furnace slag, 45 cm diam. non-slag-tapping domed furnace GHR11*	Furnace slag, non-slag- tapping bowl furnace RRI	Furnace slag non-slag- tapping bowl furnace RR2+
Fe0	38.22	44.62	49,30	41.35	42.31	47.17
$Fe_2^{0_3}$	12.15	5.73	0.92	4.99	2.17	2.50
\sin_2	34.0	33.6	32.0	35.9	32.9	31.5
$^{A1}_{2}^{0}_{3}$	6.52	6.26	5.70	5.15	7.15	7.28
Ca0	2.25	2.78	3.62	3.20	5.75	3.77
Mn0	2.13	2.38	2.62	2.47	2,34	2.53
Mg0	1.34	1.63	2.54	2.18	1.12	0.82
Tio_2	69.0	69.0	0.57	0.59	0.65	0.67
V ₂ 0 ₅	0.03	0.03	0.01	0.02	0.03	0.02
P ₂ 05	0.62	0.63	09.0	0.56	96.0	98.0
K ₂ 0	0.87	1.18	1.08	1.07	2.27	1.93
LOI	t	ľ	ı	ı	I.	
Total	98.82	99.53	98.96	97.48	97.63	99.05
l same s	smelt as GHR1	* built and	run by R.J. Adams	+ built and	+ built and run by R. Clough	

Table C10

Ores smelted in furnace reconstructions

Sideritic ironstone, Hurstmon- ceaux	1	53.7	6.4	2.25	4.02	1.85	2.33	0.23	0.03	0.29	0.35	30,01	101.46
Sideritic ironstone, West Hoathly Batch 2 (core of boxstone) WH3	i	44.4	17.3	4.04	2.57	2.45	1.05	0.47	0.03	09.0	0.64	25.95	99,50
Sideritic ironstone, West Hoathly core to box- stone GHR3	ī	45.6	15.1	3.77	2.72	2.73	0.98	0.43	0.02	99.0	0.61	26.73	99.35
Sideritic ironstone, West Hoathly boxwall GHR3		64.1	15.8	3.87	07.0	2.46	0.33	0.39	0.03	0.89	0.62	13.01	101,80
Sideritic ironstone, West Hoathly GHR3	ı	53.9	15.3	3.76	1.75	2.51	99.0	0,40	0.03	0.78	0.59	20.79	100.47
Sideritic ironstone, West Hoathly partially roasted	l	57.1	17.9	4.45	1.67	2.44	0.89	0.45	0.03	0.72	0.65	14.57	100,87
	Fe01	$Fe_2^{0_3}$	\sin_2	$^{A1}_{2}^{0}_{3}$	Ca0	MnO	MgO	Tio_2	v_{2}^{0}	$^{P}_{2}^{0}_{5}$	K ₂ 0	LOI	Total

 1 total Fe calculated as $^{\mathrm{Fe}_{2}0_{3}}$

Table Cl1

Wealden Ironstones, published analyses *

'Ragstone' on Wadhurst Clay or Ashdown Beds	n.d.	17.18	60.75	12.07	0.47	3,30	0.10	0.62	ľ	0.15	1	5.36	100.00	
Iron pan, on Weald Clay Ironstone outcrop	n.d.	39.73	23.96	9.56	0.30	5.88	0.52	0.55	0.01	0.48	1.16	15.87	98.02	
U. Tunbridge Wells Sand Ironstone, nr Crawley	37.10	1.52	22.43	4.64	1.38	1.86	1.13	0.36	tr.	0.23	0.71	28.23	89.68	
Ashdown Beds Ironstone, Snape Wood	30.42	10,10	26.10	8.24	98.0	1.29	0.25	09.0	1	0.49	1	21.54	68.66	
4 Sharpthorne Brick- works, nr West Hoathly	25.4	28.1	10.3	1.1	3.3	1.6	2.0	0.2	1	1.0	ı	27.0	100.00	not detected
Wadhurst Clay Ironstone 2 end of Rackwell Wood rst Park Quarry, Crowhurst	39.52	2.49	9,49	6.90	5.20	0.71	0.25	0.23	ĩ	.b.n	ĭ	34,35	99.14	n.d.
Wadhurst Cl 2 nr s. end of Crowhurst Park	60.87	5,41	4.13	4.67	3.80	0.46	0.19	0.10	1	n.d.	1	31,39	98.23	* from Worssam, B.C. and Gibson-Hill, J. 1976
1 Giffords Farm, nr Ashburnham	7 08	6.85	97.9	2.64	3.87	2.32	1.76	0.21	1	0.65	1	33.05	68.66	Worssam, B.C. and (
	Ç) of	5.503	41.0	Ca0	Mno	O W	Tio	2 V 0	.2°5 P,0c	K 0	72_	Total	* from

Table C12

Excavated	marcasite modules*	ı	98.1	1.5	0.22	0.45	0.01	0.04	00.0	0.02	0.29	0.11		100.74
Lower	Ironstone LBB *	ı	69.2	29.7	1.76	0.27	0.18	60.0	90.0	90.0	0,43	0.35	1	102.10
Lower	Greensand Ironstone LBA*	1	81.9	17.2	1.41	0.31	0.11	0.17	0.11	90.0	0.36	0.24	1	100.87
	Tap slag bulk ¹	67.1	τ	26.4	3.32	0.92	1.14	0.25	0.15	0.03	0.42	0.56	T	100.29
	Tap slag BBS ¹	7.49	ı •	26.0	3.08	08.0	2.54	0.34	0.14	0.03	. 0.65	09.0	ī	100.58
possible ores	Tap slag BCR1	65.2	ı	21.6	3,88	1.20	5.90	67.0	0.15	0.02	0.99	0.93	1	100.31
.) slags and	Tap slag NOR2	63.90	6.01	24.6	1.74	1.01	69.0	0.52	0.14	0.03	0.16	97.0	1	99.26
Berkhamsted area (Herts.) slags and possible	?Raked slag NOR	55.6	4.56	32.5	2.04	1.65	0.84	0.37	0.15	0.02	0.20	92.0	1	98.69
Berkhamst		FeO	Fe,03	Sio,	2 A1,03	ca0	MnO	MgO	${ m Ti0}_2$	V ₂ 0 ₅	P ₂ 0 ₅	K20	*10T	Total

* Analyses were carried out after ignition. Loss on ignition was 10.05%, 13.44% and 25.06% respectively. l total Fe calculated as FeO

Table C13
Slags and ore from Ramsbury, Wilts.

	Furnace slag RAM 5	Tap slag RAM 6 ⁺	Roasted ore, bulk sample RAM 1 *	Raw ore, bulk sample RAM 2 **	Box wall of boxstone RAM 3*	Siderite core to boxstone RAM 4*
FeC	55.31	67.04		1	ı	1
$Fe_2^{0_3}$	3.76	ı	89.2	68.2	79.9	64.0
\sin_2	26.0	20.9	5.6	5.9	0.5	3.3
$^{A1}_{2}^{0}_{3}$	5.51	07.9	2.01	2.12	1.75	1.36
Ca0	2.23	0.68	1.13	0.95	0.46	0.48
Mn0	1.58	1.83	0.73	0.54	09.0	0.50
Mg0	1.08	0.88	0.35	0.18	0.22	0.45
${ m Tio}_2$	0.30	0.28	0.14	0.16	0.11	0.18
V ₂ 0 ₅	90.0	0.05	0.02	0.04	0.04	0.02
$^{P}_{2}^{0}_{5}$	0.95	0.77	0.58	0.76	0.74	0.19
K ₂ 0	1.74	1.10	0.26	0.27	0.22	0.20
. 101	Î	1	1,32	22.95	13.90	30.70
Total	98.52	99.93	101.34	102.07	98.44	101.38

+ total Fe calculated as FeO

^{*} total Fe calculated as $Fe_2^{0_3}$.

Caerwent slag and possible ore sources $^{\mathbf{x}}$

	t e		ر ک	2	5	5	τŽ	13	4		,	2		0	- 5 ⁺
	Bristol District haematite Red House dump, Winford iron ore and Redding Co.	3	0.55	38.82	39.25	0.75	0.65	0.03	0.24	0.01	1	0.02	tr.	0.70	81.02
		2	1.26	35.59	35.60	1.82	0.38	0.14	0.33	00.00	1	0.05	1	1.25	76.42
	Bristol Red Hou iron ore	1	0.77	37.64	44.01	1.27	0.28	0.03	0.22	tr.	ı	0.02	0.02	08.0	85.06
Forest of Dean hematite	Bixslade (as received)		0.39	80.77	3.96	0.85	2.90	90.0	0.32	0.05	1	0.04	1	10.60	99.94
	Robin Hood mine, brush ore (bulk)		0.39	66.79	5.80	2.32	5.60	60.0	3.38	0.07	1	0.07	0.02	15.40	99.93
	Robin Hood mine, bulk		0.13	72.14	3.30	1,41	5.50	0.08	3.19	0.05	ı	0.05	0.02	14.05	99.92
	Tap s1ag 697096		60.48	15.60	16.50	2.46	0.45	0.15	0.50	0.15	0.02	0.18	. 0.42	ı	96.91
			Fe0	$Fe_2^{0_3}$	\sin_2	$^{41}_{2}^{0}_{3}$	Ca0	MnO	MgO	${ m TiO}_2$	v_{2}^{0}	$^{P}_{2}^{0}_{5}$	K ₂ 0	LOI	Total

 \boldsymbol{x} ore analyses from Groves, A.W. 1952

+ these ores also contain high BaO (9.53, 14.98 and 12.34 wt % respective