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This work sets out to evaluate the potential benefits and pit-falls in using priori
information to help solve the Magnetoencephalographic (MEQG) inverse problem.

In chapter one the forward problem in MEG is introduced, together with a scheme
that demonstrates how a priori information can be incorporated into the inverse problem.

Chapter two contains a literature review of techniques currently used to solve the
inverse problem. Emphasis is put on the kind of a priori information that is used by each of
these techniques and the ease with which additional constraints can be applied. The
formalism of the FOCUSS algorithm is shown to allow for the incorporation of a priori
information in an insightful and straightforward manner.

In chapter three it is described how anatomical constraints, in the form of a
realistically shaped source space, can be extracted from a subject's Magnetic Resonance
Image (MRI). The use of such constraints relies on accurate co-registration of the MEG and
MRI co-ordinate systems. Variations of the two main co-registration approaches, based on
fiducial markers or on surface matching, are described and the accuracy and robustness of a
surface matching algorithm is evaluated.

Figures of merit introduced in chapter four are shown to give insight into the
limitations of a typical measurement set-up and potential value of a priori information.

It is shown in chapter five that constrained dipole fitting and FOCUSS outperform
unconstrained dipole fitting when data with low SNR is used. However, the effect of errors
in the constraints can reduce this advantage.

Finally, it is demonstrated in chapter six that the results of different localisation
techniques give corroborative evidence about the location and activation sequence of the
human visual cortical areas underlying the first 125ms of the visual magnetic evoked
response recorded with a whole head neuromagnetometer.

Keywords: magnetoencephalography; inverse problem; MEG-MRI co-registration; realistically shaped
source space; resolution matrix.
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FIGURES

Chapter 1

figure 1-1: Comparison of spatial and temporal resolution of different brain imaging techniques. Note the
superior temporal resolution of MEG. Source: CTF Systems, INC......cociiinniiiiieeeceeeeeeen 18
figure 1-2: Basic scheme to solve the inverse problem. Solving the inverse problem relies on the ability to
solve the forward problem accurately. The forward problem can be solved when modelling assumptions
are made about the sources in the brain and the head as a volume conductor. Furthermore, the sensor
configuration must be encoded. Adding a priori knowledge at different stages can increase the accuracy

of the solution of the inVerse Problem...............ooo..ovvoooeeeoeooeooeoooooooo 20
figure 1-3: Schematic of a first order axial gradiometer consisting of two oppositely wound coils inductively
coupled t0 the SQUID SENSOT............vvvuurrerriirrieeeoeeeeeeees oo 23

figure 1-4: Matrix representation of the recorded data (top panel). The signal vector contains the recorded
values for a channel at all latencies. The sample vector contains the recorded values in all channels at a
certain latency (after Hjorth, 1989). In the bottom panel a colour-coded topographic map of a sample
vector is shown. In this case the sample vector is the measured field pattern at 110ms after onset of an
auditory stimulus. Two dipolar field patterns are clearly visible in the data, suggesting that the magnetic
field is induced by two areas of brain activity that can both be modelled by an equivalent current dipole

in the left and right auditory cortex, TESPECUIVELY. ..o 25
figure 1-5: Schematic drawing of a nerve Cell. ..o 26
figure 1-6: An area of active cortex can be modelled as a layer of current dipoles. This layer of dipoles in turn

can be modelled as a single equivalent current dipole when viewed from a large enough distance. ........ 27
figure 1-7: Definition of the location of the current density and the measurement position with respect to the

OFTZIML oo 31

figure 1-8: Definition of the radial and tangential components of a dipole (figure from Malmivuo et al., 1997).
A dipole with only a radial or tangential component is referred to as a radial or tangential dipole,
TESPECHIVELY. .ottt e oo 33

Chapter 2

figure 2-1: Hypothetical example of the minimisation process of the cost-function. Here, the cost-function is
only optimised for one of the dipole parameters (r), the other parameters are kept constant. The numbers
between brackets denote the iteration number in the optimisation process. The algorithm starts with the
initial guess (ro), traverses through the local (step 2) and global minimum (step 9) and finally (step 21)

arrives back at the global Minimum (Ig). .....oveveveieinioiooeoeeeeeeoe oo 38
figure 2-2: Reduced chi-square for solutions obtained with 300 randomly chosen initial guesses, sorted in
descending order. Figure modified from Huang ef @l (1998).........c.coocoovoooooooooooo 50
figure 2-3: An example of a monophasic wavelet. It is defined by the four parameters: peak amplitude (PA),
peak latency (PL), latency of the onset (ONL) and of the offset (OFFL). oottt 52

figure 2-4: Plot of hypothetical principal correlations. The top panel shows the maximum principal correlation
for each grid point (= ¢,). It is clearly seen that with MUSIC and R-MUSIC it would be easy to localise
peak A. Finding the other peaks in this figure (as is done with MUSIC) would be more cumbersome,
because they are broader and lower. This could be due to noise or modelling errors. The bottom panel
shows the second largest principal correlations (= ¢,) that would be obtained with R-MUSIC after the
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first source is found from the top panel, using the first localised source as part of the source model.
Finding the maximum in this plot is easy. Finding additional sources is therefore much easier with R-
MUSIC than With MUSIC. ...o.iiiiieiiteeieieee et b bbbt 67
figure 2-5: Graphical representation of a slice through a part of the cortical surface, showing a sulcus. The
distributed source, represented by the arrows, extends across both walls of the sulcus. The centre of
gravity of the activity is indicated by the black dot. The result of localisation with a single dipole model,
located in this centre of gravity, would give a meaningless result as the location is not even within the
COTEEX. wenveeeeeteeeteeeeetees e et e eueeaeeaseess e s e s e e st e e et es e et e st e b e e e s e s s e e e e s e e R e E e 70
figure 2-6: Projection of the total current vector J into the subspace spanned by the leads L; and L,. The
minimum norm estimate of the total current is given by J, . It can be seen that J, does not contribute to
the minimum norm estimate, as < J;, &> = 0. Generalisation to more than 2 sensors (leads) is
straightforward. After Himaldinen er al (1093). ..o 72

figure 2-7: Example of an L-curve, with on the x-axis the normalised residual norm, ”B - ﬁ“ , and on the y-

~

Q

left to right. One can see that the residual norm decreases when more singular values are used in the
computations and that the solution norm increases at the same time. This is expected, as more sources are
used to explain the data when the number of singular values that are used increases. The optimum
truncation parameter is the singular value that lies near the corner of the L-curve. This example was

axis the normalised solution norm, . The number of singular values that were used decreases from

obtained for a simulation set-up with the 19-channel CES system at Aston University. ... 79
figure 2-8: Detector plane, volume conductor and source space used in the simulations by Sekihara et al

(1994). The detector plane consisted Of 37 SEMSOTS. ....vvviiriiiiiiicii 89
Chapter 3

figure 3-1: Part of an MRI dataset displayed as a stack of images. Each image shows a coronal view of a cross
section of a subject's head. Only every 10" slice is displayed for the ease of interpretation of the figure
(starting with the 70" and stopping with the 110" slice). In each slice only some contours are displayed,
also for the ease of interpretation. Note that these contours are not part of the original MRI dataset, but
are obtained after further image processing (see Section 3.2.2). ..o 122
figure 3-2: Diagram that shows how the relative contribution of different tissues to the recorded MR signal is
affected by the RF pulse sequence (TE and TR). For example, long TR and TEs highlight differences in

T2 between tissues (figure modified from Aine, 1995). ..c.ooooiiiiii 123
figure 3-3: Histogram of slice 100 from the MRI of the head of subject IEH. The peak on the left side is due to
the background. The other two peaks represent mainly the grey and white matter. .........ccooerieiiinnnen, 126

figure 3-4: Example of the right side of a coronal slice (left hemisphere) with parts of the CSF marked
(yellow). The sagittal and axial slices corresponding to the crosshairs are also shown. The computed
contours (red) need modification in order to mark the outer boundary of the grey matter faithfully. The
contours marking the inner and outer skull boundaries can easily be discarded.......coocoviiiciiiiiiiiannn 133
figure 3-5: A manually edited contour where wrongly placed contours were removed and the different parts of
other contours were correctly connected. This contour faithfully represents the outer boundary of the
GI@Y TIIALLET . o.ceerremsesasss s 134
figure 3-6: Three contours in a coronal slice through the pole of the occipital cortex. Connecting these three
contours to a single contour in an adjacent slice poses a problem for some surface reconstruction
ALZOTTERITIS. .ot s 135
figure 3-7: Example of a global connection problem. A set of 6 contours in two parallel slices (a). There are
several ways to connect the regions in adjacent slices ((b) and (c¢)) and form a reconstructed object.
Intersecting both these reconstructed objects would return the original regions in the cross-section (from
GEIZET, 1993). oot 137
figure 3-8: Example of a local connection problem. The two contours can be connected in different ways. No
discrimination can be made between the choice in the top panel and the one in the bottom panel, unless
additional constraints are used (from Geiger, 1993). ..ot 138
figure 3-9: The triangulated cortical surface with the normals in the vertices displayed as arrows pointing in
the direction of the normal in each vertex. The left occipital pole is here shown as viewed from the (left)
DACK OF thE DEAA. +verve ettt ettt et ettt et as e s 139
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figure 3-10: Two active brain areas, displayed in two different ways. The first way is to present the active area
as a current dipole, represented by an arrow. The location and orientation of the arrow show the location
and orientation of the current dipole. The strength of the dipole is represented by the size of the arrow.
The second way to represent the activity is by colour coding each triangle face by the strength of the
activity in the vertices of each triangle. In this case strong activity is represented by yellow, and weak
activity by dark red. The elements with negligible activity are displayed in pink. ..., 140
figure 3-11: An active brain area, represented by the red current dipole, is displayed on the cortical surface.
The source is visible because a part of the outer surface of the head is ‘cut-away'. A presentation like this
shows the location of an active brain areas with respect to (sulcal) anatomy and its location with respect
to the outer surface Of the REAd. ... ...oovieiiiie e 141

figure 3-12: Plot of the ratio of +/1/(n +1) and J1/n , with n the number of fiducial points. The minimum

number of fiducial points needed for target registration is 3. The graph shows that there is a large
decrease of the registration error when the number of fiducial points is increased from 3 to 4 or 5. A
further increase of the number of points reduces the registration error with a relatively small amount, as
is illustrated by the flattening of the CUVE. ...t 146
figure 3-13: Schematic of the bite-bar system used in Aston. It contains four small holes that are digitised in
the MEG co-ordinate system. The markers can also be identified in the MRI when filled with oil,
enabling the co-registration of the MEG and MRI co-ordinate SyStems. ........oooovieiiiiiies 147
figure 3-14: Schematic of the co-registration procedure. The reference coils determine the location of the
MEG sensors with respect to the head. The digitised location of the reference coils (or any other chosen
fixed reference system) defines the MEG co-ordinate system. Digitisation of the scalp surface within this
reference system gives a set of 'hat' points in MEG co-ordinates. A set of 'head’ points in MRI co-
ordinates is obtained from the subject's MRI through segmentation and boundary extraction. Surface
matching then maps the anatomical information from the subjects MRI to the MEG co-ordinate system.
Combining all these steps gives the location of the sensors and the anatomical information in the same

CO-OTAINALE SYSTEIML. 1.ttt ettt e 156
figure 3-15: Example of co-registration of a set of hat points obtained with the 3D digitiser (dots) and the head
surface obtained from the subjects MRIL ... 159

figure 3-16: Plot of the cost-function after several rotations of the set of hat-points from the perfect location.
The left panel shows the cost-function for rotation in the y-direction and the right panel the cost-function
fOr TOtation iN the Z-AITECHION. ..iiiiiiiiiiee ettt ettt e e ettt 163
figure 3-17: The mean distance between the head and hat points and the value of the total squared distance at
the start and after convergence of the surface matching algorithm. The simulations were repeated 10
times. For each run an initial guess for the three translation and rotation parameters was obtained from a
Gaussian distribution with zero mean and a standard deviation of 2mm and 2° respectively. Note the
strong correlation between the mean distance and the COSt-TUNCHON. ..oooviiii 165
figure 3-18: The mean distance between the head and hat points and the value of the total squared distance at
the start and after convergence of the surface matching algorithm. The simulations were repeated 10
times. For each run an initial guess for the three translation and rotation parameters was obtained from a
Gaussian distribution with zero mean and a standard deviation of 2mm and 2° respectively. The initial
guess for the scaling parameters were taken from a Gaussian distribution with a mean of 1.9 and 1.1mm
for the slice thickness and pixel dimension, respectively, and a standard deviation of 0.0lmm............. 166
figure 3-19: The mean distance between the head and hat points due to noise alone and at the start and end of
the surface matching algorithm. The simulations were repeated 10 times. For each run an initial guess for
the three translation and rotation parameters was obtained from a Gaussian distribution with zero mean
and a standard deviation of 2mm and 2° respectively. The noise that was added to the location of each
hat point was obtained from a Gaussian distribution with zero mean and a standard deviation of 2mm.
................................................................................................................................................................ 170
figure 3-20: Variability due to repeated co-registration for different regions of the brain. The total RMS error
is given in the top panel and the standard deviation in the z-direction is given in the bottom panel. Note
that the largest errors were found towards the back of the head and that these errors were mainly caused
by the variability in the Z-diFeCtON. ..o i 173
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Chapter 4

figure 4-1: Decay pattern of the singular values for several set-ups with different numbers of sensors. With
low SNR data only a few singular values are larger than the singular values due to the noise, for set-ups
with a few as well as many sensors. The cut-off level is indicated with the line annotated with Low SNR.
On the other hand, with high SNR data many more singular values are larger than the noise singular
values and the difference in the number of singular values that is usable between a set-up with a few or
many sensors is large. The cut-off level for high SNR data is indicated with the line annotated with High
SNR (modified from Genger and Williamson (1998)). veuerrrricims s 183
figure 4-2: Resolution kernels for three different linear estimators for the target point A. The reconstructed
activity in A will be influenced by activity from other sources if their value in the resolution kernel is
non-zero. For example, activity in B will contribute to the reconstructed activity in A for all three linear
estimators. Reconstructed activity in location A could either be due to activity in A or due to slightly
stronger activity in B, so the spatial resolution of the linear estimator is related to the width of the main
peak in the resolution kernel. When the Minimum Norm estimator is used, activity in C will have a
negative contribution to the activity in A. This could cancel the activity of source A when a strong source
is present in C. Activity in C has a small positive contribution to the activity in A when the B&G
estimator is used and no contribution if the WROP estimator is used. Hence, the optimal linear estimator
should have a narrow peak around the target source (influence of source B is minimal and therefore high
spatial resolution) and small sidelobes (influence of distant sources like C is small). From Grave de
Peralta Menendez et al (1997), see original paper for details about the linear estimators. ......coooereeess 187
figure 4-3: Configuration of the 19 channel CES system (ideal). The space between two sensors is 29mm.. 196
figure 4-4: An MRI slice in which the sources from the realistically shape source space are overlaid. Each

source was manually classified as either being gyral (red), sulcal (yellow) or ‘undefined’ (cyan).......... 197
figure 4-5: Histogram of the angles between the sphere radius and the orientations of gyral (left panel) and
SUICA] (FZNE PANEL) SOUITES...vvvvvrrrereesesssssssssss s oo 198
figure 4-6: Surface map of the l-norm of the lead field of ecach element in the source space, viewed from the
left (left panel) and right (right panel). The scale is in FTESLA. v onereeeeeeteeeereree e e 199
figure 4-7: Surface map of the l,-norm of the lead field of cach element in the source space, viewed from left
(left panel) and right (right panel). The surface maps are displayed on a logarithmic scale. ........cocooee 199

figure 4-8: Surface maps of the resolution kernels for a superficial (top row), shallow (middle row) and deep
(bottom row) source. The left column contains views from the left and the right column views from the
right. The location of the source for which the resolution kernel was computed is displayed as a red
arrow. The surface maps for the columns in the resolution matrix were exactly equal to the resolution
kernels displayed here, due to the symmetry in the resolution matrix for the minimum norm estimator.
Note that the resolution kernel was closest to the ideal one for the superficial source and was worst for
£ AEEP SOUFCE.eeeeevecmororrrersssssemssssssss st ot 203
figure 4-9: Resolution kernels for a superficial (top row, left), shallow (top row, right) and deep (bottom row,
left) source. Each resolution kernel was sorted for the distance between each source and the target
source. Hence, the first value on the left in each plot is the value of the resolution kernel for the target
source. The plots of the columns in the resolution matrix were exactly equal to the plots for the
resolution kernels displayed here, due to the symmetry in the resolution matrix for the minimum norm
estimator. The same resolution kernels were displayed as surface maps in figure 4-8. ooooveiiiin 204
figure 4-10: Surface maps of the resolution kernels for a superficial (top row), shallow (middle row) and deep
(bottom row) source. The left column contains views from the left and the right column views from the
right. The location of the source for which the resolution kernel was computed is displayed as a red
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figure 4-11: Resolution kernels for a superficial (top row, left), shallow (middle row, right) and deep (bottom
row, left) source. Each resolution kernel was sorted for the distance between each source and the source
for which the resolution kernel was given. The same resolution kernels were displayed as surface maps
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figure 4-12: The top row contains the surface map (logarithmic scale) of the Source Identifiability viewed
from the left (left panel) and the right (right panel). In the middle row a histogram of the logarithm of
Source Identifiability is given for both gyral (left in left panel) and sulcal sources (right in left panel) and
a plot of the Source Identifiability versus the angle that the source orientation formed with the sphere
radius (right panel). In the bottom row, the left and right panel show the Source Identifiability versus the
l,-norm of the lead field (Gain) and the average distance to the sensors from each element in the source
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figure 4-13: The top row contains the surface map of the Bias in Dipole Location viewed from the left (left
panel) and the right (right panel). In the middle row a histogram of the Bias in Dipole Location is given
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for both gyral (left in left panel) and sulcal sources (right in left panel) and a plot of the Bias in Dipole
Location versus the angle that the source orientation formed with the sphere radius (right panel). In the
bottom row, the left and right panel show the Bias in Dipole Location versus the l,-norm of the lead field
(Gain) and the average distance to the sensors from each element in the source space, respectively.....210
figure 4-14: The top row contains the surface map (logarithmic scale) of the Expected squared error due to
noise viewed from the left (left panel) and the right (right panel). In the middle row a histogram of the
logarithm of the Expected squared error due to noise is given for both gyral (left in left panel) and sulcal
sources (right in left panel) and a plot of the Expected squared error due to noise versus the angle that
the source orientation formed with the sphere radius (right panel). In the bottom row, the left and right
panel show the Expected squared error due to noise versus the l,-norm of the lead field (Gain) and the
average distance to the sensors from each element in the source space, respectively........ccoooveecenennn. 211
figure 4-15: The surface maps of the Source Identifiability (logarithmic scale), Bias in Dipole Location and
Expected squared error due to noise (logarithmic scale) are given in the top, middle and bottom row
respectively. The left column contains views from the left and the right column contains views from the
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figure 4-16: Plot of the Bias in Dipole Location versus the angle that the source orientation formed with the
sphere radius (top, left panel), versus the l-norm of the lead field (top, right panel) and versus the
average sensor distance (bottom, left panel). The bottom right panel shows the Expected squared error
due to noise versus the l,-norm of the lead field (Gain)..........ccooeiiieviiiiiiiieciii e 216
figure 4-17: Examples of impulse responses typically found with FOCUSS when the identity matrix is used as
initial weighting matrix. The source spaces are viewed from the right-back. The left panel shows an ideal
impulse response. The one element with a value of 1 is at the location of the original source (indicated
with the red arrow). Note that no colourbar is given for this figure; dark blue represents a value of zero.
The right panel shows an impulse response for which the maximum value is not in the same location as
the original source. Additionally, there are non-zero elements surrounding the original source. Note

however that the vast majority of elements in the impulse response have a value of zero. .................... 217
figure 4-18: Weighting values selected to emphasise a target area. The value of the weights fell off with the
distance from the target source, following a 3D-Gaussian distribution. ............ccocceeiiiiiiiiiininn. 218

figure 4-19: Minimum norm weighting. Top panel: histogram of the values of the Bias in Dipole Location as
obtained from the resolution matrix. Bottom panel: histogram of the values of the Bias in Dipole
Location as obtained from concatenating the impulse responses of FOCUSS. Note the huge reduction of
the number of sources with a large Bias in Dipole Location for FOCUSS. ... 220
figure 4-20: Smoothed norm weighting. Top panel: histogram of the values of the Bias in Dipole Location as
obtained from the resolution matrix. Bottom panel: histogram of the values of the Bias in Dipole
Location as obtained from concatenating the impulse responses of FOCUSS. ........ccoiiiiiiniinicnnn. 221
figure 4-21: Target area weighting. The Bias in Dipole Location as obtained from the resolution matrix. Note
the small Bias in Dipole Location for sources in the target area (the target area was defined in figure
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figure 4-22: Comparison of target area weighting with smoothed norm weighting. The Bias in Dipole
Location was obtained from the resolution matrix. Top panel: histogram of the values of the Bias in
Dipole Location for target area weighting. Bottom panel: histogram of the values of the Bias in Dipole
Location for smoothed norm weighting. The same scale on the x-axis was used for the ease of
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figure 4-23: Comparison of target area weighting with smoothed norm weighting. The Bias in Dipole
Location was obtained concatenating the impulse responses of FOCUSS. Top panel: histogram of the
values of the Bias in Dipole Location for target area weighting. Bottom panel: histogram of the values of
the Bias in Dipole Location for smoothed norm weighting. The same scale on the x-axis was used for the
ease of comparison. Note however the difference in scale with figure 4-22..................... 223

Chapter 5

figure 5-1: Source space modeled as a cortical fold viewed from the top (left panel) and right (right panel).
The channel array is depicted by the filled circles and the centers of the target sources on the gyrus and

the sulcal wall are indicated DY AITOWS. ..couiviiiiiiiiiii it 229
figure 5-2: The mean location error [mm] and the standard deviation of the location error [mm] for different
Monte Carlo realisation. The results obtained with FOCUSS, unconstrained dipole fitting and
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constrained dipole fitting (A) are given in the top, middle and bottom row, respectively (see text for
details about the algorithms). These figures were obtained by adding the solution found for a Monte
Carlo realisation to the solutions obtained from previous realisations and computing the error measures.
The results displayed were obtained for simulated data with an SNR of 1.5 for the target source on the
gyrus. Note the stabilisation of the results as the number of realisations increased. ...oooveevveeeiineennienens 231
figure 5-3: Fieldmap produced by the target source on the gyrus (left panel) and sucal wall (right panel),
respectively. The dataset has an SNR of 3 and the source activity is near its maximum. Note that the
spatial coverage of the sensor array is big enough to incorporate the extrema in the dipolar magnetic field
DALLETTL 111 eveeseeeeeveesoereesssse s 235
figure 5-4: Comparison of compound and non-compound version of FOCUSS, unconstrained dipole fit and
constrained dipole fit algorithms for data with different SNRs. Target source is the source on the gyrus.
The top panel shows the mean of the distance to the target source for all solutions from the Monte Carlo
simulations. The bottom panel shows the standard deviation of this distance. Note the increase in
accuracy and the decrease of the spread in the solutions with increasing SNR and the relatively poor
performance of FOCUSS. ... .vviiiiiimmiiteiii et 239
figure 5-5: Comparison of compound and non-compound version of FOCUSS, unconstrained dipole fit and
constrained dipole fit algorithms for data with different SNRs. Target source is the source on the sulcal
wall. The top panel shows the mean distance to the target, gyral, source for all solutions from the Monte
Carlo simulations. The bottom panel shows the standard deviation of this distance.........coceeevinnn 241
figure 5-6: Solutions obtained from the Monte Carlo simulations with data with an SNR of 1.5, using the
compound and non-compound version of FOCUSS. Target source is the source on the sulcal wall. Top
figure: view from the right-back. Bottom figure: view from the right. Note the smaller number of unique
solutions for the compound version. Also note that the non-compound solutions contain many sources on

the WIONE SIAE OF thEe EYTUS. w..rviruriesserresrris s 242
figure 5-7: L-curves for different iterations of the FOCUSS algorithm. Note the improvement in the shape of
the L-curve in the first 4 iterations and the loss of the L-shape in the graphs for iterations 5 t0 8. ........ 246

figure 5-8: Timecourses typically found when different values of o were used to set the truncation level for
noise contaminated data. The location of the constructed sources is given in the figures. The location of
the target source on the gyrus was (-0.137 -0.002 0.043) [M]riiirimmmimmimiimiin s 248
figure 5-9: Normalised error measures for different values of a. The legend denotes the error measure that
was used to obtain the corresponding curve. Only the solutions that were different from solutions found
for other values of o are displayed. Hence, although only six solutions are displayed here, more values of

a were used by FOCUSS. Note that the solution with minimum )~ was at a different & to the solution
that gave the minimum localisation error and the solution selected on the basis of the timecourses...... 248

. 2 . . . .
figure 5-10: The mean 2. for solutions with 1, 2, or 3 sources, respectively. For a dataset the solutions
obtained with different truncation levels were grouped on the basis of the number of sources in the

. 2 .
solution. Then, the mean value of X, was computed for each set of solutions. Note that the correct

2 . .
number of sources was 1, but that the lowest mean J,~ was found for solutions with three sources. ... 249

figure 5-11: Source space viewed from the back (slightly shifted to the right). The channel array is depicted
by the filled circles and the centers of the target sources on the gyrus and the sulcal wall are indicated by
arrows. Note that the average distance to the sensors is approximately equal for both target sources. ..253
figure 5-12: Influence of grid spacing on source reconstructions with FOCUSS for data with different SNRs.
The results for the unconstrained dipole fits are shown for comparison. The top panel shows the mean
distance to the target, gyral, source for all solutions from the Monte Carlo simulations. The bottom panel
shows the standard deviation of this distance. Note the increase in the mean distance error and the
standard deviation of the distance error due to an increase in gridspacing..........oovveeevrierneniee 255
figure 5-13: Influence of grid spacing on source reconstruction with FOCUSS for data with different SNRs.
The results for the unconstrained dipole fits are shown for comparison. The top panel shows the mean
distance to the target, sulcal, source for all solutions from the Monte Carlo simulations. The bottom panel
shows the standard deviation of this distance. Note that the results were almost independent of the
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figure 5-14: Influence of grid spacing on constrained dipole fits for data with different SNRs. The results for
the unconstrained dipole fits are shown for comparison. The top panel shows the mean distance to the
target, gyral, source for all solutions from the Monte Carlo simulations. The bottom panel shows the
standard deviation of this distance. Note that the influence of the gridspacing was largest for data with
TOW SINR . - oot T 258
figure 5-15: Influence of grid spacing on constrained dipole fits (with the final solution constrained to the
mesh) for data with different SNRs. The results for the unconstrained dipole fits are shown for
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comparison. The top panel shows the mean distance to the target, gyral, source for all solutions from the

‘ Monte Carlo simulations. The bottom panel shows the standard deviation of this distance. ......c.....oees 259
figure 5-16: Influence of grid spacing on constrained dipole fits for data with different SNRs. The results for
the unconstrained dipole fits are shown for comparison. The top panel shows the mean distance to the
target, sulcal, source for all solutions from the Monte Carlo simulations. The bottom panel shows the
standard deviation of this distance. Note that the results were almost independent of the gridspacing..260
figure 5-17: Influence of grid spacing on constrained dipole fits (with the final solution constrained to the
mesh) for data with different SNRs. The results for the unconstrained dipole fits are shown for
comparison. The top panel shows the mean distance to the target, sulcal, source for all solutions from the
Monte Carlo simulations. The bottom panel shows the standard deviation of this distance..........cc.o... 261
figure 5-18: Rotated mesh with FOCUSS. Influence of grid spacing on the sulcal and gyral target sources for
data with an SNR of 1.5. The results for the unconstrained dipole fits are shown for comparison. The top
panel shows the mean distance to the target sources for all solutions from the Monte Carlo simulations.

The bottom panel shows the standard deviation of this distance. Note that the results for the gyral source
were influenced in a different way as the results for the SUICA] SOUFCE. cvvrvveriereeiaanmiemiceissnmmssrisssnsnee 263
figure 5-19: Rotated mesh with constrained dipole fits. Influence of grid spacing on the sulcal and gyral target
sources for data with an SNR of 1.5. The results for the unconstrained dipole fits are shown for
comparison. The top panel shows the mean distance to the target sources for all solutions from the Monte
Carlo simulations. The bottom panel shows the standard deviation of this diStance. ........occvvverrrerneeees 264
figure 5-20: Influence of displacement errors on the source reconstruction with the three different algorithms.
The target source is the gyral source. The top panel shows the mean distance to the target sources for all
solutions from the Monte Carlo simulations. The bottom panel shows the standard deviation of this
distance. Note that the mesh perturbations only had a large influence on CDIPB ..o 271
figure 5-21: Influence of displacement errors on the source reconstruction with the three different algorithms.
The target source is the sulcal source. The top panel shows the mean distance to the target sources for all
solutions from the Monte Carlo simulations. The bottom panel shows the standard deviation of this
distance. Note that the mesh perturbations only had a large influence on CDIPB...ooiivieeceiveemieeieesnees 272
figure 5-22: Influence of errors in the orientation of the surface normals on the source reconstruction with the
three different algorithms. The target source is the gyral source. The top panel shows the mean distance

to the target sources for all solutions from the Monte Carlo simulations. The bottom panel shows the
standard deviation of this distance. Note the increase in performance for FOCUSS and the decrease in
performance for the constrained dipole fits, due to the perturbations of the surface normals.............. 274
figure 5-23: Influence of errors in the orientation of the surface normals on the source reconstruction with the
three different algorithms. The target source is the sulcal source. The top panel shows the mean distance

to the target sources for all solutions from the Monte Carlo simulations. The bottom panel shows the
standard deviation of this AISTANCE. ....e.eewrvsrerienersss s 275

Chapter 6

figure 6-1: Gaussian windowed patch of sinusoidal grating with spatial frequency of 2¢cpd and fixation spot in
top right corner. The standard deviation of the Gaussian window is 1.67 degrees. Note that this visual
stimulus was viewed through a mirror during the MEG experiment, thus it was presented in the lower

right visual FIOI oo eeeees e 281
figure 6-2: Vertices of the realistically shaped source space shown in a coronal slice from the subject's MRI
......................................................................................... 283

figure 6-3: Figures of merit for the measurement set-up during the recordings. Minimum norm weighting was
used in the computations of these figures of merit. Top row: Source Identifiability displayed on a
logarithmic scale, viewed from the left-back (left panel) and the right-back (right panel). Bottom row,
left panel: Bias in Dipole Location. Bottom, row right panel: Expected squared error due to noise,
displayed on a logarithmic scale. The patterns for the figures of merit displayed in the bottom row were
very similar when viewed from the right and were therefore omitted. Note the low Source Identifiability
for deep sources located towards the midline. Also note the difference in Source Identifiability between
sulcal and gyral sources on the left. Furthermore, it is striking that the Bias in Dipole Location was
negligible for most elements in the source space. The Expected squared error due to noise displayed a
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figure 6-4: Signal to noise ratio over the latency range from 71 to 122ms. The channels were sorted for SNR.
Note that almost half of the sensors had an SNR that was larger than 2. ... 288
figure 6-5: Top panel: Averaged evoked responses recorded for each sensor. The signals are displayed on a
schematic of the subject's head (nose pointing upwards and the left and right ear on the left and right,
respectively). Note the stimulus related response that is visible in the occipital sensors and the responses
of opposite polarity over the left and right side of the head at a later latency. Bottom panel: The same
schematic of the head, displaying an interpolated field map of the recorded magnetic field at a latency of
87ms. The circles denote the sensor locations. A dipolar field pattern is visible over the left occipital

pole, suggesting that there was an active source in the visual cortex at this latency.......ccoovviininnnn 290
figure 6-6: Averaged evoked responses recorded in the sensors placed over the occipital cortex. An evoked
response triggered by the presentation of the visual stimulus is clearly visible. ... 291

figure 6-7: The timecourses for the occipital channels overlaid. Only the early visual evoked response is
shown (60-130ms). The timecourses show a complicated activity pattern. The sensors with the strongest
signals show a positive peak in activity at about 75 and 110ms and a negative peak at about 95ms. Note
however that the maxima in each sensor were shifted in time with respect to one another. ................... 292
figure 6-8: Summation over time of the Iminimum norm solutions| , with different levels of singular value
truncation. From left to right, top to bottom, the truncation level was set at the 39 10", 30" and 43"
singular value, respectively. Noise truncation at intermediate levels gave very similar results to those
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figure 6-9: Left panel: Activation curves of the 100 strongest sources in the minimum norm solution. All these
elements are located in two hotspots in the occipital pole (see figure 6-8), apart from a few spurious
sources. Right panel: Activation curves of the elements in the 3 hotspot in the minimum norm solution.
Note that these sources have an activity pattern similar to the sources in the occipital pole as well as
STIMIAT PEAK SETEMEERL 1.ttt 294
figure 6-10: Locations of a single moving dipole fitted to the data over the latency range 72-122ms, forming a
'trace’ of dipole locations. The trace is formed by the dipole moving from an anterior-inferior position to
a more posterior-superior area in the left hemisphere and then to the right hemisphere and even more
POSLETIOT . .o et ns L 295
fisure 6-11: Sources reconstructed with FOCUSS, using a range of truncation levels and different initial
weightings. Top row: minimum norm weighting. Middle row: smoothed norm weighting. Bottom row:
average distance weighting. Note that with all three weighting matrices two separate clusters of sources
were found, most clearly defined in the axial and sagittal views. The spread in the solutions was largest
in the superior-inferior direction, especially for the anterior cluster. The posterior cluster also showed a
JQLETAT PIOTOM@ALION. ..oevrriietseise e 296
figure 6-12: Best solution found with FOCUSS, using minimum norm weighting for source reconstruction
over the latency range from 71 to 122ms. The top panel shows the source locations and the bottom panel
the activation curves and the reduced chi-square error function. Two sources were reconstructed in the
occipital pole (dipole 2 and 3), with dipole 2 located towards the left. This source had the strongest
activity, followed by the activity of dipole 3. The peak activity of these two sources was shifted in time,
with the dipole located towards the midline reaching maximum activity first A third source with smaller
activity, dipole 1, was located in a more anterior-superior region. This dipole peaked at a later latency.
............................................................................................................................................................ 297
figure 6-13: Best solution found with FOCUSS, using smoothed norm weighting. for source reconstruction
over the latency range from 71 to 122ms. The top panel shows the source locations and the bottom panel
the activation curves and the reduced chi-square error function. Two sources were reconstructed in the
occipital pole, with dipole 1 located towards the left. This source had the strongest activity. The peak
activity of the two sources was shifted in HIME. oo 298
figure 6-14: Best solution found with FOCUSS, using average distance weighting for source reconstruction
over the latency range from 71 to 122ms. The top panel shows the source locations and the bottom panel
the activation curves and the reduced chi-square error function. Two sources were reconstructed in the
occipital pole, with dipole 1 located towards the left. This source had the strongest activity. The peak
activity of the two sources was shifted in time, with the dipole located towards the midline reaching
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figure 6-15: Unconstrained single dipole solutions. Top row: Location of all sources found with the multi-
start approach. Middle row, left panel: Activation curve and error function for the best solution. Note the
tight cluster formed by the solutions. Middie row, right panel: Best solution overlaid on the subject's
MRI (axial slice). Bottom row: Best solution overlaid on a coronal (left panel) and sagittal slice (right
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figure 6-16: Constrained single dipole solutions. Above: Location of all sources found with the multi-start
approach. Left: Activation curve and error function for the DESE SOLULIOTN. weveeeeeeeeeeeiiiiieeeeeeeeeanenriieenaes 302
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figure 6-17: Recorded magnetic field, magnetic field induced by the (unconstrained) dipole model and the
difference between the recorded and calculated magnetic fields. Left panel: field maps at 83ms. Right
panel: field maps at 108ms. Note the dipolar patterns in the difference maps, indicating that an extra
dipole should be added to the source model at these 1atenCIEs. . ..covviriiiniiiiii 303
figure 6-18: Unconstrained two-dipole solutions. Above: Locations of all sources found with the multi-start
approach. Left: Activation curves and error function for the best solution. Note the two separate clusters
formed by the multi-Start APPIOACH .. .vevviiiiiici i 304
figure 6-19: Recorded magnetic field, magnetic field induced by the (unconstrained) two-dipole model and
the difference between the recorded and calculated magnetic fields. Left panel: field maps at 83ms. Right
panel: field maps at 108ms. Note that the difference maps did not contain a distinct dipolar pattern
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figure 6-20: Constrained two-dipole solutions. Above: Location of all sources found with the multi-start
approach. Left: Activation curve and error function for the best SOIULION. +eveereiiiieee e 306

figure 6-21: Solution for the constrained dipole fit algorithm (constrained to lie within the mesh) overlaid on
the subjects MRI. Top row, from left to right: dipole 1 in an axial, coronal and sagittal slice,
respectively. Bottom row, from left to right: dipole 2 in an axial, coronal and sagittal slice, respectively.
................................................................................................................................................................ 307

figure 6-22: Sources reconstructed for the experiment described in Barnes et al (1998). Note that the locations
of these sources correspond closely to the sources reconstructed in the study reported in this chapter
(compare with figure 6-12), despite the use of a different (19 channel CES) MEG system. Figure taken
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1 Introduction

There is an ongoing interest in the functioning of the normal and pathological
human brain. Electroencephalography (EEG) and Magnetoencephalography (MEG) can be
used to localise areas in the brain that are electrically active, and can therefore be used to
obtain information about the functioning of the brain. The advantage of both EEG and
MEG above other brain imaging techniques like functional Magnetic Resonance Imaging
(fMRI) and Positron Emission Tomography (PET) is the higher temporal resolution (figure
1-1). The MEG and EEG are directly related to the electrical activity of the neurons in the
brain whereas fMRI and PET are based on measures of an increase in metabolism due to
neuronal activity. These processes are inherently slower and are only an indirect measure of
the electrical activity of the neurons. With EEG the electric potential distribution on the

scalp and with MEG the magnetic field outside the head is measured. The advantage of
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figure 1-1: Comparison of spatial and temporal resolution of different brain imaging techniques. Note the
superior temporal resolution of MEG. Source: CTF Systems, Inc.
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MEG above EEG is that the magnetic fields are less influenced by the volume conducting
properties of the head and that no reference is needed, as MEG measures field strength
instead of a potential value. Therefore, the spatial resolution of MEG is higher than that of
EEG, whereas the temporal resolution is the same. Another advantage is that there is no
contact with the subject or patient (no electrodes have to be attached to the skin, which can
take up to 1.5 hours for 124+ electrodes (Gevins et al., 1994), although the use of an
electrode cap speeds up the procedure of attaching electrodes), making it an ideal non-

invasive method to monitor brain activity for research and clinical purposes.

The measured potential distribution and/or magnetic field can be used to determine
the electrical brain activity, using volume conducting theory based on the law of Biot and
Savart. In order to solve this so-called bioelectromagnetic inverse problem, one must solve
the forward problem. This is the problem of computing the output of the sensors for a
certain amount of activity in the brain. This is only possible when the brain activity is
modelled by current sources and the head by a volume conductor. It is, in principle,
possible to solve the inverse problem when the forward problem is solved, as shown in
figure 1-2. A problem is that the solution of the inverse problem is non-unique, which
means that the measured potential distribution or magnetic field can be explained by an
infinite number of sources. When additional information obtained from anatomy or
physiology is introduced into the inverse problem, the problem of non-uniqueness is
reduced, resulting in more stable and hopefully more accurate reconstructions of brain
activity. Examples of a priori information are assumptions about the number of active brain
regions or the possible locations of these regions. The main bottleneck is that it is not
straightforward to mathematically encode the information from neurophysiology and

neuroanatomy so that it can be used with the algorithms that solve the inverse problem.

There are several optimisation algorithms that all try to minimise the difference
between the predicted and measured data in some way. The scheme in figure 1-2 shows that
it is possible to add a priori knowledge to the inverse problem before the optimisation
algorithm starts (i.e. possible source locations are added) or to add the information during
the optimisation. We will use an optimisation algorithm for which the implementation of

the later scheme is relatively easy.
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The result of the optimisation algorithm is the reconstructed source, 1.€. the source
model with optimum parameters, and often an indication of the goodness of the
reconstruction. The results should be assessed with care, since all the source reconstruction
algorithms are based on several assumptions. Additionally, the source reconstructions are
also influenced by all sorts of errors, i e. measurement €rrors, noise, modelling errors and
computing errors. The validity of the assumptions and therefore of the source

reconstructions should be tested against expert knowledge on anatomy and physiology.

Mathematical Model
“Source | Joli " [ Sensor || Field |
Model Conductor Model | Equations
Model
\L forward problem
Predicted Data Measured Data A priori
Knowledge

Optimisation A priofi Knowledge -

i

Reconstructed Source

figure 1-2: Basic scheme to solve the inverse problem. Solving the inverse problem relies on the ability to
solve the forward problem accurately. The forward problem can be solved when modelling assumptions are
made about the sources in the brain and the head as a volume conductor. Furthermore, the sensor
configuration must be encoded. Adding a priori knowledge at different stages can increase the accuracy of the

solution of the inverse problem.
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1.2 Objectives

The temporal resolution of MEG allows us to measure the magnetic fields induced by
spontaneous brain activity or activity linked to a stimulus on a millisecond by millisecond
basis. The theoretical accuracy of the localisation of the underlying sources has only been
realised in favourable cases, where the assumptions of a spherical head-shape and dipolar
sources are sufficient. Accurate localisation is hindered by the non-uniqueness of the
inverse problem. The aim of this work is evaluate the influence of spatial constraints on the

accuracy of inverse solutions.

In chapter 2 an overview of the literature is given of the techniques that are currently
used to solve the inverse problem. The FOCUSS algorithm is then selected as the favoured
approach. This algorithm enables the incorporation of a priori information in an easy and
intuitive manner. Spatial constraints are included by the selection of a realistically shaped
source space, i.e. shaped as the surface of a subject's cortex. Imposing this constraint
restricts the sources of electrical activity to lie within the cortex, which is justified in

section 1.3.2.

In chapter 3 it is demonstrated how such a realistically shaped source space can be
constructed from the anatomical information provided by a subject's MRIL The use of a
realistically shaped source space relies on accurate co-registration of the MRI and MEG co-
ordinate systems. Therefore, several co-registration techniques are reviewed in the second
part of chapter 3 and the accuracy of an implementation of the surface matching approach is

evaluated.

As mentioned before, due to the non-uniqueness of the inverse problem there are
many possible solutions that can explain the data. It is therefore necessary to assess the
goodness of a solution and the imposed constraints by means of some kind of figure of
merit. The FOCUSS algorithm is a hybrid method that starts of with a solution based on
linear estimation and converges to a sparse solution, consisting of only a few discrete
sources. In chapter 4 figures of merit for linear distributed source reconstructions are

evaluated and the applicability to the FOCUSS algorithm is appraised.
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In chapter 5 the performance of the FOCUSS algorithm in combination with spatial
constraints i1s compared with the accuracy of an unconstrained dipole fit algorithm and a
dipole fit algorithm that constrains the solutions to a small volume around the surface of a
simulated sulcal structure. In chapter 6 the same algorithms are compared, using visually
evoked magnetic fields recorded with a 151 channel MEG system and a cortical surface

constraint, obtained from the subject's MRI.

Finally, a discussion of the main findings of this work follows in chapter 7 and

recommendations for further research are given.



1.3 Forward Problem

1.3.1 Introduction

The first recordings of magnetic fields induced by clectrical activity within the
human brain were performed in 1968 (Cohen, 1968). The magnetic fields produced by
alpha activity were detected with a 1 million-turn coil, located in a magnetically shielded
room. Signal averaging was needed to increase the signal-to-noise ratio so that the signal
could be detected. Non-averaged magnetic recordings of alpha-activity (Cohen, 1972) was
only feasible after the introduction of a much more sensitive device, the Superconducting
Quantum Interference Device or SQUID. A SQUID consists of a superconducting 1ing
containing two weak links known as Josephson Junctions. Such a configuration has a flux-
voltage characteristic that is periodic in applied flux where
the period is a flux quantum. By using specialised feedback
clectronics to maintain the SQUID at a fixed operating SQUID
point, it is possible to resolve changes in flux of as little as
10° quanta (see Himildinen e? al. (1993) and Romani Input coil
(1989) and references therein for more details about the
basic principles of SQUIDs).

In order to couple the SQUID to the outside world, and

improve its immunity to noise, an external flux gathering

circuit known as a flux transformer is used (Romani, 1989).

The integrated gradiometer exploits the fact that distant @
noise sources produce magnetic fields that are almost i
spatially uniform at the pickup coil, whereas the nearby BZ

brain sources produce magnetic fields with (large) spatial

gradients. Consider two identical coils that are connected in &D

series but wound in opposite directions (figure 1-3). This

arrangement is known as a first-order gradiometer and the Pickup
distance between the two coils is called baseline. Magnetic Coll
fields from distant sources induce virtually identical currents figure 1-3: Schematic of a first
order axial gradiometer consisting
of two oppositely wound coils
inductively coupled to the SQUID
Sensor.

in the two coils giving no net output from the gradiometer.

Magnetic fields due to sources near (about a baseline away)
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to the pick-up coil will induce a considerably larger current in the pick-up than in the
compensation coil, leading to a net gradiometer output. This arrangement gives noise
immunity to distant (noise) sources. Higher order gradiometers can be used to reduce the
influence of environmental noise sources even further.

The gradiometer configuration not only reduces the sensitivity to distant noise sources, but
also the effective signal that is obtained from deep sources in the brain. Hence, there is an
increase of signal-to-noise ratio (SNR) due to reduction of noise and a reduction of SNR
due to loss of signal. The optimum gradiometer configuration is the one that maximises the
SNR. Details of the estimation of the optimum sensor configuration can be found in Vrba ez
al. (1996), Vrba (1997), Vrba and McKay (1997), Vrba (1998) and Vrba and Robinson
(1998). Further details about the general principles of MEG can be found in reviews by
Hari and Ilmoniemi (1986) and Hiamiilidinen et al (1993).

The recorded MEG data are usually presented as a set of traces, one for each
measurement channel, and/or as a topographic map. These are simply two ways of
presenting the same data, where the traces provide information about the timing of events
on a millisecond scale and a topographic map provides clues about the spatial information
in the data. An insightful way to think about the measured data is that it forms a matrix in
which each row is the signal vector of a measurement channel and each column is a sample
vector (Hjorth, 1989). Hence a signal vector contains the recorded values for a channel at
all latencies, i.e. it gives the timecourse. The sample vector contains the recorded values in
all channels at a certain latency. Plotting these values at the locations of the measurcment
channels and estimating the values for inter-sensor locations via interpolation forms a
topographic map (Duffy, 1982). The above-described representations of the data are

illustrated in figure 1-4.

Active brain areas can be determined from the measured magnetic field outside the
head by solving the inverse problem. In order to solve this inverse problem, it is necessary
to solve the forward problem. In order to do so, models of both the electrical activity and
the head are needed. It is therefore discussed in section 1.3.2 how the neurons in the brain,
which produce the measurable electromagnetic fields, can be described mathematically.
Using this formulation together with a mathematical description of the head, described in

section 1.3.3, we are then able to give a mathematical formulation of the forward problem

in section 1.3.4.






1.3.2 Source Model

The working of the brain is based on the interactions of nerve cells (figure 1-5). The
nerve cell receives information (electrical signals) from other cells through connections on
its dendrites (synapses) and sends information by way of its axon. What we measure on the
scalp or outside the head is brought about by the summation of the non-propagating
depolarisation (excitatory postsynaptic potential or EPSP) or hyperpolarisation (inhibitory
postsynaptic potential or IPSP) at the postsynaptic terminals. The peak value of each PSP 1s
of the order of 10 mV and has a duration in the order of 100ms (Romani, 1989). Therefore,
temporal summation is possible when sufficiently synchronised activation of various nerve
cells takes place. The nerve cells are aligned in palisades in the cortex and therefore spatial
summation is also possible, especially in the apical dendrites of pyramidal cells that have a
preferred alignment normal to the cortical surface (Okada, 1982). Note that the dendrites of
many cells do not have a preferred direction and the magnetic fields produced by currents
that flow simultaneously through these dendrites are consequently largely self-cancelling

(they form a closed field configuration (e.g. Okada, 1982)).

There are in principle three currents associated with the PSPs at the cell, namely the
extracellular, transmembrane and intracellular currents. However, the contribution of the
extracellular current can be neglected (Swinney and Wikswo Jr., 1980). Moreover, the
contribution of the transmembrane current can also be disregarded because of symmetry
reasons and the thinness of the membrane (Swinney and Wikswo Jr., 1980). Thus, the
primary current, which is the origin of the detectable neuroelectromagnetic fields, is solely
based on the intracellular currents (Okada, 1989). It is ironic that the transmembrane

currents that give rise to the cellular excitation in the first place play no direct role

O (Williamson and Kaufman, 1987). A complete description of the
/ complex electrical processes at a cellular level that are the origin of
S? Synapse these currents is given in Swinney and Wikswo Jr. (1980) and
o y
% Synaptic  Wikswo (1989).

Cleft
Soma The electrical currents in the dendrites can be modelled by
Axon current dipoles in most cases (Okada, 1982). A current dipole is an

abstraction that has the dimensions of current times length, though

figure 1-5: Schematic . ) ) o
drawing of a nerve cell. the length is defined as being infinitesimally small. A patch of
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Active cortex modelled as dipole layer Active cortex modelled as single dipole

A2

figure 1-6: An area of active cortex can be modelled as a layer of current dipoles. This layer of dipoles in
turn can be modelled as a single equivalent current dipole when viewed from a large enough distance.

active cortex may be considered as a set of current dipoles distributed in a palisade, as
shown in figure 1-6. This forms a current dipole layer, which can be considered as a single
equivalent current dipole when observed from a distance much larger than the dimensions
of the area of active cortex (e.g. Meijs et al., 1988). The neuroelectromagnetic fields
generated by the active cortex area can then be expressed in general terms by a multipole
expansion, an infinite sum of multipoles of increasing order (Malmivuo and Plonsey,
1995). When the active area is folded or the measurement distance is not large with respect
to the dimensions of the active area, it is necessary to include higher order terms in the
source model, such as the quadrupole. It must be stated here that the applicability of the
dipole concept follows from the multipole expansion. It does not depend on the fact that the
intracellular currents in the neurons have a dipolar structure, as is sometimes mentioned in

introductory texts (Snyder, 1991).

The success of the single dipole model follows from the fact that at a typical
measurement distance, which is at least 2cm from the source, many current configurations
seem ‘dipolar’ (Mitzdorf, 1985, Himaldinen and Sarvas, 1989, Hari, 1991). Another aspect
is that other source configurations, like the quadrupole, are a superposition of single
dipoles. Furthermore, it has been shown that the potential distribution produced by
extended sources (dipole disks and dipole annuli) in a spherical head model can be
explained by a single dipole without introducing large errors (de Munck et al., 1988, Hara
et al., 1999). The deviation between the positions, orientations and strengths of the
extended sources and single dipole were small. The results were almost independent of the
depth of the sources. This showed that modelling realistic sources by single dipoles does

not necessarily yield large errors in location and moment parameters.



A current dipole is completely described by six parameters, three to establish its
position within the head and three to define its strength'. From a mathematical point of
view, the maximum number of parameters that can be estimated 1s equal to the number of
independent measurements. This is however an upper limit because noise in the data lowers

this number.

1.3.3 Volume Conductor Model

The head can be modelled as a volume conductor and the different biological tissues
that constitute the head can be treated macroscopically. This means that inhomogeneities on
a cellular level can be neglected. The primary sources described in the previous section set
up a passive Ohmic current in the volume conductor, called the secondary or volume
current. This volume current completes the loop of ionic flow so that there is no build up of
charge (quasi-static approach, see next section). If homogeneous (same value everywhere in
space) and isotropic (same value in every direction) conductivity is assumed within the
volume, then the effect of the volume currents can equivalently be described by so-called
secondary sources at the boundary of the volume, with an orientation perpendicular to the

boundary (Geselowitz, 1970).

The geometry of the head is also included in the volume conductor models. The
models most commonly used with EEG consist of three concentric spheres representing the
brain, the skull and the scalp. In order to give accurate localisation of the current sources it
is necessary that the spheres approximate the circumferences of the head compartments
well, especially around the source area. This is not always possible, for example when the
current sources are located in the temporal area of the brain. In these cases more realistic
modelling with the boundary element method (BEM) or finite element method (FEM) 1s
necessary (e.g. Geselowitz, 1970, Himaldinen and Sarvas, 1989). With the BEM the
different tissues in the head are represented by layers with homogeneous and isotropic
conductivity and the boundaries are discretised into triangular elements, so that the effect of

the secondary sources can be modelled. With the FEM the volume conductor is divided into

' It is not possible to measure the radial component from magnetic measurements when a current dipole is
placed in a spherical symmetric volume conductor, as will be shown in section 1.3.4. It is therefore fully
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many volume elements of regular shape (tetrahedrons, cubes). The advantages of FEM is
that each volume element can be assigned a different conductivity tensor (although such
detailed conductivity information is not yet available) and that a detailed model can be
constructed. The disadvantages of these numerical methods are that they are time-
consuming when used in the inverse problem and that the construction of the models takes
a lot of time and computer resources. Additionally, large errors can be introduced in the
forward problem if the BEM implementation is numerically unstable due to the large
difference in conductivity between the skull and surrounding tissues (Mosher et al., 1997,
Zanow, 1997, Mosher et al., 1999). Luckily, with MEG it is usually sufficient to use a
spherical model that represents the inner part of the skull near the sources, since the
influence of the volume conductor on the magnetic data is largest near the sources (Mondt,
1989). Also, the overall volume conductors effects are small, for reasons described in the
next section. For the interested reader, details about the BEM are given in de Munck (1992)
and Ferguson et al. (1994) and for the FEM in van den Broek (1997).

1.3.4 Theory of Volume Conducting

The aim of neuroelectromagnetism is to obtain information about the primary
currents (Jp), which are directly driven by the neuronal processes. However, there is, in
general, no direct relationship between the measured magnetic field or potential distribution
and J,, since this data is also influenced by the secondary currents (Jy), which are the
Ohmic currents in the volume conductor (Nicholson and Freeman, 1975). The total current

density, J, can be expressed as:

J=1J 4], =J,+0E, (1-1)

where o is the conductivity of the volume conductor and E is the electric field strength in
the conductive medium. The double lines above the conductivity indicate that it is a tensor.

Throughout this work vector quantities are denoted as bold case symbols.

described by only five parameters in this case.
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The mathematical basis that gives the relationships between the total current density

and the magnetic field and the potential distribution are the Maxwell equations:

dD
[ ZH = +—, 1-2
cur J & (1-2)
B
o curlE=-"", 13
cur X (1-3)
e divB =0, (1-4)
e divD = p, (1-5)

H, B, D and p stand for magnetic field strength, magnetic flux density, electric
displacement density” and charge density, respectively. The partial derivative with respect

to time is given as d/dt.

We also make use of the following relations, assuming that the medium is linear (Reitz et

al., 1992):

D= ¢E, (1-6)
B = ‘LLH, (1-7)

Here, € is the electric permittivity and W is the magnetic permeability. The medium is
assumed to be homogeneous and isotropic, turning all tensors into constant scalars. As the
magnetic permeability of the brain is close to that of water, which is only weakly

diamagnetic, it is assumed that the magnetic permeability is that of free space, b = Ho =

4~ 107,

Using the criteria given by Plonsey and Heppner (1967) it can be demonstrated (van den
Broek, 1997) that for neuroelectromagnetic signals, which have frequencies far below
1kHz, the time dependencies can be neglected for most of the values of the tissue

parameters, ©, € and U found in the literature. So the effect of capacitances can be neglected

2 3D/ot is known as the displacement current.
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(Nicholson and Freeman, 1975) and the problem reduces to a stationary problem, giving the

following reduced Maxwell equations:

e curlH = J, (1-8)
e curlE = 0, (1-9)
e divB =0, (1-10)
e divD = p, (1-11)

The divergence of the curl of another vector field is zero, therefore equation 1-10 implies

that B can be written as:

B = curl A, (1-12)

where A is the magnetic vector potential.

This leads with the reduced Maxwell equations to the following Poisson equation:

VA = -u,J, (1-13)

using div A = 0.

The solution of this equation, found by using the boundary condition that the magnetic flux
density is zero at infinity, is called the law of Biot and Savart. It relates the current density

in a region Q of the volume conductor to the magnetic induction at observation point P,

located at r (figure 1-7).

Volume
Conductor

figure 1-7: Definition of the location of the current
density and the measurement position with respect to
the origin.
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B(I') — __:u’_() J‘J(r') X (r—r') d31_v

4m r—r| ’ (1-14)

The law of Biot and Savart acts as a spatial low-pass filter, because of the integration over
space. A consequence of this is the so-called smoothing effect. This can result in a
misinterpretation of the measured ficlds, as for example the complex spatial pattern of
several point sources can be smoothed, with a dipolar field pattern as a result (Kullmann,
1991). Additionally, it can be seen that the magnetic induction falls off with the squared
distance from the source. Hence, superficial sources induce a much stronger signal in a

sensor than deep sources.

It has been shown that the secondary currents in a spherically symmetric volume
conductor do not contribute to the radial component of the magnetic flux density
(Geselowitz, 1970, Nunez, 1986, Sarvas, 1987). To reiterate: the volume currents are
influenced by the conductivity profile, but the influence on the magnetic field is in general

small.

If we further assume that the primary current density at r' can be modelled as a current

dipole, we can write:
JaeH=J,0e)=8(r-r)M, (1-15)
with & the Dirac delta function and M the current dipole moment.

Sarvas (1987) showed that the law of Biot and Savart can then be written as:

B(r) =P (FMxr' - Mxr'tVF ), (1-16)
4mt”

witha =r -r', F = |a|<|r\ la] + |r'|2 - r'~r) and
VE = f =~ + IR 2\r!] i rv[?'—r + Ja| + 2|r\].
Jal | lal

Four points follow from this formula for a spherically symmetric volume conductor:
32



e A radially oriented dipole (see figure 1-8) does not produce an external magnetic field,
since M xr' is zero in that case. This implies that sources that are oriented
perpendicular to the surface of the sphere cannot be detected with MEG (Baule and
McFee, 1965).

e There is no accurate knowledge of the conductivity profile of an individual. Luckily, the

radial component of the magnetic flux

density is  independent of  the x"\
conductivity and the number of layers of |
" | _ Radial

e volume conductor. When the < component
assumption of a spherically shaped '
volume conductor does not hold the Tangent

compo ‘
volume conducting effects can be taken :

into account by the BEM or FEM.

e The radius of the sphere is not important,

only the centre of the sphere is.

e The magnetic fields sum linearly.
Therefore, more complicated source
configurations like distributed sources
may be composed by simply adding the

contributions of several single dipoles.

Forward solutions for different volume \
Y

conductor models can be found in Mosher

figure 1-8: Definition of the radial and tangential
components of a dipole (figure from Malmivuo et al.,
1997). A dipole with only a radial or tangential
component is referred to as a radial or tangential

also Zhou and van QOosterom, 1992). dipole, respectively.

et al (1997) and Mosher et al (1999), as

well as forward solutions for the EEG (see
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2 Inverse Problem

2.1 Introduction

The inverse problem is the estimation of primary currents from measurements of
potentials or a magnetic field. The solution of this problem is non-unique, as there are many
different source configurations that produce exactly the same measured potential or
magnetic field. In addition, the existence of electrically or magnetically silent sources
further complicates the issue. Namely, radially orientated currents do not produce a
magnetic field outside a spherically symmetric volume conductor (e.g. Baule and McFee,
1965, Cuffin and Cohen, 1977). This theoretical result has been confirmed by measuring
the MEG and EEG simultaneously (Wood et al., 1985). It was shown that the radial sources
that were found by measuring the EEG could not be found with MEG, whereas tangential
sources were found with both modalities.

Theoretically, a loop of primary current does not produce a potential difference on the
surface of a spherically symmetric volume conductor (Roth and Wikswo, 1986). This is
however a physiologically implausible situation. Electrically silent magnetic fields can also
be produced due to volume effects when a tissue has a ‘'spiral' or 'helix'-like conductivity
(Roth and Wikswo, 1986). Examples of tissues that are likely to exhibit such a conductivity

pattern are given in the ori ginal paper.

It is possible to reduce the non-uniqueness of the inverse problem by adding a priori
information. In previous years many methods have been developed to solve the inverse
problem, each one with its merits and limitations. Several methods are described in this

chapter and special attention is given to methods that can easily incorporate a priori

information.

Two main types of a priori information can be distinguished: constraints based on

spatial constraints and temporal information.
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Spatial constraints can be obtained from a reconstruction of the cortical surface, using
the MRI scan of a subject or patient, or from a standardised model. Such a reconstruction
can further be used to set a constraint on the orientation of the sources. The orientation can
be restricted to be perpendicular to the cortical surface, as most of the dendrites of the
pyramidal cells are oriented perpendicular to this surface (Okada, 1982, Mitzdorf, 1985,
Snyder, 1991). Indeed, Williamson and colleagues found that dipoles reconstructed from
auditory evoked magnetic fields were orientated in the average direction of the nearest
sulcus (Williamson et al., 1991). Other kinds of spatial constraints can be based on
symmetry considerations.

Temporal constraints are generally based on a hypothesis about the development of
the cortical activity over time (i.e. about the shape of the waveform of the source and the
time of onset/offset of the activity). Utilisation of these constraints was first undertaken by
Scherg and colleagues (i.e. Scherg and von Cramon, 1985a, Scherg and von Cramon,
1985b) and they are now extensively used.

Additional constraints can be based on source strength. The observed source strengths
usually found with measurements lie between 2 and 30nAm (Himildinen, 1987). This
means that when a source is found with strength larger than 30nAm one can assume that the
activity should be modelled by two or more sources. Scherg and Berg (1991) used a
constraint based on the source energy (i.c. the squares of the source strength over all time
points) in order to distinguish simultaneously active sources. Another type of constraint 1s

based on the covariance matrix of the noise (Sekihara et al., 1994).

It should be emphasised here that it is possible to find a unique solution by
introducing a priori information, but that this 1s only a unique solution with respect to the
constraints that were used. The general inverse problem is still non-unique. An example of
this is given by Scherg and Berg (1991). They analysed electrically measured mismatch
negativity, using a spatio-temporal dipole model. Although all solutions, obtained with
different constraints, explained the data well, some of the solutions contained sources in

remarkably different locations. The choice of the 'correct’ solution depends then on the

experimenter.

In the next sections four main groups of algorithms are described: algorithms for the
localisation of discrete sources, algorithms for the localisation of distributed sources, hybrid

methods (methods that fall in between the previous two groups) and an algorithm based on
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signal-space projection. The assumptions underlying each method are given, together with
its limitations. Furthermore, descriptions of the constraints that can be used and significant
results obtained with the methods are given. This chapter is finished with a section in which
a comparison of some of the inversion techniques is made. Additionally, the motivation for

choosing the FOCUSS algorithm as the technique to use in the rest of this work is given.
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2.2 Reconstruction of Discrete Sources

2.2.1 Equivalent Current Dipole Fitting

2.2.1.1 Assumptions

e The activity in each active patch of cortical area can be modelled as a single equivalent
current dipole.

e The number of active sources that are needed to explain the measured data must be
given explicitly in the algorithm. Several methods are suggested that can be used to
obtain an estimate of the number of active brain areas. First of all, a visual inspection of
the data can give a skilled experimenter an idea about the number of sources. This soon
fails when the number of active areas increases. In addition, a Singular Value
Decomposition of the data matrix can give an idea about the number of active sources

(this will be explained in section 2.2.3).

2.2.1.2 Finding Dipole Parameters

The method starts with selecting a latency from the recorded waveforms at which a
dipole will be fitted. Usually this is the latency at which the total field power, or
alternatively the signal-to-noise ratio, over all measurement channels is at a maximum. If
the magnetic field map at this latency contains a dipolar pattern (see figure 1-4), the
position, orientation and strength of the equivalent current dipole can then found as follows
(e.g. Schneider, 1974, Kavanagh et al., 1978, Ary et al., 1981):

. An initial guess is made of the parameters of the current dipole. This initial guess 1s
usually based on where the experimenter expects the active brain area to be.
Alternatively, the initial guess can be based on the separation between the positive and
negative field maxima (Kaufman and Williamson, 1986): The dipole position is half
way between the two extrema and the depth of the dipole is estimated as the separation
between the two extrema divided by the square root of two. The orientation of the
dipole is perpendicular to the line connecting the two field extrema.

7 The magnetic induction is computed (solving the forward problem) for this initial guess.

L
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The difference between this magnetic induction and the measured magnetic induction is
computed, in a least-squares sense (i.e. the value of the cost-function is computed).

The source parameters are adjusted and step 2) and 3) are repeated until the computed
induction closely matches the measured induction. Expressed differently: the cost-

function is minimised until the best-fit source parameters are found, this source is

referred to as the localised

source.

A visualisation of the process
described above is given in figure

2-1.

The values for the parameters of the
dipole in the final solution depend on
the specific cost-function that is
minimised and on the optimisation

algorithm that is used.

cost-function

figure 2-1: Hypothetical example of the minimisation process
of the cost-function. Here, the cost-function is only optimised
for one of the dipole parameters (1), the other parameters are
kept constant. The numbers between brackets denote the
iteration number in the optimisation process. The algorithm
starts with the initial guess (rp), traverses through the local
(step 2) and global minimum (step 9) and finally (step 21)
arrives back at the global minimum (r;).

2.2.1.2.1 Cost-function and Validity of the Model

The final value of the cost-function gives an idea of the goodness of the fit, i.e.

whether the chosen model correctly explained the measured data. A cost-function that is

still frequently used is based on the percent of variance (or sometimes referred to as the g-

value), defined as:

2

Y (B, - B,(1.0,6,M,.M,))

%V =100%*| 1—--=

N
Sp:

i=1

! A global minimum is truly the lowest value; a local minimum is the lowest value in a finite neighbourhood
and not on the boundary of that neighbourhood (Press ez al., 1992).
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where N is the number of measurements, B is the measured magnetic induction in the i
sensor, B, (r,0,¢,M,,M,) is the computed magnetic induction in this sensor. The

computed magnetic induction depends on the five dipole parameters. The dipole position

parameters are given here in spherical co-ordinates r,0 and¢ . The moment in the radial
direction, M., is not a variable here, as a radial dipole in a spherical symmetric volume
conductor produces no radial component of the magnetic field (see section 1.3.4 and Baule

and McFee (1965) and Cuffin and Cohen (1977)).

The function that is minimised during the optimisation is the residual variance,
defined as 100% - %V. A value of 0% for the residual variance means that the chosen
source model exactly reproduces the measured data. In the presence of noise this 1s
obviously not correct. This measure does not contain information about the noise and
therefore a high value could be due to noise or due to an incorrect model. For example, it is
possible to explain the data perfectly by using many, say a hundred, dipoles, whereas a
physiological more adequate solution could be given by, say, two dipoles that explain the
data nearly perfectly. Besides, Miltner et al. (1994) showed for their simulated data that,
although this measure was useful as an indicator for the completeness of a solution, it did
not correlate well with the localisation accuracy of identified sources.

A measure that takes the noise into account should give a more conclusive understanding of

the goodness of the fit. Such a measure is the chi-square function, defined as:

 o(B -B,0.6.M, M) )
1=y A 2oy (2-2)

o.

i=l i

with o; the standard deviation of the noise in the i sensor. The chi-square is based on the
assumption that the noise is normally distributed. It can usually still be used successfully as

the cost-function when the noise is not normally distributed (Press et al, 1992).

Noise in the data can cause chance fluctuations in the values of the minimised chi-
square. The probability that the minimised chi-square exceeds the observed value by
chance, assuming the source model and given the data, is a good measure of the goodness-
of-fit. In most cases this probability is adequately given by the reduced chi-square (Press et

al, 1992). The reduced chi-square is defined as:
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X = T (2-3)
. 2 . .
with % as in equation 2-2, v the degrees of freedom (= N - number of source parameters).

An appropriate model is indicated by a reduced chi-square value of 1+ \/E/v (Press et al,
1992). However, this value will not be obtained when the noise level is incorrectly
estimated. The correct model order can still be evaluated though by estimating the reduced
chi-square value for different model orders, since the decrease of the value of the reduced
chi-square found by increasing the model order becomes negligible once the adequate

model order is reached (Supek and Aine, 1993).

Additionally, it is possible to acquire an impression of the stability of the solution
by performing Monte Carlo analysis (Medvick et al., 1989, Press et al, 1992). The
measurements that are used for the source localisation are only one particular experimental
realisation. A repetition of the experiment would therefore, due to the noise, result in a
slightly different measurement and therefore a slightly different localised source. Instead of
repeating the experiment several times a simulation can be done, replacing the true,
unknown, source parameters by the ones found during the source localisation. The
measurement values for this source are then computed and random noise with a Gaussian
distribution is added (or any other type of noise, if this is more appropriate). This noisy data
set is then used to obtain another source localisation. This is repeated several times and the
variability of the fitted solution gives a measure of robustness. The best strategy is to
compute both the reduced chi-square value and do a Monte Carlo analysis, since Supek and
Aine (1993) showed that under-modelling can give rise to small variability. This could lead

to false conclusions about the quality of the solution when only Monte Carlo analysis is

done.

2.2.1.2.2 Optimisation Techniques

A non-linear estimation technique has to be used to find the source parameters for

which the cost-function is at a minimum, since the magnetic induction is a non-linear
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function of the position parameters. The techniques that are most often used are the
Levenberg-Marquardt algorithm (Marquardt, 1963), Powell’s method (Powell, 1964) and
several versions (Achim er al. 1988, Huang et al. 1998) of the Simplex method developed
by Nelder and Mead (1965). The main difference between these algorithms is that the
Levenberg-Marquardt algorithm converges fast, as it uses the derivatives with respect to the
source parameters, which Powell’s method does not. The Simplex method upholds several
(= number of parameters + 1) sets of parameter values, called the vertices. These vertices
form a geometrical figure, called a simplex. At each iteration, the vertex for which the cost-
function is worst is replaced by a better one. Normally, this new one is the vertex found by
a reflection through the opposite face of the simplex. Occasionally, other types of steps
called expansion or contraction are taken, based on a set of rules. The effect is that the
simplex adjusts its shape to the error landscape on which a minimum must be found.

A problem with these minimisation algorithms is that they sometimes find a local
minimum of the cost-function function, instead of the global minimum. This can partly be
overcome by varying the initial guess or restarting the algorithm when it has converged to a

solution (i.e. Nelder and Mead, 1965, Huang et al., 1998).

The relatively new simulated annealing method is less prone o get stuck in local
minima and is almost independent of the initial guess. The method uses an analogy of
thermodynamics, specifically with the way liquids freeze and solids cool and anneal
(Gerson et al., 1994, Khosla et al., 1997). A heated solid that is allowed to cool slowly (so
that it reaches thermal equilibrium at each energy stage) reaches its lowest energy state, 1.e.
the state in which the atoms form a highly regular structure. During the cooling process the
energy decreases with temperature, but occasionally the energy increases while the
temperature decreases. Minimisation by simulated annealing is based on the same
principles in that it minimises a cost-function that depends on the source parameters. It also
uses a parameter T that represents the temperature. The algorithm starts at a high
temperature T and randomly varies the source parameters, which changes the value of the
cost-function. A downhill step in the cost-function is always accepted and uphill steps are
sometimes accepted, with a probability that is inversely proportional to the size of the
increase in the cost-function and linear proportional to T. The uphill steps ensure that the
process can escape local minima and the dependence of the probability on T ensures
convergence as T decreases. Equilibrium at each value of T is defined as the condition

where the number of uphill steps is equal to the number of downhill steps. When
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equilibrium is reached, or alternatively, when a fixed number of random steps are done, the
value of T is lowered and the whole process of generating random steps is repeated until the
next equilibrium is obtained. The algorithm finishes when it reaches a predetermined
convergence criterion. Detailed descriptions of (slightly different) implementations of the
algorithm are given in Sekihara er al. (1992), Gerson et al (1994), Haneishi et al. (1994)
Khosla et al (1997) and Uutela et al. (1998). Performance could be enhanced by exploiting
other analogies with thermodynamics, like entropy, to monitor the progress of the algorithm

(Press et al, 1992).

Another global optimisation technique is a genetic algorithm (Uutela et al, 1998)
that mimics the evolution of species. It starts by randomly generating, or seeding, an initial
population of candidate solutions. Think of each candidate solution as a vector composed of
elements representing the parameters of the dipoles. In parlance with genetics, this vector is
referred to as the chromosome and the vector elements as genes. The object is now to
maximise the fitness of the best solution vector as well as the average population fitness.
Fitness implies maximisation and the fitness function is therefore defined as the negative
value of the cost-functions described before. Maximum fitness is reached by a combination
of three operations: reproduction, crossover and mutation.

In reproduction, only individuals with a high fitness are preserved and unfit individuals are
discarded. By doing so, the algorithm focuses on the global maximum.

In crossover, elements of two (or more) individuals are combined to form a new individual.
The effect is that the algorithm builds upon the success of the past yet still explores new
possibilities (i.e. this enables the algorithm to escape local maxima).

In mutation, individuals are slightly changed. This means that some of the parameters are
slightly perturbed with a small probability. This allows local optimisation. Larger
perturbations on the other hand enable the escape from local maxima.

By decreasing the number of individuals towards the end of the optimisation, the algorithm
can be made to concentrate on good solutions and converge (where convergence means that
the individual members in the population start to resemble one another and additional
evolution produces little improvement in fitness).

The results from simulated data obtained by Uutela er al (1998) and Nagano et al. (1998)

show that techniques based on genetics are promising and can outperform the simulated

annealing approach.
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2.2.1.2.3 Noise Estimation

As stated in section 2.2.1.2.1, it is important that an accurate estimate of the noise in
the data is made, both for the least-squares data fitting and in the Monte Carlo simulations.
Such an estimate can be obtained in several ways, if we assume no correlation between the
channels®:

e If an average signal is computed, the standard errors of the mean can be taken as the
standard deviation of the noise, 6,. (Himéldinen ef al, 1993).

e The standard deviation of the noise can be obtained from the baseline if it contains only
background activity. There are two different ways. Firstly, the standard deviation of the
time-samples of the averaged pre-stimulus interval can be computed. Secondly, if the
raw data are available, one can compute the standard deviation of the time-samples in
each trial and then average over the number of trials P (only if the noise is Gaussian).
The error in the estimation of the noise variance obtained with the latter method is P
times smaller than that obtained with the first method (Kndsche, 1997). A drawback is
that the time-dependence of the standard deviation of the noise is lost.

e Alternating subaverages can be computed by reversing the sign of every second
response. The response at a certain time and the following response are likely to be very
similar. The subtraction of both responses is therefore an estimate of the noise

(Schimmel, 1967).

2.2.1.2.4 Dipole Models Using a priori Information

How can we use « priori information with the concept of dipole fitting?
As explained above, the global minimum of the chi-square is searched for. So we can add

constraints by changing this function:

r Woxz +w, £, (r,0,0, My M)+ w,5,0,0,, My, M)+ ... > (2—4)

e Wo+ W, +..

2 Usually there is some correlation between the channels (Knosche, 1997). This means that the noise
estimation is not completely correct, although pre-whitening can partly correct for correlated noise.
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where f,f,, etc. are the functions that contain the constraints and wi, W, €tc. are

weighting factors. When we know, for example, the maximum strength of a source that is

possible at a certain location, a constraint-function could be of the form:

,q > q,,, at position given by (r,6,¢)

£(r0,0.M,,M,) = {“ (2-5)

0 ,q £ q,.,, atposition given by (r,6,¢) ’

with q the strength of the source, given by JM; + M and o a positive factor that

enlarges the chi-square function. Consequently, the minimum chi-square will not be found

at locations where the sources disagree with a priori information.

Scherg and Berg (1991) used this method to incorporate constraints with their spatio-

temporal dipole model. Their approach is further described in section 2.2.2.4.

Another constraint could be the assumption that the best solution is composed of the
smallest number of dipoles that can explain the solution, as was done by Haneishi et al
(1994). They showed that this solution is found by setting f equal to

N [+

Z'El (r,0,0,M, ,M¢) , with ¢ a real number between O and 1.
i=l1 .

2.2.1.3 Limitations of Equivalent Current Dipole Fitting

e A stable solution is usually found when an equivalent single current dipole is a correct
model for the activity. The problem becomes more ambiguous when more dipoles are
used, especially when the distances between the individual sources are small.

e The assumption of a single dipole seems anatomically and physiologically reasonable
for early cortical activity (Snyder, 1991). There is however little evidence in the
literature that the model can be used to localise the activity associated with higher order
processes in the brain.

e Optimisation algorithms are sensitive to the initial guess and local minima.
Furthermore, the cost-function around the minima can be very shallow, which makes it
difficult to find the exact minimum, especially in the presence of noise. Moreover,
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Gerson et al (1994) showed that closeness of the initial guess to the correct solution
does not guarantee a successful fit (i.e. a good guess of the experimenter about the
approximate correct location of the source is not necessarily utilised with success).
However, this needs further research, as Supek and Aine (1997) found that accurate
initial guesses did provide better solutions.

Even when the global minimum is found (mathematically), the solution might not relate
directly to the underlying physiology (due to errors in the computation of the forward
problem (wrong head model, errors in location of the sensors) or due to noise). The
physiological solution may correspond to a local minimum or to no minimum at all
(Scherg and Berg, 1991). This is of course not only a limitation of this technique, but
for any optimisation method.

The number of channels limits the number of sources that can be resolved (i.e. the total
number of source parameters should not exceed the number of channels; when noise is
present, this number is even smaller).

Simulated annealing and genetic algorithms use numerical parameters whose values can
not be estimated theoretically and they must therefore be determined empirically. In
addition, Sekihara er al (1992) showed for simulated annealing that a wrong choice for
these parameters could trap the solution in one of the local minima. Furthermore,
simulated annealing is easy to implement but computationally expensive.

Genetic optimisation is a stochastic process and, although it is good in finding an
estimate of the global optimum, the true optimum solution will only be found by

chance.
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2.2.2 Spatio-Temporal Dipole Models

2.2.2.1 Introduction

Modelling the recorded magnetic fields at a single latency does not give a complete
picture of the underlying brain activity. Even worse, it might give a wrong picture. For
example, two sources in adjacent areas with dipole moments that are nearly parallel or
antiparallel can produce a dipolar field pattern (Wang et al., 1992). A single dipole solution
can then be found that explains almost 100% of the variance in the data, but with a location
that is far from the location of the original sources (Scherg and Berg, 1991). Taking into
account the fluctuation of the amplitude of the activity over time (also called the waveform)
of the two sources would enable the localisation of both sources. Besides, the peaks in the
timecourses of temporally overlapping sources do not necessarily correspond to peaks in
the recorded signals (Scherg and von Cramon, 1985a, Scherg and von Cramon, 1985b).
Thus, source localisation based on selecting a single latency that gives a maximum in the
recorded magnetic fields, assuming the brain activity is maximum at this point, is not
necessarily meaningful. Again, using more latencies reduces the ambiguity and enables
localisation of temporally overlapping sources.

There are two different approaches to spatio-temporal dipole modelling. The first
one is simply an extension of single latency fitting with equivalent current dipoles, using
multiple latencies instead. The second method is based on modelling of the waveform with

a smooth parametric function. Both approaches are described next.

2.2.2.2 Assumptions

e Titting dipoles at multiple latencies is an extension of equivalent current dipole fitting,
so the same assumptions as for that method apply. The advantage of using temporal
information is that the measurements/parameters ratio increases. Therefore, the inverse
problem becomes better defined. Additionally, the influence of noise on the solutions

decreases when more latencies are used in the source reconstruction.
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Several dipole models can be used to model brain activity that is developing over time,
namely the moving, rotating and fixed dipole models. With the moving dipole model,
the location, orientation and strength of the source are all free. This means that the
number of parameters that have to estimated for each source is N * 5 (= 3 location
parameters, 1 orientation parameter in the tangential plane and the source strength),
with N the number of latencies. With the rotating dipole model, the location of each
source is fixed over time, giving a total of 3 + 2 * N parameters to be estimated for each
source. Finally, with the fixed dipole, the location and orientation are fixed over time,
only the strength is allowed to vary. The total number of source parameters to be
estimated for each source is then 4 + N. In this case the only time-dependent variable is
the strength of the source. The advantage of the latter two dipole models is that the
anatomical part and the dynamic part (representing physiological activities) of the
solution are completely separated. A general mathematical framework to incorporate
moving, fixed and rotating models was developed by Mosher and co-workers (Mosher
et al., 1992).

From a mathematical point of view, the fixed dipole model is the best choice, as it gives
the largest number of free parameters. Which model describes the underlying brain
sources best, physiologically, is still an open question (Huang et al., 1990). It has been
shown by Scherg and von Cramon (1985b) however, that two orthogonal dipolar
sources, with small separation and partly overlapping waveforms, produce field maps
that give the (false) impression of a moving dipole. Therefore, it seems that the moving
dipole model does not always represent the underlying brain processes properly.
Moreover, it seems more realistic to assume that different parts of the cortex with
different cortical functions are activated when they perform their specific task. The
'movement' seen with the moving dipole model would therefore be more realistically
modelled as two or more stationary dipoles that are activated at different times (Mosher
et al, 1992). The moving dipole model though often shows clusters around its ‘path’.
This provides an idea about the number of active sources and their locations, which can
be utilised with spatio-temporal modelling, using fixed dipoles (Bocker et al., 1994).

A rotating dipole might also be inappropriate, since a dipole model represents a fixed
anatomical structure and therefore its orientation should not change. It seems to be an
appropriate model only when the centre of activity in an active brain area shifts around
2 bend in the cortical surface. In general though, brain activity that is stationary, but that

changes orientation appears to be physiologically implausible.
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An alternative model is the regional dipoles model (Scherg and von Cramon, 1986). An
active brain area is modelled by two dipoles with orientations in the tangential plane
(and a third dipole in the radial direction in the case of EEG), with shared location and
orthogonal directions. The strength of the sources is allowed to vary over time. The
number of free parameters is the same as for the rotating dipole, but the difference 1s
that fixing the orientations allows for easy modelling of the source waveforms. As with
the rotating dipole model, this model seems physiologically implausible. Since the
rotating dipole model and regional dipoles model are mathematically similar, both
methods are referred to as the rotating dipole model from now on.

Assumptions about the number of active sources must be made.

Methods that model the waveform of the sources require additional assumptions:

The activity in the brain can be modelled by several dipolar sources that maintain their
position (and optionally their orientation) throughout the time interval of interest.
Therefore, only the rotating and fixed dipole models can be applied.

The waveform of the sources is thought to be a smooth function of time. Note that the
dipole fit method that uses a single latency implicitly assumes that the waveform is a d-

function at that latency. Of course, this is physiologically unrealistic.

2.2.2.3 Selecting the Correct Model

The spatio-temporal modelling methods can only be used when correct values are

given for the number of sources, r. A method was described by de Munck (1990) to obtain

this number. It is based on the analyses of the Singular Value Decomposition of the

measured data (see section 2.2.3 for a description of Singular Value Decomposition). Lets

assume a measured data matrix B, with its singular values, Ay, and a predicted data matrix

B, with rank r. The singular values of B with index larger than r should be the noise

singular values (note that the singular values are arranged in decreasing order). Thus, the

square of the Frobenius norm of the residual between B and B, denoted as A, should obey

the following relationship:
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rank(B)

A> DAL, (2-6)

k=r+]

If this lower limit is larger than the noise level, then there is a residual that cannot be
explained by the noise. The number of sources would have to be increased, until the lower

level becomes smaller than the noise level.

The goodness of fit is then given by:

; (2-7)

These two equations tell to what extent the measured data can be explained by r sources
that are linearly independent. A value for r can be obtained by studying the behaviour of the
residual or g as a function of r. One problem still exists though, as pointed out by Mosher ez
al (1992). Even if we selected the correct value for r, it is still not clear how to divide the
available degrees of freedom between stationary and rotating dipoles. Additionally, this will
only work when the distinction between the singular values due to noise and due to active
sources is evident. Moreover, SVD decomposes the data in linearly independent
components. Consequently, when the sources are linearly dependent, SVD will
underestimate the number of active sources. Other ways to select the number of significant
singular values, and therefore the number of linearly independent sources, are described in

the section about regularisation with the minimum norm method (section 2.3.2.3).

2.2.2.4 Finding Dipole Positions

Fitting dipoles at multiple latencies starts with choosing the dipole model that is
used, being either a moving, rotating or fixed dipole model. Subsequently, a range of
latencies is selected from the measured data. The latencies may incorporate all of the major
peaks of the recorded waveforms, or some subset of these peaks. The larger the latency

range, the more information that is available. Next, the dipole locations must be found. The
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procedure for doing this is similar to that of the single equivalent current dipole fit method.
Instead of the Xz’ given in equation 2-2, the cost-function to minimise is (Supek and Aine,

1997, Huang et al, 1998):

B, _ﬁi[ (r79’¢7M8’M¢) _

2= 22 it ’ (2-8)

i=l t=l O-“

where Bj, is the measurement at sensor i and latency t, and B, is the corresponding

computed measurement as induced by the reconstructed sources.

The non-linear optimisation takes place only in the space of the non-linear position
parameters, while after each step in the iterative algorithm the optimal dipoles at the
respective positions are calculated. This involves estimating the orientation and magnitude,
in case of rotating dipoles, or optimising the strength, in case of fixed dipoles. These
dipoles are then called locally optimal (e.g. the best fitting at these particular positions).
This procedure is known as the two-step procedure (Supek and Aine, 1997). Details of how
to find the orientation and strength of a rotating dipole can be found in Mosher and Leahy
(1998). Finding the strength of a fixed dipole with known location is an easy linear

problem, as will be shown in section 2.3.2.

Huang and colleagues (Huang ez al, 1998) used this method to localise fixed dipoles
for simulated and experimental visual

MEG data. Their algorithm
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minima in the cost-function. The lowest flat portion should represent solutions near the
global minimum. Apart from the fact that the global minimum can be found, independent of
the users initial guess, the method has another advantage. The solutions with similar
reduced chi-square form clusters, similar to those obtained with Monte Carlo analysis. This
provides information about the uncertainty in the location, orientation and strength of the
estimated sources. There are however 2 differences: the multi-start method obtains the
uncertainties for a single noisy dataset, whereas Monte Carlo analysis uses datasets with
different noise realisations. Additionally, Monte Carlo analysis starts each dataset with the
reconstructed solution, whereas the multi-start method tries to find a (new) solution by
starting with a new initial guess (Huang ef al, 1998).

The localisation from simulated data produced by 2 and 4 independent dipoles, 2 linearly
dependent dipoles and a case of 2 linearly dependent with 1 independent dipole was
accurate, provided the correct model was used (Huang e al, 1998). In case of under-
modelling of the 2 dependent sources, the source was located midway between the 2
original sources, with an amplitude that was approximately the sum of the amplitudes of the
original sources. The reduced chi-square value decreased significantly when a source was
added, clearly indicating under-modelling. An interesting result was obtained when the
mixed case was over-modelled. The extra source was clearly incorrect, as indicated by the
random behaviour of its timecourse and scatter of its location during re-fits. The saturation
of the reduced chi-square also indicated over-modelling. Noteworthy was that the
timecourses and locations of the clusters of the other 3 sources were correct, although the
variance in the location of the sources had increased. This last result seems to be in
contradiction with the results that Supek and Aine (1997) found for over-modelled 4-dipole
spatio-temporal data. They found with their 2-step procedure that in some cases the
addition of an extra source resulted in inaccurate location and timecourse estimation of all
sources. These solutions were probably found in local minima. The multi-start algorithm
avoids these erroneous results, because it is able to find the global minimum. These results
are therefore not contradictory, but simply justify the application of the multi-start

algorithm.

A more effective approach than considering each time sample separately is to take
the spatio-temporal course of the signals into account as a whole. The method is based on
the idea that the individual features of sensory evoked magnetic fields index discrete stages

within one or more parallel streams of sensory processing, each stage involving magnetic
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fields generated in one or more cortical areas. Assuming that the activity is spatially stable,
a spatio-temporal analysis sets out to resolve the location of these areas, guided by the
evolution of the responses over time.

This spatio-temporal model has been described by Scherg and colleagues (Scherg
and von Cramon, 1985a, Scherg and von Cramon, 1985b). In their model, both the dipole
location and orientation was fixed throughout the selected latency range. Furthermore, they
tried to disentangle the contribution of different sources by using assumptions about the
behaviour of the sources in time. The temporal behaviour was modelled by a smooth
parametric function, characterised by the onset, offset, peak latencies and amplitudes of the
peaks. The number of parameters that had to be estimated was therefore greatly reduced”.
For each source with a monophasic waveform only 8 parameters had to be estimated: three
for the location, one for the orientation in the tangential plane and four for the strength over
time. Additionally, by using a smooth function as the waveform, the influence of noise was
further reduced. Geva and co-workers (Geva et al, 1993, Geva et al., 1995) later
generalised this idea, using a set of base functions with monophasic, biphasic or triphasic
shape, so called wavelets (see figure 2-3 for an example of a wavelet). The optimisation

parameters are then found by a least- squares fit procedure.

The implementation of Scherg's method is

commercially available (Brain Electric Source R
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Analysis or BESA). It has been widely used for
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suggests that the approach has significant power wavelet. It is defined by the four parameters:
. peak amplitude (PA), peak latency (PL), latency
and validity. However, BESA requires a lot of of the onset (ONL) and of the offset (OFFL).
user-interaction. The number of sources must be given, waveforms for the sources must be
selected and symmetry and other additional constraints can be chosen. Additionally, the
user guides the optimisation process by fixing parameters values at certain times during the

optimisation process. The solutions that are found are therefore dependent on the choices

3 even more when symmetry considerations were implemented, i.e. 2 symmetric sources in both hemispheres.
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that were made during the optimisation and depend consequently on the user's experience.
To test the validity and reproducibility of the BESA approach, a simulation experiment was
conducted by Miltner er al (1994). They simulated noisy ERP data, produced by ten dipolar
sources. The sources were located in the temporal and somatosensory regions of the brain,
with three symmetrically located pairs. The waveforms of the sources were partially
overlapping. Ten subjects, whose experience with BESA ranged from very experienced to
no experience at all, were asked to localise the sources, not knowing the number of active
sources nor their locations and waveforms. They only knew that the simulated data
represented the response to a somatosensory stimulus in an oddball paradigm by non-
painful stimulation of the left middle finger, and that noise had been added to the data. The
following observations could be made, showing both the usefulness and limitations of the
spatio-temporal modelling approach:

e No subject found the exact solution.

e The number of sources that were localised ranged from 6-10. So, this approach can
suffer from under-modelling.

e The grand mean error of all the localised sources by all the subjects was 1.4cm (n=175,
o= 1.0cm). The best solution was the localisation of 9 of the sources, with a mean
localisation error of 0.8lcm (o= 0.4lcm). This is promising, given that the estimated
best performance that could be expected, in the presence of noise, was a mean
localisation error of approximately 0.5cm.

e The waveforms of identified sources were usually accurately reconstructed, even when
there was considerable error in the reconstructed location of the source.

e Missing sources in the reconstruction, or errors in the reconstructed Jocations of some
of the sources, did not markedly affect the goodness of the solutions of the correctly
identified dipoles. This is in contradiction with the results by Supek and Aine (1997),
who found that the reconstruction of all sources was necessary (but not always
sufficient) for accurate location and timecourse estimation. The computation of the
estimated data matrix involves the linear summation of the fields produced by all
reconstructed sources. Assume that there are 9 perfectly reconstructed sources and one
erroneous source. Errors in location, orientation and waveform of this source result in
errors in the induced fields. These errors have to be compensated for by the other
sources, shifting them from their (hypothesised) correct locations. Apparently, the
influence of erroneously located sources is small compared with the noise in the data.

Another possibility is that the effects are small because the error is compensated for by
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many sources, showing only a small effect on individual sources. The difference with
the results of Supek and Aine (1997) might be caused by the fact that they used a 2-step
procedure and fewer dipoles.

The peak latencies of the source waveforms were accurately estimated. The onset and
offset had relatively large errors. Yet, the sequence of events was usually accurately

reconstructed enabling inference about the sequence of events in the brain.

In conclusion, the method provides reasonable estimates of the spatial and temporal

characteristics of the sources, but one should keep in mind that the results are not perfect

and depend on the strategy chosen during the optimisation process. Also, the results show

again that it is possible to obtain a unique solution, but that this solution is unique only with

respect to the constraints that were used.

2.2.2.5 Limitations of Spatio-Temporal Dipole Models

Fitting a series of instantaneous field distributions has several problems. It is time
intensive and the number of free parameters is relatively low. Additionally, different
model orders must be employed for different latencies, as sources become active or
inactive.

The algorithm can get stuck in a local minimum of the cost-function. The chance of this
happening is relatively large, as there are a large number of unknowns. BESA enables
escaping from local minima by requiring user interaction. However, this makes the
solution depended on the user's experience and the method time-consuming (i.e.
unsuitable for clinical use).

BESA allows the user to solve the inverse problem in parts. That is, a subset of the
sources is optimised, followed by the addition of further sources that are then optimised,
while the previous sources are fixed. Finally, an optimisation with all sources is done.
Although it is an efficient way to obtain solutions, this process favours local minima
(Achim et al., 1991).

A drawback of the method developed by Scherg and von Cramon (Scherg and von
Cramon, 1985a, Scherg and von Cramon, 1985b, Scherg and von Cramon, 1986) is that
it is difficult to justify a particular choice of temporal dipole activation.
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o Itis difficult to estimate the number of sources that are active. When the estimate of the
number of sources is too high, it is commonly found that two sources are located with
large, cancelling, moments (i.e. orientated in opposite directions) (see for example
Ferndndez er al., 1995). Or, a nearly radial source with large moment is found (i.e. a
source near the centre of a spherically symmetric volume conductor). An energ

constraint could remove these erroneous sources.

2.2.3 Spatio-Temporal Decomposition

In the spatio-temporal modelling approach described in the previous section, the
temporal information embedded in the measured data about the underlying brain activity is
utilised by either fitting a dipole model to each latency sequentially or by optimising the
parameters of a model of the waveforms of the active sources. So, the activity pattern is
based on pre-defined time-patterns. These patterns are not directly based on the data, but on
the choice of the experimenter (for example activity patterns with monophasic, biphasic or
triphasic shape can be chosen (Geva et al, 1993, Geva et al, 1995)). The methods described
in this section do not model the activity patterns of the sources but obtain this information
'directly' from the data matrix. This is done by spatio-temporal decomposition of the data
matrix. The data matrix is considered as the linear sum of a number of spatio-temporal
vectors (the assumption of linearity is reasonable, as was discussed in chapter 1). The
decomposition results in a set of temporal and spatial vectors. The temporal vectors that
explain most of the variance in the data are viewed as the activity pattern of the underlying
sources and the related spatial vectors are then utilised to find the location and orientation
parameters of these sources. Note that each spatial vector relates to a single component of
correlated activity in the data matrix. However, the underlying source that produced this
activity could be a single localised source, a distributed source or even sources in different

areas, having correlated activity.
The method most often used to perform the spatio-temporal decomposition is

Singular Value Decomposition (SVD). This method is described first, followed by a

description of several approaches that utilise the resulting temporal and spatial vectors.
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2.2.3.1 Singular Value Decomposition

Singular Value Decomposition is a standard mathematical technique that
decomposes the measured data matrix (B) of n rows and m columns exactly and reversibly

into 3 matrices:

B=UAV, (2-9)

The matrices U and V are orthogonal matrices with dimensions n x n and m x m
respectively, containing the left and right eigenvectors. The diagonal matrix A is of the
same dimensions as B. The orthogonality of the matrices U and V means that each of the
temporal and spatial vectors are uncorrelated and linearly independent within their
respective matrices.

When the data matrix contains n latencies measured in m sensors, then the U matrix
represents a series of n temporal vectors. The first vector represents the most prominent,
highly correlated and widespread feature of the original data matrix. Subsequent vectors
contribute less and less to the original data matrix. The V matrix (the transpose of V is
taken in equation 2-9, necessary for matrix multiplication) contains the spatial distribution
across the sensors in a series of spatial vectors. Each spatial vector corresponds to a
temporal vector from U. More specifically, the first vector in V corresponds to the first
vector in U, the second vector in V to the second vector in U etc. The diagonal of the A
matrix contains the singular values of B in descending order. Each singular value is equal to
the square root of the variance (RMS amplitude) of each spatio-temporal feature (Harner,
1990). The number of significant singular values therefore represents the number of
significant components in the data. If each component is described by a single source, then
the number of significant singular values gives the number of sources necessary to describe
the data. However, synchronously active sources will be represented by a single component
in the temporal, and therefore spatial, matrix. Therefore, the number of significant singular

values gives a lower limit for the minimum number of sources that are needed to describe

the data.

Additional operations may be performed on the data matrix before SVD is
performed (Harner and Riggio, 1989). Converting the data matrix to a covariance matrix
gives more weight to the larger features in the data. The correlation matrix meanwhile gives

proportionally more weight to the lower amplitude features. The latter approach is identical
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to adjusting the timecourses by subtracting the mean and dividing by the standard deviation

of each timecourse before performing SVD on the data matrix. This is called normalisation.

2.2.3.2 Principal Component Analysis

The benefit of decomposing the data matrix in its spatial and temporal components
is that relatively few components are needed to describe the data. This concept was first
introduced to the evoked potentials community by John ez al. (1964). They analysed the
correlation between changes in evoked potentials in cats and conditioning by means of
Principal Component Analysis (PCA). As was described above, computation of the
principal components by means of a Singular Value Decomposition of the data matrix
provides us with the principal components. The first principal component is the first
eigenvector. This eigenvector gives the direction of maximum variance in the data and the
first singular value gives the size of the data projection onto this eigenvector. The weight of
the component at the recording positions is equivalent to the potential distribution of that
component (this is called the factor loading, being equal to the spatial component
multiplied with its singular value). A consequence of the assumption of linearity is that the
summation of all factor loadings reconstructs the original signals. Note further that the SVD
can also be performed on the Fourier transform of the data matrix. The resulting complex
matrix, each entry of which has a real and imaginary part, can be decomposed with
algorithms for complex SVD. This enables similar analysis in the frequency domain as in

the temporal domain (Harner, 1990).

2.2.3.2.1 Limitations

e The method suffers from the phenomenon known as misallocation of variance (Mocks
and Verleger, 1986, Koles and Soong, 1998) when there are sources with overlapping
timecourses. This means that each original waveform explains a different amount of
variance in the data than the associated principal component. The result is a lack of

similarity between the principal waveforms and the principal components. Additionally,
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a disproportional large amount of variance is normally explained by the first few
principal components, leaving less variance to be explained by the other principal
components. These small principal components are then wrongly thought off as being
noise components. Therefore, PCA is likely to under-model the number of sources that
are active (Koles and Soong, 1998).

e The computed principal components are not necessarily meaningful or predictive. For
example, one component in one subject and a completely different component in
another subject might represent the same waveform. Additionally, the components
obtained by SVD are per definition uncorrelated. This means that the components are
not necessarily physiologically meaningful (John er al, 1964, Maier et al., 1987). This
can be understood as follows. Assume that the first principal component is
physiologically meaningful. The second principal component is orthogonal to the first
principal component. Physiologically, there is no reason why this should be the case

(indeed, it is quite unlikely).

An improvement of PCA is a method that transforms the orthogonal set of principal
components in a set of physiologically meaningful components (John er al, 1964). A
manually performed orthogonal rotation was used by Harner and Riggio (1989). They
rotated the three largest principal components obtained for individual subjects in such a
way that corresponding components were orientated in the same direction. The method
works as follows: the values of the three largest principal components (PCA1, PCA2 and
PCA3) are assigned to the x, y and z co-ordinate of each ‘electrode’. So, the 1* element of
PCA1 becomes the x-co-ordinate of ‘electrode’ 1, the 2" element of PCA1 becomes the x-
co-ordinate of 'electrode’ 2, etc.: the same for the y and z-co-ordinates, obtained from PCA2
and PCAZ3 respectively. This is done for each subject. A 3D-plot of the ‘electrodes' for each
subject shows general disorder. However, when corresponding 'electrodes' are rotated so
that they lie at the some location, a clustering of related areas emerges. An automatic
implementation of their orthogonal rotation gave similar results. This enabled a comparison
of the flash-evoked potentials across subjects and revealed the similarity in the responses.

The method proposed by Maier er al (1987) is based on the assumption that each
principal component can be modelled by a single dipole. This spatial component is then
rotated so that it best explains the activity produced by a source. So, instead of fitting a
single source to each spatial component, a source is fitted to the rotated spatial component

(effectively, the rotation parameter is one of the parameters that has to be optimised in the
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optimisation process). For details see the appendix in Maier et al (1987). Their analysis of
visual evoked potentials showed that this method enabled the determination of the
dependency of the shape of the responses from a particular visual area on stimulus
parameters. Furthermore, it was shown that although the responses varied considerably
between subjects, the rotated principal components were remarkably stable. This method
therefore enables the comparison of evoked responses between subjects.

The proposed method is not flawless however, as mentioned by Achim ez al. (1988). The
rotation is designed to define the components that are maximally accounted for by current
dipoles (criterion 1) and that maximally account for the original principal components
(criterion 2). The implementation by Maier et al (1987) however, only optimises criterion 2
for single principal components. In general, the optimised solution for criterion 2 will not

be found with this method.

Koles and Soong (1998) used the common spatial patterns between two
measurements to improve the localisation accuracy of the rotated principal component
method. The method can be used when two data matrices (B, and By,) are given that were
produced by the same underlying sources (like brain noise). Furthermore, one of the
datasets contains information about additional sources. The two datasets can then be used to
extract the extra information from the one dataset. The common spatial patterns are found

by a whitening transformation applied to both datasets. This works as follows:

=WB*andB’ =WB", (2-10)

transformed transformed

where

B
W - AT 2-11)

with A. and B the eigenvalues and eigenvectors of the composite covariance matrix of the

two data matrices. That is:

Kc:K11+Kb’ (2—12)

where K, and K, are the covariance matrices of the two datasets.
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The transformed data matrices now have the same eigenvectors. Additionally, the
cigenvalues of both data matrices sum to one. The consequence of this is that the first
eigenvector(s) of the data matrix with the additional source(s) will account for the
maximum variance in this data matrix, but for the minimum variance in the other data
matrix. This eigenvector is therefore optimal for separating both data matrices.

This method was applied to a simulation in which two common sources were present in
both matrices and in one data matrix an additional source was present (Koles and Soong,
1998). Using only rotated principal components did not reveal the third source, but utilising
the common spatial patterns unveiled the third source. This shows that spatially correlated
noise (i.e. background MEG or active sources other than the sources of interest) can be put
to use in order to reveal the sources of interest.

The common spatial patterns are a non-orthogonal set of basis vectors, obtained from the
covariance patterns of two data matrices. When two data matrices, such as described above,
are not available, a method that decomposes a single data matrix in a set of non-orthogonal

components is needed. Independent Component Analysis (ICA) does just that.

2.2.3.3 Independent Component Analysis

Independent Component Analysis (ICA) assumes that the data are a linear
summation of signals produced by a number of spatially stationary (either focal or
distributed) sources whose timecourses are largely temporally independent. The goal of
ICA is then to find temporally independent components, which may have non-orthogonal
(even very similar) spatial components. The method is based on a neural network approach,
taking into account the 2" and higher-order dependencies of the timecourses, whereas PCA
is based on the 21 rder covariance matrix (Makeig et al., 1996a, Makeig et al., 1997).

In order to appreciate the capabilities of the method, one must realise that the
method is designed to extract the individual components from a data vector. In other words,
it tries to answer the question: what are the different components? It can potentially be
used as a pre-processing stage for a source localisation procedure, which answers the
question: where do the components originate?

The performance of the method was tested by means of a set of simulations, designed to

test the method in its ability to separate signal components in the presence of noise and
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when sources are temporally correlated (Makeig et al, 1996a, Ghahremani et al., 1996).

The results can be summarised as follows:

The performance of ICA is hardly influenced by the configuration of the underlying
sources (i.e. the location and orientation of the sources).

The performance degrades slowly in the presence of low-level noise sources and
depends on the relative amplitudes of the sources and the noise sources and their
relative placements and orientations.

When correlated activity is present, ICA parses the correlation structure into spatially
stationary and minimally correlated pieces, and when possible assigns each piece to a
different output channel. Therefore, three situations can occur:

1) The correlated activity is distributed over the correlated components.

2) The correlated activity is presented in a single component.

3) The correlated activity is wrongly assigned to a spurious component.

It was concluded that the method is best utilised to compare responses from multiple

stimuli, task conditions and subject states. Makeig and colleagues (Makeig et al., 1996b,

Makeig et al, 1997) used ICA to analyse the evoked responses to auditory stimuli and

confirmed these results. Auditory targets with intensity just above threshold were presented

in a 39 HZ click train background. ICA of the recorded data showed three components

related to detected targets, 4 components related to undetected targets, 2 components

separating out the 39Hz response and 5 components related to noise. Additionally, they

demonstrated the intra and inter-subject stability of the principal components.

These results showed that the main limitations of the method are:

The signals of sources that are strongly temporally correlated cannot be decomposed
into separate independent components. Makeig and co-workers (Makeig et al, 1996a)
showed though that this could partly be overcome by applying the ICA algorithm
concurrently to data from several stimulus and task conditions or adding residual data
and brain noise to the data. This enables the algorithm to better separate the partially
correlated but functionally independent sources. Also, there is doubt whether correlated
sources are expected at all. Scherg and Berg (1991) noted that for physiological reasons
the probability is small that two functionally distinct sources should exhibit identical

waveforms.
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e Interpretation of the physiological and/or psychophysiological significance of each of
the independent components is difficult. The number of independent components that
the ICA algorithm finds is always equal to the number of channels that are used to
measure the data. When the number of underlying sources is less than this number (as
will often be the case with the modern, multichannel, systems) the task is to select the
independent components that are related to the sources. The remaining components are
likely to be related to insignificant (brain) activity, like eye blinking or signal from
power lines (Makeig et al, 1996a). When more sources are active than there are
measurement channels and the 'moise sources' have relatively small independent
components, the algorithm is able to assign meaningful independent components to the
strongest sources (Makeig et al, 1996b and Ghahremani et al, 1996). If the number of
large independent components exceed the number of channels, the ICA results may be
poor (Makeig et al, 1996b).

e Localisation of the activity is not feasible directly with this method, although it can

serve as a pre—processing stage.

224 Recursive - Multiple Signal Classification (R-MUSIC)

The multiple signal classification algorithm was described first by Schmidt (1986).
It was used to determine the parameters of multiple wavefronts arriving at an antenna array
from measurements made on the received signals. It was then used by Mosher et al (1992)
to reconstruct multiple dipoles from MEG data. They presented promising results from
simulations as well as from the analysis of experimental data. An improved version of their
algorithm, Recursive MUSIC, was later developed to overcome some of the limitations of
the original MUSIC algorithm (Mosher and Leahy, 1998).

Before we can describe the method we have to explain some of the concepts that are used:

Measurement space: The outputs of all sensors that span the measurement space. Each
measurement is a point in this space. The line connecting the origin with this point forms a
vector. The linear combinations of all the measurement vectors span the measurement
space. The measured data not only contains the signals from the actual sources, but it is

usually polluted with noise of different origin. The signal part is therefore expected to have
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a dimensionality that is lower than the full possible rank of the measurement matrix. We
can therefore divide the measurement space in a part that is spanned by the signals from the
active sources, i.c. the signal subspace and a part that is spanned by the noise, i.. the noise
subspace. The noise space is the complement of the signal subspace, when we assume that
the signals and the noise are not correlated.

Source space: The area in which the primary current flows, which can be, in its most
general form, the whole brain.

Image space: The area in which the primary current is reconstructed. If the primary current
is discretised and modelled by a finite set of current dipoles, then the collection of current
dipoles forms the image space. In computer simulations the image space is equal to the
source space. With real measurements this is in general not the case. This can introduce

errors in the parameters of the reconstructed sources.

2.2.4.1 Assumptions

e The measured signal may be attributed to a finite set of dipolar sources, less than the
number of detectors.

e A clear separation into noise and signal subspaces is possible.

e Data is polluted with additive, spatially white noise. In the case coloured noise is
present, a pre-whitening procedure can be applied before the method is applied

(e.g. Koles and Soong, 1998).

2.2.4.2 Finding Dipole Positions

The aim of this method is to find the dipoles in the source space that were active and
therefore induced the magnetic signals that span the signal space. One starts by
decomposing the measurement space into the signal subspace and the noise subspace. An
estimate of this decomposition may be obtained from Singular Value Decomposition (SVD)
of the data matrix, or equivalently, from the Singular Value Decomposition of the estimated

covariance matrix. The MUSIC algorithm proceeds to identify those sources whose forward
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projection onto the signal subspace is maximal (or equivalently, whose projection onto the
noise subspace is minimal). Described in a more mathematical way:

Consider the spatio-temporal data matrix B, containing the measured magnetic field values
(or the estimated covariance matrix K). Decompose B into the signal and noise subspaces,

thereby choosing the rank r of the signal subspace:

B=U,A, V/ +U A, V., (2-13)

The left and right eigenvectors Uy and Vy span the signal subspace. The diagonal matrix As
contains the r largest singular values due to the signals from the sources. The noise
subspace is the orthonormal complement of the signal subspace and is spanned by U, and

V.. The smaller singular values, due to the noise, are contained in A,

Additionally, a grid is defined that forms the image space. In each node of the grid a single

equivalent dipole is placed. Let B be the magnetic field produced by all the current dipoles
in this grid. The method aims to minimise the difference between the measured magnetic

field and the magnetic field produced by the model, in a least-squares sense:

{p.6.d}=arg min|B - B (2-14)

2
b
F

where F indicates the Frobenius norm. The vectors [)é and q contain the estimated

location, orientation and strength of the sources, respectively

Using the definition of the signal and noise subspaces (equation 2-13) and the linear
relationship between the magnetic field and the source strength, the above leads to the

following cost-function (see Mosher and Leahy (1998), for a detailed derivation):
{ﬁ,é}:arg max{zci}, (2-15)
k=1

with cx the principal correlations between the subspaces spanned by G and Us. G is the gain
matrix (= lead field matrix) that relates the current dipoles in the grid to the magnetic field

(see section 2.3.2 for a thorough derivation of this gain matrix).
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The above equation shows that in order to find the source parameters we must find the r
maximum subspace correlations between the two subspaces, which is the same as finding
the minimum angle between the two. The conventional MUSIC algorithm proceeds by
computing the principal correlations at each grid point (with ¢, the maximum principal
component at each grid point). That is, the principal correlations between the gain vector of
the dipole at a grid point and all vectors in Us are computed. As a graphical aid, 'Tl_f is
—¢]
then plotted for each grid point, showing sharp peaks where the principal correlation is
close to unity. At these locations the likelihood that the dipole contributed to the signal as
estimated by the data (or covariance matrix) is large. The peaks then define the true dipole

locations. Subsequently, the strength of the sources can be computed (Greenblatt, 1993).
Finding the first peak is usually easy, but finding the additional peaks becomes harder.

This, and additional problems are solved with the Recursive MUSIC (R-MUSIC) method

(Mosher and Leahy, 1998). The limitations of MUSIC and the workarounds of R-MUSIC

are as follows:

e MUSIC can only reconstruct linearly independent sources (i.e. Stoica and Nehoria,
1989), because SVD provides us with linearly independent components. When the
timecourses are linearly dependent the rank of the spatio-temporal matrix is less than
the true number of sources and the complete signal subspace cannot be determined. R-
MUSIC introduces the Independent Topographies (IT) model. The data are seen as the
sum of a set of ITs, with each IT produced by one dipole or more dipoles that have one
single timecourse (i.e. that are linearly dependent). By constructing the source model in
this way, the rank of the signal subspace is, by definition, always equal to the number of
sources (where a single 'source' can be constructed from more than one dipole with
linearly dependent timecourses). The only modification of the original MUSIC method
is that, for an IT model with two dipoles, the principal correlations between
combinations of two dipoles and Us are computed. For higher order IT models,
combinations of three dipoles are examined etc. Testing all combinations of two (or
more) dipoles in a grid might be too time-consuming. A non-linear optimisation
algorithm might be used to find suitable combinations.

In practise, one starts with an IT model of order one. This is used until it becomes
impossible to find good principal correlations. The model order is then increased and

principal correlations are computed for the new IT model.
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With MUSIC, apart from the largest principal component, finding the other (r-1) large
principal correlations can be cumbersome. R-MUSIC masters this by building up a
model of all the sources. This works as follows: assume that the first source was found.
Scanning the grid for the second source is then done by computing the principal
correlation for a grid point plus the first source. The maximum principal correlation is
of course due to the first source, and we are therefore looking for the maximum second
principal correlation in the grid. Finding the maximum second principal correlation
means that the second source is found and it is added to the model. This process is
repeated until all r sources are located. In figure 2-4 an illustration is given that shows
why R-MUSIC has less difficulty with localising multiple sources than MUSIC.
R-MUSIC speeds up the algorithm by splitting the localisation problem into two parts.
First the non-linear location parameters are found and then the orientation of a source is
optimised (see appendix in Mosher and Leahy (1998) for details).

Instead of maximising the projection on the source subspace, one can also minimise the
projection on the noise subspace. The first method is preferred when the number of
sensors is larger than two times the rank of the signal subspace (Stoica and Nehoria,
1989). Knosche (1997) stated that projecting on the signal subspace gives less sharp
peaks than projecting on the noise subspace. This was probably because the number of
sensors was smaller than two times the rank of the signal subspace.

The image space is formed by a grid and consequently has a limited sample frequency.
Therefore, true sources might be located away from a grid point. Therefore, R-MUSIC
uses a non-linear optimisation algorithm after a source is located in a grid point in order
to improve the estimation of the location parameters.

As mentioned in previous sections, finding the rank of the data matrix is no trivial issue.
Underspecifying the rank for R-MUSIC reduces the performance considerably.
Fortunately, overspecifying the rank by a couple of dimensions has little effect on
performance. The reason behind this is that the additional subspace vectors span an
arbitrary subspace of the noise subspace. The probability that that these vectors
correlate with the source model is small. Consequently, the sources that R-MUSIC finds
for these vectors can be neglected on bases of their small principal correlations.
Therefore, moderate overspecification of the perceived rank of the data matrix is

advisable (Mosher and Leahy, 1998).
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figure 2-4: Plot of hypothetical principal correlations. The top panel shows the maximum
principal correlation for each grid point (= ¢;). It is clearly seen that with MUSIC and R-MUSIC
it would be easy to localise peak A. Finding the other peaks in this figure (as is done with
MUSIC) would be more cumbersome, because they are broader and lower. This could be due to
noise or modelling errors. The bottom panel shows the second largest principal correlations (= ¢;)
that would be obtained with R-MUSIC after the first source is found from the top panel, using the
first localised source as part of the source model. Finding the maximum in this plot is easy.
Finding additional sources is therefore much easier with R-MUSIC than with MUSIC.
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An additional way to improve the performance of MUSIC is by modification of the
MUSIC estimator itself (i.e. the way the principal correlations are computed is modified).
More details can be found in Stoica and Nehoria (1989) and references therein.

Finally, information from the frequency domain can be exploited to improve the
performance of the MUSIC algorithm (Sekihara er al., 1999). Decomposition of an average
time-frequency distribution matrix, computed over a target time-frequency region, results in
a set of orthogonal vectors. Again, the vectors related to the largest eigenvalues form the
signal subspace and those related to the smaller ones form the noise subspace. These
vectors can then be utilised as with the standard MUSIC algorithm in order to localise
sources. So, the only difference with the normal MUSIC algorithm is that a time-frequency
matrix is decomposed, instead of the covariance matrix of the data. Their simulations
showed that incorporating the frequency information facilitates the separation of three
closely located sources, not distinguishable with the normal MUSIC algorithm (Sekihara et
al., 1999). Application of the time-frequency method (TF-MUSIC) to localise somatic
evoked high-frequency magnetic oscillations showed that the method has similar
Jocalisation accuracy as a single moving dipole approach when both methods could be
applied. However, localisation was possible within some subjects with the TF-MUSIC

method, whereas the single moving dipole method failed (Sakuma et al., 1999).

2.2.4.3 Limitations

e The technique requires a clear-cut separation between signal subspace and noise
subspace. It is not possible to perfectly define the signal subspace, meaning that the
extracted signal subspéce' will be at some angle to the true one. As a consequence the
MUSIC peaks will not be found at the exact source locations. Furthermore, during
measurements the noise is not completely random, spatially independent, and zero mean.
It might therefore be that some of the signal eigenvalues are indistinguishable from the
noise eigenvalues or that the Jargest noise eigenvalues even become bigger than the

smallest signal eigenvalues. As a consequence the signal and noise subspaces will be

identified incorrectly.
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When some linear combination of true sources produces the same output as a single
source, a false peak occurs at the location of this single source. This can only be resolved
by adding more measurements.
The maximum number of dipoles that can be reconstructed is equal to the rank of the
spatio-temporal data matrix, which is in turn equal to the number of measurements. In
general the rank is even smaller than this number due to noise in the measured data. This
should not be a restriction with the latest multi-channel MEG systems carrying about
150 sensors.
It remains to be proven that:
= the method works with distributed sources. Mosher and Leahy claimed that
reconstruction of distributed sources is possible, but no details were given
(Mosher and Leahy, 1998).
= a2 wrongly reconstructed source does not affect the accuracy of the localisation
of the other sources via the model of the earlier localised sources that is

constructed for R-MUSIC.
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2.3 Reconstruction of Distributed Sources

2.3.1 Introduction

One of the main problems with the methods described in section 2.2 is that they rely

heavily on the assumption that the measured magnetic fields were generated by discrete

localised sources of activity. This assumption may not always be correct. The algorithms

developed for discrete sources can still localise sources for magnetic fields induced by

distributed sources. The localised sources then represent the centre of gravity of the

distributed activity. However, such a reconstruction will be inaccurate when the distributed

source is located on a convoluted part of the cortical surface (which will often be the case,

figure 2-5: Graphical representation of a slice
through a part of the cortical surface, showing a
sulcus. The distributed source, represented by the
arrows, extends across both walls of the sulcus.
The centre of gravity of the activity is indicated
by the black dot. The result of localisation with a
single dipole model, located in this centre of
gravity, would give a meaningless result as the
location is not even within the cortex.

as the cortical surface is highly convoluted).
This is further illustrated in figure 2-5.

Thus, algorithms are needed that can reconstruct
the properties of distributed brain activity. A
report of such algorithms is given in the next
sections. First, the minimum norm method, a
method that arises naturally from the
discretisation of the forward problem, is
described. It is then showed that the minimum
norm approach is a special case of a generalised
Wiener-Helstrom filter. Additionally, a different
class of algorithms, based on the probability of

finding sources at certain locations, is outlined.
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2.3.2 Minimum Norm Least Squares Approach

2.3.2.1 Assumptions

e The primary current distribution can be approximated by a discrete set of dipoles at
fixed locations within a source region. This source space is defined a priori. It is further
assumed that the predefined source space (also known as the image space) is at the
same location as the 'true' source space (containing the currents that produced the
magnetic fields). For computer simulations this is of course always true (unless
deliberately constructed otherwise), but for real data this is not necessarily true.
However, from now on we will assume that the image space and the 'true’ source space
are the same. Both are referred to as the source space, as this is a more intuitive name,
since the space is made up out of predefined sources.

e To pick a solution from the infinite number of solutions to the inverse problem, one
should take the solution that best fits the data in the least-squares sense and exhibits the

minimum norm property.

2.3.2.2 Formulation

It follows from the Biot and Sarvart law that the magnetic induction perpendicular
to the observation surface is linearly related to the source current density. Hence, if we
assume a certain source space, the inverse problem reduces to finding only the strength of
the sources in this source space. This idea was first introduced to the biomagnetism
community, independently, by Hémaldinen and Ilmoniemi (1984) and Singh and colleagues
(Singh et al., 1984).

It is convenient to introduce the concept of the lead field of a sensor here (Himaildinen and

[Imoniemi, 1984). We first repeat the law of Biot and Savart:

B(r) =

Mo jJ(r‘) X r=r) g (2-16)

Z;T_ Q h,_r.‘3
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As described in chapter 1, this law relates the current density in a region Q of the volume
conductor to the magnetic induction, located at r (see section 1.3.4 for a description of

these parameters).

The definition of the lead field then follows from:
B(r,) = [L,(x)-Jr')d’r i=1,..N (2-17)
Q

where N is the number of sensors. The lead field L, (r') accounts for the sensitivity of the

i sensor at measurement position r; to the presence of the source current density at r'. Or,
alternatively, the lead fields span a subspace within the infinite space. The detectors
measure the projection of the (primary) current onto this lead field subspace. A
consequence of this is that radial currents are naturally excluded from the source
reconstruction, as their projection is orthogonal to the lead field subspace and there is
consequently no information about these sources, as shown in figure 2-6.

The elements of the lead field only depend on the volume conductor model, sensor
configuration and the source space (i.e. location relative to the sensors). It follows from the
equation above and Biot and Sarvart’s law that the lead field decreases with distance from
the sensor locations.

It is intuitive that the source space must have an anatomically correct shape in order to give
a solution to the inverse problem that is physiologically and anatomically meaningful. It is

natural to restrict the source space to a folded surface layer of thickness w, representing the

Q

figure 2-6: Projection of the total current vector J into the subspace spanned by the leads L and L. The
minimum norm estimate of the total current is given by J, . It can be seen that J, does not contribute to the
minimum norm estimate, as < Ju, O> = 0. Generalisation to more than 2 sensors (leads) is straightforward.
After Himiildinen et al (1993).
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cortex. In this way, the volume integral in equation 2-17 is reduced to a surface integral. If

we further divide the source space into a grid of n cells of area AQYi centred at position rj',

equation 2-17 becomes:

13(11):2]Li(rj')-J(rJf)wAQ'j i=1,.,N (2-18)

=

The lead field specifies the contribution of the i™ unit element of the source space to a given

magnetic measurement at position rj.

Note that J(rjl.) w AQ' has the dimension of ampere-meter, which corresponds to that of a
current dipole with strength q. The primary current density, J(rj'), can therefore be
replaced by a d-function centred around rJ Constructing a source space is now simply a

matter of placing many current dipoles at predefined positions in a grid.

The &-function was used as a description of the primary current density at a
location. The lead field L,(r') can now also be viewed as the response of the sensors to a
current dipole with unitary strength at location r'. In physics this is known as Green's
function, as the kernel in mathematics and in the optics literature it is referred to as the
point spread function. In the biomagnetism literature the term Gain is also used for the lead

field (e.g. Gorodnitsky ez al., 1995).

In matrix notation, with the dimensions of the matrices stated in the exponents, equation

2-18 becomes:

Ble - Lan anl , (2_19)

Each row of L represents the sensitivity of a measurement channel to activity in all
clements of the source space. As we use dipoles with a moment in only one direction, the

number of columns in L and the number of rows in Q is equal to n',

A more formal way
to obtain the transition from the continuous to the discrete form of the law of Biot and

Savart can be found in the appendices of Smith ez al. (1990).

M 1 the more general case in which a dipole has a moment in all three directions, this would be 3n.
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The above equation tells us that the magnetic field is a linear summation of weighted (by
Q) contributions from all source elements.
It seems easy now to find Q, by using the inverse of L (the dimensions of the matrices is

not given here, for the ease of notation):

Q=L"B, (2-20)

A closer look tells us however that it is not that straightforward to find Q. Usually a lot of
elements in the source space are needed to get a good description of the source current
density. With realistic measurements the number of elements will therefore far outnumber
the number of sensors (thus n >> N). Thus, more parameters have to be determined than
there are independent measurements in equation 2-20, which means that this 1s an

underdetermined system. What we need is a type of generalised inverse L" that gives us an
estimation Q for Q so that the residual error, LQ—B, is minimised in a least squares

sense:

A{@Q—B

L’ (2-21)

where H “7 is the Euclidean norm or l,-norm. In this work we will refer to this norm with

H H, unless stated otherwise).

The system is underdetermined, so there are an infinite number of solutions that minimise

this residue, from which we have to choose one. A sensible choice is the estimation Q that
not only minimises the Euclidean norm of the residue but also the l,-norm of the solutions
(Hdmaildinen and Ilmoniemi, 1984). Such a minimum-norm least-squares (MNLS)
estimation is found when the Moore-Penrose generalised inverse (also known as the

pseudoinverse) is used (Penrose, 1955). For underdetermined cases this pseudoinverse is
given by:
P 0 ) 0 (2-22)

The MNLS solution is thus computed as:
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Q=L"B, (2-23)

The solution can be displayed as a plot of all the dipoles as vectors in the source

space, with the length given by the strength of the elements in Q (the locations and
orientations are pl'edefined4). Alternatively, particularly for 2D source spaces, the strength

of each source element can be displayed as a colour coded amplitude (see for example the

results in Genger and Williamson, 1998). This results in 'images’ of Q .

There are also source configurations that do not induce a measurable magnetic
induction, as was shown in chapter 1. The advantage of the minimum norm solution is that
it automatically discards those elements that have zero contribution to the measured data,
i.e. radial dipoles, and that it is unlikely that very large elements add to the solution.
Although we find a unique solution, it must be remembered that the complete problem is

still non-unique!

The use of this linear formulation with the fixed dipole localisation approach,
described in section 2.2.2.4, can now also be clarified. Once the locations of the fixed
dipoles are known, the lead fields are known as well. The only unknown is the strength of
each source. These unknowns should be given such a value that the residual norm is
minimised. Lets construct a lead field matrix that only contains, as concatenated columns,
the lead fields of the few localised fixed dipoles. Thus, equation 2-20 now has more
equations than unknowns, which makes it an overdetermined system. The pseudoinverse
gives in the overdetermined case the solution that minimises the residual norm (Wang et al,

1992), which is exactly what we were looking for.

Back to the underdetermined case.
So far, the influence of noise on the MNLS solution has not been discussed. This is done in

the next section, where approaches to reduce the influence of noise are also given.

4 The orientation was defined a priori. In the general case, the strength of each source element in the two
tangential directions can be reconstructed, from which the orientation of the source element follows.
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2.3.2.3 Regularisation

The distributed source solutions that the MNLS method finds are an exact fit to the
data. This means that noise will also be modelled when this is present in the data. Therefore
even small amounts of noise in the measurements or errors in the modelling of the head
give rise to unstable solutions. Additionally, matrix L is nearly singular, i.e. the linear
system in equation 2-19 is ill-conditioned. As a result, the influence of noise in the data is
disproportionately amplified, as will be demonstrated later. Consequently, a compromise
must be made between a close fit to the data and a stable solution. It is clear that the
difference between the measured data and the magnetic induction, induced by the
reconstructed source, can be allowed to be as large as the amount of noise in the measured
data (Bedford, 1995). This is further utilised hereafter, where one of the regularisation

techniques, truncated Singular Value Decomposition (TSVD), is described.

In order to avoid the instability associated with the matrix inversion in equation

2-22, the pseudoinverse is calculated as:

L =L (LU +7) ", (2-24)

Where I is the unit matrix and v is a predetermined regularisation parameter.

The error that is minimised with this regularised pseudoinverse is then (compare with
equation 2-21):

(2-25)

s=li-s]fa].

This equation gives insight in what happens with the regularisation. Evidently, there is a

trade-off between the minimisation of the error in the data term (”LQ—B”) and the

modelling term (HQ“) When there is little noise, a small value is chosen for v, and a close

fit to the data is obtained. When there is a lot of noise in the data, a close fit to the data will
be meaningless and a large value for y ensures that the modelling term is minimised,
thereby reducing the influence of the noise but also decreasing the spatial resolution of the

reconstruction. Moreover, a large value for y can introduce spurious oscillatory components

76




noise will be disproportionately amplified (see also equation 2-30). This is avoided by
zeroing the elements in the pseudoinverse of A that correspond to the small singular values
in A.

Fortunately, the elements in the source space associated with small singular values
contribute little to the magnetic induction and hence the difference between the measured
data and the magnetic induction is only slightly enlarged when such singular values are
truncated. The fact that some signal is removed from the solution is evident if we write the

estimated solution in terms of the truncated SVD (Shim and Cho, 1981):

Q 2(‘%“ +/‘{’;1/2nivi>’ (2-30)

i=]

and the residual error is given by

r t

A=Y qv, — 2 A" v, (2-31)
i=t+1 i=1

with g; = QTVi and n; = NTui, N the vector containing the noise in the data, t the termination

index and r the rank of L. See Appendix A for a derivation of these two equations.

Equation 2-30 shows that for large t there is a close fit to the data (first term), but also a
large projection of noise into the solution. This is a problem in case there is a lot of noise in
the data. If t is small, there is little projection of noise into the data, but also removal of
detailed information about the solution (loss of resoluti‘on). This trade-off between
‘nfluence of noise and resolution can clearly be seen in equation 2-31. It shows that the
error between the ideal and reconstructed solution is caused by removal of the small
eigenvectors and therefore the projection of data through them (first term) and projection of
noise through the larger ei genvectors (second term). A good example of these effects can be

found in the article by Shim and Cho (1981) who simulated a CT-reconstruction on a plane.

A second regularisation technique is Tikhonov regularisation, minimising the

following error function (i.e. Brooks ez al., 1999):

A=[La- B+ v[RQ). (2-32)
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('ripple") into the solutions (Biemond et al., 1990). Methods to choose the optimum value

for y are described later on in this section.

In practice, SVD is used to compute the pseudoinverse. This allows for a natural
incorporation of regularisation and it also gives insight into why the influence of noise can

be large on the MNLS solutions.

The pseudoinverse of the lead field matrix follows from the SVD of the lead field matrix:

L = UAV', (2-26)

where U and V are orthogonal matrices with dimensions N x N and n x n respectively. The
diagonal matrix A is of the same dimensions as L and contains the singular values of L in

descending order:

A=diag(hy Ay s A A ren000), A 24,

[REAST EREEAAY

(2-27)

The singular values represent the magnitude of the contribution of a source to the measured

data.
The pseudoinverse is now computed as:

L' = (UAVT)" = VA'U", (2-28)

with the pseudoinverse of A given as:

A= A SAY
At =diag(At, AL, AT ALL-00,50), ! /1] B 2.29
l'lg( 1 2 § j+l ) A,: :0 ’)'j S)q 'Y' ( )

where y' is the parameter that determines which singular values to truncate.

It is clear now from equation 2-29 why the influence of noise on the unregularised MNLS
solution is large. The small singular values in A, associated with the noise, will give rise to

large values in the pseudoinverse of A and hence the corresponding components of the
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figure 2-7: Example of an L-curve, with on the x-axis the normalised residual norm,
B -8 Q
values that were used decreases from left to right. One can see that the residual norm decreases
when more singular values are used in the computations and that the solution norm increases at
the same time. This is expected, as more sources are used to explain the data when the number
of singular values that are used increases. The optimum truncation parameter is the singular

value that lies near the corner of the L-curve. This example was obtained for a simulation set-
up with the 19-channel CES system at Aston University.

. The number of singular

, and on the y-axis the normalised solution norm,

with R a matrix containing additional constraints. If R is the identity matrix, the solution is
the Tikhonov zero-order solution and is constrained in energy (l-norm), as in equation
2-25. If R is the first or second spatial derivative (Laplacian) of Q, the Tikhonov first- or
second-order solution, respectively, is constrained to have a smooth surface gradient or

curvature (Brooks et al, 1999).

As illustrated above, a good choice for the truncation parameter is necessary in
order to obtain sensible MNLS solutions. A popular method for choosing the truncation
parameter is to determine the trade-off curve between the solution norm that we minimise
and the residual norm. This curve closely resembles an L-shape and the optimal truncation
parameter is found in the ‘corner’ of this curve (e.g. Tu et al., 1996, Johnston and
Gulrajani, 1997, Brooks et al, 1999). An example is given in figure 2-7.

An L-curve, not to be confused with the gain matrix L, will only be found if the
noise is uncorrelated, random and with zero mean (Johnston and Gulrajani, 1997).
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Therefore, if there are large errors in the lead field matrix, due to a shift of the imaging
space with respect to the noise space, no L shaped curve will be found. The main
disadvantage of this approach though is that the inverse problem has to be solved for a
whole range of truncation parameter values. Additionally, the quality of the solution is very
dependent on the (correct) choice of the regularisation parameter (Brooks ez al, 1999). This
follows from the shape of the L-curve around the corner: a small deviation from the
optimum choice results in a large increase in either the residual error or solution error. Also,
Johnston and Gulrajani (1997) showed that the optimum truncation parameter is not

necessarily positioned on the corner of the L-curve for high SNR data.

The zero-crossing method described by Johnston and Gulrajani (1997) finds a
truncation parameter for which the residual is equal to y times the squared norm of the
solutions (see equation 2-25). This selection is usually close to the corner of the L-curve,
but with the additional advantage that the time-consuming computation of the L-curve does

not have to be performed.

Another approach is to use information about the noise level to obtain a value for
the truncation parameter. When the truncation parameter is based on the SNR, no effort is
made to fit the solution to the data more precisely than the noise level (Bedford, 1995). The
equation for the optimum truncation index derived by Shim and Cho (1981) was based on

this 1dea:

max

MK
ton = KA 21 (2-33)
NK,

with M the number of channels and N the number of elements in the source space. It was

further assumed that the noise and Q were white (so that K, and K reduced to scalars).

A different regularisation technique was used by Oster and Rudy (1992). They used
a modification of the Tikhonov technique, known as Twomey regularisation. Instead of
imposing constraints on the magnitude of the solution (zero order Tikhonov regularisation)
or its derivatives (first and second order Tikhonov regularisation), the method minimises

the difference between the solution, Q, and some estimate of the solution, P.

80



The authors tested several schemes for the calculation of P, using temporal
information. Temporal constraints are, strictly speaking, not regularisers, since the
condition of the lead field matrix (containing only spatial information) is not directly
improved. But, the temporal information imposes constraints on solutions by restricting the
acceptability of candidate solutions based on prior knowledge, and can therefore be treated
as regularising (Brooks et al, 1999).

Some schemes that were tested incorporated only information from previous time
intervals, others incorporated information from both previous and future time intervals.
They tested their algorithms with data obtained from a human-torso tank, with a beating
canine heart inside. The object was to reconstruct the epicardical potentials from surface
potentials, measured in 400 electrodes. Epicardical potentials were measured as well, so
that the quality of the reconstruction could be assessed. Although this is not exactly the
same inverse problem as described in this work (source localisation from incomplete data),
their results will probably hold for this problem as well. What they found was that the
methods that use information from the immediate past and future time frames consistently
performed better than the other methods that used temporal information and the method that
used only Tikhonov regularisation. Another excellent paper (Brooks et al, 1999), also
reconstructing epicardical potentials, showed that incorporating both spatial and temporal
regularisation simultaneously or two types of spatial regularisation simultaneously had
several advantages. The authors used an extension of the L-curve, the L-surface, to find the
optimum value for the two regularisation parameters. The main findings were:

e Combination of two regularisers provides more robust estimations with respect to the
choice of truncation parameters, due to the behaviour around the 'corner' in the L-
surface.

e A smaller amount of spatial regularisation is needed when temporal regularisation is
used as well. Or a smaller amount of spatial regularisation of one kind is needed when
spatial regularisation of another kind is used in addition. This ensures that, although
noise is successfully dampened, the solutions are not too much distorted.

Sec the original paper for further details of the results and further references to

regularisation approaches.
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2.3.2.4 Application

A first application of the MNLS to simulated and measured magnetic data was
reported in 1984 (Hamildinen and Ilmoniemi, 1984, Singh et al, 1984). The paper by Singh
et al (1984) showed the possibility to obtain source images from magnetic data for a 2D
source space. Although no measures were given with which to assess the accuracy of their
results, the reported images of the source reconstructions seemed encouraging.

A series of simulations using simple 2D source spaces (Hamilidinen and IImoniemi,
1984, Wang et al, 1992) evaluated the aptness and limitations of the method more
thoroughly. Hiamilidinen and Ilmoniemi (1984) reconstructed sources in a plane parallel to
the measurement plane that contained point-like sensors. No volume conductor effects were
modelled. The effect of an increase in the number of sensors on the reconstruction of
current dipoles from, noise contaminated, simulated data was a decrease of the spread in the
image. Additionally, the reconstruction of multiple sources and reconstructions for evoked
responses were presented.

The source space used by Wang e al (1992) was constructed out of two planes,
forming an L-shaped 'wall', mimicking the shape of a small portion of a fissure or sulcus.
The sources that form the source space were perpendicular to the reconstruction wall.
Magnetic fields were computed in a horizontal planar observation plane, located at a
distance above the vertical source space. The source space was placed in a conducting half
space (i.e. volume conductor effects were not modelled). The following findings were
obtained, using noiseless data produced by discrete sources:

e The reconstructed sources were spread around the location of the original source.
However, the total strength (i.e. integration of the strength of all elements in the source
space) was always within 0.1% of the strength of the original source (i.e. a
'conservation law').

e The spread decreased with smaller grid spacing.

e Side lobes could be observed around the main peak, caused by the ill-conditioning of
the lead field matrix (Ramon et al., 1993).

e Shallower sources were better-localised (smaller spread). This is due to the 1/
dependence in the Biot and Savart law, and therefore in the lead fields. The lead field
pattern will vary more sharply with distance near a sensor, and the sensor will therefore

be more sensitive to the position of a nearby source.



e Two sources separated by 2cm at the same depth could be correctly reconstructed, not
hindered by the fact that they produced a dipolar field pattern. Note that no assumption
about the number of sources was necessary to obtain this result.

e For shallow sources, a small amount of noise reduced the side lobes and higher amounts
of noise reduced the peak amplitude (the spread was increased) and affected the peak
location, although not considerably. For deeper sources the influence of noise was
considerable. This could be expected, since the singular values associated with deeper
sources are similar in amplitude as the singular values associated with noise. The
distinction between noise and signal becomes less clear, resulting in more disturbed
reconstructions.

e Noise introduced spurious sources near the edge of the source space. Wang and
colleagues explained this as a result of undersampling of the magnetic field. A better
explanation follows from the results in the previous section. Small singular values have
a large influence on the pseudoinverse when not properly truncated, which explains the
large amplitude of these sources. The fact that they are found near the edge of the
source space is explained by the fact that the MNLS method reconstructs the solution
with minimum norm. A superficial spurious source would need relatively smaller
amplitude to produce the same field as a deeper source, due to the 1/r* dependency of

the lead fields.

A subsequent article (Wang, 1993) confirmed these results for a slightly more
realistic simulation, using again an L-shaped 'wall’, this time placed in a spherical volume
conductor. The sensors were located on a spherical surface that was located at some
distance above the source space. They further found that the side lobes found in
reconstructions of discrete sources disappeared when the original source was a distributed
source. Another interesting result was found for simulations with the source space and
imaging space at slightly different locations. This broadened the peaks and introduced
superficial sources near the boundaries. The centre of the pattern was however found at
approximately the correct location for shifts smaller than 4mm. They further examined the
‘nfluence on the solutions of the number of sensors and elements in the source space. In
general, detail in the image was reduced with a reduced number of sensors. Additionally,
bias towards the sensors increased. The minimum number of sensors needed depended on

the number of elements in the source space.
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The influence of the number of sensors, source elements and noise on the MNLS
solutions was further examined in a simulation study by Ramon et al (1993). They used a
planar source space with a planar sample measurement array above it. They found an ever-
diminishing improvement in resolution for an increase in the number of source elements.
This is in agreement with the observation that when the number of source elements is too
high, the lead fields of the element will become more alike. This poor linear independence
in the lead field matrix causes a greater sensitivity to noise (Okamoto er al., 1983).
Additionally, they showed an improvement in resolution when the number of sensors was
increased from 81 to 441 (!). Further increase in the number of sensors cause numerical
instability, due to the similarity of the rows of L. Finally, noise did not increase the spread
of the main peak by more than 5% for realistic noise levels. This was probably due to the
relatively high ratio of sensor to grid elements.

A phantom experiment (Kullmann, 1991) confirmed the results by Wang ez al,
1992, showing good reconstruction of a single dipole on a plane. The spread increased
slightly when the depth of the plane was increased. Two dipoles located in the same plane
could be reconstructed when the distance to the sensors was not too large. For deeper
planes, only one major peak was reconstructed. A noiseless simulation with a complicated

distributed source resulted in the correct reconstruction of the details of the source.

Although these results were promising, Jeffs ez al. (1987) had already shown in
1987 (1), that the MNLS is unable to accurately reconstruct sources in a 3D source space.
They used a sphere of 3cm radius, centred around the origin, as source space. This source
space was divided in lcm® elements. First, noiseless data were simulated, induced by 3
sources lying in a single plane. The sensors were lying on a half-sphere, with radius of 4cm.
The solutions obtained with the MNLS method were blurred. Moreover, there was a clear
bias towards the sensors, and the two deeper lying dipoles were almost completely missed.
Similar results were obtained for a noisy dataset. Results for a distributed source in a larger
source space (sphere with 6.5cm radius), with sensors lying on a 8cm radius half sphere,
showed a complete loss of internal detail of the distributed source. The authors therefore
concluded that MNLS is not appropriate as a method for neuromagnetic source

reconstructions in a 3D source space.
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2.3.2.5 Limitations

The MNLS estimation introduces a bias that favours solutions closest to the sensors.
The lead field is largest for superficial sources. This implies that for a certain magnetic
induction, the magnitude of a superficial source can be smaller than that of a deeper
source; which makes this the solution that is preferred by the minimum norm method
(assuming that the residue is equal for both sources). This effect is seen when
insufficient number of sensors are used for 2D reconstructions and in general for 3D
reconstructions.

The solutions found for magnetic data produced by discrete sources are spread out,
which makes the results more difficult to interpret. However, the number of active areas
does not have to be estimated at the start of the localisation process. The blurred images
can therefore be used to estimate the number of sources. Further analysis of the data
with one of the algorithms described in section 2.2 might result in more accurate
reconstructions.

The influence of noise is not dramatic for 2D source spaces, when regularisation is
applied. However, the MNLS method fails when large external noise sources are

present (Sekihara ez al, 1994).

It will be shown in the next section that the MNLS is a special case of a generalised

Wiener-Helstrom filter and that the general form can be used to reduce the influence of

noise on the solutions and increase the accuracy of the reconstructions for 3D source

spaces.

2 3.3 Generalised Wiener-Helstrom Filter

The incorporation of noise information into the reconstruction method could reduce

the influence of noise on the source reconstructions. Assuming that the current density

distribution and the noise are random and stationary, Wiener estimation can be applied

(Shim and Cho 1981, Kullmann 1991). This estimator provides solutions that agree with the

detected magnetic fields in a least squares sense and simultaneously allows to include first-

and second- order statistical information about the sources and the noise. Grave de Peralta
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Menendez and colleagues showed that the generalised Wiener estimator optimally separates
the forward solution of a dipole from the noise in the measured data (Grave de Peralta
Menendez et al., 1997).
Second order statistical information is provided with the covariance matrices of the sources
and the noise, Kq and K, respectively.

The optimal linear estimator must minimise the mean square error (MSE) between

the source current class q and the reconstructed current class q, given by (e.g. Smith and

Barrett, 1988, Smith er al, 1990, Kullmann, 1991):

MSE=Trace Y S (4 - qXd-q)" ploja)p(a), (2-34)

with p(n|q) the probability of occurrence of the noise vector n given the source current

class q and p(q) the probability of occurrence of q.

The solution found with the estimator that minimises this error is given by (the interested

reader can find a detailed derivation in Smith and Barrett (1988)):

q=K, L' (LK L' +K,)' (B-(B))+(q), (2-35)

where <> denoted the expectation value. Assuming that we know nothing about the current
distribution (rather weak prior knowledge), the expectation values of B and q are zero. The

generalised Wiener-Helstrom estimator is then given by:

W, =K L' (LK, L'+K, ], (2-36)

It is now clear that the MNLS is a special case of the generalised Wiener-Helstrom filter,
for which no a priori information about the noise and source covariance matrices is used.
Additionally, comparison of equation 2-36 with 2-22 equation shows that incorporating the

covariance matrices is a way of regularisation. Instead of inverting the ill-conditioned lead

field matrix, the inverse of the better-conditioned matrix LK L' +K, is taken.

Utilising the information in the two covariance matrices results in reconstructions

that are superior to the MNLS reconstructions with respect to noise. The first application of
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the Wiener filter to simulated magnetic data was reported by Smith ez al (1990). Two
different source covariance matrices were used. A strong one, which was the covariance
matrix of the actual sources, and a weak one, assuming that the sources were uniformly
distributed with no source-source correlation. Additionally, eight different noise covariance
matrices were used, assuming different variances for the noise. Sources were reconstructed
in a cubic source space. Magnetic fields were computed in a planar and spherical sensor
array. The noise added to the data was in correspondence with each @ priori defined noise
covariance matrix. The reconstructions obtained with the spherical array were more
accurate than with the planar array. In general, an increase in noise variance reduced the
reconstruction accuracy. When weak « priori information was incorporated with the planar
sensor array, the reconstruction performance decreased with increasing depth, as was
already found for the MNLS method. The estimator incorporating strong a priori
information performed better than the estimator incorporating weak a priori information.
This showed the improvements that are possible with the Wiener filter, compared with the
MNLS method. A resulting question though is how accurate the a priori information should
be. This was examined for coded-aperature imaging by Smith and Barrett (1988). They
showed that using wrong a priori information (i.c. inaccurate Kq) results in poor
reconstructions that might contain spurious sources. They found that the results degraded
with an increase of incorrect @ priori information, obtaining almost meaningless

reconstructions when little correct a priori information was supplied.

The above described simulations use the covariance matrix of the sources. No method was
described as how to obtain this information for real data though. A method to obtain the
covariance matrix for the sources with real data is given in Smith (1992). A lengthy

derivation results in the following expression for an estimation of K, at delay time T:

R,(r)=L' (K,(0)-K,@)" L], (2:37)

The covariance matrix of the data, K, can directly be derived from the measured magnetic
data (Sekihara ez al., 1999) and the noise covariance matrix can directly be derived from a
measurement in the absence of signal or from the unaveraged data (e.g. Srebro, 19906a). So,
an estimate of the covariance matrix of the sources is available for use in equation 2-36,

using a delay time of 1=0. Consequently, the source reconstructions directly satisfy the
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measured magnetic coherences. Unfortunately, no examples of this approach were given in

the original paper.

Exploitation of the noise covariance alone also showed superior results to the
MNLS method in a simulation with large external noise sources and brain noise (Sekihara
et al, 1994). The simulation set-up is shown in figure 2-8. The formulation for the Wiener

estimator they used is given by:

W, =L K. (LL"K] +7) ", (2-38)

Minimum norm reconstruction of a single source was correct when no sensor noise was
added to the data. Brain noise degraded the reconstruction considerably. When large
external noise was added the reconstruction failed completely as was the case when large
external noise and brain noise was present simultaneously. Incorporating the noise
covariance matrix in the linear estimator gave a good reconstruction, even when both types
of noise were present simultaneously. A subsequent paper (Sekihara and Scholz, 1995)
modified the estimator in order to incorporate the data covariance matrix as well as the

noise covariance matrix. The estimator they used is given by:

w, =L' (K, -K,) K}, (2-39)

The simulation set-up was similar as in the previous paper, except for the fact that the
volume conductor was now an infinite half-space conductor (i.e. boundary effects were not
modelled) and there were two original sources in a plane. The results confirmed the
findings reported so far, and can be summarised as follows:

e minimum norm solutions were sensitive to the choice of regularisation parameter
whereas solutions obtained with the Wiener estimator showed more tolerance to the
choice of regularisation parameter and were less blurred. This suggests that there is a
tight coupling between weighting the solutions, by using the covariance matrices, and
regularisation. This will be confirmed later on.

e For data with very high and very low SNR the MNLS and Wiener estimations were
similar. That is, low SNR data resulted in incorrect solutions and for high SNR data the
solutions were accurate. For a deep source the MNLS estimation failed whereas the

Wiener estimator produced a correct, though blurred, solution. Inaccurate estimation of
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the data covariance matrix deteriorated
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the Wiener solutions, and bad
estimations of the noise covariance
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matrix resulted in incorrect solutions.

]
BN

\dctector plane Dale and Sereno (1993) used this linear

o estimator to incorporate anatomical and

f / temporal information in order to
reconstruction plane source ECD improve source localisation. They used a
/ different approach to obtain a covariance
ggg%ﬁg?ér matrix of the sources. Simulated MEG

. and EEG data were combined and
figure 2-8: Detector plane, volume conductor and source

space used in the simulations by Sekihara et al (1994). activity was reconstructed on a model of
The detector plane consisted of 37 sensors.

the cortical surface. This model was
computed from a set of MRI data and about 10000 dipoles were placed evenly on this
model. The dipoles were oriented perpendicular to the cortical surface (for reasons
described in section 2.1) with a spacing of about 4mm.
The source covariance matrix was used to incorporate the following information:
e Information about the correlation between the dipole strength at different locations. If

the correlation between any two cortical patches is known, the source covariance matrix

can be given by:

Ks,ij =O'iO'jC0rr(i,j), (2_40)

where o; is the standard deviation of the strength of the i dipole and Corr(i, j) is the
correlation between the strengths of the i and j* dipoles.

e Information about (a part of) the entire time course, rather than just a single time point.
It was described in section 2.2.4.2 how the noise subspace projection of the lead field
vector L could be used to estimate the locations of true dipoles. This measure was

incorporated into the linear estimation framework by Dale and Sereno (1993) as

something similar to an a priori variance estimate of the strength, o:2, for the i™ dipole,

as:
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with & as a generalisation of the value used with the MUSIC algorithm and f is a
continuous, nondecreasing function. This can be coded into the estimated source
covariance matrix as something like the variance estimate. The covariance matrix then

becomes:

Cs, Y C\ ii C_\-,jj Corr(i,]) . (2-42)

Both 2-D and 3-D simulation studies were performed, for which a single sphere model
(MEG) and 3 sphere model (EEG) was used in the forward computations. No noise was
added to the data.

With the 2-D study the EEG and MEG induced by a single source was computed in
32 sensors. It was shown that the use of EEG and MEG simultaneously gave far better
results than using one of the techniques alone. Furthermore, the use of temporal information
strongly improved the reconstruction of a deep source, that is the solution was not as
spread-out as normally found with minimum-norm-like techniques.

The 3-D study, with 61 sensors for both MEG and EEG, showed that the eight
original sources, that were well separated, could be distinguished when EEG and MEG was
combined and temporal information was used. However, nearby correlated sources were

shown to merge if they were too close together.

2 3.4 Probabilistic Methods

In section 2.3.2 it was described how the solution that had the minimum norm
property was selected from the infinite number of solutions. Another way to select a
solution is by choosing the solution with the highest probability. Each possible (continuous
or discrete) source distribution can occur with a certain probability. Therefore, the complete
set of possible source distributions can be described by a probability density function.

In order to quantify this idea, the Bayesian technique is introduced.
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Bayes' theorem is based on three kinds of probabilities:

1. A prior distribution that contains information about the quantity that we are interested
in (i.e. a priori information about the source distribution).

2. A likelihood function that contains a set of conditional probabilities for the
measurements, considering the quantity of interest. This contains information about the
measurements when it is conditioned on the value of the quantity of interest (i.e. the
magnetic field that would be produced by a certain source distribution).

3. A posterior distribution that contains the beliefs about the quantity of interest following

new evidence in the measurements.

It is now possible to define the posterior probability mathematically by the Bayesian
technique: The estimator of dipolar activity is the most probable one with regards to

measurements and a priori considerations. That is:

p(QB)= Hng = p(BQ)-p(Q), (2-43)

where p(B|Q) is the probability of observing the data B, given the sources Q (this is the
forward problem). P(B) is the probability of the observed data that serves as a normalising

constant and p(Q) the probability of Q, which can be used to include a priori information.

The most probable source distribution is then found by taking the expectation of this

probability density function or by computing its maximum value.

2.3.4.1 Assumptions

e The noise in the measured data is Gaussian with zero mean (Gull and Daniell, 1978,
Clarke and Janday, 1989).

e Ttis assumed that the primary current can be modelled as a patch of single dipole sources
(the source space is discretised) when the concept of configurational entropy is used

(Gull and Daniell, 1978).
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e It is assumed that the primary current is continuous when the concept of probabilistic
entropy is used (e.g. Clarke and Janday, 1989).
e Very large currents are not likely to occur. Therefore, the a priori probability

distribution of current density is assumed to have a finite standard deviation B.

2.3.4.2 Technique

The first probabilistic method is based on maximising the configurational entropy. It
was developed by Gull and Daniell (1978) to solve an inverse problem in radio astronomy.
The aim was to reconstruct a map of the incident radiation intensity from an incomplete set
of noisy data. The method selects a single map of the radiation intensity from all the maps
that are compatible with the measured data. This is analogue to the inverse problem in
neuroelectromagnetism, which is the problem of selecting a source current distribution
from all the possible source current distributions that are compatible with the measured
data.

The aim here is to find an estimator of the current dipole magnitudes Q that
maximises the posterior probability distribution of Q, given the measurements B. This is
done by maximising the configurational entropy under the constraint that the chi-square is
equal to the number of measurements. In other words, the most likely solution must also

satisfy:

=N, (2-44)

with x2 as defined in equation 2-2.

This is a means of regularisation that extracts the meaningful data from the measurements

while overcoming the noise. The resulting solutions are always smooth.

A different, but related maximum entropy method has been described by Jeffs et al
(1987). Their MEG simulations show that the source reconstructions found with the
maximum entropy method exhibit the same smoothing and biasing problems as the

minimum norm method.
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The mathematical framework in which the expectation (or mean) of the probability
density function is computed was developed by Clarke and Janday (Clarke, 1989, Clarke
and Janday, 1989). The probabilistic entropy is maximised instead of the configurational
entropy, again with the constraint on xz that its expectation value is N. A further constraint
is that the probability measure is normalised to unity. The advantage of taking the
expectation value, instead of the maximum value, is that the method is less sensitive to
errors in assigning the probability distribution.

This framework was used to develop a probabilistic inversion algorithm, better
known as Magnetic Field Tomography (MFT). This algorithm was tested with magnetic
simulations (Clarke and Janday, 1989, Ioannides et al., 1990), evoked magnetic fields
(Ioannides et al., 1989, loannides et al., 1995), evoked magnetic fields with single trial
analysis (Toannides et al, 1995) and localisation of magnetic epileptic activity (Bamidis et
al., 1995). See the original papers for a full description of the implementation of the
method. There are three things worth mentioning here:

e Firstly, the spatial prior probability density for J(r)), p(r;), can be used to bring a

priori information into the solution. The magnetic induction is then written as:
B(r) = YL(r) - J@)wp(r)AS;  i=L..N (2-45)
j=1

For the case of p(r}) = 1 throughout the source space, this reduces to equation 2-18,
proving that the minimum norm and probabilistic approaches are similar. It is
noteworthy that radial currents are naturally excluded from the source reconstruction
with the maximum entropy method, as was seen carlier with the minimum norm
method.

e Secondly, the method uses a regularisation parameter that allows a fit to the data that is
no more accurate than the standard deviation of the noise. The parameter is furthermore
based on the standard deviation § of the prior probability distribution of current density.
This is based on the fact that very large currents are not likely to occur. Therefore, the a
priori probability distribution of current density is required to have a finite standard

deviation .
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e Thirdly, the algorithm can be used iteratively to obtain localised solutions. This aspect
of MFT will be further described in section 2.4.3.2, as well as the results of several

computer simulations and experiments.

2.3.4.3 Limitations

Jeffs and co-workers (Jeffs er al, 1987) found that the maximum entropy suffers from
the same drawbacks as the minimum norm method. That is, biasing of the solution towards
the sensors and smearing of the solution over the source space. A correct implementation of
the MFT algorithm can partly overcome these problems by using the spatial prior
probability density to correct for the biasing and an iterative procedure to obtain more
localised solution. However, the latter solution increases the computing time of the already
very time-consuming algorithm. Furthermore, as stated by loannides et al (1990), the

method is most naturally adapted to distributed sources.
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2.4 From Distributed Sources to Discrete Sources

2.4.1 Introduction

The methods described in the previous section result in a distributed estimate of the
primary current in the source space. The continuous current paths seen in MNLS are
difficult to interpret for a neurophysiologist (Hari, 1991), as it is difficult to pinpoint the
source locations in these images. The primary current is known to originate in a relatively
small area of the brain and we are therefore looking for the more localised solutions that are
found with current dipole fitting. In other words, we are looking for a method that gives us
a solution for which most of the elements in the source space are zero. Thus, the only
assumption made in these methods is the sparsity of the solution (defined by Gorodnitsky
and Rao (1997) as a solution for which the number of non-zero elements is equal to or less
than the number of measurements). Recently, many groups have developed such
algorithms, with most exotic names, like LORETA (Pasqual-Marqui ez al., 1994), FOCUSS
(Gorodnitsky er al, 1995) and MFT (e.g. Toannides ef al, 1990, Bamidis et al, 1995). These
methods are described in the next sections, in such a way that it becomes clear that all these
methods utilise the same idea. That is, they use (mostly in an iterative procedure) a weight
on the distributed sources in order to obtain localised sources. The recursive weight matrix
is simply multiplied with a matrix that contains the a priori information and the resulting
combined weight matrix is used in the computations. By doing so the algorithm can be
forced to give a solution which is a member of a certain class of solutions, for example a
solution with non-zero elements in a certain part of the brain. These algorithms therefore
find the localised solutions, without making any prior assumptions about the number of
sources. The weights are further used to correct for the biasing towards the sensors, from
which the MNLS suffers. The use of different weights all comes down to: adding a
stabilising term that regularises the estimator. This extra term measures something like the
smoothness of the desired solution, or a quantity that parameterises the stability of the
solution with respect to variations in the data, or a quantity reflecting a priori judgement
about the likelihood of a solution. Minimising this term provides a "smooth" or "stable" or

"likely" solution, which has nothing to do with the measured data itself (Press et al, 1992).

It must be said that although the methods are very similar (equation wise), they are

developed independently and with completely different philosophical backgrounds and
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assumptions. For each method the kind of @ priori information that is used to construct the

weighting matrices will be described.

2.4.2 lterative Methods

2.4.2.1 Minimum Dipole Solutions

Matsuura and Okabe developed an iterative method that provides solutions with
only a few sources, starting with a distributed source. They tested the method first with an
1D and a cubic source space (Matsuura and Okabe, 1995). They later modified the method
so that it could better deal with noisy data and tested the method with a more realistic
source space and phantom data (Matsuura and Okabe, 1997).

Assume that there are N sensors. Firstly, a source space is constructed, as would be
done for the minimum norm method. Then, exactly N sources in this source space are
randomly chosen and the amplitude of the other sources is set to zero. This ensures that the
lead field matrix in equation 2-19 is square and therefore a unique solution for equation
2-20 can be found. However, this solution is highly dependent on the N sources that were
selected. Therefore, only repeating the random selection of N sources until all combinations
are tested would provide us with the best selection of N sources. Fortunately, under the
assumption that the solution should exhibit the minimum current property (i.e. the l;-norm
of the solution is minimised), the problem can be solved by Simplex Linear Programming
(Press et al, 1992). For the revised simplex method there are some selection rules that give
a unique solution for which the l;-norm is minimum. Hence, an exhaustive search,
impractical for realistically shaped source spaces, is not necessary.

Note that, although in each step N sources are selected, the number of sources in the final
solution does not depend on any a priori information about the number of sources (and is in
general not N).

To avoid biasing towards the sensors, the lead field matrix was multiplied with a
weight matrix that punishes superficial sources. The solutions obtained for a 1D source
space, with noiseless data produced by one, two or three original sources, were located near
the original sources, without side lobes or significant spread. The same was true for a cubic

source space, when no noise was present or when the SNR was high. For low SNR large
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spurious sources were found in the solutions (Matsuura and Okabe, 1995). By introducing
an inequality constraint that could easily be incorporated in the revised simplex algorithm,
the influence of noise on the solutions could be reduced (Matsuura and Okabe, 1997). That

is, instead of finding a solution for equation 2-20, the following equation is used:

{QSL“ B+2) (2.46)

Q=L" (B-y%)

where I is a vector that contains the standard deviation of the noise in each channel and y is

the regularisation parameter.

A proper value for y was found by performing Monte Carlo simulations with several values
forvy.
The aptness of the method was illustrated by the accurate localisation of an artificial dipole

in a spherical phantom under noisy conditions.

Another approach was described by Tilg and colleagues (Tilg and Wach, 1995, Tilg
et al., 1995, Tilg et al., 1995). They iteratively applied a linear estimator, whereby in each
iteration the smallest reconstructed source was removed from the source space, thereby
reducing the underdeterminedness of the system. The algorithm was halted when a pre-
determined number of sources were left in the source space. The main imperfection of this
method is the arbitrariness of the determination of the number of sources with which to
stop. With a simulated MagnetoCardioGram (MCG) the minimum norm estimator was used
to obtain solutions (Tilg et al, 1995, Tilg et al, 1995). The Wiener estimator (Smith, 1992)
or equation 2-36) was used for simulated MEG data, incorporating the covariance matrices
of the data and the noise (using equation 2-37). Regularisation was used to deal with the
Gaussian noise, using the value of the regularisation parameter obtained with the L-curve

method. The results showed that the method is capable of reconstructing focal sources.
A method that removes more than one source in each iteration, and therefore

converges faster, was developed by Srebro and colleagues (Srebro, 1994). This method is

described in the next section.
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2.4.2.2 Shrinking Ellipsoid Inverse

Srebro and colleagues also realised that the distributed solutions obtained with the
MNLS method were not physiologically realistic. Their first effort to obtain sparse
solutions was based on a search through a pre-defined realistically shaped source space,
searching for clusters of sources that could explain the simulated data (Srebro, 1994).

They used a realistic model of a part of the cortex, based on nine digitised contours of a
cadaver head. A total of 1271 dipoles were placed on these contours. They used the
physiological constraint that cortical sources are mainly the currents in the pyramidal
sources that lie perpendicular to the cortical surface (section 1.3.2). The dipoles were
therefore given an orientation perpendicular to the surface. The strength of each source was
either 0 or 1. A search for all possible combinations of elements that could explain the
measurements would be impractical. Therefore, clusters of sources were constructed. The
size of the cluster was systematically varied, and all source elements were tested as the
centre of these clusters. From the resulting set of solutions the one that best explained the
data was chosen. Although the localised sources were close to the original sources
(constructed out of clusters of about 12 dipoles), the method has a major drawback.
Namely, it will fail for two sources that are located far apart, because a single meaningful

cluster cannot be formed.

A more sophisticated approach, using a shrinking ellipsoid, was later reported
(Srebro, 1996a, Srebro, 1996b). The first paper (Srebro, 1996a) describes the method and
shows the main characteristics of the method. Some small, but important, modifications are
described in the follow up paper (Srebro, 1996b).

The method starts of with a MNLS solution. The (normalised) squared amplitude of
the sources is treated as if it were the probability of finding sources at these locations. An
ellipsoid could then be defined around the source with highest probability. A new MNLS
solution was then computed, using only the sources within the ellipsoid. This process was
repeated, resulting in a smaller ellipsoid in each step, until sources with a probability larger
than 1 occurred (which is obviously not possible). This excluded the need for an extensive
search through a source space. Additionally, reducing the size of the source space results in
a less underdetermined problem. This in itself results in more accurate source
reconstructions (Wang, 1993).

The results of the simulations were promising. Srebro used the realistically shaped

source space described above, placed in a 3-shell spherical volume conductor. Correlated
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noise was added to the simulated potentials in 111 electrodes. Regularisation was applied,
using zero-order Tikhonov regularisation. The original sources were constructed out of 7-
30 dipoles that were located in a cluster. Such a source was looked upon as a single
macroscopic source. They showed that the minimum norm solution for a single original
source had large values around the correct location, but that the solution was very blurred
and that it was difficult to tell whether the activity originated in the left or right hemisphere.
The final iteration of the shrinking ellipsoid however provided solutions that were near the
original sources. The solutions found when the sources were not constraint to be orthogonal
to the cortical surface were less accurate. Additionally, reducing the number of electrodes
to a more realistic number, 39, spread the solutions over both hemispheres. Two widely
spread sources could be reconstructed as well, whereas failure of the method was expected
because a single ellipsoid was used. Some spurious sources between the two sources were
found with alternating positive and negative amplitudes, and therefore producing largely
cancelling magnetic fields. Incorporating the noise covariance matrix in the Wiener-
Helstrom estimator reduced the spread around the original sources and the number of
spurious sources. The number of spurious sources was greatly reduced when some
modifications were implemented (Srebro, 1996b). The solution obtained in each iteration
was added to a vector containing the sum of the solutions of the previous iterations. After
convergence of the algorithm, a final solution was obtained for the ellipsoid constructed
from the large elements in this vector. This had 3 effects:

1) Sources that are consistently present in the ellipsoid will have a significant contribution
to the final solution.

2) Sources that change sign during the iterations will not be present in the final solution.
This is why the solution for the two spread sources was better with this method.

3) Sources present in the final iterations will have a relatively large contribution to the
final solution as the amplitude of the sources increases when the ellipsoid shrinks. This
follows from the 'conservation law' found by Wang ez al (1992). When the ellipsoid
shrinks the 'total source strength' is spread over less sources and therefore the

contribution of each individual source increases.

Furthermore, a more practical stopping criterion was given. Instead of looking for sources
with probability larger than one (a situation that can occur with real measurements), the

algorithm was stopped when the number of sources in the ellipsoid became too small to

obtain a value for . that satisfied 1 £~/ Zm/m, with m the number of sensors.
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The method was extended to localise sources from multiple latencies and used to
analyse the VEPs recorded from two subjects (Srebro and Oguz, 1997). The solution
obtained from multi-latency data during an iteration consisted of a source reconstruction at
each latency. The solutions were then weighted by the SNR at each latency. For each
dipole, the maximum value of this weighted solution over time was used to construct a new
ellipsoid. Using the maximum value instead of the sum ensures that the method does not
favour large sources (that have relatively large amplitude at all latencies). The results
obtained with this method agreed largely with the known locations of visual cortical areas

V1 and V5 obtained with other methods.

2.4.2.3 Focal Underdetermined System Solver (FOCUSS)

The Focal Underdetermined System Solver is also an algorithm that obtains sparse
solutions by iteratively updating previous obtained solutions. Effectively, this reduces the
magnitude of many sources to zero, but without the need to create a (shrinking) ellipsoid.
The algorithm developed by Gorodnitsky and co-workers (Gorodnitsky er al, 1995,
Gorodnitsky and Rao, 1997) is based on a MNLS, with an additional weight on the

solution. So, the solution can be stated as (Gorodnitsky et al, 1995):

=W(LW)" B=WW'L' (LWW'L")"'B, (2-47)

QFOCUSS

FOCUSS is an iterative algorithm meaning that the values of the previous step solution are
taken as the elements of the weighting matrix W in order to enhance large elements and
reduce small elements in the solution. This is repeated until the change in Q is not
significant anymore, indicating that the algorithm has converged. The simplest version of

the algorithm is the non-compound version, for which W is defined by:

Ql,k-l 0
W, = o) , (2-48)

with k the iteration number. So Q, ., represents the n element of Q at iteration k-1.
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It is also possible to take account of all the previous solutions, which makes it likely that

the algorithm converges quicker. This is done in the compound version and W becomes:

Ql,k—l O
W, =W, 0 , (2-49)

The algorithm always converges to a localised solution with at least a quadratic rate of
convergence (Gorodnitsky et al, 1995, Gorodnitsky and Rao, 1997). When a more general
form for the weighting matrix is used, namely WP, the rate of convergence is even 2p, at
least. The only drawback is that the initialisation has to be more accurate when p # 1 is used
in order to converge to the correct solution (Gorodnitsky and Rao, 1997). The number of
non-zero elements in the solution is never larger than the number of measurements N. It
must be stated here that the algorithm is always able to find a localised solution, but that
this solution is not necessarily the correct solution. A small perturbation in the initialisation
makes sure that a localised solution is found when the algorithm gets stuck in a distributed
solution. The solution that is found depends on the initialisation of the algorithm as well as
on the choice of the weighting matrix. Furthermore, the number of possible solutions
depends on the dimension of the source space. Therefore a more accurate initialisation 1s
needed with a source space that has large dimensions, as only then the algorithm will

converge to the correct solution (Gorodnitsky and Rao, 1997).

2.4.2.3.1 Bias Correction

The FOCUSS algorithm can partly overcome the biasing problem associated with
MNLS, though the initialisation has to be very accurate (Gorodnitsky et al, 1995). Even if
this was possible, this is not good enough in the presence of noise, and superficial sources
are still favoured. The bias can however be adjusted by introducing extra scaling factors
through an extra weighting matrix. It is not possible to estimate a scaling factor for each
element in the lead field matrix separately, but approximate bias adjustment is possible by

weighting each column in the lead field matrix separately. This corresponds to adjusting the
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strength of each current dipole in the source space during the initialisation (i.e. during the
computation of L).

A type of bias adjustment that works well for relatively compact source spaces or
when the sensors are closely spaced is called normalisation (Gorodnitsky ez al, 1995). The

weighting matrix is now multiplied by W, , the matrix that contains the scaling factors:

Ll
@)

0 1
e,

where L, is the n'™ column of L.

WBius = (2_50)

However, the algorithm favours deep dipoles now. This is due to the fact that there is no
compensation for the differences in size between elements within a column. This represents
the differences in distance between an element of the source space and the distinct sensors.

Extra factors in W, , based on the reciprocal of the average or maximum distance

between an element of the source space and the distinct sensors, can partly reduce this
problem. The exact values of the factors, which are different for each source space and

sensor configuration, are found by trial and error.

It was suggested by Bedford (1995) that it is not justifiable to use a biasing matrix
to overcome the depth bias. His conclusion is based on the following reasoning: suppose
that a set of simulated magnetic measurements is produced from a deep current dipole
source of known location. When an unweighted minimum norm method is used to solve the
inverse problem, it reconstructs an erroneous superficial source. With an unbiased
algorithm, the original source is correctly reconstructed. So there are two source
reconstructions which are both compatible with the data. Suppose that the location of the
true source was not known, which is the case with real data, then it would be impossible to
know which of the two reconstructions was the correct one. On this basis Bedford
concluded that it is not justifiable to use the unbiased algorithm. However, one could come
to the opposite conclusion. As mentioned several times before, the inverse problem has no
unique solution, so the two source reconstructions are only two representatives from an

infinity of possible solutions. It is our task to find the solution that best explains the
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measured data and satisfies constraints set by anatomy and physiology. When this is
possible by using an unbiased algorithm, why not use it?

The unbiasing matrix can be chosen in such a way that a superficial source is reconstructed
by the FOCUSS algorithm when the known source was superficial and a deep source is
reconstructed when the known source was a deep source. This can be tested by performing

computer simulations.

Recently, Brauer and colleagues (Brauer et al., 1996) described a modified linear
estimation approach, tested with a simulation study. They used an iterative algorithm to
localise sources in a realistically shaped model of a human torso. Although the authors did
not mention this, the algorithm they used worked in the same way as the FOCUSS
algorithm. The weighting matrices they suggested was the normalisation matrix and a

matrix with the field error, defined as:
w; =B, - B, (2-51)

where By, is the measured magnetic field in channel i and ﬁj,i is the magnetic field in this

channel due to the source at location j.

They further removed sources with a magnitude below a certain threshold and randomly
shifted all the source dipoles with a small amount in each iteration in order to obtain
localised sources. Their results were best when both weighting matrices were used,
enabling (although not perfectly) the reconstruction of two antiparallel dipoles, separated

by 2cm.

242372 Relation with Statistical Methods

The expression in equation 2-47 is a special form of a formula obtained when the
Moore-Penrose pseodoinverse is replaced by the linear estimator known as Wiener-
Helstrom filter (see section 2.3.3). This filter is also capable of finding the least squares

minimum norm solution. We repeat equation 2-36 here:
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W, =K, L' (L K L +Kn)_l, (2-52)

with Kq and K, the covariance matrices of the sources and the noise, respectively.
The source covariance matrix could include prior knowledge about the strength of the

sources in different regions and correlations between various active areas. When we write

Kq L' as W and K, as I, we obtain equation 2-47 again, with the inverse instead of the

generalised inverse. To elucidate, a certain weight matrix in the weighted minimum norm

algorithm has its counterpart in a matrix that contains statistical knowledge in the

probabilistic method.
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2.4.3 Other Methods

2.4.3.1 Low Resolution Electromagnetic Tomography (LORETA)

LORETA (Pasqual-Marqui et al, 1994) is another attempt to obtain a more localised
solution than the minimum norm solution, although the result is still a distributed source.
The method does not assume a limited number of dipolar points but it assumes that the
current distribution is smooth. The smoothest of all possible current distributions is found

by using the minimum norm formalism with a minimum spatial Laplacian instead of the

minimum l;-norm. So, instead of minimising Q , they minimise HW"QH . The solution is
1 2

then given by:

QO=W(LW)'B, (2-54)

where W is an n x n matrix that provides the weighting on the solution.

W is composed of two matrices, W and W, that arc multiplied with each other. W,
corrects for the biasing problem, associated with MNLS, through normalisation. This will
be more thoroughly discussed in the next section. W, is the inverse of the discrete
Laplacian operator matrix.

As a result of using the Laplacian operator, the method has a relatively low spatial
resolution. This means that two adjacent, simultaneously active sources are reconstructed

with LORETA as one blurred source.

The method has so far only been used with EEG data, either simulated data, evoked
responses (Pasqual-Marqui et al, 1994) or epileptiform activity (e.g. Lantz et al., 1997). A
3-shell spherical head model was used for the forward computations and a regular 3D grid
as source space, lying inside the innermost shell.

By using simulated EEG data produced by two dipoles, it was shown that LORETA
was able to separate two dipoles that were 3.1cm apart, whereas a single dipole fit resulted
in a fit with the dipole located between the two original sources. A fairer case would be the

comparison between LORETA and a two dipole fit. When the two dipoles were separated
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1.5cm apart, LORETA could not distinguish them anymore and the result was one blurred

source, located between the two original sources.

Two types of evoked responses were analysed. One was visual evoked potentials
during checkerboard stimulation. The other one was auditory-visual evoked responses. The
auditory signal served as a warning signal and the visual stimulus was either a black cross
or a black square. The subjects were asked to press a button as soon as possible after
presentation of the cross (target). Only the brain responses to targets were analysed. With
the first type of stimulation the grand mean average over all 21 subjects was computed and
the point of maximum global field power (GFP) between 80 and 130ms (corresponding to
the visual P100 component) was used with LORETA and the single and 2 dipole fit
method. With the second type of stimulation the grand mean average of 10 subjects was
used and three time points of maximum GFP were selected. These time points
corresponded with:

e the auditory N100 component

e a time point between 500 and 700ms before the onset of the imperative stimulus
(representing the Contigent Negative Variation, CNV)

e a time point between 200 and 400ms after the onset of the imperative stimulus,

corresponding to the P300 component.

The results of the visual evoked responses showed that LORETA generates physiologically
meaningful results. The results were in fair qualitative agreement with the single dipole fit
method for one of the sources revealed with LORETA. The second source was however not
found with the single dipole fits (of course), nor with two dipole fits.

The results with the dipole fit methods for the auditory-visual evoked responses were not in
agreement with the expected locations for the N100 component and resulted in unlikely
localisations for the cognitive responses. However, LORETA gave results that were in
agreement with the findings of Scherg and von Cramon (Scherg and von Cramon, 19854,
Scherg and von Cramon, 1985b, Scherg and von Cramon, 1986) for the N100 component,
without introducing the a priori constraints used by Scherg and von Cramon. The method

provided new suggestions about the locations of the cognitive components.

The above described results showed the ability of the method to localise electrical

sources in the brain, where the dipole fit methods failed. The results were however still
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distributed sources and the spatial resolution was low. The methods described in the
following section try to overcome these problems by using an iterative weight (or re-

weighting).

2.4.3.2 Magnetic Field Tomography (MFT)

The mathematical framework that is the basis of this probabilistic approach has
been described in section 2.3.4. In this section we focus on the tests that were carried out

with this algorithm and especially on the iterative version of the algorithm.

Tests

Firstly, the non-iterative version of the algorithm was tested with simulated
magnetic fields, induced in 121 sensors by two anti-parallel dipoles located in a disk

(Clarke and Janday, 1989, Ioannides et al, 1990). No a priori information was used, which

means that a uniform spatial prior probability density for J(r;.) was used and 10%

maximum-signal noise was added to the data (see Ioannides et al (1990) for the definition
of maximum signal noise). The results were more stable when the regularisation parameter
was given a value unequal to zero. They also found that the algorithm performed better
when more distributed sources were used to generate the magnetic field. The
reconstructions with noisy data were good when the regularised algorithm was used.
Furthermore, the iterative version of the algorithm was tested with the two dipoles. In each
iteration the probability function was defined in terms of the current density found in the
previous iteration. This is comparable with the uncompound version of the FOCUSS
algorithm. Three versions were tested:

1) p(r)=J(r;)

2) p(ry) =NJ(x;)

3) pary) =J(r))
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The best choice was found to be version I, as the second version converged too slowly and
the third version converged too strongly towards the strongest source. The results with all
three versions were rather localised solutions.

In a 3-D simulation Ioannides and colleagues (loannides et al, 1989) showed that it
is possible to reconstruct two anti-parallel sources in a cylinder, although the magnitude of
the lower source was difficult to recover. They used a prior probability weight that favoured

deep sources (anti-biasing).

Secondly, the algorithm was tested with measured evoked fields, following the
reversal of a checkerboard pattern. A single channel was placed in 42 different positions
above the head. The regularised version of the algorithm was used, as well as a uniform «
priori probability. The results are difficult to interpret, but clearly show the arrival and
development of activity in the visual cortex. Such an ‘animation’ is not possible with a
single current dipole fit method, since the results of such a method are unstable when the
signal to noise ratio is small, i.e. at the onset of the activity sequence.

In another experiment, MFT was used to reconstruct sources from averaged and
single trial MEG signals in an auditory “odd-ball” paradigm and an experiment with simple
auditory tones (Ioannides et al, 1995). The results demonstrated how the technique could be
applied to real data and seemed physiologically reasonable. Either the result of the
instantaneous MFT or the integration of activity over time was shown. To avoid biasing
towards the sensors, the spatial a priori probability function was set to be a Gaussian
function, centred around the origin of the conducting sphere. A one step iterative algorithm
was used, in which the computations were repeated with a spatial a priori probability
distribution that was equal to the original Gaussian function multiplied with the modulus of
the source current density of the first iteration. In this way, more (but not highly) localised
solutions were obtained. No reason is given in the paper why the algorithm was not used
with more than one step.

The single trial analyses showed a small variability in the solutions from trial to
trial. They suggested that in different trials, the brain handles the incoming signals
differently. Another explanation however could be that the differences were due to
differences in the noise. This could not be tested as no information was given about the
noise in the signals.

It was further shown that the algorithm was capable of localising deep sources in the

presence of superficial activity, using recorded data.
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Thirdly, MFT was used to localise interictal epileptic activity (Bamidis et al, 1995,
loannides et al, 1995). The same algorithm was used as described above, except that
Bamidis et al, 1995) used only one iteration. A spatio-temporal cross-correlation matching
technique was used to identify similar epileptiform events before averaging. It was shown
that MFT is able to localise single epileptic spikes as well as deep activity, although the

physiological plausibility of their results remained unclear.

2.4.3.3 A Bayesian Approach

Two algorithms based on a Bayesian approach have recently been developed
independently by Baillet and Garnero (1997) and Phillips and co-workers (Phillips et al.,
1997). We describe here the basic idea of their methods, the assumptions they made and the
tests they performed. For a full description of their algorithms we refer to the original
papers.

Worth mentioning here is another interesting implementation of the Bayesian
formalism was published by Schmidt and colleagues (Schmidt ez al., 1999). Their
implementation differs mainly in that, instead of finding a 'single’ best solution, a
probability distribution of solutions is obtained. This distribution is then used to make

inferences about the properties of active brain areas and the likelihood of these properties.

Method

The Bayesian approach is based on the idea of finding the solution to the inverse
problem that maximises the a posteriori probability of Q. The mathematical framework for

this was described in section 2.3.4. This maximum a posteriori (MAP) estimator can be

written as:

Q=max( p(QpB)), (2-55)

with p(Q | B) as given in equation 2-43.
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When Q and the noise (= n) are independent and normally distributed with zero mean and

covariance K, and K, the MAP of Q gives as an estimate for Q:

Q=KL (LK L' +K,)'B, (2-56)

This is equal to the solution obtained with the Wiener-Helstrom estimator, equation 2-36. It
shows the equivalence between the regularised minimum norm method and the Bayesian
approach. With the Bayesian estimate the weighting matrices are equivalent to a generally
arbitrary selection of the covariance matrices. Baillet and Garnero (1997) and also Phillips
and colleagues (Phillips ez al, 1997) describe how they select the weighting on the solution.
It is based on the observation that p(Q|B), the MAP estimator, can be defined as a Gibbs

distribution. That is:

p(Q!B)%e'”‘Q), (2-57)

where Z is a normalisation constant, the so called partition function. U(Q) = U,(Q) + A
U2(Q) where U1(Q) and Uy(Q) are associated with p(B]Q) and p(Q), respectively.

The MAP estimator is therefore found by minimising the energy function U(Q). Baillet and
Garnero (1997) associate all the prior information with U,(Q) and therefore their method
only influences the regularisation, whereas Phillips and co-workers colleagues (Phillips et

al, 1997) influence the whole energy function.

Assumptions

The assumptions Baillet and Garnero (1997) make to construct their energy
functions are:
* Anatomical constraint on source locations and orientations, i.e. sources perpendicular to
the cortical surface obtained from an MRI.
e Dipole magnitude evolution is smooth in time, since the frequency of bio-
electromagnetic signals is smaller than 100Hz and the measurements are over sampled.
» Sources might or might not have correlated activities, i.e. discontinuities may exist in

the source space.
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* Information about active sites, obtained from Positron Emission Tomography (PET) or
Functional Magnetic Resonance Imaging (fMRI), can be used. This assumes that
metabolically active areas are closely related to active neuron groups.

e The MAP estimator can be defined as a Gibbs distribution.

Philips and colleagues (Phillips e al, 1997) made the following assumptions:

» Current sources are sparse and focal. Therefore a binary indicator process is used to
model whether each source dipole is on or off. Furthermore, active sources are assumed
to have Gaussian amplitude in space.

¢ The MAP estimator can be defined as a Gibbs distribution.

¢ Assumption of additive white Gaussian noise.

¢ Sources are oriented perpendicular to the cortical surface.

Tests

Baillet and Garnero (1997) compared their method with the minimum norm method
and LORETA, using simulated EEG data from 16 active areas (8 dipoles in each area) in a
three-shell spherical head model. A total of 65 electrodes were used. Four of the patches
were activated following a simple activation sequence for dipole magnitudes, using
different scaling ratios and delays for each patch. White Gaussian noise was added to the
data with a standard deviation that was 10 times smaller than the standard deviation of the
simulated data.
Using the minimum norm method and LORETA the reconstructed activity was
oversmoothed, although the latter method performed better. Both methods were sensitive to
noise. The MAP method reconstructed the activity more accurately, with the best result
obtained when temporal information was used. Furthermore the algorithm was more stable

when this kind of prior information was used.

Philips and co-workers (Phillips er al, 1997) compared their method with the
minimum norm, normalised minimum norm, LORETA and FOCUSS. They simulated
MEG data in 80 sensors in a 1-D sensor array. The 2-D source space was a 90° annular

segment containing 1098 dipoles, with a distance if 1.5mm between them. A total of 8
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sources were activated in 3 clusters. Simulations were carried out with noiseless data and
with added white Gaussian noise, resulting in an SNR of 20dB and 8dB.
The minimum norm, normalised minimum norm and LORETA reconstructed the activity
oversmoothed. The results of the FOCUSS algorithm and the MAP estimator were
comparable, resulting in sparse solutions (3 clusters were reconstructed). The performance
of both methods deteriorated when the amount of noise was increased, resulting in the
mislocalisation of at least one cluster.

They further tested the methods with experimental phantom data, showing that their
algorithm was able to reconstruct the three original sources, although not all three locations
were correctly found. The other methods performed comparable to the simulations

described above.

A disadvantage of both methods is that they need some well-chosen tuning
parameters, called hyperparameters. The values of these parameters can only be defined on
an empirical basis. Baillet and Garnero (1997) use two parameter to tune the contribution of
spatial and temporal prior information and two scaling parameters. Philips and colleagues
(Phillips et al, 1997) use three parameters that determine the relative contribution of sparse

and clustered sources and the strength of the clustering.
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2.5 Synthetic Aperture Magnetometry (SAM)

An effective means of reducing the influence of noise sources on the recorded
magnetic fields in the MEG sensors is to form a gradiometer configuration (section 1.3.1).
The noise reducing effect is based on the spatial selectivity of the gradiometer, being more
sensitive to nearby sources than to distant sources. In effect, the incoming signals are
spatially filtered by the gradiometer.

Synthetic Aperture Magnetometry (SAM) also utilises the spatial selectivity of sensors;
virtual sensors that is, located in a volume of interest within the brain. The output of each
virtual sensor is a linear combination of the signals recorded in the physical sensors, just as
the output of a gradiometer is the linear combination of the magnetic fields induced in the
individual coils. The spatial selectivity of each virtual sensor is adjusted by optimising the
set of weights used for this linear combination. SAM is a so-called statistically optimum
beamformer, meaning that the weights are optimised based on the statistics of the data (Van

Veen and Buckley, 1988).

Repeating equation 2-17 here:
B, = B(r,) = J.Li(r')-J(r’)d3r' i=1,.,N, (2-58)
Q

with B; the measurement in the i™ sensor and L; the lead field of this sensor. N is the total

number of sensors and J is the current density that produces the magnetic field.

As stated above, a virtual sensor, Byiwa is formed by a linear combination of the

measurements (Robinson and Rose, 1992):

N
B virtual 2 Bi w i‘“m‘“l ’ (2—59)
i=1

With w™" the weighting coefficients for the virtual sensor that determine the spatial

selectivity of the sensor.

Combining the above two equations gives the following for the lead field of the virtual

SENsor:
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Lvirluul = ZLI Wi\’mua] 4 (2'60)

N
i=1

The 1deal virtual sensor would be a sensor that only responds to signals that were produced
by a source at the location of the virtual sensor. In other words, the ideal lead field of a
virtual sensor is the delta-function. Hence, the weighs are optimised so that the difference
between the virtual lead field and the delta-function is minimal. Additionally, statistical
information, in the form of the covariance matrix of the measurements, is utilised in the
optimisation of the weights (see Robinson and Rose (1992) and Robinson and Vrba (1998)

for details).

The influence of noise sources within the brain decreases when the spatial
selectivity of a sensor is increased. The signal from brain sources is however not
necessarily orthogonal to the signal from the target source. Hence, increasing the spatial
selectivity also decreases the projection of the target signal. In order to maintain a strong
response to the target signal, the magnitude of the weights has to be increased. This
increases the amount of noise projected into the virtual sensor (Robinson, 1989), hence
there is a trade-off between the spatial selectivity and influence of noise of the virtual
sensor. This trade-off was seen before for linear estimation methods in the form of the L-
curve from which an optimum regularisation parameter can be chosen (see section 2.3.2.3).
In this context the trade-off curve between spatial selectivity and variance of a virtual
sensor, also L-shaped, is described as the Backus-Gilbert curve and the output of the virtual

sensor is regularised by the Backus-Gilbert multiplier Q.

A tomographic image is obtained by placing virtual sensors on a grid placed in the
brain volume. The squared output, i.e. the source power, of each virtual sensor is then
displayed as a colour coded map on this grid. Activity in areas that produce a signal in the
physical sensors that is sufficiently orthogonal to signals from other brain sources are then
found as bright areas in the tomographic image. Alternatively, the measured data can be run
through a virtual sensor (Robinson, 1989, Robinson, 1999). By doing so, it is possible to
reveal brain responses in single epochs, because the influence of other brain sources on the

output of the virtual sensor is reduced.
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The spatial selectivity in the tomographic SAM maps can be further enhanced by

Significance Probability Mapping (SPM), first described by Duffy and colleagues to

enhance differences in topographic maps for electrical recordings (Duffy ez al., 1981). Two

types of SPM can be used:

Z-transform statistic. This is used to highlight regions in a map that are statistically
different from a set of reference maps. The result is a Z-value (the number of standard
deviations by which an individual observation differs from the mean of a reference set)
for each gridpoint so that another tomographic map can be formed from the Z-values.

Student's z-test statistic. This is used to highlight regions in a set of maps that are
statistically different from a set of reference maps. The mean and variance is computed
for both sets of maps and Student's z-statistic is computed. The result is a #-value for

each gridpoint so that another tomographic map can be formed from the ¢-values.

The main advantages of SAM are:

The spatial filtering enhances the SNR so that active brain regions can be found that
underlie unaveraged data.

SPM is performed in the projected signal space, not in the signal space itself.
Statistically relevant differences between SAM maps are therefore likely to be due to
differences in brain state and not due to differences in recording parameters (like
distance from the sensors).

The statistical comparison of SAM maps can be used to analyse MEG data obtained
with paradigms similar to those used in fMRI and PET (for example active versus

control state paradigms, see Robinson, 1997).
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2.6 Choosing the Inversion Technique

The aim of this section is not to select the 'best' technique. Instead a technique is
chosen that can incorporate a priori information in a insightful and straightforward manner.

The merits and limitations of the techniques described in this chapter have been
outlined in detail for each approach separately. Each technique can provide useful
information about the brain activity underlying recorded magnetic fields, provided the
results are interpreted with care and in the context of the constraints that have (implicitly)
been applied. Additionally, an algorithm that is superior under all conceivable conditions
does not exist, due to the very nature of the biomagnetic problem (Liitkenhoner et al.,
1996). That is, there are an infinite number of solutions for the unconstrained problem. A
single solution can only be found when constraints are applied. Consequently, an algorithm
can only be optimal under the constraints that were applied. The price for having
advantages under certain conditions is having disadvantages under other conditions
(Liitkenhoner et al., 1996). Moreover, comparison of techniques is troubled by the variety
of conditions under which they have been tested, i.e. different measurement set-ups, noise
realisations, number of active sources etc. A few attempts to compare techniques
objectively can be found in Liitkenhoner et al (1996) and in Grave de Peralta Menendez et
al. (1996), Grave de Peralta Menendez et al (1997) and Grave de Peralta-Menendez and
Gonzales-Andino (1998).

The technique that is going to be used must be able to select one solution out of the
infinite possible solutions to the inverse problem. This solution must account for the data
and must be stable with respect to the noise in the data. Such a solution should also be able

to incorporate a priori information in a straightforward manner.

Most of the algorithms that are used to reconstruct a number of discrete sources
(section 2.2) minimise a cost-function in order to find the solution that best accounts for the
data and any constraints that are applied. A priori information can be readily incorporated
by altering the cost-function, as discussed in section 2.2. However, the main drawback of
these techniques is that the number of sources must be known beforehand, which is no
trivial issue (section 2.2.2.3). Additionally, modelling activity of a distributed nature as a

discrete source can introduce large errors.
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The techniques that are used for the reconstruction of distributed sources (section 2.3)
are well suited to incorporate a priori information in the form of spatial constraints, as it is
necessary to define a source space for these techniques. Hence, the shape and location of
this source space exploits a priori information of a spatial nature, i.e. anatomical
constraints. Furthermore, temporal constraints can be used with these techniques as well. A
big disadvantage of these techniques is however the biasing of the solution towards the
sensors, although it is possible to counteract the biasing effect by using appropriate weights
in the solution. Another disadvantage is that the reconstructed source images are often
difficult to interpret, especially when multiple areas are active simultaneously.

The hybrid methods described in section 2.4 combine the advantages of the discrete
and distributed techniques. The number of sources can be unknown at the start of these
algorithms, yet the final solution contains only a few discrete sources. Also, a source space
is used hence the incorporation of anatomical constraints is straightforward. Moreover, the
use of weighting enables the incorporation of additional a priori information. For example,
the weights can be adjusted so that sources in a certain region are favoured, in case it is
known from other modalities like PET or fMRI that these regions in the brain were active
(Liu er al., 1998). The incorporation of information about the noise in the data is
straightforward as well (Sekihara et al, 1994, Sekihara and Scholz, 1995, Sekihara et al,
1999).

The task is now to select one of the iteratively weighted techniques described in
section 2.4. Note that although the different methods are based on different principles, the
final equations to solve are similar. This is clearly seen when equations 2-47, 2-54 and 2-56
are compared with the formulation of the generalised Wiener filter (equation 2-35) (see also
Phillips et al (1997), Grave de Peralta-Menendez and Gonzales-Andino (1998) and Michel
et al. (1999)). The similarity between MFT and FOCUSS has also been discussed (Taylor
et al., 1999). A limitation for the practical use of MFT is that it is a very time consuming
technique. A disadvantage of all the techniques described in section 2.4 is that they make

use of hyperparameters, whose values can only be found empirically.

The method of choice for this work is the FOCUSS algorithm, because the
principles of the FOCUSS algorithm are mathematically straightforward and well described
(Gorodnitsky et al., 1992, Gorodnitsky and Rao, 1992, Gorodnitsky, 1994, Gorodnitsky and
Rao, 1994, Gorodnitsky er al, 1995, Gorodnitsky and Rao, 1997). Moreover, the
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formulation of the FOCUSS algorithm allows for the easy incorporation of a priori
information in the form of a weighting matrix and by using a source space that can be used

to incorporate spatial constraints.
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3 Using a Realistically Shaped Source Space

3.1 Introduction

Functional information on its own does not give a complete understanding of the
organisation of the brain. Merging the functional information with anatomical data provides
us with a more complete account of its functioning and interconnections. It is therefore
common practise nowadays to combine the results of functional imaging studies
(EEG/MEG, fMRI and PET) with anatomical data obtained with MRI or CT. Normally,
this means that the functional data (for example a fitted equivalent current dipole from an
MEG study) is overlaid on an image that contains the anatomical structures or on a 3D
representation of the cortical surface (see for example Hamildinen (1991), Fuchs er al.
(1994), Liitkenhoner er al. (1995), Anderson et al. (1996)). This can only be done when the
co-ordinate system in which the functional data is obtained is linked to the co-ordinate
system in which the anatomical data is measured. This is called co-registration of both
modalities. This co-registration must be accurate in order for the integration of the
functional and anatomical information to be meaningful. Accurate co-registration is even
more essential if anatomical information is used to constrain source localisation from MEG
or EEG data. Inaccurate co-registration and therefore inaccurate anatomical constraints bias
the localisation algorithms in a less predictable way. The applicability of the FOCUSS
algorithm, using a realistically shaped source space, is thus dependent on the accuracy of

the co-registration method that is used.

In section 3.3 methods of co-registration are examined, followed by an analysis of the
accuracy of the proposed co-registration method in section 3.4. The most accurate method
for co-registration of two datasets in different co-ordinate systems is based on surface
matching (Schwartz et al., 1996). With this method the distance between a set of points in
the 'functional' co-ordinate system and a corresponding surface in the anatomical datasets is
minimised, best illustrated as fitting a 'hat' onto a 'head'. For this purpose a surface has to be

defined in the anatomical dataset from a set of 2D images. This utilises the same techniques
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as used for the construction of a realistically shaped source space that can be used as an
anatomical constraint in source localisation algorithms. These techniques are therefore first
described in section 3.2.

First of all, one has to define the voxels in the brain that form part of the same structures, a
process called segmentation. This can be done based on the properties of each voxel and its
neighbours. There is a huge interest in this subject as it is an essential part of many research
areas, ranging from pattern recognition to assessment of the effect of treatment of tumors.
A brief review of the main segmentation approaches is given in section 3.2.2. The result
obtained from the segmentation can then be put to use by selecting only the regions that
form the grey matter. In section 3.2.3 it is described how these regions are connected so that
a description is formed of the cortical surface. This cortical surface is then used to create a
realistically shaped source space that is applicable as an anatomical constraint for source
localisation algorithms (section 3.2.4). These methods are also used to form the 'head’

surface that is used by the surface matching algorithm.
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3.2 Constructing a Realistically Shaped Source Space

3.2.1 Introduction

The technique most often used to obtain anatomical information for MEG/EEG
studies is Magnetic Resonance Imaging (MRI). It is also possible to obtain anatomical data
from other techniques like Computed Tomography (CT) or Positron Emission Tomography
(PET). However, PET is less accurate than MRI because of the larger voxel sizes that are
used and more invasive because it uses a radioactive tracer (e.g. Aine, 1995). A drawback
of CT scans is that the brain boundaries are not clearly defined, although bone is easily
recognised.

In this section the focus is therefore on MRI and the technique is briefly described. More
details of the technique, its possibilities and its limitations are given in an excellent review

of MRI and PET by Aine (1995).

Magnetic Resonance Imaging

During an MRI scan a subject is placed within a static magnetic field of, typically,
1.5T. This field aligns the magnetic vectors (spins) of atomic nuclei. The spins can either be
orientated 'parallel’ or 'anti-parallel' with the direction of the external magnetic field. Since
the parallel orientation is a state with lower energy, there is a net magnetisation in the
parallel longitudinal direction. In fact, the spins precess around the direction of the external
magnetic field with a frequency that is known as the Lamor frequency. This frequency is
directly proportional to the strength of the magnetic field. The spins are out of phase when
they are aligned by the external magnetic field and the signal that is produced is therefore
Zero.

A measurable magnetic field is produced when net magnetisation is created along the
transverse axis, in such a way that the spins are in phase. This is achieved by applying a
small RF field that is transverse to the steady magnetic field and resonates with the Lamor
frequency. The energy delivered by the RF pulse brings spins from the lower energy state
in the longitudinal direction into the higher energy state in the transverse direction, with the

spins in relative phase. When these spins return to their original state, they release energy.
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reduced to 37% of its maximum is known as T2. Thus, T1 and T2 refer to the time that is
required to restore 63% of the original longitudinal magnetisation and lose 63% of the
recorded signal strength, respectively. The T1 and T2 values depend on the biological tissue
and its surroundings. Additionally, the initial signal strength depends on the number of
spins that are exited within a voxel, which in turn is mainly determined by the amount of
hydrogen in the voxel. The amount of hydrogen that is contained within a certain tissue
varies for different tissue types. Thus, it can be determined what the tissue type is on basis

of the T1 and T2 values and the relative signal strength.

A A gradient is applied to the steady magnetic field

w

g Poor

S| Contrast T2 to determine the origin of the signal that is picked up by
%- Poor SNR Weighted

the receiver coil. The Lamor frequency is directly

TE

Proton proportional to the external magnetic field hence the

Density . ) .
i frequency of the measured MR signal is a function of

10-40 ms

location. Thus a range of Lamor frequencies is created
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figure 3-2: Diagram that shows how
the relative contribution of different
tissues to the recorded MR signal is

P along one axis. The distinction between different voxels

in the other direction is based on phase encoding. For

this purpose a gradient in the other direction is applied

affected by the RF pulse sequence (TE
and TR). For example, long TR and
TEs highlight differences in T2
between tissues (figure modified from
Aine, 1995).

to the external magnetic field. This gradient is however
switched off before the MR response is recorded. The
gradient causes frequency differences between the spins
in different voxels. The spins with higher frequency precess faster and get ahead of the
spins at lower frequencies. When the gradient is switched off, the spins all precess with the
same Lamor frequency again, but the phase difference will remain. The frequency and
phase information so encoded in the recorded signals can be used to determine the spatial

origin of the signals by means of Fourier imaging.

The RF pulse sequence is determined by two timing parameters, TE and TR. The
interval between the excitatory RF pulse and the detection of the response of the tissue to
this signal is defined as TE. The time between two RF pulses 1s known as TR.

The values of TE and TR determine whether the recorded signal is mainly due to T1- or T2-
relaxation. As mentioned above, different biological tissue asserts varying T1- and T2-
relaxation values. Thus, by varying the values of TE and TR, the contrast between tissues

can be manipulated. For example, a T1-weighted image (i.e. TE and TR are chosen to
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highlight differences in T1 values) shows a clear distinction between CSF and grey matter
(Aine, 1995). It follows from figure 3-2 that an MRI scan with short TE and TR can best be

used if one wants to perform segmentation of the cortical surface.

The result of an MRI scan is a dataset that consists of a set of cross section slices.
Each slice consists of, typically, 256x256 pixels. The pixel value is the coded response of
the tissue to a RF pulse. In figure 3-1 a set of coronal cross sections is displayed as a stack
of images. The set of cross section slices form a 3D array. Each element in this 3D volume
is then referred to as a voxel. Normally, the in slice resolution is higher than the inter-slice
resolution (i.e. pixel dimensions are smaller than the slice thickness). It is however possible
to obtain the same resolution in all three directions by combining three orthogonal series of
2D scans (Dale and Sereno, 1993). A volume scan also gives high resolution in all 3

directions, but the scanning protocols are less flexible.

The MRI co-ordinate system is based on the pixels in each slice. Each pixel has a x
and y co-ordinate. For the MRI dataset used in this study, the origin is defined as being at
the right side, above and in front of the head and with the x-axis running from right to left
and the y-axis from top to bottom. The z co-ordinate is the number of the slice, with slice
number one at the front of the head. The x-, y- and z-axes are scaled by a scalar in order to

obtain the proper physical dimensions.

3.2.2 Segmentation

Different tissue types contain different amounts of hydrogen and consequently their
relaxation times vary when measured in a MR scan. The voxels that represent the tissues
are usually displayed as 8-bit grey levels. Thus, each tissue is represented by a grey level or
intensity value, or in fact by a range of values. Segmentation is the process of finding the
intensity values that correspond to the tissues of interest. This is not trivial, due to noise in
the scanner and the sheer number of voxels (generally 256x256x128 voxels). Moreover, the
differences in intensity levels between various tissue types can be small and variations in
intensity level of a tissue type throughout the whole volume can arise due to RF-field

inhomogenities (Wieringa, 1993, Bafra et al., 1994, Dale et al., 1999). Additionally, the
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partial volume effect near the boundaries of tissues (i.e. one voxel contains two or more

different tissues and the grey value is therefore due to the contribution of all these tissues

(Aine, 1995) further troubles the classification (e.g. Bafra et al, 1994, Taxt and Lundervold,

1994, Dale et al, 1999).

Segmentation has many important applications, like (see also Heinonen et al., 1999):

e 3D visualisation of anatomical structures.

o Co-registration of functional and anatomical information.

e Construction of realistically shaped head models for the forward problem in MEG
/EEG.

e Volumetric analysis in order to asses the affect of treatment on tumors, the progression

of Multiple Sclerosis and identification of the affected side in temporal lobe epilepsy.

Consequently, a lot of research effort has been put into the development of segmentation
algorithms. An overview of different techniques is given in Pal and Pal (1993), Suetens et

al. (1993) and Clarke et al (1995).

The different techniques can be classified as manual, semi-automatic and automatic.
Additionally, a classification based on the operation principle is possible, like boundary- or
region-based techniques or statistical techniques. Different techniques can be integrated as
well.

The simplest segmentation technique, thresholding, is described first, followed by a short
description of some of the more complex approaches. A more complete overview of

segmentation techniques can be found in the review articles mentioned above.

Thresholding

As described above, in an MRI each tissue is represented by a range of intensity
values. The aim is then to choose an intensity range that represents the tissue of interest, for
example the grey matter. The segmentation result can then be displayed and examined. If
necessary, the range can be adjusted. This task is labour intensive, but easy to perform. A
more automatic approach is based on a histogram of the pixel values in an MRI slice. Such
a histogram usually contains a few peaks that represent tissues that are well represented in

the slice, and a peak due to the background. The range of intensity values that represents
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the tissue of interest can then be
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figure 3-3: Histogram of slice 100 from the MRI of the

head of subject IEH. The peak on the left side is due to the shown. The first peak represents the

background. The other two peaks represent mainly the grey

and white matter. background and the second and third
peak represent the grey and white

matter, respectively. The values of other tissues (like the skin) fall within these ranges as

well.

The intensity values of a tissue type can vary throughout the volume due to field
inhomogeneities in the MR-scanner. This can be accounted for by selecting a separate
range of values for each slice (Wieringa, 1993) or by applying intensity normalisation,
based on shifting the mean white matter intensity value of each slice to a desired value
(Dale et al, 1999). Normalisation is based on the white matter voxels as there is a large
number of them and they form large objects (i.e. the influence of the partial volume effect
is negligible).

Thresholding works as well as any sophisticated technique if the amplitude features

completely characterise the desired tissue (Bafra et al, 1994).

Region Growing

Segmentation based on intensity values alone does not utilise any spatial
information. Region growing methods construct regions by grouping spatially proximate
voxels that conform to certain constraints (e.g. George et al., 1989, Wieringa, 1993). A
number of voxels are chosen in the tissue of interest. Around the boundaries of these seeds,

voxels are added that conform to the constraints. These constraints are based on intensity
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values and/or morphometric information. The process stops when there are no more voxels

left that conform to the constraints.

Segmentation by means of region growing is usually succeeded by morphological
operations (Hohne and Hanson, 1992, Wieringa, 1993, Wieringa and Peters, 1993,
Psaltikidou et al.):

After initial segmentation, based on thresholding and/or region growing, a combination of

the following operators is applied.

e FErosion: Objects are reduced in size, holes in objects are enlarged and thin passages
between objects are removed by moving a small mask over the image. The centre of the
mask is removed from the set if at least one voxel that is not part of the set intersects
with the mask.

e Dilation: Enlarges the volume and removes small holes and indentations by moving a
small mask over the image. The centre of the mask becomes part of the segmented
volume if at least one pixel of the segmented image intersects with the mask.

e Region filling: Internal regions are assigned to the internal volume.

e Boolean masks between 3D regions: Combination of volumes obtained with the above

operations can be made following AND, OR, SUB, XOR and NOT operations.

These operations have intuitive effects and in an interactive setting it is possible to guide
the segmentation process successfully (Hoéhne and Hanson, 1992). For example, it is clear
that two parts that are incorrectly connected, can be separated by applying an 'erosion’.
When this is followed by a 'dilation', the original shape is grossly conserved. Such a
sequence is known as an 'opening’ operation. The reverse operation (‘dilation’ followed by
'erosion'), known as 'closing', has a smoothing effect. This operation however is likely to

'fill' small sulci (e.g. Bomans et al., 1990).

This approach fails for datasets with image inhomogeneities or incorrect use of the
morphological operators may remove significant structures or connect tissue other then the
tissue of interest (Hohne and Hanson, 1992). Particularly, the contours of small sulci are not

clearly defined when morphological operators are used (e.g. Wieringa and Peters, 1993).

The fact that the grey matter is a laminar sheet that covers the white matter was
utilised by Teo and colleagues (Teo er al., 1997) and later by Dale and co-workers (Dale et

al, 1999). Segmentation of grey matter is troublesome because it is a small layer between
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the white matter and the CSF, which gives problems due to partial volume effects.
Segmentation of white matter, however, is relatively straightforward. It is a large volume
and is therefore less influenced by partial volume effects and the variability of intensity of
the white matter voxels is relatively small. After segmentation of the white matter, a 3mm
thick layer of grey matter is grown onto the boundary of the white matter. This results in
anatomically consistent segmentation of the grey matter, if the segmentation of the white
matter was performed correctly. The algorithm fails for very thin folds.

Dale and colleagues (Dale et al, 1999) used the a priori knowledge that the grey
matter is a smooth laminar sheet with finite curvature in order to better define the surface of
the white matter. This knowledge was utilised to design a filter with a priori known

(laminar) shape that was used to enhance the discrimination between white and grey matter.

Edge Detection

The local gradient of intensity values is utilised by edge detection algorithms in
order to define edges of regions. The edges are then combined, forming contours on the
boundaries between different tissues. An example is the Marr-Hildreth algorithm (Hildreth,
1983). The convolution of a Laplacian of a Gaussian filter, known as a ‘Mexican hat', with
each slice is taken. A pixel that lies on an edge is then detected by median thresholding. An
extension to three dimensions that detects surfaces instead of edges was used by Srebro and
Oguz (Srebro and Oguz, 1997). Unfortunately, no details of the segmentation algorithm
were given. Bomans and colleagues (Bomans et al, 1990) also extended the Marr-Hildreth
filter to three dimensions. They found that the contours of the cortex are displaced at
corners and curves and tried to correct for this with morphological filters. This resulted in
the loss of fine detail though, especially in deep sulci.

A segmentation method based on edge detection does not always succeed. Often
there are only small intensity gradients between regions in the MR images. To make
matters worse, the local gradients can be reduced due to noise, movement and the partial
volume effect, resulting in contours that include spurious edge elements. This approach
therefore provides good representations of the major parts of the brain, but not for smaller

and more complicated parts as deep sulci (Bomans ez al, 1990).



Active contours/surfaces

An approach that is the opposite of edge detection is based on active contours.
Instead of finding edges based on information within the image, an edge is defined first and
then deformed to bring it into alignment with the image (Dale and Sereno, 1993, Dale et al,
1999 and references therein). Therefore, not only local information in utilised, but the
global shape is also taken into account.

A predefined, deformable, continuous curve is defined around the region of interest.
Such an elastic curve is often referred to as a snake or active contour. The energy of this
active contour is then minimised so that it converges to the boundary of the region of
interest. The energy function consists of two terms, based on the shape of the contour and
additional constraints. The first term is based on the MRI data and is made to attract the
contour to the brain surface. The difference between the target grey matter value and the
intensity values of the voxels on the contour determines whether the contour is attracted
(CSF) or repelled (white matter). The second term is a smoothing term that is influenced by
the average distance between the contour points and their neighbours (Dale and Sereno,
1993). Note that the computations of the energy terms are based on local information about
the MRI data and neighbouring contour points. These computations can therefore be
performed by parallel processing. The more global constraint on the shape of the contour is
implicitly enforced by the connectivity of all contour points.

Both energy terms can be scaled in order to increase the relative importance of one
term over the other during the segmentation. Moreover, when the first term in the energy
function is set to zero, the surface is released from the data, resulting in a flattened or
unfolded cortex. When functional information (e.g. from MEG or fMRI) is related to the
segmented cortical surface, it can be displayed on this flattened surface (Dale and Sereno,
1993). The functional information is then easier to examine, as it is not buried in the sulci,
yet the relative topology is still intact.

Opposite sides of a sulcus are spatially close. However, they should not be
connected to each other, as this would result in an anatomically inconsistent cortical
surface. The advantage of using active contours is that the segmentation of such regions is
automatically anatomically correct (Teo et al, 1997). In addition, the results obtained with

active contour based segmentation are smooth.



Instead of finding an optimum contour in each image sequentially, the method can also be

modified to operate on a complete volume at once, using a deformable, or 'shrink-wrapped,

surface (Dale and Sereno, 1993, Dale er al, 1999). This has two advantages:

1. Contours that lie almost perpendicular to an image are hard to define (Dale and Sereno,
1993). In the 3D case this is no problem.

2. Reconstructing a surface from 2D contours is not trivial because of the branching
problem (different slices containing a different number of contours). This is not an issue
when a deformable surface is used for the segmentation. Additionally, the 'wrapped

surface’ does not contain holes or intersections.

Problems with the active contour approach are related to the minimisation process,
i.e. initialisation and the problem of local minima. Local minima are usually found near
deep sulci with a small entrance (Dale et al, 1999). These structures are therefore not
always correctly segmented, unless additional terms are used in the energy function that
'push’ the surface into the sulci (Le Goualher ez al., 1999). Additionally, the method uses
several parameters, like the scaling of the energy terms and the scaling of the strength of the
attracting and repelling 'forces'. The optimum values of these parameters need to be found

empirically.

Statistical approaches

In statistical approaches, the grey level intensity of each pixel in an image s treated
as a random variable. The values are taken from a set of possible values, e.g. 256 values in
case of an 8-bit image. Define the true pixel labelling (segmentation) of an image as L.
The objective now is to find the optimal estimate of Iy, given the image to be segmented.
Using Bayesian formulation, the algorithm attempts to estimate the maximum a posteriori
probability of the true segmentation, given the original image and any prior information.
The a priori information is given in the form of a Markov or Gibbs Random Field. Such a
field gives a value for each pixel based on its neighbourhood in the original image. This
imposes connectivity and smoothness constraints onto the set of random variables (e.g.
Bafra ef al, 1994, Liang et al., 1994). Additionally, the segmentation results of previous

slices can be used as a priori information in subsequent slices (Bafra ez al, 1994).
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Teo and colleagues (Teo ez al, 1997) used the likelihood of a particular voxel belonging to a
certain class (i.e. grey-, white matter or CSF) as a priori information. This likelihood was
based on the intensity value of the voxel and the mean and standard deviation of the
intensity values in each class. They used this a priori information with a Bayesian
formulation and a smoothing operation working on the posteriori probabilities. This
approach resulted in accurate segmentation of white matter.

A drawback of the Bayesian approach is that the number of classes and the class parameters

have to be supplied to the algorithm.

Another statistical approach is based on multispectral analysis. In this method
images are acquired with different protocols, e.g. T1-, T2 and proton density -weighted, and
combined. These combined images contain more information about each tissue type than
images obtained with only one protocol (Liang et al, 1994). This information can then be
utilised to obtain better segmentation (Liang et al, 1994, Taxt and Lundervold, 1994). Taxt
and Lundervold used a Bayesian framework, with the posterior probability based on the
tissue values obtained with all scanning protocols and assuming that the tissue regions can
be modelled by a Markov random Field (Taxt and Lundervold, 1994). Liang and
colleagues' approach was similar (Liang er al, 1994). They proceeded by assuming that the
intensity value at each location is a multivariate likelihood function of three weighted signal
intensity values. The tissue types are classified by maximum likelihood fitting of the image
data. Using information criteria the optimum number of classes is then determined. Using
the number of classes and the class parameters obtained with the maximum likelihood
fitting, segmentation is again performed using a Bayesian framework with a Markov

Random Field prior.

Shareef et al. (1999) developed a method based on a biologically inspired
oscillatory network. It is thought that the brain groups and segregates visual features on the
basis of correlation between neural oscillations (Singer and Gray, 1995). This so-called
'samma-binding' was demonstrated by Singer et al. (Gray er al., 1989, Singer and Gray,
1995). Shareef and co-workers used an oscillatory network in order to define regions with
similar properties in medical images. After a few oscillations, oscillators corresponding to a
major image region (for example grey matter) will oscillate in synchrony, while any two
oscillator blocks corresponding to two different major regions will desynchronise from each

other. Oscillators whose corresponding pixels do not belong to a major region will stop
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oscillating. Their results are comparable with manual segmented images, if appropriate
values for the parameters of the algorithm are chosen. It can deal with small

inhomogeneities of the tissue values.

Favoured Segmentation Approach

Most semi-automatic and automatic segmentation methods are sensitive to noise in
the image and inhomogeneities of the tissue values over the volume. Additionally, they
often fail to segment narrow, deep sulci (Teo er al, 1997) and errors in the segmentation
remain undetected. For visualisation purposes these methods often suffice, but not for 3D
mathematical modelling of anatomical structures.

The results of manual segmentation depend on the knowledge and interpretation of
the image data of the operator. This is to a certain extent true for segmentation by
interactively applied morphological operators as well. The main drawback of manual
applied segmentation however is that it is very time-consuming and tedious. For the
purpose of this work this is not a limitation though, as the segmentation of a cortex that is
used in a set of computer simulations only has to be done once. Additionally, in order for
the results of the simulations to be realistic, an accurate description of the cortical surface
was needed, including the sulci. These regions are important to us as two thirds of the total
cerebral cortex is buried within the cortical folds (Van Essen and Drury, 1997, Le Goualher
et al, 1999). Thus, these areas need to be taken into account in order for the results of the
simulations to be applicable to real data.

The results of manual segmentation are the most accurate (Shareef et al, 1999).
Therefore, a combination of amplitude thresholding, contour selection and drawing is
chosen as the approach to segment the cortex for construction of a realistically shaped
source space. Successful applications of similar approaches are described in the literature.
Heinonen and colleagues (Heinonen ez al, 1999) used thresholding and 2D region growing
in combination with free hand drawing in 2D images. Gevins and colleagues (Gevins et al.,
1991, Gevins ef al, 1994) also used 2D threshold based contouring, with manual editing, in
order to segment the brain, CSF, skull and scalp. They used the segmented regions to

construct finite element models. These models were then utilised for deblurring of the EEG.







select points on the contour for removal, select
new points for incorporation in the contour and
connecting multiple parts of a contour. It was
possible to zoom in and out of an image enabling
more comfortable editing of the contours. The
final result was a vector-contour through all
contour points. This was repeated for each grey
matter object in every slice. In figure 3-5 the final
result for the left hemisphere in a coronal slice is
displayed. This approach was used to select the
boundaries of the grey matter in 31 coronal slices
of the left occipital lobe of subject IEH.

The utilisation of the contours defined by

the MATLAB contouring routine speeded up the

segmentation significantly, since large parts of the
figure 3-5: A manually edited contour where
wrongly placed contours were removed and
the different parts of other contours were
correctly connected. This contour faithfully

represents the outer boundary of the grey quick and easy process. The inclusion of a
matter.

resulting contours were already correct. Adding

and removing parts of contours was a relatively

'drawing pen' in the software would further speed
up the definition of additional contours, as it is easier than defining a contour by placing
points that need to be connected. The drawback of the 'drawing pen' is that a contour will

consist of a lot more points.

3.2.3 Surface Reconstruction

Once the contours of the region of interest are known as the result of the
segmentation process, a reconstruction of the surface is needed. This is done by connecting
contours in adjacent slices with patches, e.g. triangular (Geiger, 1993) or rectangular
patches (Odesanya et al., 1993). A strai ghtforward connection of the contours is possible if
the number of contours in each slice is constant and when the shape of each contour is
approximately convex (i.e. sulci are not modelled, so that the contour of the brain is

approximately convex). Triangulation is now simply a matter of connecting the points in
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higher order spline.

The Marching Cubes algorithm (Lorensen and Cline, 1987) is a well-known
algorithm that constructs a polyhedral model from a 3D region. The algorithm takes its
name from the fact that it marches a cube through the 3D region and produces a set of
triangles for each cube. Again, only the voxels on the boundary of each region are used.
The basic principle is to reduce the surface reconstruction problem to that of triangulating a
single cube, which is intersected by the surface. The whole surface 1s triangulated by
'marching’ this cube through the data and the sum total of all triangles forms an
approximation of the surface. The dimensions of the cube determines the resolution with
which the surface is reconstructed. The way the cube is triangulated depends on the
intersection with the surface, more specifically, it depends on which corner points lie inside
or outside the surface. A surface intersects those cube edges where one corner point is
outside the surface and the other is inside the surface. It can be shown that, because of
symmetry, there are only 15 different ways to triangulate the cube. These cases can be
stored in a look-up table, so that fast execution is possible once the case for each cube is
known.

The main drawbacks of the Marching Cubes approach are (Treece et al, 1998):
e There are many triangles with poor aspect ratio.

e It does not guarantee the surface to be topologically consistent with the data.

One of the approaches to circumvent these problems is to use marching tetrahedra instead
of cubes (Treece et al, 1998). One advantage is that tetrahedra can be triangulated in only
16 possible ways, which reduces to 3 by symmetry. Thus, only three cases have to be stored
in the look-up table. The reconstructed surfaces contain more triangles than the Marching
Cubes approach though. However, a surface simplification can be used to reduce the
number of triangles and increase the triangle condition. Therefore, the approach results in
topologically consistent surfaces with less triangles than obtained with the Marching Cube

algorithm (Treece et al, 1998).

The segmentation process used in this work results in a set of vector-contours in
cach slice. It is therefore intelligible to use an approach that connects the contours in
adjacent slices. This is not without problems though, since the contours are obtained for a

3D object that is intersected by a number of parallel planes. For concave objects, this can
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figure 3-7: Example of a global connection problem. A set of 6 contours in two parallel slices (a).
There are several ways to connect the regions in adjacent slices ((b) and (c)) and form a reconstructed
object. Intersecting both these reconstructed objects would return the original regions in the cross-
section (from Geiger, 1993).

result in several regions in one plane. Unfortunately, there is no unique way to connect
these regions, as is illustrated in figure 3-7. Intersecting the reconstructed objects in figure
3-7b and ¢ would both return the original regions in figure 3-7a. Moreover, even when there
is only one region per slice there can be situations where the connections are ambiguous
(see figure 3-8). Therefore, all automatic methods need to use some criteria to decide on the
connections that need to be made, like connecting regions of similar curvature, minimising
the surface area, minimising the volume, minimising angles or minimising the edge length.
The NUAGES algorithm proposed by Geiger (Geiger, 1996) is based on Delaunay
triangulation and therefore based on geometric closeness (see Geiger, 1993, Boissonnat,
1988 or Bowyer (1981) for a description of the principles of Delaunay triangulation). The
methods starts with the 2D triangulation of the contour vertices, thereby assuring contour
containment (re-sectioning the reconstructed surface returns the original contours),
removing obtuse angles and adding vertices that are needed for the connections in adjacent
slices. Then, overlapping contour parts are connected vertically and non-overlapping parts
are connected to their nearest neighbours to form the surface. Addition of extra vertices is
done in such a manner that the method can deal with complex contours with multiple

branches, the birth and death of holes and complicated splitting lines.

The accuracy of the NUAGES algorithm (Geiger, 1996) was tested with the

reconstruction of the surface of a torus and compared with the Marching Cube algorithm
(Geiger, 1993).
Pixel, vector, interpolated and hand-drawn contours were obtained for a torus and used as
input for the NUAGES algorithm. The results obtained for the torus seem applicable for the
reconstruction of the brain, as the brain has no sharp edges either and is relatively smooth
as well.

The most important results were that:
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e The contour-based reconstructions were more accurate
with respect to volume, surface area and surface
normals than the reconstructions obtained with the
Marching Cube algorithm. Only the maximum surface
distance was better with the Marching Cube method.

e The number of triangles obtained with the Marching
Cube method was significantly higher than with the
contour-based approach, as expected.

e It was found that the surface normals could not be
accurately reconstructed for very small triangles.

e The maximum surface distance was smaller for vector
and interpolated contours than for hand-drawn
contours. The surface normals were more accurate for
the hand-drawn contours though, followed by the vector

contours.
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figure 3-8: Example of a local
connection problem. The two
contours can be connected in
different ways. No discrimination
can be made between the choice in
the top panel and the one in the
bottom panel, unless additional
constraints are used (from Geiger,
1993).

It seems that vector contours provide both accurate reconstruction with respect to surface

location and orientation. One observation that is relevant to this work is that the largest

reconstruction errors are found where the surface is almost parallel to the cross section.

For the construction of the model of the cortical surface used in this work the

vector-contours obtained during the segmentation were used as input of the NUAGES

algorithm. Internal vertices were added by the algorithm in order to get a more accurate

reconstruction of the cortical surface (Geiger, 1993). Surface normals were computed for

each triangle vertex, with the normals defined as the weighted sum of the normals of all

triangles sharing the vertex v:

' k
n, :
n, =——andn, =) a,n
3
. &

(3-1)

with n; the normalised normal of triangle i and o; the angle between the two triangle edges

joining in the vertex v.

138













3.3 Methods of MEG/MRI Co-registration

3.3.1 Introduction

The co-registration of anatomical scans made in two different modalities is a well-
examined problem. The datasets represent the same object and co-registration can therefore
be volume-based (i.c. based on intensity values). A statistical comparison of the intensity
values in, for example, two MRI scans of the same subject, provides the information needed
to perform co-registration. The gold standard for co-registration of anatomical scans made
in different modalities is based on markers fixed to the bones of a patient. The markers are
chosen so that they show clearly in both modalities. This is the most accurate cO-
registration technique (Fitzpatrick et al., 1998). However, fixing markers to the bones can
only be done with patients undergoing surgery.

The techniques available for co-registration of functional data from MEG and
anatomical data from MRI are either based on co-registration of landmarks or surface
matching. Variations of these approaches are described in the literature. Several
implementations of the two techniques are described in the next sections. Then, the

accuracy of a co-registering procedure based on surface matching is tested on its accuracy.

3.3.2 Using Landmarks

Method

The methods most often used for co-registration of the functional data from
MEG/EEG and anatomical data (usually from MRI) are based on fiducial points (e.g.
George et al, 1989, Wieringa, 1993). The markers that are used to define these points are
called the fiducial markers. When the locations of these markers is known in both
modalities, a transformation can be found that aligns these markers in the two modalities. It

can be assumed that the skull is a rigid object2 and therefore a rigid-body transformation is

2 When care is taken not to deform the scalp tissue during the co-registration, the scalp can be treated as rigid
as well.
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possible. Thus, a simple translation and rotation is enough to perform the co-registration.
Three additional parameters can optionally be used to take scaling factors into account.
Fiducial points are usually defined on anatomical landmarks, like the nasion and the
pre-auricular points. The locations of these points can be defined by a 3D digitiser
(Polhemus Isotrak). Such a digitiser consists of an emitter, sending out magnetic signals
and a receiver. The pen-shaped receiver is used to mark the fiducial points. These points
then define a co-ordinate system, which is referred to as the MEG co-ordinate system.
These same anatomical landmarks are also defined in the MRI. This can be done by an
expert, either by using the MRI slices or by using special software that displays the surface
of the skull and a 3D cursor (Fuchs er al., 1995). Prior to the MRI scan, the location of the
fiducial points can be marked with oil filled capsules. These oil filled markers are clearly

visible in an MRI scan.

With the fiducial markers defined in the MEG and MRI co-ordinate systems, the

transformation matrix can be computed. This matrix, T, follows from:

Lowp =70 meg»  fori=l..n, (3-2)

with 1, and r, . the location of fiducial marker i in the MRI co-ordinate system and

MEG co-ordinate system, respectively. The number of fiducial markers is n.

As mentioned above, this matrix can be split in a translation and a rotation part, i.e.:

rwvre =R e+t (3-3)

with t and R the translation and rotation matrix respectively.

The values for the translation and rotation matrices can be found by a least squares fitting
procedure that minimised the Euclidean distance between the two sets of data points (e.g.
Singh er al., 1996). Additionally, the contribution of each point in the datasets to the fitting
procedure can be weighted. For example, the weight for a marker in a part of the MRI that
shows distortions can be lowered. Fuchs and colleagues used a weight for each fiducial

marker based on the measured localisation errors of the markers (Fuchs er al, 1995).
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Alternatively, it can be shown that rotation and translation are uncorrelated
(Fitzpatrick et al, 1998). Therefore, one can first determine the optimum translation matrix

and then the optimum rotation matrix (or vice versa). First, define the following matrices:

Criec =T wvec —8 mes @A Cyp = Ty - Buri s (3-4)

with g, and g, the centre of gravity of the fiducial points in the MEG and MRI co-

ordinate system respectively.

Additionally, define the matrix P as the product of C,,,; and the transpose of C,, :

P = Cu Clrs (3-5)

The desired least squares fit follows then from the Singular Value Decomposition of P (see

section 2.2.3.1)

P=UAV", (3-6)

The rotation matrix is then given by (Arun et al., 1987, Fuchs et al, 1995, Fitzpatrick er al,

1998 and references therein):

R = VU', (3-7)

with U and V containing the left and right eigenvectors respectively.

The best-fit translation is then obtained from (Fuchs ez al, 1995, Fitzpatrick ¢t al, 1998):

t = CMRI - RCMEG’ (3-8)

Note that the translation and rotation matrices can therefore be determined without making

use of an optimisation algorithm.

In practice, the accuracy of a co-registration procedure must be established. One
measure of localisation accuracy is the root mean squared Euclidian distance (RMS)

between the fiducial markers in the MRI co-ordinate system and the transformed fiducial
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markers. This is called the fiducial registration error (FRE). However, this measure is
almost independent of the fiducial configuration. Therefore, poor registration caused by a
poor fiducial configuration may be unnoticed due to a small value for FRE (Fitzpatrick et
al, 1998).

The reason for co-registration is to align certain targets (like the scalp or a tumor in the
brain). The error measure of interest is therefore the target registration error (TRE). This is
the distance between target points in the MRI-co-ordinate system and transformed MEG
target points, other then the fiducial points.

Fitzpatrick and colleagues (Fitzpatrick et al, 1998) derived the following expression for the
relationship between the fiducial registration error and the target registration error at

location i:

(FRE?)=(FLE*)- (TRE?), (3-9)

with <> denoting the expectation value. FLE is the fiducial localisation error, defined as the
distance between the localised location of the fiducial marker and the actual fiducial

position.

An interesting and counter-intuitive observation is that a small FRE is indicative of a large
TRE. So, near fiducial points that are in close alignment the TRE is largest. A small value
for FRE might therefore be a misleading indicator for the accuracy of the co-registration
(Fitzpatrick et al, 1998).

Fitzpatrick and co-workers (Fitzpatrick et al, 1998, Maurer Jr. et al., 1998) derived an

expression for TRE that gives insight into some of the issues involved in co-registration:

(TRE? (1)) = <FLE“>[1+liﬁj, (3-10)

n 310 sz

dy is the distance of target point r from the k™ principal axis of the fiducial point sets, and fy

is the average distance of the fiducials from the k™ axis.

It follows from the above equation that:
e The target registration error increases if the target point is further away from the

principal axis, with a squared distance dependency. Singh and colleagues indeed found
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a dependency on distance in a Monte Carlo simulation study of MEG/MRI co-
registration, although the largest errors were not always found at the most distant

locations (Singh et al., 1997).

e The error decreases with a factor proportional to 4/1/n when the number of fiducials is

increased. The graph of the ratio of /1/(n+1) and /l/n in figure 3-12 demonstrates

that using more than 5 fiducial points has a relatively small effect on the reconstruction
error. A small value in the plot indicates that a lot is gained by adding extra fiducial
points and a value of 1 indicates that the error does not decrease due to a change in the
number of fiducials (although the addition of a fiducial does change FLE, dy and fy and
therefore influences the error).

e The error decreases if fy increases. The fiducial points should therefore be chosen far
apart from one another.

e The target registration error is proportional to the localisation error of the fiducial

markers.

Because of this last point, it is important that the location of these markers is determined
accurately. As described above, normally oil filled markers that light up in the MRI are
placed on anatomical landmarks. In Aston a modification of this approach is used (Singh et
al, 1996, Singh et al, 1997). A bite-bar system (see figure 3-13) is used, consisting of a

rigid plastic holder and dental thermoplastic. Four holes are drilled in the plastic holder.

—_ 1
L0095 — =
‘g_’ 0.9
© 0.85
? 0.8 /’/
= 0.7 A
065
? 06 —_—
1 2 3 4 5 6 7 8 9 10
Number of fiducial points n

figure 3-12: Plot of the ratio of 1/l/(rl +1) and ,/l/n , with n the number of

fiducial points. The minimum number of fiducial points needed for target
registration is 3. The graph shows that there is a large decrease of the registration
error when the number of fiducial points is increased from 3 to 4 or 5. A further
increase of the number of points reduces the registration error with a relatively
small amount, as is illustrated by the flattening of the curve.
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18 The locations of these holes are obtained

3 ¥ with a 3D digitiser (Polhemus Isotrak)
before and after the MEG measurements

are done. The average of these two sets

, L)
: : ;

Eizmmadus o points in MEG co-ordinates. During the

Smm deep drill holes.

is taken as the location of the fiducial

MRI scan of the subject, the holes are

: Fixed to wooden arm
figure 3-13: Schematic of the bite-bar system used in filled with oil for easy identification in

Aston. It contains four small holes that are digitised in the .. R
MEG co-ordinate system. The markers can also be the MRI. Additionally, large oil filled

identified in the MRI when filled with oil, enabling the co-

N ) ules ar ¢ T @
registration of the MEG and MRI co-ordinate systems. capsules are placed directly above the

holes for easy identification of the
smaller holes in the MRI. With the location of fiducial points available in both co-ordinate
systems, the co-registration can be performed as described above.
Because more fiducial points are used and the head is stabilised during the co-registration,
the co-registration is more accurate than using oil filled markers on anatomical landmarks
(Singh et al, 1996, Singh et al, 1997). Also, because the bite-bar is fixed on a rigid arm
there 1s less movement during an MEG recording. Additionally, since no anatomical
landmarks are used, there is no problem with identification of the markers. The problem
with fiducial points based on anatomical landmarks is that the locations of anatomical
landmarks defined by different experimenters or from repeated determination can vary
considerably (Huppertz et al., 1998).
Instead of a bite-bar a non-metal helmet (Greitz er al., 1994) or stereotactic headgear
(Simpson et al., 1995, Srebro and Oguz, 1997) can be used as well, having the same
advantages as a bite-bar.
Van den Elsen and Viergever used triangular markers, with two plastic tubes filled with oil
attached to two sides. These tubes light up in several slices in the MRI. The location of the
reference point can be taken from the intersection of the two lines through the marker
points in the MRI slices, taking into account an offset (van den Elsen and Viergever, 1991).
The main advantage of this approach is that there are more points that define one reference
location, reducing the probability that a reference location can not be found and reducing
the influence of identification errors. A similar approach has been described by Williamson

and colleagues (Williamson er al, 1991).
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Accuracy

The repeated localisation of a dot on the skin with a 3D Polhemus digitiser has a
mean precision of about 1.5mm (Schwartz et al, 1996). Brinkmann and colleagues however
reported only sub-millimetre variations for repeated inter- and intra-observer marking of 21
marked locations on the scalp. The error for the localisation of an anatomical landmark is at
least this high, due to the additional problem of identification in both the MEG and MRI co-
ordinate systems. Defining the location of landmarks in the MRI with the help of oil filled

capsules also introduces errors, due to the size of the capsules itself.

An issued closely related to the co-registration procedure is how to determine the

position of the head with respect to the MEG sensors. When a 3D Polhemus digitiser is
used to obtain the location of the fiducial points, the sender is mounted to a pre-defined
location on the dewar. The fiducial points that define the MEG co-ordinate system and the
location of the sender is therefore known in MEG co-ordinates. The locations of the sensors
are then also known in MEG co-ordinates, since the location (and orientation) of the
sensors with respect to sender location is known from a calibration procedure.
Alternatively, coils are placed on the subject's head (e.g. Ahlfors and Ilmoniemi, 1989,
Fuchs et al, 1995). The current fed through these coils produces a magnetic field that is
measured by the MEG system. The location of these coils can then be accurately found by a
simple least squares optimisation algorithm (i.e. Powell, 1964), as the signal-to-noise ratio
of the measured magnetic fields is high and the number of sources (i.e. coils) is known.
The registration errors were reported to be 3mm with a 7 channel system (Ahlfors and
Ilmoniemi, 1989). The mean localisation error of three head coils with the CTF 151 channel
MEG system is smaller than 2.5mm (CTF Systems Inc.). This value of 2.5mm was found as
the mean error for the repeated localisation of a magnetic dipole in a phantom and therefore
represents the sum total of all possible errors, including noise in the measured magnetic
fields and the actual location of the dipole in the phantom. The errors for the localisation of
the head coils are therefore less than 2.5mm.

The head coils can further be used to monitor movement of the subject during the
MEG recording, by localising the coils before and after the recordings. In the future, if
hardware improvements allow for continuous localisation of the reference coils, it should

be possible to correct the recorded data for small movements (CTF Systems Inc.). The data
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recorded at the location of a sensor at each instant in time is then interpolated to give a

value for the average location of the sensor.

The main drawback of co-registration by fiducial markers is that the identification
and accurate localisation of these markers in both modalities is not trivial. Consequently, it
happens that surfaces in two modalities are not aligned, even though the fiducial markers
are (Bamidis and Ioannides, 1996). An approach that avoids this problem, surface

matching, is described in the next section.

3.3.3 Surface Matching

Surface matching was first introduced by Pelizzari and colleagues as a technique to
co-register CT, PET and/or MRI (Pelizzari et al.,, 1989). Several groups have thereafter
used the technique for EEG/MEG and MRI co-registration (Wang er al., 1994, Bamidis and
Ioannides, 1996, Schwartz et al, 1996, Brinkmann ez al., 1998, Huppertz et al, 1998). In an
excellent paper by Schwartz and co-workers the accuracy of the method in MEG/EEG and
MRI co-registration was examined in great detail (Schwartz er al, 1996).

Co-registration 1s performed by aligning two surfaces defined in the MRI and MEG
co-ordinate system, i.e. a cost-function defining the distance between the two surfaces is
minimised. This can be compared with placing a tight fitting 'hat’ (i.e. the surface in MEG

co-ordinates) onto a 'head' (i.e. the surface in MRI co-ordinates).

Method

Head points

The surface of the skin in MRI co-ordinates is defined with the same techniques as
described in section 3.2.2 and 3.2.3 for reconstruction of the brain surface. The definition of
the scalp is less prone to errors though, because there is a larger gradient in intensity
between the scalp and the background than there is between the cortical surface and the
surrounding tissues. Therefore, a simple thresholding technique can be applied to segment

the scalp with good results. Small errors due to noise in the MRI scan or interior holes can

149




be removed by applying dilation, erosion and connection operations (e.g. Schwartz er al,
1996) or alternatively by user-editing (Wieringa, 1993). The outer boundary of the scalp
can be easily defined by a test on the neighbourhood of each scalp voxel. Each voxel with
at least a single neighbour that is part of the background is defined as part of the skin
surface (Schwartz et al, 1996). A description of the surface can then be made using the

surface reconstruction techniques described in section 3.2.3.

Hat points

The surface of the skin in MEG co-ordinates can be defined by a 3D-digitisation
process, involving electromagnetic/optical probes, ultrasound (Huppertz ez al, 1998, Ball et
al., 1999) or video cameras (Konyshev et al., 1989). Most often, a 3D electromagnetic
digitiser is used to define a set of evenly distributed points on the subject's scalp. The
surface that is defined in this way should be as similar to the surface defined from the MRI
as possible. Therefore, the digitising pen should not be pressed too hard against the skin to
avoid deformation, especially around the face of the subject. For a large part the scalp area
is nearly spherical, resulting in a cost-function with flat minima. Hence, points on the nose
and around the eyes should be included in the surface in order to get better-defined minima

in the cost-function (Wang et al, 1994, Huppertz et al, 1998).

Cost-function

In each step of the surface matching algorithm, a co-registration matrix is computed.
The accuracy of the resulting co-registration should be evaluated. The final co-registration
should provide a fit between the 'head’ and the 'hat' that minimises the distance between
both surfaces. When the MRI surface is densely sampled, the Euclidean distance between
the 'hat’ points and the nearest 'head' point can be computed for each 'hat’ point. The total or
mean distance, or its square, can be used as the cost-function. Using the squared distance
increases the sensitivity for small displacements (Schwartz et al, 1996). Alternatively, the
distance between a 'hat' point and the projection of the 'hat' point onto the 'head' surface (i.e.

the nearest triangle for triangulated surfaces) can be used (Pelizzari er al, 1989).
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Fast computation

The evaluation of the cost-function is done in each step of the minimisation
algorithm and should therefore be done as fast as possible. The use of a look-up table in
which distances to the 'head' surface are stored greatly reduces the computing time, as the
table only has to be computed ones. Such a table can be computed by the Distance
Transform (Borgefors, 1986, Schwartz et al, 1996, Kozinska er al., 1997, Huppertz et al,
1998). The Distance Transform estimates the distance between voxels that surround the
scalp surface in the MRI volume and the scalp surface itself. This is done by passing a
small mask (typically 3x3x3, 5x5x5 or 7x7x7) through the volume. During the
optimisation, the distance to the 'head' surface for a transformed 'hat' point that ‘falls' onto
one of the voxels surrounding the surface is then already stored in the look-up table and
therefore does not have to be computed again. Borgefors compared several Distance
Transforms and presented a new one, a 5x5 mask, that approximates the Euclidean Distance

to within 2%.

Optimisation

The cost-function can be minimised with a standard minimisation algorithm (i.e.
Powell, 1964, Press et al, 1992). Unfortunately, the equations given in the previous section
for co-registration of fiducial markers can not be used, since there is not a one to one
relationship between all the points in the 'head’ and 'hat'. Also, the centre of gravity of both
point-sets is used in the equations. One can easily see that, for example, when the 'neck is
part of the 'head’ and not of the 'hat' that the centre of gravity of the 'head' is misleading for
the co-registration. Also, the value of the residual error should be used with care as an
indicator of the goodness of the co-registration. Due to the distribution of points in the two
datasets its value can be small, even though the co-registration is inaccurate (Wang et al,

1994, Kozinska et al, 1997).

Improvements
The method can be improved by the removal of inconsistent points that are only part
of the surface in one of the two modalities or by increasing the resolution when the

algorithm progresses (Schwartz et al, 1996).
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Accuracy

The mean registration errors found with the surface matching technique are smaller
than the voxel size (0.94mm) and between 2 and 3mm at the boundaries of the MRI volume
(Schwartz ef al, 1996). Huppertz and colleagues reported an average test-retest reliability of
1.6mm (Huppertz er al, 1998). An accuracy of 1-3mm was reported by Bamidis and
loannides (Bamidis and loannides, 1996), although it was not specified how this was
measured. Wang and co-workers reported a mean error in surface matching of 2.4mm and
an even smaller mean error of 1.8mm when scaling was taken into account. The mean error
in location of seven scalp points was 2.7mm (Wang et al, 1994). Brinkmann and colleagues
presented results for a phantom and 5 subjects. The mean reconstruction error was 2.2mm
for the phantom and of the order of 4mm for the subjects (Brinkmann e al, 1998). Pelizzari
reported mean registration errors in the order of 1-2 pixels (typically 1 pixel ~ Imm for
MRI) for any combination of CT, MRI and PET co-registration (Pelizzari et al, 1989). We

expect the same order of accuracy for MEG and MRI co-registration with their algorithm.

In conclusion, surface based co-registration of MEG and MRI data is more accurate
and reliable than co-registration based on fiducial markers. Surface matching is therefore
used in this work so that accurate anatomical constraints can be obtained for use with a
source localisation algorithm. The reported co-registration errors found in the literature
vary between 1 and 8mm due to slightly different approaches and reported error measures.
It was therefore necessary to evaluate the accuracy of the algorithm that was used in this
work. In the next section the accuracy of the implementation of a surface matching

technique was tested.
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3.4 Errors in Co-registration

3.4.1 Sources of Errors

In this section the sources of errors in MRI/MEG co-registration by surface
matching are described. Errors are introduced by the definition of the scalp in MRI co-
ordinates, definition of the skin surface in MEG co-ordinates and by the optimisation

algorithm itself (Schwartz er al, 1996).

Errors in MRI surface

The first source of errors occurs during the scan itself. Dental fillings and partial
volume effects cause local distortions and field inhomogenities cause global distortions.
Subject movement may blur the exact scalp boundary.

In order to correct for global distortions in the MRI that was used as a test case,
three additional parameters were added to the three translation and three rotation
parameters that were optimised by the optimisation algorithm. This was a scaling in both
the x- and y direction (i.e. pixel size) and a scaling in the z-direction (slice thickness).

Additional errors could be introduced by the determination of the scalp tissue. An
over- or underestimation of the scalp boundary can introduce a scaling error of one or two
voxels. As this gives rise to a global error, it can be corrected for by the introduction of the
scaling factors in the optimisation procedure.

Local errors exist due to noise in the scanner (i.e. voxels that are part of the
background are defined as part of the scalp) or parts where the scalp boundary is not
continuous (i.e. holes in the scalp). These local errors were corrected by manually editing of

the boundary, using the software tools described in section 3.2.1.

Errors in MEG surface

Errors in the definition of the skin surface with the 3D digitiser (Polhemus Isotrak)
are due to the digitising process itself, errors caused by the technician and errors due to

movement of the subject.
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The error due to the 3D digitiser itself is on the order of 1/10" of a millimetre with
the sensor up to 38cm from the source (Polhemus, 1992), and therefore negligible to other
sources of error (Wang ef al, 1994, Schwartz et al, 1996). Note that other methods of MEG
surface extraction can give larger digitisation errors. Digitisation with ultrasound gave
digitisation errors smaller than 2mm (Huppertz ez al, 1998).

Movement of the subject during digitisation of the head also causes errors.
Stabilising the subject with a bite-bar system ensured that movement related errors were
negligible. Alternatively, mounting the source for the 3D digitiser to the subject's head
ensures that small movements do not influence the digitising accuracy. Large movements
disturb the magnetic fields and consequently reduce the accuracy (Wang et al, 1994).

Too much pressure on the pen can cause movement of the subject or deformation of
the skin. The ‘deformation’ error varies between 1 and 3mm in areas where no important
muscle masses lie between the skin and bone (Schwartz er al, 1996). Also, skin
uregularities due to hair can cause errors of 2-3mm (Wang ez al, 1994, Schwartz et al,

1996).

Errors due to the optimisation algorithm

Due to the spherical shape of the scalp, the cost-function contains flat local minima.
It is possible that the optimisation algorithm gets stuck in one of these minima. Therefore,
once the algorithm has converged, it is restarted with the final solution. This enables the
algorithm to escape a local minimum (since the parameter steps are larger at the beginning
of the optimisation then at the end). Another possibility is using multiple resolutions
(Lemoine et al., 1994, Schwartz er al, 1996). After convergence of Schwartz and
colleagues' algorithm the 'head' was sampled with a smaller sampling interval and restarted.
They further removed inconsistent points, defined as points that lie too far away from the
surface, as these points might give mathematically good, but anatomically implausible
solutions. Also, removal of these outliers increases the slope of the error function around
the global minimum and eliminates small local minima (Itti e al, 1997).
Finally, there should be enough information available for the optimisation algorithm such
that the global minimum of the cost-function approaches the true minimum (i.e. the

minimum that corresponds to a perfect co-registration). Thus, there should be enough
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points in the 'hat’, although using too many points increases the execution time of the

algorithm.

In conclusion, global errors are accounted for by the scaling factors in the
optimisation algorithm. Local errors are estimated to be on the order of 2 pixels (i.e. about
2mm) due to errors in defining the 'head' and local distortions in the MRI scan (van den
Elsen and Viergever, 1991). Additional local errors due to deformation of the skin and hair
by defining the 'hat' are estimated to be 2-3mm. In section 3.4.2.3 the influence of these
local errors is simulated by adding noise to an ideal 'hat', formed from a sub-set of 'head’
points. In a final study, the stability of the co-registration is tested by acquiring several

'hats' and computing the co-registration matrix for each 'hat'.
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3.4.2 Accuracy of Implemented Co-registration Procedure

In this section the accuracy of an MEG/MRI co-registration procedure that localises
the head in the MEG system by means of head-localisation coils and co-registers the MEG
and MRI data by means of surface matching is examined. This procedure is schematically
presented in figure 3-14. The accuracy of the surface-matching algorithm is evaluated by

means of computer simulations and in a practical situation.

. 3D Digiitiser )

MEG Co-ordinate '
System :

Head Col_y
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Surface Matching
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Segmentation g‘; Head Point
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MR Scaip Surface 'Head' points

MRI Co-ordinate Systerr

figure 3-14: Schematic of the co-registration procedure. The reference coils determine the location of the
MEG sensors with respect to the head. The digitised location of the reference coils (or any other chosen
fixed reference system) defines the MEG co-ordinate system. Digitisation of the scalp surface within this
reference system gives a set of 'hat' points in MEG co-ordinates. A set of 'head' points in MRI co-
ordinates is obtained from the subject's MRI through segmentation and boundary extraction. Surface
matching then maps the anatomical information from the subjects MRI to the MEG co-ordinate system.
Combining all these steps gives the location of the sensors and the anatomical information in the same co-
ordinate system.
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Coil localisation

It was already described in section 3.3.2 that the localisation error of three head
coils with the CTF 151 channel MEG system is smaller than 2.5mm (CTF Systems Inc.).

Once the locations of the sensors with respect to the coils are known, it is necessary
to determine the location of the coils on the subject's head. This is done with a Polhemus
3D digitiser. The location of the coils is determined with respect to some fixed reference
system, defined by four points on a bite-bar. This reference system is then transformed to
the co-ordinate system defined by the head coils, referred to as the MEG co-ordinate
system. This has the benefit that once the MEG co-ordinate system and MRI co-ordinate
system are co-registered, the digitisation of the head localisation coils with respect to the
bite-bar is sufficient for co-registration in subsequent experiments®. The bite-bar has the
additional advantage of keeping the head stable during the digitisation of the head coils.

The test-retest stability of the digitisation of 3 head coils placed on the nasion and
pre-auricular points was investigated. The locations of the coils were repeatedly (N=10)
digitised with respect to the bite-bar. In each 'run', the bite-bar co-ordinate system was
determined by digitising the four holes in the bite-bar. Subsequently, the location of each
coil was determined in this co-ordinate system. The location of each coil was digitised
twice, moving the digitising pen away from the coil between succeeding measurements.

The results are presented in table 3-1. It follows from this table that the smallest errors in

table 3-1: Mean location and standard deviation of nasion (NA), left pre-
auricular (PAL) and right pri-auricular (PAR) as obtained by 10 times
digitising the location of a coil at these positions. Each coil was localised twice
inarun (NAI and NA2 etc.).

digitisation of the coils were made in the direction where there was support from the skull.
Namely, the standard deviation for the coils at the pre-auriculars was smallest in the y-

direction (apart for PAR2). Since the y-axis was defined by the bite-bar as running from the

3 Assuming that the location of the head with respect to the bite-bar does not change over time (i.e. the
position of the teeth in the dental impression does not change).
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right to the left of the head, this was
the direction where there was support
from the skull. For the nasion the
smallest standard deviation was in the
z-direction, which was the direction
perpendicular to the plane formed by
the 4 bite-bar base points. Thus, for the

nasion the support in the z-direction

table 3-3: Mean distance from the
digitised location of a coil to the mean
location as obtained from 10 repeats.
Experiment and definitions as in table
3-1.

NAT-NA2

PALI-PAL2
PARI-PAR2

table 3-2: Difference in mean location of the different
coils (definitions as in table 3-1) in the x, y and z
direction and the distance € between the mean locations.
Values were obtained by repeatedly (N=10) digitising the
location of a coil at these positions. Each coil was
localised twice in a run (NAI and NA2 etc.).
comes from the ridge of the nose. This suggests
that the digitisation errors arose from pressure on
the coils by the digitising pen, causing movement
in the directions where the coils were not supported
by bony structures. This is further supported by the
results in table 3-2, where the difference in the
mean location and the distance between the mean
locations for digitisation 1 and 2 are given. For the
pre-auricular points the smallest difference between
the mean locations was found in the y-direction,

that is the direction where the coils were supported

by the skull. The distances between the mean

location of the coils in digitisation 1 and 2 were smaller than 1mm. Note that this

digitisation accuracy was not achievable by digitising a coil location once, as follows from

table 3-3. This table shows that the digitisation error of a coil, when only digitised once,

Location on
bite-bar

was about 2mm.

Basel

In a different experiment the 4 base

Base2

points in the bite-bar were digitised 10 times,

Base3

removing the digitising pen away from the bite-

Base4

bar between each digitisation. It follows from

table 3-4: Standard deviation of the repeated  table 3-4 that the base points could be

(N=10) digitisation of the 4 base points in the

bite-bar.

repetitively  digitised with  sub-millimetre

variation. This demonstrates that the variations

in the digitised location of the coils were not due to variation in the digitised location of the

base points, but indeed due to movement of the coils during digitisation. The absolute
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3.4.2.4 Test-Retest Accuracy

The simulations carried out in the previous sections gave valuable clues about the
performance of the algorithm in ideal cases and when noise was added to the hat points.
The ultimate test for the algorithm is to co-register the scalp surface obtained from a
subject's MRI with a set of hat points from the same subject, obtained with the 3D digitiser.
In this case the real error can not be determined, as the 'perfect’ transformation parameters
are unknown. However, the co-registration parameters obtained from a test-retest will vary
slightly. The co-registration matrices formed from these varying co-registration parameters
transform each hat point to a slightly different location in the MRI co-ordinate system from
trial to trial. The spread of each transformed hat point is therefore an indication of the
accuracy of the surface matching algorithm. A bias in the algorithm can not be detected in
this way, but a visual inspection of the co-registration results can serve as a strategy against
incorrect co-registration matrices. Additionally, it was shown in section 3.4.2.1 that the
value of the cost-function can be used as an indicator of the accuracy of the co-registration,
since there is a high correlation between this value and the mean distance between the head

and hat points.

Method

The same set of head points was used as in the previous sections. Additionally, ten
different sets of hat points were recorded for the subject for whom the head points were
obtained. The head was stabilised with a bite-bar and a set of hat points was obtained with a
Polhemus 3D digitiser. The hat points were acquired in a continuous mode, meaning that
points were recorded continuously while the experimenter moved the digitisation pen over
the subject’s scalp. Many points from the nose area and the regions around the eyes were
included, as these locations influenced the shape of the cost-function considerably due to
the non-spherical shape of these areas. Care was taken not to deform the scalp or the tip of
the nose during the digitisation process by applying as little pressure with the pen as
possible. A total of 10 hat point sets were obtained in this way.

Due to the continuous mode of recording the number of hat points in each set was
quite large, with a small distance between points and their neighbours. The large number of

hat points increases the computing time of the algorithm and it was further found in 3.4.2.2
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that little is gained by using too many points. Therefore, the hat points were resampled, so
that no point had a neighbour located within a sphere with radius €. The areas around the
nose and eyes were not resampled. The value of € was chosen so that the total number of

hat points was 500.

Each set of hat points was co-registered with the head points, using the same surface
matching algorithm as used in the previous section. For the first dataset, the initial guess for
the transformation matrix was obtained from manual co-registration. The co-registration
parameters were modified on a trial-by-error basis, for which visual feedback was obtained
from the display of the head points and transformed hat points. For the additional hat points
sets the transformation matrix obtained from surface matching of the previous set of hat
points was used as the initial guess.

Transformation of a single point with the 10 different transformation matrices gave
a cluster of 10 points. The spread of this cluster was an indication of the variability of the
co-registration procedure. The root mean square (RMS) value of the standard deviations in

the x, y and z-directions was therefore used as the error measure, €,.

Results

The transformation parameters as estimated by the surface matching algorithm were
used to form 10 transformation matrices. Each vertex in the realistically shaped mesh was
then transformed from MRI to MEG co-ordinates with all ten transformation matrices and
the resulting error was computed. The mean value found for €, was 1.6 + 0.2mm, with a
minimum value of 1.1 and a maximum of 2.Imm. Thus, the minimum variability of the
surface matching approach was equal to the smallest voxel dimension.

A map of &, for each point vertex in the mesh revealed that the largest variability
was found in the occipital pole (figure 3-20). This was mainly due to the relatively large

variability in the z-direction.







Conclusions

The error due to repeated co-registration of a set of head points obtained from an
MRI with the digitised scalp points resulted in an average error of 1.6mm. The largest
variability (2.1mm) was found for target points in the occipital pole. This variability was
almost entirely due to variations in the z-direction. A translation in the z-direction would
result in an error that is equal for all the points. Hence, the variability must be due to the
variability in a rotation parameter. Combined with the fact that the errors were largest in the
occipital pole this tells us that it is the rotation around the line connecting the pre-auriculars

that is most variable.

It is realised that reproducibility is not a measure of absolute accuracy, but gives a
measure of reliability under the variation that is tested. Only a test for which the true co-
registration is known would reveal the absolute accuracy. This could for example be
realised when a subject has bone implanted markers. The co-registration obtained from co-
registering these markers could then serve as the ground truth, assuming that perfect co-

registration is possible with bone implanted markers.
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3.5 Discussion

The inverse problem in biomagnetism suffers from the fact that this problem is non-
unique, hence constraints are needed in order to obtain a unique reconstruction from the
measured magnetic fields. Anatomical constraints are easily incorporated into the
formalism of the FOCUSS algorithm. A natural candidate for such a source space is the
cortical surface, since most of the brain activity that produces magnetic fields that are
strong enough to be measured with an MEG system takes place in the grey matter. A model
of the cortical surface can be retrieved from a subject's MRI. The approach to use such a
realistically shaped source space as a constraint on the inverse problem depends on two
factors:

1. The cortical surface can be accurately recovered from a subject's MRI

2. The co-registration of the MEG co-ordinate system (in which the measurements were
taken) and the MRI co-ordinate system (in which the realistically shaped source space is
defined) is accurate. Inaccurate co-registration would result in inaccurate constraints

and consequently erroneous results.

Both issues have been examined in this chapter.

The accuracy of the description of the cortical surface depends on the segmentation
technique that is used to separate the different tissues in the head. Inaccurate segmentation
can result in local errors in the definition of the cortical surface. A lot of research effort has
been put into the segmentation problem, both because there are many applications for its
use and because it is difficult to design techniques that can perform segmentation reliably
and automatically. Automatic tissue classification is troubled by noise in the scanner, small
differences in intensity levels between various tissue types, variation of the intensity level
of a tissue type throughout the whole volume and the partial volume effect near the
boundaries of tissues. A closely related problem is finding the boundary of the grey matter
tissue, which can also add errors to the cortical surface. There is not yet a technique that can
extract the cortical surface reliably from an MRI. Therefore a mainly manual approach was
used in this work. The grey matter tissue was defined by a simple thresholding technique.
Subsequently, the boundary of the grey matter was defined manually, using a combination
of MATLAB's contouring algorithm and software tools that enabled the selection and
editing of contours and drawing. This approach resulted in the accurate definition of the

cortical boundaries, but was rather time-consuming. For these anatomical constraints to
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become available for the day to day use in source reconstructions, a technique is needed
that can perform the extraction of the cortical surface (semi-) automatically and reliably. It
is expected that with the ongoing research effort into segmentation techniques that such a
technique will become available in the near future.

A further cause for error in the construction of the cortical surface is the
reconstruction of the surface from the contours defined in each MRI slice. Each slice can
contain a different number of, possibly intersecting, contours. The reconstruction of a
surface from such slices is non-unique and is therefore dependent on the method that is
used to select the best way to connect the contours. The NUAGES algorithm used in this
work is based on Delaunay triangulation and therefore based on geometric closeness. It can
deal with the branching problem and therefore poses no restrictions on the number of
contours that are defined in each slice. It was reported (Geiger, 1993) that vector contours,
such as the contours defined around the grey matter, provide both accurate reconstruction
with respect to surface location and orientation when used as input for the NUAGES
algorithm. Another reported finding was that the largest reconstruction errors are found
where the surface is almost parallel to the cross section. This should be taken into account
when the orientation of the MRI slices in which the boundaries are defined is chosen. For
example, if one wants to use the cortical surface as a source space for source localisation
from somatosensory evoked magnetic fields, then the contours should not be selected in

axial MRI slices.

A surface matching approach was taken for the co-registration of the MEG and MRI
co-ordinate systems. This approach does not suffer from the problem of identification and
localisation of a few (anatomical) markers in the MEG and MRI co-ordinate systems, as is
the case when fiducial markers are used for the co-registration. Additionally, with fiducial
markers, a relatively small digitisation error in the location of one of the markers can have a
profound effect on the co-registration accuracy. With the surface matching approach many
more points are used and a digitisation error in the location of one of the points will only
have a small effect on the overall co-registration accuracy.

It was reported that the accuracy of localisation of the head coils with the CTF 151
channel system, normally used as fiducial markers, is smaller than 2.5mm. The digitisation
error of these coils was 2mm when only digitised once, and smaller than Imm when the
location was determined from repeated localisation of the coils. Care must be taken

throughout the digitisation not to move the coils in directions where they are not supported
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by the underlying bony structures. The total error of determining the location of the coils in
the MEG co-ordinate system is of the order of 2mm. However, identifying the location of
the coils in the MRI system is prone to larger errors due to the problem of identification,
placing oil filled coils at the correct locations and the size of the oil filled capsules. The
total error in the co-registration of the fiducial markers is therefore at Jeast double the error
of the determination of the location in the MEG co-ordinate system, i.e. 4mm. The co-
registration error of points far away from the marker locations, like areas in the visual
cortex, is again larger than this error (see equation 3-10). The bite-bar system used by Singh
and colleagues for co-registration (Singh et al, 1997) stabilises the head during recordings
and increases the accuracy with which reference points can be identified. However, an error
in location of one of the reference points still causes large co-registration errors due to the

small number of reference points that are used.

The surface matching algorithm used in this study used a look-up table in order to
speed up the optimisation, since the distances from voxels around the head surface to the
surface were already stored in the table. The initial computation of the look-up table was
time-consuming, but only had to be performed once and could then be read from disk.
Additionally, fast algorithms exist that result in a look-up table containing approximations
of the Euclidean distance to the head surface (Borgefors, 1986, Schwartz et al, 1996,
Kozinska et al, 1997, Huppertz et al, 1998).

The ability of the algorithm used in this work to avoid local minima depended in a
complex way on the number of parameters that were used in the optimisation, the quality of
the initial guess and on the number of points that were used. It was found that, in the
noiseless case, the accuracy of the co-registration was largest when the most hat points
were used. In order to reduce the influence of local minima it was further necessary to use
as many points as possible from the non-spherical parts of the head, like the nose and the

bony structures around the eyes.

The algorithm was able to find the perfect co-registration parameters when no noise
was present in the location of the hat points. When noise was present, the error in co-
registration correlated to the error in the hat point locations. Therefore, the accuracy of the
co-registration procedure was dependent on the accuracy with which the hat points were
digitised. The hat points were obtained in a continuous mode, although it was demonstrated

that the digitisation error of a point was smaller when the location of a point was digitised
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several times and the mean location was taken as its location. However, this would be too
time-consuming due to the large number of hat points that were needed for the surface
matching. An approach that could give a large number of hat points in only a few seconds
is based on an optical system (Hurley, 1999) A laser-light with low energy is rotated around
the subject's head while a digital camera records the reflections on the head. The accuracy
of this system has yet to be determined, although it is accurate enough to produce
realistically looking 3D images of the head. One problem with this method might be that it
also measures (some) reflections from the hair, instead of the scalp.

Additionally, when no noise was present the accuracy of the algorithm was
independent of the voxel size. However, under noise conditions, the maximum accuracy
that was obtainable was limited by the slice thickness. Therefore, volumetric MRI scans
with isotropic voxel dimensions should be used when MRIs are used for co-registration
with MEG. Previously, obtaining volumetric MRI scans with small slice thicknesses was
time-consuming and therefore prone to movement induced errors. Nowadays, obtaining
such MRI sets in a reasonable acquisition time is feasible with fast scanning techniques
(Aine, 1995).

The variability due to repeated co-registration was largest (2.1mm) for target points
in the occipital pole, mainly due to variations in the z-direction. Hence, it was difficult to
find the correct value for the rotation around the line connecting the pre-auriculars. Still, the

mean error due to test-retest was only 1.6mm.
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4 Figures of Merit for Distributed Source Reconstruction

4.1 Introduction

The solutions found by any algorithm that localises brain activity from measured
electric and/or magnetic fields outside the head are non-unique, unless additional
constraints are imposed on the solutions. It is therefore necessary to assess the goodness of
a solution and the imposed constraints by means of some kind of figure of merit.

A commonly used error measure is the dipole localisation error (DLE) when
algorithms that reconstruct dipolar sources are tested with computer simulations. In this
case the correct location of a dipolar source is known and the DLE is defined as the
Euclidean distance between the correct source location and the location of the reconstructed
source. With measured data the correct location is unknown and therefore other error
measures are needed. Two commonly used measures are the reduced chi-square and the
percent of variance (see section 2.2.1.2 for the definition and a discussion of these
measures). A deviation from the expected value for these measures indicates that the
measured data are not sufficiently explained by the reconstructed sources. This can either
be due to noise in the data or due to the use of constraints that are not satisfactory for the
measured data. For example, the imposed constraint of a single dipolar source is invalid
when the brain activity can be better explained by a distributed source or by more than one
dipolar source.

Unlike for discrete sources, there are no figures of merit that are widely used with
tomographic reconstruction algorithms. When tomographic techniques are tested by means
of computer simulations, the accuracy is usually assessed by computing the Euclidean
distance between the location of the original dipolar source and the location of the centre of
activity of the reconstructed distributed source (Wang er al, 1992, Wang, 1993, Wang,
1994). This is not a fair measure, as tomographic techniques were never designed to
localise discrete sources. Note that figures of merit like the reduced chi-square or the

percent of variance are meaningless with tomographic reconstruction techniques. Due to the
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large number of sources it is possible to explain 100% of the data. This means that noise in
the data will also be reconstructed as spurious sources in the brain. This unwanted effect
can be reduced by means of regularisation (section 2.3.2.3).

There are measures though that can be used to assess the quality of tomographic
reconstruction algorithms. Recently, Grave de Peralta Menendez and colleagues have
brought the concept of the resolution matrix to the attention of the biomagnetism
community (Grave de Peralta Menendez et al, 1996, Grave de Peralta Menendez et al,
1997, Liitkenhoner and Grave de Peralta Menendez, 1997, Grave de Peralta-Menendez and
Gonzales-Andino, 1998, Grave de Peralta Menendez and Gonzalez Andino, 1999). This
concept is based on the lead fields and a matrix that represents the inversion procedure,
including constraints. Thus, it is only based on the definition of the source space, the
volume conductor model, the sensor configuration and any a priori information. It is not
based on measured data and can therefore not assess the quality of a source reconstruction.
On the other hand, it provides the experimenter with a method to judge the applicability of
a reconstruction technique for the case in hand, as it can identify regions for which the
algorithm gives inaccurate reconstruction results, whatever the quality of the data is.

In the next sections, these figures of merit for distributed source reconstruction
algorithms are described in more detail.

Solutions found with the FOCUSS algorithm consist of only a few discrete sources
(Gorodnitsky ez al, 1995). The figures of merit used with distributed source reconstruction
algorithms can therefore not be applied to the final solutions obtained with FOCUSS.
However, the solutions are of a distributed nature when the algorithm starts. The figures of
merit for distributed solutions mentioned above can therefore be used to help with the
choice of the initial constraints (i.e. the initial weighting matrix). The usefulness of these

measures is examined by means of computer simulations in section 4.3.
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4.2 Theory

4.2.1 Decrease of Singular Values

It was described in section 2.2.3.1 how a matrix can be decomposed in orthogonal
components by means of Singular Value Decomposition. To repeat briefly:

For a general matrix A, with dimensions N x M, the SVD results in:

A=UAV", (4-1)

where U and V are the orthogonal matrices with dimensions N x N and M x M,
respectively. The matrix U contains the left singular vectors and V contains the right
singular vectors. The diagonal matrix A is of the same dimensions as A and contains the

singular values of A in descending order:

A=diag(A,.A,,.. A, 4,,,..0,..0), A > A, (4-2)

The singular values represent the magnitude of the contribution of each singular vector to
A. The summation of all components, weighted by the singular values, returns the original

data matrix.

The decay pattern of the singular values can also be used to assess the quality of the

lead field matrix L that contains the information about the forward problem in linear
inverse algorithms. This can be seen as follows:
Each right eigenvector of L is a basis function with the same dimensions as the number of
elements in the source space. A basis function can therefore be displayed in the source
space, where it gives insight into the relative contribution from different areas to the basis
function. The left eigenvectors are the orthonormal field patterns that are induced in the
sensors by each corresponding basis function. The singular values weight the contribution
of each left eigenvector to L.

In general, the low frequency spatial components are represented in the first few
eigenvectors and subsequent eigenvectors contain information about finer details.
Unfortunately, the singular values corresponding to the latter eigenvectors are small, hence

the contribution of these eigenvectors is relatively small. This means that fine detail in the
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basis functions is lost when the difference between the larger and smaller singular values is
big. Thus, the Condition Number of the lead field matrix, defined as the division of the
largest singular value by the smallest singular value, provides a single measure that gives an
idea of the spatial resolution that can be obtained.

Ideally, the decay pattern of the singular values should be flat, so that the relative
contribution from low and high frequency components is cqual. In reality though, the decay
pattern is almost exponential. Additionally, noise in the measurements ensures that
eigenvectors corresponding to small singular values can not be used in source
reconstructions. Therefore, some high frequency components need to be discarded,
depending on both the decay pattern of the singular values and the SNR.

The quality of the lead field matrix, which is at the heart of any linear inverse
algorithm, can be judged by the decay pattern of its singular values. This approach was
used to determine the optimum reference electrode for source localisation from EEG
(Genger et al., 1996). They found that the first few basis functions peak near the reference
electrode of choice. Therefore, a measurement is more sensitive to activity near the
reference electrode. It follows from this that, if one wants to localise activity in, for
example, the occipital cortex, one should use an occipital reference. However, the spatial
resolution of a source reconstruction that can be obtained depends on the number of basis
functions that can be used and hence on the decay pattern of the singular values and the
SNR. Using an average reference electrode gave the flattest decay pattern and would be
preferable in cases where high resolution is wanted. The flat decay pattern for data with an
average reference electrode was caused by the fact that there were no dominant basis
functions as the average reference electrode is not near any source areas. However, eye-
blinks or other artefacts influence the measurements in all electrodes when an average
reference is used. Hence, the choice of reference electrode depends on the type of
experiment performed.

In a subsequent paper (Genger and Williamson, 1998), the decay pattern of the
singular values was used to demonstrate that the decay pattern flattens when more sensors
are used in an MEG or EEG recording. Therefore, more basis functions may be used to
reconstruct activity and consequently the resolution of the source reconstruction increases.
However, the amount of extra basis functions that can be used depends on the SNR of the
measurements. When high SNR data are used, the number of basis functions that can be
used increases significantly when sensors are added. However, when the SNR is low, the

increase in the number of basis function is less dramatic. This is illustrated in figure 4-1. It
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figure 4-1: Decay pattern of the singular values for several set-ups with different numbers of
sensors. With low SNR data only a few singular values are larger than the singular values due to
the noise, for set-ups with a few as well as many sensors. The cut-off level is indicated with the
line annotated with Low SNR. On the other hand, with high SNR data many more singular
values are larger than the noise singular values and the difference in the number of singular
values that is usable between a set-up with a few or many sensors is large. The cut-off level for
high SNR data is indicated with the line annotated with High SNR (modified from Genger and
Williamson (1998)).

follows from this figure that for data with low SNR the increase in extra basis functions that
can be used is small or even negligible, whereas for high SNR data the increasc is
significant (compare ~20 basis functions for a system with 25 sensors with ~90 basis
functions for a system with 289 sensors for the high SNR data). It was reported that for a
realistic SNR the benefit of increasing the number of sensors beyond 100 is small (Genger

and Williamson, 1998).

4.2.2 Resolution Matrix

The concept of resolution kernels (or averaging kernels) was first developed by
Backus and Gilbert for the analysis of inverse problems in geophysics (e.g. Backus and
Gilbert, 1968). This inverse problem involves the reconstruction of the internal structure of
the earth from measurements of properties of the earth (like the mass or frequency of

oscillation). They developed the concept of an averaging kernel to quantify the idea of
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constructing a desirable estimator that computes a local average of some earth variable
from the measured earth data, for example the average density in a region. The idea is that
the average at a certain location should emphasise heavy contributions from points near the
target location and little contribution from points further away. The ideal averaging kernel
is therefore a delta function around the target location. They then chose a function that
describes the deviation of the averaging kernels from the delta function. Minimising this
function results in an optimal estimator, in the sense that the value of an estimated earth
variable at a certain location is the best average that can be obtained at that location (i.e. the

average is only based on contributions from a small region around the target location).

Robinson and Rose (Robinson, 1989, Robinson and Rose, 1992) used a similar idea
in order to obtain an optimal spatial filter. They minimised the deviation of 'synthesised
lead fields' from a delta function for the design of filter coefficients in spatial filter imaging
with MEG. With the filter coefficients estimated, an image of source activity is obtained by
projecting the MEG measurements through an array of regularly spaced 'synthesised lead

fields' (See section 2.5 for more details).

Grave de Peralta Menendez and colleagues described the concept of resolution
kernels within the context of the inverse problem in biomagnetism (Grave de Peralta
Menendez et al, 1996, Grave de Peralta Menendez er al, 1997, Liitkenhoner and Grave de
Peralta Menendez, 1997, Grave de Peralta-Menendez and Gonzales-Andino, 1998, Grave
de Peralta Menendez and Gonzalez Andino, 1999). They presented the resolution matrix,
in which each row is the discrete analogue of the resolution kernels described by Backus
and Gilbert. Additionally, they derived figures of merit based on the resolution matrix that
are easier to visualise than the full resolution matrix. These measures were used for the
comparison of different linear estimators.

The derivation of the resolution matrix goes as follows (Grave de Peralta Menendez
et al, 1996, Grave de Peralta Menendez et al, 1997, Grave de Peralta-Menendez and
Gonzales-Andino, 1998):

We repeat equation 2-19, the discrete formulation of the forward problem, using the lead

field concept:

B=LQ, (4-3)
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with B the column vector containing the magnetic field measurements in the sensors at a
certain instant in time, L the lead field matrix and Q the column vector containing the

source strengths of all elements in the source space.

It was shown in section 2.3 that several approaches to find a linear estimation of the

strength of the sources can be formulated in a general way as:

Q=GB, (4-4)

The matrix G represents the inversion procedure that is used, including any «a priori
information that is included in the reconstruction. The details of the most commonly used

implementations of the linear estimation matrix G are given in section 2.3.

Substituting equation 4-3 into equation 4-4 gives:

Q=GLQ=RQ, (4-5)

The matrix R in the above equation is known as the resolution matrix. A few important

points follow from this equation:

* The estimated source strength of the k™ element in the source space is obtained by
matrix multiplication of the correct source strength of all elements with the k" row of
R. Thus, the rows of R 'filter' the contribution from all other sources to the estimated
value of the target element. Let's see what happens in a hypothetical situation where
two sources, located far apart, are simultaneously active. Assume that the row in the
resolution matrix corresponding to source 1 has its highest value at the location of
source 1, but that there are also considerable sidelobes so that the value in the resolution
kernel is also significantly larger than zero for source 2. This means that the estimated
value of the strength of source 1 is the sum of the (correct) contribution from activity at
this location and a (incorrect) contribution from the second source. In the case the
element for source 2 is negative and the strength of source 2 is larger than that of source
1, the contributions from source 1 and source 2 to the estimated strength of source 1
could even cancel out. This means that it would be impossible to detect the activity of
source 1 when source 2 is active at the same time, no matter how high the SNR of the

data is!
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® From the example given above it follows that, ideally, each row k should have a value
of 1 at the k" element and all other element should be zero (i.e. the discrete version of a
delta function) as this would mean that the estimated strength of a source is independent
of activity from other sources. Consequently, the ideal resolution matrix is the identity
matrix I. This requires that L has a rank equal to the number of source clements'. This
is impossible to occur with biomagnetic measurements. The best we can try to achieve
is a resolution kernel with maximum values near the source element associated with that
row and small sidelobes. The extent of the area that surrounds an active source and
influences its estimated strength can be used as a measure of the resolution of the linear
estimator, since fine detail within this area cannot be revealed. Hence the name
resolution kernel. An example of the resolution kernels of a source, obtained with
different linear estimators, is given in figure 4-2.

® The resolution matrix is based on the linear estimator and the lead field matrix. It is
therefore completely defined by the inversion technique that is used, a priori
information, definition of the source space, volume conductor model and sensor
configuration. Hence, it is independent of the data and an analysis of the resolution
matrix can be done before any measurements are made. Potential shortcomings of the
used approach can therefore be detected before actual measurements, and source
reconstruction from these measurements, are performed.

* An important point to make is that the resolution matrix only describes what the
possible influence of other sources on the estimated value of the strength of a source is.
The exact contribution from other sources depends on the location and strength of these
disturbing’ sources during the measurements. The information obtained from the
resolution kernels is still valuable though, since the activity reconstructed with a linear
estimator that has large sidelobes in the resolution kernels is more likely to be affected
by activity in the brain that is not associated with the stimulus of interest than with an
estimator with smaller sidelobes. An estimator with smaller sidelobes would therefore

be preferable.

" If each source element has an orientation in the X-,y- and z-directions (i.e. the source orientation is not
constraint to be normal to the surface), then the rank should be 3 times the number of source elements.

186




* The columns of the resolution matrix contain useful information as well. They are
referred to as the impulse responses of the linear estimator and reveal the ability of the
linear estimator G to localise single point sources. To clarify this: assume that the
measurements are exactly those that are produced by a unitary single current dipole
located in the k" element of the source space. Note that this is the definition of the lead
field L of the k'™ element. Hence, in this case B = L. Using this, it follows from
equations 4-4 and 4-5 that the solution provided by the linear estimator G is identical to
the k™ column of the resolution matrix. Thus, the columns of R are the impulse
responses of the linear estimator. As with the resolution kernel, the amplitude of the
main peak in the impulse responses should occur at the location of the corresponding

source elements. The magnitude reflects the amplification or reduction of the activity of

nd
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figure 4-2: Resolution kernels for three different linear estimators for the target point A. The reconstructed
activity in A will be influenced by activity from other sources if their value in the resolution kernel is non-
zero. For example, activity in B will contribute to the reconstructed activity in A for all three linear
estimators. Reconstructed activity in location A could either be due to activity in A or due to slightly
stronger activity in B, so the spatial resolution of the linear estimator is related to the width of the main
peak in the resolution kernel. When the Minimum Norm estimator is used, activity in C will have a
negative contribution to the activity in A. This could cancel the activity of source A when a strong source is
present in C. Activity in C has a small positive contribution to the activity in A when the B&G estimator is
used and no contribution if the WROP estimator is used. Hence, the optimal linear estimator should have a
narrow peak around the target source (influence of source B is minimal and therefore high spatial
resolution) and small sidelobes (influence of distant sources like C is small). From Grave de Peralta
Menendez et al (1997), see original paper for details about the linear estimators.
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an actual source due to the estimator G. The width of the main peak reflects smearing of
the activity and sidelobes reflect spurious sources introduced by the estimator.

It follows from the previous discussion that the resolution matrix can be computed by
concatenating the impulse responses that are obtained for all elements in the source
space sequentially. This allows for the computation of the resolution matrix for
algorithms that can not be formulated as in equation 4-4. For example the resolution
matrix for those algorithms that compute the linear inverse by means of an iterative
algorithm can be computed this way. It would be especially interesting to compare the
resolution matrix at the start of the FOCUSS algorithm (using R = G L) and after it has
converged (using the concatenation of impulse responses). This should demonstrate a
significant improvement of the resolution matrix.

The impulse response, or measures derived from it, should be used with care. They are
based on the ability to reconstruct discrete localised sources, which is something linear
estimation techniques were not developed for.

A plot of the resolution kernels for different estimators can help to chose between
different linear estimators. Assume that there is an estimator that gives a narrow peak
around the location where an active source is expected, and thus a high spatial
resolution, but that also gives large sidelobes. Also assume a second estimator has a
broader peak, but no significant sidelobes. One can choose to use the first estimator if
no significant brain noise is present. If there are a lot of brain sources that are not
related to the process of interest, one should use the second estimator. This ensures that
these noise sources have negligible influence on the estimated activity of the target
sources, at the expense of a reduction in spatial resolution.

The derivation of the resolution matrix given above is only valid for linear distributed
estimators. A derivation that is valid for linear estimators in general can be found in

Liitkenhoner and Grave de Peralta Menendez (1997).

A plot of each row in the resolution matrix provides us with useful information

about the possibilities and limitations of the linear estimation approach that is used, as was

first shown by Backus and Gilbert (Backus and Gilbert, 1968). Yet, in practice, a

realistically shaped source space consists of thousands of elements. A plot of each row

would be impractical. Therefore, Grave de Peralta Menendez and co-workers described

measures derived from the resolution matrix that contain the essential information, but are
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easier to display (Grave de Peralta Menendez er al, 1996, Grave de Peralta-Menendez and

Gonzales-Andino, 1998):

Source Identifiability

As described above, the ideal resolution matrix is equal to the identity matrix. In
reality this can not be achieved, but one can try to minimise the deviation of the resolution
matrix from the identity matrix. A resolution kernel should therefore be correctly centred
around the target element and have a value of 1. This can be quantified for each row k in

the resolution matrix as:

st, = D-dRy (4-6)
D

with D the maximum distance between elements in the source space, and dy; the Euclidean
distance between element k and the element where the absolute maximum in the resolution
kernel was found. Ry is the absolute value of the k™ diagonal value in the resolution
matrix. A small value in SI means that either the main peak is at the wrong location (giving
rise to large contributions from other sources to the estimated source activity) or that the
peak value is small (a source at that location is difficult to retrieve). A large value of SIi

means that the activity in that source element can be correctly estimated, independently of

the spatial blurring.
Bias in Dipole Localisation
The Bias in Dipole Location is defined as the Euclidean distance between the

element in the source space where the maximum in the k™ column of R is obtained and the

ideal, k‘h, element, normalised by the maximum distance:

BDL, =%, (4-7)

with D and d,; as above.
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A large value in BDL can be interpreted as the localisation error that can be expected if a

unitary source is active in that particular source element.

Crosstalk

Liu and colleagues presented the use of the crosstalk metric for the analysis of a
method to integrate MEG with fMRI data (Liu er al, 1998). They defined the crosstalk

between two sources i and j as:

iJ?:’(—Gi”l;*100%:IGi‘—L'j[--*loO(%;, (4-8)
’(GL)iil IGi.L,i

It follows from equation 4-5 that this is the same as element j in the i'" row of the resolution
matrix (which is the i resolution kernel), apart from weighting by the estimated activity
from source i itself. Thus, the crosstalk quantifies the sensitivity of the estimated activity at
location 1 to activity at location j, relative to activity at location i. A crosstalk of 0% means
that the estimated activity at location i is completely insensitive to activity at location j,
whereas a crosstalk of 100% means that the estimated activity at location i is equally

sensitive to activity at locations i and j.

This measure was used to determine how strong fMRI based constraints should be
to get optimal localisation from MEG data (optimal in the sense of minimum crosstalk
between sources). Their approach was as follows:

* The source covariance matrix was used as a weighting matrix for their linear estimator.
No correlation between sources was assumed, so all off diagonal elements were zero. A
diagonal element corresponding to a source in the fMRI data was given a value of 1 and
the other diagonal elements, corresponding to invisible fMRI sources, were given a
value of 0, 0.01, 0.1 and 1. This corresponds to 100%, 99%, 90% and 0% {fMRI
weighting, respectively. A relative fMRI weighting of 0% means that no fMRI
constraints are used and the linear estimator reduces to the minimum norm estimator.

e Visible fMRI sources were randomly selected and the crosstalk between the sources
was computed. In order to get rid of bias effects, this was repeated several times,

resulting in an average value for the crosstalk.

190




* Also, the average crosstalk was computed with several different relative fMRI
weightings.

* This procedure was repeated to compute the average crosstalk between a visible fMRI
source and an invisible fMRI source as well. Also, instead of point sources, sources
with a larger spread were used (i.e. elements in the source covariance matrix

corresponding to such an extended visible fMRI source were all given a value of 1).

The main conclusions of their simulations are that:

* Relative fMRI weighting provides a way to compromise between the ability to resolve
visible sources (high relative fMRI weighting) and reducing the influence of invisible
fMRI sources (low relative fMRI weighting) on estimated activity. The optimum
weighting was found to be 90%.

" The crosstalk was smaller when orientation constraints were used for the sources.

= Errors in the orientation of the sources influenced the average crosstalk only little.
Using orientation constraints, even when they were not really precise, gave more
accurate source reconstructions than when no orientation constraints were used.

* The crosstalk was relatively independent of the number and extent of the fMRI sources.

Thus, the reconstruction method that was used is a true multisource 1maging method.

It should be noted that the optimum relative fMRI weighting of 90% depends on the shape
of the resolution kernels and therefore on the linear estimator, source space, head model
and sensor configuration that was used. It is expected that this value will vary for different
measurement set-ups. Two approaches can be taken to use the crosstalk to determine the
optimum weighting for the combination of measured fMRI and MEG data:

1) The average crosstalk between the sources within the fMRI data and randomly chosen
invisible sources is computed. The optimum relative fMRI weighting 1s found by
repeating this with several values for the weighting. Source localisation from the MEG
data is then performed with the fMRI data as constraints, using the optimum relative
weighting.

2) An initial source localisation is performed from the MEG data, without using any fMRI
constraints. The localised sources that do not correspond to a fMRI source then act as
invisible sources in the procedure described above. The advantage of using the MEG
sources’ instead of randomly chosen invisible sources is that the weights are tailored to

give the lowest crosstalk based on both the fMRI and MEG data, instead of being only
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based on the fMRI data. This approach is only beneficial if the initial MEG localisation

is reasonably accurate.

A plot of the crosstalk kernel, the homologue of the resolution kernel, demonstrates
the spatial spread of estimated activity. Liu and colleagues used these plots to demonstrate
that the spatial resolution for sources on a gyrus is higher than within a sulcus. This was
only demonstrated for one pair of sources though, and the lower spatial resolution of the
source within the sulcus could be due to other factors, like its orientation. Further research

is needed to verify whether this effect holds for other sources.

Image Sensitivity Maps

The diagonal entries of the resolution matrix provide information about the
maximum performance of the linear estimator. Each diagonal element gives the peak
response of the linear estimator for unit dipole activity at the corresponding element in the
source space. It is therefore possible to create a colour coded map of the values of all
diagonal elements. This reveals the sensitivity of the linear estimator to activity at different
locations (Genger et al, 1996). Hence the name image sensitivity map.

Genger and colleagues computed image sensitivity maps for a simulated EEG set-up. The
maps showed that image sensitivity was highest for activity on the gyrt and a decreasing

sensitivity for activity within the sulci.

Expected squared error due to other sources

Another measure that summarises the information in the resolution kernels was
given by Dale and Sereno (Dale and Sereno, 1993). The expected squared error of the i"

element due to activity in all other elements is given by:

£, =R, K R/, (4-9)

with K, the source covariance matrix. The covariance matrix reduces to the identity matrix

if no a priori information about the sources is used, and & is simply obtained by
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multiplying each resolution kernel with its transpose. The result is a single value for each
element in the source space and a map, similar to the image sensitivity maps, will reveal the

sensitivity of activity at a location to activity at other locations.

Influence of noise

So far, the potential influence of noise has not been considered in this section. If we

consider noise, equation 4-3 becomes:

B=LQ+N, (4-10)

with N the matrix that contains the noise and has the same dimensions as B.

Equation 4-5 then becomes:

QO=ROQ+GN, (4-11)

It is clear from this equation that the i row of G specifies how much a unit of noise at each
sensor contributes to the estimated activity of the i element in the source space (Dale and
Sereno, 1993).

As for the expected squared error due to other sources, this information can be summarised

in a single measure. The Expected squared error due to noise for each element is given by:

£, =G, K, G/, (4-12)

with K, the noise covariance matrix. The covariance matrix reduces to the identity matrix if
no a priori information about the noise is used, and the error measure is simply obtained by
multiplying each row in G with its transpose. The single value for each element in the
source space can again be displayed as a colour coded map. Such a map reveals the
sensitivity of activity at a location to noise in the measurements when linear estimator G is

used to localise the activity.

Another approach to look at the potential influence of noise is based on varying the

number of basis functions that are used in the construction of the resolution matrix (Genger
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et al, 1996). Genger and co-workers used a formula based on the estimated SNR that gives
the number of basis functions that should be used. However, this formula will not always
give the correct truncation level, as follows from the following example. Assume two
situations with exactly equal SNR and that their formula orders to use the first 30 basis
functions. Assume further that in case 1 the angle between the 30™ spatial component and
the noise vector is small and in the 2"’ case the angle is close to 90°. Consequently, one
should not use the 30" component (and smaller components) in the 1* case but can use the
30" component in the 2™ case. The potential influence of noise can therefore better be

examined by means of €.
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4.3 Usefulness of Figures of Merit in Conjunction With FOCUSS

4.3.1 Introduction

The figures of merit described in the previous section can be used to evaluate linear
distributed source reconstruction algorithms. More specifically, they can be used to select
the optimum algorithm for a specific inverse problem (e.g. Grave de Peralta Menendez er
al, 1996) or evaluate the influence of the measurement set-up on the source reconstructions
(e.g. Genger et al, 1996). Grave de Peralta-Menendez and colleagues (Grave de Peralta
Menendez er al, 1996, Grave de Peralta Menendez et al, 1997, Litkenhoner and Grave de
Peralta Menendez, 1997, Grave de Peralta-Menendez and Gonzales-Andino, 1998, Grave
de Peralta Menendez and Gonzalez Andino, 1999) have strongly promoted the utilisation of
these measures for the biomagnetic inverse problem. However, reports of their usage are
still scarce. Moreover, their use is only rarely evaluated with a realistically shaped source
space (Dale and Sereno, 1993, Genger et al, 1996). Grave de Peralta-Menendez and
colleagues only reported results of the use of these figures of merit in simulations with
unrealistically shaped source spaces (i.e. 1 dimensional or formed from slices through
spherically shaped source spaces). These simulations give valuable insights into the basic
limitations and advantages of the linear estimators that were used. However, it is expected
that the features of linear estimators vary when a realistically shaped source space is used in
the source reconstructions. Therefore, in section 4.3.2 the figures of merit were evaluated
with a realistically shaped source space.

The FOCUSS algorithm used in this work is a hybrid method that is neither a
classic optimisation algorithm nor a standard linear estimator. The relevance of the figures
of merit used here can therefore be questioned. However, a weighted minimum norm
solution is taken as the initial guess of the algorithm. Thus, the figures of merit can at least
be used to evaluate this initial guess. Moreover, the relationship between the figures of
merit for the initial guess and the final solutions of the FOCUSS algorithm was examined

in section 4.3.3.
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4.3.2 Evaluation With a Realistically Shaped Source Space

4.3.2.1 Groundwork

Before the figures of merit are discussed, a description and analysis of the
simulation framework is presented.

The figures of merit were analysed with the realistically shaped source space that
was constructed in section 3.2.4. The maximum distance, D, between any pair of sources in
the source space was determined to be 103mm. This distance was used for the computation
of the Source Identifiability and Bias in Dipole Location. The sensor configuration, location
and orientation was taken as in a typical visual evoked experiment with the 19-channel CES
system at Aston University. This means a diameter of each coil of 15mm and the distances
between the gradiometer coils from bottom to top: 1.5, 19.5, 5, 5, 5, 19.5 and 1.5 [mm],
respectively. The gradiometers were all oriented perpendicular to the surface of the source
space in order to measure the radial component of the magnetic field. The sensor array was

positioned around the occipital pole of the left hemisphere.

| The head was modelled as a sphere that fitted
60 : : , . : ;
I e . . - the skull around the back of the head. Only a
4t :
. . . . single sphere model was used, since the
20t
influence of volume currents on the measured
Ole ° ° ° o
2 magnetic fields is known to be small in most
® L] [ 4 L
w0l cases (as was shown in section 1.3.4). With this
5 _ . . configuration, the forward problem was solved
T80 40 20 0 20 40 60 . ) .
for each dipole in the source space, having

figure 4-3: Configuration of the 19 channel CES unitary strength. That is, the magnetic induction
system (ideal). The space between two sensors is

29mm. in the sensors was computed for each dipole.

This sensor response for a unitary dipole is
equal to the gain or lead field of that dipole. Hence, the concatenation of the lead ficlds for
all dipoles formed the lead field matrix, L.

Using the formulation of the pseudo-inverse as used in the FOCUSS algorithm

(Gorodnitsky et al, 1995), the estimated source strength can be written as:

Q=W(LW)"B, (4-13)
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figure 4-5: Histogram of the angles between the sphere radius and the orientations of gyral (left panel) and
sulcal (right panel) sources.

model was computed. Thus, each source was now classified and the angle it formed with
the radius was known. A histogram of the angles for the sulcal and gyral sources shows the
distribution of angles for both classes (figure 4-5). The distribution for the sulcal sources
approached a normal distribution, with the mean value being 90°. Hence, the majority of
sulcal sources had a tangential, or nearly tangential, orientation. Consequently, activity
produced by the majority of these sources will be picked up in an MEG recording, provided
the distance to the sensors is sufficiently small. The histogram for the gyral sources shows a
large number of sources that were nearly radial. Consequently, activity produced by these
sources will not produce a significant MEG signal. However, there was still a notable
number of sources that had an orientation that was not radial (the mean angle was 57° for
the gyral sources). This is explained by the fact that there is such a large amount of cortex
folded into the sulci; two thirds of the total cerebral cortex is buried within the cortical folds
(Van Essen and Drury, 1997, Le Goualher et al, 1999). Were the brain to consist of no sulci
at all, then the orientation of the sources would always be radial. The more sulci there are,
the more the gyri are 'pulled' inwards, with the effect that the angle with the sphere radius
increases. These non-radial gyral sources will produce a measurable magnetic field outside
the head, hence MEG is not blind to all gyral sources (see also Leahy ez al., 1998).

The histograms of the distribution of angles for the gyral and sulcal sources
suggested that the ability to localise activity for both classes of sources differed. This
should be reflected in the resolution matrix and the figures of merit. It was therefore
examined whether these measures demonstrated significant differences for sulcal and gyral

sources in the succeeding evaluation of these measures.
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the sensors as expected from the 1/1° relationship between the magnetic field and the source
location in the law of Biot and Savart. There were a few superficial, tangential, sources
with very large [[L|l;. Due to these sources the scaling in the surface map was such that
details in the surface map for the sources with smaller ||L|}, were not visible. Therefore, the
same surface maps as in figure 4-6 were displayed on a logarithmic scale (figure 4-7). In
these later surface maps the gyri and sulci were clearly visible due to the differences in ||L||,
for sources in these areas. The source with smallest [|L}, were found on the gyri that were
located furthest away from the sensors. For the sulcal sources the |[L||; also decreased with
distance, but was larger than for a gyral source at similar distance from the sensors. It is
noteworthy that even for the gyri there were only a few 'spots’ from which it would be
impossible to record activity.

In the following section the influence of the differences in ||Ljl, on the figures of

merit for linear inverse algorithms was investigated.




4.3.2.2 Figures of Merit

In this section the figures of merit described in section 4.2 were evaluated. The
analysis started with an examination of the resolution kernels and the columns of the
resolution matrix. This was cumbersome due to the large number of resolution kernels and
columns in the resolution matrix. The inspection of the resolution matrix was therefore
followed by an examination of the summarising measures described in 4.2.2, the Source
Identifiability, Bias in Dipole Location, Image Sensitivity, Expected squared error due to
other sources and Expected squared error due 1o noise. The Crosstalk measure was not
evaluated, since the Crosstalk between a source and all other sources is the same as each
value in this source's resolution kernel, apart from a scaling factor.

The resolution matrices and figures of merit for the linear estimator were examined
for two different weighting matrices. By doing so a distinction could be made between
properties of the figures of merit that could be attributed to the linear estimator and the
specific set-up or that were due to a priori information that was used.

The first weighting matrix used was the identity matrix. With this weighting matrix
the linear estimator reduced to the minimum norm estimator. The second weighting matrix
that was used counteracted the bias towards the sensors that is characteristic for the
minimum norm estimator (see section 2.3.2). Each diagonal element in the weighting
matrix was formed by the inverse of the I-norm of the lead field of the corresponding
source. The weighting for completely radial sources was set to the mean value for the non-
radial sources because otherwise radial sources would get infinite weighting. The weighting
matrix thus far obtained also 'punished' tangential sources, since tangential sources have a
relatively large [[L|j2. In order to avoid this, the weightings were sorted according to the
average distance to the sensors of the corresponding elements in the source space and a
running average of the weightings was taken. These new values were used in the weighting

matrix, from now on referred to as smoothed norm weighting.

Resolution kernels, using minimum norm weighting

In this case, the weighting matrix was set equal to the identity matrix. This means
that no a priori information was used and the solution in equation 4-13 reduced to the

minimum norm solution. Consequently, the resolution matrix reduced to the one for the
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minimum norm solution as well. The resolution matrix for the minimum norm solution is
symmetric, hence the resolution kernels were equal to the corresponding columns in the
resolution matrix. Also, each column of the resolution matrix can be seen as the impulse
response of the linear estimator to the signal induced by unitary source in the corresponding
element in the source space. Combining these two facts tells us that each resolution kernel
was equal to the minimum norm solution for unitary activity in the corresponding element

in the source space.

In figure 4-8 the resolution kernels typically found for a superficial, shallow and
deep source are displayed. In figure 4-9 the resolution kernels for the same sources as in

figure 4-8 are given, sorted for the distance between each source and the target source.

The surface map for the resolution kernel of the superficial source was close to the
ideal one. That is, the values in the resolution kernel were large for sources near the
superficial source and reduced in amplitude for more distant sources. This was also
illustrated in figure 4-9. For the shallow source the resolution kernel was worse. There were
still some elements with a large value in the resolution kernel near the location of the
shallow source, but there were also large side lobes at locations far from the target source.
These side lobes were found in areas at equal or smaller average distance from the sensors.
The resolution kernel for the deep source was the worst case scenario. The reconstructed
activity for this deep source was influenced by activity in many places in the source space
(figure 4-8). Moreover, figure 4-9 shows that the values in the resolution kernel around the
deep source were small and that the main peak was far from this source. Again, this main
peak was shifted towards the sensors.

These resolution kernels point out the main drawback associated with the minimum
norm estimator. The minimum norm estimator is biased to reconstruct sources too close to
the sensors. This was reflected in the resolution kernels; large side lobes were found close
to the sensors. Additionally, the finding that the reconstructed activity for the deep source
was influenced by activity in many areas of the source space was in agreement with reports
that state that minimum norm solutions are more distributed for deep sources than for

superficial sources (Wang et al, 1992, Wang, 1993).

An interesting observation from the resolution kernels of the superficial and shallow

source was that the areas with negative values were close to the target sources. This means
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_ figure 4-9: Resolution kernels for a superficial (top
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Resolution kernels, using smoothed norm weighting

The resolution matrix was obtained for the linear estimator, using smoothed norm
weighting. This weighting matrix compensated for the bias towards the sensors
demonstrated above. The resolution kernels were therefore expected to exhibit smaller side
lobes, shifted in location towards the target sources. The surface maps for the same sources
as used above are displayed in figure 4-10 and the resolution kernels plotted against the
distance from the source of interest are given in figure 4-11.

The surface maps for the superficial and shallow sources showed little difference in
pattern with the surface maps obtained with minimum norm weighting, neither did the plots
of the resolution kernels versus distance to the target source. The only difference was that
the plots for smoothed norm weighting were 'smoother' than the corresponding plots for
minimum norm weighting. Also, the mean value of the resolution kernels had decreased
due to smoothed norm weighting (from 4.5-10° + 3.1-10* to 4.0-10° + 2.4-10™* for the

superficial source and from 2.5:-10° +9.9:107 t0 7.0- 107 + 3.4-10°° for the shallow source).
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The surface map for the deep source exhibited less areas that had large values but the mean
value had not changed (-3.5-10° + 2.1-10™ for the smoothed weighting compared to -3.5-10°
£ 1.6:10™*). For the deep source, the plot of the resolution kernel versus distance to the
target source showed a side lobe that was not there when minimum norm weighting was
used. However, this side lobe was still far from the deep source and the main peak was still

found close to the sensors.

The columns of the resolution matrix were different from the rows for the case of
smoothed norm weighting. The main features of the resolution columns were however
similar to those of the resolution kernels and the maps of the resolution columns were
therefore not displayed here. The deeper sources had peaks in the resolution columns at
large distances from the target source. Shallow sources also showed peaks away from the
target source. The peaks in the resolution columns of the superficial sources were near the
target source and in general there was less spread in the resolution columns for superficial

sources than in the resolution columns for the shallow and deep sources.

The use of a different weighting matrix influenced the overall performance of the
linear estimator, but the main patterns in the resolution kernels were little influenced by the
choice of weighting matrix. Additionally, using smoothed norm weighting instead of

minimum norm weighting had the largest effect on the resolution kernels of deep sources.

Figures of merit, using minimum norm weighting

The patterns in the surface maps of the Source Identifiability, Image Sensitiviry and
Expected squared error due to other sources were very similar due to the symmetry of the
resolution matrix when the identity matrix was used as a weighting matrix. Therefore, only
the results for the Source Identifiabilty are given here. Also, in cases where there were a
few elements with a much larger value than the majority of elements in the source space,
the surface maps are (only) displayed on a logarithmic scale in order to reveal more detail
in the maps. The results for the Source Identifiability, Bias in Dipole Location and Expected
squared error due to noise are given in figure 4-12, figure 4-13 and figure 4-14

respectively.




The surface map of the Source Identifiability (figure 4-12) showed that superficial
sources were easiest to identify, i.e. the reconstructed activity for superficial sources was
hardly influenced by activity from other sources. This result was confirmed by the plot of
the Source Identifiability versus average sensor distance, showing that the Source
Identifiability was largest when the average distance to the sensors was smaller than
approximately 70mm. The surface map further indicated that gyral sources had lower
Source ldentifiability than sulcal sources. The plot showing the relationship between the
Source Identifiability and the angle with the sphere radius further illustrated this. This plot
showed that it was impossible to get a good Source Identifiability if a source was largely
radial and that the maximum Source Identifiability was found for tangential sources (angle
with sphere radius is 90°). The Source Identifiability for sulcal sources was in general
higher than for gyral sources, since the majority of the tangential sources were sulcal
sources and the majority of the radial sources were gyral (see figure 4-5). It is noteworthy
that also for tangential sources small values for the Source Identifiability were found. These
tangential sources were probably located far from the sensors, so that the Source
Identifiability was small due to the large distance between the source and the sensors.

The surface map of the Bias in Dipole Location (figure 4-13) exhibits one striking
difference with the surface map of the Source Identifiability in that there was no distinction
in performance between gyral and sulcal sources. This was also demonstrated by the
random relationship of the Bias in Dipole Location with the angle with the sphere radius
(correlation of 0.0). This means that the Bias in Dipole Location was independent of the
orientation that the source made with the sphere radius.

The relationship between the Bias in Dipole Location and the average distance to
the sensors was almost linear (correlation of 0.9), with the superficial sources showing the
lowest Bias in Dipole Location.

Sources with a large |[L|l; had a low Bias in Dipole Location, whereas when the
L]l decreased there was more spread in the Bias in Dipole Location, i.e. some sources
with small [[L||2 had a large Bias in Dipole Location and some had small Bias in Dipole

Location.
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The surface maps for the Expecred squared error due to noise (figure 4-14) and the
Source Identifiability (figure 4-12) showed very similar patterns. This was an undesirable
result; sources with large Source Identifiabiliry were little influenced by activity from other
sources hence activity at these locations can be accurately reconstructed. However, the
large values for the Expecred squared error due to noise indicated that these same sources
can be greatly influenced by noise in the data. The plots of the Expected squared error due
10 noise versus ||L|[, versus angle with radius and versus average sensor distance hinted at
the reason behind this. These plots showed that sources that produced a significant signal in
the sensors, either because they had a large |[L||,, tangential orientation or were close to the
sensors, were influenced by the noise. It was already shown in figure 4-12 that it were these
sources that had a large Source Identifiability.

The behaviour of the Expected squared error due to noise was further comparable
with the behaviour of the Source Identifiability in that the Expected squared error due to
noise dropped off with the average sensor distance, was largest for tangential sources and

largest for sources with a large ||L|.

The histograms of the Source Identifiability, Bias in Dipole Location and Expected
squared error due to noise for gyral and sulcal sources did not reveal striking differences
between the two classes of sources. This was unexpected as the surface maps for the Source
Identifiability and the Expected squared error due to noise revealed that differences did
exist. The histograms for the gyral sources appeared to be 'fatter' than those for the sulcal

sources. This means that for the gyral

Gyri Sulei sources the performance of the linear
Source Identifiability 3.0e-3 | 1.5e-3 | egtimator was more variable than for sulcal
Bias in Dipole Location | 0.24 0.20 sources. This result was supported by the

Expected squared error 3.3e-3 1.5¢-3 fact that the standard deviations of the

due to noise figures of merit were higher for the gyral

table 4-1: Standard deviation of the figures of merit ~ sources than for the sulcal sources (sece
for the gyral and sulcal sources. table 4-1),

To briefly summarise the main findings in case the minimum norm weighting was used
with the linear estimator:
o The Source Identifiability and the Expected squared error due to noise of a source were

determined by a combination of the ||L||;, the average distance to the sensors and the
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orientation of the source. The Source Identifiability for sulcal sources was in the mean
better than for gyral sources.

e The Bias in Dipole Location was independent of the orientation of the sources and
consequently there was no difference in Bias in Dipole Location between gyral and
sulcal sources.

e The Bias in Dipole Location did depend on the |[L|j> and the average distance to the

Sensors.

Figures of merit, using smoothed norm weighting

The above general conclusions were validated for the case when the linear estimator
was used with smoothed norm weighting (i.e. when different a priori information was
utilised by the linear estimator).

The patterns in the surface maps of the Source Identifiability and Image Sensitivity
were again very similar. The map for the Expected squared error due to other sources was
also similar to the Source Identifiability. Because of the similarity with the map of the
Source Identifiability the surface maps of the Image Sensitivity and the Expected squared
error due to other sources were not displayed. The surface maps of the Source
Identifiability, Bias in Dipole Location, and Expected squared error due to noise are given

in figure 4-15. Additionally, in figure 4-16 only the plots of the Bias in Dipole Location and

Expected squared error due to noise versus |L||; and the Bias in Dipole Location versus the
average sensor distance and the angle with the radius are given. These figures showed

striking differences with the plots for the minimum norm weighting.

The surface map of the Source Identifiability (figure 4-15) was very similar to the
one obtained with minimum norm weighting. Again, sulcal sources had larger Source
Identifiability than gyral sources and the Source Identifiability fell off with the distance to
the sensors. The pattern in the surface map of the Bias in Dipole Location (figure 4-15)
showed that using smoothed norm weighting instead of minimum norm weighting reduced
the bias for sources close to the sensors and increased the bias for sources far from the
sensors. Indeed, the relationship between the Bias in Dipole Location and the average
distance to the sensors was no longer linear, but more uniform (see also the left panel in the

bottom row of figure 4-16). Thus, due to the smoothed norm weighting the Bias in Dipole
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Location was less dependent on the average sensor distance. A similar effect was found for
the relationship with the I-norm of the lead field (right panel in the top row of figure 4-16).
The plot of the Bias in Dipole Location versus angle with the sphere radius demonstrated
that the bias was still independent of the orientation of the sources and that the maximum
bias had dropped.

The surface map of the Expected squared error due to noise indicated that the error
had decreased for sources close to the sensors and had increased for sources far from the
sensors. Also, deep sources generally had a smaller ||L|>. This explains why in figure 4-16
there was a larger number of sources with small ||L|j; that had a large Expected squared

error due to noise than in the corresponding plot in figure 4-14

These results established that the values and patterns of the figures of merit tested
here were influenced by the a priori information that was used in the weighting matrix.
However, the influence of the choice of weighting on the Source Identifiability, the Image
Sensitivity and the Expected squared error due to other sources was relatively small. It is
hypothesised that these measures are more determined by the measurement set-up than by
the a priori information that is used, as these figures of merit are based on the resolution
kernels. Consequently, the best approach to improve the Source Identifiability (or indeed
the Image Sensitivity or Expected squared error due to other sources) would be to change
the sensor location or configuration and not the a priori information that is used.

On the other hand, the Bias in Dipole Location strongly depended on the weighting that
was used. Using different a priori information therefore can significantly improve the Bias
in Dipole Localisation for sources. The same is true to a lesser extent for the Expected

squared error due to noise.

It has been mentioned before that the FOCUSS algorithm is based on linear
estimation, but that the final solutions consist of only a few sources. In the next session it
was therefore examined to what extent the figures of merit for distributed solutions were

relevant to FOCUSS.
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following a 3D-Gaussian distribution. The standard deviation of the Gaussian was
10mm. This initial weighting matrix was then multiplied by the smoothed norm

weighting matrix to counteract the bias towards the sensors.

Target area weighting was used to evaluate whether a weighting matrix could be
constructed that reduced the Bias in Dipole Location in a region of interest. It was further
examined whether such a weighting matrix could be constructed on the basis of the
information in the resolution matrix or whether extensive simulations with FOCUSS were

needed.

The compound version of the FOCUSS algorithm was used to find the impulse
response for a randomly chosen source. Thus, the magnetic field used for the source
reconstruction was equal to the lead field of the randomly selected source. A total of one
thousand unique impulse responses were computed with each weighting matrix. The
resolution matrix was formed from the concatenation of the impulse responses. The Bias in
Dipole Location was computed for each used source successively. These values were then
compared with the Bias in Dipole Location for the same sources as obtained from the

resolution matrix that was computed at the start of the FOCUSS algorithm.

Results

Two impulse responses typically found with the FOCUSS algorithm, using the
identity matrix as initial weighting matrix, are given in figure 4-17. For 139 sources the
ideal impulse response was found. That is, the maximum value of 1 was found for the
element that contained the original source and all other elements had a value of zero. The
other sources had an impulse response with a maximum value in elements near the original
source and additional elements with a non-zero value. However, the majority of elements in
the source space had a value of zero. A huge improvement was seen when these impulse
responses were compared with the impulse responses given in figure 4-8 (remember that a
resolution kernel is equal to an impulse response for minimum norm weighting).
Consequently, it was expected that the Bias in Dipole Location had improved as well. In
figure 4-19 the histograms of the Bias in Dipole Location obtained at the start and after

convergence of FOCUSS were compared. It is evident that FOCUSS reduced the Bias in
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Dipole Location considerably. The mean Bias in Dipole Location at the start was 0.41 +

0.19 and after convergence it was 0.21 £ 0.19.

The Bias in Dipole Location obtained at the start of FOCUSS and after convergence
is given in figure 4-20 for the case when smoothed norm weighting was used. The mean
Bias in Dipole Location at the start was 0.22 + 0.13 and 0.18 + 0.13 aftcr convergence.
Comparison with figure 4-19 showed that smoothed norm weighting produced a better
initial start for FOCUSS than minimum norm weighting. Equally, the Bias in Dipole
Location after convergence of FOCUSS had improved as well by using smoothed norm
weighting instead of minimum norm weighting. Hence, there was a direct relationship
between the 'quality’ of the initial guess and the accuracy of the solution after convergence.
However, this improvement was qualitative rather than quantitative; the mean value of the
Bias in Dipole Location in the initial guess improved by 44% whereas the improvement
after convergence was (only) 13%. A similar discrepancy between the improvement in
performance at the start and after convergence was found for average distance weighting;
the mean value of the Bias in Dipole Location as obtained from the resolution matrix was
0.36 £ 0.22 and after convergence of FOCUSS it was 0.12 * 0.09. Hence, the improvement

at the start was 12% and after convergence 44%, with respect to the performance with
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minimum norm weighting.

Applying FOCUSS had the largest effect on the Bias in Dipole Location for average
distance weighting. The mean value of the Bias in Dipole Location improved by 68%. The

improvement was 49% with minimum norm weighting and only 20% with smoothed norm

weighting.

Summarising, a change in the Bias in Dipole Location at the start seemed to
correlate with an improvement in the accuracy of the solutions obtained with FOCUSS.
Also, the improvement of the initial Bias in Dipole Location was larger for smoothed norm
weighting than for average distance weighting, but the final solutions were more accurate

with average distance weighting. Thus, the initial value of the Bias in Dipole Location

could not be used to favour a certain kind of « priori information.

Results for Target Area Weighting

Target area weighing was chosen to improve the accuracy of the source
reconstructions in a region of interest. In figure 4-21 it was demonstrated that the Bias in

Dipole Location was very low in the target area. For other areas in the source space the

N
Lo
(=]

n

Q

o
T

&
o

Numebr of occurrences

t
i
|
|
i
50
i
i

Resolution Matrix

—[ Hi"fﬁ.v.ﬁﬁl: cnima I

0 0.1 0.2 0.3

04 0.5 0.6 0.7 0.8
Bias In Dipole Location

0.9

IS
Q
o

300 -

200~

100 F

Numebr of occurrences

FOCUSS

0 01 0.2 0.3

0.4 0.5 0.6 0.7 0.8
Bias In Dipole Location

0.9

figure 4-20: Smoothed norm weighting. Top panel: histogram of the values of the
Bias in Dipole Location as obtained from the resolution matrix. Bottom panel:
histogram of the values of the Bias in Dipole Location as obtained from
concatenating the impulse responses of FOCUSS.

221







200 T T T T

50 Resolution Matrix - Target weighting
150

Number of occurrences
IS
o
>
1

|
! —
0 3 ] ka‘l 1 1 H 1
o 0.1 0.2 03 0.4 05 0.6 07
Bias In Dipole Location
250 . . . R

& ook Resolution Matrix - Smoothed norm weighting
]
=
3 150
Q
O
S 100 -
]
o
E s0 -
> | T
§ 1]

0 . N Se—

0 0.1 0.2 0.3 0.4 0.5 0.6 07

Bias In Dipole Location

figure 4-22: Comparison of target area weighting with smoothed norm weighting. The Bias in Dipole
Location was obtained from the resolution matrix. Top panel: histogram of the values of the Bias in
Dipole Location for target area weighting. Bottom panel: histogram of the values of the Bias in Dipole
Location for smoothed norm weighting. The same scale on the x-axis was used for the ease of comparison.

300 ; i T T T T ]
1 FOCUSS - Target weighting

N
()
o

200

150

100

Number of occurrences
o
o

F—— n ) \ |
0.05 0.1 0.15 02 0.25 03 035
Bias In Dipole Location

o
o

200 1 T T T i
FOCUSS - Smoothed norm weighting

[
o
T

L

Number of occurrences
o >
[a] o
!

0 0.05 0.1 0.15 02 0.25 03 0.35
Bias In Dipole Location

figure 4-23: Comparison of target area weighting with smoothed norm weighting. The Bias in Dipole
Location was obtained concatenating the impulse responses of FOCUSS. Top panel: histogram of the
values of the Bias in Dipole Location for target area weighting. Bottom panel: histogram of the values of
the Bias in Dipole Location for smoothed norm weighting. The same scale on the x-axis was used for the
ease of comparison. Note however the difference in scale with figure 4-22.

223




4.4 Discussion

Examination of the resolution kernels revealed that the linear estimator suffered
from a bias towards the sensors. This bias was largest for deep sources. The ideal delta
function was only approached for superficial sources. For deeper sources the resolution
kernels exhibited large peaks that were shifted towards the sensors. Additionally, modifying
the weighting matrix had the largest effect on the resolution kernels of deep sources.

These findings were reflected in the surface maps of the figures of merit that were
derived from the resolution kernels and the columns in the resolution matrix. That is, the
Source Identifiability was largest and the Bias in Dipole Location was smallest near the
sensors. This illustrates how a whole-head MEG system would be advantageous. The
Source Identifiability of a source was further determined by a combination of the |[L|), and
orientation of a source. The Source Identifiability for sulcal sources was in the mean better
than for gyral sources. However, there was no difference in Bias in Dipole Location
between gyral and sulcal sources.

The Image Sensitivity profile was very similar to the Source Identifiability pattern.
The behaviour of the Expected squared error due to other sources almost mirrored the
behaviour of the Source Identifiability. These results were not surprising, activity in an area
that causes a large signal in the sensors (large Image Sensitivity) is easily identified (large
Source Identifiability) and is less likely to be influenced by activity from other sources
(small Expected squared error due to other sources). Unfortunately, the Expected squared
error due to noise was also largest near the sensors and when the |[L||, was large. Hence,
sources that are easily identified are also likely to be influenced by noise in the data.
However, the fact that the Expected squared error due to noise was high for sources with
large lead fields needs to be interpreted with care. Consider the extreme case where the
noise is completely perpendicular to the space spanned by the lead field vectors. It would
then be impossible to project any noise signal into the source space, independent of the

magnitude of the lead fields.

The classification of the elements in the source space into sulcal and gyral sources
revealed that the distribution of the angle that sulcal sources form with the radius
approached a normal distribution with a mean of 90°. Hence, the majority of sulcal sources

were tangential sources. Also, a notable number of gyral sources were not radially
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orientated, hence it would be possible to detect activity in (most) gyri with MEG. It should
be further examined what the angular distributions are for gyral and sulcal sources across a
number of realistically shaped source spaces. These findings should then be correlated with

the reconstruction accuracy for the two classes of sources.

The use of different a priori information had the largest effect on the Bias in Dipole
Location. The behaviour of the other figures of merit is probably more influenced by
factors that modify the lead fields, like the sensor configuration or the shape of the source
space. This is explained by the fact that a diagonal matrix was used to incorporate a priori
information. In effect this modifies the relative strength of each element in the source
space. Instead, changing the measurement set-up, or using off-diagonal elements in the
weighting matrix (representing for example cross-correlation between different sources),
modifies the shape of the lead fields. An analogy can be found in the two methods that can
be used to get someone's attention in a crowded room; one can raise his voice (i.e. increase
the diagonal elements) or alternatively turn the head into the direction of the other person
(change the shape of the lead fields). A source that has a relatively strong activity (shouts
hard) is easy to detect and consequently has a smaller Bias in Dipole Location. The other
figures of merit, like the Source Identifiability, are more dependent on the behaviour of
other sources. So, although a source can have a strong activity, there might be another
source that opposes it. This largely depends on the details of the lead fields and therefore on

the measurement set-up.

It was demonstrated that the Bias in Dipole Location as obtained from the resolution
matrix correlated with the performance of FOCUSS. Thus, an improvement in the Bias in
Dipole Location due to the use of a priori information correctly predicts an improvement in
the performance of FOCUSS. However, it was not possible to decide between two different
kinds of a priori information on the basis of the Bias in Dipole Location alone. Thus, it is
possible to quickly evaluate whether adding certain a priori information to the inverse
problem improves the performance, without the need for time-consuming evaluations with
FOCUSS. Selection of the a priori information most applicable to the specific problem can
only be done by a full set of simulations that evaluates the influence on the accuracy of the

source reconstructions with FOCUSS.

225




Finally, it was shown that the Bias in Dipole Location was large for many elements
in the source space. Taking into account that the maximum distance between elements in
the source space was 10.3cm gives that a Bias in Dipole Location larger than 0.1 gave a
localisation bias larger than lecm. Fortunately, it was demonstrated that the Bias in Dipole
Location in an area of interest can be significantly improved by selecting the appropriate
weights in the initial bias matrix. The combination of smoothed norm weighting and
weighting with a Gaussian centred around a target source proved particularly effective. A
weighting matrix like this could be used when a priori information about the location of
possible sources is known in advance, for example from fMRI studies. The increase of the
weights for the target area had little influence on the Bias in Dipole Location in the rest of

the source space.
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5 Evaluation of Source Localisation Algorithms with Computer
Simulations

5.1 Aim of This Study

The FOCUSS algorithm has been shown to result in accurate source reconstructions
when a simple, circular or spherical, source space was used (Gorodnitsky er al, 1995). This
study evaluated the performance of the FOCUSS algorithm with a more realistically shaped
source space, representing a gyrus and 2 sulci. Additionally, an implementation of the
algorithm was used that not only reconstructs sources for a single latency (Gorodnitsky et
al, 1995), but instead uses the information in the data over a selected time-window.

The source space was positioned at a realistic location in a single sphere and the
configuration of the 19 channel CES system at Aston University was used as sensor array
(see section 4.3.2.1). Simulated data were used so that the exact location of the target
sources was known and the quality of the source reconstructions could therefore be
objectively evaluated.

The performance of FOCUSS with respect to its ability to accurately localise the
sources underlying the simulated data was compared with the performance of an

unconstrained dipole fit algorithm and a constrained dipole fit algorithm.

The simulations were to reveal:

e the efficacy of the implementation of the FOCUSS algorithm

e a method to select the best FOCUSS solution

e the merits of using spatial and orientation constraints with FOCUSS and the dipole fit
algorithm

¢ the optimum spacing of the grid that forms the source space

o the effect of the curvature of the source space on the reconstruction accuracy

e the influence of errors in the spatial and orientation constraints



5.2 Simulation Framework

Source Space

Fitting a polynomial through a set of points that was obtained from a drawing
program formed the basis of the contour of the source space. The 3D source space was
formed by concatenating the 'slices’ constructed in this way. This source space consisted of
two parallel sulci, 4cm deep, joined by a gyrus, approximating a true cortical fold (figure
5-1). A source space very similar in overall shape was used in a simulation study by Gencer
and Williamson (1998), which was an extension of the model of a single sulcus used by
Wang (1994). A slightly different sulcus model was used by Wolters et al. (1999). The
source space was defined by a 'mesh’ of points.

The grid spacing of the original mesh was 0.5mm. Downsampling of this mesh
subsequently formed meshes with coarser grids. The source space was formed by placing
an equivalent current dipole in each node of the grid. The orientation of the dipoles was

constrained to be normal to the surface.

Target Source

A target source was formed by selecting a location in the original mesh (grid
spacing 0.5mm). This location formed the centre of an extended source. The amplitude of
this extended source fell off with the distance from the centre, following a 2D-Gaussian
distribution. The standard deviation of the Gaussian was 10mm. The extended source
represented a realistic situation. Modelling such a source by a single dipole should not
introduce large errors in the source reconstructions (de Munck et al, 1988, Hara et al,
1999). For example, Hara and co-workers found in EEG simulations that a spherical dipole
layer with a radius of 20mm could be approximated by a single dipole without introducing
large errors in the produced field patterns. The field pattern produced by a distributed
source is more spread than that produced by a single dipole. The influence of the skull
boundary spreads this pattern even further in the case of EEG' (known as the smearing
effect of the skull), producing a less 'dipolar' pattern than for MEG. Hence, the

approximation of a dipolar source is certainly valid for MEG if it is valid for EEG.
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The activity pattern of the source was given by a sinusoid. The frequency of the
sinusoid was chosen so that one cycle fitted in the selected time-window.

Two different target sources were used. One was centred on the gyrus and one was
centred on the sulcal wall (figure 5-1). The sensor array was large enough to record the
extrema in the dipolar field pattern created by the target sources in these locations (see for

example figure 5-3).

figure 5-1: Source space modeled as a cortical fold viewed from the top (left panel) and right (right panel).
The channel array is depicted by the filled circles and the centers of the target sources on the gyrus and the
sulcal wall are indicated by arrows.

Noise

Noise was added to the simulated data, in order to probe the limits of the tested
algorithms. Noise values were obtained from a Gaussian distribution with zero mean and a
standard deviation of 20fT. Similar noise levels are typically found in the literature. For
example a noise level of 20.9-27.1fT was found for visual evoked data (Aine er al., 1996)
and Huang and colleagues used a standard deviation of 14fT in their simulations (Huang ez
al, 1998). The assumption of Gaussianity seems reasonable for MEG/EEG (Dogandzic and
Nehorai, 2000).

' With a spherically symmetric head model there are no volume conducting effects for MEG.
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It is the signal-to-noise ratio (SNR) that ultimately determines the performance of
the source reconstruction algorithms. The SNR was varied by varying the amplitude of the
target source, and hence the amplitude of the simulated MEG data.

Monte Carlo simulations were performed in order to assess the stability of the
source reconstructions. Thus, each simulation was repeated several times, using a different
noise realisation. It was found in initial simulations that the mean distance from the
solutions to the target source and the standard deviation of this distance stabilised when the
number of realisations was in the order of 30. This was found with FOCUSS and with the
unconstrained/constrained dipole fit algorithms (figure 5-2). Similar results were obtained
for data with different SNRs and version B of the constrained dipole fit algorithm (the
algorithms are described below). This means that even when the solutions were influenced
by noise, the centroid of the cluster formed by all solutions and its volume became almost

independent of further noise realisations.
Each dataset, containing a different noise realisation, was used for the

reconstruction of the underlying sources with three distinct algorithms. The implementation

of these algorithms is described below.

Implementation of Source Reconstruction Algorithms

Unconstrained Dipole Fitting

A fixed dipole model was used to explain the simulated data. That is, the location
and orientation of the dipole was constant throughout the latency range, and the amplitude
was allowed to vary. The timecourse of activation was obtained from the data by linear
estimation once the location and orientation of the dipole was known (see section 2.3.2).
Hence, the parameters to be estimated were: 3 location parameters, 1 orientation parameter

in the tangential plane and N activation parameters (with N the number of latencies).
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solutions obtained from previous realisations and computing the error measures. The results displayed were
obtained for simulated data with an SNR of 1.5 for the target source on the gyrus. Note the stabilisation of the

results as the number of realisations increased.
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Initial Guess

A single dipole was used in the dipole fit algorithm, i.e. it was assumed that the
number of sources underlying the data was known. The location of the initial guess was
randomly chosen within a sphere with a radius of 2cm around the target source. The initial

guess for the orientation of the source was randomly selected.

Cost-function

The reduced chi-square measure was used as the cost-function (see section
2.2.1.2.1). Tts value was estimated for each latency separately and the mean over all
latencies was used as the value of the cost-function. Dipoles with a magnitude larger than
100nAm or that moved outside the sphere were 'punished' by squaring the value of the cost-

function.

Optimisation algorithm

The implementation of the Simplex algorithm (Nelder and Mead, 1965) in
MATLAB (The Mathworks) was used as the optimisation algorithm.

A multi-start approach was used in order to avoid local minima (Huang et al, 1998). With
each dataset, the algorithm was started with 10 initial guesses (Fernandez ¢t al, 1995). The
solution that resulted in the lowest value of the cost-function was chosen as the solution for

the dataset, referred to as unconstrained dipole solution (UCDIP).

Constrained Dipole Fitting

Again a fixed dipole model was used to explain the data. However, this time the
location of the dipole was restricted to lie within a distance equal to the grid spacing from
the nodes in the source space. Sources that moved further away from the surface were
punished by squaring the value of the cost-function. Additionally, the orientation of a

dipole was constrained to be the same as the orientation of the normal of the nearest node in
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the source space. Hence, only the 3 location and N activation parameters needed to be
optimised.

Apart from these constraints, the same implementation as for the unconstrained dipole
fitting was used. For each dataset this resulted again in 10 solutions due to the multi-start
approach, from which the one with the lowest value for the cost-function was chosen,
referred to as constrained dipole solution (a) or CDIPa. Also, the ncarest element in the
source space from CDIPa was stored as the constrained dipole solution (b) or CDIPb. The
latter solution was intended to be a fair comparison for solutions obtained with FOCUSS,
since the FOCUSS solutions were also obtained by using the spatial and orientation

constraints.

Multi-latency FOCUSS algorithm

Implementation

The FOCUSS algorithm was modified so that temporal information could be
incorporated. The equation on which the FOCUSS algorithm is based, equation 2-47, is

first repeated here:

Qrocuss =W (LW)*B=WW'L" (LWW'L")'B, (5-1)

with B the (simulated) measurements in the MEG sensors, L the lead field matrix for all

elements in the source space and W a diagonal weighting matrix.

Remember that the FOCUSS algorithm progresses by using the solution from previous
iterations as the weights in the current iteration, until the algorithm converges to a final
solution. The algorithm was originally described for single latency data only (Gorodnitsky
et al, 1995). However, the algorithm can easily be adjusted for multi-latency data

(Gorodnitsky, 1998). The solution found in an iteration will consist of the timecourses of
activation when multi-latency data is used (i.e. Q,;OCUSS is a matrix instead of a vector). It is

obvious that this can not be used directly in the weighting matrix, since the diagonal of the
weighting matrix forms a vector, and the solution obtained from the previous iteration

forms a matrix. When all the information in the activation curve of each element is
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‘compressed' to a single value, then this value can be used as the value on the diagonal in
the weighting matrix for the element of interest. In formulas:

For single latency data we had for the weighting matrix in iteration k (compound version):

W, =W,.. 0 : (5-2)

With n the number of the element in the source space. For multi-latency data this becomes:

Q‘l,k—l O
W, =W,,. 0O , (5-3)

with (A);,‘k_l given by:

(5-4)

b

T
Qn,k-l = ZYK 'Ql,n,k-l
t=1

~

Q... represents the solution from the previous iteration, for element n in the source space

at latency t. Hence, the combination of equation 5-3 and 5-4 states that the value for each
element on the diagonal in the weighting matrix is formed from the weighted contribution
of the activity at all latencies for that element in the previous iteration. The weightings vy,
can be adjusted to alter the contribution from different latencies. For example, activity at
latencies with peak activity could be given a larger influence on the final solutions by
increasing the value of ¥ for that latency (this could be achieved by basing the value of ¥ on
the SNR). In this study all latencies are given equal weighting. The formulation for the non-

compound version of the multiple latency FOCUSS algorithm is now elementary.
Bias Matrix

In this study, a combination of target weighting and distance weighting, as
described in the previous chapter, was used. This choice had been empirically shown to

give accurate source reconstructions with the given source space. The matrix consisted of a
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Evaluating Results From Monte Carlo Simulations

In order to compare the solutions obtained with the three different source
reconstruction algorithms, error measures were required that could be used with all three
algorithms. An obvious choice was to compute the mean value of the reduced chi-square
values obtained for al Monte Carlo realisations, since the reduced chi-square was computed
for all three algorithms. Additionally, the volume of the cluster formed by the solutions for
all Monte Carlo realisations could be computed, as well as the distance between the
centroid of this cluster and the location of the (centroid of the) target source (Supek and
Aine, 1993, Singh and Harding, 1996). However, with the FOCUSS algorithm the number
of different sources found in all 30 Monte Carlo realisations was often small. Computing a
Monte Carlo volume on the basis of so few points is futile. Therefore, instead of the Monte
Carlo volume and the bias in the location of the centroid of this volume, two slightly
different measures were used:

e The mean of the distance to the target source for all sources that made up the (30 final)
solutions found with the different Monte Carlo realisations, d. This measure revealed
any bias in the solutions.

e The standard deviation of this distance, o;. This measure revealed how much the
solutions were spread out. The lower the value of o was, the more confined the cluster

formed by the solutions was.

Remember that for the constrained dipole fits and the FOCUSS algorithm two different

solutions were obtained for each Monte Carlo realisation. Hence, for both algorithms two

different values of d and 0~ were acquired.

The simulation framework described above was first used in section 5.3 to evaluate
the implementation of FOCUSS. The results obtained with the compound and non-
comound version of the algorithm were compared and methods for the choice of the
regularisation level were evaluated. Additionally, the influence of gridsize on the
constrained dipole fits and FOCUSS was examined. In section 5.4 the effect of inaccurate
constraints on source reconstructions was examined. Throughout these simulations the

solutions were compared with those obtained with the unconstrained dipole fit algorithm.
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5.3 Parameter Selection

5.3.1 Compound Versus Non-compound Version

Two versions of the FOCUSS algorithm were originally published (Gorodnitsky et
al, 1995); a compound and a non-compound version. The difference between the two
versions is the way in which the solutions from previous iterations are used in the
iteratively updated weighting matrices. In the compound version the solutions obtained
from all previous iterations are used to compute the weights, whereas in the non-compound
version only the solution obtained in the last iteration is used. The compound version is
claimed to converge faster and to be more robust (Gorodnitsky et al, 1995). Hence, it was
expected that the compound version would result in more accurate solutions than the non-

compound version, with the largest difference in performance for data with low SNR.

The difference in performance of the compound and non-compound versions of the
FOCUSS algorithm was evaluated. Monte Carlo simulations (N=30) were performed on
datasets with a mean SNR of 1.2, 1.5 and 3, respectively. A grid with a spacing of 8mm
was used for data induced by the target source on the gyrus and by the target source on the
sulcal wall, respectively. Both an implementation of the compound and non-compound
version of the algorithm was used to reconstruct the target sources. For comparison, the
same data were used by the unconstrained and constrained dipole fit algorithms for the

reconstruction of a single dipole.

Results

The results are summarised in figure 5-4. The following nomenclature is used in this
figure and the rest of this chapter:
F_C_Loc: Compound version of FOCUSS. Final solutions selected on the basis of the
distance to the target sources.

F_C_Chi: Compound version of FOCUSS. Solutions selected on the basis of the value of

X
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F_NC_Loc: Non-compound version of FOCUSS. Final solutions selected on the basis of
the distance to the target sources.

F_NC_Chi: Non-compound version of FOCUSS. Solutions selected on the basis of the
value of y.

UCDIP: Unconstrained dipole fitting.

CDIPa: Constrained dipole fitting.

CDIPb: Constrained dipole fitting. Final solutions constrained to the mesh.

In general, the accuracy with which the sources were reconstructed increased with
an increase in SNR, both with respect to the location of the solutions and the spread of the
solutions. A comparison of the top and bottom panel in figure 5-4 reveals that the mean
distance and the standard deviation of the mean distance were strongly correlated (0.90).

Choosing the final solutions for the FOCUSS algorithm on the basis of the value of
% gave inaccurate results. The noise truncation applied with FOCUSS largely removed
the noise components from the data (as well as high spatial frequency data components).
The formalism of the reduced chi-square was therefore not suitable. Hence, the selection of
the final solutions for the FOCUSS algorithm should be based on different criteria.

The performance with the compound version of FOCUSS was better than with the
non-compound version (when the solutions were selected on the basis of the distance to the
target sources). The smaller spread in the solutions for the compound version is explained
by the fact that the compound version converged quickly to a solution whereas the non-
compound version converged more slowly. For the non-compound version the final
solution was therefore more dependent on the particular realisation of the noise. This is
illustrated in figure 5-6, where the final solutions are shown for the compound and non-
compound version for data with SNR of 1.5. It is clear that there were many more different
solutions found with the non-compound version than with the compound version. The
spread of these sources was also larger for the non-compound version than for the

compound version.
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figure 5-4: Comparison of compound and non-compound version of FOCUSS, unconstrained dipole fit and
constrained dipole fit algorithms for data with different SNRs. Target source is the source on the gyrus. The
top panel shows the mean of the distance to the target source for all solutions from the Monte Carlo
simulations. The bottom panel shows the standard deviation of this distance. Note the increase in accuracy
and the decrease of the spread in the solutions with increasing SNR and the relatively poor performance of
FOCUSS.

F_C_Loc: Compound FOCUSS. Final solutions based on distance from target; F_C_Chi: Compound

FOCUSS. Final solutions based on Zrz ; F_NC_Loc: Non-compound FOCUSS. Final solutions based on

distance from target; F_NC_Chi: Non-compound FOCUSS. Final solutions based on Zrz ; UCDIP:

Unconstrained dipole fitting; CDIPa: Constrained dipole fitting; CDIPb: Constrained dipole fitting. Final
solutions constrained to mesh.
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The dipole fit algorithms outperformed the FOCUSS algorithm for all SNR cases.
In turn, the performance of the constrained dipole fit algorithm was better than the
performance of the unconstrained algorithm, especially at low SNR. The advantage of
using constraints diminished when the SNR of the data was increased. Constraining the
final solution to lie within the mesh further increased the accuracy of the constrained dipole
fits, due to the fact that noise in the data did not cause 'jitter' in the location of the final
solutions. For data with an SNR equal to 3 the same source was found with the constrained
dipole fit algorithm (UCDIPb) in all Monte Carlo realisations, hence the standard deviation
of 0. The residual distance between this source and the target source was caused by the fact

that the target source did not lie in a node of the mesh that was used in this simulation.

The differences in performance between the compound and non-compound versions
of FOCUSS were very similar when the target source was located on the sulcal wall
(compare figure 5-4 with figure 5-5). Thus, these findings were independent of the location
of the target source.

The localisation accuracy was lower for the source on the sulcal wall in comparison
with the gyral source, independent of the algorithm that was used. This was due to the
larger distance between the sulcal source and the sensors. The poor performance of the
unconstrained dipole fit for data with an SNR of 1.2 is especially striking. It is also
noteworthy that the spread in the solutions was smaller for the sulcal source than for the

gyral source when FOCUSS was used, even though the accuracy in location was lower.
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figure 5-5: Comparison of compound and non-compound version of FOCUSS, unconstrained dipole fit and
constrained dipole fit algorithms for data with different SNRs. Target source is the source on the sulcal wall.
The top panel shows the mean distance to the target, gyral, source for all solutions from the Monte Carlo
simulations. The bottom panel shows the standard deviation of this distance.

F_C _Loc: Compound FOCUSS. Final solutions based on distance from target; F_C_Chi: Compound

FOCUSS. Final solutions based on Zrz ; F_NC_Loc: Non-compound FOCUSS. Final solutions based on

distance from target; F_NC_Chi: Non-compound FOCUSS. Final solutions based on Zrz - UCDIP:

Unconstrained dipole fitting; CDIPa: Constrained dipole fitting; CDIPb: Constrained dipole fitting. Final
solutions constrained to mesh.







Conclusions

The performance of the compound version of FOCUSS was better than that of the
non-compound version. For the non-compound version the solutions obtained with
different noise realisations were more spread out and the mean distance between the
solutions and the target source was larger. With the source on the sulcal wall as target
source the non-compound version was unable to distinguish between activity on opposite
sides of the gyrus.

For the gyral source, and to some extend for the sulcal source, the difference in
distance error for the compound and non-compound version of FOCUSS was largest when
the SNR of the data was high. The compound version was reported to be more accurate and
robust than the non-compound version (Gorodnitsky ez al, 1995). It was expected that this
would be emphasised with noisy data. The contrary was true. Apparently, the slower
convergence of the non-compound version did not introduce more spurious sources with
noisy data than the compound version did. However, the slow convergence introduced

more spurious sources when the SNR was high.

All three algorithms performed better for the gyral source than for the sulcal source
for data with comparable SNRs. The larger average distance between the sulcal source and

the sensors probably caused this.

The distance error for the dipole fit algorithms was smaller than for FOCUSS. An
exception is the extreme case of noisy data for the sulcal source, where the unconstrained
dipole fit algorithm resulted in by far the worst performance. Also, the constrained dipole
fit algorithm performed better than the unconstrained dipole fit algorithm. The difference
between constrained and unconstrained solutions was largest for noisy data. Thus, spatial

constraints reduced the influence of noise on the source reconstructions.

243




5.3.2 Truncation Parameter

The FOCUSS algorithm is based on an iteratively updated weighted minimum norm
solution. The influence of noise on the solutions is potentially large, because the inverse
problem is underdetermined (the number of elements used in the source space is much
larger than the number of MEG sensors). Therefore, noise regularisation needs to be
applied. What follows is a summary of the discussion in section 2.3.2.3.

The noise components in the data arc normally associated with small singular
values. For the reconstruction of the sources the spatial components in the data are
multiplied by the inverse of these singular values. Consequently, each noise component is
multiplied by a large number and unstable solutions are found due to this magnification of
the projection of the noise components into the solution. The solutions can be stabilised by
means of regularisation. In this work regularisation is applied by means of Truncated
Singular Value Decomposition. In this approach the small singular values associated with
the noise components of the data are discarded and consequently the associated noise
components are not projected into the solutions. One can intuitively see that when the
truncation level is set too high, one discards signal components as well as noise
components. This decreases the spatial resolution of the solutions. On the other hand,
setting the truncation level too low creates unstable solutions. This trade-off between the
spatial resolution and the influence of noise is demonstrated by the L-shaped curve that is
obtained when the solution norm is plotted versus the residual norm for different levels of
truncation (Tu ez al, 1996, Johnston and Gulrajani, 1997, Brooks ¢t al, 1999). The optimum
truncation level is found in the 'knee' of this curve, where both the residual norm and the
solution norm are small.

In this section it will be demonstrated that the L-curve method could not be used
with FOCUSS. This was due to the fact that the number of clements with zero activity
increased as FOCUSS progressed. This reduced the effective number of elements in the
source space and consequently reduced the underdeterminedness of the problem. The
concept of the L-curve is not suitable for problems that are not underdetermined.

An alternative approach to select the truncation level was also evaluated in this
section. The truncation level was set equal to % of the largest singular value. The value of
o was varied over a wide range of values. As a result, several different solutions were
found (i.e. one for each value of o) for each dataset. For simulated data the final solution
could be selected by choosing the solution that contained the sources nearest to the target
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source. For real data this would be impossible and other strategies to select the final

solution were therefore evaluated (see later).

In this section only the FOCUSS algorithm was used for source reconstructions. It is
first demonstrated that the L-curve method was not usable with the FOCUSS algorithm. It
is then shown how the final solution could be selected from the set of solutions found when

the truncation level was systematically varied.

Results

In figure 5-7 the L-curve is shown for a number of iterations of the FOCUSS
algorithm. The gyral target source was reconstructed from a dataset with an SNR of 3. In
each iteration the truncation level was manually chosen, based on the L-curve. The results
were therefore dependent on the choices the experimenter made. Several issues are
illustrated by this figure:

e The knee' in the L-curve was not clearly defined at the start of the algorithm (iteration
1). This could be due to the small number of sensors with respect to the number of
elements in the source space.

® The L-shape became more clearly defined when the algorithm progressed (iteration 2-
4). Due to the rejection of sources with low amplitude by FOCUSS, the effective ratio
of the number of sensors to the number of elements in the source space increased. It was
demonstrated by Genger and Williamson that increasing the number of sensors
improves the singular value decay pattern (Genger and Williamson, 1998). A similar
effect was found here.

o In further iterations (= 5-8) the shape of the L-curve deteriorated and disappeared
altogether. Due to the removal of all but a few large sources from the source space the
system became overdetermined. The concept of the L-curve is defined for

underdetermined systems and was therefore not valid anymore.
Ideally, the selection of the truncation level should be performed automatically. This is

easily done when the curve is clearly L-shaped, as in iteration 2-4. The truncation level can

then be selected by automatic detection of the 'knee' in the L-curve based on the derivative
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figure 5-7: L-curves for different iterations of the FOCUSS algorithm. Note the improvement in the shape of
the L-curve in the first 4 iterations and the loss of the L-shape in the graphs for iterations 5 to 8.




of the L-curve. In the first iteration this is more ambiguous and for the last few iterations

this approach would fail altogether. The alternative is a manual approach, where the

experimenter selects the truncation level manually, based on the L-curve. In the final
iterations the truncation level can not be based on the L-curve. The truncation level can be
set at a high level for these iterations, since the number of (noise) sources is already low in
these iterations. This is however time-consuming and the results are dependent on the
choices the experimenter makes.

An alternative automatic method can be implemented, based on the following
observations:

* The graphs with the L-curves for iteration 2-4 showed that the number of points on the
horizontal leg of the L-curve decreased when the algorithm progressed. This meant that
the number of singular values that should be used in the inversion of the weighted lead
field matrix decreased.

* The difference between the first few singular values and subsequent singular values
increased when the algorithm progressed.

Consequently, the selection of the truncation level at a fixed percentage (=0%) of the first

singular value would ensure a decrease in the number of selected singular values in

succeeding iterations. The correct value of o can be found by systematically evaluating the

algorithm for a range of values.

Performing source reconstructions with FOCUSS, using a range of values for q,
resulted in a set of solutions for each dataset. For simulation purposes the best solution
could be selected on the bases of the distance between the reconstructed sources and the
target sources. However, for real data this would be impossible. A strategy for real data

would be to select the final solution on the basis of the value of Zf. Alternatively, the

solutions obtained for different values of o could be examined manually. The timecourses
of the activation of the reconstructed sources provided insight into the validity of the
source. This is illustrated in figure 5-8, where examples are given of timecourses typically
found for different truncation levels. The left panel displays the timecourse for a source
reconstructed near the location of the target source. The sinusoidal activity pattern was
clearly visible, even though the pattern showed some distortions due to the noise in the
data. The right panel contains the timecourses for two sources located close together. The
timecourses were relatively large and almost self-cancelling, indicating that the solution

contained too many sources.






the basis of x’ was found at a lower

value of o. Note that, unfortunately, this

solution had a much larger localisation

Method Mean Distance Error [mm]
Distance error 9.2+6.9

27 -value 18.6 % 10.4
Timecourses 13.2+9.4

error than the solution at the optimum

value for alpha.

table 5-1: Mean distance error for solutions found with

FOCUSS for Monte Carlo simulations (SNR of [.5).

For It also follows from figure 5-9

each dataset a set of solutions is obtained for different

truncation levels. The best solution is then selected with
each method. This is repeated for all datasets in the
Monte Carlo simulations and the mean location error is
computed for each method. Note that the method based
on the timecourses outperforms the method based on the

value of xrz .

that the solutions varied a lot more for
smaller values of o than for larger
values. This is explained as follows: for

small values of o, many singular values

were used. Hence, also singular values corresponding to noise were used. Consequently, the

solutions were more variable for the range of small values of .

As demonstrated in the example given above, a dataset resulted in three different

solutions. This was repeated for all datasets in a Monte Carlo simulation for data with an

SNR of 1.5. The mean distance error and
the standard deviation of the distance error
are given in table 5-1. On examination of

the solutions selected on the basis of the
value of the x’ one learns that these
solutions often contained a source near the
target source and additional spurious
sources due to the noise. These sources
brought the value of the y’ down, but
increased the overall distance error. These
spurious sources could be rejected in the
case when the correct number of sources
was known. It is illustrated in figure 5-10

that the value of x? could not be used to

decide on the correct number of sources.

112)

1.1 I
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&

1.06:

Mean Reduced Chi®

1.04:
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2, . .
figure 5-10: The mean ¥ for solutions with [, 2, or 3
sources, respectively. For a dataset the solutions
obtained with different truncation levels were grouped
on the basis of the number of sources in the solution.
2 .
Then, the mean value of ¥~ was computed for each set
of solutions. Note that the correct number of sources
2
was 1, but that the lowest mean ), was found for

solutions with three sources.
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Conclusions

It was demonstrated in this section that selection of the value of the noise
regularisation parameter could not be done by means of the L-curve. The shape of the L-
curve became better defined in the first few iterations of FOCUSS, due to the increase in
the effective ratio of the number of channels to the number of elements in the source space.
However, a further increase of this ratio in subsequent iterations made the system
overdetermined, rendering the L-curve approach obsolete.

Setting the truncation level in each iteration at a fixed percentage of the maximum
singular value had the potential to improve the localisation accuracy. The exact value of
this percentage had to be determined experimentally. This resulted in a set of solutions for a
dataset. In simulations, selection of the best solutions on the basis of the minimum distance
error is a possible. Picking the final solution on the basis of the minimum reduced chi-
square did not give accurate solutions. This strategy can therefore not be used with real
data. The failure of the reduced chi-square was due to spurious sources in the solutions. The
reason behind the failure of the reduced chi-square approach was already discussed in the
previous section; the noise truncation applied with FOCUSS largely removed the noise
components from the data (as well as high spatial frequency data components), rendering
the formalism of the reduced chi-square obsolete.

It was further demonstrated that the final solutions could be selected on the basis of
the activity patterns of the reconstructed sources. The rules for the rejection of solutions
were fairly straightforward and can be incorporated in an automatic rule based decision-
making algorithm.

For the simulations that follow only the optimum solutions, based on the distance

from the target sources, are given.

Different truncation levels were selected for different datasets, and in different
iterations of FOCUSS, even though the SNRs were the same for the datasets. Hence,
choosing the truncation level on the basis of the SNR of the data alone is not valid for this
work. It was found that the shape of the L-curve depended on the effective ratio of the
number of sensors to the number of elements in the source space. Selection of the
truncation level based on the formula by Shim and Cho (1981) might therefore be a valid

approach:
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with N the number of elements in the source space, with non-zero amplitude (see section

2.3.2.3 for details). Further work is necessary to evaluate this.



5.3.3 Gridspacing

The FOCUSS algorithm and the constrained dipole fit algorithm both use a mesh in
order to reconstruct the sources of electrical activity that produce the mcasured magnetic
fields. For FOCUSS, the mesh is used to construct a source space, consisting of unitary
dipoles located in the nodes in the mesh. The activity pattern for each of these sources is
computed in an iterative approach (after convergence many of these sources have an
amplitude of zero). For the constrained dipole fits the location of the dipoles is restricted to
lie within a distance equal to the grid spacing from the nodes in the mesh and the
orientation of the dipoles is equal to the normals of the nearest nodes in the mesh.

It is obvious that the gridspacing of the mesh influences the accuracy with which
sources can be reconstructed. Undersampling of the source space results in a decrease in
accuracy. On the other hand, oversampling increases the computation time significantly,
especially for FOCUSS (due to the increase in the dimensions of the lead field matrix and
as a result the time it takes to compute the inverse of the lead field matrix). There are
several studies (van den Broek, 1997, Zanow, 1997) where the Boundary Element Method
(BEM) or the Finite Element Method (FEM) was used to solve the forward problem. In
these studies the grid spacing influenced the accuracy with which the forward problem
could be solved. This in turn influenced the accuracy of source reconstructions. However,
this did not reveal what the direct influence of the grid spacing is on the accuracy of source
reconstructions for 2 reasons:

1) The grid was used as part of the forward problem and not to constrain the possible
solutions when the inverse problem was solved.
2) These studies did not use a constrained source space as the inverse problem was solved

using unconstrained dipole fit algorithms.

Other studies that incorporated a source space did not justify the choice of grid spacing that
was used (Dale and Sereno, 1993, Liitkenhoner et al, 1995, Fuchs et al., 1998) or the grid
spacing was chosen to be the same as the spatial resolution of the MEG system. Using a
spatial constraint might however improve this resolution and therefore a smaller
gridspacing would be beneficial. The only study found in the literature to examine the
influence of gridspacing was performed by Ramon and colleagues (Ramon et al, 1993). In a

simulation study with a simple circular 2D source space it was found that decreasing the

o
N
o



grid spacing resulted in an ever diminishing improvement in resolution for their
implementation of the minimum norm solution.

In the following simulations the forward problem was accurately solved; it was the
influence of the choice of grid spacing on the accuracy of source reconstructions that was
under examination.

Define spatial resolution as the distance needed between two sources in order to be
able to resolve the activity from each source separately. The ability to resolve activity from
two nearby sources depends on the difference in magnetic field they produce in the sensors.
Hence, the spatial resolution is determined by the difference in the lead fields of both
sources and consequently depends on the surface curvature. It was therefore hypothesised

that the optimum grid spacing would be inversely related to surface curvature.

The influence of the grid spacing was evaluated for the target source located on the
gyrus and for the target source located on the sulcal wall. Datasets with a mean SNR of 1.2,
1.5 and 3 were used in the Monte Carlo simulations, respectively. Several meshes were
used, with the following values for the gridspacing: 2, 4, 6, 8 and 10mm. The results
obtained with the unconstrained dipole fit algorithm were also given. It is obvious that the
gridspacing does not influence the solutions for unconstrained dipole fitting. Consequently,
the unconstrained fits had to be performed only once for cach dataset. However, the results
were plotted for the meshes with different grid spacing so that they could be compared with
the results for the constrained algorithms.

A difference in the influence of the
gridspacing on the solutions for the gyral and
sulcal target source could either be due to the fact

that the gyral source was more superficial than

the source on the sulcal wall or due to a
difference 1n surface curvature around these
target sources. In order to reveal an influence of

the surface curvature, the whole mesh was

rotated by 90 degrees around the z-axis (figure

. . . figure 5-11: Source space viewed from the back
5-11). The mesh positioned this way did not (slightly shifted to the right). The channel array
is depicted by the filled circles and the centers

represent a realistic situation. However, the target ™.
of the target sources on the gyrus and the sulcal

sources were now located at approximately the wall are indicated by arrows. Note that the
average distance to the sensors is approximately
same average distance from the sensors, so any equal for both target sources.
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differences found in the influence of the grid spacing on the solutions could be ascribed to

differences in surface curvature around the target source

Results

FOCUSS
The influence of the gridspacing on the solutions for the gyral and sulcal source
1s shown in figure 5-12 and figure 5-13, respectively. It follows from these figures that:

e The mean distance error and the standard deviation of the mean distance error were
almost independent of the gridspacing for the sulcal source. This was found for
different SNRs.

* The mean distance error and the standard deviation of the distance error increased with
an increase in gridspacing for the gyral source. The largest effect was found when the
gridspacing became larger than 6mm. This increase in error took place in a similar way
for data with different SNRs.

e For data with high SNR (1.5 or 3) the unconstrained dipole algorithm outperformed
FOCUSS. For noisy data (SNR of 1.2) the FOCUSS algorithm outperformed the

unconstrained dipole fit algorithm. This advantage disappeared for large gridspacings.
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figure S-12: Influence of grid spacing on source reconstructions with FOCUSS for data with different
SNRs. The results for the unconstrained dipole fits are shown for comparison. The top panel shows the
mean distance to the target, gyral, source for all solutions from the Monte Carlo simulations. The bottom
panel shows the standard deviation of this distance. Note the increase in the mean distance error and the
standard deviation of the distance error due to an increase in gridspacing.

F_C Loc_SNRI1.2, F_C_Loc_SNRI1.5 and F_C_Loc_SNR3: Compound FOCUSS. Final solutions based
on distance from target. Data with SNR of 1.2, 1.5 and 3, respectively; UCDIP_SNR1.2, UCDIP_SNR1.5
and UCDIP_SNR3: Unconstrained dipole fitting for data with SNR of 1.2, 1.5 and 3, respectively.
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figure 5-13: Influence of grid spacing on source reconstruction with FOCUSS for data with different
SNRs. The results for the unconstrained dipole fits are shown for comparison. The top panel shows the
mean distance to the target, sulcal, source for all solutions from the Monte Carlo simulations. The bottom
panel shows the standard deviation of this distance. Note that the results were almost independent of the
gridspacing. F_C_Loc_SNR1.2, F_C_Loc_SNRI1.5 and F_C_Loc_SNR3: Compound FOCUSS. Final
solutions based on distance from target. Data with SNR of 1.2, 1.5 and 3, respectively;, UCDIP_SNRI1.2,
UCDIP_SNRI1.5 and UCDIP_SNR3: Unconstrained dipole fitting for data with SNR of 1.2, 1.5 and 3,

respectively.




Constrained Dipole Fits

The influence of the gridspacing on the reconstructions with the constrained dipole

fit algorithm are given in figure 5-14 and figure 5-15 for the gyral source and in figure 5-16

and figure 5-17 for the sulcal source.

The following results follow from these figures:

e A small influence of gridspacing on the performance of CDIPA was only found for
noisy data (SNR of 1.2) for the gyral source.

e The results with CDIPB did not depend on the gridspacing. Only for a gridspacing of
10, there was an increase in the distance error. However, the standard deviation of the
distance error was small for this gridspacing. This illustrates the trade-off between
stable solutions due to a large gridspacing and inaccurate gridspacing due to
undersampling.

e The constrained dipole fit algorithm gave more accurate and stable solutions than the
unconstrained dipole fit algorithm, when noisy data (SNR of 1.2) was used. However,

the advantage of using constraints was only marginal for data with an SNR of 1.5 or 3.
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figure 5-14: Influence of grid spacing on constrained dipole fits for data with different SNRs. The results
for the unconstrained dipole fits are shown for comparison. The top panel shows the mean distance to the
target, gyral, source for all solutions from the Monte Carlo simulations. The bottom panel shows the
standard deviation of this distance. Note that the influence of the gridspacing was largest for data with low
SNR.

CDIPa_SNRI1.2, CDIPa_SNRI1.5 and CDIPa_SNR3: Constrained dipole fitting for data with SNR of
1.2, 1.5 and 3, respectively;, UCDIP_SNRI1.2, UCDIP_SNRI1.5 and UCDIP_SNR3: Unconstrained
dipole fitting for data with SNR of 1.2, 1.5 and 3, respectively.
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figure 5-15: Influence of grid spacing on constrained dipole fits (with the final solution constrained to the
mesh) for data with different SNRs. The results for the unconstrained dipole fits are shown for
comparison. The top panel shows the mean distance to the target, gyral, source for all solutions from the
Monte Carlo simulations. The bottom panel shows the standard deviation of this distance.
CDIPb_SNRI1.2, CDIPb_SNRI1.5 and CDIPb_SNR3: Constrained dipole fitting with final solutions
constrained to mesh. Data with SNR of 1.2, 1.5 and 3, respectively; UCDIP_SNR1.2, UCDIP_SNRI1.5
and UCDIP_SNR3: Unconstrained dipole fitting for data with SNR of 1.2, 1.5 and 3, respectively.
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figure 5-16: Influence of grid spacing on constrained dipole fits for data with different SNRs. The results
for the unconstrained dipole fits are shown for comparison. The top panel shows the mean distance to the
target, sulcal, source for all solutions from the Monte Carlo simulations. The bottom panel shows the
standard deviation of this distance. Note that the results were almost independent of the gridspacing.
CDIPa_SNR1.2, CDIPa_SNRI1.5 and CDIPa_SNR3: Constrained dipole fitting for data with SNR of 1.2,
1.5 and 3, respectively; UCDIP_SNRI1.2, UCDIP_SNRI.5 and UCDIP_SNR3: Unconstrained dipole
fitting for data with SNR of 1.2, 1.5 and 3, respectively.
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figure 5-17: Influence of grid spacing on constrained dipole fits (with the final solution constrained to the
mesh) for data with different SNRs. The results for the unconstrained dipole fits are shown for
comparison. The top panel shows the mean distance to the target, sulcal, source for all solutions from the
Monte Carlo simulations. The bottom panel shows the standard deviation of this distance.
CDIPb_SNRI1.2, CDIPb_SNRI1.5 and CDIPb_SNR3: Constrained dipole fitting with final solutions
constrained to mesh. Data with SNR of 1.2, 1.5 and 3, respectively; UCDIP_SNR1.2, UCDIP_SNR1.5
and UCDIP_SNR3: Unconstrained dipole fitting for data with SNR of 1.2, 1.5 and 3, respectively.
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Results for the rotated mesh

FOCUSS

The influence of the gridspacing on the solutions for the gyral and sulcal source is shown in

figure 5-18. It follows from this figure that:

For the gyral source the distance error and the standard deviation of the distance error
increased when the gridspacing was increased.

The accuracy of the reconstructions of the sulcal source did not decrease with
increasing gridspacing. Interestingly, an increase in accuracy was found for the range of
gridspacings used in these simulations.

The performances for the gyral source were better than for the sulcal source.

The dipole fit algorithm outperformed the FOCUSS algorithm.

The performances for the gyral and sulcal source were very similar for the

unconstrained dipole fit algorithm.

Constrained Dipole Fitting

The influence of the gridspacing on the solutions for the gyral and sulcal source is shown in

figure 5-19. It follows from this figure that:

For the gyral source there was an increase of the distance error with an increase in
gridspacing. The effects of changes in gridspacing on the standard deviation of the
distance error were small. This was found for both versions of the algorithm.

The influence of the gridspacing was small for localisation of the sulcal source.
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figure 5-18: Rotated mesh with FOCUSS. Influence of grid spacing on the sulcal and gyral target
sources for data with an SNR of 1.5. The results for the unconstrained dipole fits are shown for
comparison. The top panel shows the mean distance to the target sources for all solutions from the Monte
Carlo simulations. The bottom panel shows the standard deviation of this distance. Note that the results
for the gyral source were influenced in a different way as the results for the sulcal source.
F_C _Loc_Sulcus and F_C_Loc_Gyrus: Compound FOCUSS. Final solutions based on distance from
target. Target source is the sulcal and gyral source, respectively; UCDIP_Sulcus and UCDIP_Gyrus:
Unconstrained dipole fitting for the sulcal and gyral target source, respectively.
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figure 5-19: Rotated mesh with constrained dipole fits. Influence of grid spacing on the sulcal and
gyral target sources for data with an SNR of 1.5. The results for the unconstrained dipole fits are shown
for comparison. The top panel shows the mean distance to the target sources for all solutions from the
Monte Carlo simulations. The bottom panel shows the standard deviation of this distance.
CDIPa_Sulcus and CDIPa_Gyrus: Constrained dipole fitting for the sulcal and gyral target source,
respectively, CDIPb_Sulcus and CDIPb_Gyrus: Constrained dipole fitting for the sulcal and gyral target
source, respectively. Final solutions constrained to mesh;, UCDIP_Sulcus and UCDIP_Gyrus:
Unconstrained dipole fitting for the sulcal and gyral target source, respectively.
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Discussion and conclusions

FOCUSS

Using the realistically orientated mesh, the influence of the gridspacing was

different for the sulcal and gyral source. Possible reasons for this difference are discussed

here:

It is unlikely that the differences were due to SNR, because for the localisation
of the gyral source, using data with an SNR of 1.2, the distance errors were of
similar amplitude as for localisation of the sulcal source, using data with an SNR
of 3. Still, there was only an influence of gridspacing for the localisation of the
gyral source.

It is unlikely that the differences were due to the distance to the sensors, because
rotating the mesh preserved the differences in performance for the localisation
of the gyral and sulcal source. In the rotated mesh the average distance to the
sensors was approximately equal. The fact that the two target sources in the
rotated mesh gave very similar results with the unconstrained dipole fit
algorithm further supports this.

It is likely that the differences were due to the differences in surface curvature
near the two target sources. The surface curvature was high for the gyral source.
Consequently, the lead fields of the sources in this area were changing rapidly.
In order to incorporate this information into the source space, a fine gridspacing
was needed. This would explain the decrease in accuracy when the gridspacing
was increased. The fact that the accuracy did not increase much when the
gridspacing was reduced to a value below approximately 6mm could indicate
that the angle between the lead field vectors became too small to be detectable
by the sensor configuration. Hence, a further decrease in gridspacing was futile,
due to the inherent properties of the measurement system. The relationship
between gridspacing and surface curvature would also explain the fact that the
gridspacing had little influence for the sulcal source in the realistically
orientated mesh. The sulcal wall was very 'flat. As a consequence, the lead
fields did not vary much in this area and the accuracy of the source
reconstructions was little influenced by the gridspacing. However, it is not yet

understood why the accuracy of the reconstruction of the sulcal source in the
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rotated mesh increased with an increase in gridspacing. A possible explanation
can be sought in the change in the shape of the lead fields of the mesh elements
itself. A way to explore this idea further is by use of the concept of the
resolution matrix and the figures of merit described in the previous chapter. A
change in the shape of the lead fields changes the resolution matrix. These
changes might explain the way in which the gridspacing influenced the accuracy
of source reconstructions with FOCUSS for different target sources and different

orientations of the mesh. Further research in this direction is needed.
The reconstruction of the gyral source was more accurate than for the sulcal source,

for both orientations of the mesh.

The influence of the gridspacing was unrelated to the SNR of the data.

Constrained Dipole Fits

The source reconstructions of the sulcal source were hardly influenced by the
gridspacing. For the gyral source the performance generally decreased with an increase in
gridspacing. This difference in dependency on the gridspacing for gyral and sulcal sources
can be explained by the difference in surface curvature for these sources (see the discussion
given above).

A trade-off was sometimes found between an increase in stability due to large

gridspacing and a decrease in accuracy due to undersampling.

Comparison with Unconstrained Dipole Fits

The FOCUSS algorithm only outperformed the unconstrained dipole fit algorithm
for data with an SNR of 1.2. This advantage disappeared for large gridspacings.

It was advantageous to use the constrained dipole fit algorithm when data with low
SNR was used. The accuracy and stability gained by incorporating the constraints vanished
when the SNR of the data increased. Additionally, the difference in performance between

version CDIPA and CDIPB was small.
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Optimum Gridspacing

For FOCUSS, the optimum gridspacing depends on the curvature of the surface.
The spatial sampling should be high enough to incorporate the information provided by the
variations in the lead fields across the surface. The highest spatial frequency that is
beneficial is however determined by the shape of the lead fields and therefore by the
measurement set-up. Exceeding this limit is disadvantageous because of an increase in
computing time. A spatial sampling that is too coarse results in decreased performance due
to undersampling. For the mesh and sensor configuration used in these simulations the
minimum spatial frequency that was effective was 6mm.

The performance of the constrained dipole fit algorithm was maximal with the
smallest gridspacing, i.e. 2mm. However, a large gridspacing can be advantageous in some

cases as it can stabilise the solutions.
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5.4 Influence of Spatial Errors

5.4.1 Position Errors

A realistically shaped source space is normally obtained from a subject's MRIL
Accordingly, the use of spatial constraints in the inverse problems relies on accurate co-
registration of the MEG and MRI co-ordinate systems. Errors in co-registration can range
from several millimetres to a centimetre or more. In this section the influence of spatial
errors on the accuracy of the constrained source localisation algorithms was evaluated. It
was hypothesised that large spatial errors result in unacceptably large errors in locations of

the reconstructed sources.

In these Monte Carlo simulations, simulated data with an SNR 1.5 was computed
for the target source on the gyrus and on the sulcal wall, respectively. The mesh and sphere
origin were then shifted over a certain distance in a randomly chosen direction, with the
value of this distance taken from a Gaussian distribution with a certain standard deviation
and zero mean. The standard deviations used in these simulations ranged from 2, 4, 6, 8 to
10mm. These shifts in the mesh location and the origin represented errors in the location of
the mesh due to errors in the co-registration of the MEG and MRI co-ordinate systems. The
shifted mesh was subsequently used by the constrained source reconstruction algorithms to
find the solutions for the simulated data. As before, the solutions obtained with the
unconstrained dipole fit algorithm for the datasets with these SNRs were given for

comparison. The results for the unperturbed mesh/origin were also given for comparison.

Results

The influence of the mesh perturbations on the reconstructions of the gyral source

and the sulcal source are given in figure 5-20 and figure 5-21, respectively.

FOCUSS
e The source reconstructions for the gyral source were hardly influenced by perturbations

of the mesh. Only for perturbations with a standard deviation of 8mm there was an
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increase in distance error of 1.3mm compared to the unperturbed case. However, this
increase in error was only 16% of the standard deviation of the perturbation error.

e The mean distance error of the source reconstructions for the sulcal source was also
hardly influenced by the mesh perturbations. Additionally, the standard deviation of the
distance error due to a mesh movement of 10mm increased only by 23% of this

movement.

Constrained Dipole Fits

e The influences of mesh perturbations on the reconstructions of the gyral source with
CDIPA was less than a millimetre, even for perturbations as large as 10mm. Similar
results were obtained for the sulcal source.

e Reconstructions with the CDIPB version of the constrained dipole fit algorithm
decreased in accuracy when the perturbations increased, both for the gyral and the
sulcal source. The largest increase for the gyral source was 35mm, found when the
mesh was perturbed by 10mm. Note that this was still only 35% of the standard
deviation of the perturbations of the mesh. Similarly, for the sulcal source the largest

increase in distance error was 53% of the standard deviation of the mesh perturbations.

Conclusions

The influence of mesh perturbations on the source reconstructions with FOCUSS
and the CDIPA version of the constrained dipole fit algorithm were in the order of Imm
and therefore negligible compared to the maximum distance by which the mesh was
perturbed. Apparently, the algorithms were able to use the elements in the perturbed mesh
that had been shifted towards the location of the target source to reconstruct the source
activity accurately.

The accuracy of the location and the stability of the sources reconstructed with the
CDIPB version of the constrained dipole fit algorithm decreased when the standard
deviation of the mesh perturbations was increased. The largest increase in the distance error
was found to be 5.3mm for perturbations of the mesh by 10mm. Moreover, the advantage
of this version of the algorithm over unconstrained dipole fitting vanished when the

standard deviation of the mesh perturbations were larger than 6mm.
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The gridspacing used here was not the optimum value for the FOCUSS algorithm.
Nevertheless, the influence of mesh perturbations was still small, even when the standard
deviation of the perturbations was larger than the gridspacing. It is therefore expected that
the results found here for FOCUSS are also valid for meshes with different gridspacings. A
similar argument is valid for the CDIPA version of the constrained dipole fit algorithm.

For the CDIPB version of the dipole fit algorithm the accuracy of the source
reconstructions decreased with an increase in the standard deviation of the mesh
perturbations. It was show in section 5.3.3 that the influence of gridspacing on the accuracy
of localisations with CDIPB was small. It is therefore expected that mesh perturbations
influence the accuracy of source localisations in a similar way as described above in case

different gridspacings were to be used.
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figure 5-20: Influence of displacement errors on the source reconstruction with the three different
algorithms. The target source is the gyral source. The top panel shows the mean distance to the target
sources for all solutions from the Monte Carlo simulations. The bottom panel shows the standard
deviation of this distance. Note that the mesh perturbations only had a large influence on CDIPB. .
F_C_Loc: Compound FOCUSS. Final solutions based on distance from target; CDIPa: Constrained
dipole fitting; CDIPb: Constrained dipole fitting with final solutions constrained to mesh;, UCDIP:
Unconstrained dipole fitting.
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figure 5-21: Influence of displacement errors on the source reconstruction with the three different
algorithms. The target source is the sulcal source. The top panel shows the mean distance to the target
sources for all solutions from the Monte Carlo simulations. The bottom panel shows the standard
deviation of this distance. Note that the mesh perturbations only had a large influence on CDIPB.
F_C_Loc: Compound FOCUSS. Final solutions based on distance from target; CDIPa: Constrained
dipole fitting; CDIPb: Constrained dipole fitting with final solutions constrained to mesh; UCDIP:
Unconstrained dipole fitting.
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5.4.2 OQrientation Errors

Errors in the construction of the source space can cause local errors in orientation of
the surface normals. Consequently, the orientations of the normals of the grid-nodes that are
used by the constrained source reconstruction algorithms can be erroneous. For example,
the erroneous inclusion of a voxel from the CSF into the model of the cortex causes such a
local error. Computing the average orientation of an area of cortex reduces the potential
influence of such an error, but does not remove it completely. In this section it was
examined how stable the constrained localisation algorithms were with respect to local
perturbations in the orientation of the normals of the nodes in the mesh. Based on evidence
found in the literature (Liu et al, 1998), it was hypothesised that the influence of these

perturbations would be relatively small.

The influence of perturbations of the normals in the nodes of the mesh was
examined by means of Monte Carlo simulations with data with an SNR of 1.5. The normal
in each node was perturbed by an angle about the axis formed by the normal vector. The
value of this angle was taken from a Gaussian distribution with a given standard deviation
and zero mean. The values of the standard deviation used for this Gaussian were 10, 20, 30
and 40°, respectively. The latter value was an extreme case that was not cxpected 1in
realistic cases. The FOCUSS algorithm and the constrained dipole fit algorithm were used
to reconstruct the sources from simulated data produced by the gyral and sulcal sources. As
in the previous sections, the results obtained with the unconstrained dipole fit algorithm
were displayed for comparison. The results for the mesh with the unperturbed normals were

also given for comparison.

Results

The influence of the perturbations of the surface normals on the reconstructions of the gyral

source and the sulcal source are given in figure 5-22 and figure 5-23, respectively.
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figure 5-22: Influence of errors in the orientation of the surface normals on the source reconstruction with
the three different algorithms. The target source is the gyral source. The top panel shows the mean
distance to the target sources for all solutions from the Monte Carlo simulations. The bottom panel shows
the standard deviation of this distance. Note the increase in performance for FOCUSS and the decrease in
performance for the constrained dipole fits, due to the perturbations of the surface normals.

F_C_Loc: Compound FOCUSS. Final solutions based on distance from target; CDIPa: Constrained
dipole fitting; CDIPb: Constrained dipole fitting with final solutions constrained to mesh; UCDIP:
Unconstrained dipole fitting.
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figure 5-23: Influence of errors in the orientation of the surface normals on the source reconstruction with
the three different algorithms. The target source is the sulcal source. The top panel shows the mean
distance to the target sources for all solutions from the Monte Carlo simulations. The bottom panel shows

the standard deviation of this distance.

F_C_Loc: Compound FOCUSS. Final solutions based on distance from target; CDIPa: Constrained
dipole fitting; CDIPb: Constrained dipole fitting with final solutions constrained to mesh; UCDIP:

Unconstrained dipole fitting.
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FOCUSS
e There was no degradation in performance when the standard deviation of the
perturbations of the surface normals was increased. In fact, for the gyral source a slight

improvement was observed. There appeared to be a saturation effect.

Constrained Dipole Fits

e A decrease in performance was found when the standard deviation of the perturbations
of the surface normals was increased. There seemed to be a saturation effect.

e The effect of perturbations of the surface normals was more pronounced for the CDIPB
version of the dipole fit algorithm than for the CDIPA version.

e Using CDIPB, the maximum increase in the distance error due to the perturbations of
the surface normal was 5.6mm for localisation of the gyral source and 5.3mm for

localisation of the sulcal source.

Discussion

FOCUSS

Generally, errors in the orientation of the surface normals were found to have no
deteriorating effect on the source reconstructions with FOCUSS. Interestingly, a slight
improvement in the FOCUSS algorithm was observed. This can be explained on the basis
of the concept of the resolution matrix. When the surface normals are unperturbed, many
surface elements in the mesh have normals with the same or a similar orientation, due to the
way the mesh is formed. The lead fields of the elements with similar orientation are similar
as well (if the distance between the elements is small). Consequently, the resolution kernels
for these elements consist of many sidelobes. Due to the perturbations of the surface
normals, the similarity of the lead fields is reduced and consequently the number of
sidelobes in the resolution kernels will be reduced.

There appeared to be a saturation effect. A possible explanation is that the lead
fields are not only determined by the orientation of the surface elements, but also by their

location and the characteristics of the sensor array. The improvement of the resolution




kernels is thus limited by the measurement set-up. Due to this limit the source
reconstructions can not be improved by further randomisation of the surface normals.

These results suggest that the influence of errors in determining the surface normals
for a realistically shaped mesh will be small or that they can even increase the accuracy of
source reconstructions due to randomisation effect on the lead fields and the improvement

of the resolution kernels as a consequence.

Constrained Dipole Fits

The perturbations of the surface normals influenced the accuracy of the source
reconstructions considerably, increases in distance errors of up to 5.6mm were found. These
increases were more pronounced for the CDIPB version of the dipole fit algorithm than for
the CDIPA version, due to the fact that the CDIPB version is stricter bound by the
constraints.

The effect of perturbations of the surface normals was so large that the advantage of
the constrained dipole fit algorithm over the unconstrained algorithm disappeared even for
perturbations with a standard deviation of only 10°. Additionally, the improvement of
FOCCUS due to perturbations of the surface normals ensured that for the gyral source its
performance was better than for the performance of CDIPB and similar to the performance

of CDIPA when the perturbations were larger than 20°.




5.5 Conclusions

The simulations performed in this chapter, using a simulated cortical fold, revealed
that the source reconstructions with the compound version of FOCUSS were, compared to
the results with the non-compound version, less scattered and that the mean distance
between the solutions and the target source was smaller. This is in agreement with reports
that the compound version is more accurate and robust than the non-compound version

(Gorodnitsky et al, 1995).

It was demonstrated that noise rcgularisation can be applied by setting the
truncation level at a fixed percentage of the maximum singular value in each iteration of
FOCUSS. The optimum value for this percentage could be determined experimentally.
Selection of the final solution for FOCUSS on the basis of the minimum reduced chi-square
gave inaccurate solutions, due to spurious sources in the solutions with lowest reduced chi-
square. The, subjective, selection of the final solutions on the basis of the activity patterns
of the reconstructed sources was proven to be a satisfactory alternative. This approach can

be implemented in an automatic rule based decision-making algorithm.

The accuracy of source reconstructions with FOCUSS decrcased with increasing
gridspacing. The influence was more pronounced for areas with large surface curvature. A
smaller gridspacing is needed in order to incorporate the information provided by the
changes in the lead field in these areas. The maximum spatial resolution that can be
achieved seems to be determined by the shape of the lead ficlds in an arca and therefore by
the measurement set-up and the region of the source space where the activity is
reconstructed. The influence of gridspacing on the performance of the constrained dipole fit
algorithm was generally small. Only for data with low SNR and for an area with large

surface curvature a decrease in accuracy was found due to an increase in gridspacing.

MEG-MRI co-registration errors shift the mesh with respect to the sensors.
However, it was demonstrated that the influence of errors as large as 10mm was negligible.
The increases in localisation errors due to perturbation errors were namely in the order of
Imm, both for FOCUSS and the constrained dipole fit algorithm.

On the contrary, perturbations in the orientation of the surface normals increased the

localisation error by as much as 5.6mm when the constrained dipole fit algorithm was used.
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No increase in error was found for FOCUSS. This is in agreement with the findings of Liu
and colleagues (Liu er al, 1998) who reported that the effect of perturbations of the surface
normals on the accuracy of source reconstructions was only small with their linear
estimator.

Interestingly, a small improvement was found for FOCUSS when the surface
normals were perturbed. This could be explained by an improvement of the resolution
kernels.

It is possible that the localisation accuracy for the constrained dipole fit algorithm
could be improved by using a 'soft' constraint for the orientation of the sources (Schmidt ez
al, 1999), i.e. the angle the orientation vector makes with the surface normal is constrained,

instead of the orientation vector itself. Further work in this direction is needed.

In conclusion, the comparison of FOCUSS, unconstrained and constrained dipole fit
algorithms revealed that adding constraints improved the accuracy of reconstructed sources
when noisy data was used. This improvement disappeared for constrained dipole fitting
when the SNR of the data was increased or when the surface normals were perturbed. With
FOCUSS the advantage disappeared for data with high SNR and when the gridspacing was

increased.
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6 Source Localisation from Visual Evoked MEG Data

6.1 Introduction

The aim of this study was to evaluate the performance of several source localisation

algorithms under realistic circumstances.

The algorithms that were described and evaluated in the previous chapter were
applied to averaged evoked MEG recordings obtained with a whole head Omega
neuromagnetometer. The use of real data tests the performance of the source localisation
algorithms in a situation that is impossible to re-create exactly by simulations.

The chosen experiment concerned the measurement of the response evoked by a brief
visual stimulus. The visual modality was used as the modality of choice, because the
activated cortical areas can be accurately modelled by equivalent current dipoles (Ainc et
al, 1989, George et al., 1989, Aine et al, 1996, Barnes et al., 1998). Hence, the use of
dipole fit algorithms is feasible. Additionally, the primary visual evoked responsc is known
to involve several closely spaced cortical areas. Resolving the locations and activation
sequences of sources in these areas poses a test on the feasibility and limits of the source
reconstruction algorithms. The experiment described here is part of an ongoing study to
examine cortical magnification by means of MEG (Barnes et al, 1998).

The measurement framework was first examined by an analysis of the figures of
merit derived from the resolution matrix. This was followed by source reconstructions by
means of unconstrained and constrained dipole fitting, the minimum norm algorithm and

FOCUSS.

The next session describes the experimental methods and the analysis strategies that
were used. This is followed by a presentation of the results. In the final section the results

are discussed.




6.2 Methods

Stimulus Design

The visual stimulus was a Gaussian windowed patch of sinusoidal grating (see
figure 6-1), generated using a VSG 2/3 board (Cambridge Research Systems). The spatial
frequency of the grating was 2cpd. Two different stimulus conditions were used in the
experiment. In one condition the standard
deviation of the Gaussian window was 1.67
degrees and in the other condition the standard
deviation was 0.83 degrees. These two stimulus
conditions were randomly interleaved.

The stimuli were presented in the lower
right visual field, at an eccentricity of 1.5
degrees from both the vertical and horizontal
meridian. The subject was asked to fixate on a

white fixation point with dimensions of 0.25

o1 ‘ X ‘es i 1 ‘ atter . . .
degrees. The patches were presented in a pattern figure 6-1: Gaussian windowed patch  of

sinusoidal grating with spatial frequency of 2¢pd
and fixation spot in top right corner. The
mean luminance (42 cd/mz). The contrast was standard deviation of the Gaussian window is
1.67 degrees. Note that this visual stimulus was
70%. viewed through a mirror during the MEG
. . experiment, thus it was presented in the lower

Each stimulus was presented for a period  right visual field.

onset paradigm onto a background of the same

of 500ms and the interstimulus interval was set

to 21+0.2 seconds.

MEG Recordings

MEG data were recorded using a 151 channel CTF Omega whole head
neuromagnetometer. An experienced and co-operating subject (IEH) sat comfortably in an
upright position. Three magnetic head coils were attached to the head with a Velcro band
that was wrapped around the head. This allowed for the quick and secure placement of the

head coils. One coil was positioned on the forehead and the other two coils near the left and
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right ear, respectively. An inflatable head-cuff was placed over the subject's head. This
secured the head within the MEG helmet once inflated and thereby reduced the movement
of the head during the MEG recordings. The head coils were activated before and after the
recordings and the locations of the coils with respect to the MEG sensors were estimated.
The amount of head movement was determined by comparing the coil locations as
estimated before and after the recordings. The total head movement was less than 2mm in
this experiment.

A total of 200 epochs were recorded, with a pre-stimulus interval of 190ms and a
post-stimulus interval of 800ms. The data were recorded with the 3" order gradiometer
configuration in order to reduce contamination of the brain signals by external noise
sources. The data were sampled with a frequency of 1250Hz, using an anti-aliasing filter
with cut-off frequency of 400Hz.

After scrutiny of the raw data for artefacts, the data were base-line adjusted (based
on the pre-stimulus interval) and averaged. The responses to the two different stimuli were
averaged separately, resulting in two sets of averages made up of 100 epochs each. The
plus-minus average was also computed to serve as an estimate of the noise in the data. The
averaged data were subsequently filtered with a SOHz comb filter to remove interference
from the powerlines (and the higher order harmonics). Furthermore, a low-pass filter of
80Hz was applied.

The locations of the coils with respect to the subject's bitebar were measured with a
3D Polhemus digitiser. The subject's headshape was also digitised in this co-ordinate
system in order to form a set of hat points. The positions of the coils and the head points
were subsequently transformed to the MEG co-ordinate system that was based on the
location of the three head coils see CTF Systems Inc. (1999) for the definition of this co-
ordinate system). Also, the scalp surface was extracted from the subject's MRI, using the
contouring method described in section 3.2.2. The set of digitised hat points was matched to
the scalp surface in order to get the transformation matrix needed for the co-registration of
the MEG and MRI co-ordinate systems.

The set of hat points was also used to obtain a best fitting sphere. This sphere was

used as the volume conductor model of the head.






FOCUSS
Three different weighting matrices were used at the start of the algorithm.
e Minimum norm weighting, i.e. the identity matrix was used as the initial
weighting matrix.
e Smoothed norm weighting in order to avoid bias towards the sensors (this
weighting matrix was introduced in section 4.3.2.2).
e Average distance weighting, as described in the previous chapter. The weighting
is based on the squared average distance to the sensors and an additional

correction factor. This reduced the bias towards the sensors.

Unconstrained Dipole Fits

In the previous chapter constraints were made effective by squaring the value of the
reduced chi-square in case one of the constraints was violated. For measured data this can
be ineffective, since the value of the reduced chi-square can fall below 1, for example when
the source model is not correct for a certain time-window. Therefore, violations of
constraints were penalised by multiplying the value of the reduced chi-square by a factor of

10.

Constrained Dipole Fits

As for the unconstrained dipole fits, violations of constraints were penalised by
multiplying the value of the reduced chi-square by a factor of 10.

Unlike for the simulated mesh used in the previous chapter, the realistically shaped
mesh had a variable gridspacing. The gridspacing was smaller than 3mm for all but one
element, with a mean value of 1.0mm. An uncertainty of 2mm in the mesh location was
also taken into account (section 3.4.2.4). The sources were therefore restricted to lie within

Smm from the nodes in the mesh.

The best solutions obtained from the multi-start dipole fit algorithms were used as
initial guesses in Monte Carlo simulations. These simulations revealed the stability of the
solutions with respect to different noise realisations of the data. For this purpose, zero
mean, Gaussian noise was added to the recorded data. The standard deviation of the noise
as measured in each channel was used as the standard deviation for the Gaussian. The
implementation of the source reconstruction algorithms in MATLAB meant that it was only

feasible to use 10 different noise realisations in the Monte Carlo simulations.
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In addition to the above-mentioned methods, the (weighted) minimum norm
solution was also computed (note that this is the solution obtained in the first iteration of
the FOCUSS algorithm). Furthermore, the moving dipole algorithm implemented in CTF's
acquisition and analysis software, MEG/4, was used for the reconstruction of a single

moving dipole (CTE Systems Inc.). Note that this s not a multi-start implementation.

Analysis of Source Reconstructions

The CTF software was used to display the solutions found with the source
reconstruction algorithms. The locations of the sources were shown in three views of a
schematic of a human head. The sources were represented by small circles, with the
orientation of a source in the tangential direction denoted by a short line extending from the
circle in the direction of the orientation of the source. The co-ordinates of the best solution
found with each algorithm were also given. For FOCUSS, the best solutions were manually
selected on the basis of the timecourses of the sources. For the dipole fit algorithms the
solutions with the lowest value for the reduced chi-square were selected from the set of
solutions obtained with the multi-start approach.

Moreover, the timecourses of activation were given for the sources in the best
solutions, as well as a plot of the change of the reduced chi-square over time.

Wherever applicable, the volume of the 95% confidence interval obtained from the

Monte Carlo simulations was also given.
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6.3 Results

6.3.1 Initial Inquiry of the Data

The analysis started with an examination of the characteristics of the inverse
problem for the sensor locations and configuration and the realistically shaped source space
used for the experiment. For this purpose the figures of merit described in chapter 4 were
computed and visualised. In figure 0-3 the Source Identifiability and the Expected squared
error due to noise are displayed on a logarithmic scale in order to reveal the patterns in the
surface maps. Additionally, the Bias in Dipole Location is displayed. The surface maps of
the Image Sensitivity and the Expected squared error due to otlier sources were omitted,
since the patterns in these maps showed great similarities with the surface map of the
Source Identifiability. The Source Identifiability was low for deep sources located towards
the midline. Hence, it was difficult to unambiguously reconstruct activity for sources in
these areas, due to the influence of activity in other sources. Furthermore, it is clear that
towards the left of the source space, the Source Identifiability was different for sulcal
sources than for gyral sources. This could be due to the fact that the gyral sources were
nearer to the sensors than the sulcal sources. To put this into perspective, this result should
be compared with 48 in section 4.3.2.2 where the Source Identifiability was computed for
the 19 channel CES system. The bias towards the sensors was much more pronounced for
this smaller sensor array, due to the smaller area of cortex covered by this system. The
advantage of using a system that covers the whole head is obvious. The fact that the bias
towards the sensors was small suggests that the choice of the initial weighting matrix was
not critical with the whole head system. Indeed, the surface maps of the figures of merit
computed for smoothed norm weighting were similar to the maps displayed here (not
shown). It is noteworthy that the Source Identifiability was higher for gyral sources than for
sulcal sources, a finding that contradicts the results obtained with the smaller sensor array.

The advantage of a whole head system is also demonstrated by the surface map of
the Bias in Dipole Location. With the whole head system, the Bias in Dipole Location is
negligible for most elements in the source space. Hence, similar accuracy in the location of
reconstructed activity can be obtained for most sources in the source space. Moreover, the
influence of noise in the data shows no systematic relationship with the locations of the

sources.
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figure 6-6: Averaged evoked responses recorded in the sensors placed over the occipital cortex. An evoked
response triggered by the presentation of the visual stimulus is clearly visible.
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figure 6-7: The timecourses for the occipital channels overlaid. Only the early visual evoked response is
shown (60-130ms). The timecourses show a complicated activity pattern. The sensors with the strongest
signals show a positive peak in activity at about 75 and 110ms and a negative peak at about 95ms. Note
however that the maxima in each sensor were shifted in time with respect to one another.







suggested three different areas of activity: two areas with a small separation between them
in the occipital pole and a 3™ arca in a parieto-occipital region with smaller activity. A
further increase in the number of singular values degraded the solutions due to an increase
in the influence of noise in the measurements.

The timecourses of activation of the clements in the source space located in these
three regions of relatively large activity (hotspots) arc shown in figure 6-9. The activation
patterns for elements in the weaker hotspot were similar to the activation patterns in the two

main hotspots. Hence, this activity was likely to be related to the presentation of the

stimulus and not due to noise in the data.
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figure 6-9: Left panel: Activation curves of the 100 strongest sources in the minimum norm solution. All
these elements are located in two hotspots in the occipital pole (see figure 6-8), apart from a few spurious
sources. Right panel: Activation curves of the elements in the 3 hotspot in the minimum norm solution.
Note that these sources have an activity pattern similar to the sources in the occipital pole as well as similar
peak strength.

Moving Dipole

The results obtained with the moving dipole model are given in tigure 6-10. A new
dipole location position and orientation was found for each latency, forming a 'trace' of
dipole locations. This trace was entirely located in the occipital regions. Initially, the dipole
was located in the anterior-inferior part of the trace. The location varied only by a small
amount over the next period, forming a stable cluster. The dipole then moved to a more
posterior-superior area in the occipital pole, where a second cluster was formed. At the later

stages the dipole moved even more posterior and to the right hemisphere, eventually

moving outside the sphere.
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figure 6-10: Locations of a single moving dipole fitted to the data over the latency range 72-122ms, forming
a 'trace’ of dipole locations. The trace is formed by the dipole moving from an anterior-inferior position to a
more posterior-superior area in the left hemisphere and then to the right hemisphere and even more posterior.

This 'trace’ provided information about the number of active sources and their
locations (Bocker et al, 1994). It suggested that the activity shifted in location from an
initial locus of activity to a second, more posterior locus. This movement of activity in time
was already hinted at by the latency shifts of the maxima in the responses in the different
sensors, as discussed in the previous section.

The movement of the dipole outside the sphere at the latter stages suggests that the
data were not well explained by a single source at these latencies. Hence, for the early
period of the latency range a two-dipole model, with different timecourses of activation,

seems appropriate. For the later period a more complicated model might be needed to

explain the data.

FOCUSS

The results obtained with the FOCUSS algorithm, using the three different
weighting matrices, are given in figure 6-11. In this figure all solutions obtained with
different truncation levels are plotted in the same schematics of the human head. It should
be noted that these figures therefore also contain solutions that consisted of spurious
sources that were caused by the noise. However, presenting the results in this manner
revealed clusters of sources. These clusters were formed by sources that appeared in many
of the solutions and were therefore likely to represent areas of activity that were related to
the stimulus presentation. The results obtained with the three different weighting matrices
revealed a similar pattern: two separate clusters of sources were found, most clearly defined

in the axial and sagittal views. One cluster was located in the occipital pole and the other

295



cluster was found in a more anterior and superior location. The location of the latter cluster
is close to the edge of the source space.

Additionally, the spread in the reconstructed sources was largest in the superior-inferior
direction, especially for the anterior cluster. Hence, the spread was largest in the direction
away from the sensors. Furthermore, the posterior cluster was also extended laterally. This

could indicate the existence of two separate sources in this region.

From each set of solutions displayed in figure 6-11, the best solution was selected

on the basis of the courses of activation. Note that this is a subjective method (see section
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figure 6-11: Sources reconstructed with FOCUSS, using a range of truncation levels and different initial
weightings. Top row: minimum norm weighting. Middle row: smoothed norm weighting. Bottom row:
average distance weighting. Note that with all three weighting matrices two separate clusters of sources were
found, most clearly defined in the axial and sagittal views. The spread in the solutions was largest in the
superior-inferior direction, especially for the anterior cluster. The posterior cluster also showed a lateral

prolongation.
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5.3.2). The best solutions obtained for the different weighting matrices are displayed in
figure 6-12, figure 6-13 and figure 6-14. In these figures the activation courses of the

sources are also given, along with a plot of the value of the reduced chi-square over time.

FOCUSS solution, using minimum norm weighting:

Two sources were reconstructed in the occipital pole (dipole 2 and 3), with dipole 2
located towards the left. This source had the strongest activity, followed by the activity of
dipole 3. The peak activity of these two sources was shifted in time by 7ms, with the dipole
located towards the midline reaching maximum activity first (82ms). A third source with

smaller activity, dipole 1, was located in a more anterior-superior region. This dipole
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figure 6-12: Best solution found with FOCUSS, using minimum norm weighting for source reconstruction
over the latency range from 71 to 122ms. The top panel shows the source locations and the bottom panel the
activation curves and the reduced chi-square error function. Two sources were reconstructed in the occipital
pole (dipole 2 and 3), with dipole 2 located towards the left. This source had the strongest activity, followed
by the activity of dipole 3. The peak activity of these two sources was shifted in time, with the dipole located
towards the midline reaching maximum activity first A third source with smaller activity, dipole 1, was
located in a more anterior-superior region. This dipole peaked at a later latency.
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peaked at a later latency (99ms). The amplitude of all three sources was small in the later
part of the latency range (115-122ms). The data at these latencies were therefore not well
modelled by these sources, resulting in the large values for the error function in this range.
The low value of the error function at the beginning of the latency range could indicate that
the data were over-modelled by three dipoles at these latencies. This was supported by the

fact that the reconstructed activity for dipole 1 was small for these latencies.

FOCUSS solution, using smoothed norm weighting:

Some of the solutions found with smoothed norm weighting contained three
sources. In these solutions the two occipital dipoles were both shifted towards the midline.

However, the activation curves were largely self-cancelling and these solutions were
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figure 6-13: Best solution found with FOCUSS, using smoothed norm weighting. for source reconstruction
over the latency range from 71 to 122ms. The top panel shows the source locations and the bottom panel the
activation curves and the reduced chi-square error function. Two sources were reconstructed in the occipital
pole, with dipole 1 located towards the left. This source had the strongest activity. The peak activity of the
two sources was shifted in time.
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therefore rejected. The best solution obtained with smoothed norm weighting consisted
only of 2 sources both in the occipital pole. The separation in space was only lmm and 3ms
in time. The error function again indicated that the data were not well modelled at the start

and end of the latency range.

FOCUSS solution, using average distance weighting:

The results obtained with average distance weighting were similar to the results
found for smoothed norm weighting. Again, no well-behaved solution with three sources
was obtained. The spatial separation between the two occipital dipoles was larger as for
smoothed norm weighting. The dipole closer to the midline was activated 7ms before the

more lateral dipole, in accordance with the results for minimum norm weighting.
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figure 6-14: Best solution found with FOCUSS, using average distance weighting for source reconstruction
over the latency range from 71 to 122ms. The top panel shows the source locations and the bottom panel the
activation curves and the reduced chi-square error function. Two sources were reconstructed in the occipital
pole, with dipole 1 located towards the left. This source had the strongest activity. The peak activity of the
two sources was shifted in time, with the dipole located towards the midline reaching maximum activity
first.
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Dipole Fitting

Single Dipole

The locations of the dipoles reconstructed with the unconstrained dipole fit
algorithm are given in figure 6-15. The solutions obtained with the multi-start approach are
first shown. These solutions formed a tight cluster of sources in the occipital pole. The
solution that resulted in the lowest value for the reduced chi-square (= 1.31) was found at
the following location: (-6.5 1.3 0.7) [cm]. The overlay of the dipole onto the subject's MRI
revealed its location with respect to the anatomy of the head.

The activation curve for this dipole showed a peak approximately in the middle of
the latency range (94ms). The error function indicated that the data were well modelled at
these latencies, but that the data at the start and end of the latency range was not thoroughly
explained by this model. The stability of the solution was confirmed by the value of 9mm’
for the 95% confidence volume obtained from the Monte Carlo simulations for this best

solution (not shown).

The results for the constrained version of the algorithm were similar to those found
for the unconstrained algorithm (figure 6-16). The multi-start algorithm gave a broader
spread of solutions. The dipole that resulted in the lowest reduced chi-square value (=1.31)
was positioned in approximately the same location as the unconstrained best solution,
namely at (-6.3, 0.8, 0.4) [cm]. The activation curves were also very similar, peaking both
at 94ms. The 95% confidence volume obtained for the best solution was only 3mm3,
illustrating that, although the constraints increase the extent of the cluster that was obtained
with the multi-start approach, they stabilised the solutions with respect to the noise.

The solution that was obtained when the best constrained solution was restricted to
lie within the mesh was found at the following location, (-6.2, 0.9, 0.5) [cm], i.e. within a

millimetre from the best unconstrained solution.
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The error functions for the single dipole solutions revealed that the data were not
well modelled at the start and end of the latency range. The reason for this becomes clear
when the measured and the estimated fieldmaps are examined. The field maps for a latency
at the beginning of the latency range (83ms) and from the end of the latency range (108ms)
are shown in figure 6-17. It is obvious from the difference maps that an extra dipole should

be added to the source model in order to improve the fit to the data at these latencies.
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Two Dipoles

The locations of the dipoles reconstructed with the unconstrained dipole fit
algorithm are given in figure 6-18. The solutions obtained with the multi-start approach are
first shown. It can be seen that two clusters were formed in the occipital pole. The one
cluster was formed at a more anterior-inferior location than the other cluster. The activation
curves for the two dipoles that form the best solution (reduced chi-square of 1.05) are of
opposite polarity, but not completely self cancelling due differences in location, amplitude
and orientation. The locations of the sources were given by: dipole 1: (-6.7, 2.2, 1.4) and
dipole 2: (-7.4, 2.5, 1.0) [cm]. The peaks in the activation curves for the 2 sources were
broader than for the single dipole solutions, hence the 2 sources accounted for a longer
period of data. Note however that, although the mean value had come down compared with
the single dipole solutions, the error function still indicated that the source model was
incorrect at the start and end of the latency range.

The Monte Carlo simulations, resulting in a 95% confidence volume of 0.2 and

1.5mm? for dipole 1 and dipole 2, respectively, confirmed the stability of the best solution.
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The sources reconstructed with the constrained two-dipole fit algorithm are
displayed in figure 6-20. This time there was only one cluster formed by the multi-start
approach. An increase of the influence of noise in the data was revealed by larger 95%
confidence intervals (7.3 and 399mm°’ for dipole 1 and 2, respectively). However, the
separation between the two sources in the best solution was clear. The first dipole was
located at (-6.2, 1.9, 0.0) [cm] and the second at (-7.0, 0.8, 1.3) [cm]. The mean value of the
reduced chi-square was 1.10. The error function decreased in value towards the end of the
latency range.

The locations of the two dipoles that were found when the best constrained solution
was confined to lie within the mesh were given by: (-5.8, 1.8, 0.4) and (-6.5, 0.8, 1.2) [cm].
The value of the reduced chi-square was 1.18 for this solution. Note that these dipoles were
located more anterior than the dipoles in the best solution for the constrained fit.

The locations of these two dipoles are overlaid onto their respective MRI slices in figure
6-21.
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6.4 Discussion

In the study described in this chapter a whole head magnetometer was used to record
the magnetic fields evoked by a visual stimulus. The advantage of using a whole head
system was demonstrated by the surface maps of the figures of merit computed for the
experimental set-up. The Bias in Dipole Location was negligible for most sources in the
source space, hence most sources were shown to be able to be reconstructed without a large
bias error. It was also found that the Source Identifiability was highest for gyral sources,

due to their close proximity to the sensors.

Combining the results of the different localisation techniques, it is possible to find an
answer to the question: how many sources produced the recorded MEG over the latency
range from 71 to 122ms?

e Minimum Norm solution: A large occipital source was found (possibly made up out of
2 sources) and a parieto-occipital source.

e Moving Dipole model: The 'trace' formed by the moving dipole consisted of 2 stable
clusters, suggesting two sources in the occipital cortex. The initial activity was found at
a slightly more anterior-inferior position, closer to the midline than the second source.

e FOCUSS: The clusters found when all solutions were plotted suggested a single source
in an anterior-superior region and an extended source in the occipital pole. The anterior-
inferior source was found on the edge of the mesh, hence the location of this source
should be interpreted with care. When the best solutions were plotted, it was revealed
that the extended source consisted of two closely located sources.

e Dipole Fits: The solutions found with the constrained and unconstrained dipole fit
algorithms were very similar, both in locations and activations of the sources. The two-
dipole models resulted in lower mean chi-square values than the single dipole models.
Additionally, the difference maps obtained for the single dipole model revealed the
existence of a second source. The two sources were located in the occipital pole, at

approximately the same locations as found with FOCUSS

Thus, it can be concluded that initially a source at an anterior-inferior location in the
occipital pole was activated, followed 7ms later by the activation of a second, more
posterior-superior source, shifted laterally. This sequence of activation and shift in location

are in agreement with the findings by George and co-workers (George et al, 1989). A third
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source 1s activated at a slightly later stage. The exact location of this anterior-superior
source could not be determined, although activity in this area, related to similar visual
stimuli, has been reported (Aine et al, 1996). It is possible that the source is related to the
peaks in the evoked response found at later latencies and that the determination of its

location can be improved by extending the latency range.

The reported inter-subject variability of shape and location of the primary visual
cortex is large (Stensaas et al., 1974). Yet, the locations and activation sequences of the
occipital sources seem physiologically reasonable, both in location and activation sequence
(dipole 1 and 2 corresponding to regions of cortex in the visual cortical areas VI and V2,
respectively (Kuffler er al., 1984, Van Essen and Drury, 1997). Additionally, it is
encouraging that sources at similar locations (see figure 6-22) and with similar differences
in activation between the sources were found in experiments with the same subject, using a

different MEG system (Barnes et al, 1998).

N

Aston University

Content has been removed for copyright reasons

figure 6-22: Sources reconstructed for the experiment
described in Barnes et al (1998). Note that the locations of
these sources correspond closely to the sources reconstructed
in the study reported in this chapter (compare with figure
6-12), despite the use of a different (19 channel CES) MEG
system. Figure taken from Barnes et al, 1998.
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The error functions demonstrated that the data in the latency range of interest were
well explained by the model up to about 110ms, where the error function began to increase.
This suggests that a more complex source model is needed for the later period, possibly
because of the onset of activity in other brain areas, related to the peaks seen in the evoked

responses at later latencies.

The analysis with the FOCUSS algorithm could be expanded in several ways:

e Target weighting could be applied, using the locations found so far to tailor the initial
weighting matrix.

e A mesh of the whole brain could be used, so that activity in more anterior regions could
be faithfully reconstructed.

e Using the covariance matrix of the noise as part of the initial weighting matrix could

reduce the influence of noise.
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7 Discussion and Recommendations

In this work the incorporation of a priori information into the inverse problem for

Magnetoencephalography (MEG) was evaluated.

It was found that the formulation of the FOCUSS algorithm (Gorodnitsky er al,
1995) enables the incorporation of a priori information in a simple and insightful way

(chapter 2). Additionally, it does not rely on knowledge about the number of active sources.

The use of constraints formed by a realistically shaped representation of the cortical
surface (chapter 3) relies on accurate co-registration of the MEG and MRI co-ordinate
systems. The surface matching approach was found to provide this accuracy. The mean
test-retest errors were smaller than [.6mm. The maximum crrors (2.1mm) were found for

target points towards the back of the head (chapter 3).

Figures of merit designed for linearly distributed inverse problems gave insight in
the characteristics of a measurement set-up and the usefulness of « priori information
(chapter 4). It could be demonstrated that measurement with a small sensor array suffers
from bias towards the sensors (chapter 4). This bias was reduced with a whole head system
(chapter 6). Moreover, it was demonstrated that activity in most sulci and gyri is detectable.
The ability to reconstruct activity in a certain area depends on a combination of the distance
from the sensors, the orientation of the source and the norm of the lead fields (chapter 4).

The effect of a priori information was found to be largest on the Bias in Dipole
Location measure, with only a small influence on the figures of merit that were derived
from the resolution kernels instead of the resolution columns (chapter 4). The Bias in
Dipole Location measure was shown to be a good indicator of the achievable accuracy of
source reconstructions with the FOCUSS algorithm, enabling an objective, data

independent, evaluation of the potential pay-off of any a priori information used (chapter
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4). It was shown that target area weighting dramatically improved the accuracy of solutions

for a specific area, without a decrease in performance in other areas (chapter 4).

The evaluation of FOCUSS, unconstrained and constrained dipole fit algorithms
with a simulated cortical fold revealed that adding constraints improved the accuracy of
reconstructed sources when noisy data were used (chapter 5). This improvement
disappeared for constrained dipole fitting when the SNR of the data increcased or when the
surface normals were perturbed (chapter 5). With FOCUSS the advantage disappeared for
data with high SNR and when the gridspacing was increased (chapter 5).

The accuracy of source reconstructions with FOCUSS decreased with incrcasing
gridspacing (chapter 5). The influence was more pronounced for arcas with large surface
curvature (chapter 5). Due to the larger surface curvature a higher spatial sampling is
needed in order to incorporate the information of the rapidly changing lead ficlds in the
inverse problem. The performance of the constrained dipole fit algorithm was generally
little influenced by an increase in gridspacing (chapter 5). An increase in error due to
increasing gridspacing was only found for low SNR data and for an area with large surface
curvature (chapter 5).

The error in the source reconstructions due to perturbations of the position of the
mesh was in the order of Imm for perturbations as large as 10mm, both for FOCUSS and
constrained dipole fitting (chapter 5). This error was therefore negligible compared to other
sources of error.

The performance of FOCUSS did not degrade due to perturbations of the surface
normals (chapter 5). Interestingly, a small improvement was found, which can be cxplained
by an improvement of the resolution kernels. Perturbations of the surface normals
introduced errors in the source reconstructions as large as 5.6mm when the constrained

dipole fit algorithm was used (chapter 5).

Finally, the application of the techniques developed in this thesis was demonstrated
(chapter 6). The primary visual evoked response to a Gaussian windowed sinusoidal
stimulus patch was modelled as two closely spaced sources at the occipital pole, activated
in sequence (chapter 6). The locations and activation sequences were not only
physiologically reasonable, complying with activation of areas in visual cortical areas V1

and V2, but also agreed with studies using a different MEG system.



Further Work

This thesis raised some interesting questions:

Other types of a priori information could be obtained from the frequency domain
(chapter 2).

The accuracy of the solutions obtained with FOCUSS was dependent on the choice of
the initial weighting matrix (chapter 4). The performance could be improved by
computing the impulse response for many sources in the source space and optimising
the weights to give the best overall performance, an approach ideally suited for a neural
network approach.

The angular distributions for gyral and sulcal sources across a number of cortical
surfaces should be determined and correlated with the reconstruction accuracy for the
two classes of sources (chapter 4).

The increased accuracy found with target area weighting (chapter 4) suggests how
MEG source localisation could benefit from information provided by other modalities,
like fMRI or PET. The location of active sources in an fMRI/PET experiment could be
incorporated by increasing the weights for these areas. FMRI/PET could then provide
additional spatial information for the source localisation from MEG/EEG data, whereas

fMRI/PET can benefit from the temporal information provided by MEG/EEG.
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Appendices

Appendix A

MNLS solution in terms of SVD

In order to derive a formulation for the MNLS solution in terms of SVD, we start of with

the matrix formulation of the forward problem.

B=LQ+N, (A-1)

with N the vector containing the noise in the data.

The MNLS solution is given by:

O=L'B=L"LQ+L"N, (A-2)

Using the orthonormality of the eigenvectors obtained with the SVD, the truncated SVD of

L and L* becomes:

L=UAV" = A uv], (A-3)

i=1

L' =VA'U" =Y A"vau/, (A-4)

i=1

with t the truncation index.

Substituting these two equations into equation A-2 gives:
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Q=3 (1" vl 27wy Q)+ YA vl N=3Q'vv, + A"Nuy,), (A-5)

1=l =1 i=1

With the definitions q; = QTvi and n; = NTui this becomes:

Q:E( ivi+/1;”3nivi>, (A-6)

i=1

The error function that is minimised by the truncated MNLS solution is given by:

r

A:Q_inqivi ‘{ [ (qivi +A’;l/2nivi>}: zqivi _i;{gwlnivi ) (A-7)
i=1 i=1

i=1 1=t+]

with r the rank of L.
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