Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately

SOFTWARE AND HARDWARE
 ASPECTS OF A
 MICROPROCESSOR
 CONTROLIED LATHE

by

JOHN HOPTON

A Thesis submitted towards the fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY to the

UNIVERSITY OF ASTON IN BIRMINGHAM

Department of
Production Technology and Production Management

July , 1983

BEST COPY AVAILABLE

Variable print quality

No part of this work described in the thesis has been submitted in support of an application, for another degree or qualification, of this or any other university , or institute of learning.
(J HOPTON.)

Acknowledgements.

I wish to express my sincere thanks and appreciation to the following , who assisted me during the period of research.

Dr D A Milner. Ph.D; BSc.[Eng]; C.Eng.M.I.Mech E; M.I.Prod E; the project supervisor , for his valuable advice, guidance and encouragement.

Professor R H Thornley. Ph.D; MSc.Tech; DSc; AMCT.C.Eng; F.I.Mech E; F.I.Prod E; the head of the department, for the use of the departmental facilities.

Ebi Razavi; a Ph.D research student, for his friendship and advice and for the great companionship we had together. Messrs Charles Partridge and Alf Exton; the departmental technicians, for their friendly cooperation in finding those "hidden" necessities.

Burton Upon Trent Technical College; my employers , who enabled me to visit Aston University.

Betty [Hopton]; my wife, for her devotion and duty during those very long hours of "enforced" silence and many other sacrifices, that made this work a possibility.

THE AUTHOR

The author was born in Carmarthenshire in West Wales and is now married and living at Burton Upon Trent, where he lectures in mathematics and microprocessors, at the local technical college.

He was trained by an engineering apprenticeship and gained further field experience during his period of duty in the National Service in the R.E.M.E , where he also gained a HNC in mechanical engineering with endorsements. When his interest in electronics developed further he retrained in the field of colour television and obtained an O.N.C in electrical engineering . He also operates a private radio transmitting station having acquired a Post Office Radio Amateur licence with two international call signs, G8 AXF and G3 WMP.

He then obtained a degree with the Open University by private home study and continued to gain an M.Sc at Aston University in mathematics with a thesis in The Rotational Rate of the Atmosphere by research work on a Russian Earth Satellite in confunction with R.A.E Farnborough.

The author is now involved as a consultant to many local industries and attends regular seminars at a National Beer Brewing Company at Burton Upon Trent, a large car tyre and slipper manufacturer and the National Coal Board Research Establishment, where he trains both engineers and management in the field of microelectronics. He relies heavily on the experience gained at Aston University and at his private home laboratory where he is, at the moment, furthering the application of microprocessing to the control of tracking and receiving ground pictures from the weather satellite Meteostat, in conjunction with the European Space Agency at Darmstadt in Germany .

The Journal of the Society of Electronic and Radio Technicians have published several articles from the author who has also himself published two books on the topic of machine code programming of a microprocessor .

The University of Aston in Birmingham.

SOFTWARE AND HARDWARE ASPECTS OF A MICROPROCESSOR CONTROLIED LATHE.

BY
JOHN HOPTON

A thesis submitted for the degree July , 1983. of Doctor of Philosophy.

> SUMMARY

A small lathe has been modified to work under microprocessor control to enhance the facilities which the lathe offers and provide a wider operating range with relevant economic gains. The result of these modifications give better operating system characteristics.

A system of electronic circuits have been developed, utilising the latest technology, to replace the pegboard with the associated obsolete electrical components.

Software for the system includes control programmes for the implementation of the original pegboard operation and several sample machine code programmes are included, covering a wide spectrum of applications, including diagnostic testing of the control system.

It is concluded that it is possible to carry out a low cost retrofit on existing machine tools to enhance their range of capabilities.

CONTENTS.

PAGE.
LIST OF FIGURES.

CHAPTER ONE.
INTRODUCTION.
CHAPTER TWO.
THE WARD CAPSTAN LATHE. 7
$\begin{array}{ll}\text { 2.1. } & \text { Retrofitting a Microprocessor } \\ & \text { Controller. }\end{array}$
2.2. Control Details. 9
2.3. The Ward Capstan Lathe. 12
2.3.1. Lathe Disadvantages. 13
2.4. Pegboard Control Modifications. 15
2.5. The New Trigger Unit. 17
2.6. Transfer Unit. 19
2.7. The Pegboard Interface. 21
2.8. The Interface Board. 23
2.9. Pegboard Modifications. 27
2.10. The Transfer Pulse. 30
2.11. Counter Unit Modifications. 32
2.12. The Microprocessor Controller. $\quad 34$
2.13. Choice of Controller. 37

CHAPTER THREE.
THE HISTORY OF THE MICROPROCESSOR. 39
3.1. Electronic Changes. 40

3.2.	Evaluation and Chip Selection.	43
3.3 .	Word Size.	43
3.4.	Addressing Modes.	44
3.5.	Address Capabilities.	44
3.6.	Input and Output Capabilities.	44
3.7	Internal Registers.	45
3.8.	The Instruction Set.	46
3.9.	Execution Speed.	46
3.10.	Interrupt Structures.	46
3.11.	Interfacing Complexibility.	47
3.12.	Power Supply Requirements.	47
3.13.	Manufacturer's Hardware Support.	47
3.14.	Software Support.	48
CHAPTER FOUR.		
A CRITICAL APPRAISAL OF MICROPROCESSOR CHIPS		
and a Literary	Y SURVEY.	49
4.1.	The 4 Bit Group of Microprocessors.	50
4.2.	The 4040 Type of Microprocessor.	50
4.3.	The Rockwell PPS 4 CPU.	51
4.4.	The 8 Bit Microprocessor Group.	52
4.4.1.	The Motorola 6800 CPU.	52
4.4.2.	The Intel 8080 A cPU.	52
4.4.3.	The Zilog z80 CPU.	53
4.4.4.	The Fairchild F8 CPU.	54
4.4.5.	The Signetics 2650 CPU .	54

4.4.6. The MOS Techology INC 6502 cPU. 55
4.4.7. The RCA CDP Cosmac 1802 CPU . 56
4.5. The 12 Bit Microprocessor Group. 56
4.5.1. The Intersil 6100 cPU . 56
4.6. The 16 Bit Microprocessor Group. 57
4.6.1. The National Semiconductor IPC Pace. 57
4.7. Availability and the Final Choice of Processor. 58
4.7.1. Industrial Standards. 58
4.7.2. Processing Speed and Power Requirements. 59
4.7.3. The Interrupt Structure. 59
4.7.4. Indexing and Registers. 60
4.8. Literary Survey. 62

CHAPTER FIVE.
THE Z8O MICROPROCESSOR SYSTEM. 63
5.1. The Final Choice. 64
5.1.1. The Central Processing Unit. 64
5.2. The 280 Special Purpose Registers. 66
5.2.1. The Programe Counter. 66
5.2.2. The Stack Pointer. 66
5.2.3. Two Index Registers. IX and IY. 67
5.2.4. Interrupt Page Address Register I. 67
5.2.5. Memory Refresh Register R. 68
5.2.6. Accumulator and Flag Registers. 68
5.3. CPU Internal Registers. 69
5.3.1. General Purpose Registers. 69
5.3.2. Arithmetic and Logic Unit. 70
5.3.3. Instruction Register and CPV Control. 70
5.4. Z80 CPU Pin Description. 71
5.4.1. The Address Bus. 71
5.4.2. The Data Bus. 73
5.4.3. Machine Cycle. 73
5.4.4. Memory Request. 73
5.4.5. Input , Output Request. 74
5.4.6. Memory Write. 74
5.4.7. Memory Read. 75
5.4.8. Refresh. 75
5.4.9. Halt State. 75
5.4.10. Wait. 75
5.4.11. Interrupt Request. 76
5.4.12. Non Maskable Interrupt. 76
5.4.13. Reset. 77
5.4.14. Bus Request. 77
5.4 .15 Bus Acknouledge. 78
5.5. The CPU Peripherals. 80
5.6. Visual Display. 83
5.7. The Character Generator. 86
5.8. The Keyboard. 88
E. Execute. 98
B. Breakpoint. 99
S. Single Step. 100
6.2. Monitor Routines. 102
6.2.1. Restart Instructions. 102
6.2.2. Subroutines. 104
6.3. Input Routine Numbers. 108
6.4. Output Routine Numbers. 109
6.5. System Workspace. 110
6.6. X or External Command. 113
6.7. The z80 Controller. 114
6.8. Memory Map of the System. 115
6.9. ASCII Characters. 117
6.10. The Memory Mapped Television
Screen Display.
6.11. Interfaces to the VDU and TV set. 121

CHAPIER SEVEN.
THE MICROPROCESSOR IN A DNC CELL. 122
7.1. Equipment Standards. 123
7.1.1. Availability of Equipment. 125
7.1 .2. Teleterminal to the Micro Nova. 128
7.2. Z80 Microprocessor to the VDU. 131
7.3. Z80 to a Domestic Television Set. 133
7.3.1. The Video Modulator. 135
7.4. Cassette and PIO Interfaces. 136
7.4.1. UART Interface. 138
7.4.2. UART Timing. 142
7.5. Cassette Demodulator. 143
7.6. The PIO. 145
7.6.1. The PIO Output Ports. 147
CHAPTER EIGHT.
INTERFACE CONTROL ROUTINES. 149
8.1. Communicating in Machine Code. 150
8.1.1. Test Routines and the Screen Display. 156
8.1.2. Screen Display. 157
8.2. Interface Test Programmes. 159
8.2.1. Green IED Bank Test Programme. 161
8.2.2. Red and Green IED Bank Test Programmes. 162
8.2.3. A Scanning Test Programe. 163
8.2.4. Alternative Red and Green Bank Test. 166
8.3 . An Example of Pegboard Control. 169
8.3.1. Ward Lathe Control. 173
8.3.2. Pegboand Control Flowcharts. 174
8.4. System Tests. 179
8.4.1. System Test Programme. 181
8.4.2. Lathe Testing under Microprocessor Control. 188
CHAPIER NINE.
CONCLUSIONS. 190
9.1. The Industrial Advantages of the System. 191
9.2. Cost Schedule. 192
9.3. System Development. 193
9.4. Interface Control Details. 194
9.5. Details of the Main Controller. 195
9.6. System Tests and Results. 196
9.7. System Expansion. 198
CHAPTER TEN.
FUTURE WORK. 200
10.1. System Developments. 201
10.1.1. Memory Expansion. 202
10.1.2. Data Línes. 202
10.2.3. Address Line Buffering. 204
10.2. EPROM Decoding. 206
10.3. Direction Pulse to the Data Buffer. 210
10.4. EPROM Programming and Timing. 212
10.5. EPROM Erasure : Pulsing. 214
10.5.1. Programer Design Circuit. 217
10.5.2. EPROM Programmer Control Sequence. 219
10.6. Graphics on the VDU. 220
10.6.1. Vector Mode. 220
10.6.2. Point Mode and Clear Screen. 220
10.6.3. Connecting the VDU to the 280 System. 221
10.6.4. Sample Data. 224
10.6.5. Typical output. 226
10.6.6. Obtaining Vector Coordinates. 228
10.6.7. Coordinate Transformation Formulae. 232
10.7. Tool Contour Simulation Programme. 233
10.8. Surface Generation. 234
10.8.1. The Bezier Surface. 234
10.8.2. Example Printouts. 238
10.9. Additional Peripherals. 240
10.10. The Stepper Motor. 241
10.11. Opto Isolators. 244
APPENDICES. 252
Appendix 1. $\quad 280$ CPU Instruction Set. 253
Appendix 2. Chip Comparison. 267
Appendix 3. System Monitor Listing. 269
Appendix 4. Tool Contour Display. 297
Appendix 5. Bezier Surface Generation. 319
Appendix 6. Stepper Motor Control. 348
Appendix 7. EPROM Programmer Control Sequence. 352
REFERENCES. 358
BIBLIOGRAPHY. 362
Fig. (2.1) The Original Pegboard. 10
Fig. (2.2) Microprocessor Control Layout. 11
Fig. (2.3) Old Ward Circuit. 16
Fig. (2.4) New Wand Circuit. 18
Fig. (2.5) Ward Transfer Unit. 20
Fig. (2.6) Relay Interface Board. 22
Fig. (2.7) Reed Interface Circuit to Z80. 25
Fig. (2.8) The Interface Board. 26
Fig. (2.9) Behind the Pegboard. (Electronic). 28
Fig. (2.10) Behind the Pegboard. (Physical). 29
Fig. (2.11) Relay Board and Transfer Latch. 31
Fig. (2.12) Counter Unit Modifications. 33
Fig. (5.1) Z80 CPU Architecture. 65
Fig. (5.2) Z80 CPU. MK 3880. 72
Fig. (5.3) CPU Clock Oscillator. 79
Fig. (5.4) CPU to External Circuit. 81
Fig. (5.5) EPROM to Address and Data Bus. 82
Fig. (5.6) 2102 RAM Decoding. 85
Fig. (5.7) Character Generator and Gates. 87
Fig. (5.8) Keyboand Port Input. 89
Fig. (5.9) Behind the Keyboard. 90
Fig. (5.10) Keyboard Matrix Decode. 92
Fig. (5.11) Keyboard Timing Circuit. 93
Fig. (6.1) Single Step Visual Display. 101
Fig. (6.2) System Memory Map. 116
Fig. (6.3) International ASCII Set. 118
Fig. (6.4) Memory Plane Screen Locations. 120
Fig. (7.1) Cable Pair. 124
Fig. (7.2) ASR Teletype to Mini Nova. 126
Fig. (7.3) $\quad Z 80$ to ASR Teletype. 129
Fig. (7.4) TTY / VDU to Micro Nova. 130
Fig. (7.5) $Z 80$ to VDU. 132
Fig. (7.6) Video Modulator. 134
Fig. (7.7) UART IM 6402. 137
Fig. (7.8) UART to Serial Port. 139
Fig. (7.9) UART $300 / 110$ Baud Clock. 141
Fig. (7.10) Cassette Interface. 144
Fig. (7.11) MK 3881 PIO Chip. 146
Fig. (7.12) PIO to Peripheral Ports A and B. 148
Fig. (8.1) IED Test Board Layout. 160
Fig. (9.1) Microprocessor to Lathe Interface. 197
Fig. (9.2) Proposed DNC Cell. 199
Fig. (10.1) Data Buffer Chip. 203
Fig. (10.2) Address Buffer Chip. 205
Fig. (10.3) Memory Extension Decoding. 207
Fig. (10.4) 74 LS 138 Truth Table. 208

PAGE.
Fig. (10.5) Memory Extension. 211
Fig. (10.6) 2708 Programming Pulse Timing. 213
Fig. (10.7) 26 Volt Oscillator Pulse. 216
Fig. (10.8) EPROM Socket Pulses. 218
Fig. (10.9) Typical Output. 226
Fig. (10.10) Bezier Surface. 235
Fig. (10.11) Example Printout. 238
Fig. (10.12) Three Dimensional Printout. 239
Fig. (10.13) Stepper Motor Drive. 242
Fig. (10.14) Typical Opto Isolator. 245
Fig. (10.15) Example Fibre Optic Link. 251

INTRODUCTION.

CHAPTER1.

CHAPTER 1.
INTRODUCTION.

The work is mainly concerned with the investigating the retrofitting of a microprocessor based controlling device to an existing , pegboard operated capstan lathe and to investigate new interfacing techniques, so as to enable the microprocessor to be coupled to various external devices.

The research work utilises a British made Ward capstan lathe, which is still used in industry and to update the control system by replacing the pegboard, the programming of which required a time consuming effort by the operator. Utilising existing machines minimises the cost, because to purchase and fit a small sicroprocessor controller is minimal, costing only in the region of a $£ 1000$, which is far below the cost of totally replacing a working machine with a modern counterpart. Most working machines still have a very useful life span left and also existing tools could be used, reducing the cost further.

If further control capabilities were required then additional features could be controlled by simply updating the programes and adding further microprocessor memory. The lathe was examined in detail and several points were noticed, these are detailed as follows.

The electronics involved gas filled thermionic tubes which are now obsolete and difficult to replace. This fact required that a replacement design be made, to modify the circuits with a solid state device, which could easily be obtained.

Normal operation of the lathe was controlled by an operator placing pegs into a matrix panel, but this was time consuming and prone to errors. The pegboard configuration was Ideally suited to microprocessor control and so a self latching control interface was designed, to be simply connected to one of the control columns of the pegboard. This control being automatically taken over by the microprocessor , by pressing one operator control key. Control programmes could be pre-written and fed to the processor via a standard cassette tape recorder, or a plug in EPROM memory.

The next step was to investigate which processor chip to utilise in the design and the project contains a critical appraisal of the main types of microprocessors available during the early part of the research. A final choice was made to use the Zilog Z80 chip, which has since become an industrial standard quickly taking over the predecessor, the 8080 , because of the powerful instruction set, ideally suited to numerical control.

The $Z 80$ microprocessor chip design is intended to drive the interface components connected to the first column of the pegboard, with an electronic latch configured to return to the first colum and then to read each new set of instructions presented by the microprocessor. The system should give excellent flexibility with a set task loaded directly from the keyboard or more efficiently from a standard cassette tape. The section on improvements also suggests a better method, by obtaining routines from a pre-programmed EPROM.

The work contains several programes, proposals and designs for additional improvements to the system, these include a memory expansion unit, enabling better control programmes to be written, without the restricted memory space.

Most of the control programmes are written in machine code language, which has the important advantage of speed of operation, which is required in any control system and it allows a limited memory section to be utilised to the maximum efficiency. Many sample machine code programmes are given in the text and many more may be found in the author's own publication.

A further design is included to programe UV EPROMS, with either a control programme , or an improved monitor system. These EPROMS give an excellent facility for simply plugging in a control programme for a complete task. This has cost saving advantages to industry and a design is included to reprogramme these EPROMS , thus saving replacement costs.

The modified lathe has been extensively tested and after initial modifications has been found to give excellent flexibility . Sample programmes are provided , to enable a new operator to gain confidence.

The project was slightly extended by interfacing the processor to a VDU graphics unit and sample programes are included to enable simple graphics to be produced.

Provision has been made to store programmes externally , by the addition of two further interfaces , to a standard tape recorder and to any printer, operating on the EIA RS232 voltage sensing system, or the 20 mA current loop configuration.

A section is included involving a further microprocessor should it be deemed advantageous , to control other aspects of the lathe , this facility would open up a great many more possibilities for further research work. There then follows a discussion of the relatively new fibre optic technology which could be utilised to transmit video signals from the machine tool tip to a visual display unit, so tracking the tool contour at the actual work face. The theory of fibre optic technology is detailed and ends with a typical design circuit for fibre optic light transmission.

WARD CAPSTANLATHE.

CHAPTER2.

CHAPTER 2.

THE WARD CAPSTAN LATHE.

2.1. Retrofitting a Microprocessor Controller.

Several factors were taken into consideration when attempting to change the control mechanism of the capstan lathe. a) Compatibility between the lathe and controller with respect to signal and voltage levels. Investigation of the existing electronics highlighted the fact that electronic technology had advanced in rapid leaps since the lathe was initially developed making some of the components obsolete. These could only be replaced by stocks held in a rapidly diminishing store, not only were they difficult to replace but the components also operated on voltages between 90 and 220 volts dc. This voltage range is incompatible with modern electronic standards which generally utilise a 5 volt TTL level.

It was decided to replace these units with a modern counterpart which could easily be obtained and which would operate on the required standard voltage level. The transfer signals in the lathe operated at approximately 90 volts with a pulse duration of 1 millisecond and a further modification was made to the pulse, by changing it to a 5 volt, 1 millisecond transfer pulse at TTL level with a latched input.
b) Removal of the pegboard.

The original pegboard consisted of columns of holes in which an operator pushed in diode pegs to complete a circuit, to control a sequence of operations. This type of configuration was ideally suited for microprocessor control and so an interface board was developed at standard 5 volt level to make the task of connecting the controller possible. The following photograph shows the original pegboard before modification. (Figure 2.1)

2.2. Control Details.

The microprocessor's address and data lines were used to control a data latching system allowing a preset sequence of events to occur, this was previously set up on the pegboard. When a sequence is completed a transfer pulse from the lathe is communicated from a latch to the peripheral port of the processor, the pulse is taken as a signal to output the next set of instructions through the address and data lines. A continuous sequence of events is thus possible by a pre-written programme entered from the keyboard, or EPROM memory, or a tape cassette. All these control signals are confirmed visually on the screen of the television monitor or VDU. Figure 2.2 shows an overall picture of the control layout.

Fig. (2.1.) THE ORIGINAL PEGBOARD.
\ulcorner

Page 11

2.3. The Ward Capstan Lathe.

The lathe used for the research woris is the 2DS AutoWard Capstan Lathe, manufactured by H W Ward of Birmingham and consists of two controlled sections (a) and (b) as follows:-
a) Originally the turret was controlled manually, but previous work was undertaken to operate this section electronically by using operational amplifiers with logic control (2).
b) Most of the other operations were controlled by the use of a diode pegboard arrangement consisting of a matrix of 31 rows and 24 columns as shown in figure 2.1. Lathe control was achieved by an operator using a set of pegboard diode insertions into this matrix, each diode controlled a circuit to move certain parts of the lathe. The main operational movements consisted of $:-$
i) A moving slide.
ii) Chuck speed and rotation.
iii) Turret movement , forward and backward.
iv) Chuck opening and closing.

This lathe has been used in British industry for many years but unfortunately, due to the advancement of technology, suffers from many disadvantages as highlighted below.

2.3.1. Lathe Disadvantages.

a) The time required to set up the pegboard is very expensive because today, labour is one of the most costly items in the manufacturing process.
b) Some of the electronic components are obsolete and once stocks are depleted their replacement will become very difficult. c) Flexibility of manufacturing suffers due to the lack of precision control with no feedback between the lathe and the operator or controlling device.

These disadvantages were investigated and several changes were considered, such as to update the obsolete components with modern easily obtainable parts. Control would be passed to a 280 microprocessor system which has a very powerful instruction set, allowing greater flexibility of manufacturing techniques. The performance could also be improved by fitting stepping motors to lead screws giving more flexibility when cutting components.

Further possibilities include tool monitoring by the use of microprocessor controlled fibre optic feedback. An important factor in any improvement is cost and with technology leaping ahead British industry has a difficult time with replacement of existing machines, retrofitting the proposed microprocessor controller gives an excellent compromise.

Existing equipment can be utilised thus reducing the costs to an absolute mimimum. Any cost incurred would come mainly from the purchase of a microprocessor system and there are now available some small $\mathrm{Z80}$ units.

These minimal systems could be pressed into service and would certainly be sufficient for many small factories utilising this type of lathe.

Costs would be in the region of $£ 1000$ which is a small outlay considering the advantages to be gained and a minute outlay if balanced against the cost of replacing the whole machine.

An added microprocessor controller does not of course solve all industrial problems, but it does offer a relatively cheap way of at least progressing in the correct direction with a minimum outlay.

2.4. Pegboard Control Modifications.

The original method of controlling the lathe was to enter some diode pegs into a column of holes, on an external pegboard as detailed in figure 2.1. As the diode peg was inserted a circuit was completed via the diode, connecting a voltage derived from the counter unit with two or more appropriate control flip flops. These flip flops utilised glass tubes.

The circuit shown in figure 2.3 details the original method of triggering the two thermionic glass tube devices, but unfortunately these tubes are now obsolete and future replacement even during fair wear and tear could become very difficult. The glass tubes used are of the Neon type, operating on a voltage source of 180 volts and direct current. It is also necessary for some of these devices to have a light source operating within the cabinet for reliable operation and if this light source is removed, by possibly fust normal bulb fallure, then the operation of the flip flops could be drastically changed unknown to the operator, because there is no feedback or warning device fitted to allow for this hazard.

Page 16

2.5. The New Trigger Unit.

Now a replacement device was required to roughly approximate the dynamic characteristics and operation of the old Neon trigger tubes. Albeit these new devices operate at low voltages it was decided to temporarily stay with the original voltage so that each trigger could be replaced and tested in turn, without interruption to the normal lathe operation. This method proved invaluable when some design problems were met when testing the system, the reason being that the Neon tubes were utilised somewhat differently in some of the control units and required a different approach.

The design was carefully contrived so that the system could be changed over to a lower working voltage when all the modifications were completed, the arrangement resulted in the necessity to simply remove load resistors in each module when the change over was required. Figure 2.4 shows the method of replacement with the circuit changes. Further details of the new component Cl06 may be found in (3).
1-- - - - - - -

Page 18

2.6. Transfer Unit.

When a lathe operation is completed a transfer pulse is provided by the system, to switch a transfer unit flip flop.

The unit derives a 90 volt pulse with a duration of between 1 and 3 mseconds. This pulse is sent to a counter unit, which steps control on from a previous column of diode pegs, to the next col.umn in sequence. The new column contains the information required to perform the next lathe operation.

The following diagram shows the details of the electronics required to generate the $90 \mathrm{volt}, 1$ to 3 msecon d transfer pulse. (See figure 2.5)

This pulse must also be reduced, before it can be utilised in a modern control circuit, due to the incompatibility of the two voltage systems.

2.7. The Pegboard Interface.

It was decided to replace the operation of the pegboard by a microprocessor as the next step towards controlling the AutoWard capstan lathe. This had been made possible by the changes made to the flip flop and transfer units to a lower operating voltage. The full advantages of this modification would become apparent later when all the lathe operations were microprocessor controlled.

The initial steps consisted of designing , building and testing an interface board between the microprocessor's peripheral ports, address and data lines and the pegboard diode assembly. The diode insertion action of the operator would be mimicked under microprocessor programme control from the keyboard directly or from a programme entered previously into an EPROM memory , or from data held on a tape cassette. Figure 2.6 shows the physical layout of the interface boand and indicates the position of the buffers, drivers and latches utilised in the matching process.

EDGE
CoNN.

2.8. The Interface Board.

The interface board consists of a set of 74IS86, see (3) for further details, these are quad exclusive OR logic integrated circuits that connect to the microprocessor's address bus. Their outputs are inverted and then buffered by 7406 type integrated circuits (3). All the address lines A_{1} to A_{7} act as outputs and are coupled together and held at the 5 volt logic level by a common resistor. This logic level is connected as one input to two triple input 74iSlo (3) NAND logic gates. The other two inputs consist of the A_{0} address line together with the $\overline{W R}$ write pulse, from the CPU. The common address line for A_{1} to A_{7} is also controlled by the microprocessor's $\overline{I O R Q}$ request line.

At any particular time only one of the 74IS10 gates give an output, because the A_{o} address line is fed to one gate directly and inverted to the other. This facility allows a choice to be made, to activate either of the bank of two, eight 74LS175 latches. The sixteen latches are connected in two groups of eight, one group beeing selected by the appropriate 74LS10 gate. The latches are connected directly to the CPU data bus but only pass data when clocked, by their respective gate.

The output from the 74LS175 quad D type flip flops are fed to a bank of 7406 inverters utilised as buffers , to control a set of reed relays as shown in figure 2.7. The reed relays mimic the action of the operator inserting a peg into the diode matrix board. The relay outputs are connected in series with diodes and each output is then connected in parallel with the appropriate peg position on the matrix board. Figure 2.8 shows the reed interface board connected to the address lines and routed to an edge connector ready for coupling into the microprocessor output socket.

Only one column is utilised on the pegboard, by the microprocessor, because this allows the microprocessor to set up the instructions for each operation as though the pegs had been inserted by the original operator. When the lathe is activated, action is taken on each instruction by reading the same column continually, this column being controlled by the microprocessor software and the lathe electronics is fooled into returning to reread the same column continually.

Page 25

THE INTERFACE BOARD.

2.9. Pegboard Modifications.

Eight lines were connected to the pegboard enabling eight separate control functions to occur , however the full set of 16 latches were connected to the address lines, giving a further eight possibilities for future expansion and control of alternative devices. Each line is connected to the peg diode matrix board as detailed in figure 2.9. The diodes were required in the interconnections so as to steer the signals correctly to mimic the original action of each diode peg inserted by the operator.

When one column of instructions were completed by the lathe an automatically generated transfer pulse of 90 volts, with a width of between 1 and 3 milliseconds was obtained from the lathe's control system. This pulse was required by the microprocessor's system, but required some modification to tailor it to the standard 5 volt TTL level, before it could be utilised. Figure 2.1 shows where the control lines were connected on the lathe behind the original pegboard.

Fig. (2.9.)

Fig(2.10.) BEHIND THE PEGBOARD.

2.10. The Transfer Pulse.

The 90 volt transfer pulse required reducing to the standard TTL voltage level of 5 volts and a latch was used to hold the pulse, giving the system further flexibility, so that if required at a later date, the microprocessor need not be held up in an interrogating loop, until it had completed some other more important task.

When the transfer pulse is received by the processor, the next set of instructions is communicated to the pegboard column.

This pulse results in further action by the lathe and the process continues as before.

Details of the transfer pulse modifications and latching circuits are shown in the following diagram, figure 2.11.

2.11. Counter Unit Modifications.

The original system utilised a string of "GDR 120W" counters in a ring loop configuration and as each counter was triggered in turn, the output was used to activate each of the peg columns individually.

Due to the nature of the microprocessor controller on? y one of the columns is used, hence a modification was required to the counter unit so that in effect it returned to the first column automatica?ly, after each step.

The following diagram shows the details of how the counter is forced to return to continually activate the first column, see figure 2.12 .

2.12. The Microprocessor Controller.

The previous modifications enabled the microprocessor to communicate with the lathe via the interface and latch system. The following events are typical of a control sequence, when operating the lathe.
a) Switch on the lathe.
b) Switch on the microprocessor.
c) Type in, or feed in a prerecorded programme.
d) Initialise the programme sequence.

The events that now follow are directly under the control of the microprocessor s-

1) The transfer pulse latch is reset, ready for the next transfer pulse input.
2) An event sequence is sent out, on the address and data lines, into the interface latch system. A visual confirmation is then given on the monitor screen.

The event data is obtained from a prewritten event table, contained within the machine code programme.
3) The latched information is fed directly to the rear of the pegboard where the signal is interpreted as a lathe event.
4) A transfer pulse is accepted from the lathe and latched ready for reading by the microprocessor.
5) In fact, in the original sequence , the processor initialises the interrogation of the latch as soon as the pulse is received.

The processor performs four operations.
a) The transfer latch is reset, ready to accept the next transfer pulse.
b) A predetermined delay sequence is entered, between each event. This delay is adjustable under software control.
c) A new set of instructions is sent out to the data latch interface board and the instruction is confirmed by a visual display on the monitor screen.
d) The processor enters a further interrogation loop waiting for the next transfer pulse, the software could also be changed to generate an interrupt.
6) This sequence continues until the processor finds the code "FF" at the end of the event table, this stop code will then initiate a separate set of operations as follows:-
a) The transfer latch is reset,
b) The chuck rotation is stopped for additional safety, c) The end of programme sequencing is indicated on the video monitor screen.

The complete cycle could then be repeated with a new work piece, or a new control programme entered from the keyboard, from EPROM memory or from a tape cassette.

The author has written some sample test
programmes, but have not been included at this point because of the necessity for the operator to gain at least some familiarisation with the machine code language before using those programmes. A chapter is included later (chapter 8) as an introduction to the machine code language with sample test programmes inserted at the end of that section. For further programmes see (1), the authors own book on machine code programmes for the Z 80 microprocessor.

2.13. Choice of Controller.

During the period of design, construction and fitting, of the previously stated modifications, thoughts were obviously being given to the type of microprocessor to be utilised, when the modifications were completed.

Un?ortunately, at that time, small inexpensive readily made available systems, were very few and far between and even the available ones were not found suitable for the contro? task in hand.

It was therefore necessary to build up a custom designed system, from the microprocessor chips and boards, available at that time.

Fven then the choice was mede difficult, by lack of availability and it was therefore found necessary to produce a critical appraisal of microprocessor chins and units, before progressing further.

As the time progressed and an understanding of the situation was obtained , more microprocessor units became available, so relieving the situation a little.

The following chapter will take the reader through the steps taken by the author, from searching for units to choosing the final microprocessor. The choice of microprocessor was found to be far more important than was first envisaged.

The experience gained was found to be invaluable as an aid in further industrial projects and designs. In fact the author now acts as a microprocessor consultant to several large industrial companies within his area and they are turning more and more to microprocessor control, but as yet do not have the nesessary background experience, when deciding on which microprocessor system to utilise for a specific task.

HISTORYOFTHE
MICROPROCESSOR.

CHAPTER 3.

3.1. Electronic Changes.

Radical changes in electronics began as early as the 1960's with the first electronic calculators, which were products of the transistor era which eventually resulted in the integrated circuit.

The early 1970 's brought a faster change due to the technical innovations as designers found a method of cramming more elements into tiny micro size electronic circuits, resulting in pocket size calculators at a substantially reduced price. The 1980 's gave a microelectronics era which is a combination of new semiconductors and a totally new design technique , resulting in an unique technological progression, which was brought about by a system called " Large Scale Integration". The system enabled thousands of transistors to be placed on a tiny silicon wafer, enabling the computer to shrink both in size and cost.

In essence a microprocessor can replace some units that a mere decade ago would have cost many thousands of pounds. In the past logic design was mainly hardware oriented, system changes were difficult to implement, because a specific logic block would consist of a combination of many logic elements.

Changes were made either by redesign or by wiring in external components for entire circuits or even minor changes. Both were expensive in time and engineering resources.

For many years logic designers had hypothesised :"Why not replace gates and logic elements with a stored programme , thus performing all of the logic functions". An interesting concept which was only feasible for large and expensive computers.

Fventually a convenient merging of "ISI" and the stored programme concept became a reality, resulting in the microprocessor. The microprocessor system stores the programme in a special LSI device called a memory chip. This chip is connected to the processor supplying control instructions, enabling conventional logic systems to be simulated.

Microprocessor based design is a totally new concept giving an unique mixture of hardware (ie with electronic blocks) and software (ie with programmes), which promises to revolutionise the designer's task. Hardware is greatly simplified as all functions are centered around a general purpose processor.

Usually the hardware system design consists of interconnections and interfacing or matching of various ISI chips. These generally appear as a family of general purpose elements producing a chip marriage that significantly reduces the interfacing requirements.

In microprocessor based systems there are less circuit elements, so naturally less handware design time is necessary. In essence the brunt of microprocessor design is the developement of software, consisting of flowcharts and programmes, these are written by the designer and then loaded into special memory chips, the programme then has the power to produce functions previously reserved for logical elements. Hence memory replaces random logic by storing programming sequences.

Generally one word of memory replaces one logic gate and many thousands can be stored in one memory chip, thus reducing the chip count drastically. This significant reduction in hardware complexity results in reduced design time and cost. Fewer parts means increased reliability giving a further overall efficiency to a cost effective design. In fact mícroprocessors used in industry have now become well known for their dependability.

A further advantage of the microprocessor system is that changes in environmental parameters can easily be implemented by a change in software.

3.2. Evaluation and Chip Selection.

There are various microprocessors available but the selection is far toc important to be left to chance, or a hasty decision. The selection depends to a large degree on the application.

Processors are structured differently but they do have similarities or elements which are the same, their names may be different and they may have some unique factor. The subtle differences must be examined carefully during selection as they can sometimes indicate programming problems and solutions. Microprocessor ana?ysis often begins with the investigation of the manufacturer's data sheets, which can sometimes assist to remove misfits at an early stage.

The following items are generally recognised as an indication to the most important factors in the selection of a system.

3.3. Word Size.

This feature is a means of classifying processors into ma,jor groups. It is important from the standpoint of resolution, computational accuracy and ease of programming.

Eg : A 4 bit machine will act as an 8 bit device but reauires two lots of data bursts. This is not usually time efficient and can complicate programming.
3.4. Addressing Modes.

The number of modes offered is very important and as a general rule more addressing modes mean more potential power, however some modes may be of little use, or be just a rehash of another inherent mode.

3.5. Address Capabilities.

This is the amount of memory that is directly addressable, eg :A 16 bit device may have a combination addresssdata bus to select $64 \mathrm{~K}^{* *}$ of memory, by applying three bursts of four bit multiplexed information. The disadvantage is that more time is required to address each location.

3.6. Input and Output Capabilities.

The inputsoutput structure may be of paramount importance to a particular application, such as control applications, because the processor takes data from the outside world, processes it and sometimes returns a result to the sender.
** 1 K of memory consists of 1024 bits of information, the number results from using the "Binary" system and 1024 is 2 raised to the power of 10.

Basically there are two types of inputsoutput structure :a) The Dedicated Input and Output.

This system has a limited number of ports and requires special instructions before it can be implemented.
b) Memory Mapped.

This system treats the input : output data just like another memory and is usually a more versatile method. A further advantage is that any portion of the memory may be allocated to input and output.

3.7. Internal Registers.

All microprocessors have the standard registers, such as a programe counter and accumulator.

[^0]
3.8. The Instruction Set.

The instruction set should be carefully examined to find out just how flexible the registers are. This set is one of the most important selection criteria and should be well organised, easy to learn and powerful, so that fewer instructions can perform the more complex tasks. It must also be memory efficient and this efficiency will be reflected by the number of memory cycles required to complete a task.
3.9. Execution Speed.

A very important criteria if real time executions are envisaged. in the past the clock frequency was used as a standard, but that led to misleading results. Today the most popular standard is the register to register addition time.
3.10. Interrupt Structures.
a) The simple single line interrupt. This method ties all interrupts to a common line and the processor must poll to locate the initiating device.
b) The multilevel interrupt.

This system has more than one hardware interrupt line and the device is immediately identified without the necessity for polling.
c) Vectored Interrupt.

A very fast system that requests service and then branches automatically to the interrupt service routine.

It is often found that various interrupt methods are combined one microprocessor system.
3.11. Interfacing Complexibility.

Interfacing is a major problem for all processors, especially buffering, however there is an inbuilt strength in the microprocessor family, because a family chip can usually be connected directly without buffering. TTL compatibility and voltage levels are also important.
3.12. Power Supply Requirements.

Single power supplies give good economy with reduced design time, it is important to use family device peripherals because they are always voltage compatible.
3.13. Manufacturer's Hardware Support. This is a direct measure of difficulty in obtaining information and the manufacturer's commitment to servicing the user's needs. It is important when choosing to look for simulators or emulators in development systems.

3.14. Software Support.

This includes documentation such as programming manuals, application notes and other technical literature. Also look for monitor programmes for assembly, simulation, diagnostics and de bugging.

If the microprocessor data sheets have been carefully scanned with the above features in mind then the field of choice should be more or less defined and narrowed down considerably.

The final choice is to choose from the microprocessor chips that do fulfil most of the designer's requirements. It is not possible to satisfy them all and this is where careful thought must be given to the advantages and disadvantages of the final choices.

There now follows a critical appraisal of the microprocessor chips and literature available at the time of initial research.

CRITIGAL APPRAISAL
 \& LITERARY SURVEY.

CHAPTER 4.

CHAPTER 4.

A CRITICAL APPRAISAL OF MICROPROCESSOR CHIPS
AND A LITERARY SURVEY.
4.1. The 4 Bit Group of Microprocessors.

There were many 4 bit microprocessor devices, but the appraisal is restricted to two of the most popular types, it became immediately evident that the others were unsuitable to the task in hand.
4.2. The 4040 Type of Microprocessor.

The important hardware features include an address stack that has designated seven levels of subroutine nesting, with each level being 12 bits wide. The system also contains index registers that can be used as either twelve 8 bit address registers , or as twenty four 4 bit storage locations.

This processor can directly address 4 K words and the typical register to register addition time is 10.8μ seconds. There is also a vectored interrupt capability and an instruction set with decimal arithmetic capability, having sixty operating instructions.

4.3. The Rockwell PPS 4 CPU.

This processor has an 8 bit instruction data bus and a separate 12 bit address bus.

An internal stack is provided which can also be expanded to RAM.

Conditional branching is provided by two control
flip flops.
An x register is provided for temporary storage of either the accumulator , or the BM register.

Other important features include a $5 \mu s e c$ instruction time, directly addressing sixteen input output circuits, with an instruction set having decimal arithmetic capability with 50 instructions.

The single level interrupt has the capability of being expanded to 15 levels.
4.4. The 8 Bit Microprocessor Group.

The 8 bit microprocessors are by far the most popular at the moment. Seven various types are appraised and the final choice was in fact taken from this important and very resourceful group.
4.4.1. The Motorola 6800 CPU .

This processor has six addressing modes, an excellent $2 \mu \mathrm{sec}$ register to register addition time with 72 instructions.

It has a maskable vectored interrupt structure and a non maskable interrupt capability.

The system also has decimal arithmetic capabilities and the processor can directly access 64 k bytes of memory.

The 6800 system requires only one 5 volt power supply and can drive up to ten family support chips without the need for bus extension.
4.4.2. The Intel 8080 A CPU .

The 8080 group and the descendants are very widely used in British industry because it is admirably suited to the field of numerical control.

The 8080 A architecture consists of only one accumulator, bit has six 8 bit scratch pad registers and may be used as such, or as three 16 bit registers.

There are also two other register pairs not accessable to the programmer. Other important features include four addressing modes, by an instruction set having decimal arithmetic capabilities with 78 instructions. It boasts an excellent $2 \mu s e c$ register to register addition time and can address a massive set of 256 input output ports, with a multilevel vectored interrupt structure.

The processor can directly address 64 k bytes of memory and these advantages made the 8080A a strong contencier for the proiect in hand.

4.4.3. The Zilog 280 CPU .

This chip is an enhancement of the 8080 and the major hardware differences consist of the large number of inbuilt internal processor registers. The main registers are all duplicated and the processor has four additional special purpose registers, an intermupt vector register, a dynamic RAM refresh register and two 16 bit index registers, which together with three other pairs makes this so called 8 bit system into virtually a 16 bit microprocessor.

The processor can directly address 64 k bytes of memory with ten addressing modes.

The system is controlled by a massive 158 instructions, which if the alternatives were counted singly, as done by some manufacturers, then the number is near to 700 very powerful instructions, which are also upward compatible with the 8080 and only take $1.6 \mu \mathrm{sec}$ per register to register instruction. Other important features are the single phase clock, TTT compatibility and the single 5 volt power supply.

4.4.4. The Fairchild F8 CPU.

This is an input output oriented processor and has two 8 bit ports with an onboard clock circuit. The chip contains 64 internal registers which serve as a workspace, making RAM unnecessary for simple applications.

The programme counter and stack registers are unfortunately not on the microprocessor chip and must be provided by a special external ROM. The system has eight addressing modes, with a $2 \mu \mathrm{sec}$ register to register addition time with 60 instructions. Decimal arithmetic capabilities are provided and a single level vectored interrupt system.
4.4.5. The Signetics 2650 CPU .

This special processor has eight level stack registers with an address adder that calculates relative and indexed addresses.

The most unique feature of this processor is the set of seven general purpose registers. Register zero is thought of as an accumulator and the remaining six secondary registers form two, three register banks.

The system can only address 32 k bytes because the programme counter is only 15 bits wide. There are six addressing modes with 72 instructions having a $4.8 \mu s e c$ register to register addition time. The interrupt system is vectored and the processor has decimal arithmetic capability.
4.4.6. The MOS Technology Inc 6502 CPU .

There are many models of the 6500 series, some contain onboard clocks such as the 6502 and the chip comes in two package sizes, 28 pin and 40 pin. Albeit the 6500 series is frequently thought of as an enhanced 6800, careful investigation of the architecture soon disproves this supposition.

The system has only one accumulator, the 6800 has two, the index register has to be made up of two 8 bit registers and the stack pointer is also only 8 bits wide. The reduced number of instructions, 56 as compared to 72 in the 6800, is complemented by an extra seven addressing modes, making 13 in total. In high speed applications the short $1.0 \mu \mathrm{sec}$ register to register time can be used to advantage.

4.4.7. The RCA CDP Cosmac 1802 CPU.

The hardware appointments are 16 general purpose 16 bit registers, all can be designated as the programme counter by using the "p" register . The N, P and X point to a register using a 4 bit select line, the " D " register functions as the primary accumulator. This system supports one interrupt level and a distinctive feature is the fabrication by CMOS technology, with high noise immunity. The processor has a single phase clock and 4 addressing modes with 91 instructions, but a long $6 \mu s e c$ register to register add time. 4.5. The 12 Bit Microprocessor Group.

When investigating there were very few available 12 bit processors, information was scarce and this consideration itself made the group unsatisfactory.

4.5.1. The Intersil 6100 CPU .

A popular processor because it is software compatible with the "PDP 8E" minicomputer. The architecture is clear as all the main registers have 12 bits which can address 4 K words , each 12 bits wide. There are 69 instructions with 4 addressing modes, a single level vectored interrupt with a register to register time of $2.5 \mu \mathrm{sec}$. The fabrication is by CMOS technology.

4.6. The 16 Bit Microprocessor Group.

4.6.1. The National Semiconductor IPC 16 Pace CPU.

 A system with four 16 bit accumulators with zero as the primary, one as the secondary and accumulators 2 and 3 double as secondaries and the index registers. An onboard stack is 16 bits wide and 10 words deep addressing 65 k words, each 16 bits.The processor has 45 instructions with five addressing modes and the register to register time is $8 \mu \mathrm{sec}$, there is a multilevel interrupt structure.

4.6.2. The Texas Instruments TMS 9900 CPV .

The 16 bit processor approaches the level of performance of a minicomputer but has only 3 user accessible registers. The workspace is a most unique and powerful programming feature and identifies the first of 16 general purpose registers located in RAM, they can be used as either accumulators, index registers, temporary stores or for buffers, however the drawback is that it cannot operate without a supporting RAM chunk.

This architecture gives the unique feature of variable hardware and software with 64 instructions, which can directly address 32 k words each 16 bits. There is a built in multiply divide capability with a register to register time of 4.7 $\mu \mathrm{sec}$ with 15 levels of external interrupts and also a vectored interrupt system.

4.7. Availability and the Final Choice of Processor.

The final choice after removing the obviously unsuitable and the unavailable, depends mainly on the application and also on a good general knowledge of the particular microprocessor. The designer selects to suit his own requirements and also if possible to simplify the design.

Innovations take place daily and a choice can only be made at the actual time into the types readily available, it is not possible to wait too long for further developements, as this produces a vicious circle, leading to time wasting frustration. There were unfortunately not many good systems available, when the choice had to be made and the following were the considerations taken into account when making the difficult decision.

4.7.1. Industrial Standards.

The most widely used processor in British industry at the time was the 8080 family, making this family compatibility almost a must, but future developement was also strongly considered. Further research along these lines showed that some industrial thoughts were being given, but not yet implemented, to the 280 a far more powerful tool, not only superior but completely software compatible with the 8080 industrial standard. Hence the Z80 was considered to be short listed, from the point of view of industrial standards.

4.7.2. Processing Speed and Power Requirements.

The main processor application was for machine control making execution speed and sampling rate important factors. The speeds ranged from the slow Cosmac at $6 \mu s e c$ to the fast 6502 at $1 \mu s e c$, however the 6502 was sadly lacking in the necessary machine control Instructions and the 8 bit index register facility finally placed this chip out of the running.

The 280 was the next fastest at $1.6 \mu \mathrm{sec}$ with a massive and powerful set of 158 , or 700 expanded, instructions with the maiority ideally suited to machine control, with a 16 bit index register pair. The 6800 was next at $2 \mu \mathrm{sec}$ and a clear set of 72 instructions, giving a choice of two processors in this group.

4.7.3. The Interrupt Structure.

Any serious work in machine control must rely heavily on the interrupt structure, unless the processor is to be completely tied up with servicing. Processors should be free to perform other tasks without waiting for a signal, such as an emergency stop, yet obey it when it occurs, the interrupt routine takes care of both of these conditions.

Some applications require various interrupts of varying importance, answering each in the correct order, this is called a priority queueing system. Investigation of the various processors regarding interrupts was found to be very disappointing.

The Cosmac and F8 types had only a single level of interrupt structure, the 2650 had only a vectored interrupt, the 8080 had only a multi level vectored interrupt, but the 6800 and the 6502 both had a vector interrupt and a non maskable system, all of these processors were sadly lacking, from the point of view of interrupt structure, the only processor having all the required interrupt attributes was the 280 .

The 280 processor has the non maskable interrupt of the 6800 and 6502, the vector interrupts of the 6800.6502 and 8080 and also an unique vector system for polling many interrupts of varying importance.

4.7.4. Indexing and Registers.

By now the choice had been made to use an 8 bit processor, due to cost, availability, documentation and other factors, hence a careful investigation was required of the 8 bit types, to ensure that at least some of the advantages of the 16 bit machines could be utilised.

A pleasant surprise was found when investigating one of the 8 bit processors. The 6502 was the worst having only an 8 bit stack pointer and even the index registers were made up from two 8 bit registers. On the other hand the Cosmac had an unique hardware appointment of 16 general purpose 16 bit registers , hence it was ideally suited for this task. Unfortunately the Cosmac failed on too many other requirements, such as interrupts and time.

The next best was the Z 80 which scored heavily in this section due to the unique advantages, which included two 16 bit index registers, a 16 bit stack pointer and a very unusual arrangement of 8 bit register pairing. Three pairs of registers could be combined to produce three 16 bit registers. These six registers have individual opcode instructions, allowing them to be fully utilised as six 8 bit registers and also another set of instructions to control them in the 16 bit mode. There are also a full set of duplicate registers with equal control.

This large amount of 16 bit facilities make this 8 bit processor virtually into a 16 bit machine , for many applications.

4.8. Lihterary Survey.

When this research work began, it was soon realised that the anount of literature on the open market, was very linited indeed and because the development had originated in the United States of America, obtaining literature required contacting importers or United Kingdom representatives, who at that time were very few and far between. There was also a scarcity of books on the subject and in fact the book situation has only improved during the $1980^{\circ} \mathrm{s}$. All the books stated in the bibliography were obtained during the very late stages of this research work. Luckily any one now following this work will find a good selection of quality books on the subject.

The poor state of available Iiterature greatly affected the choice of microprocessor chip and is also reflected by the author's own attempt to slightly rectify the situation by even writing articles and publishing his own book on the subject (1), this venture being very successful and resulting in an international second edition due to many requests from Germany and Holland for copies of the publication.

Details now follow of the $Z 80$ microprocessor which was the author's final choice of controlling device.

CHAPTER 5.

CHAPTER 5.

THE Z 80 MICROPROCESSOR SYSTEM.
5.1. The Final Choice.

After appraising the advantages and disadvantages of the various types of microprocessors , the correct system to use became quite clear and the final choice was made to utilise the Zilog $z 80$ microprocessor chip, this system consists of three main components :-
A) The Central Processing Unit.
B) The RAM and ROM Memories.
C) The Interface circuits to the Peripheral devices.
5.1.1. The Central Processing Unit.

This is the heart of the microprocessor based system, the function of which is to obtain instructions from a memory section and perform the preprogrammed operations. The memory is utilised to hold the data and instructions until they are processed.

Figure 5.1. indicates the internal structure of the Z 80 central processing unit and shows the mafor elements and registers, these registers will be explained in turn.

8 Bit
Data Bus.

13 CPU and Systeg
Control Signals.

16 Bit
Address Bus.

Fig. (5.1.) Z80 CPU Architecture.
5.2. The $Z 80$ Special purpose Registers.

5.2.1. The Programme Counter.

The programme counter holds the 16 bit address of the current instruction being fetched from the memory , it is automatically incremented after the contents have been transferred to the appropriate address lines, however a programme jump will overwrite the value stored in this counter and execution then continues from the new value stored in the counter.

5.2.2. The Stack Pointer.

The stack pointer holds the 16 bit address of the current position of the top of the stack memory , this location is within the system's own Random Access Memory. This external stack memory is organised as a last in and first out or LIFO data file. The data can be pushed onto the stack memory from a specific central processor register and popped off again from the stack back into the register when required for further use. The data popped off is always the last data that was pushed on.

The stack allows simple implementation of multi level interrupts with unlimited subroutine nesting and the simplification of many types of data manipulation.

5.2.3. Two Index Registers. IX and IY.

These are two independent index registers that hold a 16 bit address, used for indexed addressing modes.

The index register is used as a base to point to a region in memory, from which data can be retrieved.

An additional byte is included in the indexed instruction to specify the displacement from this base.

5.2.4. Interrupt Fage Address Register. I.

The $Z 80 \mathrm{CPU}$ can be operated in a mode, where an indirect call to any memory location can be achieved in response to an interrupt.

The I register is used to this end, it stores the high order 8 bits of the indirect address, while the intermupting device provides the lower 8 bits of the address.

5.2.5. Memory Refresh Register R.

The $Z 80$ CPU contains a memory refresh counter, to enable dynamic memories to be used, with the same ease as static type memories. This 7 bit register is automatically incremented after each instruction fetch.

The data in the refresh counter is sent out on the lower portion of the address bus together with a refresh control signal, while the CPU is decoding and executing the fetched instruction. This mode of refresh is totally transparent to the programmer and does not slow dow the CPU operation.

5.2.6. Accumulator and Flag Registers.

The CPU includes two independent 8 bit accumulators, with their associated 8 bit flag registers.

The accumulator holds the result of 8 bit arithmetic or logical operations, while the flag register indicates specific conditions for 8 or 16 bit operations, such as indicating if the result of an operation was equal to zero.

5.3. CPU Internal Registers.

5.3.1. General Purpose Registers.

There are two sets of general purpose registers, $B C$, $H L$, and $D E$ with their complementaries BC^{\prime}, $\mathrm{HL}{ }^{\prime}$, and DE '. Each set contain six 8 bit registers that may be used individually as 8 bit registers, or as three 16 bit register pairs.

At any one time the programmer can select either set of registers to work with, through single exchange commands, which transfers the entire set.

In systems where fast interrupt response is required, one set of general purpose registers and an accumulator with a flag register may be reserved for handling the fast routine and another set may be utilised in the main programme. Only one simple exchange command need be executed to exchange all the registers.

This facility greatly reduces the interrupt service time by eliminating the requirement for saving and retrieving the register contents in the external stack during the interrupt or subroutine processing.
5.3.2. Arithmetic and Logic Unit. (ALU). The arithmetic and logical instructions of the CPU are executed in the ALN.

Internally the AIJ communicates with the registers and the internal or external data bus. The functions performed by the ALU include :-

ADD	SUBTRACT	LOGICAL AND
INCREMENT	COMPARE	LOGICAL OR
DECREMENT	SET BIT	LOGICAL EXC OR
ROTATES	RESET BIT	TEST BIT
LEFT SHIFT	RIGHT SHIFT	

5.3.3. Instruction Resister and CPU Control.

As each instruction is fetched from the memory it is placed in the instruction register and then decoded. The control section performs this function and then generates and supplies all the necessary control signals to read or write data to and from the registers.

5.4. $Z 80 \mathrm{CPU}$ Pin Description.

The 280 CPU (4) is packaged in the industrial standard 40 pin dual in line package. Figure 5.2 shous the input and output pin configuration and the function of each pin is described below :-
5.4.1. The Address Bus. (A_{0} to A_{15}). The pins are designated by A_{0} to A_{15} and the chip constitutes a 16 bit tristate active high output, making up the 16 bit address bus. This bus provides addresses for memory up to 64 Kbytes (where 1 Kbyte $=1024$). The bus also provides for data exchange within the system and for input and output data exchange with an external peripheral.

The input, output addresses use the lower eight address bits to allow the user to directly select up to 256 input or output ports. A A_{0} is the least significant address bit and during the refresh time the seven lower bits contain a valid refresh address.

Fig. (5.2.)
5.4.2. The Data Bus. (D_{0} to D_{7})

The data bus is used for data exchanges with the memory or any input output device.

It constitutes of an 8 bit bidirectional tristate set of input output lines, which are active high.
5.4.3. Machine Cycle. ($\overline{M_{I}}$) This is an output line which is active low and indicates that the current machine cycle is the "Op Code Fetch Cycle", of an instruction execution.

The M_{1} signal is generated for a two byte opcode as each opcode is fetched.
M_{1} also occurs with the " $\overline{\text { IORQ " signal to }}$ indicate an interrupt acknowledge cycle.

5.4.4. Memory Request. ($\overline{M R E Q}$)

The memory request signal "MREQ" is a tristate active low output, which indicates that the address bus holds a valid address for a memory read or write operation.

5.4.5. Input, Output Request. ($\overline{M R E Q}$)

The IORQ signal is a tristate output, active low, which indicates that the lower half of the address bus holds a valid I / O address for an input/output read or write operation.

An IORQ signal is also generated with an MI signal, when an interrupt is being acknowledged, to indicate that an interrupt response vector can be placed on the data bus.

Interrupt acknowledge operations occur during MII time, while the input/output operations never occur during the MI time.
5.4.6. Memory Write. ($\overline{W R}$)

The signal is a tristate, active low output, indicating that the CPU data bus holds valid data, to be stored in the addressed memory, or input/output device.

5.4.7. Memory Read. ($\overline{\mathrm{RD}}$)

The signal is a tristate active low indicating a CPU request for data from memory or an input output device, it is used to gate data on to the CPU data bus.

5.4.8. Refresh. ($\overline{\operatorname{RFSH}}$)

The signal is an active low output indicating that the lower 7 bits of the address bus contains a refresh address for dynamic memories, the "MREQ" signal is used to refresh read the memories.

5.4.9. Halt State. ($\overline{\text { HALT }}$)

The signal is an active low output indicating that the CPU has executed a software "HATT" and is awaiting either a non-maskable or a maskable interrupt with mask enabled. While halted the CPU executes "NCPS" to maintain the refresh activity.

5.4.10. Wait. (WAIT)

This active low input signal indicates that the addressed memory or input output devices are not ready for data transfer. The CPU continues to enter "Wait" states as long as this signal is active, to allow devices of any speed to be synchronised. No refreshing occurs.

5.4.11. Interrupt Request. ($\overline{\text { INT }}$)

This is an active low input generated by an external device, the request is honoured at the end of a current instruction if the internal software controlled interrupt enable flip flop [IFF] is enabled and if the "BUSRQ" is not active.

When the CPU accepts the interrupt, an acknowledge signal "IORQ during M_{1} time", is sent out at the beginning of the next instruction cycle. The CPU can respond to an interrupt in three different modes.
5.4.12. Non Maskable Interrupt. ($\overline{\mathrm{NMI}}$)

The signal is a negative edge triggered input. The "NMI" request line has a higher priority than the "INT" signal and is always recognised at the end of a current instruction independent of the status of the interrupt enable flip flop. The "NMI" is received and automatically forces the 280 CPU to restart to memory location 0066 hexadecimal.

The programme counter is also automatically saved in the external stack so that the user can return to the programme that was interrupted. Continuous "WAIT" cycles can prevent the current intruction from ending and a "BUSRQ" signal will override the "NMI" signal.

5.4.13. Reset. ($\overline{\text { FESET }}$)

This signal is an active low input which forces the programme counter to zero and initialises the CPU by:-
a) Disabling the interrupt enable flip flop.
b) Setting the I register to address 0000 .
c) Setting the R register to 0000 .
d) Setting the "Mode 0 " interrupt.

Note however that the PIO is NOT reset. During the reset time the address and data buses go to a high impedance state and all output control signals go to the inactive state with no memory refreshing.
5.4.14. Bus Request. (BUSRQ)

The bus request signal is an active low input and is used to request the CPY address bus, data bus and the tristate output control signals, to go to a high impedance state so that other devices can control these buses.

When "BUSRQ" is activated the CPU will set these buses to a high impedance state, as soon as the current CPU machine cycle is terminated.
5.4.15. Bus Acknowledge. ($\overline{\mathrm{BUSA} K}$)

The bus acknowledge signal is an active low output used to indicate to the requesting device that the CPU address, data and tristate control bus signals have all been set to their high impedance state and that the external device can be used to control those signals. No memory refreshing occurs and the CPU requires communicating devices to assist in this operation and control, it also requires an oscillator or clock to keep all the operations under strict time control.

Figure 5.3 shows the oscillator that is utilised to clock the central processor unit at the frequency of 2 MHz and this oscillator consists of two invertors in a 74504 (3) hex inverter integrated circuit, driven by and controlled with a 16 MHz quartz crystal for frequency stability. The output drives a 74 LS163 (3) synchronous binary counter chip that provides outputs at $1 \mathrm{MHz}, 2 \mathrm{MHz}$ and 4 MHz which may be selected to drive the central processor at the desired frequency. In this design the 2 MHz oscillator output was selected because this matched the speed capabilities of the available support memory devices.

Page 79

5.5. The CPU Peripherals.

Immediately after being reset the $Z 80$ central processor fetches the first instruction from memory location 0000 , hence there must be some Read Only Memory at this location so that the contents can be preprogrammed but not corrupted by any error on the part of the operator. It is thus usual to position the monitor or administration programme at locations $0000,000 I$ etc. This system has the firmware located in two 1 K EPROMS at addresses 0000 to 03FF hexadecimal and at 0400 to 07FF hexadecimal.

Figure 5.4 shows the circuit which is connected directly external to the central processing unit , this circuit controls the data, address and all other lines.

Figure 5.5 shows the monitor EPROMS connected to the address and data bus. These EPROMS (5) (6) are selected by a combined signal derived from the $\overline{R D}$ and $\overline{M R E Q}$ signals and the address lines of A_{0} and A_{11}.

5.6. Visual Display.

A microprocessor system of this type requires that the operator be presented with visual data feedback as programme developement may require the presentation of several thousands of characters, also the cost of displaying these alpha numeric characters should be minimized. Hard paper copies are not always required but only confirmation of correct typing, or the verification of a particular memory location.

The method chosen for this research work is a "Memory Plane Peripheral" and is not sited at the ports as in conventional input output methods. It consists of integrated circuit logic blocks which share a section of the system memory, this block is designed to present a radio frequency modulated composite video signal to a standard domestic television set, in such a way that the contents of the memory section, is presented and interpreted as standard characters. The CPU is given absolute priority and this prevents any possible access conflict. The screen is blanked off during the CPU access time.

The system operates by mapping a section of memory onto the visible screen plane, the position of the symbol is a function of the address in memory. The symbol itself is a function of the least significant 7 bits of data at that particular memory location.

This section of screen memory is called the "Video RAM" and is operated by switching the memory chip address lines between the CPU address bus and a counter divider chain so that the hardware continuously cycles the address lines to the memory. Jamming is prevented by placing a transmission gate between the data bus and the output pins.

Being able to utilise a standard domestic television set reduces the cost from at least $£ 600$ for a VDU, down to about $£ 80$ for a small screen television set. Figure 5.6 indicates the layout of a typical RAM and gate connection utilised in this design to control the flow of video data.
INPUT.
DATA BUS
合

DATA
BUS.
INPUT.

$$
\begin{aligned}
& \text { OUTP DUT. } \\
& \text { OUTP }
\end{aligned}
$$

5.7. The Character Generator.

Each address for the video RAM is latched and used to address a large ROM called the "Character Generator".

The output of this ROM has been pre-programmed to provide the video dot pattern, of part of a character, depending on the particular television raster row, or the character.

A composite video output is available consisting of video blanking pulses, frame and line synchronising pulses and the data from the character generator.

Details of the electronic input and output to the character generator are given in the following diagram, figure 5.7.

5.8. The Keyboard.

The keyboard is arranged to look like a standard set of "QWERTY" characters, however no switches are used to obtain key closures. The action occurs by using the magnetic saturation of a pulse transformer in each key, thus avoiding mechanical contacts, giving virtually unlimited life without contact bounce.

Electronically the keyboard is arranged as a single port peripheral with a port address of " 0 ". Hardware realisation is by utilising two integrated circuit packages to obtain latched outputs with gated inputs, thus 14 lines are available to port " 0 ". The 14 lines consist of 8 input and 6 output lines.

Further use has been made of the output lines by choosing a 6 bit latch and using only two of them for the keyboard, these two lines drive the clock and reset inputs of a counter decode package, whose outputs are connected to columns of keys.

Keyboard details follow in the next diagram. figure 5.8. and figure 5.9 shows the reverse side of the electronics of the keyboard and microprocessor controller.

Fig.(5.9.) BEHINDTHE KEYBOARD.

Page 90

The columns of keyboard keys form a matrix, which is completed by the 6 row pulse sensing lines, each driving a transistor amplifier, which is connected via the output flip flops and the keyboard cable to the port input transmission gate.

The output command signals to port " O " cause the data bus to be latched, while the input commands, cause the keyboard row lines to drive the data bus.

The CPU thus has the opportunity to determine the key that was pressed and the software in the monitor programme performs the function of contact bounce elimination, albeit with this particular keyboard, the problem is already eliminated. The CFU also has the task of determining the change of state and the hexadecimal code assignment of each key, according to the position in the effective 8×6 matrix, which it simulates.

The next two diagrams give details of the keyboard decode and timing in figures 5.10, 5.11 and details of the monitoring characteristics are now considered.

Page 92
Γ

$\xlongequal{\text { Fig. (5.11.) }}$

THEMONITOR SYSTEM.

CHAPTER 6.

THE MONITOR SYSTEM.
6.1. The Memory Search or Modify Key. (M).

The monitor system or administration programme has been inserted into two 1 K byte EPROMS of the 2708 type (4) (5) which reside at memory locations $\emptyset \emptyset \varnothing \varnothing$ to 07 FF hexadecimal. Their programe execution is controlled from the keyboard as follows :-

To operate the microprocessor :-

1. First press the RESET key, this initialises the system. Note however that if the VDU is used to replace the TV monitor then extra instructions are required, these may be found in section 10.6 .3 2. Next press the M key and the spacebar which is the large bar across the bottom of the keyboard.
2. Now type $\phi \mathrm{C} 8 \phi$ ensuring that $Z E R O$ is used, it lies on the top right of the keyboard and has a stroke through the ϕ.
3. Next press the special NEWLINE key on the middle right. The Screen should now show :- $\emptyset \mathrm{C} 8 \phi 43$ (or some other pair) The $\varnothing \subset \subset \phi$ is the memory location being M (Modified) and the 43 , or some other pair, is the contents of that location, which may be any pair of hexadecimal digits. From now on every " 0 " found in the programme should be understood to mean " \varnothing " on the keyboard.

If two hexadecimal digits such as " $2 \mathrm{~A}^{\prime}$ are typed followed by the "Newline" key, then the system will automatically insert the " 2 A " into memory " $0 C 80$ " and overwrite the previous contents. The screen should then show:-
$0 C 81$ A3
(The A3 may be any pair of hex digits)
If another pair of hexadecimal digits such as "B2" are typed followed by the "Newline" key, then again the contents of memory location "OCR1" will be changed to "B2".

This procedure may be continued until all the required memories have been changed, to terminate the procedure a (Full stop) must be pressed followed by the "Newline" key, the system would respond and terminate the memory changing procedure. It is then possible to check on the memory entries as follows:-

Press RESET (The hidden key)
Press M space bar 0c80 Newline
The screen shows:-

$0 C 80$	$2 A$	Press Newline
$0 C 81$	B2	Press Newline
$0 C 82$	-	Press Newline
$0 C 83$	\ldots	Press Newline

Where -- and . . are the previously entered hexadecimal digits. To terminate press Newline
T. (Tabulate or Type command.)

The previous block of memory may be listed in one operation by using the " T " command, however the memories can only be looked at with this command, they cannot be changed.

Press RESET
Press T spacebar 0C80 spacebar $0 C 90$ Newline

The screen should show:-
0C80 2A B2 CC 34 5D AA 7698
$\begin{array}{lllllllllll}0 & 34 & \text { F5 } & 66 & 23 & 87 & 53 & \text { CB 5A }\end{array}$
nC90 EA E4 56786424 DF FA

The first four numbers of each line are the memory locations and the hexadecimal pairs following are the contents of the memories, eg $0 C 80$ contains 2 A , $0 \mathrm{OC81}$ contains B 2 , OC82 contains CC.

The numbers on the screen may differ because these are only examples.

A final reminder, the " T " key can only look at the memories, the " M " key must be used to modify them.
E. (Execute the programme command.)

An inserted programme may be executed [RUN] as follows, a sample programme is included in the chapter on machine code.

Press E spacebar 0C80 Newline The programe will now execute starting with the first instruction written at memory "OCSO", or any other location following the "E" command.

On this paxticular machine it is possible to start from any address in the range "OC80 to about OFEO", the last address depends on how much of the system stack has been used. The programme must also be terminated correctly, here are some examples:-
a) 76
t) $D F 5 B$
c) 67
d) E7

Halt.
Return to the system monitor.
Reset.
Breakpoint.

The best method is to end with "DF $5 \mathrm{~B}^{\prime}$ ", this gives a safe return to the monitor system.

B. (Breakpoint command)

If a programme is executed by the "E" command, it may be stopped by one of the correct terminations or by the " B ", breakpoint command as follows.

| Press | B spacebar | $0 D 20$ | Newline |
| :--- | :--- | :--- | :--- | :--- |
| Press | E spacebar | $0 C 80$ | Newline |

If a correct programme has been inserted starting at location $0 C 80$ then the system will execute that programme, but will stop automatically at location OD20.

Note that the breakpoint address MUST be the start address of an instruction.

Eg OD20 C3 40 OF
It would NOT be possible to stop at OD21 or OD22, because they are both in the middle of the three part instruction "C3 40 OF".

The screen would then show the contents of all the registers, when execution stops, of the instructions from $0 C 80$ up to but not including the step at OD2O.

The meaning of the screen display can be found under the details for the " S " command.
S. The Single Step Command.

The "S" or single step command allows the operator to step through a programme by one instruction at a time.

To operate the command :-
Press $\quad \mathrm{S}$ Spacebar 0080 Newline

The processor would execute only the instructions written at location ncre, which could be 1, 2,3 or 4 opcodes long. It would then stop automatically at either 0C81. 0C82, 0C83 or ncQ4, depending on how many opcodes there were in that particular instruction.

The display would show the contents of the CPU registers at that point in the programme and further executions would be obtained by simply pressing the "Newline" key, for every required operation.

The screen display is an important monitor feature because it allows the user to examine the contents of the CPU registers after each step and if an error occurs, then it becomes apparent at that stage before continuing. The error is corrected by using the memory modify "M" key as explained previously.
Single Step Visual Display.
All the numbers shown are examples and can differ each time, but
the layout and meaning are identical.
H.L
Index

H
B. C
. E
-L
F
-•••••••
..

Stack	Program	A . F	H. L	D. E	B. C	I	I Index	Y Index	Flags
Pointer	Counter	Regist					.	. \cdot......	
1000	กС80	D3 42	2C 16	AB B5	DD A4	56	AD F6	3455	ZC

$\xrightarrow{\text { Single Step Visual Display. }}$
Fig (6.1.)

Page 101

6.2. Monitor Routines.

The monitor system EPROMS have been programmed to allow the user access to the inbuilt system commands. These subroutines can save the user writing many standard programmes of his own.

The command system subroutines fall into two main categories :-

6.2.1. Restart Instructions.

The "Restart" instructions may be obtained by calling a routine with one of the 280 one byte "RST" codes, as show on the following page. To use the subroutines it is simply required to enter:Eg: $C 7 \quad$ as a programme instruction, the system will recognise this code and call the correct subroutine automatically.

The monitor would interpret this particular coded instruction "C7" as a restart to location " 0000 ", in the monitor EPROM and would thus reset the CPU to reinitialise the command system.

There now follows a list of available " RST " restart command codes.

Monitor Restart Instructions.

Opcode.	Assembler.	Name.	Function.
67	RST OH	START	To reset the CPU.
CF	RST 8H	RIN	Wait for a keyboard input.
D7	$\begin{aligned} & \operatorname{RST} 10 \mathrm{H} \\ & {[\mathrm{Eg} \text { D7 25] }} \end{aligned}$	RCAL	A relative subroutine call, which will call the subroutine at the displacement following the D7.
DF	RST 18H [Eg DF 65]	SCAL	A direct subroutine call, which must be followed by the code number of the required subroutine.
E7	RST 20 H	BRKPT	If $E 7$ is placed at a programe location, then a breakpoint occurs at that programme step [It stops]
EF	$\begin{aligned} & \text { RST } 28 \mathrm{H} \\ & {[\text { Eg EF } 5448} \\ & =\text { the } \end{aligned}$	$\begin{gathered} \text { PRS } \\ 4500] \end{gathered}$	All characters following the EF will be printed on the screen, a "00" will terminate the instruction.
F7	RST 30H	Rout	The character in the accumulator will be displayed on the screen.
FF	RST 38H	RDEL	A wait period will occur. depending on the contents of A .

6.2.2. Subroutines.

The routines may be called by inserting the appropriate machine code following the "DF" call instruction.

The actual monitor system commands such as "E " for "Execute " or " T" for " Tabulate ", may also be called, by placing the equivalent ASCII code figures following the "DF" call.

Egi To call the execute "E" command DF 45. The ASCII code for ${ }^{\text {" }} \mathrm{EN}$ is 45 and when the programme comes to the command " DF ", it will automatically look up the meaning of the command letter code " $45^{\prime \prime}$ and obey the command "E" to execute.

The following pages list the other calls that can be used without writing the routine, simply by utilising one of the automatic bank of calls.

Monitor Subroutines.

Code. Name. Function.
DF 5B MRET Used to end a programme.
DF 5C SCALJ To call a routine, the address must be at location OCOA.

DF 5D TDEL Wait for about 1 second.
DF 5E FFLP Flip bits in port 0.
DF 5F MFLP Turn the tape drive on or off.
DF 60 ARGS Load the registers. $H L=A R G 1$
$\mathrm{DE}=\mathrm{ARG} 2$
$B C=A R G 3$
DF 62 IN Scans the keyboard for an input, but does not wait, sets the carry flag if there was an input.
DF 63 INLIN Obtain an input line and "Blink".
DF 64 NUM Examine the input line and convert a hexadecimal value to a binary value.
DF 66 TBCD3 Output the value in the HL registers in ASCII followed by a space.

DF 67 TBCD2 Output the value in accumulator A in ASCII and add A into the register C.
DF 68 B2HEX Output the value in the accumulator in ASCII.

Code.	Name.	Function.
DF 69	SPACE	Output one space.
DF 6A	CRLF	Output a Carriage returnt Line feed.
DF 6B	ERRM	Output an "Error" message.
DF 6C	TXI	Output the contents of the KL registers in ASCII, then a space, then the contents of the $D E$ registers, then a space.
DF 6D	Sout	Send a string of characters directly to the RS 232 serial port.
DF 79	RLIN	Examine an input line and convert up to ten hexadecimal values, from ASCII to Binary.
DF 7A	BIHEX	Output the least half of the contents of accumulator A in ASCII.
DF 7B	BLINK	Blink the "Cursor" and wait for an input from the keyboard.
DF 7C	CPOS	If HL are set to a position on the screen, then HL will be set to the address of the first character, on that line.

Table Changing Commands.

Code.	Name.	Function.
DF 71	NOM	If the HL registers are set to the address
		of the new output table, then the table
		is automatically changed for output
		routines.
DF 72	NIM	If the HL registers are set to the address
		of the new input table, then the table is
		automatically changed for input routines.
DF 77	NNOM	This call resets the output table back to
		the normal call address.
DF 78	NNIM	This call resets the input table back to
		the normal call address.

It is also necessary to know the routine numbers to place at these tables.

All routine numbers must be placed after the code "DF".

The input and output routine numbers follow.

6.3. Input Routine Numbers.

CODE.	NAME	FUNCTION.
DF 61	KBD	Scans the input keyboard.
DF 70	SRLIN	Scans the serial input port.
DF 74	XKBD	Scans the external ASCII
		keyboard.
		See also the "X" commands.
DF 76	UIN	User specified input routine.
The above can be placed in your own table, or used		
after	code.	

6.4. Output Routine Numbers.

Code.	Name.	Function.
DF 65	CRT	To display on the monitor screen.
DF 6F	SRLX	Gives an output to the serial port.
DF 6E	XOUT	Gives an output to an external
		ASCII device.
DF 75	UCUT	An output to the user's specified
		output routine.

[^1]For example, the " W " command is to "hirite" to the cassette receiver tape. This command can be called within a programme by calling the "ASCII" equivalent code for "W", which is "57", hence to call the " W " command in a programme, the instruction "DF 57" is used.

6.4. Output Routine Numbers.

Code.	Name.	Function.
DF 65	CRT	To display on the monitor screen.
DF 6F	SRLX	Gives an output to the serial port.
DF 6E	XCUT	Gives an output to an external
		ASCII device.
DF 75	UCUT	An output to the user's specified

It is also possible to call routines that are actually command routines themselves.

For example, the " K " command is to "hirite" to the cassette receiver tape. This command can be called within a programme by calling the "ASCII" equivalent code for "W", which is "57", hence to call the " W " command in a programme, the instruction "DF 57" is used.

6.5. System Workspace.

The area of memory from " 0COO to OC7F " is utilised by the system monitor, as a workspace area, thus giving location " OC80 " as the first free available RAM location for user operation.

The memory locations " OCOO to OC6A " are initialised by the system monitor to contain " 00 ", after the reset command. The second section from " OC6B to OC7D " is initialised from a table of values kept within the system monitor EPROM.

Locations " OCTE and OC7D " are also initialised and the following tables indicate the function of each location, within the workspace area.

The user may choose to make use of, or even alter certain values within the workspace table, to good advantage.

System Workspace.

Address.	Length.	Name.	Function.
0 COO	1	Port 0	Copy of the current port 0 .
0001	9	KMAP	Map of the keyboard state.
$\triangle C O A$	1	ARG C	Last processed command.
$\bigcirc C \cap B$	1	ARG N	Number of values in input line.
$\bigcirc \mathrm{COC}$	2	\triangle AG 1	First entered value.
OCOE	2	ARG 2	Second entered value.
¢Cln	2	ARG ?	Third Value.
กC22	12	ARG 4,	Fourth to ninth values.
OCIE	2	ARG 1 ?	Tenth value.
?С2า	1	NUM. N	Number of characters examined.
0.021	2	NUM V	Value returned by NUM.
C.C2?	2	BRK ADR	Breakpoint address.
0.25	1	BRK VAI	Stored value from $B R K$ ADR.
0.26	1	CON FTM	Zero, or -1 for "E" command.
กC2. 7	1	$\mathrm{SK} \cap \mathrm{PT}$	Keyboard option.
OC28	1	SX CPT	X option.
$\bigcirc \mathrm{C} 29$	2	CURSOR	Position of the cursor.
$\bigcirc C 23$	1	ARG X	last command letter.
OC2C	$5 ?$	M N S STK	Monitor stack.
${ }^{\text {nc6 }}$	2	R BC	Restore area for BC registers.

System Workspace. [Continued.]

Address.	Length.	Name.	Function.
0063	2	R DE	Register save area for DE.
0065	2	R HL	Register save area for HL.
0067	2	R AF	Register save area for AF.
0C69	2	R PC	Programme counter save area.

The workspace is table initialised from here on.

0C6B	2	R SP	Stack pointer area.
OC6D	2	SK TABL	Length of keyboard table.
0C6F	2	SK tab	Start of keyboard table.
$0 \mathrm{C71}$	2	SS Tab	Start of routine addresses. [They actually start at 82 H beyond this point.]
0673	2	S OUT	Start of the output routines.
0075	2	S IN	Start of the input routines.
0677	3	SU OUT	Jump to user's specified
			input routine.
OC7D	3	S NMI	Jump to the NMI routine.

6.6. "X" or External Command.

This command provides comprehensive capabilities for communicating with an external device, through the serial input and output ports.

Options are chosen simply by typing in "X" followed by one of the code letters shown below. The option is then automatically configured by the monitor system. It is also possible to configure "odd or Even Farity" with the same command. If the number after " X " ends in zero, the parity is even and if the number ends in one, then the parity is odd.

The options :-

Even.	ndd.	Function.
X 0	$\times 1$.	Support a terminal in full duplex with every
		typed character sent back. Tine feed is automatic
		after carriage return.
X 10	X 11.1	The same but with no line feed.
$\times 20$	$\times 21$	Support a terminal in half duplex, but no
		characters sent back. Inne feed is automatic
		after carriage return.
X 30	$\times 31$	The same but with no line feed, giving the option
		of a half duplex terminal.

6.7. The Z80 Controller.

The interface boards must be directly accessed by the CPU which is under the operator's control.However it is first necessary to understand the architecture of this particular design, before contemplating writing any of the control programmes.

The processor must be operated in "Machine Code" only, the assembly language mnemonics are only used for convenience, to help to explain the system, but can not be used by this machine, due to the limited memory.

The assembly mnemonics used are those of "Zilog UK", who are manufacturers of the $Z 90$ chip. The full list of mnemonics and machine codes may be found in the appendixl and are reproduced by kind permission of Zilog.

6.8. Memory Map of the System.

Abstract

It is important for the operator to know exactly where the various memories of the operating system lie and which is RAM, ROM or EPROM. The following diagram shows the structure of the memory. (Figure 6.2.)

Programmes may be written into the hexadecimal memory locations of RAM, from " OC80 to about OFFF ", but care must be taken at the top end, because the monitor system uses some of the memories from " OFFF " downwards, for the operating stack memory.

Under mormal conditions it is safe to use the locations " OC80 to OFEO ", leaving " OFEl to OFFF " free for the stack. However a stricter check must be kept if the programme is used with many nested subroutines, or if the instruction " PUSH " is used many times.

Nested subroutines and " PUSH " will place more data onto the stack and it is possible for the stack area to come down below " OFEO " and thus run into the programme.

SIZE	LOCATION	DETAILS	UTILISATION
1k 1k	$\begin{aligned} & 0000 \text { to } \\ & 03 \mathrm{FF} \\ & 0400 \text { to } \\ & 07 \mathrm{FF} \end{aligned}$	Contained in the 2708 EPROM and used by the system monitor control.	MONITOR ROM.
1k	$\begin{aligned} & 0800 \text { to } \\ & \text { OBFF } \end{aligned}$	Used to display the system monitor commands and screen programme output.	video RAM.
1k	0000 to OCTF 0080 to OFFF	Shared by the system for tables and reflections. Shared memory to be used for programmes tables. The top part is used by the system for the stack.	
60k	1000 to FFFF	The locations may be used for memory expansion. Memory is NOT FITTED in this location, in the original unit.	MEMORY EXPANSION. NOT YET FITIED.

Fig. (6.2.)

6.9. ASCII Characters.

All the screen characters used in this system are formed by the standard international "ASCII" set, as shown in the next diagram, there is also a set of special symbols.

ASCII is the acronym for :-
A American.
S Standard.
C Code. (for)
I Information.
I Interchange.

The system has been interfaced to operate :-
a) A standard cassette recorder, as a cheap method of storage.
b) A standard UHF domestic TV, for visual display of data.
c) An ASR 33 printer, for a hard paper copy.
d) A VDU, for better displays and graphics.
e) The RS 232 voltage level serial input and output system.
f) The 20 mA current loop system.

All the above systems utilise the following ASCII set.
The following diagram is taken from (1). figure 6.3.

Eg A | | $=$ ASCII $41 \quad[4$ Down and 1 Across. $]$ |
| ---: | :--- |
| 9 | $=$ ASCII 39 |
| d | $=$ ASCII 64 |
| $?$ | $=$ ASCII $3 F$ |

CHARACTER SET.
[ASCII GHARACTER SET.]
ASCII *

A	American
S	Standard
C	Code (for)
I	Information
I	Interchange.

Fig. (6.3.) The International ASCII Set.

6.10. The Memory Mapped Television Screen Display.

The system has been interfaced to operate a standard unmodified UHF domestic television set, to enable the monitor commands to be displayed, it may also produce simple graphics.

The monitor will display one unscrolled title line with 15 lines of 48 characters below the title. This has been achieved by utilising the television screen as a mapping of a configured memory plane peripheral.

The position of each symbol on the screen is a function of the address contained in the video RAM, the symbol itself is formed by the least significant ? bits of data, placed into that particular memory location.

The screen locations are controlled from video RAM at memory locations "080A to OBF9" , as shown by the following diagram. Further details may be found in the chapter on "Sample Test Routines", where examples may be found on how to display the screen characters.
The following diagram is taken from (1), figure 6.4.

0	OBCA	cb	c c	c d	c	c 1	do	d)	d 2	d 3	d 4	d 5	d 6	d 7			d a		-16	17	18	OBF9
1	O80A	0 b	0	Od	0 e	0 f	10	11	12								1 a		36	37	38	0839
2	084 A	4 b	4 c	4 d	4 C	41	50	51									5 a			77	78	087
3	O884	St	8 c														${ }^{9}$ a				b 8	08B1
4	O8CA	ch															d a					O8F1
5	O90A																1 a					0931
6	094 A																5 a					0971
7	0984																9 a					09 BI
8	O9CA	Cr	co	c d	cc	C 1	d 0	d	d?	d:	d 4	d 5	d 6	d 7	d x	ds	d a	- -	16	17	f 8	O9F!
9	OAOA																1 a					043 ,
10	OA4A																5 a					$0 A^{\prime \prime}$
11	OABA																9 a					OAB
12	OACA	cb															d a					OAF!
13	OBOA	Ob	1) ${ }^{\text {c }}$														1 a		-		38	0831
14	OB4A	4 b	4 c	+d	te	41	50	51									5 a			77	78	0879
15	OB8A	sb	8 c	8d	8 e	8	90	91	4?								9 a	---------	66	b 7	h 8	OBB9

6.11. Interfaces to the VDU and Television Set.

The $Z 80$ system as designed and built allows for the connection of many peripherals, but each must be operated under the existing standards of communication. The standards used in the design are:-
a) RS 232 voltage level serial output and input data streams.
b) 20 mA current loop serial output and input data streams.
c) A composite video output at 1 volt level.
d) The UHF modulated output to British TV standards.
e) The UART device operating on 244.14 bits per second.
f) A cassette output consisting of a 1.95 KHz modulated tone, conveying serial data.
g) A cassette input, tone detector.
h) A parallel input and output PIO device.

The microprocessor control of the Ward lathe was envisaged as a part of a Direct Numerical Control system and the availability of existing units are now given.

MIGROPROCESSORSIN
 A DNGCELL.

CHAPTERT.

CHAPTER 7.

THE MICROPROCESSOR IN A DNC CELL.
7.1. Equipment Standards.

When starting the work on the microprocessor control system it was decided to investigate the availability of laboratory electronic equipment and their standards with a view to building up a Direct Numerical Control Cell with interconnected units, the new devices could then be built to match these standards.

The investigation showed that each subunit within the laboratory had been constructed as a complete system, but as yet no attempt had been made to interface one piece of equipment to another, hence no common standard existed. The first task was to decide on the electronic standard to utilise and obtain interface cable sets to this format. The next diagram, figure 7.1 shows the cable sets thus obtained with their connections to the double standard of the RS 232 and the current loop systems. Where possible each interconnection between two types of equipment was made utilising these cable sets. There then follows a list of available equipment in the laboratory for interconnecting into the proposed cell.

Page 124

7.1.1. Availability of Equipment.

a) ASR 33 teletypes.
b) Type 43 teletype.
c) A Mini Nova computer.
d) A micro Nova computer.
e) A standard domestic television set.
f) A standard cassette recorder.
g) An experimenta? $Z 80$ constructed microprocessor.

Some of the above equipment had been purchased and built specifically for the proiect in hand.

```
            A start was made to interface each system into an
integral layout, by connecting two of the ASR 33 terminals as follows.
```

a) ASR 33 terminal to the Mini Nova computer. This interface consisted of simply wiring two of the standard connectors into the output block of the ASR 33 teletype and into the backpanel wiring of the Mini Nova. The following diagram, figure 7.2, shows details of the interconnection.

Fig. (7.2.)
ASR TEIETYPE TO MINI NOVA.

Page 126
b) ASR 33 Terminal to the 280 Microprocessor.

The standard cable set was used to connect the output block of the ASR 33 terminal , however the 280 microprocessor side required an interface circuit to be constructed so as to match the serial output from the $Z 80$ device to the ASR 33 terminal.

The circuit shown in figure 7.3 ensures that all inputs and outputs conform to the RS 232 voltage operating standard. The input side consists of a voltage clipper , two diodes, with a 7406 integrated circuit buffer inverter that gives the correct level of serial output to the UART. The UART 's serial output is passed through a 7406 buffer inverter which drives two de coupled transistors giving the necessary RS 232 output levels. Figure 7.3 illustrates these points and shows the electrical connections between the Z 8 O device and the ASR 33 terminal.

7.1.2. Teleterminal to the Micro Nova.

This interface consisted of interconnecting cables between the teletype output socket and the backpanel wiring slot of the Micro Nova computer. The first three interfaces were not directly connected to the Z80 microprocessor work in the control system but enabled valuable experience to be obtained, regarding voltage levels and various system requirements. This knowledge was found to be invaluable later and enabled the laboratory equipment to be compatible with a larger cell of control devices. Figure 7.4 shows the connections for the teleterminal and Micro Nova computer.

7.2. Z80 Microprocessor to the VDU.

A later part of the developement of the proposed system requires that a device is connected for a better graphic display and so it was decided to interface the $Z 80$ microprocessor to an existing VDU , which could either be utilised for monitoring the programme development or for true graphic displays. The VDU had the facility to be set to the RS 232 standard at various baud rates and advantage was taken of the interface already developed for the ASR 33 terminal , this interface was within the Z 80 microprocessor system .

Utilising the existing interface, originally designed for the ASR 33 terminal enabled a large reduction in component cost to be made. The resulting interconnecting system with the system wires are detailed in figure 7.5.

7.3. $Z 80$ to a Domestic Television Set.

Due to the fact that the developed $Z 80$ system had a memory mapped plane display capability, it was decided to interface the unit to a domestic UHF television set. This gave the system several important advantages, as detailed below:-
a) The VDU could be released for more important tasks, when the system only required simple monitoring facilities.
b) The cost of the UHF television was only in the region of £70, as compared to about $£ 700$ for another VDU.
c) The monitor system could utilise the memory plane to display the contents of the accumulators or registers, when debugging a programme.
d) A video monitor could be used later, by using the standard 1 volt video signal available from the system.

Figure 7.6 gives electronic details of the Video Modulator.

7.3.1. The Video Modulator.

Figure 7.6 showed details of the video and UHF modulation system. The clock frequency of 16 MHz was divided down to provide signals for the correct cycling of the memory address lines and to control the video shifting . The resulting waveforms which generate the video blanking , frame synchronising and line frequency pulses are all combined by the two logical AND gates, 74 is 11 .

Compatibility with a domestic television set is further assured by utilising the UHF oscillator built around the transistor . The 82 Ohm resistor is utilised to develop a composite video signal at the emitter of the transistor and the signal lies within the frequency range of any UHF domestic television set, which may be used without modification.

7.4. Cassette and PIO Interfaces.

Albeit possible to provide internal memories within any microprocessor system , it is always good practice to keep programme copies in some form external to the machine. The cassette recorder gives an excellent cheap, yet efficient way of storing these programmes , which can be reloaded into the internal memory when they are required. Cassette storage also gives the advantage of reutilising the internal memory for many programmes, without the cost associated with an EPROM only system . It also gives the flexibility for an EPROM to be dedicated to regularly used programmes such as the system monitor .

A communicating device exists that enables a domestic cassette recorder to be utilised for this task without modification . The device is called the UART or universal assynchronous receiver and transmitter and figure 7.7 shows the physical layout of a typical IM 6402 UART (7).
Γ

-Fig. (7.7.)

Page 137

7.4.1. UART Interface.

Figure 7:8. : shows the internal interface required to operate the UART, so that it may communicate with the external devices. The serial data is modified by the associated gates to provide several important standard output signals.
a) Cassette Output.

The output is available to drive any domestic tape recorder or cassette unit and consists of groups of serial data, compatible with industrial recording practices.
b) RS 232 Output.

This controlled output voltage is available to feed a printer, or a VDU, or a teletype and has been set up to operate on the international " RS 232 " standard.
c) 20 mA Output.

Flexibility is provided by a second alternative to the " RS 232 " standard, this is known as the " 20 mA current loop", which can drive any system configured to operate on this loop standard.

d) A third oscillator is provided internally and consists of a 555 type of integrated circuit chip (3) with associated circuitry which may be adjusted in frequency by utilising a variable resistor. To comply with the data format of teletypes operating at their standard rate of 110 bits per second, it is necessary to set the oscillator frequency to 1760 KHz and use two stop bits after the data stream.

Further improvement is possible as shown in figure 7.9, this enables a faster rate of 300 Baud to be obtained. Modern equipment are generally ad.justable and their next fastest rate above 110 Baud is 300 Baud. The required modification consists of inserting a change over switch and an extra resistor allowing the new Baud rate to be accurately tuned. This rate must be set accurately to match the speed of the communicating device.

Page 141
L

7.4.2. UART Timing.

The rate at which data is shifted is determined by applying a correctly generated clock pulse, to the receiver and transmitter inputs. The source of the clock can be provided by one of three types of generators:-
a) The main microprocessor system has a 16 MHz crystal oscillator with dividers to bring the fundamental frequency down to 3.90625 KHz , so that it may operate the UART at 244.14 bits per second. The UART always divides the clock frequency by 16 , to obtain the bit rate.

A stop and start bit is added to each byte resulting in 10 bits, for every transmitted word. If pin 36 of the UART is connected to the +5 volt rail, then an extra stop bit is added by the UART, this is required by some systems.
b) An external oscillator may be applied to pins 17 and 40 of the UART, this external clock would then control the transfer rate.

7.5. Cassette Denodulator.

It is necessary to provide a tone detector circuit when receiving data from a cassette recorder because the playback signals consist of a series of tone bursts corresponding to the incoming data stream. Figure 7.10 shows such a tone detector which receives the recorder tone burst by way of two emitter coupled transistors.

The circuit output is first fed into a dc coupled amplifier and the bursts are processed by the 555 type integrated circuit (3) and the associated components, to recover the conventional logic levels from the tone signal. The serial output is then fed into the UART at pin 20 for further processing and converting from the serial form to parallel data suitable for the CPU bus and control system.

7.6. The PIO.

It is not possible generally to connect the microprocessor CPU directly to the outside world or electronic peripherals for several reasons :-
a) The incompatibility of voltage and logic levels.
b) The incompatibility of digital and analogue signals.
c) Fower , driving , sinking and sourcing requirements.
d) The lack of buffering, resulting in a catastrophic CPU and thus system failure should a fault occur or a design error be produced in the external device.

All these problems may be overcome by fitting family devices such as the input output parallel controller known as the PIO. The required conversions to signals and levels generally occur within the family chip. Figure 7.11 shows the physical layout of the PIO integrated circuit chip. The chip is numbered MK 3881 and is manufactured mainly by the Zilog and Mostek companies (8).

Fig. (7.11.)

7.6.1. The PIO Output Ports.

The MK 3881 controller chip is an ISI package from the 280 microprocessor family set (8) and requires connection to the CPU for control signals to and from the outside world , via two sockets or ports designated Port A and B. The PIO has the register addresses defined by hardware select logic, but each function is programmable by the controlling CPU. The device interfaces to the CPU and to the user circuits by providing 16 lines , 8 via Port A and the other 8 via Port B, the lines may be defined , by the PIO , to be inputs, outputs or a mixture of both. The PIO can also provide additional handshake signals to enable two way communication with a further external device.

Figure 7.12 shows how the circuit was implemented in this particular design , data is sent from the CPU along data lines $D B C$ to $D B 7$ inclusive . The input and output signals for both ports enter and leave on the data lines $B O$ to $B 7$ and $A O$ to $A 7$ inclusive. Handshake lines are provided by signals $\overline{\mathrm{BSTB}}$ and $\overline{\mathrm{ASTB}}$ with their associated signals $\overline{\operatorname{BRDY}}$ and $\overline{\operatorname{ARDY}}$. The PIO also has interrupt control logic so that it can deviate from the programme execution by a change of external logic state.

The following chapter deals with how the interfaces may be controlled and gives example routines.

Page 148

INTERFACECONTROL
 ROUTINES.

CHAPTER8.

CHAPTER 8.

INTERFACE CONTROL ROUTINES.
8.1. Communicating in Machine Code.

There has been a communications problem in history, even back to the time of "Adam and Eve", the inability to communicate resulting in disastrous results. But no matter how complex was early man's problems, they seem minor compared to the barrier confronted today in attempting to communicate with a computer or microprocessor.

Our language consists of words such as "Add or Store" and albeit easily understood by the modern person, they still mean absolutely nothing to a microprocessor; a machine understands only machine language which today is in the form of "Binary Bits", with "O" representing the electrical "OFF" condition and "1" representing the electrical "ON" condition.

A simple instruction such as "Add quantity A to quantity B " would look like " 10000000 " in machine code, it is then a simple natter for the nicroprocessor to deal with such an instruction, but a very arduous task for a human to follow and understand such numbers, especially when attespting to decode a full page of machine code such as :-

Eg 01100111,1101 1110, 11100001,11000010 , etc.

Nevertheless when computers were in their infancy, this was exactly the way man communicated with them. Programmes were entered with binary switches, which was very slow and errors became prevalent.
The introduction of the keyboard greatly simplified
data entry, machines could then be instructed by easier numbers
externally, such as "Cctal or Hexaciecimal" numbers. An "Octal"
number is one expressed to the base of "8", a "Hexadecimal"
number is one expressed to the base of " 16 " and a "Denary"
number is one expressed to the base of " 10 ", which is the one
we use in every day life.

When a number is written to a different base, the number itself does not change, but only the way in which it is expressed.

For example, the "Denary" number 159 , (One hundred and fifty nine.), can be expressed in various ways as shown below:-

Denary	$=$	159	Base 10.
Binary	$=$	10011111	Base 2.
Cctal	$=$	Base 8.	
Hexadecimal $=$	$9 F$	Base 16.	

A number is now entered via a keyboard control system that converts the "Hexadecimal" number into the correct "Binary" bit patterns, so that the microprocessor can deal with them. This method ensures that less key closures are required by the operator , enabling faster and more accurate programming to occur.

Albeit the keyboard is a big step forward, it still has drawbacks, because the human mind finds "Hexadecimal" numbers difficult to comprehend, unless the operator is trained. If a programme is to be inserted it must first be converted into the "Hexadecimal" system, this requires the use of a special table or chart called the "Op Code Table".

For example, the previous operation of "Add quantity A. to quantity $B "$. had a binary equivalent of "1000 0000.", which when converted into "Hexadecimal" gives the code "80", to compound the problem, an opcode table may have several hundred entries to look at, before finding the correct code.

To review the problems
To write a programme for keyboard entry
it is necessary to :-
a) Write the programme in terms of human understanding.
b) Look up the appropriate " Opcode" in a special table.
c) Rewrite the programme in "Hexadecimal " form.
d) Enter the hexadecimal codes via the keyboand.
e) Decode the hexadecimal codes to the " Binary" machine code language.

There is however a new step that has been inserted, above the machine code hexadecimal language, which is called the "Assembly Language".

This language has two distinct advantages over machine code:-
i) Each instruction is represented by a "Mnemonic " or memory aid.

The mnemonic for the previous "Add quantity A to quantity B" is simply " ADD A, B ".

Each mnemonic can be easily identified with the associated instruction and with regular use become very easy to remember.
ii) Addresses may be symbolic. This means that a jump or call may be identified by a $\begin{array}{lll}\text { label such as :- } & \text { DEL } & \text { (For delay) } \\ & \text { PROG } & \text { (For programme) }\end{array}$

The mnemonics and symbolic addresses are alphanumeric, a combination of letters and numbers and cannot be entered with the " Octal " or "Hexadecimal " keyboard. This is not in fact a large disadvantage because they can be entered with a standard " QWERTY " typewriter keyboard, making the data access even easier and the office typist could be utilised to enter the programmes without further training.

The use of a standard typewriter also means that the operator need only be able to type, not understand the mnemonics. This fact enables programmers to share the task of writing and the normally laborious, to the programmer, entering of the programme into the computer.

There are two popular alphanumerical input and output devices used today, these are the "Teletypewriter" and the "Video Terminal", or VDU as it is commonly called.

The teletypewriter enables programmes to be typed into the microprocessor and the input and output is then printed on paper, giving the operator a permanent record of the work in hand.

The video terminal or VDU has a television like monitor replacing the paper printer, the data is displayed on the screen and video graphics can be obtained under the microprocessor control, however no hard paper copy is possible.

These codes and their assembly equivalents may be found in appendix 1.

8.1.1. Test Routines and the Screen Display.

The system has been designed to interface into a standard type of domestic UHF television set, by using the television screen as a memory plane peripheral video monitor. This means that not only can the television monitor be used to display the memory contents by using the M command key, or to display the register contents , by using the R command key, but also to act as a simple low resolution 16 by 48 character display area.

There now follows a simple example programme to illustrate the display principle, by indicating how a number or symbol may be displayed on the video monitor screen at a set position. It is also possible to obtain moving displays and further details may be found in the authors book on machine code programme examples (1).

8.1.2. Screen Display.

This programme will display "A5 ? " on the video screen.

Memory	Opcode.	Mnemonic.	Meaning.
0C80	21 AO 09	LD HL, 09AO	Set the HL register to
			point to the screen centre.
0083	3E41	ID A, 41	Ioad A with the ASCII code
			for the letter A.
0085	77	LD (HL) , A	Display the letter A.
ก086	$? 3$	INC HL	Move the screen pointer.
3087	2.3	INC HL	Nove the screen pointer.
nc9\%	3 3 35	LD A , 35	Load A with the ASCII code
			for the number 5.
OCRA	77	LD (HL) , A	Display the number 5.
ОС¢ ${ }_{\text {B }}$	23	INC HL	Move the screen pointer.
OC8.	23	INC HL	Kove the screen pointer.
OC8D	3E: 3F	LD A , 3F	Ioad A with the ASCII code
			for the symbol ? .
OCRF	77	LD (HL) , A	Display the symbol ?
ncan	DF 5B	MRET	Return to the system

The previous programme may be executed by following the sequence below, note that "Spacebar" is the large long bar on the bottom of the keyboard and that "Newline" is a special key on the right of the keyboard. "Reset" is the hidden key on the right.
Press RESET (This will clear the screen)
Type E Spacebar $0 C 80$ Newline

The programme will now execute starting from memory location 0080 and will display :-

A 5 ?
The display should be near the screen centre, the coded instruction "DF 5B" will allow the system to automatically return correctly to the monitor system, which will wait for further commands.

The message may be moved in screen position by changing the address "09AO" at location 0C81 and 0C82 , try 09BO, note that the address is entered in reverse order as BO 09.

8.2. Interface Test Programme.

The system has been designed to operate two banks of 8 control lines via 74IS86 TTL address gates (9) (10), the gates are connected to address lines A_{2} to A_{7} inclusive . Address lines A_{0} and A_{1} are also used, A_{0} being utilised to gate in either of the two banks of 74LS175 latches, a bank of latches can only be selected if all of the inputs to the 74 LSI 10 gates are at high logic, ie at the +5 volt level. The gating signals are completed by utilising the WR and IORQ signals from the CPU , a bank is considered by the system to be an output port.

A test board was built and used to confirm the operation of the initial tests on the lathe , in binary , by showing the logic levels on two banks of red and green leds connected to the data lines (3). Figure 8.1 shows the test board layout and there then follows example programmes showing how the signals are obtained to operate the appropriate output line.

IED TEST BOARD LAYOUT.

Fig. (8.1.)

Page 160

8.2.1. Green LED Bank Test Programme.

Merory. Opcode. Mnemonic. Meaning.
OC80 OE 02 LD C , 02 Load register C with 02, the port number of the "Green" bank of leds. Load accumulator A with a signal to light the two end bars of the "Green" leds.

Send out the signal pattern in accumulator A , to the port number contained in register C. ie the "Green".
$0 c 86$
DF 5B MRET
Return control to the monitor system.

8.2.2. Red and Grean IED Bank Test Programme.

Memory. Cponde. Mnemonic. Meaning.

กCR OE C2 ID C, 02 Toad register C with 02 , the port number of the "Green" bank.
$O^{\circ} 2$ 3! $F F$ ID $A, F F \quad$ Load accumulator A with a signal
to light all the green IED.
COO_{4}
ET 70 OUT (C), A
Send the signal to the port number contained in register C. [Green]

NCOS IC INC C Increment C from 2 to 3, the port number of the "Red" bank.

กCR? $2 E R_{1}$ T.D A, Q_{1} Load accumulator A with a signal to light the two end ${ }^{\text {TED }}$ of the red bank of LED.

Send out the signal to the port number contained in register C. [Red]

OCRB DF 5B MRET
Return control to the
monitor system.

8.2.3. A Scanning Test Programme.

The routine will scan the output lines and light the "Red" and "Green" leds, one at a time. This is a very useful routine which may be utilised to test any further device connected to any of the output lines.

Memory. Opcode. Minemonic. Meaning.
0080 LD A. 00 Load accumulator A with a signal to clear all the lines.

OCR2
OE O2
LD C , 02 Load C with the port number
of the "Green" bank of leds, ie 2.
$00^{9} 4$ ED 79 OUT [C]. A Send the signal out to the port number in C.
$0 C 36$ OC INC C
Increment the number 2 in C, to 3 , which is the port number of the "Red" bank of leds. 0C87 ED 79 OUT [C] , A Send the signal out from A to the port number in C.

A Scanning Test Programme. [Continued]

Memory	Opcode.	Mnemonic.	Meaning.
กc89	3 C	INC A	Increment the signal value
			in accumulator A.
$\sim_{C R A}$	คD	DEC C	Change the port number $[3]$ in
			register C back to 2 , to operate
			the "Green" bank.
${ }^{\wedge} \mathrm{C}^{\wedge} \mathrm{B}$	no	EX AF ${ }^{\prime}, A F$	Copy the signal value.
${ }^{\wedge} \mathrm{C}^{\circ} \mathrm{C}$	-6 5^{n}	T, B 30	:oad register B with a loop
			value of 50 hexadecimal, ie 80 .
ncot	3 FFF	I.D A , FF	Load accumulator A with FF.
กcon	FF	RST 28 H	Wait for a period dependent on
			the value in accumulator A.
?	If F3	DJNZ	Reduce the loop value in B, if
			not zero then fump back to nc8E.
ncoz	no	EX $\mathrm{AF}^{\prime}, \mathrm{AF}$	Reclaim the signal value stored
			at OC8B.
${ }^{\text {n }} \mathrm{Cl}_{4}$	$\mathrm{COR}_{4} \mathrm{OC}$	JP , ncR4	Jump back to location 0c94.
			to continue.

Page 165

8.2.4. Alternative Red and Green Bank Test.

Memory.	Opcode.	Mnemonic.	Meaning.
0 C 80	OE 01	LDC , 01	Load register C with 01.
$0<82$	OC	INC C	Increment the value in register
			C to 02, the port number of the "Green" bank of leds.
$00^{8} 3$	CB 51	BIT 2, ${ }^{\text {c }}$	Test bit 2 of register C .
$00^{\circ} 5$	20 Fg	JR NZ	If bit 2 of register C was zero
			, iump back to 0C80.
0С87	3E 00	LDA . 00	Clear accumulator A.
0088	3717	RLA SCF	Rotate the contents of accumulator
			A to the left, through the carry
			flag, after setting the carry
			flag to 1.
OC8B	ED 79	OUT (C), A	Send the signal out to the port
			number contained in register C.
OC8D	38 F3	JR C	When the value in A has been
			completely rotated so that the
			1 in the carry is back in the
			carry flag, then iump back to
			location 0 082.

Alternative Bank Test Continued.

Memory. Opcode. Mnemonic. Meaning.
0C8F 0600 LDB , 00 Load register B with a delay
variable of 256.

0 C91 P5 SUSH BC Save this value on the system
stack.
$0092 \quad 10 \mathrm{FE} \quad$ DJNZ Reduce the value in register B by
1, if not zero iump back to
location $0 C 92$, if $\mathrm{B}=0$ then continue.
0C94 Cl POP BC Recall the value that was saved.
into register B, from the stack.

Reduce this value in register C, if not zero fump back to location OC91, if zero continue.

0 097 18 Fl JR Jump back to OC8A and continue.

8.3. An Example of Pegboard Control.

An examination of the " Behind the Pegboard " diagram will show that 8 lines have been utilised in the original control system. The table , on the diagram, shows where each line, from the PIO, is connected.

This table must be interpreted correctly before a control sequence can be initiated and therefore an example is now provided, to clarify the table.

Example Sequence.
a.) Rotate slowly anticlockwise.
b) Stop the rotation.
c) Rotate slowly clockwise.
d) Stop the rotation.
e) Rotate quickly anticlockwise.
f) Stop the rotation.
g) Rotate quickly clockwise.

Taking each in turn gives

The two following tables should assist to clarify the example. Speed Control.

Peg Number.	X	ROTATIONAL SPEED.
-	28	158
10	In	In
13	In	Out

Bit Values of Each Peg.

Peg	14	13	8	2	1	7	10	15
Bit	7	6	5	4	3	2	1	0
Value	80	40	20	10	08	04	02	01
Action Anti Rot Tool Tur Tur Tool Rot Clock								
Out In In In								

Sequence a
Anticlockwise rotation requires Peg 14 to be activated. A slow rotation of 28 revolutions requires that Pegs 10 and Pegs 13 be activated.
ies Peg $14=$ Bit $7=80$
Peg $10=$ Bit $1=02$
Peg $13=$ Bit $6=40$
Total Value $=C 2$ (Hexadecimal)
Hence it would require that bit value " C2 " in hexadecimal
form be sent out via the PIO output port.

Sequence $\mathrm{b}_{\text {. }}$
To stop; the rotation pegs are required in, for speed and out, for direction.
ies \quad Peg $10=$ Bit $1=02$
Peg $13=$ Bit $6=40$
Total Value
$=42$ (Hexadecimal)

Sequence c.
Clockwise.
Peg $15=$ Bit $0=01$

Peg $10=$ Bit $1=02$
Peg $13=$ Bit $6=40$
Total Value $=43$

Sequence d.

Peg $10=$ Bit 1	$=02$
Peg $13=$ Bit 6	$=40$
Total Value	$=42$

Sequence e.
To rotate quickly at 158 revolutions : requires Peg 10 to be in and Peg 13 to be out, with Peg 14 giving anticlockwise rotation.
ie:

Peg $14=$ Bit 7	$=80$
Peg $10=$ Bit 1	$=02$
Total Value	$=82$

Sequence f.

To stop the rotation requires the speed peg, but not the rotation peg. ie:- Peg $10=$ Bit $1=02$. Total value $=02$ Hexadecimal.

Sequence g .

```
Clockwise. Peg 15= Bit 0=01.
    Peg 10 = Bit 1 = 02.
    Total value = 03. Hexadecimal.
```

The above sequence can be carried out by sending out each hexadecimal code in turn, to the output port of the PIO. It is more convenient to save all the required codes for the complete programme in a table:-
ie. $C 2.42 .43 .42 .82 .02 .03$. (Hexadecimal). A monitor programme is then required to send the codes out from the table at the correct time, the programme would require handshaking, with the lathe, so that the pegs could be activated in step with the lathe operation.

8.3.1. WARD Lathe Control.

8.3.2. Pegboard Control Flowcharts.

INITIALISE

STOP SPINDIE

RFSET LATCH

TFST LATCH

DELAY

8.4. System Tests.

(Without the lathe operating)

When operating a new system, for the first time it is much safer to operate with the lathe non activated. The following procedure gives such a test:-

1. Place a peg into hole 4, if the toolpost is in and hole 7 , if the toolpost is out.
2. If required the "CF" at location OD7E may be replaced by "OO", in the test programme, this will prevent the system waiting for a keyboard command.
3. Connect a "Test" switch from pin 9 of the latch IC (74 IS 175) to the +5 volt rail. See figure 2.11 for details.
4. Enter the test programme and execute by typing E ODOO and pressing Newline.

No screen response.
The green test bar will indicate C2 (Il00 0010)
which is the first control character from the table.
The latch reset light will be on.
5. Momentarily close the "Test" switch.

The latch set light will come on.
The screen will indicate "Delay Step 1 ".
The green bar will indicate the next control
character, 42 (0100 0010)
The latch reset light will come on.
6. Momentarily close the "TEST" switch agains-

The "LATCH SET" light will come on.
The screen will indicate "Delay Step 2 ".
The Green bar will indicate 43 , ie 01000011.
The "LATCH RESET" light will come on.
7. Repeat by operating the "IEST" switch momentarily until the system responds with :-

Step 8
END
HOPSYSTEM

There now follows a listing of the above test programme as indicated in section 8.4.1.

8.4 .1 .	tem Test Programme.			
	QGE1 : What Lathe COHTFIUL			
	6002 :			
	enge : Hesembiled by I HOFTON. 1982.			
	[0604 ;			
6060	WWOE START	ORG	$\mathrm{EDE6H}$	
0060 005000	6015	EFLL	6056H	:Call Initialise.
bous Pe	6016	LD	A. (HL)	; Fick uf character.
9004 FEFF	6017	OF	255	: The Stop Code?
G0ge CHS日Q0	6 m 18	JF	2.0030 0	Stof Spinde if $=0$.
goue orbz	6619	UUIT	(62H). H	send out Eismal.
goue as	61620	Ifte	HL	- Increment fointer.
S060 007600	Eब21	CHiLL	E070H	; Test the Latch.
909F 3-2clac	0622	10	A. 6021 H)	: Bet counter walue.
001230	6102	Ifte	H	: Increment counter.
901532100	6424	L. ${ }^{\text {d }}$	(9021H), H	: Oharge Frint value.
vale EF	0625	FBT	2EH	SDisflay "ETEF H ".
60176000	6626	DEFE:	$\mathrm{ECH}, \mathrm{COH}$	- Where ${ }^{\text {d }} \mathrm{i}$ is the
601920202053	36027	CEFM	\cdots	: latest stef number.
010105445609	Q682	DEFM	TEF	;
602136	6629	DEFM		;
202 0060	613 6	DEFE	$\mathrm{ECH}, \mathrm{EtaH}$;
0024 CJ0300	614.31	IF	600.3H	: Loow from mous.

Page 181


```
0127 ; WHRD LATHE COHTROL.
0128 ;
Q129 :ASsemtied by J HOPTOIN. 1982.
013日 ;
01S1 TAELE ORG BDEGH
0132 ;
01SS ; TAELE OF MONEMERTS.
0134;
0135 ;
0136 ;
0136 : C2 = Slow anticlook rotatior.
013E ; 42 = Stof rotation.
0139;43 = Slow clockuise rotation.
0140 ;42 = Etof rotation.
0141:E2 = Fa=t anticlock rotation.
0142 ;02 = Stow rotation.
0143:03 = Fa=t clockwize rotationm
0144 :02 = Stow rotation.
0145 :FF = End of table code.
014E :
0147;
0148 ; These condes should te entered into memor's
0149 :startina at location 00E0
015ब ;
8151 ;
```


8.4.2. Lathe Testing Under Microprocessor Control.

When the previous test is completed the lathe may then be operated directly from the nicroprocessor. If keyboard control is required to force a stop after every operation, then the code "CF" must be inserted at memory location "OD7E" manually in the teset programe. Pressing any key would restart the programme. However if continuous operation is desired then the codes "OO" must be left in memory location "ODTE".

During the previous test two pegs were entered in diode holes 4 and 7 for safety so that the system could be tested without moving the lathe components, these pegs must now be removed, however the peg action is now under microprocessor control and so codes "04" or " 20 " must be added to each table entry, except $F F$ the stop code.

These new codes are required so that the slide position may be controlled, code "04" or 00000100 is required to either send the tool post in, or when it has come to rest in the "In " position. Code "20" or 00100000 is required to either send the tool post out, or when it has cone to rest in the "Out" position. There now follows a table of movements to control rotation and toolpost movement together, the table must end with the stop code " $\mathrm{FF}^{\prime \prime}$.

```
G001 :WARC LATHE CONTROL.
00g2;
guts ; Assembled EY J HOFTON. 19E2.
40044:
G005 :Demonstration Table of Movements.
406E:
G00% ; These coudes should be entered into memory
G00E ; starting at location goEm, end ult: FF.
604% ;
6010;
0011 ; E2=42+20 = EtoF Fotation with Toul Out.
0012 ; H2=E2+20 = Fast Anti-rot uith Tool Oust.
g013 ; E6=Ez+64 = Fast Anti-rot with Tool In.
0144 ; 46=42+E44 = Etop Fotation with Toul Ir:
G15: 07=03+G4 = Fazt Elock-rt with Tool Ir.
g01E ; 23=03+29 = Fast Elock-rt with Tool [uct.
0017 ; 22=02+20 = Etof Fotation with Tool Dut.
001E ; A2=82+2E = Fast Anti-rot with Tool Out.
0019 ; 86=Ez+04 = Fast Anti-rot with Tonl In.
002: 4E=42+64 = Stof Fotation with Tool In.
0021 ; FF = End of Table Code.
4122 ;
402 ;
```

GONCLUSIONS.

CHAPTER 9.

CHAPTER 9.

CONCLUSIONS
9.1. The Industrial Advantages of the System.

British industry has never before faced so much competitive production and so contributions towards microprocessor control especially in a Direct Numerical Control system, is essential to achieve or maintain competitiveness in a technological era.

The microprocessor system developed in this work utilises up to the minute technology and can thus bring considerable economical and technical benifits, particularly to the small and medium sized industries, using the old generation of Numerical Control machines. These industries are lagging behind their competitors, who utilise improved production techniques brought about mainly by microprocessor control and computer aided manufacture.

This system is an inexpensive and highly cost effective method of retrofitting a microprocessor controller to an existing machine, without the necessity to change or purchase any special new machine tools. The costing schedule which is minimal, is detailed in the next section.

9.2. Cost Schedule.

The retrofitting costs of a microprocessor system are minimal, compared to the cost of replacing a machine with the modern counterpart. This also gives a chance to spread the cost of replacement over several years.

The following list gives the approximate value of materials required to implement a snall control system, it does not include labour.

ITEM.	PURPOSE.	COST.
Z80 16K System.	To hold the monitor programme and control all peripherals.	£ 500.00
Television Set.	To act as a Video Monitor.	$£ \quad 90.00$
Cassette.	To act as an external memory.	£ 50.00
EPROM Programmer.	To enable custom design of extra programmes.	£ 100.00
EPROM Eraser.	To clean and prepare EPROMS.	$£ 100.00$
Hardware.	To connect the system to an external machine. Cost will	£ 200.00
depend vexy much on the application, an example is quoted and the prices are typical in 1981.		
	Approximate Total.	$£ 1000.00$

9.3. System Development.

The developed system utilises the versatile Zilog $Z 80$ microprocessor chip which is fast becoming one of the British industry standards. It is backed up with a powerful custom built 2 K machine code in two EPROMS. The use of machine code gives several advantages which include the very efficient use of Random Access Memory , a fast response time which is essential in any machine control application. Machine code is admirably suited to this task and the 280 microprocessor chip has many advantages over its rivals when operating in the field of machine control.

[^2]
9.4. Interface Control Details.

The $Z 80$ microprocessor controller was connected to the lathe pegboard by means of an interface control box containing electronic latches connected to the address and data bus of the microprocessor. These latches which act as temporary memories enable the Central Processing Unit to present data to the lathe and then continue with another task, until the lathe has completed the alloted task. Use was also made of a peripheral input output chip MK 3881, to allow the lathe electronics to be interrogated by the microprocessor. This gives a handshaking facility enabling the lathe to request further information or commands from the GPU if and when required.

The two way communication method provides a far more versatile control mode than was ever possible with the original pegboard, with the added advantage of eliminating the time consuming effort of setting up the pegs in the pegboard whilst the lathe stood idle, with loss of actual production time.

9.5. Details of the Main Controller.

The main controller which consists of a Z 80 microprocessor has been augmented by several additional devices, such as an Universal Assynchronous Receiver Transmitter, a Parallel Input Output Adapter and a Video Modulator. Thus the unit has the possibility of communicating with many devices, such as a Cassette recorder which may store further routines for a particular production task; a standard domestic television set, thus reducing the necessity to purchase an expensive VDU and a serial or parallel printer so that a hard copy may be obtained to record any programme or results of a test run. The parallel printer capability allows the system to produce three dimensional high resolution graphics.

The system boasts two peripheral ports and the UART supports two serial methods of communication, RS 232 and the 20 mA current loop. Cassette and serial Baud rates are variable, leading to an extremely powerful and versatile compact low cost unit. The system monitor has been configured to operate a memory plane peripheral, such as a domestic television set and the serial output simultaneously, thus enabling the operator to follow control sequence instructions on the TV screen and graphics, such as following tool contours on a graphics VDU, this dual mode visual output is quite unique in microprocessor control applications.

9.6. System Tests and Results.

Test sequencies were developed to allow the system to be assessed and these sequencies are given in Chapter 8. The routines were used to cut some components and the results showed a great improvement in operating ease and manufacturing versatility over the original method. The interface box was improved later by placing an IED test readout connected to its control lines, this enables the lathe control operation to be monitored at the binary level and will be very useful should the system be expanded as proposed later. Figure 9.1 illustrates the layout of the interface network .

Due to the fact that the equipment in the laboratory were modified to a common communication standard, it is now possible for this 280 controller to be interfaced into a Diect Numerical Control cell, thus opening up many other possibilities and facilities. Further work would be greatly facilitated by system expansion as detailed in the next section.

Fig. (9.1.)

Page 197

9.7. System Expansion.

Albeit the system memory was adequate for this limited budget project, it could be greatly improved by the addition of buffering and further memory. This would add further versatility giving the possibility of running an Assembler and other high level languages such as FORTRAN or BASIC, the cost of course would be in excess of that possible within a project budget. An expanded system would also allow the central processor to be utilised as an executive monitor within a DNC cell as indicated in figure 9.2.

The Author has utilised his experience in this work and now acts as a consultant to several local industries in his locality, some of which have financed some private research at the author's own home laboratory. This enabled the author to try out some of the improvements and example designs are included in the next chapter of some of the working prototypes, such as an EPROM programmer and some high level language software to enable tool contours to be shown visually in simulated three dimensions. Examples of this three dimensional capability is included in Appendix 5. A section now follows indicating some of the future proposals for expanding the system.

FUTURE WORK.

CHAPTER 10.

FUTURE WORK.

10.1. System Developments.

If the system is to be improved by further development, then some fundamental extras are required and these could include some of the following :-
a) Added memory, so that larger and better control programmes could be written and monitored.
b) The ability to store set programmes in EPROMS and then simply plug in a specific routine as and when required, to perform a certain task.
c) The ability to programme these specific tasks into the EPROMS so that a library of routines could be built up.
d) The visual display of tool movement, or contouring of the proposed workpiece.

10.1.1. Memory Expansion.

The single 780 microprocessor board is not buffered in the original form , hence the first task in any memory expansion developement is to ensure that the CPU is adequately buffered from the additional components. There are two main areas that require treatment as detailed below :-
10.1.2. Data Lines.

Figure 10.1 shows a proposed circuit indicating that the data lines be connected to a 74IS245 (9) integrated circuit octal bus transceiver, giving eight non-inverting three state outputs. The package provides bidirectional data transfer with full CPU buffering. The enable gate of the 74IN245 is on pin 19 and is permanently enabled by grounding it to the zero volts level. It is also necessary to provide directional control and this is provided on pin 1 by an acurately timed pulse which will be dealt with in greater detail later.

Page 203

10.1.3. Address Line Buffering.

The address lines only require buffering in one direction because the address sequence is always sent out from the CPU to the other devices, this makes the buffering task a little easier to implement.

Figure 10.2 shows the address lines connected to a 74IS244 (9) integrated circuit octal buffer and line driver which has three state outputs . These octal buffers and line drivers are designed to specifically improve the performance and density of the three state memory address drivers. There is a selection of combinations of inverting and non-inverting outputs available to the user. The 74 LS 2.44 device features a high fan out with inproved fan in and a very low noise margin of 400 mV . The gates have been permanently enabled by grounding pins 1 and 19 to the zero volts level as shown in figure 10.2 .

10.2. EPROM Decoding.

Extreme care must be taken when extending any memory system to ensure that no address or data line conflict occurs , such as two memories being read simultaneously. To avoid such conflicts strictly timed address decoding and timing pulses are required. Figure 10.3 illustrates an example in which the three adress lins A_{12}, A_{13} and A_{14} are connected into a 74138 (9) three line to eight line decoder demultiplexer.

Figure 10.4 gives the truth table of the 74138 device and examination of the table shows that the output on pin 7 will be low only when all three of the address lines are at a high logic level. This means that the output from pin 7 can be utilised as a signal to Enable an EPROM located at address location 7000 hexadecimal. This will occur because the number 7 in the address has a binary equivalent of 0111 and each one in the binary number is represented by one of the address lines being at logic level 1.
Γ

Fig. (10.3.)

74LS138 TRUTH TABIE.

INPUTS
ENABLE SELECT OUTPUTS

G1	G2	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Pin Code.	
6	4/5	3	2	I	15	14	13	12	11	10	O9	O7	Pin No.	
X	H	X	X	X	H	H	H	H	H	H	H	H		
L	X	X	X	X	H	H	H	H	H	H	H	H		
H	L	L	L	L	L	H	H	H	H	H	H	H		
H	L	L	L	H	H	L	H	H	H	H	H	H		
H	L	L	H	L	H	H	L	H	H	H	H	H		
H	L	L	H	H	H	H	H	L	H	H	H	H		
H	L	H	L	L	L	H	H	H	H	H	L	H	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H		
H	L	H	H	H	H	H	H	H	H	H	H	L		

H = High Lovel Iogic.
L. Low Level Iogic.
$X=$ Irrelevant.

Fig. (10.4.)

It is also necessary for pins 4 (G2A) and 5 (G2B) to be connected to the zero volts level and pin 6 (Gl) to be connected to the logic 1 level. This requirement follows from the truth table in figure 10.4 .

Simply decoding the address lines to give a chip select at address 7000 hexadecimal is not enough to prevent bus conflict, it is also necessary to time the select signals accurately. The $\overline{R D}$ and $\overline{M R E Q}$ pulses are used to facilitate the decoding and timing by feeding both signals through a 7432 (9) two input logic OR gate. The composite output is then fed together with the address decode signal into a second $O R$ gate , the output of which is used as the chip select pulse $\overline{\mathrm{CS}}$ for the EPROM at location 7000 hexadecimal. This $\overline{\mathrm{CS}}$ signal will only be active when the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{MREQ}}$ signals are both at the low logic level and the three address lines A_{12}, A_{13} and A_{14} are all at the high logic level. The resulting signal gives correct address decoding at the correct time thus preventing any possible data conflict.

10.3. Direction Pulse to the Data Buffer.

A similar problem to the EPROM decoding exists regarding the timing of the direction pulse to the bidirectional 74 IS245 (9) bus transeiver. It is not only important to time the data correctly but to ensure that the data is steered in the correct direction, at precisely the correct time. Figure 10.5 shows the necessary timing requirements with the direction decoding.

The $\overline{R D}$ and $\overline{M R E Q}$ pulses are combined through the two input $7432(9)$ logic OR gate and as previously, the same combined output signal can be utilised,removing the necessity for circuit duplication. The four higher address lines $A_{12}, A_{13}, A_{14}, A_{15}$ are all combined through the 7432 OR gate to provide the composite $\overline{\mathrm{MEXT}}$ signal. It is necessary for this signal to be injected into the system by changing the position of link LK5 on the board, the $\overline{M E X T}$ signal is then fed through an inverter before joining the other $\overline{\mathrm{RD}}: \overline{\mathrm{MREQ}}$ composite pulse to a further OR gate. The final $\overline{\mathrm{DIR}}$ pulse becomes active low only when both the $\overline{M R E Q}$ and $\overline{K D}$ signals are low and also either of the address lines are at the high logic level.
Γ

10.4. EPROM Programming and Timing.

Another requirement for system improvement is the ability to write a custom designed programme into a permanent memory cell such as an EPROM. An EPROM programmer design was developed together with the necessary software, the design is included later, see figures 10.7 and 10.8 and together with the previous memory expansion design , could form an excellent subject for future developement work. The first task in the design was to decide on which type of EPROM to use and the choice was made of the popular, easy to obtain 2708 type (5). The design was later modified to encompass the 2716 and 2704 types (5) as well, giving greater flexibility.

The next consideration for programming EPROMS is the very strict timing pulses that are required, figure 10.6 shows the timing requirements which must be met for successful programming. The 2708 EPROM (6) is electrically programmable and Ultra Violet erasable by illuminating the chip through a transparent window, this exposure induces a flow of photo current from the floating gate to the substrate, thereby discharging the gate to the initial state.

10.5. EPROM Erasure: Pulsing.

An Ultra Violet source of light at $2357^{\circ} \mathrm{A}$ yielding a total dosage of $10 \mathrm{Wsec} / \mathrm{cm}^{2}$ is required for correct erasure with an exposure time of about 20 mins. Programming occurs by raising the $\overline{C E} / \overline{W E}$ input on pin 20 to the +12 volt level and the data should be presented as 8 parallel bits to the data output lines on pins 9 to 11 and pins 13 to 17. In this mode the ouput pins serve as input lines. Caution should be observed regarding the end of a programme sequence as the $\overline{C S} / W \bar{E}$ pulse falling edge transition must occur before the first address transition, when changing from a programme cycle to a read cycle. The programme pin should also be pulled down to the $V_{I L P}$ level with an active rather than a passive device, as the pin will source a small current $I_{I P L}$ when the CS / WE pin is at the $V_{\text {IHW }}$ level of +12 volts and the programme pulse is at the $V_{\text {ILP }}$ level.

Figures 10.7 and 10.8 show a proposed circuit design for the programmer which could be utilised for future development. When erased all the bits of the 2708 EPROM will be at logic level 1 and each location will contain FF hexadecimal, hence information is introduced by selectively programming 0 into the bit locations. One programme pulse per address is applied to pin 18 when the address and data lines are correctly set up.

One pass through the addresses is defined as a programme loop and the number of loops required [N] is a function of the programme pulse width [$t_{p w}$] according to the equation :-

$$
N \times t_{p w}=100 \mathrm{msec} .
$$

The width of the programme pulse lies between :0.1 msec and 1.0 msec .

This indicates that the number of programme loops [N] lies between
100 when $t_{p w}$ is $1 \mathrm{msec} \quad$ and
1000 when $t_{p w}$ is 0.1 msec .

It should be noted that there must be " N " successive loops through all the " 1 K " addresses, it is not permitted to apply " N " programming pulses to an address and then change to the next address to be programmed.

Note that " IK " is 1024 decimal, $1024=2^{10}$.
Γ

26Volt OSCILLATOR PULSE.
Fig. (10.7.)

Page 216

10.5.1. Programmer Design Circuit.

The heart of the design is a 74 LSO 4 integrated circuit oscillator (9) which drives an inverter to produce the 26 volt power source, which can be utilised as the programming pulse. The pulse must be timed and gated by signals from the CPU and then applied to the programming pin 18 on the 2708 EPROM. Control is ensured by feeding pulses from the CPU through Port B of the PIO as shown in figure 10.8. These pulses ensure two conditions :-
a) Correct timing of the $\overline{\mathrm{CS}}$ voltage pulse to pin 20 . b) Correct timing of the PROG pulse with 26 volts to pin 18.

Address decoding is achieved by the use of a Cosmos cm $404 n^{(4)}$ (5) twelve stage ripple carry binary counter divider chip,which consists of an input pulse shaping circuit and a twelve stage ripple carry binary counter stage. The counter may be reset to the zero state by placing a high logic level on the reset line. A master slave flip flop is used for each counter stage and the state of the counter is binary stepped by the negative transition of the buffered input. All derived signals from the decoder with the $\overline{C S}$ and PROG pulses are fed to the EPROM socket. Data lines from the socket are taken from Port A of the PIO, which has address 06 for control and address 04 for data transference. Port B uses address 7 and 5.

10.5.2. EPROM Programmer Control Sequence.

A suggested programme to control this design of EPROM programmer is included in appendix 7 , the unit is used at home by the author and is well tried and tested.

The only point to note is that the sequence has been written to operate with the CPU running at a clock rate of 4 MHz . It is possible to either select this faster rate on the z 80 system or to change the timing of the programme to run at 2 MHz . The first method would be easier for the reader, albeit the second is not too difficult with a knowledge of machine code.

The programne is in several sections and executing from location "OC80" gives three options :-
a) To programme an EPROM.
b) To reprogramme.
c) To copy the contents of an EPROM fron the programmer into the system memory. This last facility can only be used if the system's memory has been expanded.

10.6. Graphics on the VDU.

Some of the topics for future development include the visual display of tool movement by utilising the graphics mode capability of the VDU (12) and the visual contouring of the proposed workpiece. These aims were furthered by interfacing the RG 512 Iear Siegler ADM 3A VDU terminal directly to the 280 RS 232 port. The VDU has both vector and point mode capability.

10.6.1. Vector Mode.

This mode performs automatically giving vector generation from vector endpoints and the terminal uses 512 points horizontally, with 250 points vertically. The Xl0 option scales the graphics grid. giving 1024 by 780 points and thus the two versions require different vector endpoint coordinates. The vector mode may be entered in two ways:-
a) Manually , by pressing CTR : and] simultaneously.
b) By programme , by sending out the hexadecimal code 1D.
10.6.2. Foint Mode and Clear Screen.

The screen may be cleared in two ways :-
a) Manually , by pressing CTRL and y simultaneously.
b) By programme, by sending out the hexadecimal code 19. Point Mode is activated also in two ways:-
a) Manually, by pressing CTRI and simultaneously.
b) By programme , by sending out the hexadecimal code IC.

10.6.3. Connecting the VDU to the Z 80 System.

The VDU must be connected to the RS 232 output port of the Z 80 and the "TTI : TAPE " switch moved to the "TTI", up position, with the Baud select switch set to 300 Baud, down. The switches are on the 280 rear panel.

To operate the VDU enter " X20 Newline " on the Z RO keyboard, the VDU will then respond, however if the 280 reset button is pressed for any reason, control is lost and "X20 Newline" must again be entered to reinitialise the systems, before two way communication is possible. Note that "Newline" is a special key on the right of the 280 keyboard, it is not necessary to type in the word.

Control signals may be sent from the $Z 80$ by two ways. a) Direct Transfer.

If the correct hexadecimal codes are entered, in a table starting at some convenient location eg OEOO , then the entries may be sent directly to the VDU as follows:-

Type in	X20	Newline
Type in	T OEOO OECO	Newline

Each entry will be sent out automatically to the VDU from locations "OEOO to OECO" by the system monitor, the VDU will respond on receipt of the control or coordinate characters.

The Z 80 systen will terminate the output routine when the table pointer reaches location OECO.

```
ie T OEOO OECO Newline
```

means type out or transfer data from the starting location of OEOO to the terminating location of OECO.
b) Programe Transfer.

If transfer and control is required within a programme, then the following code entries will control the output, if the same data is entered in a table, from locations OEOO to OECO.

PAGE

 NUMBERING AS ORIGINAL
10.6.4. Sample Data.

There now follows a data table for use by the previous programme, which will control the output characteristics of the VDU.

Note.
There are three control characteristics used in the table.
a) "19" Hexadecimal $=$ Clear the screen.
b) "1C" Hexadecimal = Set the "Point Mode".
c) " $1 D^{\prime}$ Hexadecimal $=$ Set the "Vector Mode".

All the other characters in the table are used as vector coordinates. The data is in three sections.
a) Locations OEOO to OE15.

These characters are used to send out control
symbols to draw a plane rectangle on the screen, in the vector mode.

The data starts with code "19" hexadecimal, which clears the screen.

The next code " $1 D^{\prime \prime}$ hexadecimal sets the vector mode, there then follows the " $Y^{\prime \prime}$ coordinate pair of " 23 , 64 " which are the " Y " coordinates of the left hand bottom corner of the rectangle. The next pair " $23,58^{\prime \prime}$ are the " X " coordinates of the left hand bottom corner of the rectangle.
b Jocations OE16 to OE7A.
This section holds the control data characters required to draw a circle inside the rectangle. Data starts with the "lC" code which forces the VDU into the "Point Mode" , there then follows the hexadecimal pairs "31, 70" and "2F , 54" which are the first "Y" and "X" coordinates respectively.
c) Locations OE7B to OEA9.

This section starts by sending the code " 19 " which clears the screen, it then sends out the code "ID" to force entry to the "Vector Mode".

Data is then sent out which will draw a three dimensional cube.

10.6.5. Typical output.

Plane Rectangle and Circle.

Three Dimensional Cube.

Fig. (10.9.)

Sample Data.

```
OEOO 19 1D 23 64 23 58 34 74
OE08 23 58 34 74 3B 50 23 64
OE1O 3B 50 23 64 23 58
OE16 1D 31
OE18 70 2F 54 31 6A 31 43 30
OE20 78 32 4E 2F 7B 33 53 2E
OE28 76 34 50 2D 6B 35 42 2B
OE30 7C 35 48 2A 6D 35 42 29
OE38 62 34 50 27 7D 33 53 27
OE40 60 32 4E 26 6E 31 43 26
OE48 68 2F 54 26 6F 2E 45 27
OE50 60 2C 5A 27 7D 2B 55 29
OE59
OE60 7C 2A 40 2D 6B 2A 46 2E
OE68 76 2A 58 2F 7B 2B 55 30
OE70 78 2C 5A 31 6A 2E 45 31
OE78 70 2F 54
OE7B 19 1D 26 68 2C
OE80 5A 2D 62 2C 5A 2F 62 36
OE88 40 29 62 36 40 26 68 2C
0E90 5A 29 62 22 5A 2E 72 22
0E98 5A 2D 62 2C 5A 2F 62 36
OEAO 40 2F 72 2E 40 2E 72 22
OEAB 5A 1C
```

Plane Rectangle.

Circle.

3 D Cube.

10.6.6. Obtaining Vector Coordinates.

The screen size is assumed to be :-

$$
\begin{array}{lll}
X=0 \text { to } & X=1024 & \text { Horizontal. } \\
Y=0 \text { to } & Y=780 \quad \text { Vertical. }
\end{array}
$$

Each vector point " X , $Y^{\prime \prime}$ must be broken down into four hexadecimal coordinate data numbers:-

$$
Y_{\text {High }}, Y_{\text {Low }}, X_{\text {High }}, X_{\text {Low }}
$$

Example:

Consider the coordinate points "X , Y $=123$, 633 . It is required to define the number system that will be used, before finding these points.

Denary numbers (To the base 10) will be denoted thus 123D.
Hexadecimal numbers (To the base 16) thus 2 FH .

As an example:

The denary number 67 D , has the equivalent
hexadecimal number of 43 H .
The following page gives a table of equivalents.
Note:
The largest X and Y values are $X_{h}=3 F, X_{1}=5 F$.
(In Hexadecimal)
$Y_{h}=38 \quad, \quad Y_{1}=6 \mathrm{c}$.

Table of Denary to Hexadecimal equivalents.

Denary.	Hexadecimal.	Denary.	Hexadecimal.
00	00	16	10
01	01	32	20
02	02	48	30
03	03	64	40
04	04	80	50
05	05	96	60
06	06	112	70
07	07	128	80
08	08	144	90
09	09	160	AO
10	OA	176	BO
11	OB	192	CO
12	OC	208	DO
13	OD	224	EO
14	OE	240	FO
15	OF	256	100
16	10	512	200
17	11	1024	400
18	12	4096	1000

a) To convert the " Y " coordinate of " $633 \mathrm{D}^{\prime \prime}$. (Denary.)

$$
\begin{aligned}
& \left.Y_{\text {High }}=\frac{633}{32}=19 \mathrm{D} . \text { (Integer part only }\right) \\
& Y_{\text {Low }}=633-(19 \times 32)=25 \mathrm{D} . \text { (Fractional part.) }
\end{aligned}
$$

Note:
$Y_{\text {High }}$ can range from "OOD to $31 D^{n}$ or from " 20 H to $3 \mathrm{FH}^{\prime}$, hence a weighting factor must be added, because the ranges are not direct equivalents, the factor is " 20 H ".

Continuing the example:
$Y_{\text {High }}=19 \mathrm{D}=13 \mathrm{H}$ and adding the weight of " 20 H " gives
$Y_{\text {High }}=33 \mathrm{H}$.
$Y_{\text {LOw }}$ can range from "OOD to $32 \mathrm{D}^{\prime}$ or from " 60 H to 7 FH ", which requires a weighting factor of " $60 \mathrm{H"}$ to be added, hence $Y_{\text {IOK }}=25 \mathrm{D}=19 \mathrm{H}$ and adding the weight of " 60 H " gives $Y_{\text {LOW }}=79 \mathrm{H}$.

The "Y" coordinate of "633D" now transforms to :-

$$
633 \mathrm{D}=\left\{\begin{array}{l}
\mathrm{Y}_{\mathrm{High}}: 33 \mathrm{H} . \\
\mathrm{Y}_{\mathrm{LOW}}: 79 \mathrm{H} .
\end{array}\right.
$$

The programme would be required to output the two hexadecimal numbers of "33H and $79 \mathrm{H}^{\prime}$ to force the VDU to move to $Y=633 \mathrm{D}$.
b) To convert the " X " coordinate " 123 " D.

$$
\begin{aligned}
& X_{\text {High }}=\frac{123}{32}=30 \cdot \quad \text { (Integer part only.) } \\
& X_{\text {Lok }}=123-(3 \times 32)=27 \text { D. (Fractional part.) }
\end{aligned}
$$

Note.
$X_{\text {High }}$ can range from "OOD to $31 \mathrm{D}^{\prime \prime}$ or from " 2 OH to $3 \mathrm{FH"}^{\prime}$,
hence as previously, the weighting factor is " 20 H ".
$X_{\text {Low }}$ can range from " 00 D to $31 \mathrm{D}^{\prime \prime}$ or from ${ }^{m} 40 \mathrm{H}$ to $5 \mathrm{FH}^{\prime}$, with a weighting factor of ${ }^{\prime \prime} 40 \mathrm{H}$ ".

Continuing the example :-

$$
\begin{aligned}
& X_{\text {High }}=03 D=03 H \text { and adding the factor, } \quad X_{\text {High }}=23 H . \\
& X_{\text {Low }}=27 D=1 B H \text { and adding the factor, } \quad X_{\text {Low }}=5 B H .
\end{aligned}
$$

The programme would be required to output the two hexadecimal numbers " 23 H and 5 BH " to force the VDU to $\mathrm{X}=123 \mathrm{D}$.

The order of data transfer is very important, to force movement to $:-$

$$
X, Y=123 D, 633 D
$$

the data must be transferred in the order $33 \mathrm{H}, 79 \mathrm{H}, 23 \mathrm{H}$, 5 BH , ie with the " Y " coordinate first and the " X " coordinate last.

The coordinate transformation formulae are collected overleaf for easy reference.

10.6.7. Coordinate Transformation Formulae.

a) $Y_{\text {High.D }}=\left[32 D+\operatorname{Int}\left(\frac{Y_{\text {coord }}}{32 D}\right)\right]$
b) $Y_{\text {Low. } D}=\left[96 D+\operatorname{Fract}\left(\frac{Y_{\text {lord }}}{32 D}\right) \times 32 D\right]$
c) $X_{\text {High. } D}=\left[32 D+\operatorname{Int}\left(\frac{x_{\text {coors }}}{32 . D}\right)\right]$
d) $X_{T . O W . D}=\left[64 D+\operatorname{Fract}\left(\frac{x_{\text {cord }}}{32 \mathrm{D}}\right)^{x} 32 \mathrm{D}\right]$

Each of the above coordinates must then be converted into a "Hexadecimal" number, as follows:-
e) $N_{\text {Hex }}=\frac{\operatorname{Int}\left[\mathrm{N}_{\mathrm{D}}\right]}{\frac{16 \mathrm{D}}{}}$, Frat $\frac{\left[\mathrm{N}_{\mathrm{D}}\right]}{16 \mathrm{D}}$.

Example: $\quad 67 D=4, ?$ or
43 H.

10.7. Tool Contour Simulation Programme.

Abstract

Appendix 4 gives a programme which simulates the trajectory of a machine tool in real time on a VDU. The programmecontains all the routines necessary to process the incoming data from the tool interface. Because the interface has not yet been developed, the keyboard is used as the input device for demonstration purposes, finally the input would come from two A / D convertors connected to sensors on the actual tool, at the machine workface.

The display unit used was the RG 512 Lear Siegler ADM 3 A visual display unit, with inputs from the Z 80 keyboard processed by the microprocessor and sent out through the IM 6402 UART to the ADM 3 A interface. The control programme waits for the operator to press any of the four keys :-

R for move to the right.
L for move to the left.
U for move upwards.
D for move downwards.
If another key is pressed the system cycles, waiting for a legal key entry. As the keys are pressed the display unit indicates a moving dot on the screen as directed.

10.8. Surface Generation.

If this control system is developed further as proposed then it should be possible to control movement in three dimensions, enabling machining of complicated surfaces to be performed. The hardware from the microprocessor is simply duplicated for each required axis, however the software necessary to control the hardware would increase greatly in complexity and some form of surface definition is required. The following section shows one method of defining the surface by the use of Bezier curves and the results were tested by forcing a printer to produce three dimensional representations of the required article.

10.8.1. The Bezier Surface. (13) (14)

The Bezier surface is represented in the form of a Cartesian product surface as shown in figure 10.10. In the Bezier formulation only the corner points are actually on the surface, these are denoted by A , B , C and D. The point $B_{1,2}$ defines the slope vector from the first to the second point on the first Bezier polygon in the U direction and the point $B_{2,1}$ defines the slope vector from the first to the second point on the first Bezier polygon in the ψ direction. The points $B_{1,3}, B_{2,4}, B_{3,4}$ $B_{4,3}, B_{4,2}, B_{3,1}$ are utilised in a similar manner. The points $B_{2,2}, B_{2,3}, B_{3,3}$ and $B_{3,2}$ interior to the defining polygonal surface define the twist vectors at A, B, C and D respectively.

Fig. (10.10.) Bezier Surface.

The Bezier surface is completely defined by a net of design points on the polygonal surface and these points serve to define a two parameter family of Bezier curves on the design surface. To generate the parametric curves on the surface it is necessary to scan the surface by $0 \leqslant U \leqslant 1.0$ and $0 \leqslant W \leqslant 1.0$, the surface may then be represented in the form of a Cartesian product surface given by the equations :-

$$
Q(U, W)=\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i+1, j+1} \cdot J_{n, i} \cdot U \cdot K_{m, j} \cdot W
$$

Where $\quad J_{n, i}=\binom{n}{i} \cdot U^{i} \cdot(1-U)^{n-i}$
and $\quad K_{m, j}=\binom{m}{j} \cdot W^{j} \cdot(1-w)^{m-j}$

With m and n being one less than the number of polygon vertices in the W and U directions respectively. The term at the front of each equation is given by :-

$$
\begin{aligned}
& \binom{n}{i}=\frac{n!}{i!(n-i)!} \\
& \binom{m}{i}=\frac{m!}{j!(m-i)!}
\end{aligned}
$$

The previous surface may be generated by feeding the coordinate data points through the RS 232 interface, or to the Port output of the PIO, to a three dimensional forming machine, the data beeing presented in ASCII format. A programe has been developed for this task and is given in Appendix 5 . the procedure is demonstrated by sending the information to a printer in such a way that it appears to print in three dimensions. The administration routines may be written in a high level language such as BASIC, but it is essential that the machine control (or printer in this simulation) be controlled at machine code level, due to the speed requirement for the tool printhead control, in fact one of the simulations took 25 minutes to simulate one of the three dimensional objects in the BASIC language.

The programme given in Appendix 5 is ideal in this respect because machine code routines are automatically entered into RAM at steps 1220 to 1440 , by the administration programme and called automatically when speed is required, such as at steps 605, 1280, 1320, 1340. This unique trick gives an ideal match between high and low level languages. The machine code data is stored at steps 1500 to 1880 at high level and at locations BEOO to BF7O hexadecimal at low level. Two examples follow of the printout with further examples in Appendix 5.

10.8.2. Example Printouts.

```
32 FRINT"32 Inp Cond":N=2:M=2:P=7
OK
LISTSOOO
```

3000 DATA $150,110,0,150,200,250,150,290,0$
3010 DATA $100,110,0,100,200,250,100,290,0$
3020
OK
i

Fig. (10.11.)

```
S2 FRINT"\Xi2 Inp Cond":N=S:M=3:P=7
OK
LISTSOOO
3000 DATA 120,120, 0,120,120,120,120, 0,120
3010 DATA 120, 0, 0, 80, 80, 40, 80, 80, 80
3020 DATA 80, 40, 80, 80, 40, 40, 40, 80, 40
3030 DATA 40, 80, 80, 40, 40, 80, 40, 40, 40
3040 DATA 0,120, 0, 0,120,120, 0, 0,120
3050 DATA 0, 0, 0
ok
```


Fig. (10.12.)
10.9. Additional Peripherals.

If the system were expanded as proposed in the section on future developement, then it would be possible to add further control facilities to the Ward Capstan Lathe , in fact a second small microprocessor system could be utilised to control the turret block , or lead screws could be incorporated to control the slide movements, enabling complicated shapes to be machined on the same lathe.

The chapter includes a design for a stepper motor control system, via a microprocessor and a section on the use of opto-isolators, to improve the isolation of the controlling device from noise pulses, obtained by operating high current components on the lathe.

A further possibility is to use the relatively new fibre optic devices to transmit the information to a video output device. The fibre optic theory is discussed and a typical test circuit is included so that an idea can be gained, of how to proceed in this direction.
10.10. The Stepper Motor.

As it stands, the slide movement on the Ward lathe cannot be controlled directly by a microprocessor unless a stepper motor was fitted to a lead screw. Figure 10.13 shows a Mullard SAA 1027 (15) stepper motor drive integrated circuit chip which is intended to drive a four phase two stator stepper motor.

The circuit consists of four output stages , a logic stage and three input stages, the logic stage is driven by three inputs :-

1) A trigger input stage.
2) A stage that can change the sequence of the logic to give clockwise or anticlockwise rotation.
3) A set input stage which sets the four outputs.

The three inputs are compatible with high noise immunity logic to ensure that the circuit operates correctly even in a noisy environment . The output is capable of delivering 350 mA of output current to each of the four phases of the stepper motor.

The SAA 1027 stepper motor drive chip requires two signals from the microprocessor :-
a) A direction bit, fed to pin 3, which sets the direction of rotation. The output is either " $00^{\prime \prime}$ or " 01 " and need only be a pulse, because the signal will toggle a latch.
b) A pulsed voltage fed to pin 15 , the mark to space ratio of the pulse must be adjusted to vary the rotational speed of the stepper motor. Each pulse will step the motor forward or back a specific angle, depending on the motor characteristic, in general 7.5°.

The 7407 integrated circuit chip shown in the diagram utilises the buffer capability of the chip to act as a simple buffer, between the CPU and the motor driving chip.

Appendix 6 gives example programmes to demonstrate how the proposed design could be controlled, by the microprocessor. It is assumed that the control pulses are sent out in the following standard :-
a) Direction pulse to Port A bit 0 .
b) Stepping pulse to Port B bit 0 .

When operating a microprocessor in workshop or factory conditions, noise pulses from heavy current switching may cause problems, causing random or spurious signals to be generated, within the processor.

Noise source isolation is possible by utilising opto isolating devices. These allow signal transfer from one device to another, by means of an infra red beam of light within a sealed package.

The only connection is via the light beam and hence noise isolation is very high, however it is important that no connection whatsoever is made on the power line or comon Ine between the two devices.

Infra red light is used because it is not affected by the ambient light.

The following circuit shows a typical design indicating how the isolation is obtained practically. by utilising light as the communication media, see figure 10.14.

TYPICAL OPTO ISOLATOR.

Fig. (10.14.)

ᄂ

If the rays pass from a dense medium $\left[\mathrm{N}_{1}\right]$ to a less dense medium $\left[N_{2}\right]$, then at a certain angle θ_{1} the resulting angle θ_{2} could be 90°, the critical angle θ_{1} required to give this unique result is called θ_{c} and "Snell's Law" gives the relationship :-

$$
\begin{aligned}
& \operatorname{Sin} \theta_{c}=\frac{N_{2}}{N_{1}} \\
& \ldots \ldots \ldots
\end{aligned}
$$

If a fibre optic cable is used, then the rays rebound along the length of the fibre and exit only at the far end, due to internal reflection.

There is a maximum angle $\hat{\sigma}_{a}$ at which the incident ray can enter the core and experience total internal reflection, θ_{a} is called the "Acceptance Angle" and $\operatorname{Sin} \theta_{a}$ is known as the "Numerical Aperture", hence by "Snell's Law" :-

$$
\begin{aligned}
\text { Numerical Aperture } & =\sin \theta_{a} \\
N_{o} \cdot \sin \theta_{a} & =\sin \left[90^{\circ}-\theta_{c}\right] \cdot N_{1} \\
& =N_{1} \cdot \cos \theta_{c} \\
& =N_{1} \cdot\left[1-\sin ^{2} \theta_{c}\right]^{1 / 2}
\end{aligned}
$$

Where N_{0} is the index of refraction of the external medium.
N_{1} is the refraction index of the core.
N_{2} is the refraction index of the outer cladding.
$\sin \theta_{a}$ is the numerical aperture.

If the external medium is air then $N_{0}=1$.
Since $\sin \theta_{c}=N_{2} / N_{1}$ then

$$
\begin{aligned}
N_{0} \cdot \sin \theta_{a} & =N_{1} \cdot\left[1-\left(N_{2} / N_{1}\right)^{2}\right]^{1 / 2} \\
\sin \theta_{a} & =\frac{N_{1}}{N_{0}} \cdot\left[\frac{N_{1}^{2}-N_{2}^{2}}{N_{1}^{2}}\right]^{1 / 2} \\
\sin \theta_{a} & =\frac{1}{N_{0}} \cdot\left[N_{1}^{2}-N_{2}^{2}\right]^{1 / 2}
\end{aligned}
$$

and substituting the value of $N_{0}=1$ for air gives :Numerical Aperture $=\sin \theta_{a}=\left[N_{1}^{2}-N_{2}^{2}\right]^{1 / 2}$

The light rays in a fibre may be classified as meridional or skew. Meridional rays are those that pass through the axis of a fibre after each rebound, while skew rays never intersect the fibre axis. There are also parallel rays which travel down the fibre, never being reflected. Basic fibre optic theory is concerned with meridional rays which fall into two categories, low order modes and high order modes.

Low order modes are rays that are launched at small angles, within the acceptance angle, while high order modes occur when the rays are launched at large angles. Single mode fibres result when the core area and the numerical aperture are so small that only one mode can propagate.

Two types of fibre construction are commonly used, a step index fibre which consists of a cylindrical core of glass, silica or plastic, of refractive index N, covered by a thin cladding of a lower refractive index N_{2}. The second type is a graded fibre whose refractive index changes gradually from a high order index at the centre, to a low index at the perimeter.

Fibres encounter two types of light dispersion, which limits achievable bandwidths. Material dispersion results from the fact that different wavelengths travel at different velocities in the same medium, consequently the various wavelengths launched simultaneously within the flux, will not arrive at the receiver together but will suffer time dispersion, due to differences in travel time. The effect can be reduced by using an emitter with a narrow spectrum of emission, such as a laser. (17)

Modal dispersion is caused by the difference in path lengths between low order modes and high order modes. The high orders have a longer travel time and simultaneously launched rays will suffer dispersion on arrival . Modal dispersion can be reduced in step index fibres by decreasing the numerical aperture, to allow only the lower modes to propagate. There are four main causes of transmission loss in optical fibres.

1) Material absorption caused by molecular impurities within the core of the fibre, which absorb certain wavelengths. The problem can be limited by choosing a suitable emitter whose peak wavelength corresponds approximately to the spectral region of maximum transmission of the fibre.
2) Material scattering is caused by particle impurities and by fluctuations in temperature and composition.
3) Further scattering is caused by irregularities at the core to cladding interface, which results in transmission into the cladding and subsequent loss of energy on reflection.
4) It is also possible for the curvature of the fibre to cause some transmission loss.

If the curvature is too great, then some rays will strike the boundary at angles less than the critical angle and partial transmission, into the cladding will occur, with the resultant loss of reflection.

Coupling losses must be considered, when designing a fibre optic link, the three main loss mechanisms are :-
a) Fibre to fibre. (Inline.)
b) Fibre to fibre.
(Bulkhead.)
c) Fibre to emitter detector unit.

The loss is due to a number of factors, but in particular, reflections at the mating faces, slight misalignment due to manufacturing tolerances and separation between the mating surfaces. (10) (19)

If the reader is inexperienced in the use of fibre optics then the author suggests a simple test circuit, which could be built to gain some practical experience on the subject.

The following circuit shows how a simple fibre optic link may be used to transmit an audio signal, such as the input from a microphone or pickup stylus and then fed into an audio amplifier.

APPENDICES.

Appendix 1. Z80 CPU INSTRUCTION SET.

The following is a list of the Op-codes and Mnemonics used on the 280 microprocessor system.

All the codes are standard and are reproduced by kind permission of Zilog itd.

The system as it stands must be operated by using the CBJ CODE column, however if the memory expansion is fitted then it would be possible to write in Assembly or the Source Statement column.

Z80-CPU INSTRUCTION SET

$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		OPERATION
8 E	ADC	$A_{1}(H L)$	Add with Carry Opar-
DD8E05	ADC	A, $(1 X+d)$	and to Acc.
FD8E05	ADC	$A,(1 Y+d)$	
8 F	$A D C$	A, A	
88	ADC	A.B	
89	ADC	A.C	
8A	ADC	A, D	
8B	ADC	A, E	
8C	ADC	A.H	
80	ADC	A,L	
CE20	ADC	A,n	
ED4A	ADC	HL, 8 C	Add with Carry Reg.
ED5A	ADC	HL.OE	Pair to HL
ED6A	ADC	HL, HL	
ED7A	$A D C$	HL,SP	
86	ADO	A, (HL)	Add Operand to Acc.
D08605	ADD	A, (IX ${ }^{\text {a }}$ ($)^{\prime}$	
FD8605	ADD	$A,(1 Y+d)$	
87	ADD	A.A	
80	ADD	A,B	
81	ADD	A.C	
82	ADD	A,D	
83	ADD	A,E	
84	ADD	A,H	
85	ADO	A.L	
C620	ADD	A,n	
09	ADD	HL., BC	Add Reg. Pair to HL
19	ADD	HL, DE	
29	ADD	HL, HL	
39	ADO	HL, SP	
D009	ADD	IX,BC	Add Reg. Pair to IX
D019	ADD	1X,DE	
D029	ADD	\|X, IX	
DD39	ADD	IX.SP	
F009	ADD	IY, BC	Add Reg. Pair to tY
FD19	ADD	IY.DE	
FD29	ADD	IY,IY	
FD39	ADD	IY,SP	
A6	AND	(HL)	Logical 'ANO' of
DDA605	AND	(1) $\mathrm{X}+\mathrm{d}$)	Operand and Acc.
FDA605	AND	$(1 Y+d)$	
A)	AND	A	
A0	AND	B	
A1	AND	C	
A2	AND	D	
A3	AND	E	
A4	AND	H	
A5	AND	L	
E620	AND	n	
CB46	BIT	0,(HL)	Test Bit b of Location
DOCB0546	BIT	$0 .(1 X+d)$	or Reg.
FDCB0546	BIT	$0,(1 Y+d)$	
CB47	BIT	$0 . A$	
CB40	BIT	0.8	
C841	BIT	O.C	
CB42	BIT	0.0	
CB43	BIT	O.E	
CB44	BIT	$0 . \mathrm{H}$	

$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		OPERATION
C845	Bit	0.1	Test Bit b of Location
CB4E	BIT	1 (HL)	or Reg.
DDCB054E	BIT	1,(1X+d)	
FDCB054E	BIT	$1,(1 Y+d)$	
CB4F	BIT	1,A	
CB48	BIT	1,8	
CB49	817	1,C	
CB4A	BIT	1.0	
CB48	BIT	1,E	
CB4C	BIT	1.H	
CB4D	BIT	1.L	
C856	BIT	2.(HL)	
DDCB0556	BIT	$2 .(1 X+d)$	
FDCB0556	BIT	2, $11 \mathrm{Y}+\mathrm{d}$)	
CB57	BIT	2,A	
C850	BIT	2,B	
CB51	BIT	2.C	
C852	BIT	2.0	
C853	BIT	2.E	
C854	BIT	2, H	
C855	BIT	2.L.	
C85E	BIT	3.(HL)	
DOCB055E	BIT	3, (1X+d)	
FDCB055E	BIT	$3,(\mid Y+d)$	
CB5F	BIT	$3 . \mathrm{A}$	
CB58	BIT	3, ${ }^{\text {B }}$	
CB59	BIT	3.C	
CB5A	SIT	3.0	
CB5B	BIT	3.E	
CB5C	BIT	3.H	
CB50	BIT	3, 1	
C866	BIT	4.(HL)	
DDCB0566	BIT	4.(1X+d)	
FDCB0566	BIT	4.(1Y+d)	
C867	BIT	4.A	
CB60	BIT	4.8	
CB61	BIT	4.C	
C862	BIT	4,0	
C863	BIT	4.E	
C864	BIT	4. H	
C865	BIT	4.L	
CB6E	BIT	5.(HL)	
DDCB056E	BIT	$5 .(1 X+d)$	
FDCB056E	BIT	5,(1Y+d)	
CB6F	BIT	5, A	
CB68	BIT	5.8	
C868	BIT	5.C	
C86A	BIT	5.D	
CB6B	BIT	5,E	
CB6C	BIT	5. H	
C86D	BIT	5.L	
C876	BIT	6. ${ }^{(H L)}$	
ODCB0576	BIT	6.(1X+d)	
FOC80576	BIT	$6,(1 Y+d)$	
CB77	BIT	6.A	
CB70	BIT	6.8	
CB71	BIT	6.C	
C872	BIT	6, ${ }^{\text {d }}$	
C873	819	$6 . E$	
C874	BIT	6. H	
CB75	BIT	6.1	
CB7E	BIT	7.(HL)	
DOCB057E	BIT	7,(11 $\mathrm{X}+\mathrm{d})$	

Page 255

$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		OPERATION
FDCB057E	819	7,(1Y+d)	Test lit b Location
CB7F	BIT	7.A	or Reg.
CB78	BIT	7.B	
CB79	BIT	7.C	
C87A	BIT	7.0	
СВ78	BIT	7.E	
CB7C	BIT	7. H	
CB7D	BIT	7.L	
DC8405	CALL	C,nn	Call Subroutine at
FC8405	CALL	M,nn	Location nn if Condi-
D48405	CALL	NC, nn	tion True
C48405	CALL	NZ,nn	
F48405	CALL	P.nn	
EC8405	CALL	PE,nn	
E48405	CALL	PO,nn	
CC8405	CALL	Z.nn	
CO8405	CALL	nn	Unconditional Call to Subroutine at nn
3 F	CCF		Complement Carry Fiag
	CP		Compare Onerand
DOBEOS	CP	$(1 X+d)$	with Acc.
FDBE05	CP	$(1 Y+d)$	
BF	CP	A	
B8	$C P$	B	
B9	CP	C	
BA	CP	D	
BB	CP	E	
BC	CP	H	
BD	$C P$	L	
FE20	$C P$		
EDA9	CPD		Compare Location
			(HL) and Acc. Decrement HL and BC
ED89	CPDR		Compare Location (HL) and Acc. Decre. ment $H L$ and $B C$, Repeat until $\mathrm{BC}=0$
EDA1	CPI		Compare Location (HL) and Acc., Increment HL and Decre. ment BC
EDB1	CPIR		Compare Location (HL) and Acc. Increment HL. Decrement BC. Repeat until $B C=0$
2F	CPL		Complement Acc. 11's Compl
27	DAA		Decimal Adjust Acc.
	DEC		Decrement Operand
DD3505	DEC	$(1 x+d)$	
FD3505	DEC	$(1 Y+d)$	
3 D	DEC	A	
05	DEC	8	
08	DEC	BC	
$0 D$	DEC	C	
15	DEC	0	
18	DEC	DE	

Page 256

$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		OPERATION
10	DEC	E	Decrement Operand
25	DEC	H	
2B	DEC	HL	
DD2B	DEC	IX	
FD2B	DEC	IY	
2 D	DEC	1	
3B	DEC	SP	
F3	DI		Dissable Interrupts
102E	DJNZ	e	Decrement 8 and Jump Relative if $\mathbf{B}=\mathbf{0}$
FB	EI		Enable Interrupts
	EX	(SP).HL	Exchange Location
DDE3	EX	(SP).1X	and (SP)
FDE3	EX	(SP),IY	
08	EX	AF,AF'	Exchange the Contents of AF and AF'
EB	EX	DE,HL	Exchange the Contents of DE and HL
D9	EXX		Exchange the Contents of BC.DE.HL with Contents of BC',DE',HL'Respec. tively
76	HALT		HALT (Wait for Interrupt or Reset)
ED46	IM	0	Set interrupt Mode
ED56	IM	1	
ED5E	IM	2	
ED78	IN	A.(C)	Load Reg. with innut
ED40	IN	B. (C)	from Device (C)
ED48	IN	C. (C)	
ED50	IN	D. (C)	
ED58	IN	E, (C)	
ED60	IN	H. (C)	
ED68	IN	L.(C)	
34	INC	(HL)	Increment Operand
DO3405	INC	$(1 X+d)$	
FD3405	INC	$(1 Y+d)$	
3 C	INC	A	
04	INC	B	
03	INC	BC	
0 C	INC	C	
14	INC	D	
13	INC	DE	
1 C	INC	E	
24	INC	H	
23	INC	HL	
DD23	INC	IX	
FD23	INC	IY	
2 C	INC	L	
33	INC	SP	
D820	IN	A. (n)	Load Acc. with Input from Device n
EDAA	IND		Load Location (HL) with Input from Port (C). Decrement HL and B

Page 257

$\begin{aligned} & \text { OBN } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		OPERATION
EDBA	INDR		Load Location (HL) with input from Port (C). Decrement HL and Decrement B . Repeat until B-0
EDA2	INI		Load Location (HL) with Input from Port (C): Increment HL and Decrement B
EDB2	INIR		Lasd Location (HL) with Input from Port (C), Increment HL and Decrement B , Repeat until $\mathrm{B}=0$
$\begin{aligned} & \text { C38405 } \\ & \text { E9 } \\ & \text { DDE9 } \\ & \text { FDE9 } \\ & \hline \end{aligned}$	$\begin{aligned} & J P \\ & J P \\ & J P \\ & J P \\ & J P \end{aligned}$	nn (HL) (IX) (IY)	Unconditional Jump to Location
DA8405 FA8405 D28405 C28405 F28405 EA8405 E28405 CA8405	$\begin{aligned} & \mathrm{JP} \\ & \mathrm{JP} \end{aligned}$	C.nn M,nn NC,nn NZ,nn P,nn PE,nn PO,nn 2,nn	Jump to Location i! Condition True
$\begin{aligned} & 382 E \\ & 302 \mathrm{E} \\ & 202 \mathrm{E} \\ & 282 \mathrm{E} \end{aligned}$	JR JR JR JR	$\begin{aligned} & \text { C.e } \\ & \text { NC.e } \\ & \text { NZ.e } \\ & \text { Z.e } \end{aligned}$	Jump Relative to PC+e if Condition True
182 E	$J R$	e	Unconditional Jump Relative to PC+e
02	LD	(BC).A	Lord Source to Des.
12	L.O	(DE).A	tination
77	LD	(HL), A	
70	LO	(HL). 8	
71	LD	(HL),C	
72	LD	(HL).D	
73	LO	(HL), E	
74	LD	(HL). H	
75	LD	(HL).L	
3620 007705	LD	$(H L), n$ $(1 X+d), A$	
OD7005	LO	$(1 X+d), B$	
DD7105	LD	$(1 x+d) . C$	
DD7205	LD	($\mid x+d)$, D	
DD7305	LD	$(1 X+d) . E$	
DD7405	LO	$(1 X+d), H$	
D07505	LO	$(1 x+d), L$	
DD360520	LO	$(1 X+d), n$	
FD7705 FD7005	LD	$((Y+d), A$ $(\mid Y+d), 8$	
FD7105	LD	$(1 Y+d) . C$	
FD7205	LD	$(1 Y+d), D$	
FD7305	LD	$(1 Y+d), E$	
FD7405	LD	$(1 Y+d), H$	
FD7505 FD360520	LD	$(Y+d), L$ $(Y Y+d), n$	
328405	LO	(n) , A	
ED438405	LD	(n), BC	

Page 258

$\begin{gathered} \text { OBS } \\ \text { CODE } \end{gathered}$	SOURCE STATEMENT		OPERATION
E0538405	LD	(nn) , DE	Load Source to Des-
228405	LD	(nn) , HL	tination
DD228405	10	(mo), IX	
FD228405	LD	(n), 1Y	
ED738405	LD	(n) , Sp	
$\begin{aligned} & \text { OA } \\ & 1 A \end{aligned}$	LD	$\begin{aligned} & \mathrm{A},(\mathrm{BC}) \\ & \mathrm{A},(\mathrm{DE}) \end{aligned}$	
$7 E$	LD	A, (HL)	
DD7E05	10	$\mathrm{A},(1 \mathrm{X}+\mathrm{d})$	
FD7E05	L0	A, ($1 \mathbf{Y}+\mathrm{d}$)	
3A8405	LD	A, (nn)	
7 F	LD	A.A	
78	LD	A.B	
79	LD	A, C	
7A	L0	A, D	
78	LD	A,E	
7 C	LD	A.H	
$\begin{aligned} & \text { ED57 } \\ & 7 D \end{aligned}$	LD	$\begin{aligned} & A, 1 \\ & A, L \end{aligned}$	
3E20	LD	A, n	
EDSF	LD	A. R	
46	LD	B.(HL)	
DD4605	L0	$8 .(1 x+d)$	
FD4605	LO	B, $(1 Y+d)$	
47	LD	B,A	
40	LO	B, ${ }^{\text {B }}$	
41	LD	B.C	
42	LD	B, ${ }^{\text {c }}$	
43	L.	B,E	
$\begin{aligned} & 44 \\ & 45 \end{aligned}$	L0	$\begin{aligned} & \text { B.H } \\ & \text { B.L } \end{aligned}$	
0620	LD	B,n	
E0488405	LD	BC, (nn)	
018405	LD	BC.nn	
$4 E$	LD	C.(HL)	
DD4E05	LD	c, (1X+d)	
FD4E05	L0	c. $(1 Y+d)$	
4 F	LD	C. A	
48	LO	C. B	
49	LD	c.c	
4A	LD	c, ${ }^{\text {c }}$	
48	LD	c.e	
4 C	LO	C. H	
4 D	LD	C, L.	
OE20	LD	C, n	
56	LO	D, (HL)	
DD5605	Lo	D. $(11 \mathrm{X}+\mathrm{d})$	
f05605	LD	D, (1Y Y +d)	
57	LO	D.A	
50	LD	D, B	
51	LD	D,C	
52	LD	D, D	
53	LD	D.E	
54	LD	D.H	
55	LD	D, L	
1620	LD	D, n	
ED588405	LD	DE, (na)	
118405	LO	DE.nn	
5 E	LO	E. (HL)	
DD5E05	LD	E, (1X+d)	
FD5E05	LD	$\mathrm{E},(1 \mathrm{Y}+\mathrm{d})$	
5 F	LO	E,A	
58	LD	E. B	
59	LD	E.C	

Page 259

OBJCODE	SOURCE STATEMENT		OPERATION Load Source to Destination
	LD	E, D	
58	LD	E, E	
5 C	LD	E, H	
5 D	LD	E,L	
1E20	LD	E.n	
66	LD	H. (HL)	
DD6605	LD	$\left.\mathrm{H}_{1}(1) \mathrm{X}+\mathrm{d}\right)$	
FD6605	LD	$H_{2}(i Y+d)$	
67	LD	H,A	
$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & \mathrm{LD} \\ & \mathrm{LD} \end{aligned}$	$\begin{aligned} & \mathrm{H}, \mathrm{~B} \\ & \mathrm{H}, \mathrm{C} \end{aligned}$	
62	LD	H.D	
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	$\begin{aligned} & \text { LD } \\ & \text { LD } \end{aligned}$	$\begin{aligned} & H . E \\ & H . H \end{aligned}$	
65	LD	H,L	
2620	LD	H,n	
2A8405	LD	HL, (nn)	
218405	LD	HL, nn	
ED47	LD	I.A	
DD2A8405	LD	\| $\mathrm{X},(\mathrm{nn}$)	
DD218405	LD	IX, nn	
FD2A8405	LD	$\mid Y,(n n)$	
FD218405	LD	IY,nn	
6 E	LD	L.(HL)	
DD6E05	LD	L. $(1 X+d)$	
FD6E05	LD	L, $11 \mathrm{Y}+\mathrm{d}$)	
$\begin{aligned} & 6 F \\ & 68 \end{aligned}$	$\begin{aligned} & \text { LD } \\ & \text { LD } \end{aligned}$	$\begin{aligned} & \text { L,A } \\ & \text { L, B } \end{aligned}$	
69	LD	L.C	
6A	LD	L.D	
68	LD	L.E	
6C	LD	L.H	
6 D	LD	L.L	
2E20	LD	L, n	-
ED 4 F	LD	R.A	
ED788405	LD	SP,(mn)	
F9	LD	SP,HL	
DDF9	LD	SP.IX	
FDF9	LD	SP,IY	
318405	LD	SP.nn	
EDAB	L.DD		Load Location (DE) with Location (HL). Decrement DE,HL and BC
EDB8	LDDR		Load Location (DE) with Location (HL). Repeat until BC $=0$
EDAO	LDI		Load Location (DE) with Location (HL). Increment DE,HL. Decrement BC
EDBO	LDIR		Load Location (DE) with Location (HL). Increment DE,HL, Decrement $B C$ and Repeat until BC $=0$
ED44	NEG		Negate Acc. (2's Complement)
00	NOP		No Operation
86	OR	$(H L)$	Logical "OR' of
DDB605	OR	$(1 x+d)$	Operand and Acc.

Page 260

$\begin{gathered} \text { OBJ } \\ \text { CODE } \end{gathered}$	SOURCE STATEMENT		OPERATION
CB88	RES	1,8	Reset Bit b of
CB89	RES	$1 . \mathrm{C}$	Operand
CB8A	RES	1,D	
C888	RES	$1 . \mathrm{E}$	
CB8C	RES	1.H	
CB8D	RES	$1 . \mathrm{L}$	
CB96	RES	2.(HL)	
DDCB0596	RES	$2.11 X+d)$	
FDCB0596	RES	2,(1Y+d)	
C897	RES	2,A	
CB90	RES	2.8	
C891	RES	2.C	
CB92	RES	2,0	
C893	RES	2,E	
C894	RES	2, H	
C895	RES	2.L	
crse	RES	3.(HL)	
DDCB059E	RES	3.(1X+d)	
fDCbosge	RES	$3 .(1 \gamma+d)$	
C89F	RES	3.4	
C898	RES	3.8	
C899	RES	3.6	
C89A	RES	3.0	
св98	RES	$3 . E$	
C89C	RES	3, H	
CB9D	RES	3. L	
CBA6	RES	4.(HL)	
dDCB05A6	RES	4,(1X+d)	
FDCB05A6	RES	4,(1Y+d)	
CBA7	RES	4,A	
CBAO	RES	4,8	
CBA1	RES	4.C	
CBA2	RES	4.0	
dBA3	RES	4.E	
CBAA	RES	4, H	
cbas	RES	4, L	
cbat	RES	5, (HL)	
dDCB05aE	RES	$5 .(1 \mathrm{X}+\mathrm{d})$	
fDCB05AE	RES	$5 .(1 Y+d)$	
CBAF	RES	5,A	
CBAB	RES	5,8	
CBA9	RES	5.C	
CBAA	RES	5,D	
CBAB	RES	5.E	
CBAC	RES	5.H	
CBAD	RES	5,L	
C8B6	RES	6,(HL)	
DDCB0586	RES	6,(1X+d)	
FDCB0586	RES	6,(1Y+d)	
C8B7	RES	6,A	
CBBO	RES	6.8	
CBB1	RES	6.C	
CBB2	RES	6.0	
CB83	RES	6,E	
C8B4	RES	6.H	
cres	RES	6.1	
cabe	RES	7.(HL)	
DDCB05BE	RES	$7 .(1 \mathrm{X}+\mathrm{d})$	
FDCB058E	RES	$7 .(1 Y+d)$	
cbif	RES	7.4	
C888	Res	7.8	
CB89	RES	7.6	
CBBA	RES	7.0	

Page 262

$\begin{aligned} & \text { OBJ } \\ & \text { cODE } \end{aligned}$	BOURCE STATEMENT		OPERATION
C:880	HES	T.E	Recet Brt b of.
cayc	HES	7.H	Operand
CaHD	AES	7.1	
Cs	HET		Rmuzn fiom Subroutine
128	RET	C	Fieturn from
1 N	RET	M	Subroutine it Condi.
00	HET	NC	ton True
co	RET	$N \mathrm{~N}$	
ro	HET	P	
E8	RET	PE	
10	HET	PO	
Ca	RET	z	
(04:)	Al. TI		Return from interiupt
E. 24.5	GLTN		Return trom Non. Maskable interrupt
CBIE	HL	(HL)	Motere Left Through
OCRCAUS16	RL	$(\mathrm{X} \times \mathrm{d})$	Carrv
+ocuest6	RL	firadi	
CN1\%	RL	A	
Cato	FL	B	
C\&11	ML	C	
C.81:	RL	D	
COH_{3}	71.	E	
C.A14	HL	H	
CH:S	Hi	1	
17	HLA		Rotnte tert Acc. Through Carty
CHO6	HLC	(HL)	Rotate Left Circuiar
Duchorut	HLC	$(1 X+d)$	
- ucnown	HLC	(IY•䧺)	
call	HLC	A	
cam	HLC	${ }^{8}$	
chos	Hic.	C	
C8O2	Ald.	0	
caol	HLC	E	
Cam	RLC:	H	
Com:	HLC.	1	
01	HICA		Potate Left Citcuiar $A \subset$
$F \mathrm{Fiz}$	HLU		Hotare Deprt Left and Roght berweon Acc. end and Location (HL)
cait	HH	(1HL)	Rotate Right Through Carry
tocnoir.	ref	$(1 x+d)$	
F t)CRORIt	ธи	(AY*0)	Cariy
Call	ผค	\wedge	
Cas	*n	${ }^{6}$	
c:al9	\% H	C	
CSta	¢\% ${ }^{\text {\% }}$	0	
C-B) 8	12 H	E	
CBIC	PH	H	
CNIO	Hal	1	
it	mha		Hotate Right Acc Through Cerery
s:tut	H12C	(H6)	Hotare Raght Circular
otrenosot	HHC	($\mathrm{X} \times \mathrm{d}$)	
fucremer	nstc		
CNor	MRC.	A	

Page 263

$\begin{aligned} & \text { OBN } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		OPERATION
CBOB	RRC	8	Rotste Right Circular
C309	RRC	C	
C80A	RRC	D	
CBO8	GRC	E	
Croc	HRC	H	
C800	RRC	1	
Of	RRCA		Rotote Right Circular Acc.
E067	RRD		Rotate Digit Right and Left Berween Acc. and Location (HL)
C7	RST	OOH	Restart to Location
CF	RST	Овн	
D7	RST	10 H	
OF	RST	18 H	
E7	RST	20 H	
EF	ASt	28H	
F7	RST	30 H	
FF	RST	38 H	
DE20	SBC	A.n	Subtract Opetand
9 E	SBC	A. (HL)	from Acc. with Carry
D09E05	SBC	A. $(1 \times \cdot+3)$	
F D9EOS	SBC	A, ($1 \mathrm{Y}+\mathrm{d}$)	
9 F	SBC	A.A	
9	SBC	A.B	
99	SBC	A.C	
9A	SBC	A. ${ }^{\text {d }}$	
98	SBC	A. 5	
3 C	SBC	A. H	
90	S8C	A.L	
EO4?	SBC	HL, BC	
EUS?	SBC	HL. DE	
[10i2	SBC	HL.HL	
1072	SBC	HLSP	
37	SCF		Set Cativ Fisaic 11
crec	SET	$0.10+1$	Set Bit b of Location
duchosct	SET	$0,(1 x \cdot d)$	
FOCBOSC6	SET	0.(1Y-d)	
cac7	SFT	0.1	
Caco	SET	0.6	
CHCl	SET	U.C	
cuc?	SET	$0,1)$	
С8C3	SET	O.E	
CBCA	SET	O.H	
cess	SET	0.1	
Cact	SET	1,(HL)	
docbosce	SET	1.(11 1 +d)	
fochosce	SET	1,119.d)	
CBCF	SET	1.4	
Cacs	SCT	1.8	
CBC. 9	SET	1.C	
caca	SET	1.0	
cacs	SET	$1 . \mathrm{E}$	
CBCC	SET	1,H	
CBCD	SET	1.1	
CRD6	SET	$2.18 \mathrm{~L})$	
00chosos	SET	$2.11 \mathrm{x} \cdot \mathrm{di}$	
FOCBOSD6	SET	2.(1Y-d)	
CBD7	SET	2.4	
cavo	SET 1	2.8	
C8D	SET	2.6	
CROT	SET	2.0	

Page 264

$\begin{gathered} \text { OBS } \\ \text { COOE } \end{gathered}$	SOURCE STATEMENT		OPERATION
C803	SET	2.E	Set But b of Location
CBDS	SET	2, H	
C805	SET	2.1	
CB08	SET	3.8	
cbde	SET	$3,(\mathrm{HL})$	
DOCB050E	SET	3,(11X+d)	
FOCBOSDE	SET	3,(1Y+d)	
CadF	SET	3.4	
C809	SET	3.6	
CBDA	SET	3.0	
cbos	SET	$3 . E$	
cboc	SET	$3 . \mathrm{H}$	
C800	SET	3.L	
ceeg	SET	$4 .(\mathrm{HL})$	
DDCB05E6	SET	4. $(1 \mathrm{X}+\mathrm{d})$	
FOC80SE6	SET	d. (11 $\gamma+\mathrm{d})$	
CRE7	SET	4.A	
caeo	SET	4.8	
CBE1	SET	$4 . C$	
CBE2	SET	4.0	
CRE3	SET	4.E	
CBEA	SET	4.H	
CBE5	SET	4.L	
cate	SET	5.(HL)	
ducbosee	SET	$5 .(1 \mathrm{X}+\mathrm{d})$	
fucbosee	SET	$5 .(1 Y+d)$	
C8EF	SET	5.4	
CBE8	SET	5.8	
Cbeg	SET	5.C	
crea	SET	5.0	
CHEB	SET	5.E	
crec	SET	S.H	
caed	SET	5.L	
CRF6	SET	6.(HL)	
DOCBO5F6	SET	$6 .(1 X+d)$	
FDCB05F6	SET	$6 .(1 Y+d)$	
CBF7	SET	6.A	
CBFO	SET	6.8	
COFI	SET	$6 . C$	
CHF 2	SET	6.0	
cers 3	SETT	$6 . E$	
CBFA	SET	6.H	
CBF5	SET	6.L	
CBFE	SET	7.(HL)	
DOCBOSFE	SET	$7 .(1) \times$ + 61$)$	
focbosfe	SET	7.(1) $\mathrm{Y}+\mathrm{d}$)	
CBFF	SET	7.4	
CBF 8	SET	7.8	
C8F9	SET	7.6	
CBFA	SET	7.0	
CAFH	SET	$7 . \mathrm{E}$	
CBFC	SET	7.4	
CBFD	SET	$7 . \mathrm{L}$	
CB2G	SLA	(HL)	Shift Operand Left
uocbos 26	SLA	(1) $X+d)$	Arithmetic
FDCH0526	SLA	(1Y P d)	
CH27	SLA	A	
C820	SLA	8	
CH 21	SLA	c	
C822	SLA	0	
CB23	SLA	E	
C824	SLA	${ }^{\text {H }}$	
CB25	SLA	1	

Page 265

$\begin{gathered} \text { OQJ } \\ \text { CODE } \end{gathered}$	SOURCE STATEMENT		OPERATION
CB2E	SRA	$(\mathrm{HL)}$	Shift Operand Right
DDCB052E	SRA	(1x*d)	Arithmetic
FDCB052E	SRA	$(1)+d)$	
CB2F	SRA	A	
CB28	SRA	B	
CB29	SRA	C	
CB2A	SRA	D	
CB2B	SRA	E	
C82C	SRA	H	
C82D	SAA	L	
CB3E	SRL	(HL)	Shiti Operand Right
ODCB053E	SRL	(IX-d)	Logieal
FDCB053E	SRL	(IY+d)	
CB3F	SRL	A	
CB38	SAL	B	
C839	SRL	C	
CB3A	SRL	D	
C838	SRL	E	
CB3C	SAL	H	
CBJO	SAL	1	
96	SUB	(HL)	Subtract Opetand
009605	SUB	(1) $X+d$)	from Acc.
FD9605	SUB	($1 Y+d$)	
97	SUB	A	
90	SUB	8	
91	SUB	C	
92	SUB	D	
93	SUB	E	
94	SUB	H	
85	SUB	L	
0620	SUB	n	
AE	XOR	(HL)	Exclusive "OR"
ODAEOS	XOR	$(1 X+d)$	Operand and Acc.
FDAEOS	XOR	$(t Y+d)$	
AF	XOR	A	
$A B$	XOR	B	
$\wedge 9$	XOR	C	
AA	XOR	D	
$A B$	$\times O R$	E	
$A C$	\times OR	H	
AD	$\times O R$	1	
EE20	XOR	n	

Page 266

Appendix 2. CHIP COMPARISON.

When investigating the various attributes of each microprocessor chip, an attempt was made to compare each chip against the other on a points basis, so that a clearer over view could be obtained.

Each chip was given a mark out of 10 , after each section was considered fully. It should be noted that these are cerrect on?y in the author's view for the particular application in question and may differ greatly for another project, at annther time.

A table follows of the results obtained.

CHIP.	4,40	PP/4	6800	8080	z80	F8	2650	6502	Cos	6100	Pace	9900	Specification Considered.
	10	1	5	5	7	1.	8	1	5	8	9	8	Stack Register.
	6	5	5	5	8	5	5	1.	5	5	7	6	Index Register.
	,	3	8	8	8	5	6	5	5	6	10	8	Memory.
	1	4	8	8	9	8	5	10	3	8	6	7	Register Time.
	5	4	7	8	10	5	7	5	9	6	3	6	Instructions.
	2	4	4	6	10	2	2	4	1	1	6	7	Interrupt.
	2	5	5	10	10	8	5	5	3	4	5	5	Input and Cutput.
	1	1	8	5	9	8	7	10	5	5	6	5	Address Modes.
	1	1	5	8	9	10	6	5	10	8	8	7	General Registers.
	3	3	6	8	8	6	3	3	3	4	6	4	Documentation.
	2	2	6	9	8	5	4	4	4	4	2	4	Cost and Support.
	2	2	8	10	10	5	4	2	2	2	4	3	Availability and Family.
	4	4	6	10	8	2	2	2	2	2	8	3	Industrial Standards.
	?	2	5	8	10	3	4	1	2	2	3	3	Machine Control.
	42	41	96	108	124	73	68	58	59	65	83	76	Totals.

APPENDIX 3. SYSTEM MONITOR LISTING.

EC400 0000 0800						
0000	31	00	10	LD	SF, $£ 1000$; 1..
0003	D7			RST	£10	; W
0004	08			DEFB	£08	;
0005	CS	E2	03	JF	£0JE2	; C2.
0008	DF			RST	£18	!
0009	62			DEFE	£62	; 6
OOOA	D8			FET	C	; X
OOOR	18	FE		JF'	£0008	; . \{
OOOD	CS	9A	03	JP	£0S9A	:C.
0010	E5			FUSH	HL	; e
0011	E1			POF	HL	; ${ }^{\text {a }}$
0012	E1			FOP	HL	;
0013	23			INC	HL	; $£$
0014	ES			FUSH	HL	; e
0015	CS	70	05	JF	£0570	; Cp.
0018	ES			FUSH	HL	; e
0019	E1			POF	HL	;
OQIA	E1			FOF	HL	:
001 B	23			INC	HL	;
0015	E5			FUSH	HL	!e
001 D	CS	80	05	JP	£0580	:C.
0020	ES			EX	(SF). HL	; C
0021	2B			DEC	HL	; +
0022	ES			EX	(SP), HL	: C
0023	CS	1 A	04	JP	£041A	C..
0026	00			NOF		;
0027	00			NOF		\%
0028	ES			EX	(SF), HL	: 5
0029	7E			LD	A, (HL)	$;^{\sim}$
$002 A$	23			INC	HL	; £
002 B	B7			OR	A	; 7
002C	20	06		JFi	NZ, £0034	;
002E	ES			EX	(SF), HL	: C
OO2F	C9			FET		; I
0030	ES			FUSH	HL	!e
0031	C3	5 S	07	JF	£075A	:CZ.
0034	F7			RST	£ふ0	; w
0035	18	F2		JR	£0029	; . r
0037	00			NOF'		;
0038	3D			DEC	A	; $=$
0039	C8			RET	Z	: H
003 A	FS			FUSH	AF	: 4
OOSE	F1			FOF	AF	\%
003 C	18	FA		JFi	£0036	; . 2
OOSE	AF			XOFi	A	; $/$

003 F	47		LD	B, A	; G
0040	FF		RST	£	; -
0041	FF		FST	£38	;
0042	10	FC	DJNZ	£0040	; ${ }^{1}$
0044	C 9		RET		; I
0045	ES		FUSH	HL	!
0046	21	0000	LD	HL, £OCOO	; ! .
0049	AE		XDR	(HL)	;
004 A	DS	00	OUT	(£0), A	; 5.
004 C	7E		LD	A, (HL)	$;^{\sim}$
004 D	DS	00	OUT	(f00), A	; S.
OO4F	E1		FOP	HL	; ${ }^{\text {a }}$
0050	C9		FET		; I
0051	उE	10	LD	A,£10	;
0055	ES		PUSH	HL	; e
0054	21	00 OC	LD	HL, £OCOO	; ! .
0057	AE		XOR	(HL)	;
0058	77		LD	(HL), A	; w
0059	18	F2	JR	f004D	; - r
0058	FS		FUSH	AF	; 4
0055	DS	01	OUT	(£)1), A	; 5.
OOSE	DE	02	IN	A. (£02)	\% [.
0060	CE	77	EIT	G, A	がW
0062	28	FA	JR	Z, £005E	\% (2
0064	F1		POP	AF	: 9
0065	C9		REET		: I
0066	CS	7D OC	JF'	£OC7D	; CJ.
0069	1E	CO	LD	E, £CO	; - ${ }^{\text {P }}$
006 B	DF		FST	± 18	3 -
006C	62		DEFB	£62	; b
006D	D8		FEET	C	; X
OOGE	1D		DEC	E	;
006F	20	FA	JFi	NZ, £006B	; 2
0071	C9		RET		; I
0072	2 A	29 Oc	LD	HL , (£0C29)	; *).
0075	56		LD	D, (HL)	:V
0076	36	SF	LD	(HL), £ 5 F	; 6?
0078	D7		RST	£10	\% W
0079	EF		DEFE	£EF	:0
$007 A$	72		LD	(HL), D	;
007 B	D8		RET	C	; X
007C	D7		RST	£10	; W
007 D	EE		DEFE	£EE	: k
OOTE	30	F2	JR	NC, £0072	Or
0080	C9		RET		; I
0081	DE	02	IN	A. (£О2)	; [.
0083	17		FiLA		;

Page 270

0084	DO		RET	NC	; P
0085	DE	01	IN	A, (£01)	; $[$.
0087	C9		RET		; I
0088	3E	02	LD	A, £02	; $>$
908A	CD	4500	CALL	£0045	; ME.
OO8D	21	01 0c	LD	HL, £OCO1	; ! .
0090	DB	00	IN	A, (£00)	; [.
0092	2F		CPL		; /
0093	77		LD	(HL), A	; w
0094	06	08	LD	E, £08	; *
0096	उE	01	LD	A, £01	;
0098	CD	4500	CALL	£0045	; ME.
O098	23		INC	HL	!
009C	DE	00	IN	$A_{3}(\mathrm{fOO})$; [.
OO9E	2 F		CFL		;
OOGF	57		LD	D, A	; W
OQAO	AE		XOR	(HL)	\%
OQA1	20	04	JR	NZ, £OOA7	;
OQAS	10	F1	DJNZ	£0096	9.9
OOA5	E7		OF'	A	; 7
OOA6	C9		FET		: I
0047	AF		XOR	A	; /
OOAB	FF		RST	£З8	;
0049	DE	00	IN	$A_{5}(\underline{100)}$;
OOAE	2F		CFL		; /
OOAC	5 F		LD	E, A	;
OOAD	7A		LD	A, D	; 2
OOAE	AE		XOF	(HL)	;
OOAF	OE	FF	LD	C. EFF	; -
OOR1	16	0 O	LD	D, £OO	; .
OORS	37		SCF		; 7
OOE4	CE	12	RL	D	; K.
OOE6	OC		INC	C	;
$00 \mathrm{E7}$	1 F		RRA		;
OOB8	30	$F A$	JR	NC, f00R4	O2\%
00 BA	7 A		LD	A, D	; \mathbf{z}
OOBE	AS		AND	E	; £
OOBC	5 F		LD	E, A	;
OOED	7E		LD	A, (HL)	$;^{\sim}$
OOEE	A2		AND	D	; "
QOBF	EB		CP	E	; ;
OOCO	28	E1	JR	$\mathrm{Z}, \mathrm{f00AS}$; ${ }^{\text {a }}$
00c2	7E		LD	A, (HL)	$;{ }^{\sim}$
OOCS	AA		XOF	D	;*
OOC4	77		LD	(HL), A	; w
00 cs	7 B		LD	A, E	! 6
00c6	E7		OFi	A	: 7
0007	28	DA	JKi	$Z, £ 0043$; (2

0121	28	02		JF	Z. 10125	; 1.
0123	EE	80		XOR	£80	;n.
0125	21	27	OC	LD	HL, £OC27	; ! ${ }^{\text {c }}$
0128	CE	56		EIT	2, (HL)	\% KV
012 A	28	02		JFi	Z, £O12E	;
012C	EE	80		XOR	£80	; n.
012 E	37			SCF		; 7
012F	C9			RET		; I
0130	2 A	6 F	OC	LD	HL, (£OCGF)	* ${ }^{\text {\% }}$
0135	54			LD	D. H	; T
0134	5 D			LD	E,L	;]
0135	ED	4B	6D OC	LD	EC, ($£ 0 C 6 D$)	; mKm.
0139	ED	E1		CPIR		; m1
013 B	C9			RET		; I
013 C	00			NOF'		;
013D	10	60		DJNZ	£019F	;
Q13F	00			NOF'		;
0140	9E			SBC	A, (HL)	;
0141	05			DEC	B	;
0142	06	07		LD	E, £07	; .
0144	7F			LD	A, A	;
0145	07			FLLCA		;
0146	82			ADD	A, D	;
0147	07			FLCA		;
0148	C.	2F	00	JF'	£002F	: C/.
014 B	C3	2 F	00	$J P$	£002F	; C/.
014 E	CS	E7	C8	JF	£C8E7	; C 7 H
0151	FS			FUSH	AF	;
0152	FE	OA		CP	£OA	$:^{\sim}$
0154	28	24		JR	Z. fol7A	; (\$
0156	FE	OC		CF'	£OC	$;^{\sim}$
0158	20	22		JR	NZ, £017C	; "
O15A	21	0 A	08	LD	HL, £08OA	; ! .
O15D	E5			PUSH	HL	:e
O15E	06	30		LD	B, £	;-0
0160	36	20		LD	(HL) , £20	; 6
0162	23			INC	HL	! £
016\%	10	FE		DJNZ	£0160	;. i
0165	06	10		LD	E, f10	; - -
0167	36	00		LD	(HL) , £00	\%6.
0169	23			INC	HL	; £
$016 A$	10	FB		DJNZ	£0167	
016 C	EE			EX	DE, HL	;1:
O16D	E1			POF	HL	!a
016 E	ES			FUSH	HL	\%
016F	01	EO	03	LD	BC, £0こBO	1.0.
0172	ED	EO		LDIF		; mo
Q174	E1			FOP	HL	! a

Page 273

0175	DF		RST	£18	;
0176	7C		DEFB	£7C	31
0177	22	29 oc	LD	(£0C29) , HL	(").
017A	F1		FOF	AF	9
017B	C9		FET		: I
017C	2A	29 OC	LD	HL, (f0C29)	; *).
017F	FE	08	$C P$	£08	$;^{\sim}$.
0181	20	11	JR	NZ, £0194	;
0183	F5		FUSH	AF	:
0184	2B		DEC	HL	;
0185	7E		LD	A. (HL)	3^{\sim}
0186	E7		OR	A	:7
0187	28	FB	JR	Z, £0184	; (
0189	F1		FOP	AF	: 9
018 A	FE	11	CF-	£11	$:^{2}$.
O18C	28	02	JR	Z,£0190	\%
O18E	36	20	LD	(HL) , £20	; 6
0190	D7		RST	£10	:W
0191	6.3		DEFE	£63	! C
0192	18	E6	JR	£017A	; .f
0194	FE	11	CF	£11	$\%^{\sim}$
0196	28	EB	JR	Z.£0183	; <
0198	FE	17	CF	£17	i^{\sim}.
019A	28	D9	JFi	Z, £0175	\because ! Y
0190	FE	1E	CF	£1B	$;^{\sim}$
O19E	20	OB	JR	NZ, £O1AB	;
01 AO	DF		RST	£18	;
O1A1	7 C		DEFB	£フC	;
0142	06	30	LD	E, £ЗO	\%.0
01A4	36	20	LD	(HL) , £20	16
O1AG	23	.	INC	HL	!
O1A7	10	FB	DJNZ	£01A4	;.
0149	18	CA	JR	£0175	\% J
Q1AB	FE	OD	CP	£OD	;
01 AD	28	66	JR	Z, £0215	; ${ }^{\text {f }}$
01 AF	FE	18	CF	£18	$;{ }^{\sim}$
0181	20	OC	JR	NZ, £O1EF	;
O1E	ES		FUSH	HL	:
$01 \mathrm{B4}$	DF		RST	£18	1-
01 ES	7 C		DEFE	£7C	;
$01 \mathrm{B6}$	D1		POF	DE	0
0187	E7		OFi	A	; 7
01 EB	ED	52	SEC	HL, DE	; mR
O1BA	19		ADD	HL, DE	;
O1EE	28	EA	JR	Z,£0177	; 6:
O1ED	18	56	JR	£0215	: $\cdot \mathrm{V}$

Page 274

O1BF	FE	13		CF	£13	$;^{\sim}$
O1C1	20	08		JF	NZ, £01CB	
01 C	11	CO	FF	LD	DE, £FFCO	\% - $0^{\text {. }}$
O1C6	19			ADD	HL, DE	\%
0107	D7			RST	£10	\% W
0158	2 C			DEFE	£2C	!
01C9	18	AF		JFi	£017A	: 1
O1CB	FE	14		CP	£14	$;^{\sim}$ 。
O1CD	20	05		JFi	NZ, £O1D4	
O1CF	11	40	00	LD	DE, £0040	- - ${ }^{\text {a }}$
O1D2	18	F2		JR	£O1C6	! $\cdot \mathrm{r}$
O1D4	FE	15		CP	£15	$;^{\sim}$ 。
O1D6	20	OE		JFi	NZ, £O1E6	
O1D8	23			INC	HL	;
O1D9	7E			LD	A, (HL)	3^{\sim}
O1DA	2 B			DEC	HL	; +
O1DE	E7			OR	A	; 7
O1DC	20	04		JR	NZ, £01E2	;
O1DE	36	20		LD	(HL), £20	16
O1EO	18	98		JR	£017A	!
O1E2	77			LD	(HL), A	; w
O1ES	23			INC	HL	: $£$
O1E4	18	F2		JR	£O1D8	; $\cdot \mathrm{r}$
O1E6	FE	16		CP	£16	i^{\sim}.
O1E8	20	1 F		JF	NZ, £0209	;
O1EA	06	20		LD	$\mathrm{B}, £ 20$	\%
O1EC	7E			LD	A, (HL)	;
O1ED	B7			OR	A	; 7
O1EE	28	8A		JR	Z,£017A	;
O1FO	70			LD	(HL), E	; p
O1F1	47			LD	E, A	G
O1F2	23			INC	HL	; $£$
01F3	18	F7		JF	£OIEC	; W
O1F5	11	OA	08	LD	DE, £OBOA	*...
01 FB	B7			OR	A	; 7
O1F9	ED	52		SEC	HL, DE	; mR
O1FE	19			ADD	HL, DE	;
O1FC	D8.			RET	C	\% X
O1FD	11	EA	OB	LD	DE, £OBEA	; - :
0200	E7			OR	A	; 7
0201	ED	52		SEC	HL, DE	; mFi
0203	19			ADD	HL, DE	;
0204	DO			RET	NC	${ }^{\circ} \mathrm{F}$
0205	F1			FOP	AF	; q
0206	CS	77	01	JF	£0177	; CW.
0209	FE	12		$C P$	£12	;

Page 275

O20E	28	01	JR	Z. £020E	; 6
O20D	77		LD	(HL), A	; w
O20E	23		INC	HL	; $£$
020F	7E		LD	A, (HL)	$;^{\sim}$
0210	E7		QR	A	; 7
0211	28	FB	JR	Z. £020E	; (6
0213	D7		RST	£10	; W
0214	E0		DEFB	£EO	; *
0215	DF		RST	£18	;
0216	7C		DEFB	£フC	:
0217	11	4000	LD	DE, £0040	; - ${ }^{\text {a }}$
021A	19		ADD	HL, DE	;
021B	D7		RST	£10	; w
O21C	D8		DEFB	£D8	; X
021 D	11	OA 08	L.D	DE, £080A	; . .
0220	21	4A 08	LD	HL, £084A	! ! J.
0223	01	$70 \quad 03$	LD	EC, £OS70	; P.
0226	ED	BO	LDIF		; mo
0228	06	30	LD	B, £З	3.0
022A	2B		DEC	HL	; +
O22B	36	20	LD	(HL) , 520	16
022D	10	FE	DJNZ	£022A	; . \{
022F	21	8 A OB	LD	HL, £OB8A	; ! .
0232	18	D2	JR	£0206	; R
0234	7 D		LD	A, L	; 3
0235	D6	40	SUB	£40	: Vi
0237	30	FC	JR	NC, £0235	; O:
0239	C6	36	ADD	A, £З6	\% F6
O23E	5 F		LD	E, A	;
O23C	7D		LD	A,L	; ${ }^{3}$
O23D	93		SUE	E	\%
O2SE	6 F		LD	L, A	;0
O23F	C9		RET		; I
0240	DF		FST	£18	;
0241	60		DEFE	£60	;
0242	22	OC OC	LD	(£OCOC), HL	; ".
0245	DF		RST	£18	;
0246	66		DEFB	£66	; f
0247	7 E		LD	A, (HL)	;
0248	DF		RST	£18	-
0249	68		DEFE	£68	; h
O24A	EF		RST	£28	;
024 B	20		DEFM	$1 /$;
O24C	11	1111	DEFR	£11,£11,£11	,
024F	00		DEFE	£00	!
0250	D7		FST	£10	; W
0251	54		DEFE	£54	\# T

Page 276

0252	DF	
0253	64	
0254	38	4C
0256	7E	
0257	E7	
0258	28	48
025A	23	
0258	D5	
025C	$5 E$	
025D	23	
O25E	56	
025F	EB	
0260	D1	
0261	96	00
0263	ES	
0264	DF	
0265	64	
0266	7E	
0267	B7	
0268	28	07
026A	23	
O26B	7E	
026C	E1	
O26D	77	
O26E	04	
O26F	23	
0270	ES	
0271	E1	
0272	1 A	
0273	FE	2 E
0275	C8	
0276	FE	2C
0278	20	05
027A	13	
027B	1 A	
027C	13	
027D	18	EE
O27F	78	
0280	E7	
0281	20	01
0283	23	
0284	1 A	
0285	FE	SA
0287	20	O4
0289	2B	
O28A	2 B	
028B	18	B5

RST	£18	;
DEFE	£64	:d
JR	C.£02A2	\% 8
LD	A, (HL)	;
OR	A	97
JFi	$Z, £ 02 A 2$; ${ }^{\text {H }}$
INC	HL	; £
FUSH	DE	; U
LD	E, (HL)	\%
INC	HL	! £
LD	D. (HL)	; V
EX	DE: HL	; k
FOF	DE	3 Q
LD	$\mathrm{B}, \mathrm{£OO}$;
FUSH	HL	;e
RST	£18	:
DEFB	£64	:d
LD	A, (HL)	;
OFi	A	; 7
JR	Z, £0271	; 1.
INC	HL	; £
LD	A, (HL)	$\%^{\sim}$
F'OF'	HL	\%
LD	(HL), A	\% w
INC	B	;
INC	HL	!
FUSH	HL	:e
FOF'	HL	\% ${ }^{\text {a }}$
LD	A, (DE)	;
CF-	£2E	$;^{\sim}$
FET	Z	H
CF	£2C	3^{\sim} 。
JR	NZ, £027F	; -
INC	DE	;
LD	A, (DE)	\%
INC	DE	$3 \cdot$
JR	£026D	: $\quad \mathrm{n}$
LD	A, E	: \times
OR	A	; 7
JR	NZ, £0284	;
INC	HL	!
LD	A, (DE)	;
CP	£こA	$;^{\sim}$
JR	NZ, £028D	;
DEC	HL	; +
DEC	HL	; +
JR	£ 0242	1. 5

Page 277

028D	FE	2 F
028F	20	OA
0291	13	
0292	DF	
0293	64	
0294	38	OC
0296	2 A	21 Oc
0299	18	A7
0298	E7	
029C	28	A4
O29E	FE	20
02AO	28	C1
O2A2	DF	
O2A3	6 B	
02 A 4	18	9 A
02 Ab	ES	
02 A 7	CD	8A 0J
O2AA	AF	
O2AB	32	26 OC
O2AE	21	1 A 04
O2B1	22	7E OC
O2B4	E1	
0285	ES	
02E6	DF	
0287	7E	
0288	F7	
0289	FE	OD
O2BE	20	F9
O2BD	2 A	29 OC
02 CO	11	CO FF
02cs	19	
02 C 4	EB	
0265	E1	
$02 \mathrm{C6}$	C9	
$02 \mathrm{C7}$	CS	
02 CB	18	17
02 CA	B7	
O2CB	ED	52
O2CD	19	
O2CE	38	06
O2DO	C1	
02D1	EF	
O2D2	2E	
O2DS	OD	00
0205	C9	
02D6	78	

CF	£2F	$; \sim /$
JR	$N \mathrm{~N}$, £029B	;
INC	DE	;
FiST	£18	3
DEFB	£64	:d
JR	C. £02A2	\% 8.
LD	HL, (£OC21)	; * .
JR	£0242	; *
OR	A	; 7
JR	Z,£0242	\% (\$
CF	£20	$;^{\sim}$
JR	2. 20263	; ${ }^{\text {A }}$
RST	£18	; .-
DEFB	£6B	;
JR	£0240	;
FUSH	HL	;e
CALL	£0S8A	; M. .
XOF	A	; /
LD	(f0C26), A	128.
LD	HL, £041A	; ! .
LD	(£OC7E), HL	; "~.
FOF	HL	!a
FUSH	HL	\%
RST	£18	;
DEFE	£78	; ¢
RST	£30	; W
CF	£OD	i^{\sim}.
JR	NZ, £0286	; Y
LD	HL, (£OC29)	; *).
LD	DE, £FFCO	; - -
ADD	HL, DE	;
EX	DE, HL	; k
FOP	HL	; ${ }^{\text {a }}$
RET		; I
FUSH	EC	; E
JR	£O2E1	;
OR	A	; 7
SEC	HL, DE	; mFi
ADD	HL, DE	;
JR	C. £02D6	\% 8.
FOP	BC	; A
RST	£28	10
DEFM	/.1	;
DEFE	£OD, £00	; .
RET		; I
LD	A, B	; \times

Page 278

0207	B1		OR	C	; 1
O2D8	20	07	JR	NZ, f02E1	;
O2DA	CF		RST	£08	0
O2DE	FE	1B	CF	£1B	i^{\sim}
O2DD	28	F1	JR	Z, £0200	; q
02DF	C1		POP	BC	; A
O2EO	C5		FUSH	BC	; E
O2E1	OB		DEC	EC	;
O2E2	C5		PUSH	BC	E
O2ES	OE	00	LD	C, £00	!
O2ES	EF		RST	£28	; 0
O2E6	20	20	DEFM	/ /	;
O2E8	00		DEFE	£00	;
O2E9	DF		RST	£18	;
O2EA	66		DEFE	£66	;
O2EB	06	08	LD	E, £08	! -
O2ED	7E		LD	A, (HL)	$;^{\sim}$
O2EE	DF		FST	£18	\%
O2EF	67		DEFE	£67	\%9
O2FO	23		INC	HL	;
O2F1	DF		RST	£19	3-
02 F 2	69		DEFB	£69	; i
O2F3	10	F8	DJNZ	£O2ED	; \%
02F5	79		LD	A, C	: Y
02F6	DF		RST	£18	;
02 F 7	68		DEFB	£68	in
O2F8	EF		RST	£28	:0
02F9	08	O8 OD	DEFE	£08, £08, £0D	: . .
O2FC	00		DEFE	£00	;
O2FD	C1		POP	EC	: A
O2FE	18	CA	JR	£02CA	; J
0300	70		LD	A, H	;
0301	DF		RST	£18	;
0302	67		DEFB	$£ 67$; 9
0303	7D		LD	A, L	; 3
0304	DF		FiST	£18	!
0305	67		DEFE	£67	; 9
0306	SE	20	LD	A, £20	;
0×08	F7		RST	£こ0	; W
0309	C9		RET		; I
OSOA	EF		RST	£28	; 0
OSOE	45	$72726 F$	DEFM	/Erra/	: Erro
OBOF	72		DEFM	/r/	:
0.10	00		DEFE	£00	;
$0 \leq 11$	SE	OD	LD	A, £OD	\%

Page 279

Page 280

0352	D6	07	SUB	£07	$\# \mathrm{~V}$.
0354	FE	OA	CF	£OA	$;^{\sim}$ 。
0356	D8		RET	C	; X
0357	FE	10	CF	£10	i^{\sim} 。
0359	38	02	JR	C,£0S5D	\% 8.
OS5E	37		SCF		: 7
OS5C	C9		FET		I
035D	13		INC	DE	;
OSSE	34		INC	(HL)	! 4
OS5F	23		INC	HL	!
0360	ED	6F	FLD		; mo
0.362	23		INC	HL	; £
0363	ED	6 F	FLLD		mo
0.365	2B		DEC	HL	;
0366	2B		DEC	HL	3^{+}
0367	28	DC	JFi	Z, £0.45	; (
0369	1B		DEC	DE	;
036A	37		SCF		: 7
O36E	C9		RET		; I
OS6C	01	OB OC	LD	$\mathrm{BC}, \mathrm{fOCOE}$; . .
036 F	AF		XOR	A	; $/$
0370	02		LD	(BC), A	;
0371	DF		RST	£18	:
0372	64		DEFE	£64	0
0.373	D8		RET	C	; \times
$0 \leq 74$	7E		LD	A, (HL)	$\%^{\sim}$
0.375	B7		OR'	A	37
$0 \leq 76$	C8		RET	Z	: H
0.377	23		INC	HL	;
$0 \leq 78$	0.3		INC	BC	;
0379	7E		LD	A, (HL)	3^{\prime}
037 A	02		LD	(BC), A	\%
037E	23		INC	HL	;
037C	03		INC	EC	\%
O37D	7E		LD	A, (HL)	i^{\sim}
037E	02		LD	(BC), A	;
037F	21	OB OC	LD	HL, £OCOB	! ! .
0382	34		INC	(HL)	; 4
0383	7E		LD	A. (HL)	i^{\sim}
0384	FE	OB	$C P$	EOE	i^{\sim}
0386	38	E9	JR	C, £0371	8i
0.388	37		SCF		: 7
0.389	C9		FET		\% I
OJ8A	2 A	2300	LD	HL, (£OC2S)	; *f.
O.38D	7E		LD	A, (HL)	\square^{\sim}
OSBE	32	2500	LD	(£0C25) , A	; 2\%.
0391	C9		RET		\% I

0592	2 A	23	0 c	LD	HL, (£OC23)	; £ $^{\text {\% }}$
0395	SA	25	OC	LD	A, (£0C25)	; \% \%
0398	77			LD	(HL), A	; w
0399	C9			RET		; I
039A	D7			RST	£10	W
039B	F6			DEFE	£F6	? V
OS9C	11	00	0 O	LD	DE, £OCOO	;
O39F	06	6 B		LD	B, £6B	3.k
OSA1	AF			XOR	A	:/
OJA2	12			LD	(DE), A	*
0.3 AS	13			INC	DE	;
03A4	10	FC		DJNZ	£03A2	; .
OSAG	21	SC	01	LD	HL, £013C	; !
0349	01	15	00	LD	BC, £0015	; .
0 O. ${ }^{\text {ac }}$	ED	BO		LDIR		; mo
OSAE	EF			FiST	£28	\%0
OSAF	OC	00		DEFE	£0С, £00	; .
$03 \mathrm{B1} 1$	C9			FEET		; I
$03 \mathrm{B2}$	31	61	OC	LD	SF, £0C61	; 1a.
0.365	2 A	EC	01	LD	HL, (£O13C)	;*く.
$0.3 \mathrm{H8}$	22	6 B	0 C	LD	(£OC6B) , HL	; "k.
OJEE	EF			FiST	£28	; 0
03 EC	48	4F	5053	DEFM	/HOFS/	; HOPS
OSCO	59	53	54 45	DEFM	/YSTE/	Y YSTE
$0.3 C 4$	4D			DEFM	/M/	; M
OJC5	OD	00		DEFE	£OD, £00	! -
0 0¢5	D7			FST	£10	: W
OङC8	C9			DEFE	£С9	\% I
0 O.59	CD	AB	02	CALL	£02A6	; M\%.
OSCC	O1	2 B	OC	LD	EC, f0C2B	: . +
OSCF	1 A			LD	A, (DE)	;
OSDO	FE	20		CP	£20	$;^{\sim}$
03D2	20	05		JR	NZ, £0 ${ }_{\text {¢ }}$ (9	;
QSD4	QA			LD	A, (BC)	;
03 D 5	FE	53		CF	£53	; \sim
$0 \leq D 7$	20	FO		JR	NZ, £0SC9	; P
0309	FE	41		CF	£41	$;^{\sim} A$
03 DE	38	OD		JR	C.fOSEA	; 8.
OSDD	FE	5 E		CF	£5日	; ${ }^{\sim}$
OJDF	30	09		JF	NC, £OBEA	:0.
OSE1	02			LD	(BC), A	;
03 E 2	32	OA	OC	LD	(£OCOA), A	\%2.
OSES	13			INC	DE	;
OJE6	DF			RST	£18	!
OSE7	79			DEFE	£79	; y
OSE8	30	04		JFi	NC, £OSEE	\% 0.

Page 282

Page 283

04.3 A	31	61	Oc	LD	SF, £OC61	;1a.
043D	11	61	OL	LD	DE, £OC61	! . a.
0440	01	08	00	LD	EC, £0008	!
0443	ED	BO		LDIF		\% mo
0445	5 E			LD	E. (HL)	: ${ }^{\text {c }}$
0446	23			INC	HL	! $£$
0447	56			LD	D. (HL)	TV
0448	23			INC	HL	; ${ }^{\text {f }}$
0449	ED	53	69 OC	LD	(£OC69), DE	! mSi.
044 D	22	6 B	OC	LD	(£OC6B), HL	; "K.
0450	EF			RST	£28	:0
0451	18	00		DEFE	£18, £00	; -
0455	21	6D	OC	LD	HL, £OC6D	; ! m.
0456	06	Os		LD	B, £06	;
0458	2B			DEC	HL	;
0459	7E			LD	A, (HL)	$;^{\sim}$
045 A	DF			RST	£18	;
045 B	68			DEFE	£68	in
045C	2B			DEC	HL	; ${ }^{+}$
045 D	7E			LD	A. (HL)	$;^{\sim}$
O45E	DF			RST	£18	${ }^{3}$
045F	68			DEFE	£68	\% h
0460	DF			FiST	£18	${ }^{\text {- }}$
0461	69			DEFE	£69	; i
0462	10	F4		DJNZ	£0458	: .t
0464	ED	57		LD	A. I	; mW
0466	DF			RST	£18	\%
0467	68			DEFE	£69	gh
0468	DF			FiST	£18	;
0469	69			DEFE	£69	; i
O46A	DD	ES		FUSH	IX	; Je
O46C	E1			FOF	HL	;
O46D	DF			FST	£18	:
046 E	66			DEFE	£66	;
046 F	FD	ES		FUSH	IY	3e
0471	E1			POF	HL	: ${ }^{\text {a }}$
0472	DF			FST	£18	\%
0475	66			DEFE	£66	! f
0474	SA	67	oc	LD	A, (£0С67)	\%
0477	11	8E	04	LD	DE, £048E	; . .
047A	Q6	O8		LD	B, £08	\% - *
047 C	13			INC	DE	;
047D	17			FiLA		;
Q47E	FS			FUSH	AF	;
O47F	1 A			LD	A, (DE)	;
0480	30	01		JR	NC, £0483	\% 0.
0482	F7			RST	£30	! w

0483	F1			FOP	AF	; 9
0484	10	F6		DJNZ	£047C	3.v
0486	EF			FiST	£28	; 0
0487	18	00		DEFE	£18, £00	! .
0489	CS	C7	03	JF	£0SC7	; CG.
048C	53			LD	D, E	: 5
()48D	5 A			LD	E, D	; Z
O48E	00			NDF		!
648F	48			LD	C, B	H
0490	00			NOP		5.
0491	50			LD	D, E	; F
0492	4E			LD	C, (HL)	: N
0493	4.3			LD	E, E	; C
0494	DF			RST	£18	;
0495	SF			DEFE	£ちF	;
0496	DF			FST	£18	\% .-
0497	77			DEFE	£77	; w
0498	ES			FUSH	HL	!e
0499	DF			FST	£18	!
049A	78			DEFB	£78	;
049E	ES			PUSH	HL	;
049C	CF			FST	£08	30
O49D	E6	7F		AND	£7F	if.
O49F	FE	2 E		CF	£2E	$;^{2}$ 。
O4A1	28	SA		JFi	Z, £O4DD	;
Q4AS	FE	OD		CP	£OD	$;^{\sim}$.
O4A5	28	07		JF	Z, £GAAE	; 6
O4A7	FE	20		CF	£20	$\%^{\sim}$
04 A 9	38	F1		JR	C, £0490	:8q
O4AB	F7			FiST	£30	\% W
OAAC	18	$E E$		JFi	£049C	; \quad n
OUAE	2 A	29	OC	LD	HL, (£OC29)	\#*).
O4E1	DF			FiST	£18	;
O4E2	7C			DEFB	£7C	!
64E3	EE			EX	DE,HL	; k
04B4	DF			FST	£18	$\square_{\text {- }}$
0485	79			DEFE	£79	: Y
04E6	38	21		JR	C.f04D9	8!
O4E8	21	OC	OC	LD	HL, £OCOC	! ! . .
O4EB	AF			XOR	A	$1 /$
O4BC	06	12		LD	E, £12	;
O4EE	86			ADD	A. (HL)	;
O4BF	23			INC	HL	\%
Q4C0	10	FC		DJNZ	£04BE	\% . 1
$04 \mathrm{C2}$	BE			CF	(HL)	; $>$
04C3	20	14		JR	NZ, £04D9	;

Page 285

0405	2 A	OC	OC	LD	HL, (£OCOC)	;*. .
$04 \mathrm{C8}$	11	OE O	OC	LD	DE, fOCOE	! -
O4CE	06	O8		LD	B, £O8	; -
O4CD	1 A			LD	A: (DE)	;
OACE	77			LD	(HL), A	\# W
O4CF	23			INC	HL	! $£$
O4DO	13			INC	DE	;
O4D1	13			INC	DE	;
O4D2	10	F9		DJNZ	fo4CD	;-Y
O4D4	EF			FST	£28	:0
O4D5	1 B	00		DEFE	£1E, £OO	; .
64D7	18	CS		JR	£049C	3.C
O4D9	DF			FST	£18	3
O4DA	6 A			DEFE	£6A	; ${ }^{\text {j }}$
O4DE	18	EF		JR	£049C	; ?
O4DD	CF			FST	£08	:0
O4DE	E6	7 F		AND	£7F	; f.
O4EO	FE	OD		CP	£OD	$;^{\sim}$ 。
O) $4 E 2$	20	B9		JFi	NZ, £049D	; 9
O4E4	F7			RST	£こ0	\% w
64E5	CS	86	06	JF'	£0686	! C..
O4E8	DF			FST	£18	-
O4E9	SF			DEFB	£5F	;
O4EA	DF			RST	£18	-
O4EB	5 D			DEFE	£SD	;]
OAEC	DF			RST	£18	\%
OAED	77			DEFE	$£ 77$	\% ω
OAEE	ES			PUSH	HL	!e
04 EF	AF			XOF	A	! /
O4FO	47			LD	B, A	; 6
04 F 1	DF			RST	£18	;
04 F 2	6F			DEFB	£6F	10
04FS	10	FC		DJNZ	£O4F1	; . ${ }^{\text {a }}$
O4F5	DF			RST	£18	;-
O4F6	60			DEFE	£60	; ${ }^{\text {c }}$
O4F7	ED	5 E	OE OC	LD	DE, (£OCOE)	; m[..
04 FB	EB			EX	DE, HL	;
O4FC	57			SCF		; 7
O4FD	ED	52		SEC	HL, DE	; mR'
94FF	DA	8A	06	JP	C, £068A	; Z.
0502	EE			EX	DE,HL	!
0503	AF			XOR	A	; /
0504	FF			RST	£38	;
0505	06	05		LD	E.f05	; .
0507	DF			RST	£18	!
0508	6F			DEFE	£6F	:0
0509	उE	FF		LD	A, £FF	;

Page 286

0508	10	FA	DJNZ	£0507	; . 2
OSOD	AF.		XOR	A	; /
OSOE	EA		CF	D	;
O5OF	20	02	JR	NZ, £0513	;
0511	43		LD	E, E	; C
0512	04		INC	E	!
0513	58		LD	E, B	; X
0514	7 D		LD	A, L	; ${ }^{\text {3 }}$
0515	DF		RST	£18	;
0516	6F		DEFB	£6F	; 0
0517	7 C		LD	A, H	; 1
0518	DF		FST	£18	;
0519	6 F		DEFE	£6F	:0
O51A	7E		LD	A, E	\%
O51E	DF		RST	£18	!
O51C	6 F		DEFE	£6F	;0
O51D	7 A		LD	A, D	;
OSIE	DF		FST	£18	;
O51F	$6 F$		DEFE	£6F	10
0520	OE	00	LD	C, £OO	;
0522	DF		FST	£18	; .-
0523	6 C		DEFE	£6C	; 1
0524	79		LD	A, C	: y
0525	DF		RST	£18	-
0526	6F		DEFB	£6F	10
0527	DF		FST	£18	;
0528	6D		DEFB	£6D	! ${ }^{\text {m }}$
0529	06	OB	LD	B, £OB	;
O528	79		LD	A, C	: y
052C	DF		FST	£18	;
052D	6F		DEFE	£6F	10
O52E	AF		XOR	A	; /
O52F	10	FB	DJNZ	f052C	; .
0531	DF		RST	£18	;
0532	6A		DEFB	£6A	; ${ }^{\text {j }}$
0533	18	C2	JR	£04F7	; E
0535	E7		OR	A	; 7
05.36	ED	52	SEC	HL, DE	: mF
0588	19		ADD	HL, DE	;
0539	30	09	JFi	NC, fOS44	; 0.
O5SE	OB		DEC	EC	;
05.3C	EB		EX	DE, HL	\%
O53D	09		ADD	HL, BC	;
OSJE	EB		EX	DE, HL	:
O5SF	09		ADD	HL, BC	;
0540	0.3		INC	EC	;

Page 287

0541	ED	E8	LDDR		\% m8
0543	C9		FET		; I
0544	ED	BO	LDIR		\% mo
0546	C9		RET		; I
0547	EB		EX	DE, HL	: k
0548	ES		FUSH	HL	:
0549	19		ADD	HL, DE	;
054 A	DF		FST	£18	;
054 B	66		DEFB	£66	\%
O54C	E1		FOP	HL	! a
054D	B7		QR	A	: 7
OS4E	ED	52	SEC	HL, DE	; mFi
0550	DF		RST	£18	;
0551	66		DEFE	£66	; f
0552	2 B		DEC	HL	;
055	2 B		DEC	HL	;
0554	7 C		LD	A.H	; '
0555	FE	FF	CF	f.FF	i^{\sim}.
0557	20	OA	JR	NZ, £0563	;
0559	CE	7 D	EIT	7, L	; く)
0558	20	OD	JR	NZ, £056A	; *
055D	EF		FST	£28	; 0
O55E	SF	SF	DEFM	1??/	???
0560	OD	00	DEFE	£OD, £OO	! -
0562	C9		FET		; I
0563	E7		OR	A	; 7
0564	20	F7	JR	NZ, £055D	; w
0566	CE	7D	EIT	7,L	; く)
0568	20	FS	JR	NZ, £05SD	; 5
056 A	7 D		LD	A, L	; ${ }^{\text {l }}$
056 B	DF		RST	£18	;
0565	68		DEFE	£68	; h
056D	CS	1103	JF	£0311	; C.
0570	2 B		DEC	HL	;
0571	3 B		DEC	SP	;
0572	3B		DEC	SF'	;
0573	FS		PUSH	AF	! 4
0574	DS		FUSH	DE	; U
0575	SE		LD	E, (HL)	\%
0576	78		LD	A, E	\%
0577	17		RILA		;
0578	$9 F$		SEC	A, A	\%
0579	57		LD	D, A	; W
057A	23		INC	HL	;
057E	19		ADD	HL, DE	;
057C	D1		FOF	DE	0
057D	F1		FOP	AF	: 9

OS7E	ES		EX	(SP), HL	: 5
957F	C9		RET		; I
0580	2B		DEC	HL	${ }^{+}$
0581	3B		DEC	SF	;
0582	3 B		DEC	SF	; ;
0583	FS		PUSH	AF	:u
0584	DS		PUSH	DE	; U
0585	$5 E$		LD	E. (HL)	:
0586	16	00	LD	D, £OO	;
0588	2 A	71 OC	LD	HL, (£OC71)	; *q.
058E	19		ADD	HL, DE	;
O58C	19		ADD	HL, DE	;
058D	5 E		LD	E, (HL)	\%
O58E	23		INC	HL	!
058F	56		LD	D, (HL)	3
0590	EB		EX	DE, HL	; k
0591	18	E9	JR	£057C	; . i
0593	ES		PUSH	HL	;
0594	FS		FUSH	AF	; 4
0595	D5		FUSH	DE	! U
0596	3A	OA OC	LD	A, (£OCOA)	; : .
0599	5 F		LD	E. A	!
O59A	16	00	LD	D, f00	; .
O59C	18	EA	JR	£0588	; . ${ }^{\text {j }}$
O59E	FF		RST	£38	;
O59F	FF		RST	£З8	;
0510	FF		Fist	£З8	;
OSA1	FF		FiST	£38	;
$05 A 2$	FF		FST	£58	;
O5AS	FF		FST	£ 8	;
O5A4	FF		RST	£30	;
OSAS	FF		RST	£ 8	;
OSAG	O8		EX	$A F, A F=$;
OSA7	FF		FST	£З8	\%
0548	BE		ADC	A, (HL)	;
OSA9	FF		RST	£ろ8	;
OSAA	88		ADC	A, E	;
OSAB	09		ADD	HL, BC	\%
OSAC	FF		RST	£ 38	\%
OSAD	FF		RST	£38	:
OSAE	FF		RST	£38	;
OSAF	उE	2 E	LD	A. £2E	;
O5B1	46		LD	B, (HL)	\%
0582	36	EE	LD	(HL), £EE	\% $6>$
0584	AE		XOR	(HL)	;
0585	OE	FF	LD	C, £FF	; -

Page 290

OSF 1	S4			INC	(HL)	: 4
O5F2	45			LD	E.L	; E
O5FS	35			DEC	(HL)	\% 5
OSF4	11	2B	44	LD	DE, £442B	; . + D
05F7	SD			DEC	A	; $=$
05F8	SC			INC	A	: <
05F9	$1 E$	9E		LD	E,£9E	\%
O5FE	16	9A		LD	D, £9A	;
OSFD	96			SUB	(HL)	\%
OSFE	7 D			LD	A, L	; 3
OSFF	32	27	OC	LD	(£0C27), A	:2".
0602	C9			FET		; I
0603	22	23	OC	LD	(£0C2З), HL	; ${ }^{\text {¢ }}$
0606	C9			FET		; I
0607	44			LD	E, H	; D
0608	4D			LD	C,L	: M
0609	ED	59		OUT	(C), E	: mY
O60B	C9			FET		; I
O6OC	44			LD	B, H	: D
O60D	4D			LD	C.L	M
O6OE	ED	78		IN	A, (C)	mms
0610	DF			FST	£18	!
0611	68			DEFB	£68	:h
0612	C.	11	0.3	JF	£0311	; C.
0615	ED	4B	10 Oc	LD	BC , (£OC10)	\% mk.
0619	ED	5B	OE OC	LD	DE, (£OCOE)	; m[..
O61D	2 A	OC	OC	LD	HL: (£OCOC)	**..
0620	C9			FEET		; I
0621	21	7A	07	LD	HL, £077A	! ! z.
0624	DF			FST	£18	;
0625	71			DEFB	£71	: 9
0626	E5			FUSH	HL	; e
0627	21	4C	06	LD	HL, £064C	; ! ,
062 A	96	06		LD	E, £06	3.
06.2C	TE			LD	A. (HL)	$;^{\sim}$
O62D	F7			RST	£こ0	! W
062 E	OE	14		LD	C. $£ 14$!
0630	AF			XOR	A	; /
0631	FF			RST	£	;
0632	OD			DEC	C	\%
0635	20	FC		JR	NZ. £06S 1	\%
0635	23			INC	HL	;
0636	10	F4		DJNZ	£062C	: . t
0638	DF			RST	£18	;
0639	57			DEFE	£57	:W
063A	AF			XDR	A	; /

Page 291

0638	FF		-	RST	£38	;
$063 C$	3E	45		LD	A,£45	: P
O6SE	F7			RST	£ろO	; W
O63F	2 A	10	OC	LD	HL, ($£ 0 \mathrm{OCl}$)	; *.
0642	DF			RST	£18	!
0643	66			DEFE	£66	; f
0644	SE	OD		LD	A, £OD	: >
0646	F7			RST	£	; w
0647	E1			POP	HL	; ${ }^{\text {a }}$
0648	22	73	Oc	LD	(£OC7E) , HL	; ${ }^{\text {5 }}$
064 B	C9			RET		; I
064 C	OD			DEC	C	\%
064D	45			LD	E, L	; E
064 E	30	OD		JR	NC, f065D	;0.
0650	52			LD	D, D	; Fi
0651	OD			DEC	C	5.
0652	OE	00		LD	C. 500	; .
0654	7E			LD	A. (HL)	$;^{\sim}$
0655	81			ADD	$A_{y} \mathrm{C}$	$3 \cdot$
0656	4F			LD	C, A	:0
0657	7E			LD	A, (HL)	$;^{\sim}$
0658	DF			FST	£18	;
0659	6F			DEFB	£6F	:0
$065 A$	23			INC	HL	£
065B	10	F7		DJNZ	£0654	! W W
O65D	C9			FET		; I
065E	DF			RST	£18	\%
065F	5 F			DEFE	£5F	!
0660	DF			FST	£18	3 -
0661	77			DEFG	£77	\% w
0662	ES			FUSH	HL.	!e
0663	DF			FST	£18	-
0664	78			DEFB	£78	: $\%$
0665	E5			FUSH	HL	!e
0666	CF			FiST	£08	: 0
0667	FE	FF		CF'	£FF	i^{\sim}.
0669	20	OB		JR	NZ, £0676	!
0668	06	0.5		LD	E, fO	; .
066 D	CF			RST	£08	$: 0$
O66E	FE	FF		CF'	EFF	$;^{\sim}$ 。
0670	20	04		JR	NZ, £0676	!
0672	10	F9		DJNZ	£O6SD	; - Y
0674	18	1B		JR	£0691	! -
0676	FE	1B		CF	£1E	$;^{\sim}$.
0678	20	EC		JFi	NZ, £0666	; 1
O67A	06	03		LD	E, £OS	; -
067 C	CF			RST	£08	; 0

Page 292

Page 293

－						
O6C3	18	A1		JR	10666	；！
06C5	EF			RST	£28	；0
06C6		20		DEFM	／．$/$	；
0658	00			DEFE	£00	；
O6C9	AF			XOR	A	； 1
OGCA	BA			CF	D	；
OGCB	20	99		JR	NZ：£0，666	！
O6CD	18	E4		JRi	£068S	3． 4
OGCF	21	81	07	LD	HL，£0781	！！．
06 D 2	DF			RST	£18	\％
O6D3	72			DEFE	£72	：${ }^{-}$
O6D4	21	7E	07	LD	HL，£077E	；${ }^{\sim}$
06 D 7	DF			FST	£18	－
96D8	71			DEFE	$£ 71$	；
O6D9	C9			RET		；I
O6DA	7 D			LD	A，L	$3{ }^{3}$
OGDE	32	28	Oc	LD	（£0C28），A	；26．
OSDE	21	85	07	LD	HL，£0785	！！
OGE1	DF			FST	£18	；
O6E2	72			DEFE	£72	$!r$
O6ES	21	7D	07	LD	HL，£077D	；13．
O6E6	DF			FSST	£18	：
O6E7	71			DEFB	£71	\％
OGE8	C9			RET		3 I
OGE9	DF			FST	£18	\％－
OGEA	70			DEFE	£70	： P
OGEE	DO）			FET	NC	${ }^{\mathrm{F}}$
OGEC	E6	7F		AND	£7F	；f．
OGEE	FS			FUSH	AF	； 4
OGEF	21	28	OC	LD	HL．£OC28	；！く．
06F2	CE	6 E		BIT	5，（HL）	！K゙n
O6F4	CC	21	07	CALL	Z．£0721	；L！．
96F7	D7			RST	£10	；W
06F8	20			DEFE	£20	！
O6F9	F1			FOP	AF	19
OGFA	FE	7F		CF	£7F	$;^{\sim}$ 。
OGFC	20	01		JR	NZ，£O6FF	；
O6FE	AF			XOR	A	；$/$
O6FF	FE	1 B		CP	£1日	$\%^{\sim}$
0701	28	05		JR	Z．$£ 0708$	： 6
0703	B7			OR	A	： 7
0704	28	02		JF	Z．$£ 0708$	；
0706	CE	FE		SET	7，（HL）	BK
0708	37			SCF		； 7
0709	C9			RET		；I
970A	F5			PUSH	AF	；
O70B	21	28	OC	LD	HL，£0C28	！！ 6

Page 294

O70E	CE	7E		EIT	7. (HL)	! K ${ }^{\sim}$
0710	CC	17	07	CALL	Z, £0717	! L. .
0713	CE	EE		RES	7, (HL)	; K
0715	F1			POP	AF	! 9
0716	C9			RET		; I
0717	D7			RST	£10	! W
0718	08			DEFB	fog	;
0719	FE	OD		CP	£OD	$:^{\sim}$.
071B	CO			RET	NZ	(i)
071C	CB	66		BIT	4, (HL)	;Kf
O71E	CO			RET	NZ	(i)
071F	SE	OA		LD	A, £OA	;
0721	E7			QR	A	; 7
0722	C8			RET	Z	: H
0723	FS			FUSH	AF	;
0724	EA	29	07	JF	FE, £0729	; j).
0727	EE	80		XOR	£8O	;n.
0729	CB	46		BIT	O. (HL)	; KF
O72B	28	02		JR	Z, £072F	; ${ }^{\text {(}}$
072D	EE	80		XOR	£80	\%n.
O72F	DF			RST	$£ 18$	3-
0730	6F			DEFB	£GF	10
0751	F1			FOP	AF	; q
0732	C9			RET		; I
0733	DF			RST	£18	;
0734	7B			DEFB	£7B	\%
0735	F7			FST	£30	; w
0736	18	FB		JR	£07ご	; .
0738	DF			RST	£18	3 -
0739	78			DEFE	£78	;
073A	21	7F	07	LD	HL, £077F	; . .
073D	ES			FUSH	HL	;e
O7EE	2 A	73	oc	LD	HL, (foc73)	; *5.
0741	E3			EX	(SF), HL	; C
0742	22	73	OC	LD	(£OC73) , HL	; "5.
0745	E1			FOF	HL	;
0746	C9			FET		\% I
0747	21	82	07	LD	HL, £0782	! ! .
074 A	ES			FUSH	HL	!e
074B	2A	75	OC	LD	HL: (£0C75)	\# *
O74E	E3			EX	(SP), HL	: C
074F	22	75	OC	LD	(£0C75), HL	; "и.
0752	E1			FOP	HL	; a
0755	C9			RET		; I
0754	E5			FUSH	HL	! e
0755	21	75	OC	LD	HL, £0C75	! !
0758	18	03		JR	£075D	;

$075 A$		7 S	LD	HL，£0C7E	！！5．
0750	D5		FUSH	DE	：U
O75E	C5		FUSH	EC．	： E
075 F	$5 E$		LD	E，（HL）	\cdots
0760	23		INC	HL	f
0761	56		LD）	D_{4}（ HL ）	：V
0762	FS		FUSH	AF	： 4
0763	1 A		LD	A．（DE）	！－
0764	13		INC	DE	\％
0765	E7		OR：	A	； 7
0760	25	OD	IFi	2,90775	\％ 6
0768	32	Of OC	LD	（ $\mathrm{EOCOA}, \mathrm{A}$	：2．
076 E	F 1		FOF	AF	； 4
0760	DS		FUSH	DE	： 1
0760	E7		OFi	A	； 7
076 E	CD	9305	CALL	10593	：以1．0．
0771	D 1		FClF	DE	； 0
0772	30	EE	JF：	NC，£076．2	；\％
0774	F 5		FUSH	AF	\％u
0775	Fi		F＇LF＇	AF	\％ Cl
0776	C1		F＇OF＇	EC	： H
0777	D） 1		FCIF＇	DE	0 C
0778	E1		FOF	HL	：a
0779	C．9		FiET		\because


```
    07B8 47 OS OS OG 44 OS OA OS SA
    O790 F4 OS OA OS 21 OG उS O7 FL
    0798 SE OS FA FF FE OE }94046
    07AO 40 02 38 07 07 0% 0f 0% 42
    O7AB OC OS 5E OG Fq OS C7 O2 EA
    O7BO CF OG 5E OG E& O4 DA OS BC,
    OTBB OA OS FD FF B2 OS 9% OS 15
    07CO उE OO 45 00 51 00 15 06 स吕
    07C8 88 00 54 07 ES 02 ב区 0J 9F
    07DO 4F O1 00 03 15 0S 19 0S 5E
    O7DE OG OS 11 OS OA OS 2D OS SO
    07EO 52 00 0A 07 5E OO 81.00 2C
    OTE8 \D OT 4A OT 5D OT EG O6 D7
    O7FO 77 OC 7A OC BA 07 47 07 EF
    O7FF8 6C 0Z 21 03 72 00 34 02
```

Q\&TEMT TMAKESE
O77A 65 6F OO 6E 75 65 00
INFールT TAERLES=
078176617000746100

APPENDIX 4. TOOL CONTOUR DISPLAY.

MAIN CONTROL SECTION.

START OF MAIN PROGRAMME.

Initialisation.

```
Set a pointer to the start of a data table at location OFIO.
```

```
Set the table length counter.
```


	Q113 : UOU GRAFHIGS COHTROL PROGRAM.-114;			
	Q115:Assembled bu I HOFTON 1982.			
	0116 ;			
6076:	0117 INIT	ORG	007CH	
	0118 ;			
	0119 : START	OF MAIH PROGRAM.		
	-120;			
	0121 :			
	0122 ;			
6076 21106F	0123	L0	HL, 6F10]	; Foint to dita table.
607F E609	6124	LD	E, 68 H	: Tatile lerath counter.*
Q0S1 DF	6125	RST	18 H	; Send out initial
Q082 60	-12E	DEFE ${ }^{\text {i }}$	6 OH	idata to uoul.
EDES SE40	0127	LD	A. 46 H	S Initial coordinates.
Q085 32676F	0128	LD	(0FQ7H) A	;Store $\pm \leq Y$ courd.
60E 32066 F	6129	LD	(8FQCH). H	: Store $3 \leq \%$ coord.
G08E C3066E	0130	JF'	EEETEH	; Continue from mede.
	6131:			
	0132 ;			

	Q1SS : UDU GRAFHICE COHTEGL FROGEAM.		
	0134 ;		
	6135 ; AEsem	bled by I HOFPTOH	1982.
	0136:		
0095	0137 COHT	ORG E095H	
	E138 ;		
	0139 PMAIH	CONTEOL EECTIOH.	
	6140;		
	6141 ;		
0095304607	$\begin{aligned} & 9142 ; \\ & 0143 \end{aligned}$	LD A, (0FEEH)	; beet X coord.
0098006000	0144	CALL E006H	; Call Eourd Maker.
609E C05800	01145	EALL G058H	:Call Mult bs S.
EDEE CDSCED	区1 146	CHLL EDSCH	:Call X high\% low.
90A1 उAETEF	8147	L0 A. (6FOTH)	: Get y roord.
E0A4 CDE1000	0148	CALL E000H	Sall Coord Maker.
00AT 605800	0149	CALL G05EH	:Call mult bs 3.
GDAA CD2600	6150	CALL G020]H	:Call Y high\% low.
EOAD CDF100	0151	CHLL GOT1H	:Call vol gut.
00 EO C	0152	RET ;	: Fieturn from sub.
	6153 ;		
	6154;		

	0269 : AEsembled by J H0FTOH 1982.			
	0270 ;			
EF20	0271 KEYED	ORG	6F20H	
	6272 ;			
	0274 ;			
8 F 26 LF	0275	RST	18H	: Check for ktad infut.
6F21 62	0276	DEFE	E.2H	: Set carros if so.
QF22 D22E6F	0275	JF	$\mathrm{HC}, \mathrm{OF} 2 \mathrm{EH}$; If no infut jumif.
6F25 32060F	0278	L0	(BFGEH). A :	Store Khd fress.
区F28 E303E1E	0279	JF	EEGSH	: Jump to exeds.
OF2E 60	0280	HOF'	;	: Ho oferation.
EF2C E06	0281	HOFP	;	;
QF20 06	6282	NOF.	;	;
QF2E 66011	0283	LD	E. 61 H	; Set up a delay loof.
6F301 SEFF	0284	LD	H.255	; Delay loof constant.
QF32 FF	0285	RET	38 H	call monitor delas.
OF3S 10FE	0286	DJtVz	EFSOH	: Loof until Emer.
QFS5 3H0636	0287	LD	A. (6FESH)	: Get ktud fress.
UF38 CSa30E	0288	JF	QEbish	SContinue from ande
	92e9 :			

	Q17E : UDU GRAPHICS COHTEOL PROGRAM.			
	9177;			
	6178; Assent	1ed	bs I HOFTON	1982.
	6179;			
8 E 00	0180 DIFCT	OF:G	8EETOH	
	0181 ;			
	0182 : DIRECT	TIOH	COHTROLLER.	
	0183 ;			
	6184 ;			
	0185 ;			
QE06 C3200F	0186	JF	6F20H	; Iump to 区F20.
6EGS FES2	0187	CF	5.2 H	; R Fressed ?
0 E 55 CA AGE	0188	JF	$2, \mathrm{BE1HH}$; If so iump to RIGHT.
6E®18 FE4C	0189	CF	4 CH	: L Fressed?
GE0A CAZ7QE	08190	.JF	Z, 8E27H	: If so jump to LEFT.
QE00 FESS	0191	CF	55 H	: U Fressed ?
QEGF CAZEGE	0192	JF'	2 , bE2EH	; If $=0$ jumF to UF.
0E12 FE44	01193	CF	44 H	;0 Fressed?
QE14 CASEGE	0194	JF	2, EESEH	: It $=0$, umm to pobdy.
6E17 Cs206F	0195	JF	EF26H :	: Jump to EFZE.
	619E:			
	8197 ;			

Page 303

	0221 ; UOU GRAPHICS COHTE:GL FRUGE:AM.0222 ;			
	0223 : Assembled by 1 HOFTOH 1982.			
	0224 ;			
GE2E	02225 UF	OFGO	QE2EH	
	0226 :			
	0227 : MOUE	LIPUARE		
	0228 ;			
QE2E 3AQTEF	6229	LO	A. (6FOTH)	; Get key pressed.
QE31 36	0236	IHC:	H	: Move ufwards.
QE32 ЗAQ7er	0231	LD	A. (E1FW7 ${ }^{\text {c }}$)	; Store latest fosition.
6E35 009500	0232	CALL	6095H	:Call Control.
OE38 CJ000E	0233	JF'	QECGH	: Jumif to ExEDE.
	6234;			
	0235 ;			
QESE	Q2SE [own	OFG	QESE:H	
	6237 ;			
	0238 : MOUE	DOUNWA	ARDS.	
	6239 ;			
QESE उA07TOF	0240	LD	A. (6FQ7H)	; Get key frezsed.
QESE SD	6241	DEC	A	: Prove dommords.
GESF CSS20E	6242	JF	EES2H	: Jump to ExEsz.
	6243:			

Page 304

QE1A	6198 ; UNU GRAFHICS COHTRUL FRUGRAM.0199 ;			
	:AEsembled bs J HOFTON 1982. :			
	0262 RIGHT	ORG	QE1AH	
	;			
	6294 : MOUE	TO THE RIGHT.		
	;			
GE1A उAECEF	6206	LD	A. (QFECH)	: Get key fressed.
6E10 S	6207	INT:	H	: Move to right.
EE1E SAEEXF	6208	LD	A. (बFEEH)	:Store latest fosition.
区E21 009500	0269	CALL	6095H	:Cill Control.
6E24 C3060	0210	JF.	EEGEH	S Iunif to EEGO.
	6211;			
	6212 ;			
6027	0213 LEFT	OR:G	QE27H	
	6214;			
	0215 ; MLUE	TOI THE	LEFT	
	日216:			
6E27 3 4068 F	0217	LD	A. (6FEEH)	: Get Key fressed.
QE2A SD	6218	DEC	H	M Move to the left.
GE2E CJ1E0E	$\begin{aligned} & 6219 \\ & 0226 \end{aligned}$	JF'	EEIEH	; Jumf to beie.

COORDINATE MAKER

	6001 ; UOU GRAFHICS COHTEOL FROGRAM.6062 ;				
	Qubs ; Assembled be 1 HOFTON 1982.				
	60604	;			
6000	0405	COORD	ORIS	61060	
	E1606	;			
	0607	:COORD	INATE	MAKER.	
	900 0	;			
6060 F5	8646		FUEH	AF	Save value of A.
Q001 E605	61016		LD	E, QSH	; Luop for > bis 3-
E003 ET	6011		OR	A	Slear flase.
0004 FF	0012		EFH	;	;0ivide by 2.
00951 FFC	[013		D.JH2	E063H	; Luof if E < E.
9007 32066F	0614		LD	(8F604), A	: Store x Y high.
600\% 0605	80415		LD	E. 815 H	: Loof for : 32.
Q00C Eit	0616		OF:	A	Slear flase.
ब000 17	0017		FLA	;	; Multifly bis 2.
G00E 10FC	0018			606CH	; Loof if Ei《>.
20164 47	0019		L0	Eis H	:Flace in E .
6011 Fl	01620		FOF	AF	; Fecall original A.
601296	0621		SUE	E	: Sut ($\mathrm{H}=\mathrm{H}-\mathrm{B}$).
01013320167	0622		L0	(EFE1H), H	; Store \% low.
01609	0023		RET	;	: Return from sub.

```
Y (High) AND Y (ION ) MAKER
```

Recall the value of $Y_{\text {high }}$ and
add a weight of 20 hexadecimal.
Store the value in register B.
Recall the value of $Y_{\text {low }}$ and
add a weight of 60 hexadecimal.

Store $\mathrm{Y}_{\text {low }}$ at location 0 FO 3 .

Recall the value of $Y_{\text {high }}$ and store at location OFO2.

Return from this routine.

X (High) AND X (LOW) MAKER

MULTIPLICATION BY THREE

Add the original value from the stack to give the coordinate times three.

Store as the high part at OFOO.

Recall the low part of the coordinate and store on the system stack.

Rotate the contents of the accumulator to the left to multiply by two.

Add the original value from the stack to give the coordinate times three.

Store as the high part at OFOl.

Return from this routine.

607E : UOU GRAFHICS COHTROL FRGGRAM.
8071 ;
0072 : Assembled by 5 HOFTON 1982 .
6073 ;
0674 MAG: 3 OFEG 0058 H
Q475 ;
Q67 76 : MAGNIFY EY A FACTOR OF 3.
0077 ;

005 S AbOQF	01075	L0	A, (QFEOH)	; Recall X\% hish.
c05E F5	06079	FLISH	AF	Store $\overline{\text { S }}$ S hish.
605C ET	9688	UR:	A	:Clear flase.
6050 17	0681	FLH	;	sMult by 2 .
605E 47	61082	L0	E,H	SCOFs into E.
B0SF F1	0683	FOF	AF	; EEcall X Y high.
006080	60854	ADO	A, E	; Add $2 \times \%$ and $X \%$.
Q061 32016 F	4085	L0	(8Fbub) , A	sstore $\bar{\chi}$
0064 उAE10F	9686	L0	A, (0FEIH)	; Recall x y low
Goer F5	0687	FUEH	AF	: Stare X Y low.
Q0es ET	0608	OR	H	:Clear flage.
006917	0669	FLA	;	mult tis 2.
006. 47	61090	L0	E, A	: Copy into E.
Q0EE F1	6691	FOF	AF	; Ferall X Y low.
C0EC 80	0692	ADO	A,E	; Add $2 \% \sim$ and N
6060 32010F	0693	LD	(6FE1H) A	; Store XY low.
8070 09	06194	RET	;	: Fieturn from sut.
	0409			

OUTPUT CHARACTER TO VDU

Set a pointer to the start of the data table at 0FO2.

Obtain four characters
from the table and
send them out via
the UART to the
vDU.

Return from this routine.

	0155 ; UDU GRAFHICS COHTROL FROGRAM.0156 ;			
	0157 ; Assembled bs J HOFTON 1982.			
	6158:			
घ0ca	0159 READ	OR:	BDCOH	
	0160 ;			
	0161 ; REAO	IHTEFFACE EOARED.		
	6162 ;			
	Q163;			
	0164 ;			
6006 SE4F	6165	LO	H, 4 FH	: Set FIO lines
00c2 0307	0166	OUT	(B (H$)$, A	; as infuts.
EDC4 DSEE	0167	OUT	(EGH), A	;
EDCE DEG4	Q16E	IN	A. (E4H)	; Fead Fort A.
60ce 32060F	0169	LO	(0FEEH), A	s Store 8 courd.
EDCE DEG5	-17 ${ }^{\text {c }}$	IN	A, 20.8)	: Fead Fort E.
600032076 F	6171	LO	(6FGTH), A	s stare ψ courD.
6000 009560	0172	CALL	E095H	; Call main fros.
000368600	0173	JP	BOCEH	s Jume to boce.
	0174 ;			
	6175 :			

MON
HOPSYSTEM

```
10 FEMEEZIERGURFMKSFLULLMEM
11 CLEAR:D=3330:E=3328
15 GOSUB1220:REMINMC/BORDER
20 GOT0520:REMMAIN
ZO REM: INFUT"NBYM";N,M
32 FRINT"S2 Inp Cond":N=3:M=3:P=7
40 REMINFUT"GRIDS";P
50 A=P*F: }\textrm{E}=(\textrm{P}-1)~
60 DIM S(E,A),PX(E,P),PY(B,P),PZ (E,P), PC (E,2)
6 2 \operatorname { D I M X ~ ( A , B ) , Y ( A , B ) , Z ~ ( A , B ) : R E S T O R E S O O O }
66 FRINT"66 Coord Inp"
70 FORA=1TON+1:FORB=1TOM+1
75 READX (A,B), Y (A,B), Z (A,B)
8O REM: INFUT"CordsX,Y,Z";X (A,B),Y(A,B),Z (A,E)
90 NEXT:NEXT
110 FORC=1TOS:F=0: ONCGOTO120,140,160
120 PRINT"120 X Cords":FORA=1TON+1:FORE=1TOM+1
130 B (A,B) =X (A,B) :NEXT:NEXT:GOTO185
140 FRINT"140 Y COrds":FORA=1TON+1:FORE=1TOM+1
150 B (A,B) =Y (A,B) : NEXT:NEXT:GOTD185
160 PRINT"160 Z Cords":FORA=1TON+1
170 FORB=1TOM+1:E (A,B)=Z (A,B):NEXT:NEXT
185 FRINT"185 Step C=";C
190 FORU=OTO1STEF1/(P-1):FORW=OTO1STEP1/(P-1)
200 F=F+1:FORI=OTON: X=N:GOSUB460:G=A
210 }X=I=I:GQSUB460:H=A:X=N-I:GOSUB460:L=A
230 Z=(G/(H*L))*U|I*(1-U)*(N-I):FORJ=OTOM
240 X=M:GOSUB46O: G=A: X=J:GOSUB460:H=A: X=M-J
250 GOSUE460:L=A
270 K={G/(H*L))*W*J*(1-W)`(M-J)
280 REMSTOREVERTS
290 S (C,F)=S(C,F)+B(I+1,J+1)*Z*K
300 NEXT:NEXTI:NEXTW:NEXTU:NEXTC:RETURN
460 IFX=OTHENA=1:RETUFNN
470 A=1
480 A=A*X:X=X-1
490 IFX=OTHENRETURN
5 0 0 ~ G O T O 4 8 0 ~
520 GOSUBSO
530 FKINT"S3OFin Surf Gen":GOSUE6SO
550 FRINT"550Fin Foly Def":GOSUB740
570 FRINT"570Fin Friority Order":GOSUBg20
590 FRINT"590Fin Dispy"
605 DOKE4100,-16872:A=USF(1) : REMFRintEuffer
610 END
612 REM
614 REM
```

```
616 REM
618 REM
620 PRINT"620Def Folys"
630 C=0:Z=0:FORA=1TOF-1:FORB=1TOF-1
640 Z=Z+1:FX(Z,1)=S(1,C+B):PY}(Z,1)=S(2,C+B
650 PZ (Z,1)=S(3,C+B):PX(Z,2)=S(1,C+E+1)
660 PY (Z,2)=S (2,C+B+1):FZ (Z,2)=S(E,C+B+1)
670 PX (Z,3)=S(1;C+E+1+F):FY(Z,J)=S(2,C+E+1+P)
680 FZ (Z,3)=S(3,C+E+1+F):FX(Z,4)=S(1,C+B+F)
690 FY (Z,4)=S(2,C+E+F):FZ(Z,4)=S(3,C+E+F)
700 F=1000:FORK=1TO4
710 IFPZ (Z,K) <FTHENF=PZ (Z,K):NEXT
720 PC (Z,1)=F:FC}(Z,2)=Z:NEXTE:C=C+F:NEXTA
730 RETURN
740 PRINT"740Sort Vert"
750 FORE=1TOZ-1:A=0:FORC=1TOZ-E
760 IFPC (C+1,1)<=F'C (C,1) THEN790
770 F=PC(C,1):K゙=FC(C,2):FC(C,1)=FCC(C+1,1)
780 FC (C,2)=PC(C+1,2):PC(C+1,1)=F:PC(C+1,2)=K:A
=1
790 NEXT: IFA=OTHENRETURN
BO1 NEXT: FETURN
820 FRINT"810DiSp Surf C=":GOSUE4000
825 FORC=1TOZ:PRINTC; "of";Z:F=PC(C,2)
830 I=PX(F,1):U=FY(F,1):FORJ=2TD4:K=FX(F,J)
850 W=FY (F,J):GOSUE1910:I=FX(F,J):U=FY(F,J)
870 NEXT:K=FX(F,1):W=FY (F,1):GOSUE1910
875 NEXT:RETURN
9 0 0 ~ R E M
9 1 0 ~ R E M
920 REM
930 REM
1210 REEM M/C INS
1220 IFDEEK (-16896)=3902THENGOTO1270
1230 FRINT"Ent M/C at EEOOH"
1260 FORA=OTO189:READE:DOKE-16896+2*A, E:NEXT
1270 FFINT:PRINT"M/C ENTERED"
1280 DOKE4100,-16896:A=USR(1):REM INIT PIO
1290 DOKE4100,-16813:REM Markers in Euffer
1300 FORA=20TO220STEF2O:DOKED,A:DOKEE,4
1320 E=USR (1):DOKED, 3:DOKEE, A:E=USR (1)
13SO DOKED, A: DOKEE, 223: E=USR (1) : DOKEED, 219
1340 DOKEE,A: B=USR(1):NEXT
1350 FOKE27267, 1: POKE27483, 1:RETURN
1400 FEM
1410 FEM
```

```
1420 REM
1430 REM
1500 DATA 3902,2003,-194,1747,1235,-1730,1747
1510 DATA-18399,8894,3192,-4659,-13890,8454,33
1530 DATA4512,-24353,16162,-4673,16979,-14913
1540 DATA16077,1727,16127,-13056,-16712,-1776
1550 DATA27075,10943,-16577,8729,-16577,16938
1560 DATA6591, 16930,-15937,-8432,3390,-18227
1580 DATA16062,-15046,-16712,-8759,35,4352,224
1590 DATASE, -4864,75, 2829,2827, 2827, 2827,9181
1610 DATASO745, 28926,-3784,11229,-4681, -5294, 3
1620 DATA-18500,21229,23535,3330,-8935,1058
1630 DATA-8947, -8919,-8919,-8919,1570,8717,3336
1650 DATA1578,-4851,1115,-18675,21229,25533
1660 DATAड328,-18453, 21229,15741, -13385, -13529
1670 DATA-13529,-14809,12998,-16714,2090
1680 DATA-13555,-13866,-13323, 10367,-13538
1690 DATA8ङ11,15876,6176,-10730,20256,7910
1700 DATA163S1,18961,-29824,31327,206,6743
1710 DATA }1063,-7706,-11342,-9467,-1356
1720 DATAB263,16122,-11267,15876,-11265,-3836
1730 DATA16073, 12800, -24352,-8159,4512,-24351
1750 DATA8193,-4857,16048,12896, -24576, З3
1760 DATA4512,-24575,-8447,-4864,16048,12803
1770 DATA-17408, उЗ, 4540,-17407, -8447,-4864
1780 DATA1712,15905,8575,-24576,-8431,30464
1790 DATAS0499,4121,1786,15905,8575,-24355
1810 DATA-8431,30464,30499,4121,-13830,33
1820 DATA4512,-24095,6974,-18227,16062
1830 DATA-13005,-16712,415日,-18227,16062
1840 DATA-13029,-16712,13886,-18227,32446
1850 DATA-13021,-16712,-4681,6482,6352,1780
1860 DATA15875,-13056,-16712,-1776
1870 DATA-8175,-15616,-16841,0,255
1880 FEM
1885 REM
1RAR RFM
```

```
1889 FEM
1900 FEM HFLOT(St Line I,U to K゙,W)
1910 X=K-I:Y=W-U:L=ABS (X):G=ABS (Y)
1950 IFG>LTHENL=G
1955 IFL=OTHENFIETUFIN
1940 X=X/L: Y=Y/L: V=I+0.5-X:H=U+O. S-Y
1980 FOFA}=OTOL:V=V+X:H=H+
1990 DOKKED, INT (V):DOFKEE,INT (H): E=USR (1)
20OO NEXT:FRETURN
2010 REM
2020 FIEM
20SO FIEM
2040 FEEM
OOOO DATA 120, 0,120,120,120,120, 0,120,120
3010 DATA 0, 0,120, 80, 40, 80, 80, 80, 80
3020 DATA 40, 80, 80, 40, 40, 80, 80, 40, 40
30S0 DATA 80, 80, 40, 40, 80, 40, 40, 40, 40
3040 DATA 120, 0, 0.120,120, 0, 0,120, 0
3050 DATA 0, 0, 0
3090 REM
3095 REM
3096 FIEM
3097 FEEM
4000 F=0:W=0:V=0:FORA=1TOZ:FOFE=1TOF
4010 IFFX (A,E) >FTHENF=FX (A,E)
4012 IFFY (A,B) >WTHENW=FY (A,B)
4014 IFFZ (A,E)>VTHENV=PZ (A,E)
4025 NEXT:NEXT:U=F: IFW FFTHENU=W
4026 IFV`UTHENU=V
40ZO FOF:A = 1 TOZ:FORE=1 TOF
4040 C= (U* (2+N)+PZ (A,B)/2-PX (A,B)*0.866026)/2
4050 FX (A,B)=(PX(A,R)/2+PZ (A,B)*0.866026)*U/C
40BO FY (A,E)=224+(FYY (A,B)-1.5*W)*U/C:NEXT:NEXT
4105 F=0; X=90O:W=0:Y=900:FORA=1TOZ:FORE=1TOP
4110 IFPX(A,B) >FTHENF=FX (A,B)
412 IFPX (A,B)< XTHENX=PX (A,B)
4120 IFFY (A,B) >WTHENW=FY (A,B)
4 1 2 2 ~ I F P Y ~ ( A , B ) < Y T H E N Y = F Y ( A , B )
41\Xi5 NEXT:NEXT:I=F-X:J=W-Y:FDRA=1TDZ
4150 FOFE=1TOF:PX (A,B)=16+(FX (A,B)-X)*192/I
4160 PY (A,B)=1白+(F'Y (A,B)-Y)*192/J
4210 NEXT:NEXT:PFIINTX:F,Y:W:RETUFN
Ok
```


0026 ;
0027 ;
0028 :
0029 :

4EOE 2188BE	0030	LD	HL, LREE8	; Load Frint
4 E 1122780 C	0031	LD	(LOC78), HL	; address.
4E14 CDEDEE	0032	CALL	Lbeed	; Clear Euffer
$4 \mathrm{E} 17 \mathrm{C9}$	0033	FET	;	; Retn from Sub
4E18 O621	0034	LD	E, £21	
	0035 ;			
	0036 ;			
4E1A EEB8	0037 LEEEB	EQU	£RERB	
4E1A EEED	0038 LEEED	EQU	£REED	


```
4E53
    OOO1 START ORG 4ESSH
    0002
    0003 :Assembled by J HDPTON. Aug 82.
    0004;
    000S NOTE The program runs at BESSH.
    0006 ; But is assembled at 4ESSH.
    0007 ;
    0008:** D OT I N E UFFFEFF**
0009;
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4E5S & 0000 & 0010 & L0000 & EQU & \(£ 0000\) \\
\hline 4ESS & OOEO & .0011 & LOOEO & EQU & £OOEO \\
\hline 4 ESJ & ODOO & 0012 & LODOO & EQU & £ODOO \\
\hline 4E5S & ODO2 & 013 & LODO2 & EQU & £ODO2 \\
\hline 4E53 & ODO4 & 0014 & LODO4 & EQU & £ODO4 \\
\hline 4E53 & ODO6 & 0015 & LODOG & EQU & £ODOG \\
\hline 4E53 & ODO8 & 0016 & LODOB & EQU & £ODOB \\
\hline 4E5S & BCOO & 0017 & LBCOO & EQU & £ECOO \\
\hline
\end{tabular}
4ESS DD210000 0018 LD IX.L0000
    0019 ;
    0020 ;
    0021 ;
    0022 ;
    0023 :
    0024 :
```


		0086	;			
		0087	;		-	
		0088	;		-	
		0089	;			
4EA4		0090		LD	A, L	
4EA5	3 D	0091		DEC	A	
4EA6	E7	0092		OR	A	
4EA7	CE27	0093		SLA	A	: Set Correct
4EA9	CB27	0094		SLA	A	;bit in
4EAE	C827	0095		SLA	A	; display
4EAD	26C6	0096		ADD	A, £C6	; Buffer.
4EAF	32B64E	0097		LD	(LEEBG), A	
4EB2	2AOBOD	0098		LD	HL, (LODOB)	
4EBS	CBC6	0099		SET	$0,(\mathrm{HL})$; Auto Set.
4EE7	4EE6	0100	LBEEG	EQU	\$-1	
4EE7	C9	0101		FET	;	; Fieturn.
		0102	\#			
		0103	;			
		0104	:			
		0105	;			
		0106				

```
4EEB OOO1 START ORG 4EEBH
    0002;
    OOOS :Assembled by J HOFTON. Aug 82.
    0004 ;
    0005 NOTE The program runs at EEB8H.
    0006 :But is assembled at 4EBBH.
    0007:
    0008 : *** P F I N T D U T ***
    0009:
4EEB 804A 0010 L804A EQU £804A
4EE8 FS OO11 FUSH AF
4EB9 CB7F OO12 BIT 7.A
4EBE 2B1E 0013 JF Z,LEEDE
4EED CB77 OO14 EIT 6,A
4EEF 2004 0015 JF NZ.LBECS
4EC1 SE20 0016 LD A,£20
4ECS 1816 0017 JR LEEDE
4EC5 D620 0018 LBECS SUR £2O
4EC7 4F 0019 LD C,A
4EC8 E61E 0020 AND £1E
    0021 ;
    0022 ;
    0023;
    0024 ;
            Page }33
```

0029 ;

4ECA	CBSF	0030	SFL	A
4ECC	114 ABO	0031	LD	DE, LB04A
4ECF	8 B	0032	ADC	A, E
4EDO	5 F	0035	LD	E, A
4ED 1	7A	0034	LD	A, D
4ED2	CEOO	0035	ADC	A, £00
4ED4	57	0036	LD	D, A
4ED 5	1 A	0037	LD	A, (DE)
4ED6	57	0038	LD	D, A
4ED7	79	0039	LD	A, C
4ED8	E6E1	0040	AND	fE1
4EDA	E2	0041	OR	D
4EDE	D305	0042 LEEDE	OUT	(f0S), A
4EDD	DBO4	0043 LBEDD	IN	A. (f04)
4EDF	CE47	0044	BIT	O, A
4EE1	20FA	0045	JR	NZ, LBEDD
4EES	SEFD	0046	LD	A, £FD
4EES	D304	0047	OUT	(£04), A
4EE7	3EFF	0048	LD	A, £FF
4EE9	D304	0049	OUT	(f04), A
4EEE	F1	0050	FOP	AF
4EEC	C. 9	0051	RET	
		0052 ;		
		0053 :		

```
4EED OOO1 START OFGG 4EEDH
    0002 ;
    Q003 ; Assembled by J HOFTON. Aug 82.
    0004 ;
    0005 ; NOTE The program runs at BEEDH.
    0006 ; Eut is assembled at 4EEDH.
    0007 ;
    0008 ; *C L E A FF E U F F E Fi (Eorder)*
    0009:
4EED OODF OO10 LOODF EQU £OODF
4EED AOOO OO12 LAOOO EQU EAOOO
4EED AOO1 OO1S LAOO1 EQU £AOO1 
4EED AOEO OOIS LAOEO EQU £AOEO
4EED AOE1 OOIG LAOE1 EQU EAOE1
4EED ECOO OO17 LBCOO EQU £ECOO
4EED ECO1 OO18 LBCO1 EQU £ECO1
4EED SEOO 0019 LD A,£OO
4EEF S2EOAO OO2O LD (LAOEO),A
0021:
    0022 ;
    002उ:
    0024 :
```

		0029	\%			
4EF2	21EOAO	0030		LD	HL, LAOEO	: Buffer 2nd
4EFS	$11 E 1 A O$	0031		LD	DE, LAOEI	gline.
4EF8	01201 B	00.2		LD	BC,L1E2O	
4EFB	EDBO	0035		LDIR		
4EFD	SE6O	0034		LD	A, f60	
4EFF	320040	0035		LD	(LAOOO), A	: Start of
4FO2	2100 AO	0036		LD	HL, LAOOO	; Buffer.
4FOS	1101 AO	0037		LD	DE, LAOOI	
4F08	01 DFOO	0038		LD	EC, LOODF	; Width of
4FOB	EDBO	0039		LDIF	;	\% Buffer.
4FOD	SEOS	0040		LD	A, £OS	
4FOF	32008 C	0041		LD	(LECOO), A	End of
4F12	2100 EC	0042		LD	HL, LECOO	; Euffer.
4F15	1.101 BC	0043		LD	DE, LECO1	
4F18	O1DFOO	0044		LD	EC, LOODF	; Width of
4F1E	EDBO	0045		LDIF	;	; Buffer
4F1D	0621	0046		LD	E, £21	; Su lines of
4F1F	3E7F	0047		LD	A.£7F	; border
4F21	2100 AO	0048		LD	HL, LAOOO	; pattern.
4F24	11 DFOO	0049		LD	DE, LOODF	
4F27	77	0050	LEF27	LD	(HL), A	
		0051	3			

Page 334

Page 335

4FSE	0001	START	ORG 4F3EH		
	0002 :				
	OOOS ; Assembled by J HOPTON. Aug 82.				
	0004 ;				
	0005 ; NOTE The program runs at EFSEH.				
	0006 ; But is assembled at 4F3EH.				
	0007 :				
	0008	;* F'	0 G	LINE	P A C E*
	0009 ;				
4FSE A000	0010	LAOOO	EQu	£AOOO	
4FSE A1E 1	0011	LA1E1	EQU	£A1E1	
4FSE EEB8	0012	LBEE8	EDU	£REB8	
4FSE 2100 AO	0013		LD	HL, LAOOO	; Auto
4F41 11E1A1	0014		LD	DE,LAIE1	; Changed.
4F44 SE1E	0015		LD	A, f1E	;18 35 10
4F46 CDE8BE	0016		CALL	LeEEg	; are print
$4 F 49$ SES3	0017		LD	A, £3	; codes for
4F4B CDE8EE	0018		CALL	LBEB8	; FRINTOUT
4F4E SE10	0019		LD	A, £10	;routines
4F50 CDE8EE	0020		CALL LBEB8		
	0021 ;				
	0022 ;				
	0023;				
	0024	;			


```
S2 FRINT"S2 Inp Cond":N=2:M=2:F=7
```

OK

LIST3000

3000 DATA $150,110,0,150,200,100,150,290,0$ 3010 DATA $100,110,0,100,200,100,100,290,0$ 3020 DATA $50,110,0,50,200,100,50,290,0$ OK

32 FRINT"32 Inp Cond": $N=4: M=2: P=7$

ロK
LISTSOOO

$$
\begin{aligned}
& 3000 \text { DATA } 39,11,0,39,20,5,39,25,0 \\
& 3010 \text { DATA } 30,3,0,30,20,17,30,37,0 \\
& 3020 \text { DATA } 20,0,0,20,20,20,20,40,0 \\
& 3030 \text { DATA } 10,3,0,10,20,17,10,37,0 \\
& 3040 \text { DATA } 1,11,0,1,20,5,1,25,0 \\
& \text { Ok }
\end{aligned}
$$

32 PRINT"32 Inp Cond":N=S:M=S:F:=7
OK

LISTSOOO

3000 DATA $0,120,120,120,120,120,120,0,120$
3010 DATA $0,0,120,40,80,80,80,80,80$
3020 DATA $80,40,80,40,40,80,40,80,40$ 3030 DATA $80,80,40,80,40,40,40,40,40$ 3040 DATA $0,120,0,120,120,0,120,0,0$ 3050 DATA 0, 0, 0
OK

Page 340

32 FRINT" 32 Inp Cond": $N=3: M=3: F:=7$
听

LISTS000

3000	DATA	$0,120,120,120,120,120,120,120$,	0					
3010	DATA	0,120,	0,	40,	80,	80,	80,	80,
3020	80							
3030	DATA	80,	80,	40,	40,	80,	40,	40,
30,	80,	40,	80,	80,	40,	40,	40,	40,
3040	40							
3050	DATA	0,	0,	120,120,	$0,120,120$,	0,	0	

Page 341

32 PRINT" 22 Inp Cond": $N=3: M=3: F=7$
OK
LISTSOOO


```
MON
HOFSYSTEM
10 FEM S DIMENSIONAL FIGURE.
11 CLEAR:D=3S30:E=3S28
15 GOSUB122O:REMINMC/BOFDER
20 DOKE4100, -16813:REMDOT IN EUFFER
2 5 ~ F O F X = O T O 1 0 0 : E = X * X : E = - 5 0 : A = S Q R ( 1 0 0 0 0 - E )
SO FORI=-ATOASTEF2.5:R=20*SOR(E+I*I)/100
35 IFR:=OTHENSOO
40 F=SIN(F)/R:Y=I/5+F*50:IFY<=RTHENSO0
45 }\textrm{B}=\textrm{Y}:\textrm{Y}=(50-Y)*1.3:DOKE3S30, (INT (100-X) +20)
SO DOKEZS28, (INT (Y)+70): A=USR(1)
5S DOKESSEO, (INT (100+X)+20): A=USF(1)
3OO NEXTI = NEXTX
605 DOKE4100,-16872: A=USFi(1):REMFrintEuffer
6 1 0 ~ E N D
700 FEM
710 FEM
720 REM
730 REM
1210 FEM M/C INS
1220 IFDEEK(-16896)=3902THENGOTO1270
1230 FFIINT"Ent M/C at EEOOH"
1260 FORA=0TD188: READE: DOKE-16896+2*A, E:NEXT
1270 FRINT:FFIINT"M/C ENTERED"
1280 DUK゙E4100,-16896:A=USF(1):FEM INIT FIO
1290 DOKEE4100,-1b81S:FEM Markers in Euffer
13OO FOFA=2OTO22OSTEP2O:DOKED,A: DOKEE,4
1320 F=USR ( 1):DOKED, S: DOKEE, A: B=USF(1)
13OQ DOKED, A: DOKEE, 22S: E=USF(1) : DOKED, 219
1340 DOKKEE, A: E=USFi (1):NEXT
1350 FOKE27267, 1:FOKE27483, 1:FETURN
1400 REM
1410 REM
14TO FFM
```

```
1430 FEM
1500 DATA 3902,2003,-194,1747,1235,-1750,1747
1510 DATA-18399,8894,3192,-4659,-13890, 8454,35
1530 DATA4512,-24355,16162,-4675,16979,-14913
1540 DATA16077,1727,16127,-13056,-16712,-1776
1550 DATA27075,10943, -16577,8729,-16577,16938
1560 DATA6591, 16930,-15937,-8432, 3390,-18227
1580 DATA16062,-13046,-16712,-8759,33,4352,224
1590 DATASS, -4864,75, 2829, 2827,2827, 2827,9181
1610 DATAS0745, 28926, -3784,11229,-4681, -5294,35
1620 DATA-18500, 21229, 23535, 330, -8055,1058
1630 DATA-8947,-8919,-8919,-8919,1570,8717,3536
1650 DATA1578,-4851,1115,-18675,21229,2353%
1660 DATA\Xi328,-18453,21229,15741,-13585, -13529
1670 DATA-1ड529,-14809,12998,-16714,2090
1680 DATA-13555,-13866,-13323, 10367,-13538
1690 DATA8. 11, 15876,6176,-10750,20256,7910
1700 DATA16331,18961, -29824,31327,206,6743
1710 DATAS1063, -7706, -11342, -9467,-13564
1720 DATA8265,16122,-11267,15876,-11265,-3856
1730 DATA16075, 12800, -24352, -8159,4512,-24.51
1750 DATA&193, -4837,16048,12896,-24576,3.S
1760 DATA4512,-24575,-8447,-4864,16048,12805
1770 DATA-17408,35, 4540,-17407,-8447,-4864
1780 DATA1712,15905,9575,-24576,-8431, 30464
1790 DATAZ0499,4121,1786,15905,8575,-24.555
1810 DATA-8431,30464,30499,4121,-13830, डS
1820 DATA4512,-24095,6974,-18227,16062
1830 DATA-13005,-16712,4158,-18227,16062
1840 DATA-13029,-16712,13886,-18227,32446
1850 DATA-13021,-16712,-4681,6482,6352,1780
1860 DATA15875,-13056, -16712,-1776
1870 DATA-8175,-15616,-16841,0,255
OK
```

```
1 0 ~ R E M ~ C U B I C ~ S F L I N E S . J ~ H O F T O N . ~ A U G ~ 8 2 . ~
20 CLEAR: D=33ड0: E=3.2.28
30 GOSUE190:REMINMC/EORDER
40 DOKE4100, -1681J:REMDOT IN EUUFFER
50 X(0)=0:X(1)=1:X(2)=2:X(3)=5:X(4)=4
60 Y(0)=1:Y(1)=5:Y(2)=0.5:Y(3)=1:Y(4)=0.6
70 FORJ=1TO10:FORW=OTO4
80 Y (W) =Y (W)-0.125
90 NEXTW
100 GOSUET00
110 NEXTJ
120 DOKE4100,-16872:A=USF(1):FEMFrintEuffer
130 END
140 FEEM
150 FEM
160 REM
170 FEM
180 FEM M/C INS
190 IFDEEK(-16896)=3902THENGGTO220
200 FFINT"Ent M/C at EEOOH"
210 FORA=0TO188: FIEADE: DOKE-16896+2*A, B:NEXT
220 PFIINT:PFINT"M/C ENTERED"
2SO DOKE4100,-16896:A=USF(1):REM INIT FIO
240 DOKKE4100, -1681S:REM Markers in Euffer
250) FOFA=20TO220STEP2O:DOKED, A: DOKEE, 4
260 E=USF(1): DOKED, S: DOKEE, A:E=USR (1)
270 DOKED, A: DOKEE, 22J: E=USFi(1):DOKED, 21?
2B0 DOKEE, A: E=USF (1):NEXT
290 FOKKE27267, 1:FOKE2748%, 1:FETIJFN
S00 FEM
310 FEEM
0B( HEM
690 FEM
700 REM CUBIC SFLINE SUEROUTINE.
710 0=50:F=1/Q:GOSUEB10
720 FORI=OTOZ:FORS=ITO1 + ISTEPF
7\Xi0 A=-Y(I)*(S-X(I+1))+Y(I+1)*(S-X(I))
740 E=-D(I)*((S-X(I+1))
750 C=D(I+1)*((S-X(I))*\Xi-(S-X(I)))/6
760 S(I)=A+B+C:XI=S*Q
770 YI=INT(30*S(I)+0.5)+50
780 DOKESSSO, XI:DOKES`28, YI: A=USF(1)
790 NEXTS:NEXTI:RETURN
800 FEM MATFIX ELEMENTS.
810 FORZ=0TO2:V(Z)=Y(Z)-2*Y(Z+1)+Y(Z+2):NEXTZ
820 D (1)=(15*V(0)-4*V(1)+V(2))*\Xi/28
8?0}D(2)=(-V(0)+4*V(1)-V(2))*こ/
840 D (ङ)=(V(0)-4*V(1)+15*V (2))*己/2&
850 RETURN
OK
```

340 DATA $3902,2003,-194,1747,1235,-1730,1747$
350 DATA-18399, 8894, 3192,-4659,-13890, 8454, 33
360 DATA4512,-24353, 16162,-4673, 16979,-14913
370 DATA16077,1727,16127,-13056,-16712,-1776
⑧0 DATA27075, 10943, -16577,8729, $-16577,16938$
390 DATA6591, 16930, $-15937,-8432,3390,-19227$
400 DATA16062, $-13046,-16712,-8759,33,4352,224$
410 DATASS, $4864,75,2829,2827,2827,2827,9181$
420 DATAS0745, 28926, $-3784,11229,-4681,-5294,33$
430 DATA $-18500,21229,23535,3330,-8955,1058$
440 DATA $-8947,-8919,-8919,-8919,1570,8717,3336$
450 DATA1578, $-4851,1115,-18675,21229,2353$
460 DATAJ $28,-18453,21229,15741,-13585,-15529$
470 DATA-13529, $-14809,12998,-16714,2090$
480 DATA-13555, $-13866,-13323,10367,-13538$
490 DATA8 $311,15876,6176,-10730,20256,7910$
500 DATA16331,18961,-29824,31327,206,6743
510 DATAS $1063,-7700,-11342,-9467,-13564$
520 DATAB263, 16122,-11267,15876, -11265, -3836
530 DATA16073, 12800, $-24352,-8159,4512,-24.51$
540 DATA8193, $-4837,16048,12896,-24576,3$.
550 DATA4512, $-24575,-8447,-4864,16048,12803$
560 DATA-17408, కउ, 4540, $-17407,-8447,-4864$
570 DATA1712, 15905, 8575,-24576,-8431,30464
580 DATA $0499,4121,1786,15905,8575,-24355$
590 DATA-8431,30464,30499,4121,-13850, उこ
600 DATA4512, $-24095,6974,-18227,16062$
610 DATA-13005, $-16712,4158,-18227,16062$
620 DATA-13029, $-16712,13886,-18227,32446$
630 DATA $-13021,-16712,-4681,6482,6352,1780$
640 DATA15875, $-13056,-16712,-1776$
650 DATA-8175, $-15616,-16841,0,255$
".

Page 346

APPENDIX 6. STEPPER MOTOR CONTROL.
A Single Step.

Memory.	Opcode.	Meaning, and M	emonics.
0c80	3E Of	LD A , OF	Set both input ports.
$0 ¢ 82$	D3 06	OUT(Port 6), A	Port A.
0 C 84	D3 07	OUT(Port 7), A	Port B.
0 C 86	3E 00	LD A , 0	Set motor to run.
0c88	D3 04	OUT(Port 4), A	
0C8A	3E 01	LD A , 01	
OCBC	D3 05	OUT(Port 5), A	
OCSE	06 OA	$L D B, O A$	Set a delay.
0090	10 FE	DNE	Delay loop.
$0 \mathrm{C92}$	3E 00	LD A , 00	End of pulse.
00\%4	D3 05	OUT(Port 5), A	
0096	DF 5B	STOP	Return to the system
			monitor.

This programae will step the motor once, in the direction set at location 0C8B.

Enter 00 at $0 C 8 B$ to set clockwise rotation.
Enter 01 at $0 C 8 B$ to set anticlockwise rotation.

Continuous Stepping.

Memory.	Opcode.	Mnemonic.	Meaning.
0C80	3E OF	LD A , OF	Set both Ports.
00.82	1307	OUT (Port 6),A	Port A.
0084	D3 06	OUT (Port 7),A	Port B.
$0 \mathrm{C86}$	3E 00	LD A , 00	Set the direction.
0088	D3 04	OUT (Port 4), A	
0c8A	3E 01	LD A , 01	
OC8C	D3 05	OUT (Port 5), A	
OC8E	06 OA	LD B , OA	Set a delay.
0090	10 FE	DJNZ	Loop.
0092	3E 00	LD A , 00	End the pulse.
00\%4	D3 05	OU' (Port 5),A	
0096	010020	LD BC, , 2000	Loop constant.
0099	ов	DEC ${ }^{\text {b }}$	Heduce the constant.
0C9A	78	LD A , B	
OC9\%	BI	OHC	Test constant ($=0$)
0c9C	20 FB	JHNZ	If not return (0099)
OC9E	18 EA	JH	If so return (048 A)

The direction can be changed at location 0087 and the stepping rate changed at locations 0097 and 0098.

More than one step.

Memory.	Opcode.	Mnemonic.	Meaning.
$0 \mathrm{C80}$	3E OF	LD A , OF	Set both Ports.
0 C 82	D3 07	OUT (Port 7),A	Port B.
0C84	D3 06	OUT (Port 6), A	Port A.
0 C 86	3E 00	LD A , 00	Set direction.
0c88	D3 O_{4}	OUT (Port 4), A	
0C8A	113000	LD DE, 30	Set number of steps.
OC8D	7 A	LD A , D	
OC8E	B3	OR E	Check for end.
0C8F	CA 890 C	JP 2	If so jump to 0C89.
$0 \mathrm{C92}$	1B	DEC DE	If not decrement the
			number of steps.
$0 \mathrm{C93}$	3201	LD A , 01	Delay.
$0 \mathrm{C95}$	D3 05	OUT (Port 5), A	Port A.
0097	06 OA	LD B , OA	Delay counter.
0099	10 FE	DJNZ	Loop to 0699.
OC9B	3E 00	LD A , 00	End of pulse.
OC9D	D3 05	OUT (Port 5), A	
OC9F	010020	LD BC, 2000	Set a time constant.

Continued. [More than one step.]

Memory.	Opcode.	Mnemonic.	Meanins.
OCA2	OB	DEC BC	Reduce the time constant.
OCA3	78	LD A , B	
OCA ${ }^{4}$	Bl	OR C	Is the constant 0 ?
OCA5	20 FB	JRNZ	If not return to OCA2.
OCA7	18 El	JR	If so go to OC8A.
OCA9	DF 5B	STOP	Return to the monitor system.

The duration of the pulse stepping rate can be changed
at locations OC90 and 0C91.

The direction of rotation can be changed at location OC87.

The number of pulses can be changed at locations 0C8B and OC8C.

APPENDIX 7. EPROM PROGRAMMER CONTROL SEQUENGE.

Memory.	Label.	Opcode.	Mnemonic.
0C80	Start	EF 203120205052	RST Prs
		4 F 4752414 D OD 20	[1, Program]
0C8E		322 C 2052452 D 50	
		524 F 5241454 DOD	
		20	[2, Re-Program]
OC9D		332020434 F 5059	
		20544 F 204 4 454 D	
		4F 5259 OD	[3. Copy to memory]
OCBO		DF 63	RST SCAL DEFB Inlin
OCB2		DF 79	RST SCAL DEFB Rlin
OCB4		38 CA	JR C Start
OCB6		$3 \mathrm{~A} O B O C$	LD A (Argn)
OCB9		FE 02	CP 2
OCBB		20 OD	JR NZ Return
OCBD		DF 60	RST SGAL DEFb args
OCBF		EB 1D	EX DE HL. Dec E
OCCl		2809	JR Z Erchk
$0 \mathrm{CC3}$		1 D 2826	DEC C. JR 2 Erehk
OCC4		2826	JR 2 Prog
0006		10	Dec E
OCC7		CA 610 D	JP Copy.

Memory.	Label.	Opcode.	Mnemonics.
OCCA	Return	DF 5B	RST SCAL DEFB MRET.
OCCC	Erchk	06 OA	LD B , 10
OCCE	Er 1	CD 6C OD	CALL Setr
OCDI	Er 2	DB 04	IN A (4)
OCD3		3C	INC A
OCD 4		28 OF	JR Z Er 3
OCD6		EF 4E 4F 54	RST Prs
		20455241	[Not Erased]
		534544	
OCE1		00 OD	Newline
OCE3		DF 5B	RST SCAL DEFB MRET
OCE5	Er 3	CD 8D OD	Call Incp
OCE8		28 E 7	JR 2 Er 2
OCEA		10 E 2	DJNZ Er 1
OCEC	Prog	EF 50524 F	[Prog]
		473 a 00	
OCF3		010190	LD BC, 9001 H
OCF6	P 1	CD 6E OD	Call Setw
OCF9	P 2	TE	LD A, (HL)

Memory.		Opcode.	Mnemonics.
OCFA		D3 04	OUT (4) , A
OCFC		3E 02	LD A , 2
OCFE		FF	RST RDEL
OCFF		3E 03	LD A , 03
ODO1		D3 05	OUT (5) , A
0 DO 3		3E 02	ID A , 02
$0 \mathrm{nO5}$		FF	RST RDEL
$\bigcirc \mathrm{O} \cap 6$		79	LD A , C
0D07		D3 05	CUT (5) , A
ODO9	P3	DB 05	IN A , (5)
ODOB		E6 20	AND 20H
ODOD		28 FA	JR Z P3
ODOF		CD 8D OD	CALL INCP
OD12		28 E5	JR Z P2
OD14		10 EO	DJNZ P1
OD16		D7 54	RST SCAL DEFB SETR
OD18		OF, OA	LD C , 10
ODIA	P_{4}	DF 5D	RST SCAL DEFB TDEL
ODIC		OD	DEC C

Memory		Opcode.	Mnemonics.
ODID		20 FB	JR NZ P4
ODIF		EF 56455249	RST PRS
OD24		465900	[VERIFY]
OD27		OD	NEWLINE
OD28		0614	LD b, 20
OD2A	V1	D7 40	RST RCAL DEFB SETR
OD2C	v2	DB O_{4}	IN A (4)
OD2E		BE	CP (HL)
OD2F		20 Or	JR NZ ERRI
OD31		D7 5A	RST RSCAL DEFB INGP
OD33		28 F 7	JR Z V2
0D35		10 F 3	DJNZ V1
0D37	V3	EF 444 F 4 E 45	RST PRS
OD3C		OD 00	[DONE]
OD3E		DF 5B	RST SCAK DEFB MRET
OD40	ERRI	EF 424954204641	RST PRS
OD 47		554 c 5459204154	[BIT FAULTY AT]
OD4E		2000	
OD50		ED 5B OE OC	LD DE , (ARG2)
ODS4		AF	XOR A

Memory.		Opcode.	Mnemonics.
OD55		ED 52	SBC HL, DE
OD57		7 C	LD A , H
OD58		DF 7A	RST SCAL DEFB BIHEX
OD5A		7 D	LD A, L
OD5B		DF 68	RST SCAL DEFB B2HEX
OD5D		DF 6A	RST SCAL DEFB CRLF
OD5F		DF 5B	RST SCAL DEFB MRET
OD61	COPY	D7 09	RST RCAL DEFB SETR
0D63	COPYI	DB 04	IN A , (4)
0065		77	LD (HL) , A
0D66		D7 25	RST RCAL DEFB INCP
OD68		$28 \mathrm{F9}$	JR COPYI
OD6A		18 CB	JR V3
OD6C	SETR	OE OO	LD C , 0
OD6E	SETW	3 ECF	LD A , CF
OD70		F5	PUSH AF
OD71		D3 06	OUT (6) , A
OD73		79	LD A , C
0D74		3 D	DEC A
0D75		D3 06	OUT (6) , A

Memory.		Opcode.	Mnemonics.
OD77		Fl	POP AF
0D78		D3 07	OUT (7) , A
OD7A		$3 E 30$	LD A , 30
OD7C		D3 07	OUT (7) , A
ODTE		79	LD A , C
OD'7		6608	ADD A , 8
OD81		D3 05	OUT (5) , A
0D83		3 E 02	LD A , 02
$00^{8} 5$		FF	RST RDEL
0D86		79	LD A , C
0D87		D3 05	OUT (5) . A
OD89		2A OE OC	LD HL , (ARG2)
OD8C		C9	RET
OD8D	INCP	79	ID A , C
ODSE		0604	ADD A , 4
0D90		D3 05	OUT (5) , A
OD92		3E 02	ID A , 02
0D94		FF	RST RDEL
0095		79	LD A , C
0D96		D3 05	OUT (5) , A
OD98		23	INC HL
$0 \mathrm{D99}$		3 E 02	LD A , 02
OD93		FF	RST RDEL
OD9C		DB 05	IN A . (5)
OD9E		E6 10	AND 10
ODAO		C9	RET

REPERENCES.

References.

1. 280 Instant Programs.	J Hopton. Signa Technical Press.
	ISBN 0905104099 (1st Ed) 1979.
	ISBN 0905104196 (2nd Ed) 1982.

2. Hydraulic Feedrate on the D G Fox. MSc Project. Jan 1967. "AutoWard", investigation University of Aston. and re-design.
3. Catalogue.
4. 280 MK 3880 CPU .
5. Memory Products.
6. Memory Data Book.
7. HD 6402 UART.
8. 280 MK 3881 PIO.

Radio Spares. Electronic
Spares Distributor. 1979/82.

Mostek Technical Manual. 1977. MK 78505.

Mostek Catalogue. 1977. MM 2026/177.

Radio Shack. National SemiConductors. Catalogue 62-1376.

Harris Data Sheet on the CMOS ISI Universal Asynchronous Receiver and Transmitter. Jan 1978.

Mostek Technical Manual on the Parallel Input Output Controller. MK 78506. Feb 1978.

References. (Continued)
17. Optical Fibre Technology.
18. Engineering Approach To The Fibre Optic Link.
19. Fibre Optic Components.

F Wilkinsons. Electronic
Engineering. April 1980. P 93,97.

D L Jones. Electronic Engineering
Pages 65,84. April 1980.

Centronics Electro Optics
Information Sheet.
FTIR $1 / 2$.
1977.

Bibliography.

BARDEN W.

GOLDSBROUGH P F.

LARSEN D G.

NICHOLS J C.

OSBORNE A.

POE C E.
S100 and other MICRO Buses.
H W Sams \& Co . Indiana.
ISBN 067221587 X.

The 8080A Bugbook.
H W Sams \& Co . Indiana.
ISBN 0672 21447 4.

Bibliography. [Continued.]
Texas. Interface Circuits Data Book.

Texas Instruments.

$$
\text { ISBN } 0 \quad 904047 \quad 24
$$

Texas. Memory and Microprocessor Data Book.
Texas Instruments.
ISBN $0 \quad 904047 \quad 156$.

Texas. MOS Memory Data Book.
Texas Instruments.

ISBN $0 \quad 895121050$.

Texas.

ZAKS R.
How to Programme the Z 80 .
Sybex. California.
ISBN $089588 \quad 0474$.

ZAKS R. Microprocessor Interfacing Techniques.
Sybex. California.
ISBN $089588 \quad 0032$.
ZILOG.
Data Book.
Zilog Berkshire. Z80 / 12. 1978.

[^0]: The important aspects to look for are extra user accessible internal registers, like extra accumulators, index or general purpose registers.

 These additional registers can mean programming economy and as a general rule, more registers lead to a more or less flexible system.

[^1]: It is also possible to call routines that are actually command routines themselves.

[^2]: The monitor or administrative control programme is situated in two IK EPROMS giving further flexibility because they may be easily replaced at any time, should the routines require further customising to suit some particular application. Further economy of memory is provided by the inbuilt subroutines which are prewritten for input and output control and these may be called by a programme with an overhead of only 3 memory Bytes, thus saving vast amounts of RAM, with the convenience of having ready made control subroutines as and when required. A full listing of the Monitor machine code system can be found in Appendix 3.

